
UC Davis
UC Davis Previously Published Works

Title
Terrain attributes and forage productivity predict catchment-scale soil organic carbon 
stocks

Permalink
https://escholarship.org/uc/item/9wr7k2j9

Authors
Devine, Scott M
O'Geen, Anthony T
Liu, Han
et al.

Publication Date
2020-06-01

DOI
10.1016/j.geoderma.2020.114286
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9wr7k2j9
https://escholarship.org/uc/item/9wr7k2j9#author
https://escholarship.org
http://www.cdlib.org/


Contents lists available at ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

Terrain attributes and forage productivity predict catchment-scale soil
organic carbon stocks

Scott M. Devinea,⁎, Anthony T. O'Geena, Han Liua, Yufang Jina, Helen E. Dahlkea,
Royce E. Larsenb, Randy A. Dahlgrena

a Department of Land, Air and Water Resources, University of California, Davis, CA 95616-8627, USA
bUniversity of California Cooperative Extension, San Luis Obispo, CA 90001, USA

A R T I C L E I N F O

Handling Editor: Ingrid Kögel-Knabner

Keywords:
Soil organic carbon
Digital soil mapping
Remote sensing
Rangeland
Complex terrain
Forage productivity

A B S T R A C T

Accurate assessments of soil organic carbon (SOC) stocks are needed at multiple scales given their importance to
both local soil health and global C cycles. Rangelands cover 54% of California, representing a large stock of SOC,
but existing SOC estimates are uncertain. To improve understanding of fine-resolution SOC stocks in complex
terrain and provide guidance to rangeland SOC inventories, we grid-sampled 105 locations (21-m grid cells) at
two depths (0–10 and 10–30 cm) in a 10-ha annual grassland catchment in California’s Central Coast Range.
Soils were analyzed for bulk density, coarse fragments, SOC and texture. Monthly aerial imagery was acquired by
an unmanned aerial vehicle to compare surface reflectance during two contrasting years (wet vs. dry) to SOC
stocks. We found that the 0–30 cm soil thickness held 3.64 ± 0.71 kg SOC m−2 (mean ± SD) with a range of
1.97–5.49 kg SOC m−2. The 0–10 cm soil thickness stored 47% of the 0–30 cm SOC stock with SOC con-
centrations twice as high in the 0–10 cm layer (1.40 ± 0.38%) as in the 10–30 cm layer (0.71 ± 0.15% SOC).
Multiple linear regression (MLR) models explained 50–57% of SOC variability at 0–30 and 10–30 cm, but only
25% of variability at 0–10 cm. Based on cross-validation tests, MLR outperformed spatial interpolation methods
and Random Forest models, best explaining SOC stocks with five environmental covariates: wet-year greenness,
mean curvature, elevation, insolation, and slope. Lower hillslope positions, concave landforms, and enhanced
wet-year greenness were associated with more SOC, and explained 11%, 24%, and 31% of variability in 0–30 cm
SOC stocks, respectively. This study demonstrates that the accuracy of regional-scale SOC mapping of California
rangelands benefits from considering microclimatic and topographic controls at the catchment-scale, in addition
to broader scale mineralogical and macroclimatic controls identified in previous SOC studies.

1. Introduction

Soil organic carbon (SOC) represents an important pool of terrestrial
C, with global estimates of 755, 1408, and 2060 Pg in the upper 30,
100, and 200 cm, respectively (Batjes, 2016). California rangelands
cover approximately 54% of California (FRAP, 2018) and are thus an
important natural reservoir of SOC. There is active interest in devel-
oping more accurate inventories of SOC at the landscape scale to create
a baseline for monitoring SOC change (Suddick et al., 2013). SOC es-
timates are available from the Soil Survey Geographic Database
(SSURGO). However, for rangelands, as opposed to croplands, soil
survey map units typically reflect relatively broad-scale trends, often
with more than one major soil component included in each map unit
(Soil Science Division Staff, 2017). Moreover, there is uncertainty about
the sampling and analysis intensity that went into populating SSURGO

SOC data, as has been shown in comparative SOC accounting studies
(Homann et al., 1998; Galbraith et al., 2003; Thompson and Kolka,
2005; Domke et al., 2017).

Foothills surrounding the Central Valley and along the coastal re-
gions, the typical environment of California annual rangelands, present
a challenging environment to inventory SOC due to their topographic
complexity. As reviewed and analyzed at the regional scale by Silver
et al. (2010), 17 studies reported SOC data for California rangeland
soils, but none sought to understand SOC patterns in complex terrain.
Erosion-deposition influenced patterns of SOC in cultivated landscapes
are well recognized and studied (Kirkels et al., 2014). However, greater
erosional loss of SOC from summit and shoulder positions of cultivated
land, compared to adjacent undisturbed grassland (Pennock et al.,
1994), suggests that rangelands with persistent groundcover and pro-
tection from erosion (Salls et al., 2018) may have less pronounced
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hillslope SOC variation than reported in the agricultural literature.
Rigorous studies of catchment-scale SOC patterns in rangelands are

only now beginning to emerge in semi-arid regions. In a 2.4 km2 oak
savannah watershed in southern Spain (mean precipita-
tion = 582 mm yr−1), researchers found that SOC stocks varied most
closely with aspect, as north-facing sites had approximately twice the
SOC as south-facing sites (Roman-Sanchez et al., 2018). The relation-
ship of SOC to terrain curvature was only weakly expressed and the
“noisy” SOC dataset was hypothesized to have partly arisen from past
tree growth patterns concentrating C in the landscape, with only 18% of
the variability explained in a 0–30 cm SOC validation test. Such oak
tree enhancement of SOC within rangelands has been observed in Ca-
lifornia blue oak savanna where soils beneath oak trees contained
~50% more SOC stocks than adjacent grasslands (Dahlgren et al.,
1997b). In contrast, a hillslope-scale study in a wetter (1400 mm yr−1)
Australian forested catchment found strong hillslope control with
higher SOC in footslope positions and less SOC on steeper slopes
(Hancock et al., 2010). Gessler et al. (2000) working on a southern
California grassland transect at the hillslope scale found that lower
landscape positions stored more SOC, especially in deeper soil layers.
While progress has been made to quantify variations in SOC stocks
across some California rangelands and in several uncultivated catch-
ments around the world, additional studies are needed that consider the
importance of integrated microclimate and hillslope processes on
landscape-level SOC stocks.

Digital soil mapping studies offer a tool to improve mapping and
understanding of SOC distribution. The approach uses statistical models
to predict properties such as SOC from field- to watershed-, to national-
scales (Minasny et al., 2013). Digital soil mapping incorporates two
general statistical approaches that can also be combined in regression
kriging to map SOC: (1) modeling spatial autocorrelation in SOC point
measurements to interpolate point estimates; and/or (2) exploiting re-
lationships between measured SOC and digitally available environ-
mental covariates to create continuous estimates of SOC based on its
relationship to covariates. Digital SOC mapping studies are typically
able to explain 30–50% of the variation in SOC validation test datasets
(Minasny et al., 2013), often exploiting a relationship between mac-
roclimate and SOC at regional scales (Post et al., 1982) or across
mountainous terrain, as has been observed in bioclimosequences in
California (Jenny et al., 1968; Dahlgren et al., 1997a; Rasmussen et al.,
2007; 2010). Only a fraction of SOC digital mapping studies have

investigated SOC patterns at the small catchment scale using available
environmental covariates (Minasny et al., 2013).

Complex terrain has diverse microclimates and forage productivity
that varies at tens of meters (Devine et al., 2019), and this is expected to
impact SOC stock patterns at catchment scale. Thus, understanding SOC
distribution across these variable microclimates and landscape posi-
tions is needed to better predict climate change implications for land-
scape C storage. To address this knowledge gap, the objective of this
study was to improve understanding of SOC patterns and its direct as-
sociations with terrain, remotely sensed surface reflectance, and vege-
tative productivity in a California annual grassland at the catchment
scale using digital mapping techniques. We hypothesized greater SOC
stocks in lower landscape positions, cooler microclimates (north to
northwest facing), gentler slopes, and in concave positions, where hy-
pothetically deeper soils exist, water converges for increased late season
soil moisture supply, and higher annual productivity may supply
greater organic matter inputs to organic carbon pools.

2. Methods

2.1. Study site description

The study site was located in a 10-ha annual grassland catchment
with no perennial vegetation in San Luis Obispo County in the eastern
foothills of California’s Central Coast Range. Spanning 475–508 m
elevation, the catchment lies 56 km inland from the Pacific Ocean
within the county’s lowest precipitation zone (Fig. 1) (Larsen et al.,
2014). The Mediterranean climate consists of cool, wet winters (mean
1980–2010 January temperature = 7.9 °C) with sporadic precipitation
from October-May (mean annual precipitation = 213 mm, site average
over past 20 years), along with extended dry, hot summers (mean July
temperature = 23.5 °C) (Daly et al., 2008). In the 2016–17 growing
season (referred to as “wet year” or “2017”), 287 mm precipitation fell
from October-April with a dry period in late February and March. In the
2017–18 growing season (referred to as “dry year” or “2018”), 123 mm
precipitation fell with 60% in March and April. Growing season pre-
cipitation estimates were averages of three on-site tipping buckets.

The study site is an example of complex topography in California
annual rangelands, including summit, shoulder, backslope, footslope,
and concave-linear-convex surface curvatures with slopes ranging from
0 to 20° (Fig. 1). Catchment aspects were 45% south facing, 29% west

Fig. 1. Location of annual rangeland catch-
ment (10 ha) in the eastern foothills of
California’s Central Coast Range with 21-m
grid soil sampling scheme overlaying three
terrain characteristics: (a) mean normalized
difference vegetation index (NDVI) during
the wet 2017 growing season; (b) mean
curvature; and (c) mean NDVI during the
dry 2018 growing season, all derived using
unmanned aerial vehicle captured imagery.
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facing, 24% north facing, and 2% east facing (Liu et al., 2019). Soils
formed from a mélange of sedimentary bedrock ranging from sand-
stones to shales. One soil map unit (Balcom-Nacimiento complex on
15–30% slopes) exists at the site with two major soil components de-
scribed on backslope positions: Balcom (45% of map unit), a fine-
loamy, mixed, superactive, thermic Typic Calcixerepts; and Nacimiento
(30% of map unit), a fine-loamy, mixed, superactive, thermic Calcic
Haploxerolls (Soil Survey Staff, 2003). The remaining 25% of the map
unit is an assortment of 12 minor soil components, mostly described in
other hillslope positions. Pedogenic calcium carbonate was observed
throughout the site.

2.2. Soil sampling and analysis

We overlaid a 21-m sampling grid across the 10-ha catchment,
producing a total of 115 sampling locations at the center of each 21-m
grid cell. Ten locations on or within several meters of an unimproved
road that dissected the catchment were excluded, so that 105 points
were located with a Trimble Geo 7x Handheld Data Collector. Locations
were refined with post-hoc differential correction to reduce location
error to< 10 cm. A slide hammer coring device was used to collect one
core at each location to 30-cm depth. The extracted cores were divided
into 0–10 and 10–30 cm depths. Sampling depths were chosen to
generally match rooting patterns of the annual species where SOC was
expected to be concentrated (Gordon and Rice, 1992; Holmes and Rice,
1996).

Soil samples were air-dried, gently crushed, and passed through a 2-
mm sieve. Coarse fragment mass was quantified and when coarse
fragment mass exceeded 5% of the sample mass, coarse fragment vo-
lume was determined using liquid displacement. Soils were then cor-
rected for coarse fragment mass and volume to calculate bulk density
on a fine-earth fraction basis (≤2 mm) (Dane and Topp, 2002). Soil
texture was determined using the hydrometer method following
shaking with Na-hexametaphosphate (Gavlak et al., 2005). Gravimetric
water content was determined on soil samples dried overnight at
105 °C. Visible, fine roots were removed from 30 to 40 g subsamples of
the 2-mm sieved soil. These subsamples were finely ground in rolling
cylinders with stainless-steel ball bearings to pass a 180-μm sieve. To
determine SOC, carbonates were first removed with HCl (Midwood and
Boutton, 1998) from 100 to 150 mg subsamples of ground soil. Car-
bonate removal was accomplished by first adding 1 mL of 0.1 M HCl to
each subsample (no shaking) and letting the sample sit overnight. Ad-
ditional 0.3 mL aliquots of 1 M HCl were added each day until reaction
completion was verified using pH indicator paper (pH < 4–5). Finally,
residual acid was removed by drying at 60 °C for 72 h, so that dissolved
organics in the supernatant were retained within the acidified soil.
Organic C and total N were determined on subsamples of finely ground
acidified soils by dry combustion (ECS 4010, Costech Analytical Tech-
nologies, Valencia, CA). Additionally, total C and N analysis were de-
termined on subsamples of finely ground, untreated soil. Sample mass
corrections from carbonate removal were deemed unnecessary, since
the HCl carbonate removal method results in a negligible change in
sample mass. Comparison of total N concentrations in acidified and
untreated samples were not significantly different as assessed by a
paired t-test for each depth (0–10 cm: p = 0.38; 10–30 cm: p = 0.89),
verifying the efficacy of this approach. Soil carbon stock was calculated
as follows:

= × × − ×−kg SOC m % SOC BD (1 CF) Z
10

2
(1)

where BD = bulk density in g cm−3, CF = coarse fragments volumetric
fraction (> 2 mm), and Z = horizon thickness in cm.

2.3. UAV flights and reflectance data

A 3DR Solo quadcopter (UAV), equipped with a MicaSense RedEdge

camera (MicaSense Inc., Seattle, WA; five spectral bands: blue
(465–485 nm), green (550–570 nm), red (663–673 nm), red-edge
(712–722 nm), and near-infrared (820–860 nm) (NIR)), was used for
ten flights over the 10-ha catchment during the growing season for the
two years (Liu et al., 2019). Six flights were made from November 11,
2016 to April 30, 2017, and four from January 18, 2018 to April 14,
2018. Further details about flight plans and image processing to pro-
duce illumination-corrected red and NIR reflectance values used to
calculate normalized difference vegetation index (NDVI) at 30-cm re-
solution are available in Liu et al. (2019).

Mean growing season NDVI, red, red-edge, and NIR values, as op-
posed to individual monthly reflectance data, were used in statistical
models to reduce the number of correlated covariates considered. For
example, within both the wet (2017) and dry (2018) years, monthly
NDVI was significantly correlated across all months (except for
January) at the soil sampling locations (2017: p < 0.001;
0.14 < R2 < 0.68; 2018: p < 0.001; 0.38 < R2 < 0.81). Thus,
2017 and 2018 NDVI growing season averages were used as model
inputs as opposed to monthly data. Reflectance values for the soil
sampling locations were estimated using the extract function from the
raster package in R (Hijmans, 2017), taking the mean value of all 30-cm
pixels within a 1-m buffer of the soil sample location.

2.4. Catchment terrain characteristics

We created a 1.86-cm resolution digital surface model (DSM) over
the study area, using photogrammetry from UAV imagery captured on
March 9, 2017 (Liu et al., 2019), and then derived terrain character-
istics using ArcGIS Desktop 10.5 software. Effects of low, herbaceous
vegetation were minimal (mean height = 7 cm on February 15, 2017,
and 14 cm on March 15, 2017) and therefore not considered in the
analysis. Seven ground control points showed a mean RMSE of 6 cm in
georegistration (all dimensions). These high resolution data were ag-
gregated to 30-cm pixel size by calculating the mean value of all pixels
within this coarser grid, using the ArcGIS aggregate function (Spatial
Analyst: Generalization: Aggregate). The 30-cm grid was then filtered
to smooth anomalies using the ArcGIS default low pass filter function
(Spatial Analyst: Neighborhood: Filter). Data were further aggregated
to 3-m and filtered again using the same approach before calculating
elevation, slope, aspect, curvature (profile, plan, and mean), and annual
clear sky solar radiation (insolation), using ArcGIS Spatial Analyst tools.
The aggregating and filtering process to 3-m resolution was deemed
necessary to produce stable estimates of terrain curvature, whereas
estimates of elevation, slope, and aspect were strongly correlated with
estimates from the 30-cm resolution DSM (R2 > 0.99). Another DSM
produced from November 2016 drone imagery showed R2 > 0.98 for
comparisons of elevation, slope, and insolation, and R2 = 0.91–0.94 for
comparisons of curvature (mean, plan, and profile) (n = 105).

2.5. Vegetation monitoring

We clipped standing forage within 0.09 m2 quadrats four times in
each growing season, approximately one month apart. In 2017 at each
date, 34 locations were clipped within the soil sampling grid, while in
2018 at each date, 16 locations were clipped. Forage was oven dried at
60 °C for 48 h before weighing. We recorded grass and forb height and
species composition using the dry-weight rank method (Ratliff and
Frost, 1990) as previously reported in Devine et al. (2019). Gradients in
annual forage production are diffuse across the study catchment; there
are no shrubs or perennial grass patches creating islands of enhanced
soil quality as found in several semi-arid and arid ecosystems such as
Mediterranean oak woodlands (Dahlgren et al. 1997b). Peak standing
biomass and modeled SOC at forage sampling locations were compared
as an additional test of the relationship between aboveground pro-
ductivity and SOC stocks.
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2.6. Statistical modeling

Least-squares regression and rank order correlation (Spearman)
tests were first used to examine associations among soil properties,
terrain characteristics, and surface reflectance and to guide selection of
a set of important environmental covariates for mapping SOC stocks
and understanding controls on SOC distribution without suffering from
excessive collinearity. Spatial autocorrelation of least-square regression
residuals was tested to check independence of error terms as an as-
sumption in evaluating regression coefficient error estimates. Profile
and plan curvature were eliminated before model testing because of
high correlation with mean curvature (R2 > 0.9). Mean growing
season red-edge reflectance was eliminated from modeling because of
high correlation with NIR reflectance (2017: R2 = 0.70; 2018:
R2 = 0.83). Similarly, mean growing season red reflectance was
eliminated from modeling because of its high correlation with NDVI
(2017: R2 = 0.80; 2018: R2 = 0.63). This narrowed the pool of en-
vironmental covariates considered in statistical models to: (1) eleva-
tion; (2) slope; (3) insolation; (4) mean curvature; (5) NDVI2017; (6)
NDVI2018; (7) NIR2017; and (8) NIR2018.

Model selection for understanding SOC patterns in the catchment
and SOC mapping was performed using a k-fold cross-validation ap-
proach that considered all 255 possible combinations of the eight en-
vironmental covariates selected for analysis1. We tested all 255 possible
variable subsets using multiple linear regression (MLR) and Random
Forest to model 0–10 cm, 10–30 cm, and 0–30 cm SOC datasets. The
cross-validated root mean square error was calculated for each pre-
dictor subset and modeling approach combination:

∑=
=

cross validated RMSE 1
k

RMSEk
i 1

k

i
(2)

where RMSE is the root mean square error of each ith fold out-of-bag
dataset of size n (in our case either 5 or 6, since the 105 points were
divided into 20-folds) calculated as:

∑ −
=

1
n

(predicted observed )
i 1

n

i i
2

(3)

The proportion of variance explained (R2) was also tabulated during
the cross-validation process. For each Random Forest model iteration,
the tuneRF function was used to set the mtry argument during the call to
randomForest in the randomForest package in R (Liaw and Wiener, 2002;
R Core Team, 2018). The mtry argument defines the number of vari-
ables available for splitting at each tree node.

Spatial interpolation methods, including nearest neighbor aver-
aging, inverse distance weighting, and ordinary kriging, the latter a
common approach in digital soil mapping (Keskin and Grunwald,
2018), were compared to MLR and Random Forest in cross-validation
tests as benchmarks for modeling and mapping SOC stocks. Our ob-
jective was to evaluate the accuracy of a catchment scale map created
by leveraging only the soil point SOC data and spatial autocorrelation,
without any of the finer scale covariate information available to the
MLR and random forest modeling approaches. In this exercise, for each
of the three spatial interpolation approaches, a SOC map was created
within each k-fold from 99 or 100 points, with prediction of the out-of-
bag 5 or 6 samples contributing to the overall cross-validation statistic
of all 20 k-folds. These spatial averaging techniques were implemented
with a call in R software to gstat. Ordinary kriging was implemented
with additional calls to variogram and fit.variogram, all in the gstat
package (Pebesma, 2004; Graler et al., 2016), which allowed for con-
sideration of five different variogram models and a range of kappa
values during variogram model optimization in each k-fold on-the-fly.

Finally, a null model was tested wherein each k-fold the mean of 99 or
100 observations served as the prediction for 5 or 6 out-of-bag ob-
servations.

The overall best model was defined as the model that had the lowest
cross-validated RMSE. Since the best models turned out to be MLR, four
diagnostic plots produced by plot(lm_object) were examined to check
goodness-of-fit and verify appropriateness of a linear modeling ap-
proach for understanding associations between SOC and environmental
covariates. Variance-inflation factors were calculated using the vif
function and partial regression plots (‘added-variable’ plots) were
checked using the avPlots function, both from the car package in R
software (Fox and Weisberg, 2011). To better understand the relative
importance of environmental covariates in explaining SOC variability,
R2 from the best MLR model was decomposed into estimates of each
individual regressor’s contribution, using the calc.relimp function from
the relaimpo package and the recommended lmg metric in R software
(Groemping, 2006).

Spatial autocorrelation in soil properties and linear regression re-
siduals was tested using a Monte-Carlo approach with the moran.mc
function from the spdep package in R software (Bivand and Wong,
2018) as follows. First, Moran’s I was calculated for each variable of
interest (SOC concentrations (%) and stocks (kg m−2), bulk density,
particle size fractions, and linear regression residuals). Then, each
variable of interest or model residuals had its point estimates randomly
reassigned across the catchment to the 105 sampled locations an ad-
ditional 999 times, and Moran’s I was recalculated each time. Auto-
correlation p values reflect a ranking of actual observed Moran’s I re-
lative to these random permutations, and thus, provide an approximate
probability that the variable’s or linear regression residuals’ observed
spatial autocorrelation was produced by chance alone. If the original
spatial autocorrelation in the soil property of interest has been ac-
counted for by spatial autocorrelation in the model’s explanatory
variables, then the residuals should show no spatial autocorrelation.
Moreover, lack of linear regression residual spatial autocorrelation
suggests that regression kriging (e.g. combining MLR with kriging of
residuals) would not add to the model’s predictive power.

3. Results

3.1. Terrain properties

The 105 sample locations captured a range of topographic char-
acteristics within a relatively narrow elevation band of 475–508 m.
Landforms ranged from concave to linear to convex, slopes from 0.3 to
23.3°, clear sky radiation (insolation) from 1067 to 1471 kWh m−2

yr−1, and mean growing season NDVI from 0.34 to 0.69 across the two
study years (Table 1). Concave sites tended to be at lower elevation and
greener in the wet year (Table 2). Higher elevation sites tended to have
less clay and were greener in the dry year (Table 2). North-facing slopes
tended to be steeper and south-facing slopes gentler (Table 2).

3.2. Soil properties

Across the catchment, the 0–30 cm soil layer held 3.64 ± 0.71 kg
SOC m−2 (mean ± SD) with a range of 1.97–5.49 kg SOC m−2

(Table 1). SOC was more concentrated near the surface with the
0–10 cm depth containing 47% of the total 0–30 cm SOC and having
twice the average SOC (1.40 ± 0.38%) of the 10–30 cm depth
(0.71 ± 0.15%) (Table 3). Soils were predominantly loams, clay
loams, and sandy loams, and particle size decreased with depth. There
was 21 ± 4% clay in the 0–10 cm layer and 25 ± 6% clay in the
10–30 cm layer (Table 3). Bulk density and pH increased with depth
and were significantly greater in the 10–30 cm layer (Table 3).1 See https://github.com/smdevine/CamattaCarbon/blob/master/

publication/soilC_model_comparisons.R
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3.3. Relationship of SOC to terrain properties, vegetation productivity, and
soil texture

The 0–30 cm SOC stocks were significantly related to vegetation
productivity e.g., mean growing season NDVI in 2017 (wet-year NDVI;
R2 = 0.31, p < 0.001), and several terrain properties, including mean
curvature (R2 = 0.24, p < 0.001) and elevation (R2 = 0.11,
p < 0.001). In contrast, there was no detectable association of

0–30 cm SOC stocks with mean NDVI in 2018 (dry-year NDVI), slope, or
aspect, as represented by insolation (Fig. 2). Lower hillslope positions in
the catchment tended to be concave, have more clay, higher NDVI, and
greater SOC stocks (Table 2). The direct associations between terrain
characteristics and SOC were generally stronger for the 10–30 cm layer
compared to the 0–10 cm layer, except for the relationship with slope,
which was strongest for the 0–10 cm layer (Table 2).

Table 1
Statistics for 0–30 cm soil carbon and terrain properties from 3-m digital surface model at the points sampled in April 2018 (n = 105).

Stat. SOC BD Curv. Insol. Elev. Slope NDVI2017 NDVI2018
% kg m−2 g cm−3 m−1 kWh m−2 m deg.

Min. 0.44 1.97 1.18 −1.77 1067 474.9 0.2 0.41 0.34
Q1 0.81 3.16 1.27 −0.52 1270 486.8 9.0 0.56 0.42
Q2 0.93 3.64 1.35 0.03 1355 491.8 11.6 0.60 0.46
Mean 0.92 3.64 1.34 0.08 1337 492.2 11.6 0.59 0.46
Q3 1.03 4.15 1.40 0.50 1440 497.7 13.6 0.63 0.51
Max. 1.47 5.49 1.54 2.54 1471 507.9 23.3 0.69 0.62
SD 0.18 0.70 0.08 0.93 113 7.9 4.4 0.05 0.06

SOC = soil organic carbon; BD = bulk density; Curv = mean curvature; Elev = elevation; Insol = annual clear sky insolation (kWh m−2); NDVI = Normalized
difference vegetation index during 2017 (wet) and 2018 (dry) growing seasons; Min. = minimum; Q1 = lower quartile (25th percentile); Q2 = median; Q3 = upper
quartile (75th percentile); Max. = maximum; SD = standard deviation

Table 2
Spearman rank correlation coefficients for soil organic carbon (SOC) stocks at all depths, select 0–30 cm soil properties, terrain characteristics, and remote sensing
information from two growing seasons (2017, a wet year, and 2018, a dry year) captured from an unmanned aerial vehicle. Values shown in bold were significant at
α = 0.001 level. Values shown in italic were significant at α = 0.01 level (n = 105).

SOC0-30 SOC0-10 SOC10-30 Clay0-30 BD0-30 Elev. Curv. Insol. Slope NDVI2017 NDVI2018 NIR2017

SOC0-30 1
SOC0-10 0.84 1
SOC10-30 0.82 0.43 1
Clay0-30 0.40 NA NA 1
BD0-30 0.06 NA NA −0.16 1
Elev. −0.33 −0.18 −0.42 −0.44 0.01 1
Curv. −0.52 −0.27 −0.60 −0.21 −0.17 0.48 1
Insol. −0.23 −0.08 −0.33 −0.23 0.06 −0.11 0.11 1
Slope −0.09 −0.25 0.11 0.20 −0.13 −0.17 −0.15 −0.43 1
NDVI2017 0.53 0.40 0.46 0.27 0.06 −0.14 −0.36 −0.01 −0.29 1
NDVI2018 0.08 0.11 0.01 −0.30 0.22 0.58 0.11 −0.47 −0.22 0.15 1
NIR2017 0.29 0.16 0.30 0.39 −0.09 −0.54 −0.28 0.17 −0.03 0.55 −0.39 1
NIR2018 −0.28 −0.06 −0.43 −0.34 0.21 0.31 0.28 0.39 −0.26 −0.37 0.17 −0.28

SOC = soil organic carbon (kg m−2); Elev = elevation (m); Curv = mean curvature; Insol. = annual clear sky insolation (kWh m−2); NDVI = mean normalized
difference vegetation index during a wet (2017) or dry (2018) growing season; NIR = mean near-infrared during a wet (2017) or dry (2018) growing season

Table 3
Soil properties for two depths sampled at the study catchment in April 2018 (n = 105). A paired t-test was used to compare difference in 0–10 and 10–30 cm soil
properties.

Depth Stat. SOC SOC TN Clay Sand Silt BD pH CF

kg m−2 ————————————————————%———————————————————— g cm−3 %
0–10 cm Min. 0.81 0.72 0.08 10 26 12 0.83 7.3 0

Q1 1.40 1.18 0.13 19.2 34.8 34 1.15 7.7 0
Q2 1.70 1.35 0.15 22 38 38 1.24 7.8 0
Mean 1.70 1.40 0.16 21.4 41.5 37.1 1.24 7.76 0.7
Q3 1.98 1.61 0.18 24 44.4 42.4 1.35 7.8 0.8
Max. 3.28 3.08 0.37 30.8 76.8 50 1.75 8 9.9
SD 0.41 0.38 0.04 4.3 10.4 7.7 0.16 0.11 1.5

10–30 cm Min. 0.86 0.33 0.04 12 18 10 1.19 7.7 0
Q1 1.67 0.62 0.07 22 31.2 34 1.32 7.9 0
Q2 2.00 0.73 0.08 25.6 35.2 38 1.37 8 0
Mean 1.93 0.71 0.08 25.0 38.5 36.4 1.38 7.95 1.9
Q3 2.22 0.80 0.09 28.4 43.6 42 1.43 8 1.8
Max. 2.95 1.20 0.12 38 74.8 52 1.63 8.5 18.8
SD 0.42 0.15 0.01 5.6 12.1 8.0 0.09 0.13 3.6

t-test p NA <0.001 <0.001 <0.001 <0.001 0.18 < 0.001 <0.001 0.002

SOC = soil organic carbon; TN = total nitrogen; BD = bulk density; CF = coarse fragments; Min. =minimum; Q1 = lower quartile (25th percentile); Q2 =median;
Q3 = upper quartile (75th percentile); Max. = maximum; SD = standard deviation, p = p value
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3.4. Modeling and mapping SOC stocks

After rejecting the most collinear predictors, eight environmental
covariates derived from UAV flights were considered to explain SOC
stock patterns in the catchment. MLR models achieved maximum ex-
planatory power with five variables and consistently outperformed
Random Forest in 20-fold cross-validation tests at all depths (Tables 4
and 5). MLR models also outperformed various spatial interpolation
techniques in 20-fold cross-validation tests with ordinary kriging per-
formance comparable to simpler methods of spatial interpolation (Table
S1). A MLR model that included mean curvature, slope, elevation,

insolation, and wet-year NDVI explained 50% of variability in 0–30 cm
SOC stocks across the catchment (20-fold cross-validated R2 = 0.44)
(Fig. 3). This five-variable MLR model outperformed the best Random
Forest model (20-fold cross-validated R2 = 0.36) with a mean cross-
validated RMSE that was 6% lower (Table 5). Coefficients for this
model using standardized predictors were all significant (α = 0.05),
and their signs (positive vs. negative) met intuitive expectations
(Table 4).

Importance metrics suggest that wet-year NDVI and curvature were
responsible for 70% of explained variability. Even though slope and
insolation had the largest normalized coefficients in this model

Fig. 2. a–f: Direct association between 0-30 cm soil organic carbon (SOC) and terrain characteristics derived from a 3-m digital surface model and mean normalized
difference vegetation index (NDVI) during the (c) wet 2017 and (d) dry 2018 growing seasons.

Table 4
Best performing multiple linear regression (MLR) and Random Forest models of 0–30 cm soil organic carbon (SOC) from one up to eight possible predictors, by
number of predictors, selected from 20-fold cross-validation (CV) tests on all 255 possible subsets of eight predictors. Coefficient estimates for normalized covariate
predictors −((x x̄) sd)i are shown through five possible predictors, the best identified number and selection of covariates.

Covariates considered Best MLR models CV RMSE CV R2

Predictors in best performing models kg m−2

1 0.39*NDVI2017 0.549 0.27
2 0.31*NDVI2017 + −0.24*curvature 0.521 0.37
3 0.31*NDVI2017 + −0.23*curvature + −0.11*insolation 0.511 0.38
4 0.31*NDVI2017 + −0.19*curvature + −0.12*insolation + −0.10NS*elevation 0.497 0.40
5 0.23*NDVI2017 + −0.23*curvature + −0.28*insolation + −0.17*elevation + −0.25* slope 0.478 0.44
6 elevation, slope, insolation, curvature, NDVI2017, NIR2018 0.482 0.43
7 elevation, slope, insolation, curvature, NDVI2017, NIR2017, NIR2018 0.491 0.42
8 All predictors 0.499 0.41

Best Random Forest models
2 curvature, NDVI2017 0.533 0.33
3 curvature, NDVI2017, NDVI2018 0.523 0.33
4 elevation, curvature, NDVI2017, NDVI2018 0.510 0.36
5 elevation, insolation, curvature, NDVI2017, NDVI2018 0.513 0.36
6 elevation, slope, curvature, NDVI2017, NDVI2018, NIR2017 0.519 0.33
7 elevation, slope, insolation, curvature, NDVI2017, NDVI2018, NIR2017 0.523 0.32
8 All predictors 0.529 0.34

RMSE = root mean square error; NS = not significant (α = 0.05 level); insolation = annual clear sky insolation; NDVI = mean normalized difference vegetation
index during a wet (2017) or dry (2018) growing season; NIR = mean near-infrared during a wet (2017) or dry (2018) growing season.
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(Table 4), importance metrics suggest they were only responsible for
17% of explained variability. Variance-inflation factors (VIF) showed
that insolation (VIF = 2.75) and slope (VIF = 2.19) suffered from some
collinearity (Table 2) in this model, which may inflate coefficient es-
timates. The other three covariates had lower VIFs ranging from 1.43 to
1.46. Indeed, the best two-variable MLR model using mean curvature
and wet-year NDVI performed almost as well as the five-variable model,
with its cross-validated RMSE only 0.04 kg m−2 higher and full dataset
R2 = 0.41 (Fig. 4; Table 4). Residuals from the two- and five-variable
MLR models showed no strong evidence of spatial autocorrelation
(Table 6).

Similar to the stronger direct associations between 10-30 cm SOC

stocks and terrain characteristics compared to 0–10 cm SOC stocks
(Table 2), the best MLR model explained the 10–30 cm layer SOC stock
variability better (R2 = 0.57 full dataset) than the 0–10 cm SOC stock
variability (R2 = 0.25 full dataset) (Table 5). Even though there was a
contrasting performance for each depth, subsets of predictors in the best
model for each depth were similar (Table 5). However, based on re-
lative importance metrics for the best models, the dominant associa-
tions were different: slope and wet-year NDVI were responsible for 67%
of explained variance in 0–10 cm SOC stocks, while wet-year NDVI and
mean curvature were responsible for 65% of explained variance in
10–30 cm SOC stocks, the latter very similar to the 0–30 cm analysis.
Insolation was more important to accuracy of the 10–30 cm model,
responsible for 16% of explained variance in 10–30 cm SOC stocks
compared to 7% of explained variance in 0–10 cm SOC stocks.

Given strong spatial autocorrelation in SOC stocks (Table 6), it was
surprising that spatial interpolation techniques had relatively limited
predictive power, compared to MLR and Random Forest approaches
(Table S1). Ordinary kriging of 0–30 cm SOC stocks only produced a 20-
fold cross-validated R2 = 0.15. Kriging accuracy was higher for the
10–30 cm layer (R2 = 0.26), and much lower for the 0–10 cm layer (20-
fold cross-validated R2 = 0.03; p = 0.07). Autocorrelation was stronger
in the 10–30 cm layer compared to the 0–10 cm layer, which explains
why ordinary kriging performed better for this layer. Regression kriging
added no explanatory power to the MLR model, because residuals from
the best MLR models showed no clear evidence of spatial autocorrela-
tion (Table 6).

3.5. Relationship of estimated SOC to peak aboveground biomass

The best MLR model identified in cross-validation tests was used to
map SOC stocks in the catchment (Fig. 5a). From this map, SOC values
were extracted at points where aboveground biomass was sampled to
compare how SOC stocks related to peak standing forage in strongly

Table 5
Best performing multiple linear regression (MLR) and Random Forest models of
0–10, 10–30, and 0–30 cm soil organic carbon (SOC) selected from all 255
different combinations of 8 predictor variables in 20-fold cross validation (CV)
tests. Best performing was defined as the simplest model to achieve the lowest
mean RMSE during CV. Best models all had 4 or 5 predictors.

Best MLR models

Depth Predictors in best performing model CV RMSE CV R2

-cm- kg m−2

0–10 elevation, slope, insolation, curvature, NDVI2017 0.352 0.16
10–30 elevation, insolation, curvature, NDVI2017, NIR2017 0.264 0.53
0–30 elevation, slope, insolation, curvature, NDVI2017 0.478 0.44

Best Random Forest models
0–10 elevation, slope, insolation, NDVI2017, NDVI2018 0.354 0.16
10–30 curvature, NDVI2018, NIR2017, NIR2018 0.287 0.46
0–30 elevation, curvature, NDVI2017, NDVI2018 0.510 0.36

NDVI = mean normalized difference vegetation index during a wet (2017) or
dry (2018) growing season; NIR = mean near-infrared during a wet (2017) or
dry (2018) growing season

Fig. 3. a–f: Best 0–30 cm soil organic carbon (SOC) model identified during cross-validation, showing (a) Observed vs. predicted SOC and 1:1 line (black) and added-
variable (aka ‘partial regression’) plots for each of the 5 predictors (x-axes) in this multiple linear regression best model: (b) Annual clear sky insolation; (c) Slope; (d)
mean normalized difference vegetation index (NDVI) in 2017; (e) mean curvature; and (f) elevation. Each plot shows the relative contribution of the predictor to
explaining variance in SOC after accounting for the other predictors’ explanatory power in the model. Gray lines show the best-fit for each partial regression plot. The
slopes of these gray lines are equal to the explanatory variables’ beta coefficients in the overall MLR model, all very similar in magnitude and with p < 0.004
(Table 4). The meaning of “| others” is “after accounting for the other predictor variables.”

S.M. Devine, et al. Geoderma 368 (2020) 114286

7



contrasting growing seasons. This analysis showed a positive relation-
ship between SOC and peak standing forage in both years, but the slope
was steeper in the wet year (0.11 kg more forage kg−1 SOC m−2). The
relationship was statistically significant in 2017 (wet year; p = 0.02)
when peak biomass was nearly three times higher than in 2018 (dry
year) (Fig. S1).

4. Discussion

4.1. SOC patterns at catchment scale and relationship to topography and
vegetation

Our study sought to contribute a catchment-scale perspective on
SOC patterns by investigating a range of different microclimate and
landscape position combinations in a semi-arid annual grassland. SOC
stocks in the upper 30 cm showed strong evidence of spatial auto-
correlation with a pattern directly related to elevation, curvature, and
mean growing season NDVI from a wet year but not a dry year (Fig. 2;
Tables 2 and 6). These direct relationships match intuitive expectations,
such as more SOC in lower parts of the landscape where more vegeta-
tion is growing in a wet year (Figs. 1 and 5). The mechanism for SOC
accretion in lower hillslope positions may differ from cultivated land-
scapes where erosion/deposition has been implicated in explaining
landscape SOC distribution (Kirkels et al., 2014). At the hillslope scale
in a 2-ha grassland in Southern California, Gessler et al. (2000) sampled
soils on a SW-facing transect and reported that a Compound Topo-
graphic Index explained 78% of the variability in SOC stocks with more
SOC in lower landscape positions. At our study site, additional forage
production in a wet year was favored in concave locations, especially
where soil moisture remained plentiful during a late season dry spell
(Devine et al., 2019). This suggests that a wet year produces lateral
redistribution of water and defines lower hillslope zones with surplus
moisture where peak forage is produced and more SOC is accumulated
over time, as indicated by higher NDVI (Fig. 1). Lower rainfall in the

Fig. 4. a–c: Best two-variable model identified during cross-validation exercise, showing (a) Observed vs. predicted SOC and 1:1 line (black) and added-variable (aka
‘partial regression’) plots for each of the two predictors (x-axes) in this multiple linear regression best model: (b) mean growing season normalized difference
vegetation index (NDVI) in 2017 and (c) mean curvature. Each partial regression plot shows the relative contribution of the predictor to explaining variance in SOC
after accounting for the other predictor’s explanatory power in the model. Gray lines show the best-fit for each partial regression plot. The slopes of these gray lines
are equal to the explanatory variables’ beta coefficients in the overall MLR model. The meaning of “| others” is “after accounting for the other predictor variables.”

Table 6
Probability that observed spatial autocorrelation for a given soil property is
random. Soil properties with p values < 0.05 all showed positive auto-
correlation. SOC residuals are the model residuals from either the best per-
forming two- or five-variable (var) multiple linear regression (MLR) model.

Soil property 0–30 cm 0–10 cm 10–30 cm

——————p values——————
SOC (%) 0.002 0.25 0.001
SOC (kg m−2) 0.001 0.02 0.001
Clay (%) 0.001 0.001 0.001
Sand (%) 0.001 0.001 0.001
Silt (%) 0.001 0.001 0.001
BD (g cm−3) 0.14 0.31 0.04
SOC residuals (two-var MLR) 0.13 0.23 0.25
SOC residuals (five-var MLR) 0.20 0.17 0.27

SOC = soil organic carbon; BD = bulk density.

Fig. 5. a–b: Map of 0–30 cm soil organic carbon (SOC) produced from (a) best five-variable multiple linear regression model and (b) best two-variable multiple linear
regression model. Class breaks are quartiles from the best five-variable multiple linear regression prediction.
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dry year did not wet soil below 15 cm until late March, resulting in
limited lateral water distribution. The dry-year NDVI pattern was un-
related to both wet-year NDVI and to SOC (Figs. 1 and 2; Table 2).

Linkages among wet-year NDVI, elevation, curvature, and SOC
suggest that hillslope position and vegetation appear to be more im-
portant drivers of SOC patterns than aspect in central California semi-
arid grasslands (Tables 2 and 4), even though insolation differences
forced 3–10 °C soil temperature gradients in the catchment and no-
ticeable differences in plant available moisture during wet-up periods
(Devine et al., 2019). This lack of a clear, direct relationship between
SOC and aspect is in contrast to several other catchment-scale studies. A
SOC study in a rangeland catchment in Spain investigated patterns at a
larger scale (2.7 km2) and found that SOC stocks were generally lower
in south-facing slopes with lower vegetative cover (Roman-Sanchez
et al., 2018). Similarly, in Idaho along a nearly 1-km elevation gradient
spanning both grassland and forested sites on different aspects, in-
solation and NDVI accounted for 62% of SOC variability with north-
facing slopes having up to 5 times the SOC stock in the lower elevation
sites of the watershed compared to south-facing slopes (Kunkel et al.,
2011). In contrast, in semi-arid rangelands of Australia, no significant
relationship was reported between aspect and SOC, while elevation,
precipitation, and vegetation indices were linked to SOC patterns and
explained nearly half of regional variability (Wang et al., 2018a). In
summary, soil moisture and productivity appears more related to SOC
gradients in this semi-arid catchment than soil temperature.

4.2. Modeling SOC stocks at catchment scale: a climate change and regional
scale perspective

At first glance, the parameter coefficient estimates from the best
MLR model (five variables) suggest that aspect (via insolation) is the
most important variable (Table 4), in direct contradiction to the con-
clusion drawn from the univariate tests (Table 2). MLR parameter es-
timates from the best model make intuitive sense with more SOC where
there is higher productivity in a wet year, concave compared to convex
landforms, downslope positions, gentler slopes, and on cooler aspects
(Table 4). However, the five-variable model was an improvement of
only 8.3% in cross-validated RMSE (0.04 kg m−2) compared to a more
parsimonious, two-variable model that used only curvature and wet-
year NDVI and explained 41% of 0–30 cm SOC variance (Table 4;
Figs. 3 and 4). Inference from the five-variable model should be tem-
pered by marginal improvement in explained variance and by four
other model inferences. First, collinearity between slope and insolation
is undermining reliable coefficient estimates. When slope and insolation
were included together in the five-variable model, it more than doubled
the coefficient estimate for insolation compared to coefficient estimates
derived from the best three- and four-variable MLR models that in-
cluded insolation but did not include the collinear slope (Table 4).
Second, while the best three- and four-variable MLR models included
insolation, these models showed very small improvements over the two-
variable model (Table 4). Third, the best random forest model did not
include insolation (Table 4). Fourth, post-hoc variable importance
metrics supported these modeling observations, suggesting that wet-
year NDVI and curvature were responsible for 70% of the explained
variance in the five-variable model. In summary, while the conceptual
model of annual rangeland production in California typically conceives
of a landscape where south-facing aspects are deficient in soil moisture
thereby constraining forage growth (Becchetti et al., 2016), SOC pat-
terns from this analysis suggest that southern exposures may have only
marginally less SOC storage compared to northern exposures.

There are unresolved questions related to how climate change will
impact annual range production and SOC stocks in complex topo-
graphy. Warmer temperatures and greater insolation on south-facing
slopes can enhance winter forage growth during wet years in California
annual rangelands (Devine et al., 2019; Evans et al., 1975), and this
may partly compensate for the negative effect that enhanced drying has

on forage growth and its feedback to SOC. However, mid-winter
droughts can also sharply impact growth on south-facing aspects
(Devine et al., 2019). Studies have reported either negative or no as-
sociation between warmer southern aspects and forage productivity at
the Jasper Ridge rangeland study site in California (McNaughton,
1968), where a soil warming experiment also did not boost forage
growth (Dukes et al., 2005; Zhu et al., 2016). In addition, warmer soil
temperatures would be expected to favor more rapid microbial de-
composition of residual forage and SOC. Thus, the future of climate
change suggests a mixed signal for SOC stocks in the complex topo-
graphy of California annual rangelands where patterns in productivity
may change with warmer winters and more pronounced precipitation
volatility, forcing new steady-state SOC patterns.

Our cross-validation results, while modest with an R2 of 0.44 for the
best 0–30 cm SOC MLR model (Table 5), are still at the high end
compared to digital SOC mapping at similar scales and in comparable
landscapes. A Mediterranean rangeland study at a slightly larger extent
(2.7 km2) in Spain explained 18% of variability in validation data using
a similar but larger set of predictors and a Random Forest modeling
approach (Roman-Sanchez et al., 2018). In eastern semi-arid Australia,
Random Forest and boosted regression tree approaches explained
42–48% of validation set 0–30 cm SOC variation starting from a set of
28 environmental covariates (Wang et al., 2018a). At an even larger
scale in this Australian region, these same two statistical approaches
and Support Vector Machines explained, on average, 48% of 0–30 cm
SOC variation with a smaller set of environmental covariates (Wang
et al., 2018b). Covering 8118 ha and spanning forest and vineyard land
uses, a study from Brazil reported validation R2 values of 0.33–0.44 for
five different soil depth intervals (Bonfatti et al., 2016).

Like our study, Bonfatti et al. (2016) demonstrated MLR models
outperformed Random Forest modeling of SOC in five different soil
depth intervals. Indeed, when predictors have linear relationships with
a response variable (Figs. 2 and 3), it is acknowledged (but perhaps not
well appreciated) that simpler modeling approaches such as MLR can
outperform more complex modeling approaches such as Random Forest
(James et al., 2013). Moreover, similar to our results, Bonfatti et al.
(2016) found no autocorrelation in MLR residuals, meaning there was
no additional advantage for employing a regression kriging technique
for mapping SOC (Keskin and Grunwald, 2018).

In our study, while there was a coherent relationship between 0-
30 cm SOC and terrain attributes, the less clear relationship between 0-
10 cm SOC and terrain attributes highlights the inability of digital soil
mapping techniques to unequivocally work well everywhere (Tables 2,
5, and S1). The relative noisiness of the 0–10 cm layer compared to the
10–30 cm layer was intriguing and could be attributed to at least four
mechanisms. First, erosion/deposition processes may not be at steady-
state in the catchment. While no evidence of overland flow was ob-
served in field campaigns, lack of vegetative cover during severe
droughts makes soils susceptible both to wind and water erosion. Al-
ternatively, dynamic forage productivity patterns on the landscape may
be forcing surficial SOC to a new steady state. Additionally, selective
grazing by cattle may create patchiness in residual dry matter which
could influence SOC patterns as plant material decomposes (Roman-
Sanchez et al., 2018). Finally, burrowing fauna such as ground squirrels
and pocket gophers may create SOC patchiness through bioturbation.

There is a lack of testing assumptions concerning SOC patterns at
the catchment scale in uncultivated landscapes in spite of the common
acknowledgement that SOC is expected to vary with topography, mi-
croclimate, and vegetation at fine resolutions (Minasny et al., 2013).
Moreover, catchment scale SOC patterns may not match regional scale
SOC trends with the same variables, such as elevation, where increasing
elevation is often associated with more SOC (Post et al., 1982), the
opposite of what we observed at the catchment scale and others have
observed at hillslope scale (Gessler et al., 2000). Positive relationships
between SOC and either precipitation or elevation (acting as proxies for
increased biomass and cooler temperatures that hinder decomposition)
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at regional scales have been documented in complex terrain in Medi-
terranean climates in both California and Australia (Jenny et al. 1968;
Dahlgren et al., 1997a; Rasmussen et al., 2007; 2010; Kunkel et al.,
2019). Silver et al. (2010) did not find a significant relationship be-
tween 0-30 cm SOC stocks and either precipitation or temperature in a
meta-analysis of California rangeland soils (n = 39), perhaps because
variable mineralogy across these study sites has an overshadowing in-
fluence on SOC stabilization. There is clearly a need for further devel-
opment of SOC mapping approaches that fuse both regional and
catchment scale understanding with recognition that digital mapping
techniques may only work in particular landscapes (Beaudette and
O'Geen, 2016). Such efforts could produce fine-resolution estimates of
SOC at the catchment scale that also reflect regional-scale trends and
soil forming factors spanning multiple vegetation, climate, and soil
types.

5. Conclusion

We found correspondence of SOC to soil forming factors, principally
topography, organisms (vegetation), and (micro-)climate at the catch-
ment scale in a Central Coast annual grassland of California. Overall,
MLR modeling results showed fine-scale terrain properties can be more
useful predictors of SOC stocks than measured values at nearby points.
How much vegetation is growing in a particular location (as indicated
by remotely sensed “greenness”) and terrain curvature explained most
SOC variation, but there was also a smaller but significant relationship
to aspect, slope, and elevation revealed while accounting for these two
covariates. The negative relationship with south-facing aspects (drier
and less productive) was weaker than expected given prior studies and
our landscape preconceptions. These relationships deserve further ex-
ploration in other semi-arid rangeland catchments. This study demon-
strates promise for improving regional carbon accounting in complex
terrain using fine resolution digital surface models and remote sensing.
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