
UC Irvine
ICS Technical Reports

Title
Syntax and semantics of the SpecC+ language

Permalink
https://escholarship.org/uc/item/9wq1q3jf

Authors
Zhu, Jianwen
Domer, Rainer
Gajski, Daniel D.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9wq1q3jf
https://escholarship.org
http://www.cdlib.org/

Notice: This Wiatenai
may be protected
by Copyright Law
(Titie 17 U.S.C.)

Syntax and Semantics of the SpecC+ Language

Jianwen Zhu

Rainer Domer

Daniel D. Gajski

Technical Report ICS-97-16

April, 1997

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA

(714) 824-8059

jzhu@ics.uci.edu

doemer@ics.uci.edu

gajski@ics.uci.edu

5L_

c^-2'

Abstract

In this paper, we describe the goals for the development of an executable modeling language in the

context of a homogeneous codesign methodology featuring the synthesis, reuse and validation flow.

A C based language called SpecC-h is proposed as an attempt to achieve these goals. The syntax

and semantics of the language is presented and compared with existing HDLs and we conclude it is

conceptually more abstract, syntactically simpler, and semantically richer.

Contents

1 Introduction

2 Syntax
2.1 Basic structure

2.2 Hierarchy . . .
2.3 Communication

2.4 Synchronization
2.5 Exceptions . .
2.6 Timing

3 Execution semantics

3.1 Graph-based representation
3.2 Semantics

4 Meeting the objectives

5 Conclusion

6 References

List of Figures
1 A homogeneous codesign methodology 2
3 Behavioral hierarchy 3
2 Basic structure of a SpecC+ program 4
4 Shared memory channel 4
5 Synchronous bus channel 5
6 Event and shared memory channel 6
7 Exception handling: (a) abortion, (b) interrupt 6
8 Read protocol of a static RAM: (a) timing diagram, (b) SRAM channel, (c) timing at specification

level, (d) timing at implementation level 8
9 Execution semantics: (a) pseudo SpecC+ code, (b) grapb>based representation 9
10 Model of a microprocessor system with 10 devices 11

SyntcLx and Semantics of the SpecC-|- Language

Jianwen Zhu, Rainer Domer^ Daniel D. Gajskl

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA

Abstract

In this paper, we describe the goals for the develop-
ment of an executable modeling language tn the con
text of a homogeneous codesign methodology featuring
the synthesis, reuse and validation flow. A C based
language called SpecC-f is proposed as an attempt to
achieve these goals. The syntax and semantics of
the language is presented and compared with extstin^
HDLs and we conclude it is conceptually more ab
stract, syntactically simpler, and semantically richer.

1 Introduction

To tackle the complexities involved in systems-on-
a-chip design, designers often follow two strategies. In
favor of synthesis, the top-down strategy starts from
an abstract specification of the systems functionality,
and then performs stepwise refinement into implemen
tations with the help of various synthesis tools. In
favor of reuse, the bottom-up approach tries to im
plement the systems functionality by integrating ex
isting components. In reality, these two approaches
have to be combined, because for the top>-down ai>
proach, it is often unaffordable for new designs to start
from scratch, whereas for the bottom-up approach, it
is rarely possible to build systems completely from ex
isting components without sudding new ones.

New codesign methodologies have to be developed
to support the seamless mixture of both strategies.
One such methodology is illustrated in Figure 1(a),
where boxes represent design tasks, and ellipses rep
resent design descriptions, or their abstract form, the
design models, which are shown in detail in Fig
ure 1(b).

For the synthesis flow, designers may start from
the specification stage, where the intended function
ality of the system is specified in terms of a set of
behaviors communicating via a set of channels. Note
that at this stage, the designers may already decide to

use some components from the reuse library, so these
components should edso be able to be instantiated in
the specification.

At the second stage, designers may partition the
behaviors onto ASICs and programmable processors.
The design model generated at this stage should carry
these design decisions.

At the communication and synchronization refine
ment stage, the abstract channels among behaviors
have to be resolved into something implementable,
such as behaviors transferring data over a bus accord
ing to a predefined protocol. The design model gen
erated at this stage is simply the replacement of the
abstract channels into detailed ones.

The final stage might be the compilation of software
into binary code and high level synthesis of ASIC be
havior into register transfer level designs. The model
generated at this stage might be a software behavior
(in the form of an instruction stream) communicat
ing with a hardware behavior (in the form of a RTL
netlist) via a bus functional model, which translates
each instruction into a series of activities on the bus

wires.

For the validation flow, the design model generated
at each stage should be simulated before proceeding
to the next synthesis step. For the reuse flow, there
exists a library of reusable components, which as a
repository of design models, can be "downloaded" or
"uploaded" by synthesis tools or designers.

For this methodology, it is desirable that we

Objective 1: capture the design model at each de
sign stage in a single language;

Objective 2: make the language executable.

The meeting of Objective 1 will greatly simplify the
codesign methodology since synthesis tasks are now
merely transformations from one program into an
other using the same language, and validation tasks

Synthesis Flow Validation Flow

Reusable
Library

Specification

Partitioning
Scheduling

omm.&Syrtch.
Refinement

Compilation

Figure 1: A homogeneous codesign methodology

are just the program executions. This homoge
neous approach is in contrast with traditional ap
proaches where systems functionality is specified using
one specification language, or a mixture of several, and
is then opaquely synthesized into design descriptions
represented by different languages, for example, C for
software, HDLs for hardware.

The executable requirement (Objective 2) of the
language is also of crucial importance for validation.
For example, the specification needs to be vaJidated to
make sure that the functionality captured is what the
designer wants. Validation is even necessary for the
intermediate design models, for example those after
the communication refinement stage, where the inter
action between hardware and software becomes very
tricky and error-prone.

It is also desirable for the language to

Objective 3: encourage reuse;

Objective 4; facilitate synthesis.

The design models stored in the library can be
checked in and out easily if they are captured in the
same language as the design. Furthermore, the lan
guage should be designed in such a way that a design
model of one component is encouraged to be decou

pled from those of other components. Components
captured in this way tend to be more reusable.

Since we use the same language to model the design
generated by each synthesis task, a design task can be
considered as a refinement ofone program into another
program. It is desirable for the cheinge made by the
transformation to be incremental, meaning that it will
only work on a local part of the program without af
fecting other parts. For example, the communication
refinement task should only replace abstract channels
into more detailed ones without changing the model
of the behaviors which use this channel. The locality
of changes makes the synthesizer easier to write and
the results generated more understandable.

In this paper, we attempt to achieve the objec
tives above by proposing a new C based language
called SpecC-l-. For SpecC-l- to be able to model de
signs of mixed abstraction levels, it has to be able to
capture concepts commonly found in embedded sys
tems, such as concurrency, state trauisitions, structural
and behavioral hierarchy, exception handling, timing,
communication suid synchronization, as discussed in
[GVNG94]. These concepts have to be organized in an
orthogonal way so that the language can be minimal.
Section 2 presents the set of constructs in SpecC-1-
that support these concepts. While Section 2 gives an

idea that SpecC+ is conceptually more abstract and
syntactically simpler than VHDL, Section 3 describes
why it is semantically richer. Section 4 shows how the
objectives defined above are achieved by presenting
an example system. Finally Section 5 concludes this
paper with comparisons to traditional HDLs.

2 Syntax

In this section, we give an introduction of the con
structs provided by SpecC-H.

2.1 Basic structure

The SpecC-H view of the world is a hierarchical net
work of actors interconnected by channels.

Each actor possesses

• a set of ports, such as pi and p2 of actor Z in
Figure 2;

• a set of state variables;

• a set of channels, such as cl and c2 in actor Z in
Figure 2;

• and a behavior, which contains computations up
dating the state variables and communications
via its ports connected to the channels.

The actor may be a composite actor which contains a
set of child actors, in which case the behavior of the
composite actor is specified by composing the behavior
of its child actors, for example, the behavior of actor Z
is composed of the behaviors of X and Y 'm Figure 2.

SpecC-b provides the actor construct to capture all
the information for an actor. This actor construct

looks like a C-f-1- class which exports a main method,
for example, the actor X in Figure 2{b). Ports are de
clared in the parameter list. State variable, channels
and child actor instances are declared as typed vari
ables, and the behavior is specified by the methods,
or functions starting from matn. The actor construct
can be used as a type to instantiate actor instances.

A channel is an entity responsible for communica
tion. It can be a primitive channel in the form of
built-in data types such as int, char and float, or it
can be a complex channel whose specification is split
into two constructs: the interface construct declares
what kind of communications a channel can perform;
the channel construct provides the implementation of
how the communication is performed. The interface
is usually used as a type to declare ports, whereas the

channel is used as a type to instantiate channels. Sec
tion 2.3 explains in detail how complex channels are
specified and why they are useful.

In summary, the SpecC-H program consists of a list
of specifications of actors and channels.

2.2 Hierarchy

The actor construct can orthogonally capture both
structural hierarchy and behavioral hierarchy.

Structural hierarchy means that composite actors
can be decomposed into child actors interconnected
by channels. Channels define the set of paths through
which the child actors communicate, and when they
communicate, how the communication is performed.
However, when the communication is performed is de
termined by the behavior of the child actors. Struc
tural information can be captured by actor instanti
ation where its ports are mapped to channels or the
ports of the parent actor.

Saquwitial Concurrant Pipalinad

voWmakWwMX
A.malnO;

C.maln();

vcWm>ln(voW){

C.mainO;

wtdmaln(wM){

Figure 3: Behavioral hierarchy

Behavioral hierarchy means that the behavior of a
composite actor is composed of behaviors of the child
actors. There are constructs to specify how behaviors
of child actors are composed in time into more complex
behavior of the composite actor. For example, we can
specify a behavior being the sequential composition of
the behaviors of its child actors using sequential state
ments, as shown in Figure 3(a), where Xfinishes when
the last actor Cfinishes. Second, we can use the pw-
allel composition using the par construct, as shown in
Figure 3(b), where X finishes when all its child actors
A, B and C are finished. Also, the pipelined compo-

InMriace ILaft(void) (
void wnts(im v«l);

acior X(lnlntp1,ILeftp2,ininlp3)(
Int local;

void inain(vold){

p2.wrna(loca]);
InMrface IR>ght(void) {

im t»ad(void);

chantwi CSharadi(void)
tmpiemanta IL^ {Right {

void wnta(im Ml) {
aioraga « vai;
va»d>1;

actor Z(iniRtp1,oulirtlp2){
im c1;
CSharad

X *(c1.c2.pl);
Y y(c1.c2.p2);

cap mabi(void] (
par {x.mainO;y.mainO; I

int raad(vaid){
wtiHat tvaHo):
return storage;

actor V(outimp1.<Rightp2,oulimp3){
M local:

void wiita(void){

local «pe.raadO:

Figure 2: Basic structure of a SpecC+ program

sition is possible using the pipe construct, as shown
in Figure 3{c), where X starts again when the slowest
actor finishes.

In summary, the structural hierarchy is captured by
the tree of actor instantiations, whereas the behavioral
hierarchy is captured by the tree of function calls to
the actor main methods.

2.3 Communication

We have mentioned in Section 2.1 that the channel

concept is used to model communication and the spec
ification of a complex channel is split into the inter-
face and channel constructs. The interface construct
encapsulates a set of method prototype declarations,
which specify what kind of communications a chan
nel can perform. The channel encapsulates a set of
media in the form of variables, for example a set of
storages or a set of wires, and the set of method im
plementations which specify how the communications
are performed.

Figure 4 shows a shared variable channel which can
be accessed by concurrent actors. The communica
tions that can be performed are read and write, as
declared in the ILeft interface and IRight interface re
spectively.

The channel CShared encapsulates the variable
storage being shared, a valid bit, which the write oper
ation has to set and the read operation has to spinwait
for, as well as definitions of the read and write meth
ods.

interface iLsfti void) {
void vme(int val);

Interface iRigfitt void){
int read(void);

cfiaimel CSfiared(void)
Implements ILeft,IRight {

Int storage;
tx>ol valid;
void witte(Int vtd} {

storage = val;
valid z t;

int readi void) {
wtrile(Ivaitd);
return storage;

Figure 4: Shared memory channel

The channel is related to the interfaces by the tm-
plements keyword followed by the list of interfaces,
which implies that it is mandatory for the channel to
implement the methods declared in the interfaces.

A more complex example is shown in Figure 5,
which describes a bus channel with a synchronous pro
tocol, which is illustrated in Figure 5(a). Two inter
faces are declared: ILeft specifies what a master of the
channel can perform, in this case the readjword and
writejword methods; IRight, specifies what a slave of
the channel can perform, in this case the method mon
itor.

The channel CBus in Figure 5(c) encapsulates the
set of wires consisting of elk, start, rw and AD, as well
as the method bodies. For example, the read.word

I I I
T—I—r
I I I

till

Marfaca ILafl(void) (
void rMd.wordf word addr, word *d
void wrtta.wor^ wordaddr.wordd);

IfWrfaca IRight| void) {
void monitor{

void ('giab.dataKword addr.iwrd*d).
void ('dakver.dalaX word addr, word d)

ehannal C8ua(void) Inyiamantt Laft. IRkM (
ciocfc oik:
aignaUM^ atari;
aigrial<blt> rw;
ai9ral<wor^ AO;

void raad_word(word addr. vrord *d) {
slarta 1. rw> 1. dk.tiekO;
AD - addr, dk.ticl(():
*d • AD. atari > 0. rw • 0, dli.tidct);

void wriia_word(word addr, word d) {
alarl a 1, rw • 0, dk-bdrO;
AD-addr. dk-licU);
AO • d. atari • 0, dlciiefcO:

void moviorf
void (*grab_data)(word addr, word *d I.
void (*dalivar_dMK word adA. word d)
){
word a. d;

wliila(atari» 0) dcUckO;
K(rw K11 { // raad cycit

dlclickO;
a > AD. dk.UekO;
(•grab.dataK a. «d). AO - d. e«(.bek{);

dlLilckO;
a a AO, Cl(.«ek();
d a AD. (•da»var_daia)(a. d). cULdckO;

aolor AMMtar(ILafttwa){
word d;

void main(void) {

bi«.raad(0x10, &d);
d tiua.writa(0x10. d);

actor ASlava<IRigfnbus H
word stor^}a{0x100];

void my_otBb_data(word addr. arord *d) {
'd a atoragaladdr];)

void my_daiiver_data(word addr, word d) (
atoragaladdr) > d;}

void main(void) {
•ort;;){

bua.rnorMor(my_9ap_data. my.dalivar.data);

actor ASyataml void) (
CBua bua;
AMaatar mMtar(bu8):
ASM atava(bua);

cap main{void}{
par(maalsr.mWhO; aiava.tnainO;}

Figure 5: Synchronous bus channel

method called by master actors will initiate a bus cycle
by asserting the siarf signal, and then raise the rw sig
nal, sample the data and Anally deassert the start sig
nal. As another example, the monitor method called
by slave actors will watch the activities on the wires
and detect if a read cycle or write cycle is ongoing,
and then in turn perform the appropriate operations.

The users of this channel, in Figure 5(c) actors
AMaster and ASlave, will use the ILeft and IRight
interfaces as their ports, which will later be mapped
to the CBus channel when they are instantiated. Note
that it is prohibited by the Izmguage for a port to be
mapped to a channel which does not implement the
interface type of the port.

The difference between methods in a channel and

methods in an actor has to be emphasized. While
methods of an a,ctor specify the behavior of itself,
methods of a channel specify behavior of the caller,
in other words, they will get inlined into connected
actors when the system is finally implemented. When
a channel is inlined, the encapsulated media are ex
posed, the methods are moved to the caller and the
interface port is flattened into ports connected to the
exposed media.

The fact that a port of an interface typ^ can be

resolved to a real channel at the time of its instan

tiation is called late binding. Such a late binding
mechanism makes it possible for an actor to perform
function calls via the interface port without knowing
what kind of channel it will be eventually mapped to.
In this way, any cheinnel can be plugged in as long as
it conforms to this interface.

Such a "plug-and-play" feature is essential to both
reuse and incremental refinement. For reuse, for ex
ample, it is possible to replace the channel CBtts in
Figure 5(c) with another bus cheinnel that uses an
asynchronous bus protocol without affecting the de
scription of AMaster hXid ASlave at all, as long as that
channel implements both interfaces ILeft and IRight.
It is obvious that the models AMaster and ASlave are

highly reusable, since they can be adapted to different
buses with different wires and protocols. For incre
mental refinement, for example, the channel CBus can
be replaced without affecting the connected actors by
another more detailed channel with the same interface,
which might contsun a memory actor, the wires which
access this memory, as well as the protocols used.

2.4 Synchronization

Concurrent actors often need to be synchronized to
be cooperative. In SpecC+, there is a built-in type
event which can serve as the basic unit of synchro
nization.

Interface lLsfi(voM) {
voM wrtte(Int val);

irttertace IRIghtf void) {
M read(voidi;

channel CShared(vdd)
implements ILett, IRIghl{

M storage;
vald:

event wakeup;
void wrtte(int vtf) {

storage = val;
valid ' 1;
rwtify(wakeup);

int ^read(void) (
ff(tvaild)

watt(wakei^);
return storage;

Figure 6: Event and shared memory channel

An event can be considered as a channel with a set

of methods including wait and notify. A wait call on
an event will suspend the caller. A notify call on an
event will resume all actors that are suspended due to
a wait on this event .

The shared memory example introduced in Figure 4
can be rewritten using the event mechanism as shown
in Figure 6. In Figure 4(b), the read method has to
poll the valid bit constantly, which is uneflBcient. A
better way, as shown in Figure 6(b), is to use an event
called wakeup, so that a call to the read method can
suspend itself when valid is false, and will be resumed
later when a write operation notifies the wakeup event.

2.5 Exceptions

In order to model exceptions in an embedded sys
tem SpecC+ supports two concepts, namely abortion
and interrupt, as shown in Figure 7.

The fry-trap construct shown in Figure 7(a) aborts
actor X immediately when one of the events el, e2 oc
curs. The execution of actor x (and all its child actors)
is terminated without completing its computation and
control is transferred to actor y in case of el, to actor
z in case of e2. This type of exception usually is used
to model the reset of a system.

On the other hand the try-interrupt construct, as
shown in Figure 7(b), can be used to model interrupts.
Here again execution of actor x is stopped immediately
for events el and c2, and actor y or z, respectively, is

void moMvoid){

m
"O 'O

Q CD
void miin<void){

lry{K.irwinp;)
lnt»rrupl(o1) f y.ma
miomipq 02) {z.mai

Figure 7: Exception handling: (a) abortion, (b) inter
rupt.

started to service the interrupt. After completion of
interrupt handlers y emd z control is transferred back
to actor Xand execution is resumed right at the point
where it was stopped.

For both types of exceptions, in case two or more
events happen at the same time, priority is given to
the first listed event.

2.6 Timing

In the design of embedded systems the notion of
real time is an important issue. However, in tradi-
tionsd imperative languages such as C, only the order
ing among statements is specified, the exact informa
tion on when these statements are executed, is irrele
vant. While these languages are suitable for specifying
functionality, they are unsufficient in modeling embed
ded systems because of the lack of timing information.
Hardware description languages such as VHDL over
come this problem by introducing the notion of time:
statements are executed at discrete points in time and
their execution delay is zero. While VHDL gives an
exact definition of timing for each statement, such a
treatment often leads to over-specificatiozi.

One obvious over-specification is the case when
VHDL is used to specify functional behavior. The tim
ing of functional behaviors is unknown until they are
synthesized. The assumption of zero execution time
is too optimistic and there are chances to miss design
errors during specification validation.

SpecC-f- overcomes this problem by differentiating
between timed behavior, which executes in zero
time, and untimed behavior, on which no assump
tion of timing can be made. Syntactically an untimed
modifier type will make the behavior contained in a
function untimed behavior. The execution semantics

of SpecC+ as d^ribed in Section 3 will allow the syn
chronized execution of timed and untimed behavior.

Other cases of over-specification are timing con
straints and timing delays, where events have to hap
pen, or, are guaranteed to happen in a time range,
instead of at a fixed point in time, as restricted by
VHDL.

SpecC-l- supports the specification of timing explic
itly and distinguishes two types of timing specifica
tions, namely constraints and delays. At the specifi
cation level timing constraints are used to specify time
limits that have to be satisfied. At the implementation
level computational delays have to be noted.

Consider, for example, the timing diagram of the
read protocol for a static RAM, as shown in Fig
ure 8(a). In order to read a word from the SHAM,
the address of the data is supplied at the address port
euid the read operation is selected by assigning 1 to the
read and 0 to the write port. The selected word then
can be accessed at the data port. The diagram in Fig
ure 8(a) explicitly specifies all timing constraints that
have to be satisfied during this read access. These con
straints are specified as arcs between pairs of events
annotated with x/y, where x specifies the minimum
and y the maximum time between the value changes
of the signals. The times are measured in real time
units such as nanoseconds.

Figure 8(b) shows the SpecC-j- source code of a
SRAM channel C^RAM, which instantiates the ac
tor ASRAM, and the signals, which are mapped to
the ports of the SRAM. Access to the memory is pro
vided by the read.word method, which encapsulates
the read protocol explained above (due to space con
straints write access is ignored).

Figure 8(c) shows the source code of the read.word
method at the specification level. The do-timing con
struct used here effectively describes all information
contained in the timing diagram. The first part of the
construct lists all the events of the diagram, which are
specified as a label and its associated piece of code,
which describes the changes of signal values. The sec
ond part is a list of range statements, which specify
the timing constraints or timing delays using 4-tuples
T — (el, e2, min, max), where el and e2 are event
labels and mtn and max specify the minimum and
maximum time, respectively, between these events.

This style of timing description is used at the spec
ification level. In order to get an executable model
of the protocol scheduling has to be performed for
each do-timing statement. Figure 8(d) shows the im
plementation of the read.word method after an ASAP
scheduling is performed. All timing constraints are re
placed by delays, which are specified using the waitfor
construct.

3 Execution semeuitics

In this section, we give a formal definition of the
execution semantics of a SpecC-l- program. We use a
graph-based notation similar to [Fr95].

3.1 Graph-based representation

In its most primitive form with all the high level
constructs flattened and synteictical sugar stripped,
the SpecC-f program can be represented by a directed
graph. Figure 9 shows an example of such a graph.

The flattened SpecC-f- program can be broken into
blocks of statement sequences, which become vertices
of the graph. Four types of constructs, which become
edges of the graph, break the program into blocl^:

Type 1: branches, including if-else, while, for 1oo[m
etc,

Type 2: delay {waitfor) statements.

Type 3: waif statements,

Type 4: notify statements.

Note that while Type 1 constructs break the program
into basic blocks as in traditional control flow analysis.
Type 2-4 constructs breaic the basic blocks further.

A vertex is called a timed vertex, if the execution
of the vertex takes zero time, as determined by the
syntax of the language. It is referred to as an un-
timed vertex otherwise. Another way of classifying
the vertices is to call a vertex a reactive vertex if it is

preceded by a wait statement. Otherwise, it is called
a non-reactive vertex.

Furthermore, there are special vertices used to rep
resent high level language constructs such as par, cpar
and pipe, namely, fork and join vertices. For the sim
plicity of the presentation, we ignore the constructs
try-trap and try-interrupt in this discussion.

There are two types of edges. The sensitizing
edges, represented by dotted arrows in Figure 9(b),
are derived from the sequencing information of the
program where the control flows to reactive vertices.
The execution of the source vertex of a sensitizing edge
will make the sink vertex sensitive to the events that

it waits for. Each sensitizing edge is associated with a
condition.

The triggering edges are represented by solid ar
rows in Figure 9(b) and are annotated by condi
tion/delay pairs. The execution of the source ver
tex of a triggering edge will cause the sink vertex to
execute at delay time steps later if the condition is
true. If the sink vertex is a reactive vertex, it also

! 0/ ; i(V2o

t2 t3 14 tS t6 t7

Inurfacs LSRAM(void) {
void rMd_wonl(word a,

word'd):
}:

actor A_SRAM(
in aignai<word> addr,
inout $ignal<word> data,
in8i9ni3<tiit> rd,
In aignai<i]it> wr) {

void main(void)(...}

channai C_SRAM(void)
Implaments l_SRAM {

8ignai<wocd> Address, Data:
sigrt^bib Read.Writa;
A_SRAM sram(

Address. Data,
Read. Wrtta);

void read.word(word a,
word'd)(...)

void rMd_word(
word a, word *d) {

do(
t1: (Address « a;}
t2: Read-1:}
t1: Address « a;}
t2: Read-1:}
t3:)
t4 : *d « Data:}
tS: Address-disconnectO:)
t6; Read-0:}
17: t>realc;}

timing (
rar^tl;t2:0:);
rartge tl;t3:10:20);
range t2:t3:10:20);
range t3: M: 0;}:
range 14: tS: 0:):
range t5:t7:10:20):
range te:t7:S: 10):

void read_word(
word a, word *d) {

Address-a:
Read-1:
wartfor(IO):
*d - Data:
Address.dtsconnocK);
Read - 0;
wait^lO):

Figure 8: Read protocol of a static RAM: (a) timing diagram, (b) SRAM channel, (c) timing at specification
level, (d) timing at implementation level.

has to be sensitive in order to be executed. There are

three sources of program information for the trigger
ing edges: (1) sequencing information where control
flows to non-reactive vertices; (2) delay information
associated with wait/or statements; (3) synchroniza
tion information associated with wait-notify pairs.

The subgraph spanned by the set of timed ver
tices is called the timed subsystem. The sub
graph spanned by the untimed vertex set is called the
untimed subsystem. The timed subsystem is in
tended to model the synthesized hardware using dis
crete event semantics equivalent to VHDL. The un
timed subsystem is intended to model unsynthesized
behavior or software, whose timing is unknown.

More formally, a SpecC+ program can be repre
sented as a graph G = {V,vo,Ea,Et) , where

• V = T u f/ u Fork u Join , where T is the set of

timed vertices, U is the set of untimed vertices,
Fork is the set of fork vertices, Join is the set of
join vertices;

• uo € V is the start vertex;

• Et C V X V X B represents the conditional sen
sitizing edges, where B is the set of boolean
expressions;

• EtCVxVxBxZ"^ represents the conditional
triggering edges with delays, where is the set
of positive integers.

For convenience of notation, we define the set of
reactive vertices to be

W = {v\3v' € K, 6 GR, {v',v, b) GEs}.

3.2 Semantics

The state of the computation can be represented by
s = {N,R, D, M, C) , where

• N CV is the set of sensitive vertices,

• RCV is the set of vertices ready to be executed,

• D C V XZ* is the set of all pairs (u,d) , such
that vertex t; has d time steps left before it can
execute,

• Af is the memory store that maps each variable
to its current value,

• C is the memory store which holds the execution
context of all the vertices.

We assume the existence of the following opera
tions:

• v = SelectOneOJ[R) deterministically chooses one
vertex t; from the set of ready vertices R .

• M' = ExecTimed{v,M) applies the code associ
ated with timed vertex v to the memory store
and returns a new memory store M' .

• {t,M',C') = ExecUntimedl^v,M,C) applies the
code associated with imtimed vertex t; under
a context C to the memory store for some host
time. It will return a triple {t,M',C') , where
t £ Z* represents the time steps elapsed during
the execution, M' represents the updated mem
ory store and C represents the new context.

BrnMl{c • a « b;)
l«c>b){

'%Tied(d>0; waltfor(lO):d-10; waA(ei):<]-lOO;)
llmadj a* b; ll(•> 0)(wal(<e2): e —;noaty(el);))

•iM{
Ptf {

inlmad (d - 0; waltfor(tO); d -100; nogry(a2): d - 200;)
undmad (a • a * b; a —;}
)

lknad(l-a-b;}

oubsystem

te:d'100 17:

subsystem

Figure 9: Execution semantics: (a) pseudo SpecC+
code, (b) graph-based representation.

Note that the granularity for each execution of
the untimed vertex, that is, how much code it ex
ecutes and how many time steps it will take, can
be specified by the user.

• Finishec^v,C) returns whether vertex v has fin
ished its execution, where C is the context.

• Eval{b, M) evaluates the boolean expression 6
using the memory store M and returns TRUE
or FALSE.

We define s' = Next{{N,R,D,M,C)) as
{N',R',D',M',C') , where

• Type I Transition represents the execution of
a vertex at the current time step:

if iZ 9^ 0 , then Let b = SelectOneOJ{R.)

if VeT , then

M'^ExecTimed^v, M)

C'=C

N'=N - {u} U{u'|<u, I/', 6) € Es
A Eva^b, M')}

- {v] u f',6,d) € Et
A Eval{b, M') A d = 0
A(veW A v&N' V V^ W)}

D'=Du{{v',d)\(v,v',b,d)€Et
A Eval{b, M') A d > 0}

else if b € Fork , or if v € Join A

Vb' € {b'|{b',b,6) GEt}, Finisked(^v',C)

M'=M

C'=C

N'^N - {b}u {b'|(b, b', 6) € Es
A Eva^b,M')}

/?*=/?— {b} U{b'|(b,b',6,d) e Et
A Evat{b, M') a d = 0

A{beW^ A bGN'Vb^W))
D'=Du{<b',d)|{b,b',6,d)€£;t

A Eval{b, M') a d > 0}

else if b € Join A

3b' € {b'|{b',b,6) € Et}, '~'Finished{v ,C)

M'=M,

C'=C

N'^N

R'=R~{v}
D'=D

else if b € U , then

{t,M',C') = ExecUntimed{v,M, C)

if Fmwfted(tJ, C) then

N'=:N —{u}U{y'|{u,u',6) GEs
A Eva^b,M')}

- {u}U{u'Kv.u'.b.d) G£4
A Eva^b,M') A d = 0

A (u € W' A u € A '̂ Vu ^ W)}
D':=D U{{v',d + t)Ku.u', 6,d) € Et

A £woi(6, M') A d > 0}

N'^N

R'=R - {v}
D'=Du{{v,t)}

• Type II Transition represents the advance of
time to the next step when a vertex cem execute.

R = 0 then let

do=mm(„_d)g£)d

A={<t;,d)|{t;,d)€i? A d = do}

M' = M

N' = N

r! = {u|(t;,d) GA

A(veW A veN'Vv^W)}
D' = {(v,d)|(v,d-|-do)GD-^}
C'=C

• Type III Transition represents the end of ex
ecution: if R = 0 and £ = 0 , then s s ± ,
denoting no next state.

The execution of graph G is a sequence of states
[so,si,....,l] , where r

• ao = (0,{vo},0,Mo,Co) , where Mo represents the
initial memory store that maps every veiriable to
its initial value, and Co represents the initial
context which sets all the untimed vertices to its

first statement.

• ai+i = Next(si,G)

In summary, we present the semantics of the
SpecC+ language in a formal graph-based notation.
The semantics is rich in the sense that it covers the

semantics of many other languages. For example, if
we constrain all the triggering edges to a delay of
zero (disallow waitfor statements), then the trigger
ing edges induce a partial ordering on the vertices,
and there is no notion of the passage of time. Such a
system is equivalent to the systems captured by con
current languages. If we further constrain that no fork
and join vertices are allowed, such a system is equiv
alent to those captured by sequential imperative lan
guages such as C. On the other hand, if we exclude
the untimed subsystem, the language is semantically
equivalent to VHDL.

4 Meeting the objectives

In this section, we briefly review how the SpecC+
language addresses the design objectives discussed in
Section 1.

Objective 1 requires SpecC-f to be capable of mod
eling designs at different abstraction levels, or mixed
levels of abstractions. In the codesign domaiin, a com
putation at a high abstraction level may be a behav
ior with only partial ordering of operations specified,
but exact timing missing. On the other hand, a com
putation with lower abstraction level may be a behav
ior with the exact information on when each operation
is performed. Similarly, a communication at a high
abstraction level may be a shared variable 8u:cessable
by concurrent processes. On the other hand, at a lower
abstraction level, these shared variables may be dis
tributed over different processing elements, while ac
cesses to them may involve consistency protocols and
complex transactions over system buses.

For computation, SpecC+ allows the simultaneous
specification of an untimed system, which is primarily
used to model unsynthesized behavior whose timing is
not resolved yet, and a timed system, which is primar
ily used to model synthesized behavior whose timing is
known. This flexibility makes it possible to describe a
variety of system modeling configurations. For exam
ple, Figure 10 shows a typical microprocessor system
with two 10 devices. Software behavior, which is not

Figure 10: Model of a microprocessor system with 10 devices.

yet compiled and bound to any processor, can be mod
eled as untimed behavior, such as actor AProgmm in
Figure 10. So does a hardware behavior that is to be
synthesized, such as actor ADevice2. Compiled soft
ware behavior can be modeled as timed behavior, such
as channels CDriverl and CDriverB representing the
device drivers for actors ADevicel and AD€vice2. A

processor model CProcModel is modeled as a chan
nel which exports its instruction set in the form of
methods. Each instruction is modeled as timed be

havior, which operates on the processor bus signals.
Hardware components from the library, that is, syn
thesized hardware behaviors, can be modeled as timed
behavior, for example, actor ADevice2 in Figure 10.

For communication, SpecC+ allows the simultai-
neous specification of communication using primitive
channels, which is used to model abstract communica
tion via implicit read and write operations over typed
variables, and complex channels, which is primarily
used to model communication at the implementation
level, for example, the transfer of a block of data over
a standard bus.

The execution semantics of SpecC+ laid the beisis
to realize Objective 2. The benefit of being able to ex
ecute models at mixed abstraction levels is two fold:

first, intermediate design models cam be validated be
fore the next synthesis step; second, designs can be
validated with appropriate speed-accuracy trade-off.
For example, in Figure 10, actor AProgTam is mod
eled as untimed behavior, while channels CDriverl
and CDriver2 are modeled as timed behavior. The ra

tionale behind this configuration is that behaviors in
CDriverl and CDriver2 contain 10 instructions which

interact intensively with the hardware such as ADe-
vice and ATransducer, and it is this type of behavior
that is error-prone and should receive our attention.
On the other hand, the behavior contained in actor
AProgram contains just normal operations of-.the pro

cessor and need not to be verified at such a detailed

level.

The ability of SpecC-f- to model designs at differ
ent abstraction levels makes a large category of de
sign artifacts eligible to be modeled and entered in
a reuse library. For example, a hardware component
can be modeled as an actor, such as ADevicel in Fig
ure 10, and can be stored in a library. The protocol
on how to communicate with a hardware component,
which before is documented by a data sheet, can now
be modeled as a wrapper, such as ADevicel Wrapper
in Figure 10, and stored in a library. The bus pro
tocols, including standard system buses such as PCI
bus, PIBus, or VMEBus, and processor bus models,
such as Pentium bus and PowerPC bus, can also be
stored in the library in the form of channels.

The abstraction of communication into a set of

functions in the channel construct and the abstraction

of the channel implementation into a set of function
prototypes in the interface construct makes it possi
ble to decouple the computational aspect of an actor
from the communication. This feature is helpful for re
alizing both Objective 3 and Objective 4. For reuse,
the actors described in this way can be used without
modification in different situations. For synthesis and
refinement, abstract channels can be replaced by de
tailed channels without affecting the connected actors.

5 Conclusion

In conclusion, we proposed SpecC-h as a modeling
language for codesign, which supports a homogeneous
codesign methodology.

SpecC+ can be considered as an improvement over
traditional HDLs such as VHDL.

Semantically, SpecC-l- adlows the specification of
behavior with exact timing as well as unknown timing,
whereas VHDL only allows specification of behavior

with exact timing, which often leads to overspecifica-
tion.

Conceptually, SpecC+ raises the abstraction
level, while reorganizing important concepts. For ex
ample, concurrency is decoupled from structure, syn
chronization and timing are decoupled from intercon
nections (for example, in VHDL signals are used both
for synchronization, interconnection, and even tim
ing), function interfaces are decoupled from function
implementations, ports are generalized into interfaces,
wires are generalized into channels.

Syntactically, SpecC-f is based on C, which al
lows the inheritance of a large archive of existing code,
and makes it easy for an implementation of the lan
guage to leverage traditional C compilers.

Philosophically, SpecC-h is intended to be a code-
sign modeling language (CML) with single seman
tics, while VHDL is a hardware d^ription language
(HDL) with different semantics in simulation and syn
thesis.

6 References

[Ag90] G. Agha; "The Structure and Semanticsof Ac
tor Languages"; Lecture Notes in Computer Sci
ence, Foundation of Object-Oriented Languages;
Springer-Verlag, 1990.

[AG96] K. Arnold, J. Gosling; The Java Programming
Language; Addison-Wesley, 1996.

[DH89] D. Drusinsky and D. Harel. "Using State-
charts for hardware description and synthesis". In
IEEE Transactions on Computer Aided Design,
1989.

[Fr95] R. French, M. Lam, J. Levitt, K. Olukotun "A
General Method for Compiling Event-Driven Sim
ulation"; Proceedings of 32th Design Automation
Conference, 6, 1995.

[GVN93] D.D. Gajski, F. Vahid, and S. Narayan.
"SpecCharts: a VHDL front-end for embedded
systems". UC Irvine, Dept. of ICS, Technical Re
port 93-31, 1993.

[GVNG94] D. Gajski, F. Vahid, S. Narayan, J. Gong.
Specification and Design of Embedded Systems.
New Jersey, Prentice Hall, 1994.

[Har87] D. Harel; "StateCharts: a Visual Formalism
for Complex Systems"; 5ctence of Programming,
8, 1987.

[LS96] E.A. Lee, A. Sangiovanni-Vincentelli; "Com
paring Models of Computation"; Proc. of ICCAD;
San Jose, CA, Nov. 10-14, 1996.

[OMG95]
Common Object Request Broker: Architecture and
Specification; http:// www.omg.org/corbask.htm.

[St87] B. Stroustrup; The C++ Programming Lan
guage; Addison-Wesley, Reading, 1987.

