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Abstract. Representations of the celebrated Heisenberg commutation relations in quantum
mechanics (and their exponentiated versions) form the starting point for a number of
basic constructions, both in mathematics and mathematical physics (geometric quantiza-
tion, quantum tori, classical and quantum theta functions) and signal analysis (Gabor
analysis). In this paper we will try to bridge the two communities, represented by the two
co-authors: that of noncommutative geometry and that of signal analysis. After providing
a brief comparative dictionary of the two languages, we will show, e.g. that the Janssen
representation of Gabor frames with generalized Gaussians as Gabor atoms yields in a
natural way quantum theta functions, and that the Rieffel scalar product and associativity
relations underlie both the functional equations for quantum thetas and the Fundamental
Identity of Gabor analysis.

Mathematics Subject Classification (2000). Primary 42C15, 46L89; Secondary 11F27,
14K25.
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0. Introduction

Gabor analysis is a modern branch of signal analysis with various applications
to pseudodifferential operators, harmonic analysis, function spaces, approximation
theory, and quantum mechanics. It is well known that there are substantial con-
nections between the mathematical foundations of signal analysis and those of
quantum mechanics [21]. Furthermore, the theory of operator algebras furnished
a rigorous framework for quantum mechanics, but possible direct relationships
between signal analysis and operator algebras have not received much attention.
Recent work of Gröchenig and his collaborators (see [25,27]) made explicit con-
nections between the spectral invariance of certain Banach algebras and basic
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problems in signal analysis. In his PhD thesis [37] one of us has developed basic
correspondences between Gabor analysis and noncommutative geometry over non-
commutative tori.

Classical theta functions have a long history, see [47] for a modern exposition.
From the functional theoretic viewpoint, they are holomorphic functions of sev-
eral complex variables, which acquire an exponential factor after the shift by any
vector in a period lattice. Geometrically, they represent sections of a line bundle
over a complex torus, lifted to the universal cover of this torus and appropriately
trivialized there.

The second named author, motivated by the ideas of geometric quantization,
suggested in 1990 that one can develop a meaningful theory of quantum thetas
after replacing ordinary complex tori in the classical construction by their quan-
tum versions, see [42]. The new quantum theta functions were subsequently applied
to the construction of algebraic quantization of abelian varieties in [43] (this case,
as well as that of symplectic projective manifolds in general, presented a prob-
lem in Kontsevich’s paper [35]) and to the program of Real Multiplication [45,64].
Thanks to the Boca study [2], it became clear that quantum thetas can be con-
structed as Rieffel’s scalar products of vacuum vectors in representations of the
appropriate Heisenberg groups. This idea, developed in [46], led to the discovery of
a quantum version of those classical functional equations for theta functions that
arise from different natural trivializations of a line bundle over a complex torus,
see also [12].

In this paper we survey a new interpretation of quantum theta functions in
the framework of Gabor analysis. Recent investigations have clarified and enriched
parts of both subjects, see [40] for work related to Gabor frames, and [28] for a
contribution on the structure of projective modules over noncommutative tori rely-
ing on methods from Gabor analysis. The present work is another instance for the
relevance of Gabor analysis in exploiting basic notions of noncommutative geom-
etry [7]. The basic link between Gabor analysis and noncommutative geometry is
furnished by the Heisenberg group, especially the Schrödinger representation of
the Heisenberg group. The Heisenberg group lies at the heart of various branches
of physics, applied and pure mathematics, see the excellent survey [29]. After the
groundbreaking work of Weil [65], theta functions have been linked with represen-
tations of Heisenberg groups. In this famous paper Weil introduced the metaplectic
representation, which had independently been found by Shale. Weil’s new methods
and objects have influenced many mathematicians in their work on theta functions,
most notably Cartier, Igusa and Reiter in [3,30,50–52]. In his work on abelian
varieties Mumford had demonstrated the relevance of the Heisenberg group in the
algebraization of theta functions, cf. [47]. In [61], Schempp has discussed the close
relation between signal analysis and theta functions, where the Heisenberg group
and its representation theory serves as a link between these two objects. The pres-
ent investigation might be considered as a far-reaching extension of this line of
research.
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1. Central Extensions and Heisenberg Groups

In this section we recall the basic definitions of central extensions and Heisenberg
groups. Our presentation follows closely the one given in [46].

1.1. CENTRAL EXTENSIONS

Let K (resp. Z) be an abelian group written additively (resp. multiplicatively). Con-
sider a function ψ : K × K → Z. Then the following conditions (a) and (b) are
equivalent:

(a) ψ(0,0)=1 and ψ is a cocycle, that is, for each x, y, z we have

ψ(x, y)ψ(x + y, z)=ψ(x, y + z)ψ(y, z). (1.1)

(b) The following composition law on G := Z × K turns G = G(K,ψ) into a group
with identity (1,0):

(λ, x)(µ, y) := (λµψ(x, y), x + y). (1.2)

Moreover, if (a), (b) are satisfied, then the maps Z → G : λ �→ (λ,0), G → K :
(λ, x) �→ x , describe G as a central extension of K by Z:

1→Z →G(K,ψ)→K→1. (1.3)

Notice that any bicharacter ψ automatically satisfies (a). For arbitrary ψ , putting
x =0 in (1.1), we see that ψ(0, y)=1 so that

(λ, x)= (λ,0)(1, x).

1.1.1. Bicharacter ε

Conversely, consider any central extension (1.3), choose a set theoretic section K→
G : x �→ x̃ and define the map ε : K×K→Z by

ε(x, y) := x̃ ỹ x̃−1 ỹ−1. (1.4)

Then ε is a bicharacter which does not depend on the choice of a section and
which is antisymmetric: ε(y, x)= ε(x, y)−1, ε(x, x)=1. In particular, if K ⊂K is a
subgroup liftable to G, then K is ε-isotropic.

For the group G(K,ψ), choosing x̃ = (1, x), we find

ε(x, y)= ψ(x, y)

ψ(y, x)
, (1.5)

and if ψ itself is an antisymmetric bicharacter, then ε(x, y)=ψ(x, y)2.
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1.1.2. Cohomological interpretation

The class of ψ in H2(K,Z) determines G up to an isomorphism identical on K,Z.
This extension is abelian iff ε is trivial in which case the extensions are classified
by elements of Ext1(K,Z). The map ψ �→ε coincides with the second arrow in the
universal coefficients exact sequence

Ext1(K,Z)→ H2(K,Z)→Hom (�2K,Z).

1.2. REPRESENTATIONS OF CENTRAL EXTENSIONS

Given K, Z, ψ and a ground field k, choose in addition a character χ : Z → k∗.
Consider a linear space of functions f : K → k invariant with respect to the affine
shifts and define operators U(λ,x) on this space by

(U(λ,x)f)(x) :=χ(λψ(x, y))f(x + y). (1.6)

A straightforward check shows that this is a representation of G(K,ψ). However, it
is generally reducible. Namely, suppose that there is an ε-isotropic subgroup K0 ⊂
K liftable to G(K,ψ). Let σ : K0 →G(K,ψ), σ (y)= (γ (y), y) be such a lift. Denote
by F(K//K0) the subspace of functions satisfying the following condition:

∀ x ∈K, y ∈ K0, (U(γ (y),y)f)(x) :=χ(ε(x, y))f(x), (1.7)

or, equivalently,

∀ x ∈K, y ∈ K0, f(x + y)=χ(γ (y)−1ψ(y, x)−1)f(x). (1.8)

This subspace is invariant with respect to (1.6). If we choose for K0 a maximal
isotropic subgroup, then this provides a minimal subspace of this kind.

Formula (1.8) shows that if we know the value of f at a point x0 of K, it
extends uniquely to the whole coset x0 + K0, hence the notation F(K//K0) sug-
gesting “twisted” functions on the coset space K/K0.

1.3. LOCALLY COMPACT TOPOLOGICAL GROUPS

The formalism briefly explained above is only an algebraic skeleton. In the cat-
egory of LC Ab of locally compact abelian topological groups and continuous
homomorphisms, with properly adjusted definitions, one can get a much more sat-
isfying picture.

First of all, choose Z :=C∗
1 ={z ∈C∗ | |z|=1}. This is a dualizing object: for each

K in LC Ab there exists the internal Hom (K,Z) object, called the character group
̂K, and the map K �→ ̂K extends to the equivalence of categories LC Ab → LC Abop

(Pontryagin’s duality).
Let now ψ be a continuous cocycle K × K → Z so that ε is a continuous

bicharacter. Call the extension G(K,ψ) a Heisenberg group, if the map x �→ε(x,∗)
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identifies K with ̂K. In the case K = R2N , we call G(R2N ,ψ) a vector Heisenberg
group.

Choose k =C, and χ continuous. The formula (1.6) makes sense, e.g. for contin-
uous functions f . Especially interesting, however, is the representation on L2(K)
which makes sense because the operators (21.6) are unitary with respect to the
squared norm

∫

K |f |2dµHaar . Of course, square integrable functions cannot be
evaluated at points, so that f(x + y) in (1.6) must be understood as the result of
shifting f by y ∈K; similar precautions should be taken in the formula (1.8) defin-
ing now the space L2(K//K0) where K0 is a closed isotropic subgroup (it is then
automatically liftable to a closed subgroup), and in many intermediate calculations.
See Mumford’s treatment on pp. 5–11 of [47] specially tailored for readers with
algebraic geometric sensibilities.

We will call L2(K//K0), for a maximal isotropic subgroup K0 ⊂K, a basic rep-
resentation of the respective Heisenberg group.

The central fact of the representation theory of a Heisenberg group G(K,ψ),
K∈ LC Ab, χ = id, is this:

THEOREM 1.3.1. (i) A basic representation of G(K,ψ) is unitary and irreducible.
(ii) Any unitary representation of G(K,ψ) whose restriction to the center is the

multiplication by the identical character is isomorphic to the completed tensor
product of L2(K//K0) and a trivial representation. In particular, various basic
representations are isomorphic.

If (i), (ii) are satisfied, then the maps Z → G : λ �→ (λ,0), G → K : (λ, x) �→ x ,
describe G as a central extension of K by Z:

1→Z →G(K,ψ)→K→1.

For a proof we refer the reader to [47].

2. Calculus of Representations of Heisenberg Groups

In this section we will recall some well-known facts about representations of Hei-
senberg groups. In the first part of this section we introduce the notions of matrix
coefficients, integrability and square-integrablity of a representation on a Hilbert
space. In the second part we will focus on the representations of vector Heisen-
berg groups.

2.1. BASIC NOTIONS

Let K be an object of LC Ab and H a Hilbert space. We consider a unitary
strongly continuous irreducible representation ρ of K on H. For f,g ∈ H we call
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Sgf(k)=〈f, ρ(k)g〉 a matrix coefficient of the representation ρ on H. If there exists
a non-trivial g in K such that Sgg is square integrable with respect to the Haar
measure on K, then the irreducible representation ρ is called square integrable.

The irreducible representation ρ is integrable if at least one matrix coefficient Sgg
is integrable for a non-trivial g ∈H, such a g is then called an integrable element
of the irreducible and integrable representation ρ. We denote by A1(K) the set of
all integrable elements g ∈H and call it the space of admissible atoms.

The square integrability of ρ implies the existence of orthogonality relations for
matrix coefficients: for f1, f2,g1,g2 in H the following holds, see, e.g. [17]:

∫

K
Sg1f1(k)Sg2 f2(k)dk =〈f1, f2〉〈g1,g2〉 (2.1)

Among important consequences of this identity we note the existence of a recon-
struction formula for functions in H. Let f be in H and 〈g1,g2〉 	=0. Then we have

f =〈g1,g2〉−1
∫

K
Sg1 f1(k)ρ(k)g2dk. (2.2)

In the case of the Heisenberg group G(K,ψ) this yields the most general ver-
sion of the resolution of identity and the orthogonality relations are known as
Moyal’s identity. The space of admissible elements A1(G(K,ψ)) for the Heisenberg
group G(K,ψ) provides a realization of Feichtinger’s algebra [14]. Since the space
of integrable elements of G(K,ψ) is another way of defining Feichtinger’s algebra,
see [17]. Feichtinger’s algebra is an important Banach space in harmonic anlaysis,
time–frequency analysis and Gabor analysis. Later we discuss Feichtinger’s algebra
and some of its weighted versions in the case of vector Heisenberg groups in more
detail.

In our discussion of projective modules over quantum tori we also have to deal
with smooth vectors of representations of a Heisenberg group G(K,ψ), where K
is an elementary locally compact abelian group. Recall that this means K is of the
form vector space × torus × lattice × finite group. We denote the Lie algebra of
the Heisenberg group by L. A vector f ∈H is called smooth if for any X1, . . . , Xn ∈
L the following expression makes sense

δUX1 ◦ . . . δUXn (f)

where δUX (f) is defined as the limit when t →0

δUX (f) := lim
Uexp(t X)f − f

t
. (2.3)

It is known that the space H∞ of smooth vectors is dense and the operators δUX

are skew adjoint but unbounded [47].
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2.2. BASIC REPRESENTATIONS OF VECTOR HEISENBERG GROUPS

Now we discuss the vector Heisenberg group G(R2N ,ψ) in more detail. Note that
in this case we can choose ψ as an antisymmetric bicharacter with values in C∗

1.

After choosing an appropriate basis, we identify R2N with the space of pairs of
column vectors x = (x1, x2), xi ∈RN . In this case ψ can be written in the form

ψA(x, y)= eπ i A(x,y) (2.4)

where A : K×K→R is a nondegenerate antisymmetric pairing, such as

A(x, y)= xt
1 y2 − xt

2 y1

where xt
i denotes the transposed row vector. We have then εA(x, y)= e2π i A(x,y).

In particular, the subspace RN × {0} is a maximal ε-isotropic closed subgroup
of R2N .

We will recall the structure of two Heisenberg representations of G(R2N ,ψA)

using normalizations adopted in [47].
Model I. In this model the unitary representation of G(R2N ,ψ) lives on L2(RN ),

the Hilbert space of square integrable complex functions f on RN with the scalar
product

〈f,g〉 :=
∫

f(x1)g(x1)dµ (2.5)

where dµ is the Haar measure in which ZN has covolume 1.
The action of G(RN ,ψA), with central character χ(λ) = λ, is given by the

formula

(U(λ,y)f)(x1)=λ e2π i x t
1 y2+π i yt

1 y2 f(x1 + y1). (2.6)

Many authors refer to the Model I as the Schrödinger representation of G(R2N ,ψA).
Model IIT . The second model is actually a family of models depending on the

choice of a compatible Kähler structure upon K=R2N . A general Kähler structure
on R2N can be given by a pair consisting of a complex structure and a Hermitean
scalar product H . We will call this Kähler structure compatible (with the choice
(2.4)) if Im H = A. Such structures are parametrized by the Siegel space SN con-
sisting of symmetric matrices T ∈ M(N ,C) with positive definite Im T .

In particular, the complex structure defined by T identifies R2N with CN via

(x1, x2)= x �→ x := T x1 + x2, (2.7)

and we have

HT (x, x)= xt (Im T )−1 x∗ (2.8)

where ∗ denotes the componentwise complex conjugation.
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Consider the Hilbert space HT of holomorphic functions on CN =K consisting
of the functions with finite norm with respect to the scalar product

〈f,g〉T :=
∫

CN

f(x)g(x) e−πHT (x,x) dν (2.9)

where dν is the translation invariant measure making Z2N a lattice of covolume 1
in R2N .

For (λ, y)∈G(CN ,ψA) and a holomorphic function f on CN , put

(U ′
(λ,y)f)(x) :=λ−1e−πHT (x,y)− π

2 HT (y,y)f(x + y). (2.10)

A straightforward check shows that these operators are unitary with respect to
(2.9), and moreover, that they define a representation of G(CN ,ψA) in HT corre-
sponding to the character χ(λ)=λ−1 of C∗

1, in the sense of formula (1.8). This is
generalization of the classical Bargmann–Fock representation, which corresponds
to the choice T = τ I for τ with a positive imaginary part.

It turns out that this representation is irreducible on HT and thus is a model of
the Heisenberg representation.

The proof of irreducibility spelled out in [47] involves constructing vacuum
vectors in HT which in this model turn out to be simply constant functions.
Translated via canonical (antilinear) isomorphism into other models they look dif-
ferently. For example they become (proportional to) a “quadratic exponent” fT :=
eπ i x t

1T x1 in Model I (i.e. L2(R2N//RN )) or to an essentially classical theta-function
eπ i x t

1xϑ(x,T ) in L2(R2N//Z2N ). They are called “theta-vectors” in [60]. For details,
see the Theorem 2.2 in [47] and the discussion around it, see also [4].

3. Principle Notions of Time–Frequency Analysis in the Context of Vector
Heisenberg Groups

In this section we interpret matrix coefficients of the Schrödinger representation
of the vector Heisenberg group in terms of time–frequency analysis. This leads
us naturally to the study of time–frequency representations, namely the short-time
Fourier transform and the Wigner distribution from the phase space approach to
quantum mechanics.

3.1. TIME–FREQUENCY REPRESENTATIONS

The basic task in signal analysis is to analyse the spectral content of a given signal
f , i.e. a complex-valued function f(t) on RN . Traditionally one invokes the Fourier
transform Ff to gain some insight about the spectral resolution of f , i.e. the fre-
quencies ω contained in the given signal f . We define the Fourier transform Ff for
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f ∈ L1(RN ) by

Ff(ω)=̂f(ω)=
∫

RN

f(t)e−2π i t ·ωdt. (3.1)

One drawback of this approach is that Ff does not provide any local information
about the signal f . Therefore one is looking for joint time and frequency represen-
tations. In time–frequency analysis it is very useful to consider R2N as

R2N =RN ×̂RN ={(t,ω) | t,ω∈RN }. (3.2)

If we want to emphasize this description of R2N we refer to it as time–frequency
space.

In order to obtain information about the “local frequency spectrum” of f , we
use a window g to localize the signal f and take the Fourier transform of this local-
ized piece of f .

Short-Time Fourier Transform (STFT) of a signal f with respect to a window
function g:

Vgf(x,ω) :=
∫

RN

f(t)g(t − x) e−2π i t ·ωdt. (3.3)

The properties of Vgf depend crucially on the choice of the window g. It turns
out that the integrable and smooth vectors of the vector Heisenberg group provide
good classes of window functions. If f and g are for example Schwartz functions
on RN , then Vgf(x,ω) measures the amplitude of the frequency band near ω at
time x .

Among the many facts about STFT, we want to mention one on the relation
between the STFT of f and the STFT of ̂f . By an application of Parseval’s
theorem to Vgf one obtains

V̂ĝf(x,ω)= e−2π i x ·ωVgf(ω,−x). (3.4)

Therefore if we choose the Gaussian g0(t)= e−π t2
as a window function (or any

window invariant under Fourier transform), then the time–frequency content of ̂f
is just the one of f rotated by an angle of π/2.

During the last two decades a representation theoretic interpretation of the
STFT has become of great relevance in time–frequency analysis, because it has
allowed to put the time–frequency analysis on solid mathematical ground. The
main proponents of this line of research are Feichtinger and Gröchenig, who
described in [17] a correct framework for a rigorous treatment of time–frequency
analysis, the coorbit theory. Later we briefly discuss some aspects of their coorbit
theory for the Schrödinger representation of vector Heisenberg groups.

In time–frequency analysis one associates to a point (x,ω) in the time–frequency
plane a time–frequency shift: the unitary operator π(x,ω) on L2(RN ) defined by

f �→π(x,ω)f(t) := e2π i t ·ωf(t − x). (3.5)
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The same operator occurs in the basic representation of the central extension of
the time–frequency space:

π(x,ω)=U(e−π i t ·ω,(x,ω)). (3.6)

The restriction of π(x,ω) to the maximal εA-isotropic subspaces RN × {0} and
{0}×RN of the time–frequency space R2N are respectively the translation operator
Tx :=π(x,0) and the modulation operator Mω :=π(0,ω).

The mapping (x,ω) �→π(x,ω) is a unitary (projective) strongly continuous rep-
resentation of R2N on L2(RN ). Therefore, we can express Vgf as the matrix-
coefficient of this projective representation, i.e.

Vgf(x,ω)=〈f, π(x,ω)g〉. (3.7)

This intrinsic description of STFT in terms of the Heisenberg group amplifies
the great relevance of the STFT and makes it a basic object of study. Moreover,
most other time–frequency representations, such as cross-Wigner distribution, have
a description in terms of the STFT.

Recall, that the cross-Wigner distribution of two signals f and g is defined by

W (f,g)(x,ω)=2N e4π i x ·ω
∫

RN

f(x + t
2 )g(x − t

2 )e
−2π i t ·ωdt. (3.8)

The cross-Wigner distribution is just a short-time Fourier transform in disguise:

W (f,g)(x,ω)=2N e4π i x ·ωVg̃f(2x,2ω), (3.9)

where g̃(x)=g(−x) denotes the reflection of g with respect to the origin.

3.2. FUNCTION SPACES FOR TIME–FREQUENCY ANALYSIS

Since STFT is one of the key players in the time–frequency analysis, it is natural
to consider function spaces defined in terms of integrability conditions or decay
conditions of the STFT. In the early 1980s, H. G. Feichtinger introduced the so-
called modulation spaces in exactly this manner [15]. For a thorough discussion of
the history and the relevance of modulation spaces in various branches of mathe-
matics and engineering see the excellent survey article by Feichtinger [16]. Among
the class of modulation spaces one Banach space, Feichtinger’s algebra S0(RN ),
stands out as the most prominent member, already introduced by different meth-
ods in [14]. Feichtinger’s algebra is a good substitute for the Schwartz class as long
as one is not dealing with partial differential equations, see [19]. Feichtinger’s alge-
bra S0(RN ) has an intrinsic description in terms of the Heisenberg group, namely
it is the space of integrable vectors for the Schrödinger representation of the
Heisenberg group G(R2N ,ψA).

Let vs be the submultiplicative weight vs(x,ω)= (1+‖x‖2
2 +‖ω‖2

2)
s/2 on R2N , i.e.

vs(x + y,ω+η)≤ vs(x,ω)vs(y, η) for (x,ω), (y, η)∈ R2N . Recall that a weight m is
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called vs-moderate, if m(x + y,ω+ η)≤ vs(x,ω)m(y, η) for all (x,ω), (y, η)∈ R2N .
Let g be a nonzero function in the Schwartz class S(RN ). Then a tempered distri-
bution f ∈S ′(RN ) belongs to the modulation space Mm

p,q(R
N ), if

‖f‖Mm
p,q

:=
⎛

⎜

⎝

∫

RN

⎛

⎜

⎝

∫

RN

|Vgf(x,ω)|pm(x,ω)p

⎞

⎟

⎠

q/p

dω

⎞

⎟

⎠

1/q

<∞. (3.10)

For 1≤ p,q ≤∞ the modulation spaces Mm
p,q(R

N ) are Banach spaces, and different
functions g yield equivalent norms on Mm

p,q(R
N ). We will write Mp for Mp,p. The

properties of modulation spaces are by their definition related to the properties of
the short-time Fourier transform.

The modulation spaces Mvs
1 (R

N ) are of great relevance in Gabor analysis, since
they provide a natural class of window functions. We denote Mvs

1 (R
N ) by Ms

1(R
N ).

The space M1(RN )= Mv0
1 (R

N ) is the well-known Feichtinger algebra S0(RN ) [16].
Below we summarize some properties used later in our treatment of projective

modules over quantum tori.

PROPOSITION 3.2.1. The following holds:

(i) Mm
p,q(R

N ) is invariant under time–frequency shifts, i.e.

‖π(y, η)f‖Mm
p,q

≤Cvs(y, η)‖f‖Mm
p,q
. (3.11)

(ii) Mm
p,q(R

N ) is invariant under Fourier transform, i.e.

‖̂f‖Mm
p,q

≤C‖f‖Mm
p,q
. (3.12)

(iii) Let f,g be in Ms
1(R

N ). Then Vgf is in L1(RN ).

For proofs of these statements we refer to [26] or [20]. The basic strategy for
proving (i) and (ii) is to establish these properties for STFT. The statement (i) fol-
lows from the covariance property of STFT:

Vg(π(y, η)f)(x,ω)= e2π iy·ωVgf(x − y,ω−η).
The proof of (ii) relies on (3.7).

Now we want to give a global description of the smooth vectors H∞ for the vec-
tor Heisenberg group G(RN ,ψA). In this case H∞ is the space of Schwartz func-
tions S(RN ). The basic observation is that

S(RN )=
⋂

s≥0

Ms
1(R

N ). (3.13)

Consequently, f ∈S(RN ) if and only if ‖f‖Ms
1

is finite for all s ≥ 0, see [26] for a
proof. Note that this description of S(RN ) allows one to transfer many statements
from Ms

1(R
N ) to S(RN ).



142 FRANZ LUEF AND YURI I. MANIN

We want to close this section with a discussion of the symplectic Fourier
transform. For F ∈ L1(R2N ) we define its symplectic Fourier transform by

FsF(x,ω)=
∫

R2N

F(y, η)e2π i(y·ω−x ·η)dydη. (3.14)

Observe that for a fixed (x,ω)∈ R2N the set {e2π i(y·ω−x ·η) | (y, η)∈ R2N } is actu-
ally the character group of the time–frequency plane, i.e. ̂RN × RN . Therefore
the symplectic Fourier transform is the ordinary Fourier transform of the time–
frequency plane RN ×̂RN .

As in the Euclidan case, M1
vs⊗vs (R2N ) is invariant under the symplectic

Fourier transform and consequently S(R2N ) is invariant under the symplectic
Fourier transform. The following fact has important consequences in Gabor anal-
ysis (Janssen representation of a Gabor frame operator, see [19,20,34]) and in the
construction of projective modules over quantum tori (see [53–56]).

PROPOSITION 3.2.2. Let f1, f2,g1,g2 be in Ms
1(R

N ). Then

Fs(Vg1 f1) · (Vg2 f2)(y, η)= (Vf1 f2 · Vg2 g1)(y, η). (3.15)

In [13] the authors point out that this identity has been known in the signal
analysis community since the early 1960’s, when Sussman obtained this fact in his
work on time-varying filters [63]. Later Rieffel gave a proof for signals and win-
dows in S(RN ) in [53–56] , which follows from the statement as indicated above.
In Gabor analysis Feichtinger and Kozek were the first who explicitly formulated
this fact for Feichtinger’s algebra S0(RN ). In [20] we have discussed this identity
in great detail for signals in dual classes of modulation spaces. The main idea is
to choose the signals in such a way that the product of the STFT’s is in M1(R2N )

and then use its invariance under the symplectic Fourier transform to justify the
application of the symplectic Fourier transform.

4. Quantum Tori Associated to Embedded Lattices in the Vector Heisenberg
Groups

We briefly recall the notions of quantum theta functions, Heisenberg group of
quantum tori and quantum tori associated to embedded lattices. Our presentation
follows largely the lines of [46].

4.1. HEISENBERG GROUP OF QUANTUM TORUS AND QUANTUM THETA FUNCTIONS

Let H be a free abelian group of finite rank written additively, k a ground field,
and α : H × H → k∗ a skewsymmetric pairing. The quantum torus T (H, α) with
the character group H and quantization parameter α is represented by an algebra
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generated by a family of formal exponents {e(h)= eH,α(h), h ∈ H}, satisfying the
relations

e(g)e(h)=α(g,h)e(g +h). (4.1)

In particular, T (H,1) is an algebraic torus, spectrum of the group algebra
k[e(h) | h ∈ H ] of H . The group of its points x ∈ T (H,1)(k)= Hom (H, k∗) acts
upon functions on T (H, α) mapping eH,α(h) to x∗(eH,α(h)) := h(x)eH,α(h) where
h(x) denotes the value of the character e(h) at x .

The Heisenberg group of the quantum torus T (H, α) introduced in [44] and
denoted there G(H, α) consists of all maps of the form

� �→ c eH,α(g) x∗(�) eH,α(h)
−1, c ∈ k∗; x ∈ T (H,1)(k); g,h ∈ H, (4.2)

where � is a formal theta function, see [44, Eq. (0.19)]. Any such map has a
unique representative of the same form in which h =0 (“left representative”). Writ-
ing this representative as [c; x, g] we get the composition law

[c′; x ′, g′][c; x, g]= [c′c g(x ′) α(g′, g); x ′x, g′ + g]. (4.3)

In other words, this group is the central extension of Hom (H, k∗)× H by k∗ cor-
responding to the bicharacter

ψ((x ′, g′), (x, g))= g(x ′)α(g′, g) (4.4)

and having the associated bicharacter

ε((x ′, g′), (x, g))= g(x ′)g′(x)−1α2(g′, g). (4.5)

In particular, if a subgroup B ⊂ Hom (H, k∗)× H is liftable to G(H, α), the form
(4.4) restricted to B must be symmetric: this is the main part of Lemma 2.2 in
[44].

A lift L of B to a subgroup of G(H, α) is called a multiplier. The restriction to
B of the form (4.4), 〈 , 〉 : B × B → k∗, is called the structure form of this multi-
plier. (Formal) linear combinations of the exponents eH,α invariant with respect to
the action of L(B) constitute a linear space �(L) and are called (formal) quantum
theta functions.

4.2. EMBEDDED LATTICES AND QUANTUM TORI

In this section K denotes an object of LC Ab, ψ is a bicharacter of K such that
ε (cf. (1.5)) identifies K with ̂K. Let G(K,ψ) be the respective Heisenberg group,
central extension of K by Z =C∗

1 as above.
We will call an embedded lattice a closed subgroup D ⊂ K such that D is a

finitely generated free abelian group, whereas K/D is a topological torus. In this
section we consider only those groups K which admit embedded lattices.
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Consider a family of constants

{ch ∈C∗
1,h ∈ D}.

Put

E(h) := (ch,h)∈G(K,ψ) (4.6)

From (1.2) we get

E(g)E(h)= cgch

cg+h
ψ(g,h) E(g +h).

Assume that

α(g,h) := cgch

cg+h
ψ(g,h) (4.7)

is a skewsymmetric pairing. Then the map eD,α(h) �→ E(h) is compatible with
the relations (1.6), i.e. defines a cohomologous representation of the Heisenberg
group. In particular any representation U of G(K,ψ) induces a representation of
an appropriate function algebra of the quantum torus T (H, α). One easily sees
that any α on D can be induced from an appropriate lattice embedding of D; one
can even take ψ to be a skewsymmetric bicharacter so that α will coincide with
the restriction of ψ .

The condition (4.1) in the definition of formal exponents may be considered as
a projective representation of D with respect to the 2-cocycle α. There is a canon-
cial correspondence between these representations and involutive representations of
the twisted group algebra �1(D, α) of D. It is known as the method of integrated
representations.

The twisted group algebra �1(D, α) of D consists of all absolutely summable
sequences a = (ah)h∈D where the multiplication is defined as twisted convolution of
a and b by

a�b(h)=
∑

l∈D

albh−lα(h − l, l), (4.8)

and involution a∗ = (a∗
h)h∈D of a is defined by

a∗
h =α(h,h)a−h . (4.9)

Consequentely �1(D, α) becomes a Banach algebra with respect to the norm ‖a‖1.
If we “integrate” the formal exponents {eh :h ∈ H}, then we get an involutive rep-

resentation of �1(D, α) as follows:

a = (ah)h∈D �→ρD(a) :=
∑

h∈D

aheD,α(h). (4.10)

More explicitely, we have for all a,b in �1(D):

ρD(a)ρD(b)=ρD(a�b) and ρD(a)∗ =ρD(a∗). (4.11)
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It is a well-known fact that there is a one-to-one correspondence between
projective representations of D and involutive representations of the twisted group
algebra �1(D, α). Finally we consider the twisted group C∗-algebra C∗(D, α) of D,
which is the enveloping C∗-algebra of �1(D, α).

Later we want to construct projective modules over smooth subalgebras A of
C∗(D, α) in the sense of A. Connes,. This means that A is stable under the
holomorphic function calculus of C∗(D, α). The algebra C∞(D, α) of elements
∑

h∈D aheD,α(h) with coefficients {ah}h∈D belonging to the Schwartz space S(D) is
a well-known example of a smooth subalgebra of C∗(D, α).

We want to point out that investigations in signal analysis have given rise to
a whole class of smooth subalgebras of C∗(D, α), cf. [27]. They are denoted
Cs

1(D, α), where one imposes on the elements
∑

h∈D aheD,α(h) of C∗(D, α) the fol-
lowing summability conditions:

∑

h∈D

|ah |(1+|h|2)s/2<∞. (4.12)

The fact that Cs
1(D, α) are smooth subalgebras of C∗(D, α) was shown by

Gröchenig and Leinert in [27], where they proved the so-called irrationality con-
jecture of Gabor analysis. Recently J. Rosenberg has given another proof for the
case s =0 of the theorem of Gröchenig and Leinert in [58].

Notice that C∞(D, α) = ⋂

s≥0 Cs
1(D, α). In other words, one might consider

Cs
1(D, α) as noncommutative analogues of differentable functions of order s. In

[38], we have explored this point of view in detail.
Alternatively, any element of C∗(D, α) can also be written as a formal series

∑

h∈D aheD,α(h) but there is no transparent way to specify which sequences {ah ∈
C | h ∈ D} can occur as their “noncommutative Fourier coefficients”. In this pic-
ture C1(D, α) are noncommutative analogs of Wiener’s algebra of Fourier series
with absolutely convergent Fourier series. Recently Rosenberg wrote a very inter-
esting paper [58] stressing this point of view. The theory of Gabor frames sheds
some light on the structure of the noncommutative Fourier coefficients. It shows
in particular that the class of modulation spaces has a natural characterization in
terms of such noncommutative Fourier coeffiecients. We come back to this issue in
a later section.

4.3. PROJECTIVE MODULES OVER SMOOTH SUBALGEBRAS OF QUANTUM TORI

In this section we discuss Rieffel’s projective modules over C∞(D, α) and their
extension to the setting of noncommutative Wiener algebras Cs

1(D, α), where D is
an embedded lattice of K. Our presentation is inspired by the results in [37,39,40,
46,53–57].

In [53–56], it is shown that the space of smooth vectors H∞ gives rise to
a finitely generated projective C∞(D, α)-module. Now we want to formulate the
results of [39,40] in this general framework. Therefore we introduce a family of
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subspaces of admissible elements As
1(K) for the Heisenberg group G(K,ψ), as those

elements g of L2(K) with Vgg in Ls
1(K). Note that H∞ =⋂

s≥0 As
1(K).

For �,� in As
1(K)

D〈�,�〉 :=
∑

h∈D

〈�, eD,α(h)�〉 eD,α(h). (4.13)

defines a scalar product with values in Cs
1(D, α), which is bounded on As

1(K). The
space As

1(K) becomes a left pre-inner product Cs
1(D, α)-module with respect to the

following left action:

a · f =
∑

h∈D

aheD,α(h) · f, (4.14)

for a ∈�s
1(D) and f ∈As

1(K).
More explicitely, this means the following:

(i) Symmetry: D〈�,�〉∗ = D〈�,�〉.
(ii) (Bi)linearity: D〈a�,�〉=a D〈�,�〉 for any a ∈C∞(D, α).

(iii) Positivity: D〈�,�〉 belongs to the cone of positive elements of C∗(D, α).
Moreover, if D〈�,�〉=0 then �=0.

(iv) Density: The image of D〈 , 〉 is dense in Cs
1(D, α).

Consequently the completion of As
1(K) with respect to ‖�‖ := ‖D〈�,�〉‖1/2

becomes a finitely generated left C∗(D, α)-module P . Since Cs
1(D, α) is a smooth

subalgebra of C∗(D, α) the finitely generated left Cs
1(D, α)-module Ps

1 is isomor-
phic to P , see Lemma 4 on p. 52 of [6] and the discussion around Proposition 3.7
in [53–56].

As indicated above, this implies that H∞ is also a projective finitely generated
left C∞(D, α)-module.

4.4. PROJECTIVE MODULES OVER QUANTUM TORI FOR DUAL EMBEDDED LATTICES

Let D ⊂K be an embedded lattice as in 4.2. Denote by D! the maximal closed sub-
group of K orthogonal to D with respect to ε. From the Pontryagin duality it fol-
lows that D! (resp. D) can be canonically identified with the character group of
K/D (resp. K/D!) so that D! is an embedded lattice as well.

Assume moreover that ψ is an antisymmetric pairing, so that one can choose
E(h)= (1,h)∈G(K,ψ) for h ∈ D and for h ∈ D! and define on As

1(K) the structure
of Cs

1(D
!, α!)-module as well where α! is the pairing induced on D! by ψ . Opera-

tors eD,α(h), h ∈ D, commute with operators eD!,α!(g), g ∈ D!.
We can consider As

1(K) as a right Cs
1(D

!, α!)op-module. Moreover, we can and
will identify the latter algebra with Cs

1(D
!, α!) by eD!,α!(h) �→ eD!,α!(h)−1 and

extending this map by linearity.
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THEOREM 4.5. (i) We have ‖D〈�,�〉‖1/2 = ‖D! 〈�,�〉‖1/2. The completion H
of As

1(K) with respect to this norm is a projective left module over both
quantum tori C∗(D, α) and C∗(D!, α!), and each of these algebras is a total
commutator of the other one.

(ii) Let C∗(D!, α!) act upon H on the right as explained above. Consider the
analog of the scalar product (4.13)

〈�,�〉D! := 1
volK/D

∑

h∈D

〈eD!,α!(h)�,�〉 eD!,α!(h) ∈C∗(D!, α!) (4.15)

It satisfies relations similar to (i)–(iv), and moreover, for any �,�,� the fol-
lowing associativity relation holds:

D〈�,�〉�=� 〈�,�〉D! . (4.16)

Consequently this result holds also for the smooth vectors H∞ and the smooth
subalgebra C∞(D, α). We discuss this theorem in the framework of Gabor analysis
in a later section.

5. Quantum Tori for Embedded Lattices and Gabor Analysis

In the first part of this section we introduce the basic notions of Gabor analysis
and in the second part we use this framework to interpret projective modules over
quantum tori in terms of Gabor frames.

5.1. BASICS OF GABOR ANALYSIS

Recall that the square-integrability of the Schrödinger representation of the time–
frequency plane yields the existence of a reconstruction formula for each f ∈
L2(RN ):

f =〈h,g〉−1
∫ ∫

R2N

Vgf(x,ω)π(x,ω)h dxdω, (5.1)

for g,h ∈ L2(RN ) with 〈g,h〉 	=0.
In the reconstruction formula (5.1) the time–frequency content of a signal f

is analysed with respect to the system {π(x,ω)g : (x,ω) ∈ RN } for a window g ∈
L2(RN ), i.e. one considers the STFT (〈f, π(x,ω)g〉 : (x,ω)∈ RN ) for each building
block π(x,ω)g, and then this information about the signal is used in the synthesis
process with respect to the system {π(x,ω)h : (x,ω)∈ RN }. We call the function h
the synthesis window. Note that there is just one restriction on the synthesis win-
dow, namely h has to be non-orthogonal to the window g. The reconstruction for-
mula (5.1) is well-known in quantum mechanics, where it is refered to as resolution
of identity.
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In 1946, D. Gabor was looking for an “optimal” way to transmit a signal [23].
Therefore he wanted to maximize the content of information gained from the
analysis process and to minimize the synthesis process. First, he suggested to use
well-localized window functions. Since the Gaussian g0(t)= e−π t2

(and its time–
frequency shifts) is the minimizer of the Heisenberg uncertainty principle, Gabor
relied his investigations on the Gaussian as window function. Second, Gabor con-
sidered discrete analogues of the resolution of identity, where he replaced the
time–frequency plane R2N by the lattice Z2N . Relying upon an heuristic argument
Gabor claimed that each f ∈ L2(RN ) has an expansion of the following type

f =
∑

k,m∈ZN

〈f, π(k,m)g0〉π(k,m)h, (5.2)

for some h in L2(RN ).
Until the late 1970s Gabor’s paper [23] drew little attention of engineers and

mathematicians, because the actual implementation of Gabor’s expansions did not
perform very well. In a series of papers [31–33] a mathematician Janssen under-
took a rigorous investigation of Gabor’s original expansions (5.2). The main result
in [31] shows that the series (5.2) converges for f and g not in L2(RN ), because the
coefficients turn out to grow logarithmically. Janssen proved instead convergence in
the sense of tempered distributions and thereby explained why the expansions (5.2)
are numerically unstable. The main reason for the problems with Gabor’s original
proposal is that the corresponding system does not give a frame for L2(RN ).

After the rigorous analysis of (5.2) mathematicians and engineers started look-
ing for systems of functions in L2(RN ) that would allow one to get numerically
stable expansions of Gabor’s type. The great breakthrough in this direction was
the work [8] in 1986, where the authors demonstrated that so-called frames of a
Hilbert space provide stable reconstruction formulas.

The notion of frames of a Hilbert space had been already introduced by Duffin
and Schaeffer in their work on non-harmonic Fourier series [11]. Let H be a sep-
arable Hilbert space. Then a system {gi | i ∈ I } is a frame for H if and only if for
each f ∈H the following holds: there exist finite positive constants A, B such that

A‖f‖2
H ≤

∑

i∈I

|〈f,gi 〉|2 ≤ B‖f‖2
H. (5.3)

In [8,9] the authors investigated two kinds of frames generated by (i) Gabor sys-
tems and (ii) wavelets. Both systems are so-called atomic decomposition, because
the elements of the systems are generated out of a building block g by the action
of a group representation. A relevant group is the Heisenberg group in the case of
Gabor frames and the affine group for wavelet systems. Shortly after the ground-
breaking work of Daubechies, Grossman and Meyer, the mathematicians Feichtin-
ger and Gröchenig realized that Gabor systems and wavelets are just two examples
of a general framework, which culminated in their coorbit theory [17] and revealed
the great relevance of representation theory for the construction of frames.
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After this brief historical review we continue our discussion of Gabor frames.
Since the work of Feichtinger and Gröchenig, a Gabor system G(g, D) is defined
as the set of time–frequency shifts of a given Gabor atom g for an embedded lattice
D in R2N , i.e.

G(g, D)={π(h)g :h ∈ D}. (5.4)

A Gabor system G(g, D) is called a Gabor frame for L2(RN ) if satisfies (5.3) for
some constants A, B.

The main task of Gabor analysis is to find reconstruction formulas for a func-
tion f in terms of G(g, D).

The following operators associated to a Gabor system G(g,�) allow one to
write down such reconstruction formulas.

(i) The analysis operator Cg,D maps functions f ∈ L2(RN ) to sequences on D by

Cg,Df(h)=〈f, π(h)g〉h∈D. (5.5)

(ii) The synthesis operator maps sequences c = (ch) on D to functions on RN as
follows:

c �→
∑

h∈D

chπ(h)g. (5.6)

The Gabor frame operator Sg,D corresponding to the Gabor system G(g, D)
maps a function f to

Sg,Df =
∑

h∈D

〈f, π(h)g〉π(h)g. (5.7)

Observe that Sg,D is the composition of the analysis operator followed by the
synthesis operator. Observe that G(g, D) is a Gabor frame for L2(RN ) if and only
if the Gabor frame operator Sg,D is invertible on L2(RN ).

Now, the existence of reconstruction formulas for f is linked to the invertibil-
ity of the Gabor frame operator Sg,D . We define the canonical dual Gabor atom
and the canonical tight Gabor atom of the Gabor frame G(g, D) by g̃ := S−1

g,Dg and

h̃= S−1/2
g,D g, respectively. Then we have the following reconstruction formulas for f ∈

L2(RN ):

f =
∑

h∈D

〈f, π(h)g〉π(h)g̃ (5.8)

and

f =
∑

h∈D

〈f, π(h)h̃〉π(h)h̃. (5.9)
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For g,h ∈ L2(RN ) we call

Sg,h,Df =
∑

h∈D

〈f, π(h)h〉π(h)g (5.11)

a Gabor frame-type operator. These operators appear naturally in reconstruction
formulas, e.g. if g̃ = S−1

g,Dg then Sg,g̃,D = I .
Around 1995 the papers [10,34,59] developed the so-called duality theory of

Gabor analysis, which marked a turning point in Gabor analysis. At the heart of
all these contributions is the crucial observation, that a Gabor frame operator has
a decomposition with respect to another Gabor system, the so-called Janssen rep-
resentation of the Gabor frame operator. This relies on the observation that the
Gabor frame operator Sg,D commutes with π(h) for h ∈ D:

π(h)Sg,D = Sg,Dπ(h) h ∈ D. (5.12)

Therefore, it is natural to consider the lattice D! consisting of all points of R2N

commuting with {π(h) :h ∈ D}:

D! = {h! ∈R2N :π(h)π(h!)=π(h!)π(h) for all h ∈ D}. (5.13)

The lattice D! is the so-called adjoint lattice, which had been introduced by
Feichtinger and Kozek [19] in their discussion of the Janssen representation. In
Gabor analysis the adjoint lattice is usually denoted by D◦. In other contexts this
object has appeared in the work of Mumford on theta functions and polarized
abelian varieties, Rieffel’s construction of projective modules over noncommutative
tori [53–56]. Note that the dual embedded lattice in the previous section is the
adjoint lattice for the Heisenberg group G(R2N ,ψI ).

Consider g,h ∈ L2(RN ) satisfying the following condition of Tolimieri and Orr:
∑

h!∈D!
|〈g, π(h!)h〉|<∞. (5.14)

Then the Gabor frame-type operator Sg,h,D has the following Janssen representation:

Sg,h,D f =vol(D)−1
∑

h!∈D!
〈h, π(h!)g〉π(h!)f, (5.15)

where vol(D) denotes the volume of a fundamental domain of D.
The Janssen representation follows from the Fundamental Identity of Gabor anal-

ysis (FIGA) after an application of a symplectic Poisson summation formula, see
(5.18) below. The validity of Poisson summation formulas is a delicate matter.
In the present situation the space of admissible vectors of the vector Heisenberg
group G(R2N ,ψA) provides a good class of functions. Due to its great impor-
tance in harmonic analysis, time–frequency analysis and approximation theory this
space [14] is known as Feichtinger’s algebra S0(RN ). We recall the definition of the



QUANTUM THETA FUNCTIONS AND GABOR FRAMES 151

weighted variants of Feichtinger’s algebra Ms
1(R

N ), these are elements of the class
of modulation spaces [14]. The tempered distribution f ∈S ′(RN ) is in Ms

1(R
N ) if

‖f‖Ms
1
:=

∫ ∫

R2N

|Vgf(x,ω)|(1+|x2|)s/2dxdω<∞ (5.16)

for a window g in S(RN ). The defintion of Ms
1(R

N ) is independent of the window
function g. It is a Banach space invariant under time–frequency shifts. The space
M1(RN ) is Feichtinger’s algebra S0(RN ), which is the minimal element in the class
of Banach spaces invariant under time-frequency shifts.

We formulate the symplectic Poisson summation formula in the following
statement:

PROPOSITION 5.1.1. Let D be an embedded lattice and D! its adjoint lattice in
R2N . Then for F in M1(R2N ) or F in S(RN ) we have

∑

h∈D

F(h)= 1
vol(D)

∑

h!∈D!
F(h!). (5.17)

This holds pointwise, and the convegence is absolute.

Therefore we are able to obtain the FIGA, which is a consequence of the sym-
plectic Poisson summation formula for F = Vg1 f1 · Vg2 f2. We just have to find con-
ditions on the windows and functions guaranteeing that the product of the two
STFT’s is in M1(RN ) or in S(RN ).

PROPOSITION 5.1.2. Let f1, f2,g1,g2 be in M1(RN ) or in S(RN ). Then we have

∑

h∈D

(Vg1 f1Vg2 f2)(h)= 1
vol(D)

∑

h!∈D!
(Vg1 g2Vf1 f2)(h

!). (5.18)

The Janssen representation of Sg,D is a direct consequence of (5.18). We consider
〈Sg,Df,k〉 and observe that this is the left hand side of (5.18). Therefore (5.18)
yields that

〈Sg,Df,k〉=
〈

1
vol(D)

∑

h!∈D!
(Vgg · Vf k)(h!)

〉

. (5.19)

and we can write the right hand side of (5.19) in the following way:

∑

d !∈D!
(Vgg · Vf h)(d !)=

〈

∑

d !∈D!
〈g, π(d !)g〉π(d !)f,h

〉

. (5.20)

From this we derive the Janssen representation of Sg,D :
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PROPOSITION 5.1.2. Let f,g,k be in M1(RN ) or in S(RN ). Then

Sg,Df = 1
vol(D)

∑

d !∈D!
〈g, π(d !)g〉π(d !)f . (5.21)

The Janssen representation lies at the heart of the duality theory for Gabor
frames, which was developed independently by three groups of researchers [10,
34,59] at the same time. Later Feichtinger and Gröchenig extended their L2(R)
results. These results are the cornerstones of Gabor analysis. One important con-
sequence of (5.21) is that the invertibility of Sg,D becomes a question about the
invertibility of an absolutely convergent sequence of time–frequency shifts:

Sg,D = 1
vol(D)

∑

h!∈D!
〈g, π(h!)g〉π(h!). (5.22)

In [27] Gröchenig and Leinert were able to link this fact with the spectral invari-
ance of subalgebras of the quantum torus C∗(D!, α). Later we observed that these
kind of results are of great relevance for noncommutative geometry, especially
some theorems of Connes on smooth quantum tori [38].

Observe that all our statements involving M1(RN ) in this section also hold for
Ms

1(R
N ). Therefore by the time–frequency description of the smooth vectors of the

vector Heisenberg group, i.e. the Schwartz class S(RN )=⋂

s≥0 Ms
1(R

N ), the spaces
{Ms

1(R
N ) | s ≥ 0} provide a scale of Banach spaces that interpolates between the

integrable vectors and the smooth vectors.

5.2. PROJECTIVE MODULES OVER QUANTUM TORI IN THE SETTING OF GABOR

ANALYSIS

In our treatment of the Janssen representation we emphasized the relevance of
FIGA and that it already appeared in Rieffel’s construction of projective modules
over noncommutative tori. Now we want to exploit this link between projective
modules over quantum tori and Gabor frames in more detail, see [37,39,40] for
further aspects of this topic.

The link between abstract quantum tori from Section 4 and Gabor analysis
is provided by the choice of a particular representation for the quantum torus.
Namely the operators {π(d) : d ∈ D} extend to a faithful involutive representation
of the quantum torus C∗(D, α) on L2(RN ). Consequently the smooth subalgebras
Cs

1(D, α) and C∞(D, α) become the following classes of operator algebras:

Cs
1(D, α)=

{

∑

h∈D

ahπ(h) |
∑

h∈D

|ah |(1+|h|2)s/2<∞
}

(5.23)

and C∞(D, α)= ⋂

s≥0 Cs
1(D, α). By the integrated Heisenberg commutation rela-

tions the 2-cocycle α in this representation take the following form: α(h, k) =
e2π ihω·kx for h = (hx ,hω) and k = (kx , kω).
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In other words Cs
1(D, α) consists of the image of the integrated representation

of �s
1(D) with respect to the faithful involutive representation generated by the

time–frequency shifts π(h). We denote the integrated representation of a ∈ �s
1(D)

by πD(a):

πD(a)=
∑

h∈D

ahπ(h). (5.24)

In this setting the left action of Cs
1(D, α) on g ∈ Ms

1(R
N ) becomes

a ·g =πD(a) ·g =
∑

h∈D

ahπ(h)g, (5.25)

for a ∈ �s
1(D, α) and similarly for C∞(D, α) acting on the left on S(RN ) for a ∈

S(D, α).
The algebra-valued product on Cs

1(D, α) turns out to be

D〈f,g〉=
∑

h∈D

〈f, π(h)g〉π(h), (5.26)

for f,g ∈ Ms
1(R

N ) and similarly on C∞(D, α) for f,g ∈S(RN ).
Note that the left action (5.25) is just the synthesis operator of the Gabor sys-

tem G(g, D) for g ∈ Ms
1(R

N ) or in S(RN ), and that the scalar product is the inte-
grated representation of the sequence obtained from the analysis mapping of the
Gabor system G(g, D).

PROPOSITION 5.1.3. Let D be an embedded lattice of R2N . Then Ms
1(R

N ) and
S(RN ) become a left Hilbert C∗(D, α)-module DV after completing by the norm

D‖f‖=‖D〈f, f〉‖1/2.

We refer the reader to [39,40,53–56] for a proof and generalizations of the last
proposition. The most important operators on Hilbert C∗-modules are the rank-
one Hilbert module operators, which in our case are defined by

�D
g,kf := D〈f,g〉 ·k =

∑

h∈D

〈f, π(h)g〉π(h)k. (5.27)

Operators of the form �D
g,kf are called Gabor frame-type operators for a given

Gabor system G(g, D) and are denoted by Sg,k,D . These operators appear natu-
rally in the discrete reconstruction formulas.

In the following we want to discuss the Rieffel–Morita equivalence of C∗(D, α)
and C∗(D!, α!). Recall that two C∗-algebras A and B are called Rieffel–Morita
equivalent, if there exists an A-B-equivalence bimodule AVB such that:

(i) AVB is a full left Hilbert A-module and a full right Hilbert B-module;
(ii) for all f, g ∈A VB, A ∈A and B ∈B we have that

〈A · f, g〉B =〈 f, A∗ · g〉B and A〈 f · B, g〉=A 〈 f, g · B∗〉;
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(iii) for all f, g,h ∈AVB,

A〈 f, g〉 ·h = f · 〈g,h〉B.
We refer the reader to [49] for an extensive discussion of Rieffel-Morita
equivalence.

We continue with a discussion of the right module structure on Ms
1(R

N ) or
S(RN ). Since the quantum torus is only Morita equivalent to the opposite alge-
bra torus C∗(D!, α!), the action and the scalar product 〈., .〉D! differ from those in
the case of C∗(D, α). More precisely, for b ∈ �s

1(D
!), f,g in Ms

1(R
N ) we define a

right action of Cs
1(D

!, α!) on Ms
1(R

N ) by

g ·b :=g ·πD!(b)= 1
vol(D)

∑

h!∈D!
π(h!)fb(h!), (5.28)

and the Cs
1(D

!, α!)-valued scalar product by

〈f,g〉D! =
∑

h!∈D!
π(h!)∗〈π(h!)g, f〉. (5.29)

As indicated above this yields also a right action and a C∞(D!, α!)-valued scalar
product in the case of S(RN ). Consequentely, we get a right Hilbert C∗(D!, α!)-
module VD! after completing Ms

1(R
N ) or S(RN ) by ‖f‖D! =‖〈f, f〉D!‖1/2.

The main result of [53–56] asserts that these two Hilbert C∗-modules form actu-
ally an equivalence bimodule, and the two scalar products D! 〈., .〉 and 〈., .〉D! satisfy
the associativity equation:

D〈f,g〉 ·k = f · 〈g,k〉D! (5.30)

for f,g,k in Ms
1(R

N ) or S(RN ), respectively. Recall our discussion of the Jans-
sen representation of Sg,D . If you consider the Janssen representation of a Gabor
frame-type operator Sg,k,D , then you get the associativity condition (5.30).

PROPOSITION 5.1.4. Let D be an embedded lattice of R2N . Ms
1(R

N ) and S(RN )

become an C∗(D, α)- C∗(D!, α!) equivalence bimodule D VD! after completing by the
norm D‖f‖=‖D〈f, f〉‖1/2.

The involutive Banach algebras Cs
1(D, α) and the smooth noncommutative torus

C∞(D, α) are spectrally invariant subalgebras of the quantum torus C∗(D, α), i.e.
if A ∈ Cs

1(D, α) or C∞(D, α) is invertible in C∗(D, α), then A−1 is in Cs
1(D, α)

or C∞(D, α), respectively. The spectral invariance of Cs
1(D, α) was recently proved

by Gröchenig and Leinert in [27]. For C∞(D, α) this is a famous theorem of
Connes [5].

In [6] it is demonstrated that if there exists a subspace V0 of the equivalence
bimodule DVD! , that is invariant under the left and right actions of A0 and B0,
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and such that the scalar products evaluated for elements in V0 are elements of
spectrally invariant subalgebras A0 and B0 of C∗(D, α) and C∗(D!, α!), then V0 is
a projective left A0-module and projective right B0-module respectively. We call the
two involutive algebras A0 and B0 Rieffel–Morita equivalent, if there exists such an
equivalence bimodule V0.

The spaces Ms
1(R

N ) and the noncommutative Wiener algebras Cs
1(D, α) fulfill

these requirements. Therefore we get

THEOREM 5.1.5. The noncommutative Wiener algebras Cs
1(D, α) and Cs

1(D
!, α!)

are Rieffel-Morita equivalent through the modulation space Ms
1(R

N ) for all s ≥ 0.
Consequently, the noncommutative smooth tori C∞(D, α) and C∞(D!, α!) are Rief-
fel-Morita equivalent through the Schwartz space S(RN ).

In [40] we generalize these results to other classes of spectrally invariant subal-
gebras of C∗(D, α) with subexponential growth.

6. Quantum Theta Functions and their Functional Equations

For the treatment of quantum theta functions we have to introduce the class of
generalized Gaussians, which appear prominently in various areas, e.g. in quan-
tum optics as squeezed states, in harmonic analysis [21], the work of Littlejohn on
semi-classical mechanics in [36], and in de Gosson’s work on symplectic capacity
as measure of uncertainty in quantum mechanics [24].

In the description of the I IT -model in 2.2 above, we have implicitly used the Sie-
gel upper-half plane SN which is the space of all matrices of the form T = Re T +
iIm T , where Re T, ImT are real symmetric N × N -matrices, and Im T is positive
definite. Then we define a generalized Gaussian by

gT (x)= e−〈T x,x〉 = e−〈(Re T +iIm T )x,x〉 for x ∈RN . (6.1)

In his work on quantum theta functions Manin [43–45] has calculated the Wig-
ner transform of generalized Gaussians, which is a well-known result in quantum
optics and quantum mechanics.

Recall that the Wigner distribution W (g,g) of a function g is given by

W (g,g)(x,ω)=
∫

RN

g
(

x + t

2

)

g
(

x − t

2

)

e−2π i t ·ωdt (6.2)

and that the Wigner distribution is just a short-time Fourier transform in disguise:

W (g,g)(x,ω)=2N e4π i x ·ωVg̃g(2x,2ω), (6.3)

where g̃(x)=g(−x) denotes the reflection of g with respect to the origin, see (3.8)
and (3.9).
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Probably, one of the earliest calculations of the Wigner transform of a general-
ized Gaussian has been published by the electrical engineer Bastiaans [1].

LEMMA 6.1. Let gT be the generalized Gaussian for a T ∈ SN . Then the Wigner
transform of gT is given by

W (gT ,gT )(z)= (det T )−1/2e−HT (z,z) (6.4)

where HT (z, z)= GT z · z, and

GT =
(

Re T + Im T (Re T )−1Im T Im T (Re T )−1

(Re T )−1Im T (Re T )−1

)

(6.4)

The matrix GT is symplectic and has the following factorization: GT = ST S with

S =
(

(Re T )1/2 0
(Re T )−1/2Im T (Re T )−1/2

)

. (6.5)

A generalized Gaussian gT is an element of S(RN ), because it belongs also to
M1

s (R
N ) for any s ≥0. The last observation follows from a well-known character-

ization of M1
s (R

N ) in terms of the Wigner transform. Namely, g ∈ M1
s (R

N ) if and
only if W (g,g) is in L1

s (R
N ). An elementary computation yields that the Wigner

distribution of gT is in L1
s (R

N ) for any s ≥0. We combine this observation and its
interesting consequence in the next lemma.

LEMMA 6.2. Let D be an embedded sublattice of R2N . Since gT is in M1
s (R

N ) for
all s, we have that (〈gT , π(h)gT 〉)h∈D is in �1

s (D) and D〈gT ,gT 〉 defines an element
of Cs

1(D, α).

A natural interpretation of the quantum theta functions studied in [43–45]
comes from the study of the Gabor system G(gT , D) for a general Gaussian gT

and an embedded lattice D of R2N . The Gabor frame operator SgT ,D looks as fol-
lows

SgT ,Df =
∑

h∈D

〈f, π(h)gT 〉π(h)gT , (6.6)

for f in L2(RN ). If we consider the Gabor frame operator on Ms
1(R

N ), then the
Janssen representation of SgT ,D exists and turns out to be a quantum theta func-
tion:

SgT ,D = 1
vol(D)

∑

h!∈D!
〈gT , π(h

!)gT 〉π(h!). (6.7)

By Lemma 6.1 the Janssen representation can be rewritten as

SgT ,D = 1
vol(D)

∑

h!∈D!
e−πHT (h!,h!)π(h!). (6.8)
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Therefore, the superposition of time–frequency shifts in the preceding equation
∑

h!∈D!
e−πHT (h!,h!)π(h!) (6.9)

is an element of Cs
1(D

!, α!) for each s and consequently of C∞(D!, α!). In [46] the
operator of (6.9) was denoted by �D! and it was noted that �D! is a quantum theta
function in Cs

1(D
!, α) and consequently in C∞(D!, α!). More explicitely, �D! satis-

fies the following functional equations:

∀ h! ∈ D!, Ch!πh! x∗
h!(�D!)=�D! , (6.10)

where

Ch! = e− π
2 H(h!,h!), x∗

h!(π(h
!))= e−π H(h!,h!)π(h!). (6.11)

In the Model I IT the quantum theta function �D! becomes

�D 1(x)=
∑

h!∈D

e−πH(h!,h!)−πH(x,h!) (6.12)

where 1 is the vacuum vector in the model IIT represented by the function identi-
cally equal to 1.

The function �D!1 is complex conjugate to the classical theta function corre-
sponding to a principal polarization of the complex torus Cg/D!. Notice that
this complex torus is embedded into (the space of points of) the algebraic torus
T (D!,1)(C)=Hom (D!,C∗) as its compact subtorus Hom (D!,C∗

1), see [47].
Moreover, the functional equation for quantum thetas in [46] is an expression

for the Janssen representation of SgT ,Df for f =gT :

∑

h∈D

e−πH(h,h)−πH(x,h)= 1
vol(D)

∑

h!∈D!
e−πH(h!,h!)−πH(x,h!). (6.13)

as functions of x ∈R2N .

Since the Janssen representation is a consequence of FIGA one may also con-
sider FIGA for f1 = f2 =g1 =g2 =gT as a functional equation for quantum thetas.
In the case when N =1 and gT is the standard Gaussian, Schempp already noted
in [61] that this kind of identities are linked with theta functions.

Note that the quantum thetas �D in [46] are defined by D〈fT , fT 〉, where fT is
our giT .

We close this section with a few words on the case D = aZ × bZ. In this
case HT (z,w)= zw for w, z ∈ C. Consequently gT is just the standard Gaussian
g0(x)=e−πx2

. Therefore the quantum thetas �aZ×bZ are related to the Gabor sys-
tems G(g0,aZ×bZ). A deep result of Lyubarski and Seip obtained independely in
[41,62] says that G(g0,aZ×bZ) is a Gabor frame for L2(RN ) if and only if ab<1.
An important result of Feichtinger and Gröchenig [18] asserts that Gabor frames
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G(g, D) for L2(RN ) with g in Ms
1(R

N ) or S(RN ) are Banach frames for the class
of modulation spaces Mm

p,q(R
N ). Therefore G(g0,aZ×bZ) is a tight Banach frame

for Mm
p,q(R

N ) if and only if ab<1, i.e.

‖f‖Mm
p,q

=
⎛

⎝

∑

l∈Z

(

∑

k∈Z

|〈f, π(ak,bl)g0〉|p

)q/p
⎞

⎠

1/q

<∞ (6.14)

for all f in Mm
p,q(R

N ) and p,q ∈[0,∞]. We want to emphasize that the preceding
equation provides a description in terms of Gabor coefficients of “good” Gabor
frames.

Observe that G(g0,aZ × bZ) is a Gabor frame for L2(R) if and only if the
Janssen representation of the Gabor frame operator is invertible. Since the Jans-
sen representation of Sg0,aZ×bZ is the quantum theta � 1

b Z× 1
a Z

, we are thus able

to produce a precise criterium for the invertiblity of the quantum thetas � 1
b Z× 1

a Z
.

Moreover the spectral invariance of Cs
1(

1
b Z× 1

a Z, α) in C∗( 1
b Z× 1

a Z, α) implies that
�−1

1
b Z× 1

a Z
is in Cs

1(
1
b Z × 1

a Z, α) if and only if ab< 1. These observations provide

a new approach to the projections in [48] and in addition clarifies the connection
between quantum thetas and these projections in quantum tori.

PROPOSITION 6.3. The quantum theta � 1
b Z× 1

a Z
is invertible if and only if ab<1.

The construction of projections in higher dimensional quantum tori using Gabor
analysis will be addressed by one of us in a subsequent publication. The Gabor
systems G(gT , D) will also be studied in more detail.
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