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Abstract

The acute respiratory distress syndrome (ARDS) is a common and devastating syndrome of acute 

respiratory failure for which little effective pharmacotherapy exists. The authors describe some 

interventions that show promise as potential therapies for this condition, with particular reference 

to clinically relevant human models of ARDS. Aspirin, mesenchymal stromal (stem) cells, 

keratinocyte growth factor, IFN-β and oncostatin M inhibition are discussed.
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The acute respiratory distress syndrome (ARDS) is a condition characterized clinically by 

acute respiratory failure in critically ill patients. Since ARDS was first described in 1967 [1], 

definitions have varied, with consequent discrepancy in the literature surrounding this 

condition. The 1994 American European Consensus Conference criteria [2] were broadly 

accepted, albeit with limitations, but since 2013 the ‘Berlin definition’ [3], created by a 
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consensus panel of experts, has been in use. This defines ARDS as ‘an acute diffuse, 

inflammatory lung injury,’ with specific changes in description of oxygenation (mild, 

moderate or severe), timing (within 1 week), radiographic (chest radiograph or computed 

tomographic findings) and use of wedge pressure (abandoned). Many disease processes are 

associated with ARDS, the commonest being severe sepsis and pneumonia. There is a 

marked acute alveolar neutrophilic infiltrate, with the classic pathological finding being 

diffuse alveolar damage (DAD), although recent studies suggest a low sensitivity for DAD, 

especially in those with less severe ARDS [4,5]. Regardless of etiology, the hallmark of the 

disease is inflammation and injury at the alveolar epithelial and capillary endothelial 

junction, with neutrophil activation and cytokine release [6]. Neutrophils [7] and alveolar 

macrophages [8,9] are the key mediators of inflammation in ARDS, with emerging evidence 

that platelets and particularly neutrophil–platelet interaction is important [10]. The incidence 

of ARDS in the US is estimated at almost 200,000 cases per annum [11] with an 

unacceptably high mortality rate of ~ 30% [12], as well as substantial morbidity for 

survivors. Despite decades of research, however, there is no specific therapy for ARDS, and 

the few interventions that have been shown to reduce mortality in these patients have 

targeted ventilator-induced lung injury [13–16]. There is an urgent, unmet need for effective 

pharmacotherapy for ARDS.

Since the first report of ARDS almost 50 years ago [1], many pharmacological therapies 

have been assessed, but while some have shown promise in early investigations, to date 

none have been found to be effective in Phase III trials, including most recently, β2 agonist 

therapy [17,18] and statins [19]. This discrepancy may reflect the heterogeneity of this 

condition, but may also be due to the complexity underlying the pathogenesis of ARDS, 

with significant temporal overlap between inflammatory and resolution phases, hindering 

traditional attempts to categorize timing of interventions which target either excessive 

inflammation or impaired repair processes. A recent post-mortem study [20] indicated a 

rising incidence of inflammatory fibrotic change with time, with few patients demonstrating 

evidence of fibrosis within the first week, which may indicate that anti-inflammatory 

treatment might best be used later in ARDS, though obviously this subgroup of patients who 

succumbed to their illness may represent those with more severe disease. Also, the causative 

heterogeneity may be reflected in the existence of a number of discrete phenotypes of 

ARDS, which may differ in their manifestation of disease, as well as response to therapy. 

Analysis [21] of data from over 1000 patients with ARDS suggested the existence of a 

hyper-inflammatory sub-phenotype with exaggerated cytokine responses and more severe 

disease, and patients with this phenotype responded better to a ventilatory strategy using 

higher levels of positive end-expiratory pressure. Many drugs that have shown promise in 

animal or cellular models have not delivered positive results in clinical studies. Animal 

models are certainly a powerful research tool to facilitate study of complex pathways and 

give insight into mechanisms of illness, as well as giving some indication of the safety 

profile of a drug, but there are inherent problems associated with reproducing ARDS in 

animal models. These include difficulties reproducing key pathogenic abnormalities in 

animals, as well as controlling for age and comorbidity.

Clinically relevant human models of ARDS are increasingly being used to investigate new 

therapies in an effective and safe way, and give important insights into mechanisms of 
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inflammation and repair, as well as providing proof of concept data to inform subsequent 

clinical trials. The human ex vivo lung perfusion (EVLP) model is an effective platform to 

closely examine injury as well as responses to therapy without associated risk to patients 

[22]. This model utilizes whole human lungs, unsuitable for transplantation, which are 

perfused and inflated with continuous positive airway pressure or ventilated with standard or 

lung protective tidal volumes. This preparation allows the assessment of intact human lung 

tissue reaction to injury and repair, reproducing some of the complex milieu of the lung and 

enabling study of inflammation in a novel manner. Also, the use of the lipopolysaccharide 

(LPS) challenge in healthy volunteers to induce a subclinical alveolar inflammatory 

response has been shown to be a safe model of ARDS [23] and allows assessment of the 

early response to inflammation and injury in vivo.

A number of promising therapies are currently in investigation for ARDS, with varying 

mechanisms of action. A key feature of these interventions is that all of these do not simply 

target the excessive inflammation associated with ARDS.

Aspirin has been in use for many centuries as an analgesic, antipyretic and anti-

inflammatory drug, as well more recently as an inhibitor of platelet aggregation for 

secondary prevention in coronary artery disease. It is a potent inhibitor of platelet activation. 

As alveolar neutrophils and platelets interact to cause inflammatory damage in the alveolus, 

antiplatelet therapy has a potential benefit in dampening down this injurious interaction. To 

support this hypothesis, observational studies have demonstrated that critically ill patients 

previously taking aspirin therapy have a significantly decreased likelihood of developing 

ARDS de novo [24]. Animal models support the use of aspirin in ARDS [10], as aspirin 

treatment decreases platelet sequestration in the lung, decreases lung vascular permeability 

and edema, and increases survival. Ongoing studies are currently underway to investigate 

this therapy as both treatment [ARENA NCT01659307] and prevention [25] of ARDS.

Mesenchymal stromal (stem) cells (MSCs) are derived from a number of sources, including 

human placental tissue, umbilical cord, bone marrow or adipose tissue. These cells have a 

high capacity for self-renewal, as well as the potential to develop into many cellular 

phenotypes and are interesting targets as ARDS therapy to modulate inflammatory 

responses, as well as promote repair in the lung. Potential mechanisms through which MSC 

therapy improves lung function include both cell contact dependent and independent 

immunomodulatory functions, although paracrine effects likely predominate [26] for 

improved epithelial function and augmented alveolar fluid clearance in ARDS [27]. Studies 

investigating MSCs have shown improved markers of cell injury in animal models of ARDS 

[28], while lung injury induced by LPS or with live Escherichia coli in the human ex vivo 

lung perfusion model showed MSC treatment decreased inflammation and reduced bacterial 

growth in the lung [29]. Clinical grade allogeneic MSCs have recently been demonstrated to 

enhance alveolar fluid clearance, an indicator of function, in ex vivo perfused human lungs 

that have been rejected as unsuitable for transplantation [30], with effects mediated at least 

partly via keratinocyte growth factor (KGF). MSCs may in the future be a useful treatment 

to increase the viability of donor lungs using the EVLP model, as well as a treatment for 

ARDS.
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KGF is a fibroblast growth factor produced by mesenchymal cells and macrophages. In vivo 

it has an important role in lung inflammation and repair by increasing alveolar cellular 

proliferation [27]. KGF is a soluble mediator of MSCs and is already in use clinically as a 

therapy (palifermin: recombinant human KGF) as a treatment for radiation induced oral 

mucositis, where it has been shown to be safe and well tolerated [31]. In animal models of 

ARDS, pretreatment with KGF reduces injury and increases alveolar epithelial proliferation 

and repair [32,33]. A recent investigation of KGF in a healthy volunteer human model of 

ARDS showed that KGF treatment increased markers of type II alveolar epithelial cell 

proliferation and increased alveolar concentrations of reparative proteases and the anti-

inflammatory cytokine IL-1Ra [34]. A Phase II clinical trial of palifermin in ARDS has 

recently concluded [ISRCTN95690673] and results are awaited.

IFN-β is an established therapy for the inflammatory demyelinating neurological disorder, 

multiple sclerosis, though the precise mechanisms through which it achieves its anti-

inflammatory and immunomodulatory effects remain uncertain. Possible effects include 

alteration of T-cell activation and matrix metalloproteinase -9 stimulation [35], cytokine 

modulation [36] or prevention of abnormal leakage across the blood–brain barrier [37]. 

Ectonucleotidase (cluster of differentiation [CD]73) is a widely distributed enzyme on 

vascular endothelium, which produces the potent anti-inflammatory adenosine, and IFN’s 

anti-inflammatory effects are likely at least partially mediated via upregulation of CD73 

[38,39].

Because abnormal vascular leakage in the lung is a major pathological finding in ARDS, 

IFN-β has been investigated as an ARDS therapy. A recent Phase I clinical trial [40] 

demonstrated a 28-day mortality rate of 8% in a cohort of 26 patients with ARDS treated 

with IFN-β, while a control cohort of 59 patients with ARDS (comprising older, sicker 

patients) had an overall 28-day mortality rate of 32%. This was not a randomized controlled 

trial, but had a case–control design, which limits its immediate applicability [41]; but 

certainly raises interesting questions, and supports further investigation of IFN-β as a 

therapy for ARDS in Phase II clinical trials.

Oncostatin M (OSM) is a member of the IL-6 cytokine superfamily. It is expressed by 

neutrophils [42], dendritic cells [43] and macrophages [44,] and has been shown to 

synergize with other inflammatory cytokines in the lung to drive destructive proteases and 

inflammation [45]. OSM is expressed ex vivo by neutrophils from patients with ARDS, and 

is significantly elevated in bronchoalveolar lavage fluid from patients with ARDS [46]. It 

may have an important role in wound repair following inflammatory stimulus [47]. It is a 

potential therapeutic target to downregulate the inappropriate inflammation of ARDS as 

inhibition of its synergistic effects may decrease excessive inflammation, while leaving host 

responses to bacterial infection intact, and allowing protective and reparative processes to 

continue. OSM inhibition is being investigated in preclinical trials to determine its efficacy 

as a potential therapy for ARDS.

In summary, there are several new treatments being developed for ARDS, with encouraging 

early results. Use of clinically relevant translational models will improve our understanding 

of the complex environment of inflammation and repair in ARDS and aid the search for an 
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effective treatment. The model of inhaled LPS to induce a mild alveolar inflammatory 

response facilitates examination of early responses to injury in vivo, while the use of the 

human ex vivo lung perfusion model allows investigation of intact tissue response with 

maintained lung tissue architecture, and allows sampling from multiple sites, including 

bronchoalveolar lavage fluid, as well as histological examination. These promising methods 

to study the interface of injury and inflammation may facilitate a new paradigm of 

translational lung research.
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