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Abstract
Increasing evidence shows that heat shock proteins (hsp) escape the cytosol gaining access to the extracellular
environment, acting as signaling agents. Since the majority of these proteins lack the information necessary for
their export via the classical secretory pathway, attention has been focused on alternative releasing mechanisms.
Crossing the plasma membrane is a major obstacle to the secretion of a cytosolic protein into the extracellular
milieu. Several mechanisms have been proposed, including direct interaction with the plasma membrane or their
release within extracellular vesicles (ECV). HSPB1 (Hsp27), which belongs to the small hsp family, was detected
within the membrane of ECV released from stressed HepG2 cells. To further investigate this finding, we studied the
interaction of HSPB1 with lipid membranes using liposomes. We found that HSPB1 interacted with liposomes made
of palmitoyl oleoyl phosphatidylserine (POPS), palmitoyl oleoyl phosphatidylcholine (POPC), and palmitoyl oleoyl
phosphatidylglycerol (POPG), with different characteristics. Another member of the small hsp family, HSPB5 (αB-
crystallin), has also been detected within ECV released from HeLa cells transfected with this gene. This protein was
found to interact with liposomes as well, but differently than HSPB1. To address the regions interacting with the
membrane, proteoliposomes were digested with proteinase K and the protected domains within the liposomes were
identified by mass spectroscopy. We observed that large parts of HSPB1 and HSPB5 were embedded within the
liposomes, particularly the alpha-crystallin domain. These observations suggest that the interaction with lipid mem-
branes may be part of the mechanisms of export of these proteins.
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Introduction

Cells are constantly exposed to changes in their environmental
conditions modulating their metabolism that could, in some
circumstances, compromise homeostasis. Part of the cellular
responses for conditions that depart from normal physiologi-
cal conditions is the expression of heat shock or stress proteins
(hsp). The activity of these proteins is directed at preserving
basic cellular functions by a variety of mechanisms, including
their ability to stabilize and renature unfolded polypeptides.
Hsp consist of a large number of different polypeptides
encoded by various genes, some of which are expressed dur-
ing normal physiological conditions whereas others are exclu-
sively activated after stress (De Maio 1999; Hartl and Hayer-
Hartl 2009). One family of hsp corresponds to small molecu-
lar mass polypeptides, generally referred to as small hsp
(Arrigo 2017; Carra et al. 2017), which are ATP-
independent molecular chaperones (Jakob et al. 1993). The
family of small hsp is made up of a variety of different poly-
peptides; the number of which varies greatly among different
species (Boelens and de Jong 1995). A common feature of all
of them is the presence of a domain coined the “alpha-
crystallin domain” (Boelens 2014; Carra et al. 2017). This
domain can form dimeric structures and facilitates the forma-
tion of large dynamic oligomeric structures that are character-
istic for small hsp. In humans, ten different small hsp have
been identified, named HSPB1 to HSPB10 (Kampinga et al.
2009), which show various patterns of expression (Boelens
2014).

HSPB1 (human HSP27) is constitutively expressed in sev-
eral different cell types, but its levels are dramatically in-
creased after heat shock (Arrigo 2017). The human protein
has three phosphorylation sites, located at serine residues 15,
78, and 82. The level of phosphorylation at these sites plays an
important role in many of their cellular functions, from protein
folding to cytoskeletal organization and antiapoptotic and an-
tioxidant properties (Arrigo 2017). In addition, HSPB1 dis-
plays varying stages of oligomerization from monomers and
dimers to high molecular weight complexes above 800 kDa
that are associated with various degrees of phosphorylation
(Arrigo 2017). HSPB1 is also overexpressed in different tu-
mors (Ciocca et al. 2015) and has been associated with other
pathologies such as amyotrophic lateral sclerosis, Charcot-
Marie-Tooth disease, and Alzheimer’s disease (Arrigo
2017). Another member of the small hsp family, HSPB5
(αB-crystallin), is present in a variety of tissues, including
the eye lens, heart, and brain. In particular, HSPB5 has been
detected at high levels in various neurodegenerative diseases,
including Alzheimer’s and Parkinson diseases and amyotro-
phic lateral sclerosis (Boelens 2014). Indeed, HSPB5 was
found to block amyloid-β aggregation and toxicity
(Wilhelmus et al. 2006). HSPB5 can be phosphorylated at
serine residues 19, 45, and 59, which reduces the size of

complexes (Peschek et al. 2013), modulates its cellular local-
ization (den Engelsman et al. 2005), and affects the chaperone
activity (Ahmad et al. 2008; Ecroyd et al. 2007). HSPB5 is
also modified by the addition of O-GlcNAc groups
(Roquemore et al. 1992), which affects its subcellular locali-
zation during heat shock (Krishnamoorthy et al. 2013).

Small hsp have also been detected outside cells (Batulan
et al. 2016; Reddy et al. 2018), which echoes many other
members of the hsp family (De Maio 2011). HSPB1 was first
detected in the extracellular space of tumor cells (Banerjee
et al. 2011; Feng et al. 2005) and subsequently in serum ob-
tained from individuals suffering from several pathologies
(Batulan et al. 2016; Reddy et al. 2018). Extracellular
HSPB1 has been implicated in the activation of inflammatory
responses (Batulan et al. 2016; Shi et al. 2019). In addition, the
presence of HSPB1 in circulating fluids such as blood has
emerged as an important biomarker of disease (Singh et al.
2017). HSPB1, as well as other hsp, do not contain a consen-
sus signal for their export via the ER-Golgi secretory pathway.
Therefore, these proteins could be released by passive mech-
anisms, including cell lysis and necrosis, or active processes
independent of cell death (De Maio and Vazquez 2013). The
latter has been coined the non-classical secretory pathway
(Nickel and Seedorf 2008). For the translocation of a protein
from the cytosol into the extracellular space, polypeptides
need to cross the hydrophobic barrier made up of the plasma
membrane. Several mechanisms have been proposed for the
non-classical secretory pathway, including the transport across
membrane pores and the release associated with extracellular
vesicles (ECV) or exosomes (De Maio 2011; Nickel and
Seedorf 2008). HSPB1 has been detected within the lysosom-
al compartment, opening the possibility that this protein is
exported via the endo-lysosomal pathway (Rayner et al.
2008, 2009). HSPB1 has also been found associated with
exosomes (Clayton et al. 2005; Nafar et al. 2016; Stope
et al. 2017), which are vesicles released by active mechanisms
upon the formation of multivesicular bodies or by direct bleb-
bing from the plasma membrane (ectosomes); all commonly
referred to as extracellular vesicles (ECV) (De Maio 2011;
Thery et al. 2009). Another possibility is that HSPB1 could
pass directly across lipid membranes. Certainly, some hsp,
particularly members of the Hsp70 family, have been reported
to associate with lipid membranes (Arispe et al. 2002; Armijo
et al. 2014), and even opening ion conductance pathways
(Arispe and De Maio 2000; Vega et al. 2008). HSPB5 has
been reported also to associate with membranes, such as lens
membranes (Boyle and Takemoto 1996; Cenedella and
Fleschner 1992; Cobb and Petrash 2002; Friedrich and
Truscott 2010), mitochondrial membranes (Whittaker et al.
2009), and Golgi membranes (Gangalum and Bhat 2009;
Gangalum et al. 2004). In addition, this protein was detected
within exosomes, playing an important role in the formation
and release of these ECV (Gangalum et al. 2016).
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Phosphorylation of HSPB5 was found to reduce exosome-
mediated secretion, while an opposite effect was seen by O-
GlcNAcylation (Kore and Abraham 2016). Based on these
preceding observations, we investigated the ability of
HSPB1 and HSPB5 to associate with lipid membranes.

Material and methods

Cell culture and isolation of ECV

HepG2 cells, a human hepatoblastoma cell line, were main-
tained in Eagle’s minimal essential medium supplemented
with nonessential amino acids (1×), sodium pyruvate
(2 mM), L-glutamine (2 mM), penicillin (10 IU/mL), strepto-
mycin (10 g/mL), and heat-inactivated fetal calf serum (10%).
T-RexTMHeLa cells expressing the Tet repressor (Invitrogen)
transfected with pcDNA4/TO (Invitrogen) containing the cod-
ing sequences for wild-type HSPB5, HSPB5 S19D/S45D/
S59D, and HSPB5 R120G (den Engelsman et al. 2004) were
maintained in Dulbecco’s modified Eagle’s medium (DMEM;
Invitrogen, San Diego, CA, USA) supplemented with 10% (v/
v) fetal bovine serum (FBS; PAA Laboratories, Linz, Austria),
100 U/mL penicillin, and 200 μg/mL streptomycin. Cells
were maintained at 37 °C with 5% CO2 in a humidified incu-
bator. HepG2 cells (90% confluent, 150-cm culture dish) were
heat shocked at 43 °C for 90 min in a 5% CO2 humidified
incubator in a serum-free (SF) medium and allowed to recover
at 37 °C for 24 h. The extracellular medium was collected and
centrifuged at 2,000×g for 15 min at 4 °C (Allegra 25R
Centrifuge, Beckman Coulter, Indianapolis, IN, USA) to re-
move cells and debris. The supernatants were centrifuged at
10,000×g for 60 min at 4 °C, and then the supernatant was
centrifuged again at 100,000×g for 60 min at 4 °C (Optima
L-90 K Ultracentrifuge, Beckman Coulter) to obtain ECV
pellets. The resulting pellets were resuspended in 1 mL of
phosphate-buffered sal ine (PBS), t ransfer red to
microcentrifuge tubes (Beckman Coulter), centrifuged at
100,000×g for 60 min at 4 °C (Optima TLX Ultracentrifuge,
Beckman Coulter), and resuspended in PBS. Determination of
ECV concentration and ECV mean and mode size was per-
formed for each ECV preparation by nanoparticle tracking
analysis using the NanoSight NS300 instrument (Malvern
Instruments, Westborough, MA, USA).

Western blotting

Equal amounts of cell lysates or an equivalent number of ECV
were solubilized in NuPAGE LDS sample buffer (Life
Technologies, Carlsbad, CA, USA), and proteins were sepa-
rated using NuPAGE 4–12% Bis-Tris gels (Life
Technologies). Electrophoretically separated proteins were
transferred onto nitrocellulose membranes (Tris transfer buffer

for 1 h at 30 V).Membranes were blocked with 5%BSA-Tris-
buffered saline (TBS) for 1 h at 25 °C. Blots were probed with
mouse monoclonal antibodies against HSPB1 (SPA-800 clone
G3.1, Enzo Life Sciences, Farmingdale, NY, USA) or HSPB5
(SMC-159 clone 1A7.D5, StressMarq Biosciences, Victoria,
Canada) in 5% BSA dissolved in TBS supplemented with
0.1% Tween 20 (TBST) at 4 °C for 16 h followed by three
15-min washes in TBST at 25 °C. Blots were then incubated
with HRP-conjugated goat anti-mouse IgG antibodies
(1/1000, Thermo Fisher Scientific, Fremont, CA, USA) in
5% BSA-TBST for 1 h at 25 °C. After three 15-min washes
in TBST, bands were detected by chemiluminescence using
SuperSignal reagents (Thermo Fisher Scientific).

Recombinant protein purification

pET3b human HSPB1, pET16b human HSPB5 wild type,
HSPB5 S19D/S45D/S59D (TM), and HSPB5 R120G were
introduced in the BL21 Rosetta strain, and the proteins were
expressed by incubating the cells for 4 h at 37 °Cwith 350 μM
IPTG. The cells were lysed by sonication in TEG buffer
(25 mM Tris, pH 8.0, 2 mM EDTA, 50 mM glucose) and then
centrifuged at 16,000×g for 45 min at 4 °C. Supernatants first
fractionated on a DEAE–Sepharose column and subsequently
purified on a Source 15Q HR 16/10 column, using a NaCl
gradient from 0 to 1000 mM in 2 mM EDTA, 25 mM Tris–
HCl/Bis-Tris–HCl, pH 8.0.

Liposome preparation and incorporation of proteins

Liposomes were formed by resuspending the dried lipid film
(400 μg, Avanti Polar Lipids, Alabaster, AL) in 50-mM Tris
Buffer, pH 7.4 (120 μl), and vortexed every 5 min for 30 s.
The preparation was extruded through a 100-nm membrane
filter (15 passages). Thereafter, liposomes were incubated
with recombinant HSPB1 or HSPB5 and resuspended in 50-
mM Tris Buffer, pH 7.4 for 30 min at 25 °C at a ratio of
400 μg lipids per 1 μg of protein or as indicated in the figure
legend. After the incubation, the mixture was centrifuged at
100,000×g for 40 min at 4 °C and the pellet was washed once
with sodium carbonate (Na2CO3, pH 11.5) and centrifuged
again. The final pellet, after centrifugation (proteoliposomes),
was resuspended in lithium dodecyl sulfate (LDS) sample
buffer and boiled for 8 min. The material was resolved by
LDS-polyacrylamide gel electrophoresis (PAGE), transferred
onto a nitrocellulose membrane, and the presence of HSPB1
or HSPB5 was detected by HSPB1 (SPA-800) or HSPB5
(SMC-159) as described above.

Mass spectrometry analysis

Recombinant HSPB1 or HSPB5 (2 μg) was incubated with
POPS liposomes (400 μg) in 50-mM Tris buffer, pH 7.4 for
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30 min at 25 °C. Liposomes were centrifuged at 100,000×g
for 40min at 4 °C. Pellets were resuspended in Na2CO3 buffer
(pH 11.5) and centrifuged again. The resulting proteolipo-
somes were incubated with 50 μg/mL proteinase K for
30 min at 37 °C, and the liposomes were pelleted at e centri-
fugation and washed again. Pellets were solubilized and
digested with trypsin. The resulting peptides were analyzed
by HPLC coupled with tandem mass spectrometry (LC-MS/
MS) using nano-spray ionization (TripleTOF 5600 hybrid
mass spectrometer (AB SCIEX)). Data were analyzed using
MASCOT® (Matrix Science) and Protein Pilot 4.0 (AB
SCIEX) for peptide identifications.

Results

HSPB1 is present in ECV isolated from heat shock cells

HSPB1 (Hsp27) has been detected in the extracellular space
and has been proposed to be released via ECV or exosomes
(Clayton et al. 2005; Nafar et al. 2016; Reddy et al. 2018;
Stope et al. 2017). We evaluated whether HSPB1 was indeed
present within ECV. HepG2 cells (human hepatoblastoma)
express low levels of HSPB1 in normal culture conditions,
but their expression is dramatically increased upon heat stress
at 43 °C, with the detection of monomers and an apparent
dimer (Fig. 1a); the latter likely formed by a disulphate bridge
in the HSPB1 dimer interface (Almeida-Souza et al. 2010).
The extracellular medium (serum-free) of HepG2 cells after
heat shock (43 °C) and 24 h of recovery at 37 °C or not was
collected, and ECV were isolated by differential centrifuga-
tion (Vega et al. 2008). Whereas HSPB1 was not detectable in
ECV obtained from non-stressed cells (Fig. 1b), its presence
was strongly detected in vesicles isolated after heat shock.
However, only the monomeric form was observed (Fig. 1b).
To address whether HSPB1 was intrinsically associated with
ECV or just absorbed on the surface of the vesicles, isolated
ECV were washed with Na2CO3 (pH 11.5) that removes any
proteins that are not integrated into the vesicle membrane.
This treatment did not disrupt the detection of HSPB1 within
the ECV preparation (Fig. 1b). Finally, ECV containing
HSPB1 were incubated with the non-ionic detergent Triton
X-100 and the detergent-resistant and soluble fractions were
isolated. HSPB1 was observed in Triton X-100 resistant frac-
tion (Fig. 1b), suggesting the protein exists, at least in part,
within lipid raft-like domains of ECV.

HSPB1 associates with lipid membranes

The preceding observations suggest that HSPB1 may be
inserted into the membrane of ECV. Therefore, we were won-
dering whether this protein could indeed interact with lipid
membranes. To test this possibility, recombinant human

Fig. 1 ECV derived from stressed cells contained HSPB1. HepG2 cells
were maintained at 37 °C (control) or heat shocked (43 °C for 1.5 h) and
recovered (37 °C) in serum-free medium. ECVwere isolated from culture
medium by high-speed centrifugation as described in Materials and
methods. a Detection of HSPB1 by western blotting in total cell lysates.
b Detection of HSPB1 by western blotting in isolated ECV derived from
control of heat-shocked cells. ECV isolated from heat-shocked cells were
washed with Na2CO3 (0.1 M at pH 11.5) or incubated with Triton X-100
(1% for 30 min 4 °C), centrifuged at 100,000×g for 1 h, and the pellets
were analyzed for the presence of HSPB1 by western blotting. Arrows
indicate the location of monomeric (m) and dimeric (d) forms of HSPB1
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HSPB1 at various concentrations was incubated with lipo-
somes made of 100% palmitoyl oleoyl phosphatidylserine
(POPS), palmitoyl oleoyl phosphatidylcholine (POPC), or
palmitoyl oleoyl phosphatidylglycerol (POPG), and the incor-
poration of the protein into the liposomes was evaluated by
western blotting after pelleting the liposomes by high-speed
centrifugation as described previously (Armijo et al. 2014;
Lopez et al. 2016). HSPB1 avidly got incorporated into
POPS liposomes in a concentration-dependent manner. The
incorporation of HSPB1 into POPS liposomes displayed a
saturation profile at higher amounts of the protein (Fig. 2b).
HSPB1 also incorporates into POPG and POPC liposomes,
but at lower levels than POPS liposomes (Fig. 2a).
Representative western blotting for the incorporation of
HSPB1 into POPS liposomes is presented as Fig. 2b. To fur-
ther elucidate the nature of the interaction of HSPB1 with
POPS liposomes, the protein was incorporated into liposomes,
washed with Na2CO3, and treated or not with proteinase K for
30 min at 37 °C. Then, liposomes were sedimented by high-
speed centrifugation, washed, and analyzed by mass spectros-
copy. The peptide sequences obtained from both conditions
were compared (Fig. 3). The majority of HSPB1 peptide se-
quences detected in non-digested liposomes were also

detected after digestion of the proteoliposomes with protein-
ase K (bolded amino acids, Fig. 3). Only a limited number of
regions were digested by the protease (marked by grey areas
on Fig. 3, bottom), corresponding to domains that were ex-
posed outside the liposome. The alpha-crystallin domain (in-
dicated by solid underline) was highly protected except for a
group of 11 amino acids suggesting that this domain is em-
bedded into the liposome. In addition, a stretch of 19 amino
acids toward the N-terminus end of the protein was not detect-
ed after Proteinase K digestion suggesting that it is exposed on
the surface of the liposome (Fig. 3, bottom). Overall, this
information suggests that the majority of HSPB1 is embedded
within the liposomes, which could be within the membrane or
in the lumen.

HSPB5 is also present in ECV and interacts
with liposomes

HSPB5 (αB-crystallin) has been reported associated with
ECV isolated from human retinal pigment epithelial cells
(Gangalum et al. 2016). This observation was confirmed by
us upon isolation of ECV fromHeLa cells transfected with the
HSPB5 gene (Fig. 4). Because HSPB5 is related to HSPB1,
we were pondering whether HSPB5 could also interact with
lipid membranes. HSPB5 was incubated in POPS, POPC, or
POPG liposomes, and the incorporated protein was detected
as described above. HSPB5 interacted with the three types of
liposomes in a concentration-dependent manner, showing a

Fig. 2 HSPB1 got incorporated into phospholipid liposomes. Pure
recombinant HSPB1 (1, 2, 4, 6, or 8 μg) was incubated with POPS,
POPC, or POPG liposomes (400 μg) in 50-mM Tris buffer, pH 7.4 for
30 min at 25 °C. At the end of the incubation period, the liposomes were
centrifuged at 100,000×g for 40 min at 4 °C. Pellets were resuspended in
Na2CO3 buffer (pH 11.5) and centrifuged again. Liposome pellets were
then solubilized in LDS sample buffer, and liposome-incorporated
proteins were separated by LDS-PAGE and analyzed by western
blotting using a monoclonal antibody against HSPB1 (SPA-800, Enzo
Life Sciences) and HRP-conjugated goat anti-mouse as secondary
antibodies. The signal intensity of each band in the western blot was
quantitated by densitometry using Bio-Rad Image Lab Software 4.1.
The incorporation into the liposomes was calculated based on the signal
of the corresponding signal of HSPB1without liposomes at the respective
concentration. a Quantification of HSPB1 incorporation into POPS,
POPC, and POPG liposomes. b Representative western blotting for the
incorporation of HSPB1 into POPS liposomes

Fig. 3 Detection of the region of HSPB1 exposed outside POPS
liposomes. Recombinant HSPB1 (2 μg) was incubated with POPS
liposomes (400 μg) in 50-mM Tris buffer, pH 7.4 for 30 min at 25 °C.
The liposomes were centrifuged at 100,000×g for 40 min at 4 °C. Pellets
were resuspended in Na2CO3 buffer (pH 11.5) and centrifuged again. The
resulting proteoliposomes were incubated (bottom) or not (top) with
Proteinase K (50 μg/mL) for 30 min at 37 °C, and the liposomes were
centrifuged at 100,000×g for 40 min at 4 °C and washed again. The
liposome pellet was analyzed by mass spectroscopy. The peptides that
were protected from Proteinase K digestion are bolded, the region that
was lost after Proteinase K treatment (exposed outside the liposome) is
highlighted in grey. The alpha-crystallin domain was indicated by solid
underline
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higher affinity for POPG liposomes than POPS or POPC li-
posomes. However, saturation was not reached in the range of
concentrations used for either liposome preparation (Fig. 5a).
A representative western blot for the incorporation of HSPB5
into POPS liposomes is presented in Fig. 5b. The regions in
HSPB5 incorporated into POPS liposomes were also analyzed
by proteinase K digestion as described above. We found that
most regions were not sensitive for the protease incubation.
Only two small peptides were digested by the protease treat-
ment, particularly at the C-terminus end of the protein (see
grey areas on Fig. 6), suggesting that this region is exposed
outside the liposome. The alpha-crystallin domain (indicated
by solid underline) was protected with the exception of a
stretch of 8 amino acids. This observation suggests that
HSPB5 is more embedded into the liposome than HSPB1,
which is consistent with the lack of saturation in the incorpo-
ration into liposomes.

Two mutants of HspB5 display different patterns
of liposome incorporation than the wild-type protein

We investigated the presence of HSPB5 mutants within ECV
and their interaction with lipid membranes. We used a triple
mutant (TM) in which three serine amino acids were substitut-
ed with aspartic acids (S19D, S45D, and S59D) to mimic the
potential effect of phosphorylation (see * in Fig. 6). The sec-
ondmutant has a single amino acid change in which R120was
changed to G (R120G) that has been associated with myopa-
thy (Vicart et al. 1998). These two mutants were also detected
in ECV isolated from HeLa cells transfected with these con-
structs (Fig. 4). First, we analyzed the interaction with POPS
liposomes. In contrast with the wild type, both mutants pre-
sented a saturation pattern with liposomes made of this lipid.
The initial rate of incorporation was more elevated for R120G
than TM and WT (Fig. 7a). Similar saturation incorporation
curves were observed for both mutants (TM and R120G) in
comparison with WT after incubation with POPC or POPG

Fig. 4 HSPB5 is present in ECV vesicles derived from transfected HeLa
cells. HeLa cells were transfected with plasmid corresponding to empty
vector (1), wild-type HSPB5 (2), HSPB5 triple mutant (TM) in which
three serine amino acids were substituted with aspartic acids (3), or a
mutant (R120G) in which a single amino acid R120 was changed to G
(4). ECV were isolated from culture medium by high-speed
centrifugation. The presence of HSPB5 or mutants was detected in total
cell lysates or isolated ECV by western blotting. Arrow indicates the
location of HSPB5

Fig. 5 HSPB5 got incorporated into phospholipid liposomes. Pure
recombinant HSPB5 (1, 2, 4, 6, or 8 μg) was incubated with POPS,
POPC, or POPG liposomes (400 μg) in 50-mM Tris buffer, pH 7.4 for
30 min at 25 °C. At the end of the incubation period, the liposomes were
centrifuged at 100,000×g for 40 min at 4 °C. Pellets were resuspended in
Na2CO3 buffer (pH 11.5) and centrifuged again. Liposome pellets were
then solubilized in LDS sample buffer, and liposome-incorporated
proteins were separated by LDS-PAGE and analyzed by western
blotting using a monoclonal antibody against HSPB5 (SPA-800, Enzo
Life Sciences) and HRP-conjugated goat anti-mouse as secondary
antibodies. The signal intensity of each band in the western blot was
quantitated by densitometry using Bio-Rad Image Lab Software 4.1.
The incorporation into the liposomes was calculated based on the signal
of the corresponding signal of HSPB5without liposomes at the respective
concentration. a Quantification of HSPB5 incorporation into POPS,
POPC, and POPG liposomes. b Representative western blotting for the
incorporation of HSPB5 into POPS liposomes.

Fig. 6 Detection of the region of HSPB5 exposed outside POPS
liposomes. Recombinant HSPB5 (2 μg) was incubated with POPS
liposomes (400 μg) in 50-mM Tris buffer, pH 7.4 for 30 min at 25 °C.
The liposomes were centrifuged at 100,000×g for 40 min at 4 °C. Pellets
were resuspended in Na2CO3 buffer (pH 11.5) and centrifuged again. The
resulting proteoliposomes were incubated (bottom) or not (top) with
Proteinase K (50 μg/mL) for 30 min at 37 °C, and the liposomes were
centrifuged at 100,000×g for 40 min at 4 °C and washed again. The
liposome pellet was analyzed by mass spectroscopy. The peptides that
were protected from Proteinase K digestion are bolded; the region that
was lost after proteinase K treatment (exposed outside the liposome) is
highlighted in grey. The alpha-crystallin domain was indicated by solid
underline
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liposomes (Fig. 7b, c). The initial rate of incorporation was
also elevated in both cases for the mutant proteins as opposed
toWT (Fig. 7b, c). These observations suggest that amino acid
modifications within the protein altering its overall charge
modify the interaction with lipid membranes.

Discussion

Many proteins localized within the cytosol escape this envi-
ronment and are exported outside cells by an active mecha-
nism independent of cell death. Since these proteins do not
display a signal to be secreted by the ER-Golgi pathway, they
are released by non-classical secretory pathway (Nickel and
Seedorf 2008). These proteins within the extracellular milieu
play many critical roles, particularly in signaling and the acti-
vation of target cells (De Maio 2011). A great example of
proteins exported by this alternative pathway is IL-1β that is
a key player in the inflammatory process (Eder et al. 2008).
Other examples include hsp that have been detected in the
extracellular medium of cells in culture as well as in many
body fluids (DeMaio 2011). Themajor challenge for a protein
to translocate from the cytosol into the extracellular environ-
ment is to cross the hydrophobic barrier formed by the plasma
membrane. Several mechanisms have been proposed to ex-
plain this process, including protein pores, such as ABC trans-
porters, a lysosome-endosome pathway, exosomes, and the
direct crossing of the lipid bilayer (De Maio 2011; Nickel
and Seedorf 2008). In this regard, members of the Hsp70
family have been reported to interact with lipid membranes
within liposomes (Armijo et al. 2014; Lopez et al. 2016) and
artificial lipid bilayers (Arispe and De Maio 2000; Vega et al.
2008), reviewed by Balogi et al. 2019. In addition, these pro-
teins have been detected on the surface of transformed cells in
a membrane-anchored fashion (Multhoff and Hightower
1996). Small hsp have also been observed within mitochon-
drial and Golgi membranes (Whittaker et al. 2009; Gangalum
and Bhat 2009; Gangalum et al. 2004). In addition, they have
been detected within lens membranes (Boyle and Takemoto
1996; Cenedella and Fleschner 1992; Cobb and Petrash 2000,
2002; Friedrich and Truscott 2010), and the binding was in-
creased by elevations of temperature (Friedrich and Truscott
2010). Membrane association has been correlated with the
development of cataracts (Boyle and Takemoto 1996;
Cenedella and Fleschner 1992; Cobb and Petrash 2002).

We detected the presence of HSPB1 within ECV or
exosomes after heat shock (43 °C) and 24 h of recovery at
37 °C in HepG2 cells corroborating prior observations
(Clayton et al. 2005; Nafar et al. 2016; Stope et al. 2017). In
addition, we observed HSPB5 in ECV isolated from HeLa
cells transfected with this gene, echoing other reports
(Gangalum et al. 2016; Kore and Abraham 2016). Our obser-
vations suggest that HSPB1 is inserted into the ECV mem-
brane since it was not released after washes with Na2CO3

(pH 11). Moreover, the presence of HSPB1 in ECV was re-
sistant to TX-100 solubilization suggesting that the protein is
within lipid raft-like domains of these vesicles. Previous stud-
ies have also shown that HSPB5 is present within detergent-
resistant membranes and released in association with
exosomes (Gangalum et al. 2011, 2016). The observation that

Fig. 7 HSPB5 or two different mutants got incorporated into
phospholipid liposomes. Pure recombinant HSPB5, an HSPB5 triple
mutant (TM) in which three serine amino acids were substituted with
aspartic acids (S19D, S45D, and S59D), or a mutant (R120G) in which
a single amino acid R120 was changed to G at various concentrations (1,
2, 4, 6, or 8 μg) was incubated with POPS (a), POPC (b) or POPG (c)
liposomes (400 μg) in 50-mM Tris buffer, pH 7.4 for 30 min at 25 °C. At
the end of the incubation period, the liposomes were centrifuged at
100,000×g for 40min at 4 °C. Pellets were resuspended in Na2CO3 buffer
(pH 11.5) and centrifuged again. Liposome pellets were then solubilized
in LDS sample buffer, and liposome-incorporated proteins were separated
by LDS-PAGE and analyzed by western blotting using a monoclonal
antibody against HSPB5 (SPA-800, Enzo Life Sciences) and
HRP-conjugated goat anti-mouse as secondary antibodies. The signal
intensity of each band in the western blot was quantitated by
densitometry using Bio-Rad Image Lab Software 4.1. The incorporation
into the liposomes was calculated based on the signal of the
corresponding signal of the respective recombinant protein without
liposomes at the various concentrations.
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HSPB1 and HSPB5 may be in lipid raft-like domains within
ECV is not surprising since these vesicles are very rich in
cholesterol that is a major component of these domains in
membranes (Brown and London 2000). Moreover, Hsp70
(HSPA1) has also been reported to be present within
detergent-resistant domains in ECV (Vega et al. 2008).
Therefore, lipid raft regions have been proposed as one of
the sites for ECV formation and release, particularly
ectosomes (De Maio 2011). The presence of hsp within
ECV has been linked to a signaling ability rather than a chap-
erone activity (De Maio 2011). Gangalum et al. (2016) have
recently shown that HSPB5 could play an important role in
exosome secretion, without affecting their formation. The ob-
servations that HSPB5 is located within the vesicle membrane
may place the protein in direct contact with the machinery
involved in exosome release, perhaps explaining the inhibi-
tion of ECVexport in the absence of the protein.

The direct interaction of HSPB1 and HSPB5 with
lipid membranes was investigated using liposomes
followed by high-speed centrifugation and detection by
western blotting as previously described (Armijo et al.
2014; Lopez et al. 2016). Both proteins displayed an
affinity for various phospholipids but showed distinct
specificities, suggesting that their interaction with lipid
membranes may not be identical. HSPB1 reached satu-
ration upon incorporation into liposomes, particularly
POPS, at higher concentrations of the protein, whereas
the incorporation of HSPB5 is still linear in the same
range of concentrations. These differences may be ex-
plained by the assumption that HSPB5 is more com-
pressed into the liposomes or perhaps driven toward
the liposome lumen providing enough space to incorpo-
rate more polypeptides. A comparison of the proteomic
analysis for the surface exposure of both proteins within
POPS liposomes indicated that HSPB1 and HSPB5 are
embedded differently into the lipid bilayer. Prior studies
have shown that HSPB5 indeed interacted with lipid
membranes (Borchman and Tang 1996; Ifeanyi and
Takemoto 1991; Tjondro et al. 2016). The interaction
of HSPB5 with lipids was not specific for the type of
phospholipids (Cobb and Petrash 2002) and it was re-
duced by the presence of cholesterol within the mem-
brane (Tang et al. 1998). HSPB5, as well as Hsp17,
have been reported to stabilize artificial membranes me-
diated by interaction with the polar head group and
affecting the hydrophobic region of the phospholipid
(Tsvetkova et al. 2002). This report is consistent with
our observations for the robust interaction of HSPB5
and HSPB1 with lipid membranes.

Two mutants of HSPB5 in which three negative charges
have been incorporated into the protein (TM) or when a pos-
itive charge was deleted (R120G) showed a different behavior
than wild-type HSPB5. The two mutants showed a saturation

curve for their insertion as opposed to WT, suggesting that
their arrangement within the liposome is different than WT.
Thus, changes in the protein charge may produce structural
modifications that modulate the interaction with lipids or the
packaging of the protein within the liposome. In this regard,
HSPB5 has been shown to be in a non-phosphorylated form
within ECV (Kore and Abraham 2016), suggesting that the
excess of negative charge may interfere with packing into the
vesicles. However, our observations with HSPB5 TMmay not
indicate that an excess of negative charge interferes with
membrane interaction. These observations may indicate that
both in the presence or absence of phosphate groups (negative
charges) the protein can be directed to the membrane or the
lumen of the vesicles. Interestingly, Kore and Abraham (2016)
found that HSPB5 within exosomes was modified by O-
GluNac moieties. Indeed, HSPB5 has been reported to be
modified by this cytosolic sugar entity independently of the
phosphorylation stage of the protein (Roquemore et al. 1992).
The saccharide moiety was added to Thr 170 of HSPB5
(Roquemore et al. 1996), which is located within the region
that is exposed outside the liposome as indicated for protein-
ase K sensitivity.

The alpha-crystallin domain of both HSPB1 and
HSPB5, which is the key feature of these proteins, has
been reported to form a beta-sheet structure (Augusteyn
2004; Clark et al. 2011; Van Montfort et al. 2001). These
beta-sheet structures have been proposed to form oligo-
meric complexes that facilitate insertion into lipid mem-
branes (Arispe et al. 1996, 1993; Mirzabekov et al. 1996;
Rojas et al. 1992). Indeed, the alpha-crystallin domain
was found to be largely protected after treatment with
Proteinase K after the incorporation of HSPB1 and
HSPB5 into POPS liposomes, indicating that this domain
is indeed inserted within the lipid bilayer. It could be that
the alpha-crystallin domain may be important for the in-
corporation into the membrane. Indeed, the alpha-
crystallin domain has been shown to be the center of
oligomerization of this protein (Boelens 2014; Carra
et al. 2017). Previous studies have indicated that the in-
teraction of HSPB5 with artificial membranes is enhanced
upon an increase in temperature, which has been correlat-
ed with the oligomerization of the protein (Tjondro et al.
2016). The difference in lipid binding behavior between
HSPB5 and the triple mutant (TM) could be explained by
differences in the oligomerization stage (Peschek et al.
2013). However, we do not know whether the oligomeri-
zation process is necessary for membrane insertion.

In summary, we showed that both HSPB1 and HSPB5
interact with lipid membranes made of a variety of phospho-
lipids and they are also present within ECV. Therefore, it is
possible that membrane insertion is the first step in their trans-
port outside cells, which may be followed by the formation of
ECV, as was previously proposed for Hsp70 (De Maio 2011).
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