This chapter describes a rodent (rat and mouse) model of prolonged febrile seizures. Study of these seizures is important, because they are common, illustrative of seizures—and of abnormal excitability—in the immature brain, and associated with subsequent epilepsy. Seizures generated in this model are evoked by hyperthermia, via mechanisms common to those of fever. The seizures are limbic in semiology and involve the hippocampal formation. When sustained for ~20 minutes, these experimental complex febrile seizures result in transient neuronal injury but no cell death. The seizures induce enduring structural, molecular, and functional changes in the hippocampal formation, including altered expression of the hyperpolarization-activated cyclic nucleotide gated cation (HCN) channels. Threshold temperature for evoking the seizures provides a ready measure of excitability that is suitable for pharmaceutical screens, as well as for screening for the effects of genetic mutations/gene engineering on seizure susceptibility.

GENERAL DESCRIPTION OF THE MODEL: WHAT DOES IT MODEL?

The model described here recapitulates the essential elements of prolonged febrile seizures in the human. Febrile seizures are the most common type of seizures in infants and young children, with a prevalence of 2–14% around the world (see Stafstrom, 2002 for a recent review). For short or simple febrile seizures, epidemiologic and prospective studies as well as retrospective analyses have suggested that seizures with duration of less than 10 (Annegers et al., 1987; Berg et al., 1997) or 15 minutes (Nelson and Ellenberg, 1978) do not lead to long-term sequelae. Thus, neither epilepsy nor cognitive dysfunction are described in children with a limited number of short febrile seizures (Verity et al., 1985, 1998; Berg and Shinnar, 1996a). However, complex febrile seizures, defined as prolonged, having focal features, or that recur within a single febrile episode, are more controversial (Annegers et al., 1987; Berg and Shinnar, 1996b). Whereas there is limited epidemiologic evidence for adverse outcome, retrospective analyses strongly link a history of prolonged febrile seizures to temporal lobe epilepsy (TLE) (Cendes et al., 1993; French et al., 1993; Hamati-Haddad and Abou-Khalil, 1998; Theodore et al., 1999).

The controversy over the clinical outcome of prolonged febrile seizures, and the potential that they may promote epileptogenesis, provides a strong impetus for modeling them. Animal models, unlike the human condition, allow direct investigation of the potential consequences of these seizures. Hypotheses about mechanisms by which febrile seizures might influence the developing brain can be formulated and tested directly, using diverse neuroanatomic, molecular, electrophysiologic, and imaging methods.

A second impetus for developing a model of febrile seizures is to understand the mechanisms by which they are generated. Even if not causing epilepsy, febrile seizures are common, frightening, and associated with iatrogenic complications from treatment; their prevention requires an understanding of how they arise. Thirdly, febrile seizures constitute a common manifestation of hyperexcitability in the developing human brain. Because they do not occur in adults, they provide an excellent tool for studying the unique characteristics (and underlying mechanisms) of abnormal excitability during development. In addition, as a generalizable model of developmental hyperexcitability,
experimental febrile seizures provide a useful model for screening potential anticonvulsants for developmental epilepsies. Finally, genes that may lead to increased excitability might render the developing animal more susceptible to developing febrile seizures: the model provides a valuable instrument for screening epilepsy- or seizure-promoting genes.

The model described here is suitable for investigating the five types of questions mentioned above. This chapter discusses the generation of either short or prolonged experimental febrile seizures in the immature rat, as well as adaptation of the model to the immature mouse, where it can be coupled to the power of mouse genetics.

METHODS OF GENERATION OF EXPERIMENTAL PROLONGED FEBRILE SEIZURES

Procedural Issues: Animal Species and Age, Controls, Fever Versus Hyperthermia

Species

A model of experimental prolonged febrile seizures was first developed in the immature rat (Baram et al., 1997; Toth et al., 1998, Dubé et al., 2000) then adapted successfully to several strains of mice (Dubé et al., 2005a).

Age

In the human, febrile seizures occur between ~3 months and ~5 years of age with a peak incidence at 18 months (Nelson and Ellenberg, 1981; Hauser, 1994). Comparing the development of the hippocampal formation between humans and rodents indicates that the first year of human life may be equivalent to postnatal days 7–14 (P7–14) in the rat (Table in Avishai-Eliner et al., 2002). Therefore, an appropriate rat model of febrile seizures should use rats at a developmental stage at which human infants are most susceptible to febrile seizures. In addition, systematic analysis of the temperatures required to elicit hyperthermic seizures shows that this susceptibility is age-dependent, with a nadir of threshold temperature during the second week of life (Olson et al., 1984; Hjerresen and Diaz, 1988; Morimoto et al., 1990; 1991; Baram et al., 1997). We have elicited experimental febrile seizures in P6–17 rats and in P11–17 mice and have chosen to use P10–11 for rat and P14–15 in mouse for three reasons: (1) Consideration of hippocampal development (see preceding); (2) these ages fall at the nadir of threshold temperature, and, remarkably, these threshold temperatures are close to those required in normal children (Berg et al., 1992); and (3) the behavioral seizures at these ages are reliable, reproducible, and stereotyped.

Controls

Induction of seizures using hyperthermia involves two variables: (1) hyperthermia and (2) hyperthermia-induced seizures. Therefore, to ascertain that any consequence of hyperthermic seizures is truly a result of the seizures rather than of the hyperthermia per se, hyperthermic controls must be used. These are generated by subjecting age-matched littermates to the same degree and duration of hyperthermia but preventing seizures using short-acting barbiturates (pentobarbital intraperitoneally; Dubé et al., 2000; Brewster et al., 2002).

Fever Versus Hyperthermia

Febrile seizures in humans are convulsions associated with fever. The model described here relies on hyperthermia rather than fever to evoke seizures. We think this is justified for three reasons: (1) Hyperthermia without fever also causes seizures in infants (in the setting of anticholinergics or theophylline overdose or hot water baths); (2) it is almost impossible to provoke true fever (>1°C increase of core or brain temperature) in infant rats (Heida et al., 2003). Importantly, fever and hyperthermia may utilize common mechanisms to elicit seizures. The pyrogenic cytokine IL-1 contributes to fever generation and, conversely, fever leads to IL-1 production within hippocampus (Takahiro et al., 1990; Ban et al., 1991; Cartmell et al., 1999; Gatti et al., 2002). These facts support the involvement of IL-1 in the mechanisms of both febrile and hyperthermic seizures. Others (Blake et al., 1994; Haveman et al., 1996) and our data (Dubé et al., 2005a) demonstrate that release and synthesis of IL-1 are governed primarily by the actual increase of temperature (hyperthermia) rather than other components of the febrile response. Thus, mechanisms by which fever and hyperthermia induce seizures may be similar, sharing cytokines as a key mediator (Rothwell and Luineshi, 1994, 2000; Gatti et al., 2002; Dubé et al., 2005a).

Procedures

General Procedure

Experimental prolonged febrile seizures are induced in 1–2 rats or mice at a time. Features of the paradigm that are common to both species will be discussed, followed by points that distinguish each species. Procedures for EEG recordings will be found in the Monitoring section, following. Experiments are initiated at 8–11AM to minimize potential diurnal variability in seizure susceptibility. Pups are placed on a euthermic pad at least 15 minutes before the onset of hyperthermia. Baseline core (rectal) temperature is measured using a hypodermic needle probe (HYP2-21-1-1/2-TG-48-OSTM, Omega, Stamford, CT) connected to a temperature indicator (DP41-TC, Omega Stamford, CT). To
prevent variability of baseline core temperature, pups are prevented from climbing on top of one another. Two pups are placed in a 3-liter jar (the hyperthermia chamber) fitted with a cloth pad taped to its bottom, to absorb excreta and prevent exposure to heated glass. The chamber is covered by a styrofoam lid with a central hole and placed in a Faraday cage. After measuring onset core temperatures, a regulated stream of moderately heated air is blown obliquely through the hole in the lid using a commercial adjustable hair dryer (Prostyler 1600W, 097RIR, Conair, set at medium). The goal is to increase core and brain temperatures ~2°C/minute until seizure onset, when seizure temperature threshold is measured. Times of hyperthermia onset and seizure onset are noted. In our hands, increasing the temperature at ~2°C/minute leads to a latency of 2–4 minutes and an excellent correlation of brain and core temperatures.

**Prolonged Experimental Febrile Seizure Protocol**

These are generated by maintaining hyperthermia (40–42°C) for 30 minutes, with seizure onset considered time 0. Once seizures commence, hyperthermia is continued, and the temperature measured every 2 minutes. If core temperature is >41.5°C, pups are removed to a cool metal surface for 2 minutes to prevent excessive heating. The cycle of warming for 2 minutes, temperature measure, and continued warming or time-out is maintained for a total of 30 minutes, resulting in seizures of ~24.1 minute (Table 1). The procedure yields seizure threshold temperatures of ~40.8°C and mean duration of hyperthermia of ~27.9 minute.

**Recovery Procedure**

Following hyperthermia pups are submerged (1 second) in room temperature water, hydrated orally (~0.1 ml water) using a 1 ml syringe, and transferred to a cool metal surface until their core temperature reaches 32–34°C. They are kept on a euthermic pad for 1 hour then returned to home cages. In our hands, rat and mouse pups receive the pups without difficulty and initiate grooming and nursing. We keep total separation time from the dams to less than 4 hours, and have observed no weight loss or growth retardation after the procedure.

**Temperature**

Human febrile seizures are typically elicited by temperatures higher than 38.5°C, and a study in Swedish children suggested a normal threshold temperature of 40.9°C (Knudsen, 1996). In addition, brain temperatures higher than 43°C may provoke neuronal injury (Burger and Fuhrman, 1964; Gerraano et al., 1996). Therefore, this model limits maximal temperatures to ~42°C, and importantly correlates the measured (core) temperature to that of brain.

While the goal of the monitoring is to maintain core and brain temperatures in the 40–42°C range, it is not feasible to monitor brain temperature chronically in P10 rats (or P14 mice) because of the size of available implantable probes. Therefore, we have correlated brain and core temperatures in the model, under standard conditions of the velocity and temperature of the heating air stream (see following text). This is important, because core temperature may rise disproportionately to that of brain. Figure 1 shows a series of measurements of core- and brain-temperatures in individual rats. Baseline core values were measured at 5-minute intervals over a 25-minute period, and averaged 32.88 ± 0.07°C (n = 10) (Figure 1A). These temperatures were virtually identical to those obtained in rats upon removal from home cages (not shown). Under the same conditions, brain temperatures for an individual rat were also highly consistent (Figure 1B). Interestingly, mean euthermic (normal) brain temperatures were 2.8°C higher than mean core values. This divergence was temperature-dependent and approached zero at temperature ranges provoking seizures. Thus, at the onset of experimental prolonged febrile seizures (i.e., at threshold temperatures), brain temperatures averaged 40.7 ± 0.2°C (n = 29) and core temperatures were 40.88 ± 0.3°C (n = 31; Dubé et al., 2005b). These data indicate that, within the confines of the parameters recommended for this model, core measurements provide an adequate approximation of brain threshold temperatures for experimental febrile seizures. It is recommended that each laboratory perform initial experiments correlating brain and core temperatures under the conditions it uses.

**EEG Monitoring**

*EEG monitoring* is performed whenever the model is being set-up, then periodically and when a new species or

<table>
<thead>
<tr>
<th>Table 1 Parameters of Seizures and of Hyperthermia in the Immature Rat Febrile Seizures Model</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Group parameters</strong></td>
</tr>
<tr>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>Experimental febrile seizures</td>
</tr>
<tr>
<td>Hyperthermic controls</td>
</tr>
</tbody>
</table>
mouse strain is added. Methods for implanting electrodes in limbic structures of immature rodents have been published (Baram et al., 1992; Dubé et al., 2000, 2005a). See EEG features of the seizures in the section following.

Behavior

Behavior is determined for each 2-minute epoch within the 30 minutes of hyperthermia. The characteristic behaviors for mice and rats are described in Behavioral Features, following.

Recovery

Sedation in the hyperthermic control groups persists typically for ~1 hour; these rats are hydrated orally and handled as described in the preceding for the other groups: Following hypertermia, pups are removed to a euthermic pad and hydrated. They are returned to home cages when fully awake and recovered. Little evidence of dehydration is found in the hyperthermic control and experimental prolonged febrile seizures groups (<3% loss of body weight).

Ease of development and reliability are discussed in the limitations section (IV).

Occurrence of Spontaneous Seizures

Whereas we have previously published on the absence of spontaneous seizures in this model, these observations were based on daytime intermittent observation and EEG recording (Dubé et al., 2000). Using nocturnal simultaneous video-EEG recordings, there is preliminary evidence for the occurrence of spontaneous seizures (epilepsy) in a subgroup of the rats that had sustained experimental febrile seizures. These studies are ongoing.

CHARACTERISTICS/DEFINING FEATURES

Behavioral Features

The initial seizure behaviors in both immature rats and mice consist of acute sudden arrest of the hyperthermia-evoked running and other types of hyperactivity. Freezing (altered consciousness?) is seen in both species, followed rapidly by oral automatisms. This sequence at seizure onset is typical for human and animal seizures of limbic origin. The subsequent course of the seizures differs somewhat between immature rats and mice.

In rats, freezing (Racine stage 0) is followed by oral automatisms (chewing/bitirg, Racine stage 1) and often forelimb clonic movements (Racine stage 3) (Racine, 1972). A typical behavior, which can be used for consistent recording of threshold temperature, is the sudden chewing/bitirg of an extremity. Later in the seizures, tonic body flexion may occur and may indicate an eventual propagation of the seizure to the brainstem.

In mice, onset of experimental febrile seizures (when seizure threshold temperature is measured) is heralded by sudden immobility, with reduced response to stimulation (altered consciousness), and often with facial automatisms (chewing, vibrissae movements). Tonic body flexion is not observed in mice.

Electrographic Seizures

During development of the model, to investigate the epileptic nature of the behavioral seizures provoked by
Experimental prolonged febrile seizures in immature rodent lead neither to acute neuronal death, as determined using the in situ end labeling technique (Toth et al., 1998), nor to long-term neuronal death, evaluated up to 3 months after the seizures (Bender et al., 2003a). This neuronal sparing includes populations that have been shown to be the most vulnerable to seizures-induced cell death in adult models of limbic seizures, including specific subpopulations of interneurons (Houser and Esclapez, 1996; Buckmaster and Dudek, 1997) and mossy cells (Sloviter, 1994). However, experimental prolonged febrile seizures induce transient neuronal injury in limbic structures including hippocampus, amygdala, and perirhinal cortex, visualized using silver staining (Toth et al., 1998), but not Fluoro-Jade (Dubé et al., 2004). The distribution of argyrophilic neuronal injury observed in this model overlaps the structures involved in TLE, including hippocampal pyramidal cells, lateral basal and central nuclei of amygdala, and the perirhinal cortex, and persists up to 2 weeks. Because argyrophilia (but not Fluoro-Jade) targets cytoskeletal proteins, the results using these two methods implicate these proteins in the transient changes evoked by experimental febrile seizures.

Among other potential structural processes that may be provoked by seizures and may contribute to the epileptogenic process, prolonged febrile seizures do not modify granule cell neurogenesis in the immature hippocampal

---

**Baseline**

![Baseline EEG recording](image)

**Seizure**

![Seizure EEG recording](image)

**FIGURE 2** Hippocampal EEG recordings from immature mouse (P14): Low amplitude baseline trace with variable rhythms is replaced by epileptiform discharges (trains of spikes and spike-and-wave) evoked by hyperthermia. The behavioral correlates of the EEG seizure consist of sudden behavioral arrest associated with facial limbic automatisms. Calibration: vertical, 50 µV; horizontal, 2 seconds.
formation (Bender et al., 2003a). Similarly, sprouting is not prominent after these seizures (Bender et al., 2003a).

Imaging

Using serial magnetic resonance imaging (MRI) on a 4 Tesla scanner, prolonged experimental febrile seizures were found to increase T2 signal in limbic structures in 75% of animals at 24 hours and in 87.5% of the seizure group a week later. These involved dorsal hippocampus, amygdala, piriform cortex and the medial ventroposterior thalamic nucleus (Dubé et al., 2004). The T2 signal changes were not accompanied by evidence of neuronal injury or death in these regions (assessed using Fluoro-Jade), but may indicate other cellular pathologic processes that promote epileptogenesis.

Molecular Changes

Seizure-evoked hippocampal hyperexcitability was apparent by a week after the seizures and persisted long term (Dubé et al., 2000; Chen et al., 1999, 2001), indicating the occurrence of profound molecular changes. The spectrum and sequence of molecular changes evoked by experimental prolonged febrile seizures in this model have not yet been fully explored. In addition, the molecular events that have already been elucidated are complex and fall outside the scope of this chapter. The interested reader is referred to: Toth et al., 1998; Chen et al., 1999, 2001; Brewster et al., 2002, 2004; Bender et al., 2003a, b; Santoro and Baram, 2003; Dubé et al., 2005a. Briefly, within hours after seizures, regulation of calcium (Ca++) entry was altered as a consequence of transient down-regulation of GluR2 expression and the formation of Ca++-permeable AMPA receptors (Pellegrini-Giampietro et al., 1997; Eghbali-Ahmadi et al., 2001) that also permitted Zn++ accumulation in CA3 neurons (Yin et al., 2002). Perhaps as a consequence of these events, the transcription of other specific channels was altered, starting already by 24–48 hours (Brewster et al., unpublished). The mRNA levels of the hyperpolarization-activated cyclic nucleotide-gated cation channel type 1 were reduced, whereas HCN2 channel gene expression was enhanced (Brewster et al., 2002). These mRNA levels were followed by a "molecular switch" of HCN1/HCN2 ratios also at the protein level (Brewster et al., 2005), and should promote hyperpolarization-evoked rebound neuronal firing (Chen et al., 2001; Santoro and Baram, 2003), i.e., enhanced hippocampal excitability. It is notable that expression of HCN channels is altered also in the “sclerosed” hippocampus of humans with severe TLE (and typically a history of early life seizures; Bender et al., 2003b). These expression changes, consisting of increased HCN1, may potentially be neuroprotective (Bender et al., 2003a; Santoro and Baram, 2003).

Response to Antiepileptic Drugs/Usefulness in Screening Drugs

In human febrile seizures, phenobarbital, valproate, and the benzodiazepines are effective in controlling febrile seizures while other anticonvulsants including phenytoin and carbamazepine are ineffective (e.g., Knudsen, 2002). This anticonvulsant efficacy profile is recapitulated in the model of febrile seizures (Dubé and Baram, unpublished data). Therefore, the model should be useful for screening pharmaceutical agents as potential anticonvulsants in the developing brain.

Genetic Influence

Using this model, febrile seizures have been generated in rats and several strains of mice. Seizures are evoked in virtually all immature rodents (P10–11 rat; P14–15 mice) regardless of genetic background. However, genetic background affects the threshold temperatures for eliciting the seizures: temperatures resulting in seizures in, e.g., C57BL mice (39.7 ± 0.3°C, n = 17) are significantly lower than those in mice of the 129/Sv strain (41.3 ± 0.2°C, n = 21; Dubé et al., 2005a); furthermore, genetic manipulation of the interleukin 1 gene receptor led to significant elevation in threshold temperature, implicating this gene in the mechanisms of febrile seizure generation (Dubé et al., 2005a). Therefore, the model is suitable for testing the effects of gene(s) of interest on neuronal excitability and seizure susceptibility in the developing brain.

LIMITATIONS

As implied in the previous paragraphs, the setup of this model simply does not require costly equipment. However, it does require certain procedures in each laboratory to validate the nature of the evoked seizures, the absence of hyperthermia-induced injury, and the correlation of brain and core temperatures:

1. Because routine monitoring involves only core temperature, maintaining consistent conditions after verifying the correlation of core and brain temperatures is important. This involves using the same hair dryer with the same setting, held at a constant distance and angle. Rigorous training of personnel and periodic correlation of core and brain temperatures are recommended.

2. To avoid direct hyperthermic injury and agonal, terminal seizures, temperatures should be carefully controlled and maintained at 40–42°C. Specifically, those higher than 43°C may lead to direct injury. As an additional requirement, a hyperthermic control group (with hyperthermia but without seizures, achieved by barbiturate pre-admin-
istration) is required in studies assessing the effects of the seizures.

3. Mice have a somewhat wider spectrum of seizure behaviors. In addition, genetic background has a profound effect on susceptibility to these seizures (see preceding section, Genetic influence). Therefore, attention to controls of appropriate genetic background when assessing the consequences of any gene alteration is necessary.

While mortality rate is nil, prevention of morbidity requires maintaining distance from the source of heated air, avoiding excessive temperatures, and using padded hyperthermia chambers. These precautions, as well as rinsing the chamber with room temperature water between rounds, eliminate burns, particularly of the paws.

Reproducibility

This model of prolonged febrile seizures is highly reproducible. In our hands more than 99% of the rats develop prolonged seizures, and threshold temperatures in over 500 rats have been in a narrow range. In addition, to our knowledge at least a dozen laboratories around the world have applied the model to both rats and mice.

Because this is not an extreme model (in comparison, for example, to status epilepticus, that kills 100% of a given neuronal population), a degree of interanimal variability is unavoidable (Brewster et al., 2002; Bender et al., 2003a; Dubé et al., 2005a). The molecular, structural, and imaging changes are evident in >87.5% (MRI; Dubé et al., 2004)—>90% (HCN channel changes) of rats, but not in 100%. Therefore, size of experimental groups (n) larger than 6 is recommended.

INSIGHTS INTO HUMAN DISORDERS

This model provides insight into febrile seizures and their mechanisms as well as their potential consequences. It provides a model of epileptogenesis in the developing brain with molecular, physiologic, and functional changes, as well as the onset of spontaneous ones (epilepsy). In addition, it provides a screen for manipulations aiming to modify excitability (seizure susceptibility) in the developing brain, be they genetic or pharmaceutical.

References


Models of
SEIZURES AND
EPILEPSY

Editors

Asla Pitkänen
University of Kuopio
Kuopio, Finland

Philip A. Schwartzkroin
University of California
Davis, California

Solomon L. Moshé
Albert Einstein College of Medicine
Bronx, New York
Table of Contents

Contributing Authors xi
Foreword xv
Preface xvii

1. What Should Be Modeled? 1
   JEROME ENGEL, JR. AND PHILIP A. SCHWARTZKROIN

A. IN VITRO PREPARATIONS

2. Single Nerve Cells Acutely Dissociated from Animal and Human Brains for Studies of Epilepsy 15
   MARK STEWART, WEI-PING CHEN, AND ROBERT K.S.WONG

3. Cell Culture Models for Studying Epilepsy 23
   MARC A. DICTHER AND JOHN POLLARD

4. An Overview of In Vitro Seizure Models in Acute and Organotypic Slices 35
   UWE HEINEMANN, OLIVER KANN, AND SEBASTIAN SCHUCHMANN

5. The Use of Brain Slice Cultures for the Study of Epilepsy 45
   SCOTT M. THOMPSON, XIANG CAI, CELINE DINOCOURT, AND MICHAEL W. NESTOR

   CHRISTOPHE BERNARD

7. Thalamic, Thalamocortical and Corticocortical Models of Epilepsy with an Emphasis on Absence Seizures 73
   THOMAS BUDDE, HANS-CHRISTIAN PAPE, SANJAY S. KUMAR, AND JOHN R. HUGUENARD

8. Studying Epilepsy in the Human Brain In Vitro 89
   RÜDIGER KÖHLING, PHILIP A. SCHWARTZKROIN, AND MASSIMO AVOLI

9. In Vitro Isolated Guinea Pig Brain 103
   MARCO DE CURTIS, LAURA LIBRIZZI, AND LAURA UVA

B. INDUCED SEIZURES IN INTACT ANIMALS

10. Pharmacologic Models of Generalized Absence Seizures in Rodents 111
    MIGUEL A. CORTEZ AND O. CARTER SNEAD III

11. Models of Chemically-Induced Acute Seizures 127
    LIBOR VELIŠEK

12. Electrical Stimulation-Induced Models of Seizures 153
    PAVEL MAREŠ AND HANA KUBOVÁ

vii
13. Alcohol Withdrawal Seizures 161
   PROSPER N’GOUÉMO AND MICHAEL A. ROGAWSKI

14. Alumina Gel Injection Models of Epilepsy in Monkeys 179
   CHARLES E. RIBAK, LEE A. SHAPIRO, LASZLO SERESS, AND ROY A. BARAY

C. GENETIC MODELS

15. Modeling Epilepsy and Seizures in Developing Zebrafish Larvae 189
   SCOTT C. BARABAN

16. Transgenic and Gene Replacement Models of Epilepsy: Targeting Ion Channel and Neurotransmission Pathways in Mice 199
   DANIEL L. BURGESS

17. Spontaneous Epileptic Mutations in the Mouse 223
   JEFFREY L. NOEBELS

18. Genetic Models of Absence Epilepsy in the Rat 233
   ANTOINE DEPAULIS AND GILLES VAN LUIJTELAAR

19. Models with Spontaneous Seizures and Developmental Disruption of Genetic Etiology 249
   RADDY L. RAMOS AND JOSEPH J. LoTURCO

20. Mammalian Models of Genetic Epilepsy Characterized by Sensory-Evoked Seizures and Generalized Seizure Susceptibility 261
   PHILLIP C. JOBE AND RONALD A. BROWNING

21. Inherited Epilepsy in Mongolian Gerbils 273
   PAUL S. BUCKMASTER

D. ACQUIRED FOCAL MODELS

22. The Cortical Freeze Lesion Model 295
   HEIKO J. LÜHMANN

23. MAM and Other "Lesion" Models of Developmental Epilepsy 305
   GIORGIO BATTAGLIA AND STEFANIA BASSANINI

24. In Utero Irradiation as a Model of Cortical Dysplasia 315
   DEAN D. LIN AND STEVEN N. ROPER

25. Modeling Hypoxia-Induced Seizures and Hypoxic Encephalopathy in the Neonatal Period 323
   RUSSELL M. SANCHEZ AND FRANCES E. JENSEN

26. Complex Febrile Seizures—An Experimental Model in Immature Rodents 333
   CÉLINE M. DUBE AND TALLIE Z. BARAM

27. Repetitive Seizures in the Immature Brain 341
   QIAN ZHAO AND GREGORY L. HOLMES

28. The Kindling Phenomenon 351
   DAN C. MCINTYRE

29. Kindling Kittens and Cats 365
   MARGARET N. SHOUSE

30. Electrical Kindling in Developing Rats 371
   ARISTEA S. GALANOPoulos AND SOLOMON L. MOSHE

31. Chemical Kindling 379
   MARY E. GILBERT AND JEFFREY H. GOODMAN
32. Kindling, Spontaneous Seizures, and the Consequences of Epilepsy: More than a Model 395
THOMAS P. SUTULA AND JEFFREY OCKULY

33. Tetanus Toxin Model of Focal Epilepsy 407
JOHN G.R. JEFFERYS AND MATTHEW C. WALKER

34. Kainate-Induced Status Epilepticus: a Chronic Model of Acquired Epilepsy 415
F. EDWARD DUDEK, SUZANNE CLARK, PHILIP A. WILLIAMS, AND HEIDI L. GRABENSTATTER

35. The Pilocarpine Model of Seizures 433
ESPER A. CAVALHEIRO, MARIA G. NAFFAH-MAZZACORATI, LUIZ E. MELLO, AND JOÃO P. LEITE

36. Status Epilepticus: Electrical Stimulation Models 449
ANDREY M. MAZARATI, KERRY W. THOMPSON, LUCIE SUCHOMELOVA, RAMAN SANKAR, YUKIYOSHI SHIRASABA, JARI NISSINEN, ASLA PITKÄNEN, EDWARD BERTRAM, AND CLAUDE WASTERLAIREN

37. Posttraumatic Epilepsy Induced by Lateral Fluid-Percussion Brain Injury in Rats 465
ASLA PITKÄNEN, IRINA KHARATISHVILI, JARI NISSINEN, AND TRACY K. MCINTOSH

38. Chronic Partial Cortical Isolation 477
KEVIN D. GRABER AND DAVID A. PRINCE

39. Head Trauma: Hemorrhage-Iron Deposition 495
YUTO UEDA, WILLIAM J. TRIGGS, AND L. JAMES WILLMORE

40. Stroke 501
KEVIN M. KELLY

41. Models Available for Infection-Induced Seizures 521
JANET L. STRINGER

42. Brain Tumour and Epilepsy: A New Neurophysiologic and Neuropathologic Ex Vivo In Vitro Model 527
ALI CORIJ AND ERWIN-JOSEF SPECKMANN

43. An Animal Model of Rasmussen’s Encephalitis 535
JAMES O. MCNAMARA

E. MODELS USED FOR PHARMACOLOGICAL ASSESSMENT

44. Therapeutic Assays for the identification and Characterization of Antiepileptic and Antiepileptogenic Drugs 539
H. STEVE WHITE, MISTY SMITH-YOCKMAN, AJAY SRIVASTAVA, AND KAREN S. WILCOX

45. Animal Models of Drug-Refractory Epilepsy 551
WOLFGANG LÖSCHER

F. TECHNICAL APPROACHES FOR MODEL CHARACTERIZATION

46. Monitoring for Seizures in Rodents 569
EDWARD H. BERTRAM

47. Imaging Approaches in Small Animal Models 583
ASTRID NEHLIG AND ANDRE OBENAUSS

48. Behavioral Characterization of Seizures in Rats 601
JANA VELIŠKOVÁ

49. Behavioral and Cognitive Testing Procedures in Animal Models of Epilepsy 613
CARL E. STAFSTROM