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Abstract

We propose a new family of density functions that possess both flexibil-

ity and closed form expressions for moments and anti-derivatives, making

them particularly appealing for applications. We illustrate its usefulness

by applying our new family to obtain density forecasts of U.S. inflation.

Our methods generate forecasts that improve on standard methods based

on AR-ARCH models relying on normal or Student’s t-distributional as-

sumptions.
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1 Introduction

Integrals of particular functions play a central role in economics, econometrics,
and finance. For example, the notion of Value at Risk used to assess portfolio
risk exposure is defined in terms of an integral of the probability density func-
tion (pdf) of portfolio returns. As another example, the price of a European call
option can be expressed in terms of an integral of the cumulative distribution
function (cdf) of risk neutralized asset returns. In duration analysis unobserved
variables are integrated out to avoid spurious duration dependence. For reasons
of familiarity and theoretical convenience, the normal distribution (or distrib-
utions derived from the normal, such as the log-normal) plays a central role
in such analyses. Nevertheless, the normal distribution does not provide an
empirically plausible basis for describing asset or portfolio returns, nor is it an-
alytically tractable; neither the normal probability density nor the normal cdf
have closed form integrals.

This paper introduces a new family of probability density functions, the
hypernormal, that converge to the normal as limiting cases, but which are
both more plausible empirically because of their much greater flexibility and
more tractable analytically, possessing closed form expressions for their integrals
(cdf’s), and for integrals of their cdfs. In special cases, the inverse cdf (quantile
function) also has a closed form expression, especially convenient for analyzing
Value at Risk. We gain even greater flexibility by extending our family through
mixtures, which have the structure of a single hidden layer artificial neural net-
work. Because of their flexibility and tractability, our new family of densities
may be broadly useful for econometric analysis of economic and financial data.
Furthermore our proposed mixture of densities integrable in closed form may
be used as a substitute for quadrature methods in numerical integration, thus
exploiting the approximation capabilities of artificial neural networks.

The practice of forecasting the entire density of a variable instead of simply
focusing on its conditional mean is slowly becoming common practice in the
fields of macroeconomic and financial forecasting. See Tay and Wallis (2000)
for a survey. This is in part a response to the need to accommodate asymmet-
ric loss functions. In this case the commonly reported point forecast (and the
associated confidence interval) becomes unsatisfactory, since they rest on the
assumption of quadratic loss. The availability of density forecasts is especially
relevant in the context of policy analysis, which may benefit from a complete
assessment of the uncertainty associated with forecasts of the variables of in-
terest, as opposed to merely accompanying the point forecast with a confidence
interval. Recently Diebold, Gunther and Tay (1998) introduced a framework for
forecast evaluations which we apply to compare U.S. inflation forecasts based
on normal and our new hypernormal densities.

The outline of the paper is as follows. Section 2 provides a motivating exam-
ple and discusses the integrability results, Section 3 provides a brief discussion
of artificial neural networks and extends the integrability results using mixtures
and artificial neural nets. This has the significant further benefit of bringing
conditional densities into our framework. Section 4 presents our application to
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maximum-likelihood-based U.S. inflation forecasts. Section 5 concludes. Ap-
pendices contain certain mathematical details and proofs of all results.

2 A New Family of Density Functions

In a seminal paper, Johnson (1949) discusses a class of transformations such
that the transformed variables can be thought of as having a normal distribu-
tion. His focus is on testing and the simplifications brought about by normality
rather than the creation of systems of frequency curves. To illustrate, withZ a
standard normal, Johnson suggests a system of transformations such that

Z = γ + δf(Y ).

We easily see that for γ = 0, δ = 1, f = ln we obtain that the distribution of Y
is lognormal.

Here we consider certain transformations that enable us to obtain frequency
curves with desirable properties such as

1. closed form expressions for the cdf and moments

2. extra flexibility beyond the normal.

In fact Student’s t-distribution fulfills both of these requirements and is closely
related to the normal. As we show next, it is in fact a one parameter extension
of the standard normal.

2.1 A Simple Example: Deriving the t-distribution

Consider the Box-Cox (1964)-like transformation

Aλ(ω) =
ω

λ

1+λ − 1

λ
0 < λ < 1, (1)

which converges to ln(ω) as λ → 0 as can be seen immediately by applying
l’Hôpital’s rule. The associated inverse transformation is

A−1
λ

(x) = (1 + λx)
1+λ

λ

which converges to the exponential function as λ → 0. Taking the natural
logarithm yields

Tλ(x) = lnA−1
λ

(x) =
1 + λ

λ
ln (1 + λx) , (2)

an identity transformation as λ→ 0.
Next consider the standard normal density function,

φ(x) =
1√
2π

exp

{
−
x2

2

}
.
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Applying Tλ to x2 and neglecting the normalization term 1/
√
2π we obtain

ẗλ(x) = exp

{
−
1

2
Tλ(x

2)

}

= exp

{
−
1 + λ

2λ
ln
(
λx2 + 1

)}

=
(
1 + λx2

)
−

1+λ

2λ .

Now reparametrize by letting ν = 1/λ so that

t̃ν(x) =

(
1 +

x2

ν

)
−

ν+1

2

,

and define a normalizing constant as the integral of t̃ν over the real line1:

κν =

(∫
∞

−∞

(
1 +

x2

ν

)
−

ν+1

2

)

=

√
νπΓ

(
ν

2

)
Γ
(
ν+1

2

) .

We now obtain the density function for Student’s (1908) t by normalizing t̃:

tν(x) = κ
−1

ν
t̃ν(x)

=
Γ
(
ν+1

2

)
√
νπΓ

(
ν

2

)
(
1 +

x
2

ν

)
−

ν+1

2

.

2.2 Further Extensions of the Normal Distribution

Extending our derivation of the t-distribution, we now apply a more general Box
- Cox - type transformation, which we call the “power Box-Cox” transformation,
given by

Pλ,ζ(ω) =
ω

(
λ(1−λ)

1−λ1+ζ

)
− 1

λ
0 < λ < 1, ζ ≥ 0. (3)

This reduces to the standard Box - Cox transformation for ζ = 0 and gives
the transformation of the previous section with ζ = 1. The transformation is
motivated by the observation that

λ
∑ζ

i=0 λ
i
=

λ(1− λ)

1− λ1+ζ
.

1See the proof of theorem 2 with ζ = 1.
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Hence for integer ζ we can interpret the power Box - Cox as adding powers of
λ in the denominator of the exponent. We thus have

Pλ,0(ω) =
ω(

λ

λ0
)
− 1

λ

Pλ,1(ω) =
ω

(
λ

λ0+λ1

)
− 1

λ

Pλ,2(ω) =
ω

(
λ

λ0+λ1+λ2

)
− 1

λ

and so on. Also observe that for any givenλ and ω < 1 the closest approximation
to the natural log is given by the standard Box-Cox (ζ = 0) transformation.
However, for ω > 1 the approximation to the natural logarithm becomes better
for increasing ζ, as we see for λ = 1/3 and λ = 1/7 in figures 1 and 2.

Lemma 1 Let Pλ,ζ(ω) be as defined in (3). Then for all ζ ≥ 0

lim
λ→0

Pλ,ζ(ω) = ln(ω)

and
lim
λ→1

Pλ,ζ(ω) = ω − 1 .

By inverting the power Box-Cox and taking natural logarithms we obtain our
desired extension of (2):

Tλ,ζ(x) =
1− λ1+ζ

λ(1− λ)
ln (λx+ 1) λ ∈ (0, 1), ζ ≥ 0. (4)

Although the normal distribution plays a central role in economics, econo-
metrics, and finance, its cdf does not have a closed form expression. In fact,
for any function of the form f(x) = a exp

(
bx2n + c

)
for real a, b, c, and nat-

ural number n, no closed form expressions for the antiderivatives exist (Magid,
1994). Consider, however, the replacement of x2 in the exponential component
of the normal density by its log inverse power Box - Cox transform

Tλ,ζ(x
2) =

1− λ1+ζ

λ(1− λ)
ln
(
λx2 + 1

)
,

which yields

h̃λ,ζ(x) = exp

{
−
1

2
Tλ,ζ(x

2)

}

= exp

{
−

1− λ1+ζ

2λ(1− λ)
ln
(
λx2 + 1

)}

=
(
λx2 + 1

)
−

1−λ
1+ζ

2λ(1−λ) for λ ∈ (0, 1) .
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As we will show, this provides the basis for a family of densities having closed
form expressions for its antiderivatives. Clearly, h̃λ,ζ is a symmetric function of
x. As we saw in the preceeding section, for ζ = 1 we obtain the well-known t

distribution.
Our first result provides conditions on λ under which h̃λ,ζ is integrable, so

that with suitable normalization, h̃λ,ζ is a density.

Theorem 2 Let h̃λ,ζ be as defined above. Then for all ζ ≥ 0 and all 0 < λ < 1

κλ,ζ ≡

∫
∞

−∞

h̃λ,ζ(x)dx =
Γ
(

1−λ1+ζ

2λ(1−λ) −
1
2

)

Γ
(

1−λ1+ζ

2λ(1−λ)

)
√

π

λ
<∞.

We can now define the density function

hλ,ζ = κλ,ζ
−1

h̃λ,ζ . (5)

As noted previously hλ,ζ contains Student’s t-distribution. Moreover, hλ,ζ is a
Pearson distribution of Type VII (Kendall and Stuart, 1977), i.e.

df

dx
=

(x− a)f

b0 + b1x+ b2x2
,

with a = 0, b1 = 0, b0 > 0, and b2 > 0. For general properties of Pearson
distributions the reader is referred to Kendall and Stuart (1977), chapter 6. hλ,ζ
is also a special case of the generalized beta distribution proposed by McDonald
(1984).

Under further restrictions on λ, hλ,ζ has finite m− th moment:

Theorem 3 Let hλ,ζ be as in (5). Then for all m > 0:

∫
∞

−∞

|x|mhλ,ζ(x)dx <∞

for all 0 < λ < 1

1+m
, ζ ≥ 0.

Furthermore, for these values of λ, closed form expressions for the integer

moments are given by:

∫
∞

−∞

xmhλ,ζ(x)dx =




0 m odd

λ−
m

2

Γ

(
1−λ1+ζ

2λ(1−λ)−
m+1
2

)
Γ(m+1

2 )

Γ

(
1−λ1+ζ

2λ(1−λ)−
1
2

)√
π

m even.

Thus, hλ,ζ has finite first moment for λ < 1

2
, finite second moment for λ < 1

3
,

and so on.
As desired, hλ,ζ approaches the normal as a limiting case. In fact, the

convergence is uniform.

Theorem 4 Let hλ,ζ be as in (5). Then for each ζ ≥ 0 hλ,ζ converges to φ

uniformly as λ→ 0. Accordingly we define h0,ζ ≡ φ.
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Figure 3 presents a plot of the densities for ζ = 0 and a few values of λ
compared to the normal density and the t2 (= h1/2,1).

Now we consider the antiderivatives of hλ,ζ . For a scalar function f of x,

we write the first derivative as Df = df
dx . The antiderivative D−1f is such

that D(D−1f) = f . In forming the antiderivative, the “constant of integration”
is here always taken to be zero. In the multivariate case, we denote partial
derivatives as

Dαf =
∂|α|f

∂xα1
1
, ∂xα2

2
, · · · , ∂xαr

r

,

where α = (α1, α2, . . . , αr) is a multi-index, i.e. a vector of non-negative inte-
gers, and |α| =

∑r

i=1 |αi| is the magnitude of α. The corresponding antideriv-
ative D−αf is such that Dα (D−αf) = f . In what follows, we often use the
notation D−ei , which denotes the (first) antiderivative with respect to the ith

variable. Here ei is the unit vector with a 1 in the ith position and 0’s elsewhere.
As we are interested here only in derivatives with respect to x and not λ, we
shall understand D, D−1, Dα, D−α to refer solely to derivatives or antideriva-
tives with respect to x.

In stating our result for the antiderivative of hλ,ζ , we make use of the hy-
pergeometric function 2F1. This function is defined for complex a, b, c, and z as
the analytic continuation in z of the hypergeometric series

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑

k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

k!
. (6)

The series converges absolutely for |z| < 1, as a ratio test shows. In our ap-
plications, we are interested in the hypergeometric function for any real x. For

this, we make use of the transformation z = λx2

1+λx2
which yields |z| < 1 (the

derivation is given in Appendix A). Additional useful background can be found
in Bailey (1962) and Slater (1966). More recently Abadir (1999) has carefully
summarized several results about hypergeometric functions relevant for econo-
metricians and economists.

Theorem 5 Let hλ,ζ be as in (5). Then for all x ∈ R, ζ ≥ 0, and 0 < λ < 1:

D−1hλ,ζ(x) =
1

2
+

x

κλ,ζ
√
(1 + λx2)

·2F1
(
1

2
,
3

2
−

1− λ1+ζ

2λ (1− λ)
;
3

2
;

λx2

λx2 + 1

)
. (7)

To obtain a closed form solution one can reduce the hypergeometric series
to a finite polynomial by choosing the appropriate λ. For nonnegative integers
n such that

−n =
3

2
−

1− λ1+ζ

2λ(1− λ)

the infinite sum breaks off after n terms and therefore the expression in (7)
has closed form. Solving for λ taking the value of ζ as given yields the values
reported in table 1. For general ζ the choice of λn is given by the solution
of an algebraic equation of order ζ in λ, which does not necessarily possess
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Table 1: Expressions for λ conditional on ζ that yield closed form antideriva-
tives.

ζ = 0 λn = 1

2n+3
n = 0, 1, 2, . . .

ζ = 1 λn = 1

2n+2
n = 0, 1, 2, . . .

ζ = 2 λn = 1+ n−
√
2n+ n2 n = 0, 1, 2, . . .

solutions that allow a convenient expression for λ as a function of its coefficients.
Nevertheless, as can be seen from figure 4 the resulting values for λ are quite
similar for higher n. We focus particular attention on the ζ = 0 case for the
sake of convenience and simplicity2.

Since the resulting expression depends on the normalization factor κλ,ζ ,
which in turn is a function of λ, the following corollary provides a convenient
method to calculate κλ,0.

Corollary 6 For ζ = 0 and appropriate λ as in table 1, the normalization

factor κλ,ζ is given by

κλn =
n! 22n+1

(2n+ 1)!

√
2n+ 3 .

Note that no upper limit is imposed upon n; hence we can find arbitrarily
close approximations to the normal pdf, all having closed form integrals. Some
simple solutions with ζ = 0 are given in table 2.

Table 2: Cdfs for simple choices of λ.

λ κλ,0 D−1hλ,0

1/3 2
√
3 1/2 + x

2·
√
3+x2

1/5 4
3

√
5 1/2 + 15x+2x3

4(5+x2)
3

2

1/7 16
15

√
7 1/2 + 735x+140x3+8x5

16(7+x2)
5

2

Because of the central role played by the hypergeometric function in defin-
ing the properties of our family of analogs to the normal, we call the family
{hλ,ζ , 0 ≤ λ < 1, ζ ≥ 0} the “standard hypernormal” family. We say that hλ,ζ

is standard hypernormal with index λ, ζ.
The second antiderivative,D−2hλ,ζ , is also of interest. For example, suppose

a risk manager requires to know the expected value of returns given that the
portfolio value has fallen below the Value at Risk (VaR). If returns have the

2Recall that the t-distribution corresponds to ζ = 1; our choice ζ = 0 has fatter tails with

the same number of existing moments for given λ.
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density hλ,ζ , then this conditional expectation has the form∫ a

−∞
xhλ,ζ(x)dx∫ a

−∞
hλ,ζ(x)dx

,

where a is an appropriate constant depending on the VaR. Applying integration
by parts to the numerator, we obtain:∫ a

−∞

x · hλ,ζ(x)dx = a · D−1hλ,ζ(a)−

∫ a

−∞

D−1hλ,ζ(x)dx

= a ·D−1hλ,ζ(a)−D−2hλ,ζ(a) ,

where we use the fact that D−1hλ,ζ(−∞) = D−2hλ,ζ(−∞) = 0. The second
antiderivative is given by our next result.

Theorem 7 Let hλ,ζ be as in (5). Then for all x ∈ R, ζ ≥ 0 and 0 < λ < 1:

D−2hλ,ζ(x) =
x

2
+

√
(1 + λx2)

2λ
(

1−λ1+ζ

2λ(1−λ)
− 1

)
κλ,ζ

2F1

(
−1

2
,
3

2
−

1− λ1+ζ

2λ (1− λ)
;
1

2
;

λx2

λx2 + 1

)
.

These functions also have a closed form expression for all λ of the form provided

in table 1.

3 Mixture Distributions and Artificial Neural

Networks

Further flexibility can be achieved by considering mixtures of hypernormals, that
is, by taking a convex combination of densities of scaled and shifted standard
hypernormals. Just as occurs with mixtures of normals, hypernormal mixtures
can deliver skewed distributions, distributions with tail properties unachievable
by a single hypernormal or distributions with two or more modes. In fact,
under suitable conditions, such mixtures can approximate any distribution in
large classes of probability distribution functions. A potential advantage of
using the hypernormal instead of the normal to form a mixture is that, because
of the inherently greater flexibility of the hypernormal, one may require fewer
terms (mixing densities) in the convex combination to achieve a given accuracy
of approximation to whatever may be the true density of interest.

We establish our result for mixtures of hypernormals by exploiting available
results for artificial neural networks (ANNs). As we shall see next, this not only
delivers results directly, but also permits us to accommodate the approximation
of conditional distributions. Over the last two decades ANNs have emerged as
a prominent class of flexible functional forms for function approximation. A
leading case is the single hidden layer feedforward neural network, written as:

ψ (x, β, γ) =

q∑

j=1

βj · g
(
x̃
T γj
)
, (8)
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x̃= (1, x1, x2, . . . , xr), γ =
(
γT1 , γ

T
2 , . . . , γ

T
q

)T
, γj ∈ Rr+1 and β =

(
βT1 , . . . , β

T
q

)T
.

See Kuan and White (1994) for additional background. When, for some finite
non-negative integer �, g is �-finite, that is, g is continuously differentiable of
order � and has Lebesgue integrable �th derivative, then functions of the form
(8) are able to approximate large classes of functions (and their derivatives)
arbitrarily well, as shown by Hornik, Stinchcombe and White (1990) (HSW).
A common choice for g is that it be a given cdf; the logistic cdf is the leading
choice. We shall pay particular attention to the case in which g is a pdf, so
that its integral is a cdf. Imposing the constraint

∑q

j=1 βj = 1, βj ≥ 0 when g

is a density delivers the mixture density with weights βj . Such mixtures can
approximate arbitrary densities (e.g., White 1996, theorem 19.1). The form of
(8) delivers not only flexibility, but it also provides the foundation for analytic
tractability: the properties of the integral of ψ depend solely on the properties
of the integral of g.

Note that we view g as a univariate pdf, but that its argument is the linear
combination x̃T γj . For the moment suppose that r = 1, so x̃T γj = γj0+γj1 ·x1.
We therefore allow x1 to be scaled and shifted inside g so that ψ (x, β, γ) can be
viewed as a mixture of univariate pdf’s in the usual way. On the other hand, if
r > 1 we can view ψ (x, β, γ) as a conditional density for one of the elements of
x, say x1, given the rest: x2, . . . , xr. The use of the linear transformation x̃T γj
can be seen as permitting scaling and shifting as before, but with the shift now
incorporating conditioning effects of the form γj0 +

∑r

i=2 xiγji. Thus, we view
g and ψ as pdf’s for a particular random variable, though possibly conditional
on other random variables. Treatment of multivariate densities in a framework
analogous to that proposed here is possible but is beyond our present scope and
is accordingly deferred.

We now turn our attention to choosing g in a way that delivers flexible closed
form expressions for the integral of ψ. We do this by putting g = hλ,ζ . Our next
result shows that these mixtures can deliver arbitrarily accurate approximations
to a large class of densities under suitable conditions.

Theorem 8 Let f belong to the Sobolev space Sm
∞(χ) where χ is an open,

bounded subset of Rr. Elements of this space are functions with continuous
derivatives of order m on the domain χ which satisfy

||f ||m,∞,χ ≡ maxn≤msupx∈χ |D
nf(x)| <∞ (9)

for some integer m ≥ 0 (for further background see Gallant and White, 1992).
For integer � < 1/λ − 1, hλ,ζ is � - finite. Then for all m ≤ �, f can be
approximated as closely as desired in Sm∞(χ) equipped with metric (9) using a
single hidden layer feedforward network of the form

ψλ,ζ (x, θ) =

q∑

j=1

βj · hλ,ζ
(
x̃T γj

)
, (10)

where x̃ = (1, x), and q is sufficiently large.

9



Observe that hλ,ζ is always 0-finite by construction.

Corollary 9 Let Hλ,ζ = D−eihλ,ζ denote the antiderivative of hλ,ζ with respect
to the i-th variable, and let l ≤ u be real numbers. Then the integral of the neural
net (10) has the form

∫ u

l

ψλ,ζ(x, θ)dxi = Ψλ,ζ(x(i)(u); θ)−Ψλ,ζ(x(i)(l); θ),

where x(i)(a) is the vector obtained by replacing the ith element xi from the
vector x with a, and

Ψλ,ζ(x(i)(a); θ) =

q∑
j=1

βj · Hλ,ζ(aij(x(i)(a), γij)),

where

aij(x(i)(a), γij) = aγij +
r+1∑

k=1,k �=i

x̃kγkj .

Furthermore, for ζ = 0, Ψλ,ζ(x(i)(a); θ) has a closed form expression for all λ

of the form λn = 1
2n+3

, n = 0, 1, 2, . . ..

Note that the transformed integration boundaries are different for each hid-
den unit because they depend on γij .

The networks Ψλ,ζ of Corollary 9 have desirable approximation properties:

Theorem 10 Let f and hλ,ζ be as in Theorem 8, and letHλ,ζ be as in Corollary
9. Then for integer � < 1/λ, Hλ,ζ is �-finite and for all m ≤ �, f can be
approximated as closely as desired in Sm

∞
(χ) equipped with metric (9) using a

single hidden layer feedforward network of the form Ψλ,ζ(·) given in Corollary
9.

When f is a cdf, Ψλ,ζ can approximate it, and its derivative — the associated
pdf — is approximated by the derivative ψλ,ζ of Ψλ,ζ , due to the denseness in
Sobolev norm and the fact that Ψλ,ζ is always 1-finite by construction.

We also have analogs of Corollary 9 and Theorem 10 for the integral of Ψλ,ζ

Corollary 11 Let Ξi,λ,ζ = D−2eihλ,ζ denote the second antiderivative of hλ,ζ
with respect to the i-th variable. Let l ≤ u be real numbers. Then the integral

∫ u

l

Ψλ,ζ

(
x(i)(a); θ

)
da

10



has the form

∫ u

l

Ψλ,ζ

(
x(i)(a); θ

)
da = Λi,λ,ζ(x(i)(u); θ)− Λi,λ,ζ(x(i)(l); θ),

where Λi,λ,ζ(x(i)(b); θ) =

q∑
j=1

Ξi,λ,ζ(bij(x(i)(b); γij)

with bij(x(i)(b); γij) = bγij +

r+1∑
k=1,k �=i

x̃kγkj .

In addition, for ζ = 0, Λi,λ,ζ has a closed form expression for all λ of the form

λn = 1

2n+3
, n = 0, 1, 2, . . ..

A similar result for D−(ei+ej)hλ,ζ can be obtained, but as our focus here is

on the univariate case, we omit that result.

Corollary 12 Let f and hλ,ζ be as in Theorem 5, and let Ξi,λ,ζ be as in Corol-

lary 11. Then for integer � < 1/λ+1, Ξi,1λ,ζ is �-finite and for all m ≤ �, f can
be approximated as closely as desired in Sm

∞
(χ) equipped with metric (9) using

a single hidden layer feedforward network of the form Λi,λ,ζ given in Corollary
11.

When f is the antiderivative of a cdf, Λi,λ,ζ can approximate it. Its deriv-
atives (the cdf and pdf) can be approximated by the derivatives of Λi,λ,ζ due
to the denseness in Sobolev norm and the fact that the associated activation
function is always 2-finite. This property is useful for example in option pricing
contexts, as risk neutral densities can be well approximated by fitting networks
involving our Ξ’s to the option price - moneyness relation and then differentiat-
ing twice.

4 Application

The literature in the field of density forecasting and evaluation is still very
young, and far from agreeing on the methods and techniques to be used to first
produce the density forecasts (analytical or numerical) and then to evaluate their
performance. We apply a forecast evaluation technique introduced by Diebold
et al. (1998) to one-period-ahead density forecasts of inflation, generated using
a range of different model specifications.

In the attempt to more flexibly model the variables of interest, we make use
of our new family of probability density functions introduced in section 2.

We begin with a standard approach by modeling the unconditional distrib-
ution of inflation under a normal distribution assumption. Then we proceed to
considering more flexible models for the conditional density of inflation. Most
models used in the literature (AR-ARCH-type models) assume a conditionally
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normal distribution for the error process (or a Student’s t-distribution, as sug-
gested by Bollerslev (1987)). Since the aim here is to achieve greater flexibility,
we make use of models of the AR-ARCH class for the conditional mean and
variance, and consider the situation where the models’ disturbances are condi-
tionally hypernormal. The estimated models are used to produce sequences of
density forecasts, that are evaluated using the approach proposed by Diebold
et al. (1998). The performance of density forecasts with normal, Student’s t
and hypernormal distributional assumptions is then compared and contrasted,
in order to investigate whether the hypernormal distribution can provide any
improvement over the more common normal and Student’s t-distributions.

We work with scaled and shifted versions of the standard hypernormal. Let-
ting Z be the standard hypernormal, µ ∈ R, and σ > 0, define X = µ+ σZ. It
is straightforward to show that the density of X is given by

gλ,ζ;µ,σ(x) ≡ κ−1
λ,ζ,σ

(
λ

(
x− µ

σ

)2

+ 1

)
−

1−λ
1+ζ

2λ(1−λ)

for x ∈ R, (11)

where
κλ,ζ,σ ≡ σκλ,ζ <∞.

Further, let Y = a+ bX, with a ∈ R, b �= 0. Then Y has density gλ,ζ;a+bµ,|b|σ ,
and we write Y ∼ HN(a+ bµ, |b|σ;λ, ζ).

When Y ∼ HN(µ, σ;λ, ζ), the parameters control the location, spread and
tail behavior of the distribution. Whereas µ uniquely controls the center, all
parameters interact in regulating spread, tail behavior, and higher moments
of the distribution. In some special cases, however, it is easier to interpret
the meaning of the individual parameters. For example, for µ = 0, σ = 1,
ζ = 1, the density gλ,ζ,µ,σ is the familiar Student’s t-density with 1/λ degrees of
freedom. For this reason, in the following we will simply denote the hypernormal
distribution corresponding to the parameterizationHN(0, 1;λ, 1) by t(ν), where
ν = 1/λ.

The forecast evaluation method used in the paper utilizes the c.d.f. of the
variable of interest. The problem with some of the common distributions used
in econometric modeling is the lack of closed form expressions for the c.d.f., as in
the case of the normal. The c.d.f. for the hypernormal, in contrast, is computed
easily.

4.1 Generating density forecasts

The focus of our application is to use the hypernormal distribution to gener-
ate one-period-ahead density forecasts of inflation. Density forecasts can be
obtained by a range of techniques, including parametric and non-parametric
methods. The density forecasts analyzed here are obtained from conditional
parametric models. We consider several model specifications for inflation, as-
suming either conditionally normal, Student’s t or hypernormal disturbances.
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In the following, Yt will denote the variable inflation at time t and It−1 the
information set available at time t−1. The models considered are the following.

Model 1 is a naive model that assumes the conditional distribution of infla-
tion to be normal with mean µ and variance σ2.

Model 1 : Yt|It−1 ∼ N(µ, σ2).
The inclusion of this simple model as a density forecast is mainly for illus-

trative purposes. As this model is most likely misspecified, we will be able to
see whether and how the evaluation technique used in the paper reveals this
misspecification.

The next set of models allows for conditional dynamics in the mean and the
variance of the process. In line with Engle (1983), we focus on univariate models
of the class AR(p)-ARCH(q).

Models 2, 3 and 4 are AR(p)-ARCH(q) with, respectively, normal, Student’s
t- and hypernormal disturbances:

Model 2 : Yt = φ0 + φ1Yt−1 + ...+ φpYt−p + ut,

ut =
√
htvt (12)

ht = k + α1u
2

t−1 + ...+ αqu
2

t−q (13)

and
vt | It−1 ∼ N(0, 1). (14)

Model 3 : Same as Model 2 except

vt | It−1 ∼ t(ν). (15)

Model 4 : Same as Model 2 except

vt | It−1 ∼ HN(0, 1;λ, 0). (16)

4.2 Estimation and Evaluation

A sample of forecast densities of inflation from the four models described in
the previous section is generated using a recursive sampling scheme, as, e.g., in
Clements and Smith (2000), to allow for the possibility of time-varying densities.
The available sample is divided into two parts, 1959:1-1981:3 and 1981:4-1997:10
with the first part used for estimation and the second part for out-of-sample eval-
uation. Each model’s parameters are initially estimated using the data in the
first sample, and the model is used to generate a one-step-ahead density forecast.
The sample is then increased by adding the following observation, the model’s
parameters are re-estimated and the second density forecast is produced. Con-
tinuing in this fashion until all observations from the second part of the sample
are utilized results in a sequence of 200 density forecasts for each model of
inflation. Notice that we do not re-specify the model at each iteration, but
assume instead that the specification selected for the first estimation remains
constant over time. For models of the AR(p)-ARCH(q) class the Schwartz BIC
information criterion is used to choose lag lengths for the conditional mean and
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conditional variance equations and the parameters are estimated by maximum
likelihood. For models assuming normal residuals, the density forecast of Yt is
normal with parameters depending on the chosen specification for the condi-
tional mean and the conditional variance. The density forecast of Yt for models
that assume Student’s t- and hypernormal disturbances will have parameters ν
and λ that vary with time.

In line with Clements and Smith (2000) and Diebold et al. (1998), we ignore
parameter estimation uncertainty and do not perform diagnostic tests on the es-
timated models when constructing our tests. This assumption is not uncommon
in the forecast evaluation literature, where the forecasts are considered to be
the primitives. In essence, we are sequentially conditioning on the information
generating the parameters (and forecasts).

To evaluate the sample of density forecasts, we choose the method proposed
by Diebold et al. (1998), which is based on the idea that a density forecast
can be considered optimal if the model for the density is correctly specified.
This approach allows one to evaluate forecasts without the need to specify a
loss function, and in this sense it represents an improvement over most of the
standard techniques for evaluating point forecasts, which typically assume a
quadratic loss function.

The method consists of considering the sequence of probability integral trans-
forms of inflation with respect to the density forecasts, that is

zt =

∫ yt

−∞

pt(u)du, t = 1, ..., T (17)

where yt is the realization of inflation at time t and pt(yt) the estimated density
forecast.

Diebold et al. (1998) prove the following Proposition (adapted to fit our
notation):

Proposition 13 Let {yt}
T

t=1 be the sequence of realizations of a process with

true conditional densities {ft(yt|It−1)}
T

t=1
. If a sequence of density forecasts

{pt(yt)}
T

t=1
coincides with {ft(yt|It−1)}

T

t=1
, then under the usual condition of a

nonzero Jacobian with continuous partial derivatives, the sequence of probability
integral transforms of {yt}

T

t=1
with respect to {pt(yt)}

T

t=1
is i.i.d. U(0,1). That

is,
{zt}

T

t=1
∼ i.i.d. U(0, 1).

In other words, if the sequence of density forecasts is correctly specified, the
corresponding sequence of zt’s is i.i.d. U(0, 1). This result suggests evaluating

the density forecasts {pt(yt)}
T

t=1
by testing the hypothesis of i.i.d. U(0, 1) on

the sequence {zt}
T

t=1
.

As Diebold et al. (1998) point out, the fact that the i.i.d. U(0, 1) hypothesis
on the zt’s is a joint hypothesis represents a drawback, since available tests such
as the Kolmogorov-Smirnov cannot tell if rejection is due to violation of the
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uniform distributional assumption or of the i.i.d. assumption. We therefore
follow the approach of the authors and consider a number of tests, supporting
the Kolmogorov-Smirnov test with more informal, graphical tests of the i.i.d.
U(0, 1) hypothesis.

Here, the Kolmogorov-Smirnov test measures the distance (maximum ab-
solute difference) between the empirical c.d.f. of the sequence of zt’s and the
theoretical c.d.f. of a uniform random variable. A non-trivial problem with the
test is that it rests on the assumption of independence in the data and little
is known about the impact of dependence on the behavior of the test statistic.
Because of this, the outcome of the test could be unreliable if independence is
rejected.

We test the hypothesis of i.i.d. behavior of the sequence {zt}
T

t=1
using

Breusch-Godfrey LM tests for serial correlation. Since there may be dependence
in higher moments, the tests are performed on the series (zt− z)i, i = 1, ..., 4, to
detect misspecifications in the conditional mean, variance, skewness and kurto-
sis.

To assess uniformity, Diebold et al. (1998) suggest considering an estimate
of the p.d.f. for the zt’s, like the histogram plot of the z’s, and evaluate its
distance from the theoretical p.d.f. of a U(0, 1). We also consider the empirical
c.d.f., and compare it to the c.d.f. of a U (0, 1) , as in Diebold, Tay and Wallis
(1999). The estimates of the p.d.f. and of the c.d.f. are accompanied by
95% confidence intervals. For the histogram plot, the derivation of confidence
intervals is made possible by the fact that under the hypothesis of i.i.d. U(0, 1)
the number of observations that fall into a given bin (against all other bins
combined) is distributed as a Binomial(T, 1

N
), where T is the sample size and

N the number of bins. For the c.d.f. the bounds are the critical values for the
Kolmogorov-Smirnov test for the given sample size.

4.3 Data

As in Stock and Watson (1999) we use monthly U.S. Consumer Price Index
(CPI) data from 1959:1 to 1997:10 from the DRI Basic Database (formerly
known as CITIBASE). Inflation is calculated as the log-difference of CPI over
the sample period, multiplied by a factor of 100. Figure 5 shows a time-series
plot of inflation and figure 6 the histogram and summary statistics.

From the histogram we can see that the empirical distribution is skewed to
the right, due to the rare occurrence of negative inflation. The Jarque-Bera
test of normality leads to rejection of the null of normality. In order to test
for non-stationarity in the data, we conduct an Augmented Dickey-Fuller Unit
Root test. The ADF test statistic with 6 lags of the change in the dependent
variable leads to rejection of the unit root hypothesis at the 5% level.

4.4 Results

In this section we evaluate density forecasts based on Models 1-4 described in
section 4.1. We plot ν̂ and λ̂ for the out-of-sample period in figure 7. For ease of
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Table 3: Kolmogorov-Smirnov test of H0 : {zt} ∼ i.i.d. U(0, 1)

Model Test Statistic Critical value
M1: N(µ, σ2) 0.3067∗ 0.1027
M2: AR(12)− ARCH(1)− nor 0.1068∗ 0.1027
M3: AR(12)− ARCH(1)− t 0.1103∗ 0.1027
M4: AR(12)− ARCH(1)− hyp 0.0754 0.1027

Values of the test statistic and the critical value for the Kolmogorov-Smirnov test of

the hypothesis of i.i.d. U(0, 1) of the z′s from each model. A ‘∗’ indicates rejection

of the null hypothesis at a 5% confidence level.

Table 4: p-values of LM test of no serial correlation in (zt − z)i, i = 1, ..., 4

Series
Model (zt − z) (zt − z)2 (zt − z)3 (zt − z)4

M1: N(µ, σ2) 0.00 0.00 0.00 0.00
M2: AR(12)− ARCH(1)− nor 0.00 0.00 0.00 0.00
M3: AR(12)− ARCH(1)− t 0.01 0.04 0.16 0.29
M4: AR(12)− ARCH(1)− hyp 0.16 0.10 0.14 0.18

p-values for the Godfrey-Breusch LM test of no serial correlation in the first four powers

of (zt − z̄). The null hypothesis is that there is no serial correlation in the relative

series up to lag p = 10. The test statistic is computed as number of observations

times the (uncentered) R2 from a regression of the series on p of its lags. The LM test

statistic is asymptotically distributed as a χ2(p).

presentation, the estimation results for the individual forecasts are not discussed
further. Subsequently, we focus on the behavior of the sequences of probability
integral transforms obtained from the different models.

For each model of inflation, we test the null hypothesis of i.i.d. U(0, 1) for the
sequence of probability integral transforms {zt}

200

t=1
of the realizations of infla-

tion with respect to the density forecasts generated by the model. The first test
considered is a Kolmogorov-Smirnov test of the joint hypothesis of i.i.d. U(0, 1),
followed by a test for i.i.d. behavior, in the form of the Breusch-Godfrey LM
test for serial correlation up to 10 lags in the series (zt − z)i, i = 1, ..., 4. The
correlograms of the various powers are also presented for visual inspection, as
an addition to the formal test of i.i.d. Finally, to determine whether the zt’s are
uniform, we plot their empirical p.d.f. and empirical c.d.f. against the theoret-
ical p.d.f. and c.d.f. of a U(0, 1). The results for the Kolmogorov-Smirnov test
and for the Breusch-Godfrey LM tests for all models are respectively reported
in table 3 and table 4. Figures 8—11 plot the sample autocorrelograms of the
zt’s. The empirical p.d.f. and c.d.f. are shown in figures 12 and 13.
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4.4.1 Model 1

For the sequence of zt’s derived from the naive unconditionally normal model,
the Kolmogorov-Smirnov test rejects the hypothesis of i.i.d. U(0, 1) for the zt’s,
with a value of the test statistic of 0.3067, which is greater than the 5% critical
value of 0.1027.

The sequence of zt’s is affected by serial correlation in all powers of (zt− z),
as revealed by the zero p-values for the LM test of no serial correlation in
table 4. The same conclusion clearly emerges from the analysis of the sample
autocorrelogram of all four powers of (zt − z), in figures 8—11. The presence of
serial correlation in all powers of the z series suggests that the specified model
fails to capture dynamics in the mean and the variance of inflation, as well as
failing to correctly model higher moments. Uniformity is also rejected by the
graphical analysis of the p.d.f. and c.d.f. of the zt’s, in figures 8 and 9. One can
observe that many of the bin heights fall outside the confidence interval, with
particularly high peaks between the 0.2-0.4 bins, compensated by too low bin
heights in the last four bins. The empirical c.d.f. also reveals a strong deviation
from uniformity, as the curve is outside the confidence interval in the second
half of the domain. This means that too many observations fall into the first
half of the forecast distributions and too few in the second half, relative to what
we would observe if the data were really i.i.d. normal.

Overall, one can see how the evaluation technique allows the identification
of some problems associated with the specified density forecast, also suggesting
which features of the model should be modified.

4.4.2 Model 2

In all remaining three models, the conditional mean and variance are modeled
as an AR(12)−ARCH(1). Model 2 assumes the disturbances to be normal. We
will thus denote Model 2 as AR(12) − ARCH(1) − nor. Using the recursively
estimated density forecasts from Model 2, we generate a sequence of zt’s, for
which we perform the battery of tests described above.

Tables 3 and 4 reveal that the Kolmogorov-Smirnov test leads to rejection
of the hypothesis of i.i.d. U(0, 1) for the series of zt’s and that the LM tests find
serial correlation in all powers of (zt − z). The same conclusion is reached by
examining the autocorrelograms of all four powers of (zt − z), in figures 8—11.
For all powers, the correlograms are significantly different from the correlogram
of an i.i.d. series. The histogram of the z’s (figure 12) is closer to uniform
than the one for Model 1, but some bins still fall outside the 95% confidence
interval. Similarly, the empirical c.d.f. hits the boundaries of the confidence
interval, seemingly falling outside (although only marginally) at some point in
the second part of the interval, as can be observed in figure 13.

Overall, Model 2 fails on all counts, poorly capturing the dynamics of infla-
tion and assuming a functional form which appears to be misspecified.
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4.4.3 Model 3

The failure of the normal distribution to adequately describe economic variables
is a well-established result, a fact that makes the failure of Model 2 unsurpris-
ing. In many cases, and particularly for financial data, the Student’s t has been
considered a viable alternative, given its ability to capture more complex tail be-
havior than the normal. We thus proceed to evaluate the forecasts produced by
an AR(12)−ARCH(1) model with Student’s t-disturbances, which we indicate
as AR(12)− ARCH(1)− t.

Table 3 shows that the Kolmogorov-Smirnov test rejects the null of i.i.d.
U(0, 1) of the z’s derived from the model, at the 5% confidence level. The null
hypothesis of serial independence in the series (zt−z) and (zt−z)

2 is also rejected
at the 5% confidence level by the LM test, whose p-values are reported in table
4. However, serial correlation is not found in the series (zt−z)3 and (zt−z)4, as
revealed by p-values for the LM test of magnitude, respectively, 0.16 and 0.29.
The autocorrelograms of all four powers of (zt− z), in figures 8—11 also seem to
indicate that the probability integral transforms of density forecasts from Model
3 are ‘closer’ to white noise, as suggested by sample autocorrelations which are
at best marginally significant. However, the analysis of the histogram and of
the empirical c.d.f. (figures 12 and 13) seems to suggest that the assumption of
Student’s t-disturbances does not induce significant improvements relative to the
assumption of normality. The appearance of the p.d.f. and c.d.f. plots for Model
3 is very similar to those for Model 2: some of the bins in the histogram are
outside the 95% confidence interval, and the empirical c.d.f. hits the boundaries
of the confidence interval around the 45 degree line, marginally falling outside
at some points.

Overall, Model 3 seems to improve on the performance of Model 2 only
marginally, by eliminating or reducing the serial correlation in the powers of
(zt− z). The Student’s t-distributional assumption, however, appears overall to
be inadequate.

4.4.4 Model 4

The final set of density forecasts is derived by assuming inflation to be described
by an AR(12)−ARCH(1) model with hypernormal disturbances having ζ = 0
(denoted as AR(12)− ARCH(1)− hyp).

The Kolmogorov-Smirnov test fails to reject the null hypothesis of i.i.d.
U(0, 1) for the sequence of probability integral transforms derived from Model
4, at the 5% confidence level. Further, the LM test in table 4 fails to reject
the null hypothesis of no serial correlation for all series (zt − z)i, i = 1, ...,4
at typical confidence levels. The autocorrelograms in figures 8—11 also seem
to confirm the conclusion that the hypothesis of i.i.d. behavior of the series
(zt − z) can be reasonably accepted. The U(0, 1) behavior for the z’s is also
confirmed by an analysis of the histogram plot in figure 12, which displays all
bins falling within the 95% confidence bounds. The empirical c.d.f. in figure
13 is also clearly within the confidence interval, making the probability integral
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transforms of the density forecasts generated by Model 4 pass all tests of the
i.i.d. U(0, 1) hypothesis.

In conclusion, density forecasts obtained from anAR(12)−ARCH(1) model
with hypernormal disturbances having ζ = 0 appear to provide the best ap-
proximation for the true density of inflation over the sample considered in the
paper. The use of the hypernormal distributional assumption also constitutes
an improvement over the more standard assumptions of normality (for which
forecasts fail all evaluation tests) or Student’s t-distribution (whose forecasting
performance is only marginally superior to that assuming normality).

5 Conclusion

We propose a new family of density functions based upon the logarithm of
the inverse power Box - Cox transform and the flexibility of mixture distrib-
utions. This yields densities capable of arbitrarily accurate approximation to
large classes of functions whose antiderivatives have closed form expressions.

The closed form integrability property can also be used to substitute for
numerical integration techniques like quadrature methods. Especially in higher
dimensions our method may hold an advantage over the polynomials used with
quadrature methods. The drawback of this approach, however, is that there is
an underlying nonlinear numerical optimization problem that has to be solved
to obtain the coefficients of the neural net approximation to the function that
is to be integrated.

To illustrate the usefulness of the new class of densities we obtained paramet-
ric density forecasts of inflation using a range of different model specifications.
The common cases of normal and Student’s t-distributions were compared to
the hypernormal distribution with ζ = 0. We used a recursive sampling scheme
to produce sequences of density forecasts from our models, and evaluated the
forecasts using the techniques proposed by Diebold et al. (1998).

Considering models of the AR(p)-ARCH(q) class, we found that the ζ = 0
hypernormal assumption for inflation greatly improved density forecast perfor-
mance, giving a sequence of z’s that passed all of our diagnostic tests, whereas
the equivalent exercise on models assuming normality and Student’st-distributions
failed on all or most counts. This suggests that the hypernormal could become
a useful tool in econometric modeling, given its convenience, generality, and
flexibility.

19



10
−5

10
−4

10
−3

10
−2

10
−1

10
0

−7

−6

−5

−4

−3

−2

−1

0

ω

10
0

10
1

10
2

0

2

4

6

8

10

ω

Natural Log     
Standard Box−Cox
ζ = 1       
ζ = 2       

Figure 1: The Power Box-Cox transformation for λ = 1/3 and increasing values
of ζ .
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Figure 5: U.S. Inflation, 1959/1 - 1997/10.
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Figure 6: Histogram and descriptive statistics, U.S. Inflation, 1959/1 - 1997/10.
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Figure 8: Sample autocorrelogram of (zt − z̄) from the density forecasts of
the four models considered. Clockwise, the models are: M1: N(µ, σ2), M2:
AR(12)-ARCH(1)-normal, M3: AR(12)-ARCH(1)-t, M4: AR(12)-ARCH(1)-
hypernormal, ζ = 0.
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Figure 9: Sample autocorrelogram of (zt − z̄)2 from the density forecasts of
the four models considered. Clockwise, the models are: M1: N(µ, σ2), M2:
AR(12)-ARCH(1)-normal, M3: AR(12)-ARCH(1)-t, M4: AR(12)-ARCH(1)-
hypernormal, ζ = 0.

28



Figure 10: Sample autocorrelogram of (zt − z̄)3 from the density forecasts of
the four models considered. Clockwise, the models are: M1: N(µ, σ2), M2:
AR(12)-ARCH(1)-normal, M3: AR(12)-ARCH(1)-t, M4: AR(12)-ARCH(1)-
hypernormal, ζ = 0.
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Figure 11: Sample autocorrelogram of (zt − z̄)4 from the density forecasts of
the four models considered. Clockwise, the models are: M1: N(µ, σ2), M2:
AR(12)-ARCH(1)-normal, M3: AR(12)-ARCH(1)-t, M4: AR(12)-ARCH(1)-
hypernormal, ζ = 0.
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Figure 12: Histograms of the zt’s constructed for the density forecasts of
the four models considered. Clockwise, the models are: M1: N(µ, σ2), M2:
AR(12)-ARCH(1)-normal, M3: AR(12)-ARCH(1)-t, M4: AR(12)-ARCH(1)-
hypernormal, ζ = 0. The dashed lines indicate 95% confidence intervals com-
puted under the hypothesis that zt ∼ i.i.d. U(0, 1). See text for details.
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Figure 13: Empirical cdf of the zt’s constructed for the density forecasts of
the four models considered. Clockwise, the models are: M1: N(µ, σ2), M2:
AR(12)-ARCH(1)-normal, M3: AR(12)-ARCH(1)-t, M4: AR(12)-ARCH(1)-
hypernormal, ζ = 0. The dashed lines indicate 95% confidence intervals are
derived using the critical values from the Kolmogorov-Smirnov test for the given
sample size.

32



Appendix A The Integral Representation of the

2F1 Function

In this appendix we show how to obtain the transformation of equation (7). We
begin with Euler’s transformation:

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− b)

∫
1

0

tb−1(1− t)c−b−1(1− tz)−adt.

Now do a change of variable:

x = 1− t

−dx = dt

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)
(−1)

∫ 0

1

(1− x)b−1xc−b−1(1− (1− x)z)−adx

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1− x)b−1xc−b−1(1− z + xz)−adx

=
Γ(c)

Γ(c− b)Γ(b)
(1− z)−a

∫ 1

0

xc−b−1(1− x)b−1(1 + x
z

z − 1
)−adx

= (1− z)−a
·2 F1

(
a, c− b, c,

z

z − 1

)
.

Appendix B Proofs

Proof of Lemma 1.

lim
λ→0

Pλ,ζ(ω) = lim
λ→0

ω

(
λ(1−λ)

1−λ1+ζ

)
− 1

λ
.

Apply L’Hopital’s rule to obtain

lim
λ→0

ω

(
λ(1−λ)

1−λ1+ζ

)
− 1

λ
= lim

λ→0
ln(ω)

1− 2λ+ (2 + ζ)λζ+1 − (1 + ζ)λζ+2

(1− λζ+1)
2

ω

(
λ(1−λ)

1−λ1+ζ

)

= ln(ω).

Proof of Theorem 2.
We consider the general case

f(t) = (1 + λt2)−b .

We exploit the symmetry property of f and note that

Mm =

∫
∞

−∞

|t|
m
f(t)dt = 2

∫
∞

0

tmf(t)dt .
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Now substitute u = 1/(1 + λt2) and put b = 1−λ1+ζ

2λ(1−λ) . Then we obtain

t = λ−1/2(1− u)1/2u−1/2

dt = −
1

2
λ−1/2(1− u)−1/2u−3/2du

Mm = λ−
m+1
2

∫ 1

0

ub−
m+3
2 (1− u)

m−1
2 du,

a complete beta — integral, the solution of which is given by

Mm = λ−
m+1
2

Γ
(
b− m+1

2

)
Γ
(
m+1
2

)
Γ(b)

.

For m = 0 this reduces to

M0 =
Γ
(
b− 1

2

)
Γ(b)

√
π

λ
, b >

1

2
.

It remains to be shown that b > 1
2 . For this, the following are equivalent:

1− λ1+ζ

2λ (1− λ)
>

1

2

1− λ1+ζ > λ(1− λ), λ �= 1.

We know that λ < 1 so that from the set of all ζ ≥ 0 the left hand side is
smallest for ζ = 0. Setting ζ = 0 we obtain

1− λ > λ(1− λ),

which clearly holds for 0 < λ < 1.

Proof of Theorem 3.
Use the proof of Theorem 2 to obtain:

Mm = λ−
m+1
2

Γ
(
b− m+1

2

)
Γ
(
m+1
2

)
Γ(b)

.

Necessary and sufficient for the existence ofMm is that b > m+1
2

. It is equivalent
that

1− λ1+ζ

2λ (1− λ)
>

m+ 1

2

1− λ1+ζ > λ(1− λ)(m+ 1), λ �= 1.

As for theorem 2 we note that the left hand side attains its smallest possible
value for ζ = 0 and we obtain:

1− λ > λ(1− λ)(m+ 1)

λ <
1

m+ 1
.
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Since λ = 1
2n+3

, a choice of n > m−2
2

always suffices.

Proof of Theorem 4.
First we establish that hλ,ζ(x) converges to φ pointwise. We have

lim
λ→0

h(λ, ζ) = lim
λ→0

1
√
2π

(
λx2 + 1

)− 1−λ
1+ζ

2λ(1−λ)

=
1
√
2π

lim
λ→0

1

(λx2 + 1)
1−λ1+ζ

2λ(1−λ)

=
1
√
2π

exp

{
lim
λ→0

− 1− λ1+ζ

2λ (1− λ)
ln
(
λx2 + 1

)}

=
1√
2π

exp

{
lim
λ→0

−x2
(λx2 + 1)

1

(2− 4λ)

}
by L’Hôpital’s rule

=
1√
2π

exp

{
−x2

2

}
.

Uniform convergence follows from pointwise convergence provided that
supx∈� |hλn,ζ(x)− φ(x)| → 0 for λn → 0 as n→∞ (e.g. Rudin (1964, theorem
7.9)). Since supx∈� |hλn,ζ(x)− φ(x)| = |hλn,ζ(0)− φ(0)| the uniform conver-
gence follows.

Proof of Theorem 5.
To establish our result, we take λ > 0 so that

κλD
−1g (x, λ) = D−1

(
λx2 + 1

)
−

1

2λ .

Again consider the general case

f(t) = (1 + λt2)−b.

We have from Theorem 2 that

κλ

2
=

∫ 0

−∞

(1 + λt2)−bdt ,

so that for x < 0 we can write

F (x) =
κλ

2
−

∫
∞

0

(1 + λt2)−bdt ,

and for x > 0 we can write

F (x) =
κλ

2
+

∫ x

0

(1 + λt2)−bdt .

To obtain the integral, substitute as in Theorem 2 to obtain

∫ x

0

(1 + λt2)−bdt = −
1

2
√
λ

∫ 1/(1+λx2)

1

ub−3/2(1− u)−1/2du .
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Now substitute v = 1− u to obtain

∫ x

0

(1 + λt2)−bdt =
1

2
√
λ

∫ λx
2

1+λx2

0

(1− v)b−3/2v−1/2dv .

This has the form of an incomplete beta integral which can be expressed as a
hypergeometric function (see Erdelyi, Magnus, Oberhettinger, and Tricomi, eds
(1953), section 2.5.3) and we obtain

∫ x

0

(1 + λt2)−bdt =
1
√
λ

(
λx2

1 + λx2

)1/2

·2 F1

(
1

2
,
3

2
− b;

3

2
;

λx2

1 + λx2

)
.

We can now write F (x) as

F (x) =
κλ

2
+ sign(x)

1
√
λ

(
λx2

1 + λx2

)1/2

·2 F1

(
1

2
,
3

2
− b;

3

2
;

λx2

1 + λx2

)

=
κλ

2
+

x√
(1 + λx2)

· 2F1

(
1

2
,
3

2
−

1− λ1+ζ

2λ (1− λ)
;
3

2
;

λx2

λx2 + 1

)
.

Normalizing by κλ now gives the desired result.

Proof of Corollary 6.
Consider the normalizing constant κλ. For λ = 1

2n+3 we can write

κλ =
Γ
(
1−λ
2λ

)
Γ
(

1
2λ

)
√

π

λ

=
Γ(n+ 1)

Γ
(
n+ 3

2

)
√

π

λ
.

Applying Legendre’s duplication formula (Whittaker and Watson 1962, Corol-
lary to 12.15)

22z−1Γ(z)Γ(z +
1

2
) = Γ(2z)

√
π,

the above equation further simplifies to

κλ =
Γ (n+ 1) 22n+1

Γ (2n+ 2)
√
π

√
π

λ

= 22n+1 n!

(2n+ 1)!

√
2n+ 3

= 2
1−2λ

λ

(
1−3λ
2λ

)
!(

1−2λ
λ

)
!
√
λ

.

36



Proof of Theorem 7.
Multiplying with κλ,ζ and applying Euler’s transformation (Snow (1952), equa-
tion II(2)) yields:

κλ,ζD
−1
hλ,ζ(x) =

κλ,ζ

2
+ x · 2F1

(
1

2
,
1− λ1+ζ

2λ (1− λ)
;
3

2
;−λx2

)
.

Direct integration gives

κλ,ζD
−2
hλ,ζ(x) =

xκλ,ζ

2
−

1

2λ
(

1−λ1+ζ

2λ(1−λ)
− 1

)2F1

(
−1

2
,
1− λ1+ζ

2λ (1− λ)
− 1;

1

2
;−λx2

)
,

and reapplying Euler’s transformation gives

D−2hλ,ζ(x) =
x

2
+

√
(1 + λx2)

2λ
(

1−λ1+ζ

2λ(1−λ) − 1
)
κλ,ζ

2F1

(
−1

2
,
3

2
−

1− λ1+ζ

2λ (1− λ)
;
1

2
;

λx2

λx2 + 1

)
.

Proof of Theorem 8.
Theorem 3.1 of Gallant and White (1992) delivers the conclusion if

ψλ(x, θ) =

q∑
j=1

βjhλ,ζ(x̃
T γj) (18)

is �-finite. Due to the finitely additive nature of (18) the result is not vacuous,
if hλ,ζ is �-finite for some �. From the continuity of hλ,ζ and κλ < ∞ we have
that hλ,ζ is �-finite for � = 0. We proceed to verify that hλ,ζ is also �-finite for
� < 1

λ
− 1. Omitting the normalizing factor κλ for clarity we have the following:

1. Continuity of D�
hλ,ζ (·) follows from

D�
hλ,ζ (x, λ) = (−1)�λ�x�

(
λx2 + 1

) 1−λ
1+ζ

2λ(1−λ)
−�

which is continuous as long as λx2+1 > 0 which always holds for λ ∈ (0, 1].

2.
∫
∞

−∞

∣∣D�
hλ,ζ (x)

∣∣ dx <∞ follows from

∫
∞

−∞

∣∣D�
hλ,ζ(x)

∣∣ dx =

∫
∞

−∞

∣∣∣∣λ�x�
(
λx2 + 1

) 1−λ1+ζ

2λ(1−λ)
−�

∣∣∣∣ dx

≤

∫
∞

−∞

∣∣∣∣x�
(
λx2 + 1

) 1−λ1+ζ
2λ(1−λ)

−�

∣∣∣∣ dx

≤

∫
∞

−∞

|x|�
(
λx2 + 1

) 1−λ1+ζ

2λ(1−λ)
−�

dx

≤

∫
∞

−∞

|x|�
(
λx2 + 1

) 1−λ1+ζ

2λ(1−λ) dx

=

∫
∞

−∞

|x|�h̃λ,ζ(x)dx <∞
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by Theorem 3, provided λ < 1/(1 + �) or � < 1/λ− 1.

Proof of Corollary 9.
By definition

∫ u

l

ψλ (x, θ) dxi =

q∑
j=1

βj

∫ u

l

hλ,ζ

(
x̃T γj

)
dxi.

Let us define

x := x̃T γ

aij(a, x(i), γij) = aγij +

r+1∑
k=1,k �=i

x̃kγkj

uij := aij(u, x(i), γij)

lij := aij(l, x(i), γij)

Hλ,ζ(aij(a, x(i), γij)) := D−eihλ,ζ(x),

which allows us to write
∫ u

l

hλ,ζ

(
xT γ

)
dxi =

1

κλ,ζ

∫ u

l

(
λ(x̃T γ)2 + 1

)− 1

2λ dxi

=
1

βi
√
2π

∫ ui

li

(
λx2 + 1

)− 1

2λ dx.

Defining

Ψλ(x(i); a; θ) =

q∑
j=1

βj ·Hλ,ζ(aij(a, x(i), γij)) ,

we may consequently write the integral of the neural net as

∫ u

l

ψλ(x, θ)dxi =

q∑
j=1

βj
[
Ψ(x(i);uij ; θ)−Ψ(x(i); lij ; θ)

]
.

Proof of Theorem 10.
Theorem 3.1, 3.2 and 3.3 of Gallant and White (1992) give sufficient conditions
for uniform convergence of function approximators in Sobolev spaces. Single
hidden layer feedforward neural networks given by (8) are sufficient for this
purpose if the activation function g is �-finite. This is shown in Theorem 9 for
hλ,ζ and since the �-finiteness of any non-negative function implies the (�+ 1)-
finiteness of its antiderivative, the result follows for Hλ,ζ .
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Proof of Corollary 11.
This follows directly from Corollary 9 by substituting the functions from The-
orem 7.

Proof of Corollary 12.
This result follows from Theorems 9 and 11 by applying the recursive �-finiteness
argument given in the proof of Theorem 11 one more time.

Proof of Proposition 13 see Diebold et al. (1998), page 868.
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