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FoVolNet: Fast Volume Rendering using Foveated Deep Neural 
Networks

David Bauer,

Qi Wu,

Kwan-Liu Ma

University of California at Davis.

Abstract

Volume data is found in many important scientific and engineering applications. Rendering this 

data for visualization at high quality and interactive rates for demanding applications such as 

virtual reality is still not easily achievable even using professional-grade hardware. We introduce 

FoVolNet—a method to significantly increase the performance of volume data visualization. We 

develop a cost-effective foveated rendering pipeline that sparsely samples a volume around a 

focal point and reconstructs the full-frame using a deep neural network. Foveated rendering is 

a technique that prioritizes rendering computations around the user’s focal point. This approach 

leverages properties of the human visual system, thereby saving computational resources when 

rendering data in the periphery of the user’s field of vision. Our reconstruction network combines 

direct and kernel prediction methods to produce fast, stable, and perceptually convincing output. 

With a slim design and the use of quantization, our method outperforms state-of-the-art neural 

reconstruction techniques in both end-to-end frame times and visual quality. We conduct extensive 

evaluations of the system’s rendering performance, inference speed, and perceptual properties, and 

we provide comparisons to competing neural image reconstruction techniques. Our test results 

show that FoVolNet consistently achieves significant time saving over conventional rendering 

while preserving perceptual quality.

Index Terms—

Volume data; volume visualization; deep learning; foveated rendering; neural reconstruction

1 INTRODUCTION

Since its beginnings, volume rendering has been an integral part of the scientific and 

biomedical visualization community. Over time, tremendous improvements have been made 

to the quality and performance of volume rendering algorithms. Yet, with advances in high-

fidelity rendering comes increased computational cost. Many state-of-the-art techniques like 

path tracing or global illumination have outpaced the capabilities of consumer hardware, 
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putting these techniques out of reach for interactive applications. There are also other 

relevant issues in this area, such as data management and storage. However, the visualization 

community has already produced various methods to mitigate these problems.

For instance, prior work [3, 13, 33, 49] offers solutions for rendering extremely large 

volumes that do not fit the main memory of a system. Visualization of these data became 

viable through the introduction of streaming techniques such as out-of-core rendering which 

eliminate the need for the whole dataset to be present in memory. Such methods are a means 

of emancipation. They help us depend less on specific characteristics of the data—in this 

case, its size. When it comes to visual quality, state-of-the-art rendering techniques lack 

similar means. The higher the visual quality a technique produces, the more computational 

resources are generally needed to compute it. Although ongoing research has produced 

more efficient methods over the years, we are still bound by factors like the number of 

rays, sampling rates, or the type of illumination. Therefore, visualizing volume data using 

high-quality shading techniques at interactive framerates remains challenging—especially 

for demanding applications like immersive visualization.

This work pries open the tight coupling between rendering technique and computational 

cost. We introduce FoVolNet—a complete volume rendering pipeline that aims to loosen 

the relation between technique and cost. By skipping the majority of screen-space pixel 

processing and replacing it with constant-time neural image reconstruction, we can achieve 

drastic performance improvements without sacrificing visual quality. We take inspiration 

from literature on foveated rendering and deep learning based image denoising. Prior work 

[12, 52, 58] has shown that taking the human visual system (HVS) into account when 

rendering data can yield excellent results for performance without perceptible quality loss. 

Utilizing the characteristics of the HVS is a crucial part of our design, as it allows us to 

concentrate computational resources. Accordingly, FoVolNet renders sparse images with 

dense foveated areas. A neural image reconstruction network restores the missing visual 

information, allowing us to skip the majority of screen-space pixel processing and replacing 

it with a constant-time inference step. This makes it possible to visualize volumes in high 

quality at a much lower computational cost than conventional rendering methods. In turn, 

this decoupling allows us to achieve faster and more consistent frame rates in various 

rendering setups.

We conduct thorough tests involving the system’s overall rendering performance, image 

quality, and other properties such as effective compression rate to evaluate our approach. 

The results show that FoVolNet faithfully reconstructs full frames at a fraction of the time it 

takes conventional methods to produce the same output.

2 RELATED WORK

Our work is related to topics in volume rendering, optical flow estimation, and deep learning 

methods in computer graphics and image processing. In this section, we discuss related 

works in these fields.
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2.1 Advanced Volume Rendering

Optical models for computing advanced illumination effects (e.g., ambient occlusion, global 

shadows, multi-scattering) in volume rendering were first outlined by Max in the late 1990s 

[36, 37]. However, since these models are generally expensive to compute, a large body 

of work has focused on how performance can be improved. The ambient occlusion model 

[6, 16, 28, 45–47, 51] simulates the occlusion effect within a small neighborhood of the 

sample point, estimating the local extinction within a small spherical region. More recently, 

deep neural networks have been used to generate ambient occlusion effects for volume 

rendering [7]. However, this model only accounts for local shadows and lacks cues for 

large-scale occlusions. Computing global shadows require considering attenuation between 

light sources and the sample points. To efficiently compute global shadows, many different 

approaches have been proposed, including half-angle slicing [24, 25], plane sweep [53], 

shadow volume [44], light volume [66], or voxel cone tracing [48]. However, these methods 

still cannot calculate realistic multi-scattering effects. More recently, the use of ray tracing 

presents a new trend of volume visualization algorithms that implement a highly realistic 

multi-scattering model [5, 27, 31, 40, 40]. By combining them with production ray-tracing 

software [57] and realistic BRDF classification techniques [19], unbiased volume rendering 

can finally be achieved. However, these algorithms are computationally costly when high-

resolution data—which requires a high sampling rate—and complex lighting conditions are 

combined. Thus, the rendering performance of these methods can quickly deteriorate. In 

this work, we lift a sizeable portion of the computational burden that such techniques incur 

on modern hardware. We reduce the screen space sample count and replace the skipped 

computations with a constant-time neural network inference step.

2.2 Foveated Rendering

Recent advances in eye-tracking technology and the market push towards augmented 

and virtual reality applications have intensified research in foveated rendering techniques. 

Computational power is crucial for high-fidelity rendering applications and most of today’s 

immersive content. It is therefore of paramount importance to distribute resources efficiently. 

The capacity of the human visual system to perceive high levels of detail is limited to 

a relatively small focal area [1]. The fovea, which is the area of the visual field with 

the highest acuity, only makes up about 5.2 degrees around the optical axis of the eye 

[59]. Foveated rendering approaches use that fact by focusing computational resources on 

these areas. Guenter et al. [12] were one of the first to develop such an approach by 

rendering scenes in multiple levels of detail in concentric circles around the focus point. 

Later approaches [52] use variable sampling rates that prioritize the focal area. Weier et al. 

[58] combine this approach with frame reprojection to reduce peripheral flickering.

2.3 Deep Learning for Image Denoising

One of the prominent uses of deep learning in the computer graphics field is image 

denoising. It is the process of refining noisy images, which are usually the result of Monte 

Carlo (MC) renderings with a low number of samples per pixel (SPP). A primitive approach 

to improving image quality is to increase SPP. However, this method requires significantly 

longer processing times per frame. Recent work has leveraged deep learning to refine 
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low SPP images without this computational overhead. Early approaches [2, 4] already 

achieve impressive results using CNNs. These works have established the two fundamental 

philosophies of image denoising in today’s literature. On the one hand, there is direct 

prediction [4]. A method to produce denoised images as a direct result of network inference. 

On the other hand, kernel prediction [2] approaches use CNNs to produce image filters. The 

denoising operation is performed by applying these filters to the input image in a separate 

step.

Subsequent work followed in these footsteps, furthering the potential of these two concepts. 

Wong et al. [62] introduce residual connections for direct prediction networks to improve 

single-frame image quality. To the same end, Xu et al. [64] and Lu et al. [32] conducted 

experiments on using adversarial networks [11] to train direct prediction models. More 

recently, Hofmann et al. [17] have applied direct prediction to the domain of volume path 

tracing. Similarly, Weiss et al. [60] explore the utility of direct prediction for reconstructing 

adaptive volume ray marching. Along with works like Kettunen et al.’s gradient-space 

denoising [22] and Wong et al.’s ResNet approach [62], they investigate the effect of various 

auxiliary input features on final image quality. Following the kernel prediction path [2], we 

see work by Vogels et al. [56] who extend the approach by incorporating neighboring frames 

into training to facilitate temporal stability. Hasselgren et al. [15] build on this notion, 

creating temporally stable image sequences using predictive adaptive sampling and temporal 

blending. Gharbi et al. [10] solve problems involving motion blur and depth-of-field using a 

kernel prediction approach with splatting.

Neural architectures used in these projects vary. However, there are certain identifiable 

trends. The U-Net architecture [43], initially developed for medical image segmentation 

tasks, has proved to be a practical choice for denoising tasks. Many works [4, 10, 15, 17, 

22] base their design on the U-Net’s image encoder-decoder principle. Extensions often 

include skip connections and recurrent feedback, which tend to increase image quality and 

temporal stability. Other works [2, 32, 56, 62, 64] use more conventional CNN or RNN 

models. Interestingly, there is no apparent connection between chosen architecture (U-Net, 

CNN, RNN) and the denoising approach (direct prediction, kernel prediction). Several 

works [17, 32, 64] also use an additional critique network for their adversarial training. 

Named after its shape, the W-Net poses an extension to the U-Net and was introduced by 

Thomas et al. [55]. It comprises two U-Nets in sequence. One is used for feature extraction, 

while the other serves to generate and apply convolutional filters to the input. This design 

facilitates optimization through selective quantization without significant image quality loss. 

For further reading on this topic, we refer the interested reader to Huo et al.’s survey on 

deep-learning-based image denoising techniques [18]. Our network design is based on the 

W-Net architecture. We introduce a hybrid approach combining direct and kernel prediction 

to achieve the best results for sparse image inputs. This differs from conventional image 

denoising approaches in that missing visual information needs to be generated by the 

network. Therefore, pure kernel prediction networks are not suitable for this task as kernels 

only operate on existing pixel values. DeepFovea [21] is the current state-of-the-art for 

such sparse frame reconstructions using solely direct prediction. Our approach translates this 

initial idea to the domain of scientific rendering and significantly improves visual quality 

and performance.

Bauer et al. Page 4

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4 Optical Flow

Perceived motion in video sequences results from incremental changes in the positions of 

objects in a scene or by camera movement. Estimating the optical flow of elements in 

adjacent frames is an active area of research, and various approaches have been proposed in 

recent years.

An early approach by Farnebäck et al. [9] introduces a motion estimation algorithm that 

characterizes pixel neighborhoods as polynomials and uses those to find a mapping between 

frames. They propose a multiscale approach that uses a priori motion estimation. This allows 

the algorithm to iterate and refine the estimation by considering differently sized search 

windows. This increases the robustness and quality of the results. Subsequent works [29, 41, 

54] tend to emulate this iterative, hierarchical approach. Most recently, Hanika et al. [14] 

have introduced a method based on this scheme. Unlike previous approaches, this algorithm 

sacrifices some quality in favor of speed. It also manages disocclusions gracefully.

For our work, we utilize Hanika et al.’s approach [14] to reproject frames during training. 

By warping a previous frame, we can gain more visual information about the current image, 

which can be used to construct a loss function that requires the network to match reprojected 

frames [21]. This additional information helps increase image quality and supports retaining 

temporal stability between frames.

3 METHODS

FoVolNet is a complete raymarching volume rendering pipeline that is supported by a 

neural network (Figure 2). The overall rendering process consists of two critical steps. First, 

the volume needs to be rendered. Instead of rendering the whole frame, we selectively 

render a subset of pixels. A neural network is then used to reconstruct the full frame from 

this subset. The following sections contain details on our approach. There, we discuss the 

implementation and design of each stage of FoVolNet.

3.1 Foveated Rendering

We implement a ray marching system that facilitates sparse, foveated rendering. The 

renderer is implemented in CUDA and OptiX and supports global ray marched shadows. 

For the shadow computation we cast one shadow ray per sample step towards the light 

source using 1
4  of the main sample rate. This renderer allows us to reduce rendering time as 

overall pixel density decreases. Our foveated rendering technique is based on binary sample 

maps generated from noise patterns that determine which pixels in screen space should be 

sampled by the volume renderer.

3.1.1 Noise Patterns—The noise patterns used in this work (Figures 3, 4 (left)) can be 

tiled seamlessly which allows us to cover an arbitrarily large frame. In our experiments, we 

tested noise map tile sizes that ranged from 16 × 16 to 256 × 256 pixels; however, there was 

no noticeable difference in the final image quality.
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A comparison of different sources of noise is shown in Figure 3. Using noise sampled from 

a uniform distribution, like the one shown on the left, can result in energy spikes across 

the pattern. This is generally not desirable as it causes samples in the sampling map to 

be unevenly distributed. The temporal mean of uniform noise exhibits similar problems. 

Blue noise (Figure 3 (b)) is rich in high frequencies and generally does not suffer from 

low-frequency energy spikes in the spatial domain. Its distribution closely models that of 

the visual receptors on our retina and is therefore ideal for creating perceptually unobtrusive 

sampling patterns. However, conventional blue noise suffers from temporal instability, as can 

be seen in Figure 3 (e).

We use spatio-temporal blue noise (STBN) [61] to generate temporally stable sample 

patterns while preserving the perceptual advantages of conventional blue noise (Figure 3 

(c), (f)). As opposed to sequences of independent 2D blue noise or 3D blue noise patterns, 

STBN is not only blue in the spatial domain - every pixel is blue over time. This property is 

desirable since it helps our reconstruction network to produce stable and perceptually clean 

image sequences.

3.1.2 Sample Maps—To generate a sample mask M, we compare the noise value N u, v
at position u, v against a threshold τ. If N u, v < τ we set M u, v  to 1; otherwise, it is set 

to 0. The value for τ can be adjusted to vary the sampling density. We define the density 

of the base noise pattern as Pb u, v . The foveated area is generated by modulating the value 

of τ using an exponential function around the focal point (Figure 4 (middle)). Changing the 

variance σ, changes the size of the foveated area. The density of the foveated area is denoted 

by Pf u, v .

Pf u, v = e−0.5 fx
2 + fy

2 σ

(1)

where fx and fy are the current focal position. Combining both components, we calculate τ
as follows.

τ(u, v) = 1 − Pb(u, v) ⋅ Pf(u, v) + Pb(u, v)

(2)

With the resulting sampling mask, the volume is selectively rendered at all positions (u, v)
where M u, v = 1 (Figure 4 (right)).

This process is repeated for every new frame that is rendered. To guarantee uniform 

sampling and maximize the amount of visual information that can be accumulated over 

time, the underlying blue noise maps are changed every time. Due to the computational 

complexity of blue noise generation, we use a pre-calculated series of 64 noise tiles. We loop 

the series to render frame sequences of arbitrary length.
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Sampling only a small subset of rays can drastically reduce the computation time per frame. 

We define the maximum possible compression rate Cmax of the technique as follows.

Cmax = 1
ℎ ⋅ w ∑

u = 0, v = 0

ℎ, w
τ(u, v)

(3)

where ℎ and w are the spatial dimensions of the framebuffer. Pb and Pf are the probability of 

casting a ray at u, v as described above.

3.1.3 Rendering—In a naive implementation of the renderer in OptiX and CUDA, 

invalid pixels would simply be discarded on the kernel level. However, using one kernel 

thread per full-size framebuffer pixel will yield only negligible performance gains. This is 

because GPU kernel calls are grouped in warps. Results are available only after all threads in 

a warp conclude. We develop two methods to circumvent this issue.

3.1.4 Direct Sampling—For this method, we create a stochastic function P  that 

incorporates both Pb and Pf. It adapts over time as the noise pattern and the location of 

the fovea change. The function can be called to generate a position u, v within the bounds 

of the framebuffer. Specific values for u and v are dependent on both probability functions. 

Therefore, it is more likely to generate a position in and around the foveated area. When 

rendering a new frame, we allocate a small framebuffer in which the number of pixels 

corresponds to the desired sampling compression Cmax which means that each kernel thread 

contributes calculations without potentially being discarded. For each entry in this buffer, 

the renderer queries P  to determine which pixel to render to the compact frame buffer. The 

values for (u, v) relate to a pixel’s position in the full-size framebuffer. Therefore, the result is 

a compact representation of the full frame. The contents of this compact buffer are projected 

back to their respective positions in the full-size framebuffer to generate the sparse image. 

Figure 5 visualizes this process.

Direct sampling is relatively unintrusive in terms of pipeline integration. Instead of issuing a 

CUDA kernel run across the full image dimensions, we call it on a smaller buffer. Function 

P  acts as a proxy when accessing the screen-space coordinates in each GPU thread. The 

downside of this method is that P  does not reliably produce unique sampling positions. 

Although direct sampling performs better than the naive approach, we encounter duplicate 

coordinates quite frequently, making the renderer recompute existing samples, forfeiting 

potential compression.

3.1.5 Stream Compaction—To alleviate the problems with direct sampling, we 

separate the sample map generation from the actual sampling. In the first step, the sampling 

map is generated using the approach described in Section 3.1.2. Next, a stream compaction 

algorithm is used to remove sparsity in the sampling map (Figure 6). This allows us to pack 

all valid pixels in the map into a smaller framebuffer similar to the direct sampling approach. 
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The rendering is performed on this smaller framebuffer, and the same back-projection 

mechanism restores the full frame image (Figure 6).

The mask generation and compaction steps are implemented in CUDA to accelerate the 

process. Using this approach, we effectively circumvent the problems encountered in direct 

sampling and are therefore able to further approach the theoretical Cmax.

3.2 Reconstruction Network

The core of FoVolNet is a deep neural network. We have developed a two-stage hybrid 

architecture that is based on the W-Net architecture [55]. It draws ideas from both 

direct prediction and kernel prediction approaches. We specifically design this network to 

accommodate sparse frames with minimal input features. Images are reconstructed solely 

from RGB input—optical flow or other auxiliary features are not required. The network’s 

components are described in detail here.

3.2.1 Overall Design—The core idea of our design is to split the reconstruction process 

into two steps. The split is realized by running two networks in sequence (Figure 7).

This hybrid architecture employs both direct and kernel prediction. Without the initial 

reconstruction step, the kernel prediction method fails to perform due to the absence of rich 

pixel neighborhoods from which to draw visual information. On the other hand, performing 

only the direct prediction step would result in sub-par image quality, as we show in the 

evaluation.

3.2.2 Direct Prediction: Coarse Image Reconstruction—Network D (Figure 7) 

reconstructs the image using direct prediction. That is, its output Od is directly interpretable 

as an image. This step reconstructs the overall features of the frame and fills the blank spots 

between valid pixels in the input. In addition to this, we preserve the decoder’s hidden state 

Hd for further processing.

3.2.3 Kernel Prediction: Image Refinement—In the second reconstruction step, 

network K predicts convolutional kernels on multiple scales in both encoder and decoder 

stages. They are then applied in sequence to Od. The kernel prediction stage takes the hidden 

states Hd of D′s decoder stage (Figure 7) and forwards them to K′s convolution blocks 

in both the encoder and decoder stages. The convolution blocks are used to predict filter 

kernels from Hd. Network K′s input image is passed through the network by applying each 

block’s predicted filter to the image in sequence. This process is analogous to the original 

W-Net filtering approach [55].

This step allows us to remove any remaining artifacts and blurriness that might result from 

direct prediction. Using the pre-filtered output Od, we provide visual context for the filters to 

refine the image meaningfully. When using the original sparse image as input for this stage, 

we saw blotchy artifacts in areas with insufficient visual information to cleanly filter the 

image, and more densely sampled areas generally looked blurrier.
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3.2.4 Recurrence—We introduce recurrent connections in multiple parts of the network 

to accumulate state. The aggregated information aids the reconstruction of temporally stable 

image sequences.

Decoder blocks in network D are connected by recurrent connections that pass down the 

block’s output hidden state back to its input in the next training step. On a broader scale, the 

output Od of network D is passed back to its input layer as part of the data of the subsequent 

run. Current and recurrent states are combined using a concatenation operation along the 

channel dimension, and appropriate up- or down-sampling is applied to make all inputs 

compatible for subsequent operations.

3.3 Loss

Model optimization was performed using a linear combination of multiple loss components. 

We split the training loss into a spatial and a temporal component which we label Ls and Lt, 

respectively. The losses are defined as follows.

L = λsLs + λtLt

(4)

where λs, t denote the linear weights assigned to the loss. In our training we choose λs = 0.8
and λt = 1.0 which—given the losses’ different magnitudes—weights spatial and temporal 

components at a ratio of 10:1. This balance of image quality and temporal stability was 

ideal for our trainings but might vary per training dataset. For Ls we use a combination of 

L1 and VGG19-based LPIPS perceptual loss [65] terms (Figure 8). The temporal loss is a 

combination of L1 loss and optical flow (OF) loss as used by Kaplanyan et al. [21].

Ls = λ1LPIPS + λ2L1  and  Lt = λ3L1 + λ4OF

(5)

We choose λ1 = 0.9, λ2 = 0.1, λ3 = 1.0, and λ4 = 0.1 for the linear weights to equalize the 

components’ magnitudes. Overall, the perceptual loss alone provides good reconstruction 

quality; however, adding a small L1 term helps preserve some more high-frequency details.

3.3.1 Spatial Loss—During training, both Ls and Lt are applied across the whole series 

of images in a sequence. Both losses are computed for each time step and the model weights 

are updated once after a full sequence of loss values has accumulated. Given any pair of 

predictions yp and ground truth targets yg with t total time steps, we calculate Ls as follows.

Ls yg, yp = ∑
i = 0

t
1 − e−0.5i ⋅ λ1LPIPS ygi, ypi + λ2 ypi − ygi 1

(6)
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Early images in the sequence are exponentially down-weighted to account for errors due to 

the lack of recurrent state at the beginning.

3.3.2 Temporal Loss—Using Ls alone provides good single frame reconstruction 

quality. However, as previous studies [4, 15, 56] have noted, it results in temporal flickering. 

Hasselgren et al. [15] have shown that adding a simple L1 term helps reduce temporal 

flickering drastically, but we have found their method to be prone to tearing artifacts when 

there is fast movement between adjacent frames. We add a small optical flow term, as used 

by Kaplanyan et al. [21] to stabilize such cases. The first component forces the network 

to produce adjacent frames with finite differences similar to the output. The optical flow 

loss works by comparing the current frame against its predecessor. The previous frame is 

warped using the optical flow ϕ i − 1 i with the warping operator ω to match the current 

frame. The network has to match this warped frame, leading to less tearing in the final 

output as consecutive frames become similar to their respective predecessors. For a sequence 

of t images Lt is defined as follows.

Lt yg, yp = ∑
i = 1

t
∑

j = 0

i − 1
λ3 ypi − ypj − ygi − ygj 1

+ ∑
i = 1

t
λ4 ypi − ω ypi − 1, ϕ(i − 1) i 1

(7)

In our training, the first loss term is defined over the whole sequence of prior frames. This 

way of constructing the loss emphasizes later image pairs in the sequence which entices 

training to use recurrent connections. On the other hand, the optical flow loss is only applied 

to a frame’s direct predecessor as warping frames becomes harder and more prone to errors 

the farther they are apart temporally. We use Hanika et al.’s fast reprojection algorithm [14] 

to estimate optical flow between frames during training. For both components of Lt, we do 

not consider the first frame of the sequence as it has no viable predecessor.

3.4 Model Precision & Optimization

Initially, we train the network using full 32-bit floating-point precision. However, the 

computational cost of running a full-precision network is often unnecessarily high. We 

truncate the network’s weights to 16-bit half precision format as a first optimization step. 

This operation does not cause any noticeable performance loss.

We also experiment with post-training quantization on a pre-trained model. In this process, 

we initially train the model in full-precision mode. After this, the precision of the network 

is reduced, and training continues using half-precision. In contrast to similar works [20, 55], 

we do not simulate integer quantization [26], as we observed drastic deterioration of image 

quality using this approach on our data. This is likely due to the sparsity of the input and the 

reliance on network D to contribute to the final output instead of just extracting features.
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Post-training quantization is realized using TensorRT [38]. Models are trained in PyTorch 

[8] and exported to ONNX format. We then transform the ONNX network to a CUDA 

inference engine using the tools provided by TensorRT [38]. In our trials, we experiment 

with different levels of optimization. Namely, we choose from different numerical 

precisions: float32, float16, int8, and mixed-mode. We compare different settings in Section 

4.

3.5 Training

We provide information about network configuration, hyperparameters, and details regarding 

the dataset used for training in this section. The training was performed on two NVIDIA 

Quadro RTX 8000 GPUs.

3.5.1 Model Configuration—Both sub-networks D and K of our reconstruction 

network are based on the U-Net design [43]. Each network has four encoder 

and three decoder blocks. Skip connections connect the blocks. In network 

W:\Production\18192\413826MC\0001\Graphics, each block consists of two convolutional layers 

of equal depth, followed by a ReLU activation. On the other hand, each block in network 

W:\Production\18192\413826MC\0001\Graphics only has a single convolution to predict the 

kernels. Both networks follow the same progression of block configurations which is defined 

as:

e64 − e64 − e80 − d96 − d80 − d64 − d64

(8)

where e and d denote encoder/decoder blocks followed by the convolution depth used for 

Conv2D layers in the block. Blocks in the encoder stage conclude with an average pooling 

layer to downscale the image. Analogously, all except the final block in the decoder part 

up-sample their outputs.

3.5.2 Dataset—FoVolNet is trained on short video sequences of several pre-rendered 

volume datasets. The data covers CT scans of humans, animals, mechanical parts, and 

large-scale simulation data from astronomy and material sciences (Table 1).

We render the datasets at a resolution of 800×800 using the previously described renderer. 

Video sequences consist of a continuous camera fly-through around the volume to cover 

most angles of the data. For training, the video dataset is sliced into 16-frame segments 

with no overlaps, and images are tiled at a resolution of 256×256. We find that these 

spatiotemporal dimensions offer the best trade-off between training time and quality. 

Sequences with eight or fewer frames resulted in under-utilization of recurrent connections 

and, therefore, bad temporal coherence. Batches consist of 15 such 16×256×256 sequences. 

In total, the network is trained on 16000 unique images. Our validation data consists of 

1600 unique images from the same datasets. Training, validation, and test datasets were split 

randomly at a 10:1:1 ratio.
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3.5.3 Data Augmentation—We use data augmentation, which effectively increases the 

number of unique training sequences we provide to the network. During training, sequences 

of frames are subject to random augmentations to improve training effectiveness. Table 2 

shows the list of augmentations used during training. Here, P x  denotes the independent 

probability of each augmentation occurring for any given batch of data.

3.5.4 Hyperparameters—During development, we experimented with different sets of 

hyperparameters to empirically determine the best settings for training. These include initial 

learning rate (LR), learning rate schedule, optimizer, weight decay, and length of training. 

For the final version, we use the following setup.

The LR is set to an initial value of 1.25e – 3, and a cosine annealing LR schedule is applied 

to gradually reduce the LR to a minimum value of 1e – 8. We use the Ranger [63] optimizer 

with a weight decay set to 1e – 2 to stabilize training. The model usually converges at 

around epoch 60–80. All trainings are stopped after 120 epochs.

4 EVALUATION

To show the potential of FoVolNet, we conduct several tests to evaluate different aspects of 

the system. All evaluations are conducted using our custom foveated rendering pipeline.

4.1 System Setup

We use C++ backends for both PyTorch [8] and TensorRT [38] for inference. All evaluations 

were performed on an end-user machine with an Intel Core i7–6900K CPU with 128 

gigabytes of RAM and an NVIDIA Titan RTX GPU. The system runs Ubuntu 20.04 LTS, 

and all parts of FoVolNet were developed and compiled on Linux. All frames are rendered 

at a resolution of 1280 × 720. We use our ray marching renderer and enable global shadows 

using a single light source per scene. Layer weights are truncated to fp16 precision, unless 

otherwise specified. All output was produced using images that were not in the training set.

Some results show comparisons to DeepFovea—the current state-of-the-art of foveated 

sparse frame reconstruction [21]. We train a model of this architecture on our data in our 

training pipeline using hyperparameters as suggested by the authors.

4.2 Inference Speed & Pipeline Throughput

To test the rendering throughput of our system, we use a fixed-path camera fly-through 

in our rendering pipeline. The camera path consists of a pattern of oscillating zoom with 

continuous rotation in two axes. This allows us to cover most aspects of the data using a 

small number of frames. Please refer to the supplemental video for more details.

A comparison of conventional raymarching with FoVolNet is shown in Figure 9. We 

perform the fly-through mentioned above on the Vortices 2 dataset. Baseline rendering 

time is drastically reduced due to sparse, foveated sampling of the volume. A constant, 

scene-independent inference time adds to the total frame time. The result is a sequence of 

fast and stable frame times that is less dependent on camera angle or scene configuration. As 

the thumbnails in Figure 9 suggest, the more screen space is occupied by data, the larger the 
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benefit of using our technique. However, as the left-most image shows, we achieve roughly 

two times faster end-to-end rendering performance even from a far-away viewing position.

A more comprehensive analysis of rendering performance is shown in Figure 10. Here, 

we compare against DeepFovea [21]. The sequences were created at two different quality 

settings, which differ in their configuration of sampling density. The hatched parts of the 

deep learning based runs indicate the inference times. We report the resulting average 

end-to-end speedups for all datasets in Table 3. Note that the fly-through sequences are all 

composed of roughly equal parts far-away and close-up viewing positions. This is due to 

the oscillating zoom of the camera. Therefore, our results represent speedups that can be 

expected in the average case. However, if the data is viewed at a reasonably close angle like 

shown in Figure 1, speedups are generally much higher.

4.3 Image Quality

Final image quality is at least as important as inference speed when it comes to image 

reconstruction. For all datasets, we calculate structural similarity (SSIM) and peak signal to 

noise ratio (PSNR) on single frames and image sequences. The image matrix in Figure 11 

shows results for both foveated areas and the periphery on single frames. Our architecture 

can reconstruct fine details even in peripheral areas of the frame. Notice how pure direct 

prediction methods like the recurrent U-Net used in DeepFovea [21] fail to preserve high-

frequency details as the number of samples decreases.

For the video analysis, we create a camera fly-through video of the CHAMELEON dataset. We 

split the video into multiple 50-frame sequences (of which we show two) with a jump-cut 

between them. Figures 12 and 13 show the reconstruction quality over time. A red line 

indicates the cut. Both FoVolNet and direct prediction improve their quality over a short 

ramp-up period in which state is accumulated. Similarly, the network needs several frames 

after the jump cut to recover full quality. However, the hybrid architecture outperforms direct 

prediction by a constant offset.

4.4 Temporal Stability

The quality of temporal coherence is evaluated on the same fly-through clips. The sequences 

were constructed so that they each start and end in fast camera movement while slowing 

down towards the middle. This three-act setup allows us to see how the network uses 

accumulated state to retain temporal consistency when there is (1) plenty of movement with 

little prior state, (2) little movement but lots of state, and lastly, (3) lots of movement and 

lots of state. We compute the temporal PSNR (tPSNR) as used by Hasselgren et al. [15]. 

This value is the PSNR of finite differences between frames. Instead of computing the PSNR 

on the image itself, we compute it on the difference between the current and previous frame. 

The aforementioned fast-slow-fast pattern is reflected by data in Figure 14. It shows that 

FoVolNet is able to retain stability throughout most of the sequences. Both models achieve 

peak quality when there is little movement. This is unsurprising since, without movement, 

the network acts as a simple accumulation buffer. However, FoVolNet is able to retain 

quality under much faster movement than direct prediction—especially in Phase (3) when 
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there is enough state available to the layers. Please refer to the supplemental material for the 

source clips.

In addition to this metric, we provide just-objectionable-difference (JOD) [42] scores for 

the whole video. This score is similar to just-noticeable-difference (JND), but instead 

of quantifying the difference between pairs of images, it is better suited to compare 

multiple degraded images to the reference. That means that while the results of different 

reconstruction methods might look degraded in different ways, they will still have similar 

JOD scores as they are equally different from the ground truth. The data was produced using 

FovVideoVDP [35]. We use the default settings for a 4K screen viewed under office light 

levels. Detailed settings were chosen as follows: 75.4 [pix/deg], Lpeak=200, Lblack=0.5979 

[cd/m2], non-foveated, (standard_4k). Data is produced for the video at different quality 

settings as shown in Table 4. Note that higher scores are better, with 10 being the maximum 

score.

4.5 Model Precision

During training, we configure the weights to use full 32-bit precision. By default, this level 

of precision is retained during inference. However, reducing the precision of certain weights 

in the network can drastically improve the performance during inference. We examine the 

effects that such adjustments have on image quality in practice (Figure 15).

In our tests, quantization artifacts were most apparent on homogeneous surfaces, subtle 

gradients, and transparent regions. Two examples are shown in Figure 15. The difference 

in quality is especially apparent in the lower dataset shown in Figure 15. The fading 

color towards the top shows a much more abrupt cut-off in quantized precisions (int8 and 

mixed-precision int8/fp16) compared to their unquantized counterparts (fp32 and fp16). The 

brightness of the lower frame was increased to emphasize the subtle differences. There was 

no noticeable difference between the non-quantized precisions fp32 and fp16.

4.6 Effective Compression Rate

Reducing the number of total pixels that the volume needs to be sampled at immediately 

affects rendering performance. In the ideal case, a sparse rendering algorithm would achieve 

rendering times that scale linearly with the number of pixels. We termed this ideal case Cmax

—the maximum possible rendering performance at any given sparsity level. To test how well 

our stream compaction sparse renderer performs, we record frame times along the whole 

spectrum of sparsity as represented by τ ranging from 1.0 (full frame) to 0.0 (no samples). 

Data is recorded for both the stream compaction method and a naive rejection approach 

which simply skips computations for certain threads on a full-frame kernel run. The results 

of this test are shown in Figure 16.

The data shows that our compaction method maps well to Cmax. As τ approaches sparsity 

rates of around 10%, the performance starts to diverge slightly from Cmax. Due to hardware 

limitations and computational overhead in the pipeline, the curve starts to flatten at around 

1%. In our experiments, values for τ reside in the range of 0.1 to 0.01, which equates to 

Bauer et al. Page 14

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



roughly 10× to 25× compression rates compared to the naive approach, which is almost ten 

times less efficient.

5 LIMITATIONS & FUTURE DIRECTIONS

FoVolNet works well on various data, as we have shown in the evaluation. It can benefit 

from more specialized training to address some of the edge cases we encountered during 

development, like high-frequency visual content or more pronounced transparency. Beyond 

this, there are several interesting extensions that we suggest here.

High-frequency Content.

Regions of a volume that contained high-frequency intensity shifts resulted in increased 

temporal flickering when using our network. In most cases, increasing the renderer’s volume 

sampling rate would alleviate such issues. A more cost-effective approach is to purposely 

introduce such artifacts into the training data, which would reduce the overall severity of 

the issue. Another approach is to emphasize temporal loss terms by increasing their weight 

(sacrificing visual quality) or by introducing more adaptable terms like a GAN critique [11].

Beyond Raymarching.

In this work, we showcase our technique on the example of a raymarching renderer. 

However, FoVolNet is easy to extend to Monte Carlo methods like volume path tracing. Here 

we see potential to stabilize framerates by cutting short long-running threads due to multiple 

bounces and reconstructing their results using constant-time neural networks. Support for 

other data types like particle volumes or flow fields could also be added. We encourage 

further research to explore the specifics of such extensions.

Neural Adaptive Sampling.

The approach presented here can be improved by predicting adaptive sample maps. Similar 

to Stengel et al.’s approach [52], both adaptive and foveated maps can be merged to 

maximize visual quality. Creating more off-focus sampling density could also improve the 

remaining issues with temporal stability. This extension increases sampling efficiency by 

replacing the naive uniform sampling in the periphery with an overall smarter approach.

Beyond the Screen.

High-fidelity immersive visualization of volume data is still out of reach today. However, 

with FoVolNet we achieve higher and more consistent framerates (Figure 9). With 

further improvements to the network, this goal could be attained much sooner than with 

conventional rendering techniques. The inference overhead could be reduced to a point 

where real-time, high-fidelity rendering becomes possible. This would open up opportunities 

to utilize FoVolNet for immersive experiences of volume data in VR.

6 CONCLUSION

We presented FoVolNet—a foveated neural reconstruction system for volume visualization. 

FoVolNet accelerates conventional volume rendering techniques by sparsely sampling the 
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data and reconstructing the full-frame using deep learning. Our novel network design 

reconstructs the final rendering at high quality using a hybrid of direct and kernel 

prediction mechanisms. We show that FoVolNet is able to provide tremendous speed-ups 

at compression rates as high as 25× over the state-of-the-art control technique DeepFovea 

[21] while preserving image quality close to the original. Our uncomplicated design makes it 

easy to be integrated into existing rendering pipelines.

It is our plan to combine this technique with neural representation compression techniques 

and streaming technology to push the field further towards real-time high-fidelity volume 

visualization on consumer hardware. There are numerous opportunities to use and extend 

this technique, and we hope to entice the visualization community to take up this pursuit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
We propose a novel rendering pipeline for fast volume rendering using optimized 

foveated sparse rendering and deep neural reconstruction networks. FoVolNet can faithfully 

reconstruct visual information from sparse inputs. With FoVolNet, developers are able to 

significantly improve rendering time without sacrificing visual quality.
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Fig. 2: 
Overview of FoVolNet’s components. The rendering pipeline loads a volume and renders 

it sparsely—saving time by skipping pixels in the periphery. Then, the sparse rendering is 

reconstructed by a neural network which takes constant time. The output of the rendering 

pipeline is the full-frame rendering.
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Fig. 3: 
We compare multiple noise patterns to create our sampling masks. The top row (a)-(c) shows 

the different types of noise. In the bottom row we show an 8-image sequence of patterns 

averaged across time to emphasize their temporal stability (d)-(f).
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Fig. 4: 
Sampling maps are generated using an STBN [61] (left). The area around the focal point is 

sampled more densely using an exponential fall-off to preserve details (middle). The volume 

is sparsely sampled using the sampling map (right).
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Fig. 5: 
For direct sampling, we use a stochastic function P to generate sample points. A small frame 

buffer is filled with samples that correspond to real locations on the full-size framebuffer. 

Color values are reprojected to the full frame.
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Fig. 6: 
The renderer first creates a sampling map which is compacted into a small framebuffer. 

The volume is sampled according to each pixel’s ray direction in the full-size frame. After 

rendering, the resulting color values are projected back to the initial frame.
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Fig. 7: 
The reconstruction network comprises two U-Net stages D and K. All Conv2D layers 

are configured with a stride and padding of 1 and no dilation. Network D uses a 3 × 3 

kernel size while K uses 1 × 1 kernels. Upsample2D layers use bilinear interpolation for 

filtering. Skip connection are not shown in favor of readability. Network D performs coarse 

reconstruction through direct prediction while the second stage K uses D‘s hidden state to 

predict convolutional kernels which are subsequently applied to D‘s output to produce the 

final frame.
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Fig. 8: 
The hidden states H1-H5 of the VGG19 image classification network are used to measure 

the perceptual quality of our image reconstruction [65].
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Fig. 9: 
The per-frame timings of different pipeline components during a camera fly-through of 

VORTICES 2. We compare times for FoVolNet using fp16 precision with conventional DVR 

as the reference. Thumbnails show the camera position at that specific point in the run.
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Fig. 10: 
Average frame times from fly-through renderings of different datasets. Each dataset 

was rendered for 500 frames. The camera movement was framerate-independent. We 

compare against DeepFovea [21] as specified by the authors. Note that the x-axis scales 

logarithmically past frame 100 to accommodate long frame times.
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Fig. 11: 
Visual comparison of reconstruction quality using our method. For each dataset, we show 

the area around the fovea in blue and a part of the periphery in yellow. All images were 

generated with Pb = 0.03 and σ = 0.02 for Pf.
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Fig. 12: 
Still-frame PSNR over the course of two 50-frame clips from the CHAMELEON dataset.

Bauer et al. Page 31

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13: 
Structural similarity (SSIM) over the course of two 50-frame clips from the CHAMELEON 

dataset.
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Fig. 14: 
Temporal stability as measured by tPSNR [15] over the course of two 50-frame clips from 

the CHAMELEON dataset.
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Fig. 15: 
Comparison of reconstruction quality at different model precisions. Differences are most 

apparent on homogeneous surfaces and along subtle color gradients.
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Fig. 16: 
Compression efficiency of our stream compaction rendering technique. Data was recorded 

for the whole value spectrum of sampling threshold τ. A curve for Cmax shows the maximum 

achievable efficiency at any given threshold value.
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Table 1:

Datasets used to train and evaluate FoVolNet. Using our ray marching renderer, each volume was rendered as a 

camera fly-through sequence around the object. The skull and chameleon datasets were used for evaluation 

and were not part of the training datasets.

Dataset Dimensions Data Type

SKULL [30] 256x256x256 uint8

CHAMELEON [23, 34] 1024x1024x1080 uint8

MECHANICAL HAND 640x220x229 float32

VORTICES 1 [50] 128x128x128 float32

VORTICES 2 [50] 128x128x128 float32

SUPERNOVA [39] 432x432x432 float32
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Table 2:

List of image augmentations applied during training. All augmentations affect the whole sequence of images 

to not introduce any unwanted combinations of effects.

Name Description P x
Colors Randomly permutes color channels 0.6

Flip Horizontal Flips whole sequence along y axis 0.5

Flip Vertical Flips whole sequence along x axis 0.5

Grayscale Converts RGB input to grayscale 0.3

Static Turns a real sequence into a number of static frames 0.3

Padding Pads the whole sequence by a random number of pixels 0.1
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Table 3:

Relative speed-up times when compared to the baseline raymarching renderer. The data is based on that shown 

in Figure 10. Pb is given and Pf was calculated using the listed σ values.

Dataset FoVolNet
Pb = 0.03
σ = 0.02

FoVolNet
Pb = 0.07
σ = 0.06

DeepFovea
Pb = 0.03
σ = 0.02

DeepFovea
Pb = 0.07
σ = 0.06

VORT. 1 3.21× 2.40× 2.42× 1.98×

VORT. 2 3.80× 2.89× 2.88× 2.34×

SKULL 3.12× 2.19× 2.45× 1.88×

MECH. HAND 2.66× 1.74× 2.23× 1.55×

CHAM. 3.22× 2.45× 3.05× 1.73×

SUPERN. 3.67× 2.09× 3.44× 2.08×

Overall 3.28× 2.29× 2.75× 1.93×
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Table 4:

Just-objectionable-difference scores [35] of reconstruction output from the CHAMELEON dataset computed at 

different thresholds.

τ JOD Score FoVolNet JOD Score DeepFovea

0.10 9.35 8.53

0.07 9.28 8.47

0.03 8.86 8.21

0.01 8.26 7.51
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