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Abstract

Multple agents, equipped with a feature-based phonetic model and a
connectionist cognitive model, interact via the naming game , with
lexicon formation and change as emergent properties of this complex
adaptive system. We present a new description of the naming game,
situating it as a general, implementation-independent paradigm. Our
additon of richer phonetic and cognitive models provides the agents
with a greater degree of cognitive validity than does earlier work, while
enhancing the flexibility of the systemn and reproducing empirical results.
Feature-based phonetics, piecewise reinforcement learning, and a
connectionist architecture with local representation allows language
discnmination based on schemata instead of entire utterances.

Introduction

All things change. Despite societal and personal
predispositions towards stability, constant modification is an
incontrovertible fact, irrespective of the observed impact on
our quotidian existence. We may not be cognizant, as
individuals, of the process of change as it occurs, because the
brief time span of a human life does not permit the recognition
of developments preceding great change; events do not always
match the meteoric pace set by the limits of our frail biology,
but rather transpire with a certain glacial implacability. One
phenomenon with which we are all intimately acquainted that
undergoes just such an incremental process of adjustment is
natural language; the idiolect of any single individual remains
relatively fixed subsequent to the initial acquisition of the
mother tongue, yet the language as a whole clearly experiences
periodic alteration.

It is no coincidence that the description above of a gradual,
gradational modification also applies to evolution by natural
selection, since language change shares many of the basic
attributes of its biological parallel. The deliberate nature of
this type of process can obfuscate the situation from an
individual perspective. This tendency was exacerbated in the
late 19* century by the conflation of language change with an
incomplete comprehension of the biological principle -
obsession with progress, and the usurption for this goal of the
phrase ‘survival of the fittest’ — leading to the simultaneous
adoption of both historical reconstruction, which would map
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out the myriad developments in the evolution of language and
prescriptive grammar, where the stated goal is to maintain the
purity of the current linguistic norms.

20" century linguists have relinquished their grip on the reins
and recognized the inevitability of language change, but have
been unable to converge upon a single theory, or more
accurately, have been unable to produce a universally
compelling explanatory mechanism for language change. It
puts modern linguists in much the same position as biologists
before the advent of Darwin’s theory of natural selection, or
perhaps before the discovery of DNA by Watson & Crick;
there is a universal acceptance of a general process, but the
details are not known.

Unfortunately, the data available for historical research is
limited since the vast majority of the world’s languages spoken
to date had no written form, and much of what was committed
to paper(or other appropriate media) has been lost. Controlled
linguistic experimentation is extraordinarily difficult, the more
so when the phenomenon we are examining would require
investigations which would not begin to bear fruit for several
generations. The linguistic analogue to Drosophilia is not
obvious; there simply are no biological entities which exhibit
sufficient similarities to human linguistic communication to
make experimentation worthwhile and are also short-lived
enough for such experiments to be feasible. Fortunately,
modern computers are sufficiently powerful to enable us to
produce simulations of language change which are, to a certain
degree, cognitively and linguistically accurate, yet simplistic
enough to allow controlled investigation of this phenomenon.

Much recent work has been done in this vein, in particular by
the members of the Sony CSL Paris, examining language as a
complex adaptive system which produces language change as
emergent behaviour. [9] postulates that four factors are
necessary for linguistic variation and evolution to occur: self-
organization, stochasticity in transmission and production,
tolerance of minor linguistic variation, and a certain rate of
population change. The authors first produced completely
deterministic agents, showing that linguistic variation was not
tolerated. As aresult, the final model (reported in [8], [9], and
prototypically in [7]) of agent-internal linguistic processing is
something of ahybrid, with probabilistic measures grafted onto
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what is essentially a deterministic backbone, while linguistic
utterances in the system are represented by a random sequence
of characters. We present a new system for investigating
lexicon change which follows a framework for agent
interaction similar to the Steels and Kaplan model; however,
we have made our system more valid from a cognitive
perspective by using artificial neural networks for the agent-
internal cognitive model and a phonetic model based on
Chomsky-Halle binary features for utterances.

Agent Interactions: The Naming Game

It is foolhardy to undertake research involving multiple
software agents without a principled framework within which
the agents can interact; that is, the precise details of all possible
interactions between agents and their environment (and / or
each other) must be specified in an unambiguous fashion. To
this end, [7] introduces the naming game, an austere paradigm
for interaction tailored especially for the development,
transmission, and evolution of a lexicon in either a static or
dynamic population of agents.

The naming game is appropriate for a population of agents
and a number objects'; an interaction proceeds as follows:

1) Two agents are selected from the population; one is

designated as the Speaker, the other as the Hearer.

2) The Speaker chooses an object, possibly at random.

3) The Speaker, through whatever process encoded in the
agent model, names the object; that is, accesses the
appropriate form-meaning pair, and produces the form.

4) The Speaker (virtually) points at the object.

5) The Hearer interprets this combination of linguistic and
extra-linguistic information produced by the speaker to
be a reference to some particular object.

6) The game succeeds if the Hearer correctly interprets the
information provided by the Speaker; if the agents do
not agree on the object referenced, then the game fails.

Presumably, upon completion of a naming game interaction,
learning occurs; while the bulk of research which follows this
paradigm uses some variation of the adaptive rules outlined in
[9], there is no reason to suppose that this framework must be
coupled with that particular set of learning rules. In fact, we
demonstrate that the naming game provides an excellent
paradigm for use with agents possessing different internal
mechanisms and learning procedures.

The procedure outlined above is the naming game in its
simplest incarnation; many enhancements can, and have been,
made, including noisy channels for both linguistic and ‘visual’
communication, and changing populations of both agents and
objects.

One might imagine that the naming game is not a valid
model of language acquisition, since the Hearer has no way of

!Usually these are software agents and virtual
objects, but some work has been done with autonomous
robots. [9]
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knowing that the spoken utterance names the object; it could
conceivably be any form of communication, or even none at
all. However, the naming game is intended to model neither
language acquisition nor the origins of language, but rather
language coalescence and change through highly constrained
interactions between adult speakers,

The Phonetic Model

Rather than retain the character-based randomly-generated
words of earlier systems, we have chosen to move towards
linguistic validity by the inclusion of a rudimentary feature-
based phonetic model.

Our agents communicate by means of single-syllable
utterances consisting of a consonant followed by a vowel.
Each phoneme is represented by a set of binary features loosely
based on Chomsky-Halle features and the cardinal vowel
system (see Table 1)

Table 1: Binary Feature Matrix for Phonemes

Consonants 11 Vowels
PN 3357099231133537 § 1332300
Ant | + + + |+ - Closed
Cor + + - |+ |+ Mid
Ved |- k- F-BEFERFFFREH BRLELRL B Back]
(Cont |-1-b-bHl- - Bebel- |- Bepe]- |- B

There appears to be little to differentiate a model consisting
of a sequence of characters from one which consists of a
sequence of abstract phonemes represented by binary feature
sets, but the phonetic model we introduce does in fact provide
at least one major advantage other than the semblance of
cognitive validity. Rather than forcing each of the features to
have a discrete binary value of either zero or one, we allow
values across the real interval (0,1). Not only does this allow
a much more flexible connectionist implementation than the
equivalent using binary features, but it is in fact phonetically
justified. The cardinal vowel system is little more than a set of
standard reference locations for the infinitely variable tongue
position observed in vowel production in the real world.
Similarly, voicing delays on consonants vary from speaker to
speaker and context to context, as do tongue positions in
consonant.

By moving away from the character-based model, which can
only encode a fixed amount of information depending on the
character set, we arrive at a representation which allows us to
encode a much higher degree of variability in the utterances,
modelling crudely the acoustic signals received by the human
ear.

Agents’ Internal Neural Nets

Each agent is furnished with two completely separate
neural networks, one for determining the utterance from
precise object information (henceforth the S-Net, or Speech
Network), and one for settling upon a particular object given



an utterance and (possibly) some non-linguistic information
(the H-Net, or Hearing Network).

The S-Net

The neural net used for the production of utterances is of
extraordinarily simple design. Itis atwo-layer, fully connected
network, with an input node for each distinct object in the
simulation and one node in the output layer for each phonetic
feature in a word. Once the Speaker has randomly chosen an
object as the topic, the activation of the corresponding input
node 1s set to 1.0, while that of all other nodes becomes 0.0.
The activation level on an output feature node is simply the
sum of all inputs to the node, with no use of a threshold or
normalization. Thus, the weights on the links from the active
object node appear directly on the output layer; the range of
values for the weights is the continuous interval [0,1], as this
also defines the values desired for our features. The
activations of the output nodes can therefore be interpreted
directly as values for the corresponding features.

The H-Net

The H-Net is also a two-layer, fully connected network, with
an output layer which is virtually competitive; inhibitory links
are not implemented directly, but rather through a winner-take-
all choice.

The output of the Speaker’s S-Net is placed directly on
nodes in the input layer of the Hearer’s H-Net, modelling the
reception of auditory information. There is a further subset of
the H-Net input layer which is dedicated to extra-linguistic
information.

This extra-linguistic information is meant to correspond
vaguely to the real-world visual cues experienced by the Hearer
in a naming game where the Speaker points at an object.
Accordingly, the topic receives the highest score of all objects:
not a perfect score, but rather arandom number between % and
1. Four or five other potential objects are assigned smaller
scores between 0 and Y2 to represent physical proximity to the
topic, the main source of ambiguity in pointing. The random
choice of error-objects and the high degree of variability in the
object scores is an attempt to crudely model a wide variety of
pointing situations, where the topic will be surrounded by
different objects in different configurations in every
interaction. This differs significantly from a fixed object
layout, pointed to in every interaction, since in that restricted
instance, certain objects will never need to be disambiguated
by phonetic information.

Once the input layer is fully initialized, activation levels for
the output layer are calculated with a straight sum of products
rule. The scores of the object nodes are compared, and the
node with the highest score is chosen as the eventual winner of
the virtual competition within this layer.

This object chosen by the H-Net is compared with the
original topic, and the success of the game determined.
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Training Regimen

Individual speakers are unlikely to drastically change their
speech patterns when they are being understood; similarly, if
a listener is able to comprehend a speaker, there is little reason
to adapt one's model of the language to their accent.
Accordingly, in our model, learning only occurs when the
naming game fails.

In the real world, communication occurs for a purpose, and
in the case of a misunderstanding about the topic of a
conversation, it is unlikely that the participants will simply give
up; the speaker will repeat the word, and perhaps even identify
the object physically in an unambiguous manner (i.e. by
picking it up). It is therefore reasonable to suppose that the
Hearer agents are familiar with both the utterance produced by
the Speaker and with the intended topic, even when the naming
game does not succeed. We have arbitrarily chosen to have the
Hearer adapt its behaviour to match the Speaker; when
discussing this object in the future, the Hearer’s speech will
more closely resemble that of the Speaker, and the Hearer will
also be more accepting of utterances similar to the Speaker’s
designation for that topic.

Initialization

All phoneme-object weights in both the S-Net and the H-Net
are initialized to random values between O and 1, representing
in the first instance phoneme values, and in the latter relative
contribution of features to the object score.

Since the weights in the H-Net between the input and output
object nodes undergo no training, their initialization must be
performed more carefully. Weights between input and output
nodes which represent the same object are set to 0.6, while all
other weights in this set are given random values uniformly
distributed over the interval [0,0.5]. This approach attempts to
model in a simple way similarities between objects, while
avoiding the undesirable extremes where object information
either overpowers the contribution of the object’s name or
cannot affect the result.

S-Net Training

One of the tasks of the Hearer is to interpret the continuous
phonetic output of the Speaker in terms of idealized binary
features. This is implicit in the normal actions of the H-Net,
but explicit during S-Net training; rather than adapting its
speech towards the actual output of the Speaker, the Hearer
moves its speech towards an idealized binary feature set.
Because we only train the Hearer when the naming game fails,
its speech will never reach this ideal, but will only move in that
direction as far as is necessary for effective communication to
occur.

w=1/2 1
‘=1 — 1
W Tt (D
w'=4(w-1/2)" +1/2 2)



Each feature in the S-Net of the Hearer is examined
independently to determine if its idealized value is the same as
that of the corresponding feature in the Speaker’s utterance. If
s0, its value is reinforced (see equation 1); if not, it is punished
(see equation 2). The punishment equation moves values
towards 0.5, while the reinforcement function moves values
towards (but not beyond) | or 0, depending on the polarity of
the weight. A random number between -0.05w’ and 0.05w" is
then generated and added to this new value, and this ‘fuzzy’
result is forced within the interval [0,1]. This last step is
required, else punishment will set the weight on an exponential
growth pattern. The random fuzz is also necessary, since the
punishment function, on its own, will never force a weight
across the fixed point of 0.5.

H-Net Training

The only weights in the H-Net which are trained are those
between the phonetic input nodes and the output nodes (as
discussed above, the object weights remain fixed at their initial
values). Again, training only occurs when the Hearer has
chosen the wrong object; the goal of this weight modification
is to make the H-Net more likely to settle on the correct topic
when given similar phonetic input in the future.

There are a number of ways to accomplish this result, but we
settled on decreasing the score of the false positive, and
increasing the score of the correct answer. This is a very
straightforward procedure which does not overly complicate
the dynamics of the network, and tends to restrict the weights
to a reasonable range.

w=w-=0-w-p (3)

'=w+d-w-p 4)
At the implementation level, we apply equation (3) to the
false positives, and equation (4) to the missed answer; in these
equations, w “is the new weight, w is the old weight, dis the
learning rate, and p is the value on the phonetic input node.
Essentially, we modify the weight by a certain percentage of its
contribution to the activation of the object node in question.
The current value of & in the system is 0.05, and since the
value of p ranges from O to 1, in practice, the weight is
modified by an average of 2.5% of its own value.

The Simulation World

We have tested and run our simulation with up to 50 agents
and 20 objects, but for the most part we have kept to 20 agents
and 10 objects, so that our results are comparable to those of
[9]; these numbers seem to produce interesting results, yet have
simulation run times which are reasonable.

Each agent has its H-Net and S-Net randomly initialized as
described above. There is no internal communication between
the nets, and we do not explicitly train the agents to understand
their own utterances; the eventual consistency exhibited by the
system is a result of self-organization (at a societal, rather than
agent level).

We conduct instances of the naming game in groups of 20;
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the agents speak in order, and a random partner is chosen to be
the Hearer. This approach has the advantage that speech
starvation will not occur — every agent gets its chance to speak
— but it is theoretically possible that an agent could survive a
simulation completely unchanged, never being selected as the
Hearer. However, the probabilities involved are so small that
it is not an issue at present, and starvation-avoidance
techniques could be easily added it if became a problem.

In the next section, we present results from four different
types of simulation runs: with and without population flux,
with either 5000 or 20,000 groups of naming game
interactions. Since each group consists of 20 naming games,
altogether the simulations consist of 100,000 and 400,000
instances of the naming game. In the simulations with
population flux, a random individual is removed every 2000
games and a new, randomly initialized agent takes its place; in
the longest simulations with population flux, there have been
200 new individuals inserted in the population.

Experimental Results

In some initial experiments with a learning rate (8) of 0.20,
we achieved an 86% average naming game success rate in
interactions without object information given to the Hearers,
and a 95% average success rate when such information was
provided. This latter figure rose to 98% when the learning rate
was changed to 0.05. We recently ran several simulations
using only the object information, which resulted in a success
rate of around 50%.

In our long-term trials, we achieved success rates around
95% when the population was stable. Certain periods of the
simulation exhibited success rates around 98%, but the global
average was lower because of language change and periods of
instability, With a dynamic population, the success rate hovers
around 80%.

Form Distributions

In order to quantify the development of our agents we
plotted, for each object, the number of speakers for each
linguistic variant as a function of time. Since we ran 15
simulations with a static population and had 10 objects in each,
this gives a total of 150 separate graphs over the length of
100,000 games, 60 over 400,000 games. Examining these
graphs, we recognized that they fell into several different
patterns, based both on the overall appearance of the graph,
and some underlying statistics.

In dominance, one form (almost) completely dominates the
phonetic space quickly, and retains control for the duration of
the simulation (See Fig 1a). In 70-30 graphs, two forms exist
in the population, one spoken by about 70% of agents, the
other by about 30% (See Fig 1b). Parity graphs have two
common forms, splitting the majority of speakers between
them (Fig 1c). When a large number of competing forms arise
(usually 4), none spoken by more than 40% of the population
(See Fig 1d), we call this a mush graph. In the step-up pattern,
one form appears destined for dominance, but it is overtaken
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Figure 1: The graphs above represent the number of
speakers of linguistic variants as a function of time for a
particular object. The vertical axis counts the number of
agents speaking a form, while the horizontal axis represents
time. Each shade of gray shows the frequency fluctuations
over time for a particular linguistic form. Each graph is a
canonical example for its category: (a) dominance (b) 70-30
(c) parity (d) mush (e) step-up (f) switch. As an example,
graph (c) shows a simulation where two forms, after an
initial learning period, achieve a steady state where each is
spoken by about half the population.

sy J_H_p"r' F,ru'(_\—\_, a—
yo -;::*____ |.

o e

Table 2: Relative Frequency of Form Patterns

Form % of Static Pop. % of Dynamic Pop.
Patterns ‘4

B 00k games|400k games |100k gamesp00k games|
Dom. 30 38 30 21
70-30 9 17 9 2
Parity 16 12 9 3
Mush 30 7 12 3
Step-Up 9 17 26 24
Switch 6 10 13 47
Total # of 150 60 160 70
Graphs
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by a second form, which goes on to dominance (See Fig le).
Finally, some of the graphs exhibit a form switch, where one
form dominates with over 60% of the speakers for a period,
and then is replaced by a different form, which then dominates
(see Fig If).

Table 2 outlines the relative frequency (as a percentage) for
each category of graph. We show statistics for both our short
and long simulations, separated into runs with and without
population flux.

Obviously, these categories have very fuzzy boundaries, and
some graphs simply do not fit particularly well into any
category. However, there are clear examples of each group,
(including the switch form representing lexicon change) and
the fact that these particular patterns are the most common
provides insight into the learning processes of our agents.

Discussion

We are not willing to claim that coherence in language must
be due to self-organization, but our simulation (along with 8]
and [9]) makes it clear that extremely simple self-organizing
systems can achieve a coherent lexicon. Our results reinforce
the idea (presented in [9]) that population flux increases the
incidence of lexicon change, but we also show significant
change even in a static population (see [3] for a discussion).

When we examined the graphs of our simulations, we at first
had a difficult time reconciling a 95% success rate with the
fairly high frequency (30%) in short simulations of the mush
graph, where there were multiple competing forms. However,
an examination of the lexical forms in these mush patterns
revealed that all forms were fairly similar. The combination of
these forms and the weights on the network showed that our H-
Nets were acquiring schemata, which may include one or more
O (don't care) values, to use the notation of [5]. For example,
a particular H-Net recognized a voiced anterior consonant
followed by an ‘i’ as Object 8, regardless of whether the input
utterance was ‘di’, "zi’, ‘vi’, or ‘bi’; the agent has internalized
a schema which includes a O value for the coronal and
continuant features.

Schemata allow us to explain not only the high success rate
in the face of many variants, but also the stability shown by the
variants themselves. No matter which of the four forms above
is heard, the H-Net will settle on Object §; this allows all four
variants to flourish, since in the absence of misunderstanding,
no learning occurs, and the forms are stable.

With our schemata firmly in hand, we can also investigate
the high degree of stability demonstrated in the parity and 70-
30 graphs. Both patterns exhibit two forms which together
dominate the population of speakers, which can be nicely
explained by the acquisition of a single O value by the H-Nets
of the population. The two patterns in fact represent different
facets of the same underlying situation: in the parity case, the
single-0 schema first dominates the population at a time when
the two forms have approximately equal shares of the speakers,



whereas in the 70-30 pattern, this stability is achieved when the
distribution is somewhat lopsided. The dominance graphs, of
course, are a result of H-Nets learning fully specified schemata
(i.e. no O values).

Even the step-up graphs rely to some extent on the existence
of schemata in the population of H-Nets. In this pattern, one
form achieves a certain degree of initial prominence amongst
the speakers, but is quickly overtaken by a similar form. In
fact, this occurs when part of the H-Net population settles on
aschema having a O value which allows the initial form. If at
some point before this schema dominates the population
(which would result in parity), a significant portion of the H-
Nets learn a fully specified schema for a different form which
is also allowed by the O-schema, this new form will eventually
take over. Even if the usurper’s frequency is initially low, the
new form will dominate, as it is meaningful to all agents,
whereas the first form is understood only by those with the O-
schema.

Another interesting phenomenon is the near-disappearance
of the mush pattern in longer simulations, especially those
involving population change. This is a more drastic example
of the process explained in the previous paragraph. Longer
simulation runs involve more lexicon change, and this tendency
is exacerbated by a changing population. The phonetic space
in our model is limited; since a mush form occupies far more
than its share of this limited resource, there is a certain degree
of pressure to reduce the number of O features. If for some
reason a form for another object moves into this space, object-
confusion will result. This will apply pressure to differentiate
the two schemata; the simplest adaptation is simply for the
mush pattern to lose one of its O values, resulting in a 70-30 or
aparity. Of course, this same process is moving these single-O
patterns into fully specified dominance.

Although less probable, the reverse operation also occurs in
our simulation, with parity patterns (one O) becoming mush
patterns (two Os). Over very long simulations, one would
expect these two forces to come into balance, resulting in a
relatively stable distribution of O features over the population.

Conclusions and Future Work

While the results reported in [8] and [9] are exciting, the
authors make little attempt to exhibit any sort of low-level
cognitive validity. Our approach recasts this earlier work in a
more natural form, introducing a connectionist cognitive model
for the agents and a much richer phonetic model. We have also
refigured the naming game paradigm as implementation-
independent, divorcing its description from the details of the
accompanying model, a characteristic which is distinctly
lacking in other definitions.

Our most significant result is not merely that language
emerges from our system, which we’ve taken care to provide
with a cognitively valid base, but rather that the linguistic
systems which our agents learn are themselves cognitively
valid. The schemata learned by the agents do not just provide
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an explanation of their behaviour, but represent valid phonetic
generalizations in their own right. Human speakers do not
learn fully specified feature sets, but rather schemata with one
or more O values. For example, English speakers do not
differentiate phonemically between aspirated and non-aspirated
consonants, whereas this has been constructed as a distinctive
difference in proto-Indo-European, a distant ancestor.

Clearly, some of the most exciting future work involves
following up the notion of the schemata which our agents
learn, determining how the distribution of schemata affects the
evolution of the system, and to what degree future behaviour
of the system can be predicted. These schemata should also
prove crucial in planned investigations of the complex
interactions at the border of two stable languages.

Both the phonetic model and the object model used in our
simulation could be improved. We plan to model physical
constraints of the vocal tract so as to have the agents produce
even more realistic sound combinations, which will allow us to
expand the feature set and thus the number of phonemes. We
hope to introduce an object model where objects are
represented by feature vectors rather than simply atomic nodes,
to see if hierarchical concepts might be instantiated as lexical
items under these conditions.

Our results build on other recent work, demonstrating not
only that modelling language as the emergent behaviour of a
complex adaptive system can be a valuable tool for linguistic
investigation, but that these systems can be created in a
cognitively valid manner.
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