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2.1 Is it possible to keep the core sub-critical by accreting at a constant Ṁ for
the ∼ 3 Myr gas disk lifetime? We define Mcore = Ṁτdisk as the size the
core can attain in the lifetime of the disk, assuming it is accreting at the
rate Ṁ associated with Mcrit (Equation 2.1) for the entire disk lifetime
(solid line). The cutoff mass for accretion to keep the core sub-critical is
Mcore = Mcrit (dotted line). At a higher accretion rate, the cores cannot
stay sub-critical because the accretion rate required to prevent runaway
would cause the core to grow larger than its assumed size.
The values of Mcore(Mcrit) are calculated for ρc = 3 g cm−3 (the typical
core mean density for Uranus and Neptune from Nettelmann et al. [123]),
κ0 = 0.1 cm2g−1, and µ = 2.3mp (mean molecular mass of H2/He gas). 12

2.2 Mp/Miso gives the planet mass in terms of the isolation mass. Matm/Mp

is the atmospheric mass fraction. Here we vary the gas-to-solid ratio,
illustrating that for ∼ isolation-mass cores the gas-to-solid ratio at the
onset of gas accretion is comparable to the final atmospheric mass frac-
tion. The horizontal lines mark ratios of 0.1 and 1, which are reasonable
for the onset of dynamical instability (see text). . . . . . . . . . . . . . . 24

2.3 How massive can a core grow as a function of stellocentric distance (out-
side the terrestrial planet region)? Here, we speculate that pebble isola-
tion sets the maximum core mass at distances comparable to those of the
ice giants. Closer in, standard planetesimal accretion may set the core
size. The maximum core mass that can be achieved by accreting planetes-
imals at random velocities of order the Hill velocity is shown (dashed line,
Equation 2.20). This mass is limited by the supply of planetesimals, so
plotted here is the (extreme) upper limit for standard growth. The solid
line marks the pebble isolation mass (Equation 2.4, scaled by a factor of
1/2), which is an upper limit for core growth via pebble accretion. The
shaded region below 10 MEarth represents (roughly) the scale at which
cores are sub-critical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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3.1 Distribution of eccentricities as a function of planet mass for (A) & (B)
observations, and (C) & (D) simulations. The eccentricity of observed
exoplanets is correlated with planet mass (A), which is recovered in our
simulations (C). In (B), planets orbiting metal-rich ([Fe/H]>0, blue, 235
points) stars exhibit a range of eccentricities. Planets orbiting metal-poor
stars ([Fe/H]<0, red, 76 points) are confined to e < 0.6. The highest-
eccentricity planets (e > 0.6) are giant planets with Mp > 0.5 Jupiter
masses (MJ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 This is matched in (D), in which we use total initial mass in planets
as a proxy for metallicity (see Section section 3.6). On all panels, the
upper contour denotes an enclosed probability of 90%, and each successive
contour below is a 10% decrement to the one above. . . . . . . . . . . . 57

3.2 Eccentricity vs. semimajor axis. (A) Observational eccentricity distri-
bution. The high-mass giant planets (m > 1.17 MJ, orange) exhibit
eccentricities 0 < e ≲ 1, and semimajor axes generally beyond 0.3 au,
while low-mass giants (purple) span 0.03-6 au in a. This is matched by
the simulations in (C), though the mass segregation in a is weaker. The
eccentricity envelope (black solid line) denotes the planet-planet scatter-
ing limit to the eccentricity (Equation 3.3). . . . . . . . . . . . . . . . . 58

3.2 In (B) and (D), we divide the planets into those belonging to systems or-
biting metal-rich ([Fe/H]>0, blue) and metal-poor ([Fe/H]<0, red) stars.
Note that observed planets in (B) with eccentricities approaching the
eccentricity envelope (blue band on plot) preferentially come from sys-
tems with super-solar metallicity ([Fe/H]>0), which is matched by our
simulations (D). The contours are defined as in Figure 3.1. . . . . . . . . 59

3.3 Distribution of planet masses corresponding to Figures 3.1 and 3.2 for (A)
observations and (B) & (C) simulations. (C) displays the distribution of
Msini in our simulations that would be measured by the radial-velocity
method, as seen from a random “observer” (see Section 3.5) . . . . . . . 59

3.4 Eccentricities and masses vs. semimajor axis for simulations starting with
20 planets in the semimajor axis range 0.03 to 100 au. (A) Initial planet
masses are all 0.25 MJ. The inner, higher-mass planets (orange trian-
gles) grew via planet-planet collisions. The lower-mass (purple pluses),
outermost planets never collided. The vertical teal line at 1.6 au marks
where the escape velocity of a 0.25 MJ Saturn-radius planet is equal to
the orbital escape velocity of the planet from the star. (B) shows the
corresponding distribution of planet masses, including the median (red
dot), mean (blue dot), and maximum (green dot) masses. The vertical
blue bars mark one standard deviation about the mean. . . . . . . . . . 60
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3.4 Most high-mass planets form interior to the distance where vesc,p =
vesc,star. (C) and (D) provide corresponding plots to (A) and (B), respec-
tively, for a set of initial disk masses designed to match the distribution
used in Figures 3.1-3.3 (see text), but adjusted to incorporate the addi-
tional bin in log10(a) compared to the results shown in Section 5. In (D),
the values for the maximum planet masses that extend beyond the axis
range are printed in green by the error bars corresponding to each bin
in semimajor axis. The highest-mass products of collisional growth have
1 < a < 8 au. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 (A) Our 2D simulations reproduce the correlation between mass and
eccentricity in the distribution. (B) Planets orbiting high-metallicity
([Fe/H]>0, blue) stars are able to be excited to a higher eccentricities
than planets orbiting low-metallicity stars ([Fe/H]<0, red). Metallicities
are used as a proxy for the initial disk masses (Section 3.6). (C) and
(D) Distribution of eccentricities as a function of semimajor axis in our
2D simulations. In (C), the planets of higher mass (orange) occur more
frequently beyond ∼0.5 au, and can reach higher eccentricities than the
lower-mass (purple) planets, which are confined to e < 0.4. . . . . . . . . 62

3.5 In (D), planets orbiting high-metallicity stars are excited to higher eccen-
tricities than planets orbiting low-metallicity stars throughout the entire
semimajor axis range where they occur. The contours are defined as in
Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Illustration of a staggered grid with uneven spacing. The staggered grid
cells are centered at the regular grid cell boundaries. The ghost cells are
shaded in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Grid cell of length ∆r and cross-sectional area A containing absorbing
species H, H2, and He. Ionizing stellar flux of wavelength ν impacts the
cell on the left. After being absorbed in the cell, the flux is reduced to
e−τ times the original flux, Φ0, where τ is the optical depth through the
cell for the particular wavelength of interest. . . . . . . . . . . . . . . . . 89

4.3 Panel (A) shows the density profile for fiducial hot Jupiter at 0.05 au.
Panel (B) - its velocity profile. The red “X” marks the sonic point of
the wind. Panel (C) displays the pressure profile, and panel (D) - the
temperature profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 The composition of the atomosphere of our fiducial (0.05 au hot Jupiter)
planet by species. The dashed lines on Panel A denote the bolometric
region. The transition from: H2 → H occurs at 1.02RP, H → H+ -
1.64RP, and He → He+ - at 1.29RP. The molecular layer drops off
sharply at 1.04RP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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4.5 Panel (A): The heating and cooling rates as a result of the photoreactions
in the wind at the base near the molecular hydrogen layer (r < 1.04×1010

cm). The H2 layer is primarily heated by the photoioization of He, with
contributions from the photoionization of H2 deeper in the layer, and the
photoionization of H higher up. This is radiated away by the H+

3 . In the
atomic hydrogen layer (1.04× 1010 < r < 1.4× 1010 cm), Lyman-α is the
primary coolant, balancing equal contributions of the photoionization
of H and He. Panel (B): The heating and cooling rates as a result of
the photoreactions in the wind. The EUV heating is balanced by the
PdV cooling in the outflow (r > 1.4 × 1010 cm). At the base, Lyman-α
contributes significantly. The EUV heating is predominately due to the
ionization of atomic hydrogen in the wind. We note that the PdV work
term here balances the sum of the EUV heating and advection terms -
as temperature decreases with distance from the planet, thermal energy
is added to power the wind. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 The balance of energy deposition and loss at the base of our fiducial hot
Jupiter atmosphere. Panel a is zoomed in to the H2 layer at the base,
which is H+

3 -cooled. Panel b shows the region just above, dominated
by H, which is primarily Lyman-α-cooled. The EUV heating rate (after
overcoming the ionization potentials of the ionizing species) is shown in
magenta. The cooling processes that balance the heating are: H+

3 in
the molecular layer (red), Lyman-α in the neutral atomic hydrogen layer
(purple dashed), transitioning to a PdV -dominated outflow layer beyond
∼ 1.45 RP (black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 The highest-energy photons (165.3-55.1 eV) τν = 1 surfaces lie within
the molecular layer - a significant part of the heating attributed to those
energies is H+

3 -cooled. The photons in the 55.1-15.0 eV energy range have
τν = 1 within the layer cooled by Lyman-α - heating due to especially
the higher end of this energy range is affected significantly by Lyman-α
cooling. Finally, photons in the 15.0-13.6 eV energy range ionize neutral
hydrogen and are mostly all available to power the outflow. . . . . . . . 96

4.7 Cross sections for absorption and ionization of H2, H and He. The bins
are wavelength bins of width 50Å, and the dots are emission lines. Panel
a: total photoabsorption cross section of H2 (black). Plotted in black is
the minimum wavelength for dissociation of H2 into atomic hydrogen via
absorption of a far-ultraviolet photon. . . . . . . . . . . . . . . . . . . . 120
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4.7 Wavelengths shortward are absorbed by atomic hydrogen. 1110 Å is the
beginning of the line-dominated spectrum: longward absorption is weak-
ened. The H2 photoionization threshold is the gray dotted-dashed line.
Panel c: rate of given photoreaction as a fraction of the total photoreac-
tion rate rate for different spectral energies. H absorbs all photons below
the ionization threshold of He and > 13.6 eV. Panel d: the heating rate
of the gas as a function of energy, with the bins connected by the black
solid line, and the emission lines plotted as dots. Close to the ionization
thresholds of H and He, a significant fraction of the energy goes toward
ionization, corresponding to the dips in the plot. We note that this heat-
ing rate is the energy available to heat the gas after taking ionization into
account, not accounting for radiative cooling. . . . . . . . . . . . . . . . 121
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derived in Equation (4.33). The brown solid and purple dashed lines
represent the process of H2 and H exchanging an electron: this reaction
pair does not lead to the destruction of H2. Instead, H2 is thermally
dissociated (orange line) at ∼ 1.04 planetary radii. The key reaction
of H+

2 with H2 to form H+
3 , the most important coolant in this layer, is

plotted in red. The photoionization of H2 is plotted in blue; the formation
of H+

2 is a crucial step in forming H+
3 . Interestingly, the far-ultraviolet

dissociation of H2 (green line) increases as we go deeper in the layer -
the 12.7 eV photons responsible for this process are also some of the
lowest-energy in our spectrum. Advection is plotted as a gray dotted
line; its sign follows the convention established in Figure 4.5: as the sign
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4.9 Reaction rates involving H. Panel a: zoomed in to molcular hydrogen
layer. Panel b: 1.06 to ∼ 8.8RP. As in Figure 4.8, the green solid and
red dotted lines represent the electron exchange between H2 and H. The
purple solid line marks the production of H as a result of the thermal
dissociation of H2 at the boundary of the molecular layer. The blue solid
line is the photoionization of H. In the outflow (Panel b), the ionization
of H is exactly balanced by the advection of H (brown dashed line), with
a small contribution from recombination (orange). The sign convention
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4.10 The three-layer diagram of the outcome of our model. The inner layer
is the H2 layer cooled by H+

3 , where the highest-energy photons are de-
posited. The neutral atomic hydrogen layer further up is predominately
cooled by Lyman-α, with a contribution from PdV as well. Intermediate-
energy photons are depostied there. The outflow layer is cooled via PdV .
Its structure is shown as a hydrodynamic outflow out to the sonic point,
extending out to the Hill radius of the planet, where the gas becomes un-
bound from the planet. The exobase, where the outflow can is no longer
collisional, is shown. The spectrum below the diagram corresponds to the
P200 model from Richards et al. [74] with a high level of steller activity.
The dots on the spectrum represent emission lines, and the bins are 20
wavelength bins with widths of 50 Å. . . . . . . . . . . . . . . . . . . . . 124

4.10 The 165.3-55.1 eV photons’ τ = 1 surfaces lie within the H+
3 -cooled layer,

the 48.4-15.0 eV - within the Lyman-α-cooled layer, and the 14.2-13.6 -
within the outflow layer. The 12.7 eV photons responsible for the reso-
nant dissociation of H2 reach deeper in the H+

3 - cooled layer. . . . . . . 125
4.11 Heating and cooling rates for selected energy bins. The energy is allocated

according to the expressions from Section 4.3.2. The panels display the
breakdown of the heating rate as a result of all of the photoreactions with
radius. Panels a-f are zoomed in at the base, where radiative cooling is
important. H+

3 cooling dominates panels a-c, whilst Lyman-α is the main
cooling source in panels d-f. He ionization is an important heating source
in panels a-c, while H ionization becomes more important for heating in
panels d-i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.11 Although dominated by Lyman-α, panels g and h still display significant
contributions to the PdV term from the intermediate energy ranges in
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primarily goes into driving the PdV outflow (though the advective term
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4.12 PdVν , ΛH+
3 ,ν , ΛLyα,ν normalized by the stellar heating rate Γν . The

cooling terms balance the sum of advection and stellar heating (normal-
ized by the stellar heating) in steady state (Equation (4.34)). Panel a is
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as a boundary region). Panel b is shown for r > 1.035RP, the transition
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4.13 As in Figure 4.12, ΛH+
3 ,ν and ΛLyα,ν are normalized by the stellar heating

rate Γν . The PdV term is shown as a cumulative fraction from the low-
to the high-energy bins. As the low-energy bins are dominated by PdV -
cooling (red line), the cumulative term gives a sense of where in the
spectrum most of the PdV outflow power is derived. 0.25 of the PdV
comes from bins left of the vertical dotted line, 0.5 - of the solid line, 0.75
- of the dashed line, and 0.96 - of the dashed-dotted line. Beyond ∼ 70.8
eV, almost all of the energy is radiated away, predominately by H+

3 from
the base molecular layer in the atmosphere. . . . . . . . . . . . . . . . . 129
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4.18 Reation rates involving molecular hydrogen. Panel a shows our fiducial
hot Jupiter model with full radiative cooling. Panel b - only Lyman-α
cooling, panel c - only H+

3 cooling, and panel d - all radiative cooling
turned off. The hatched region at the base denotes the bolometric region. 134
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4.20 Panel a: fraction of the total heating (after accounting for energy re-
quired for ionization) that ultimately is balanced by PdV work (dotted),
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3 cooling (solid). The PdV fraction
decreases with distance, implying that the outflow is increasingly not
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3 fraction re-
mains relatively constant: we expect the power output from H+

3 to go as
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the Lyman-α cooling as a fraction of the total avaiable heating. Panel b:
the total power output for the model including both H+
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4.20 The total EUV flux from the star incident on the planet is plotted in
orange. The heating rate (after ionization) is plotted in blue. The heating
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Abstract

Gas Giants in Extreme Environments

by

Renata Frelikh

In this thesis, I will explore three ideas that relate to giant planet formation, an

incredibly dynamic process that affects not only the orbital configurations, but also the

atmospheric structure and processes driven by the often extreme environments in which

these planets are embedded: (1) The formation of our solar system’s ice giants may have

involved significant migration due to a disk dynamical instability, as well as concurrent

accretion of solids and gas from the protoplanetary disk, that may have consequences

for their current atmospheric composition and evolution. (2) In exoplanetary systems,

gas giants have been discovered on orbits that are extremely eccentric, and in the inner

regions corresponding to the traditionally rocky planet region of our own solar system.

These exotic systems may have undergone a phase of giant impacts, analogous to the

phase that shaped our solar system’s inner planet region and resulted in the Moon-

forming impact. Such a phase produces outcomes that reproduce interesting features of

the population: the correlation of mass with eccentricity, and eccentricity with stellar

metallicity. (3) Finally, the atmospheres of the close-in planets are bathed in stellar

irradiation. Photochemical reactions occur as the upper layers of the atmospheres are

irradiated, and the massive amounts of deposited energy drive hydrodynamic winds

from the planets. This results in mass loss that can not only be observed in the cases
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of giants, but can shape the global structure of smaller planets, leaving an imprint on

entire populations of these planets.
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Chapter 1

Introduction

Giant planet atmospheres are a significant component of their overall structure,

in contrast to the relatively tenuous atmospheres of the rocky planets. The solar system’s

gas giants, Jupiter and Saturn, as well as the Jupiter-like exoplanets, such as the hot

and warm Jupiters discovered by radial-velocity surveys in exoplanetary systems, are

mostly atmospheres of H and He accreted from the primordial protoplanetary disk in

the process of runaway gas accretion. As such, their composition will roughly match

solar. The ice giants, such as Uranus and Neptune in our Solar System, and Neptune

analogs in exoplanetary systems, possess of order 10 % atmospheres by mass. Chapter 2

focuses on how these planets formed, specifically the question: are the intermediate-sized

atmospheres of the ice giants consistent with the classical planet formation scenario via

planetesimal accretion, while pebbles drift in with the protoplanetary disk gas from the

outer disk? Can the ice giants avoid runaway gas accretion into gas giants - is there a

way to limit their growth without appealing to a fine-tuned argument?
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In Chapter 3, we focus on stage of formation of the gas giants in exoplane-

tary systems that occurs after the gas disk has dissipated. An interesting feature in

the population of radial-velocity warm Jupiters is that mass and eccentricity are cor-

related. This is counterintuitive from what we would expect as a traditional outcome

of planet-planet scattering. When we view the sample as a population coming from a

distribution of disks with varying initial total planet mass, our n-body simulations pro-

duce the highest-eccentricity planets in the highest-mass disks, reproducing the trend

from the observations. Furthermore, as heavy element mass and stellar metallicity may

be correllated, using the disk mass as a proxy for stellar metallicity in our simulations

allows us to reproduce the observed correlation between stellar metallicity and eccen-

tricity. If the warm Jupiter population is an outcome of such a giant impacts phase,

it will leave in imprint on the distribution of giant planets with semimajor axis, with

the collisional growth products being more common in the region of collisional growth,

∼ 1− 8 au, and this will be tested with direct imaging surveys.

Chapter 4 focuses on the processes involved in shaping the atmospheres of the

giant planets on close-in orbits, specifically extreme-ultraviolet-driven atmospheric es-

cape. Bathed in ionizing radiation, the gas in the thermospheres of these planets ionizes,

and the residual energy is deposited as heat. This drives winds from the planets, reach-

ing velocities of km s−1 to ∼ tens of km s−1. However, the ionizing radiation also drives

photochemical processes that determine the chemical composition of the atmosphere at

different altitudes. The molecular hydrogen layer at the base of the thermospheric region

also contains H+
3 , an important infrared coolant for the gas. The atomic hydrogen in the
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thermally dissociated layer above is a source of significant Lyman-α cooling, an often

even stronger radiative coolant than the H+
3 . The energy radiated away is not available

to power escape, reducing the mass-loss rate substantially. How the energy budget of

the planet is allocated between radiative processes and driving a wind determines the

efficiency of atmospheric escape, and allows us to predict under which conditions escape

can occur.
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Chapter 2

Formation of Uranus and Neptune:

Fine-tuning in Core Accretion
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Abstract

Gas Giants in Extreme Environments

by

Renata Frelikh

Uranus and Neptune are ice giants with ∼ 15% atmospheres by mass, placing them in

an intermediate category between rocky planets and gas giants. These atmospheres are

too massive to have been primarily outgassed, yet they never underwent runaway gas

accretion. The ice giants never reached critical core mass (Mcrit) in a full gas disk, yet

their cores are ≳ Mcrit, suggesting that their envelopes were mainly accreted at the end

of the disk lifetime. Pebble accretion calls into question traditional slow atmospheric

growth during this phase. We show that the full-sized ice giants predominantly accreted

gas from a disk depleted by at least a factor of ∼ 100. Such a disk dissipates in ≲ 105

years. Why would both cores stay sub-critical for the entire ∼ Myr disk lifetime, only

to reach Mcrit in the final 105 years? This is fine tuned. Ice giants in the outer disk have

atmospheric mass fractions comparable to the disk gas-to-solid ratio during the bulk of

their gas accretion. This point in disk evolution coincides with a dynamical upheaval:

the gas loses its ability to efficiently damp the cores’ random velocities, allowing them

to be gravitationally excited by Jupiter and Saturn. We suggest that the ice giants’

cores began growing on closer-in orbits (staying sub-critical), and migrated out during

this dynamical instability. There, their orbits circularized after accreting much of their

mass in solids. Finally, they accreted their envelopes from a depleted nebula, where the
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sparseness of feeding zone gas prevented runaway.
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2.1 Introduction

Uranus and Neptune, ice giants with masses 14.5 ME and 17 ME, respectively,

consist of cores of rock and ice, surrounded by hydrogen and helium envelopes. Models of

the planets’ interiors indicate that these atmospheres comprise about 12-14% of Uranus

and 14-16% of Neptune by mass [123]. This places the ice giants in an intermediate

category between the rocky planets, with atmospheres likely dominated by outgassing,

and the gas giants, whose atmospheres are a result of runaway gas accretion from the

nebula.

A simple scaling argument suggests that the atmospheres of Uranus and Nep-

tune were primarily accreted from the nebula, rather than outgassed from the cores.

Suppose that the hydrogen was originally bound in the core as H2O. Releasing 2 ME

in hydrogen would require a starting mass of 18 ME of water, which is comparable to

the entire mass of the core. This is unfeasible, since after outgassing the core would

almost entirely consist of oxygen. (D. Stevenson - private communication). In principle,

2 ME of hydrogen can be released from 11 ME of NH3 or 8 ME of CH4. However, ob-

servations show that the carbon in protoplanetary disks is primarily bound in CO and

CO2 [124, 69], and that only 10-12% of the nitrogen is in ammonia ices [107]. This can

be understood by a theoretical argument: the disk abundances are inherited from the

interstellar medium, where the carbon is in CO2, and CO [110], and the nitrogen is in

N2. Though protoplanetary disk conditions favor CH4 and NH3, the reaction timescales

for the conversion of nitrogen to ammonia and carbon monoxide to methane are too
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long compared to the disk lifetime [119].

For our argument, we are interested in maximizing the potential contributions

of CH4 and NH3 to the core composition at the ice giants’ disk locations, which are

comparable to or beyond the snowline locations of CH4 (≃ 4 AU) and NH3 (≃ 23

AU) [127]. Since the presence of large amounts of pure CH4 and NH3 in the disk

is unlikely, we can consider an H2O planetary core with CH4 and NH3 mixed in at

abundances corresponding to the maximum observed abundances in a disk. We define

n× as the number density of species X. Using the maximum observed abundances of

nCH4,max = 0.13nH2O [124], and nNH3,max = 0.15nH2O [107], outgassing 2 ME of H2

requires a starting mass of ∼ 17 ME of a mixture of H2O, CH4, and NH3. Forming a

∼ 2 ME atmosphere would require releasing all of the hydrogen from the core, leaving

behind a ∼ 15 ME C/N/O core. Such an outcome is implausible: the ice giants’ cores

almost certainly contain hydrogen. A 100% dissociation efficiency is highly unlikely;

moreover, most of the hydrogen would remain mixed in the core, as it would not phase

separate [e.g. 135]. We conclude that the hydrogen envelopes of Uranus and Neptune

cannot be outgassed.

The standard scenario for the formation of planets with a significant gas com-

ponent is core growth by planetesimal accretion, followed by gas accretion [130] once a

critical core mass is reached. For the purposes of this paper, we define the critical core

mass (Mcrit) to be the mass required for the protoplanetary core to be able to accrete a

gas envelope with a mass Mgas comparable to the core mass by a given time (generally,

the gas disk lifetime). Once Mcore = Mgas, the atmosphere starts to contribute substan-
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tially to the gravitational potential of the planet, triggering runaway gas accretion by

nucleated instability [e.g. 130, 131]. We note that Mcrit is defined in two ways in the

literature: the steady state solution described by Rafikov [70], and the time evolving

solution [130]. The Rafikov [70] solution considers a core with an accretion luminosity

that is high enough that its gas envelope is able to reach equilibrium on a short timescale

compared to the disk lifetime. In this case, the envelope achieves a pseudo-steady state,

with radiative losses balancing heating by accreting planetesimals. So, Mcrit is the core

mass that is able to hold onto its own mass in gas, while continually being injected

with energy from accretion. The planet undergoes runaway gas accretion if the core

is able to grow to Mcrit in the lifetime of the disk. On the other hand, the Pollack

et al. [130] solution requires accretion to halt (or slow substantially) once the supply of

planetesimals is depleted, allowing the envelope to accumulate gas as it gradually cools

and undergoes Kelvin-Helmholtz (KH) contraction. If the core is able to accumulate its

own mass in gas within the lifetime of the full disk, it undergoes runaway gas accretion

and becomes a gas giant, with Mcrit being the core mass at the point when runaway

is triggered. When not otherwise specified, below we use Mcrit generically to mean the

mass at which a core is able to accrete Mgas = Mcore by any mechanism.

What separates the ice giants from the gas giants is their formation history:

during core growth, the former never exceeded Mcrit in a full gas disk. While sub-

critical, the relatively small cores were unable to accrete much gas, with the core mass

as a conservative upper limit to the mass of the atmosphere at any given time before

the planets reached critical core mass. On the other hand, if given sufficient time to
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accumulate gas, a super-critical core is able to accrete most of the gas in its feeding

zone, which in a full disk is typically sufficient to produce a gas giant.

The cores of Uranus and Neptune exceed reasonable estimates of the critical

core mass. One can imagine several scenarios to prevent runaway. A high enough

planetesimal accretion rate can cause the critical core mass to exceed the current core

masses of the ice giants (Section 2). However, the high accretion rate must be sustained

for the bulk of the gas disk lifetime, which is unlikely. As an alternative, the standard

explanation of Pollack et al. [130] avoids fine tuning by proposing the existence of a

stage of slow gas and planetesimal accretion that persists for a couple Myr. In this

stage, the composition of the ice giants remains similar to their present-day makeup

for a significant fraction of the gas disk lifetime. However, pebble accretion [117, 125]

makes this explanation newly problematic, as we will show in section 2.2. Finally, our

ice giants could have reached their final core masses in a largely depleted gas disk,

when there was just enough gas left in their feeding zones to accrete their intermediate-

sized atmospheres. We show in Section 3 that this corresponds to a disk mass of at

most ≲ 0.01 times its original mass, and show in Section 4 that this depleted disk gas

dissipates fairly quickly (≲ 105 years).

Once the gas is depleted to ≃ 0.01 of the full gas disk, the mass of gas in the

disk becomes comparable to the mass of solids. A solid-to-gas ratio of order unity is

a known factor for dynamical instability. This dynamical instability is triggered when

the gas becomes so depleted that it can no longer effectively damp the protoplanetary

cores’ random velocities. In Section 5, we discuss a possible solution for the fine tuning
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problem: there is a dynamical reason for the ice giants to accrete most of their mass in

gas at the end of the gas disk lifetime.

2.2 Avoiding runaway

We now discuss the standard ways to avoid runaway. In 2.1, we discuss the

possibility that the growing protoplanetary core could have accreted planetesimals so

quickly that the entropy deposited into the envelope was enough to prevent collapse. In

other words, Mcrit was larger than the current mass of the ice giants throughout the gas

disk lifetime. In this fast accretion regime, the atmosphere satisfies a static solution,

where the core and the envelope have reached a state of thermal equilibrium, with the

energy in balancing the energy out [70]. In 2.2, we consider the classical argument of

Pollack et al. [130], in which the ice giants’ core growth effectively halts at a mass lower

than would be necessary to quickly accrete an envelope. In this dynamic solution, which

differs from the scenario discussed in 2.1 in the sense that the atmosphere never reaches

a steady state, the atmosphere instead progresses through a period of slow gas accretion

limited by the cooling rate.

2.2.1 Can the cores stay sub-critical due to fast planetesimal accre-

tion?

As planetesimals are accreted onto a growing core, their gravitational potential

energy is released near the surface with an accretion luminosity L = GMpṀ/R. This

increases the temperature at the base of the atmosphere and puffs it up, thus decreasing
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Figure 2.1 Is it possible to keep the core sub-critical by accreting at a constant Ṁ for

the ∼ 3 Myr gas disk lifetime? We define Mcore = Ṁτdisk as the size the core can attain

in the lifetime of the disk, assuming it is accreting at the rate Ṁ associated with Mcrit

(Equation 2.1) for the entire disk lifetime (solid line). The cutoff mass for accretion to

keep the core sub-critical is Mcore = Mcrit (dotted line). At a higher accretion rate, the

cores cannot stay sub-critical because the accretion rate required to prevent runaway

would cause the core to grow larger than its assumed size.

The values of Mcore(Mcrit) are calculated for ρc = 3 g cm−3 (the typical core mean

density for Uranus and Neptune from Nettelmann et al. [123]), κ0 = 0.1 cm2g−1, and

µ = 2.3mp (mean molecular mass of H2/He gas).

the total atmospheric mass compared to that of an otherwise identical non-accreting

core, and increasing the amount of energy that must be radiated away to bind additional
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gas.

In Equation 2.1, we express the functional dependence of the critical core mass

on the planetesimal accretion rate (Ṁ) and the gas opacity in the outer radiative layer

of the atmosphere (κ0) from Rafikov [131]. We note that this is the applicable value for

Mcrit in the high accretion rate limit, for which energy in balances energy out.

Mcrit =

((
kB
µ

)4(4πρc
3

)1/3 κ0Ṁ

ζ0σG3

)s

, (2.1)

with constants of order unity s = 3
7+3δ and δ = 1.2, a constant ζ0 = 4 × 10−32 g−δ

that depends on δ, the mean molecular mass µ, the Boltzmann constant kB = 1.38 ×

10−16 cm2 g s−2 K−1, the gravitational constant G = 6.67 × 10−8 cm3 g−1 s−2, the

Stefan-Boltzmann constant σ = 5.67 × 10−5 g s−3 K−4, and the mean density of the

core ρc. In this context, the critical core mass is calculated assuming steady state can

be achieved. We note that a high accretion luminosity (e.g. comparable to that of a core

in the fast or intermediate accretion regime of Rafikov [70]) increases the total luminosity

of the core, causing it to evolve toward this steady state on timescales typically shorter

than the disk lifetime (τ ∼ E/L, where E is the total energy of the envelope).

How massive can the core grow in the lifetime of the gas disk (using τdisk ≃ 3

Myr as a conservative estimate) and stay sub-critical? The maximum accretion rate

that the core can sustain for the full disk lifetime without growing beyond its final size

Mcore is: Ṁ = Mcore/τdisk.

In Figure 1, we plot Equation 2.1 for κ = 0.1 cm2 g−1, a commonly assumed

opacity in protoplanetary disks [e.g 106, 129]. If Mcore = Ṁτdisk < Mcrit, where Ṁ
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is the accretion rate associated with Mcrit, then accretion can in principle keep the

core sub-critical. If accretion is not sustained at this value throughout the final stages

of core growth, which in standard models is comparable to the full disk lifetime, the

effective value of Mcrit is reduced. We may therefore calculate the maximum core mass

consistent with runaway prevented by sustained accretion at the rate Ṁ . We conclude

from Equation 2.1 that ∼ 10ME is the greatest mass the core can grow to in τdisk and

remain just sub-critical. In Figure 1, the accretion rate that gives a critical core mass

of 10ME allows the core to grow to 10ME in the lifetime of the disk. Increasing the

accretion rate to above this value is not enough to prevent runaway; to the contrary, it

gives rise to a super-critical core. We conclude that for our assumed values of opacity, a

high accretion rate could not have kept the ≳ 12ME cores of Uranus and Neptune from

reaching critical core mass.

The dependence of the critical core mass on opacity introduces a degree of

uncertainty. For example, increasing the grain opacity by an order of magnitude (≃1

cm2g−1) doubles the critical core mass, allowing the cores to stay sub-critical for the

lifetime of the disk for a limited range of accretion rates. However, this still requires

fine tuning: the cores would have had to accrete at a specific rate for the entire disk

lifetime.

In the discussion above, we have considered a scenario of core accretion in

which a steady-state solution for the envelope exists, given a high planetesimal accretion

rate Ṁ . In this scenario, planetesimal accretion acts as a continuous heating source for

the envelope that balances its outgoing luminosity, which prevents the envelope from
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contracting and sustains it in a steady state. It is plausible that the protoplanets were

in this high-accretion regime at some point in their evolution, but we have shown that

they could not have sustained it for their entire formation time, hence this is not a

way to prevent collapse. In 2.2, we discuss an alternate way the ice giants could have

avoided runaway by considering growth with a low planetesimal accretion rate, which

can be sustained for a significant fraction of the gas disk lifetime. If Ṁ is slow enough,

in principle the cores can be limited to small enough masses that they wouldn’t be able

to quickly accrete the amounts of gas necessary to trigger runaway gas accretion.

2.2.2 Discussion of the Classical Core Accretion Scenario

We now discuss the classical work of Pollack et al. [130], which models the

formation of the giant planets with a 3-phase process that includes the concurrent

accretion of gas and solids. We focus on the key assumptions of this model, and refer

to the original work for a detailed description of the model.

During Phase 1, the core grows by planetesimal accretion with a rate Ṁsolids

until it depletes the bulk of the material in its feeding zone with no replenishment

from the outside, reaching isolation mass at a time τiso. This model assumes that the

protoplanetary core carves a gap in the planetesimal disk, causing core growth to halt

at roughly the local isolation mass. The core starts accreting an envelope once the core

is massive enough that its escape speed is greater than the local sound speed of the gas.

The envelope is required to cool and contract for it to grow, and its growth rate can be

stalled by external heating. For example, the envelope cannot cool as efficiently via KH
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contraction if planetesimal accretion deposits extra energy into the envelope, compared

to the case with no planetesimal heating: the planetesimal accretion luminosity will be

part (if not the main component) of the planet’s total outgoing luminosity. This model

relies on the planetesimal accretion luminosity to be initially large, and then to drop to

less than the KH luminosity of the envelope. This can be achieved by cutting off the

supply of planetesimals by growing the core to isolation mass, assuming no radial drift

of solids through the gas. The key point is that accretion cuts off while the core remains

low enough mass to take extra time to accrete gas.

However, this is problematic: observations have shown the existence of pebbles

in the outer disk [105], which are mm/cm-sized particles that are well-coupled to the

gas. These particles may drift into the feeding zone with the gas and rapidly accrete

onto the core via pebble accretion [125, 117, 132], which has been shown to be extremely

efficient in forming cores even in the outer disk.

Rapid accretion of mm-cm sized planetesimals (known as pebbles) by gas-

assisted growth can reduce the growth timescales sufficiently to allow giant planets to

form at wide orbital distances. We define the Hill radius to be the distance from the

planet at which the gravity of the planet dominates over the tidal gravity of the Sun:

rH = a

(
Mc

3M⊙

)1/3

, (2.2)

where Mc is the mass of the core, M⊙ is the mass of the Sun, and a is the semimajor

axis of the planetary orbit. Under the most favorable conditions to gas-assisted growth,

pebbles are able to accrete once they enter the Hill sphere, increasing the cross-section
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for accretion significantly from the classical one derived for gravitational focusing. For

a review of classical growth rates, see Goldreich et al. [114].

The most favorable velocity at which the accreting particles approach the core

is given by the Hill velocity, vH = ΩrH (“shear-dominated regime” Goldreich et al.

[114], section 2.2). This is an appropriate value for low dispersion velocities, i.e. ≲ vH ,

for which accretion is 2-dimensional and particles approach the core due to Keplerian

shear. In the absence of damping, the cores themselves excite nearby particles to ∼ vH .

We note for reference that gas can both damp the dispersion velocities of particles and

- when turbulent - kick them to higher velocities. Which effect dominates depends on

particle size. According to pebble accretion, in the most favorable case, the collision

rate is equal to the Hill entry rate. Therefore, the cross-section for accretion from a thin

disk of particles is σacc ∼ HrH , where H is the particle scale height. For large (≳ ME)

cores accreting pebbles under typical disk conditions, the maximum growth rate (see

Rosenthal et al. [132]), assuming the existence of pebbles coupled to the gas in the outer

disk, is then:

Ṁ = ρσaccvrel =
Σ

H
rHHrHΩ = ΣrH

2Ω, (2.3)

where vrel is the relative velocity between the pebbles and the core, ρ and Σ are the

respective volume and surface mass densities of solids in the disk, and Ω is the local

Keplerian frequency. The cores cannot stay at 12 ME for very long: the timescale for

such a core to double its mass via pebble accretion can be as short as 105 years (Equation

2.3) at the current distance of Neptune in a disk with a Minimum Mass Solar Nebula

(MMSN) solid surface density profile [116]. We note that the minimum timescale for gas-
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assisted growth does not depend on the surface density of gas, which primarily affects

the sizes of the pebbles accreted [132], and that increasing the surface density in solids

can significantly decrease this timescale. The fast growth rates predicted by pebble

accretion for large cores and the fact that radial drift through the disk replenishes the

planetesimal supply are problematic for the original core accretion interpretation for ice

giants, which relies on core growth halting at the isolation mass. In other words, having

a roughly fixed-mass core over timescales comparable to the disk lifetime is needed for

slow gas accumulation to explain the properties of the ice giants’ envelopes without fine

tuning, and gas-assisted growth suggests that ∼ 12ME cores should grow rapidly.

Pebble isolation [118] can possibly save the original interpretation: pebble

accretion can be halted once the core reaches a mass at which the core can gravitationally

perturb the gas disk such that entrainment in gas flowing around the core stops the drift

of pebbles onto the core. We now estimate the pebble isolation mass (see Rosenthal

et al. [132] for a detailed discussion). We define the Bondi radius as the radius at which

the gravitational potential energy of the core equals the thermal energy of the gas:

RB = 2GMc/c
2
s, where cs is the sound speed of the gas and Mc is the core mass. The

pebble isolation mass is the core mass required for the Bondi radius to surpass the Hill

radius:

Miso,peb ≃
(

a3

24M⊙G3

)1/2

c3s ≃ 27ME

( a

20AU

)3/4
, (2.4)

using a temperature profile of T = 300(a/AU)−1/2 K appropriate for the MMSN in

estimating the sound speed. Our estimate of Miso,peb at ice-giant distances is close

enough (to within an order of magnitude) to the current core masses of Uranus and
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Neptune that halting accretion of pebble-sized objects via this mechanism cannot be

ruled out with certainty. Alternatively, pebble accretion can halt if the supply of pebbles

in the outer disk is cut off, which, based on the observations of Andrews et al. [105], we

suppose is a less likely explanation.

Assuming core growth can be halted at a mass low enough that the planet

cannot quickly accumulate a mass in gas large enough to trigger runaway gas accretion,

the planet enters a long-lived phase of simultaneous, slow accretion of solids and gas

(Phase 2), which ends when the core accumulates a mass in gas comparable to its own

mass. We note that the length of Phase 2 depends strongly on the opacity, which is

uncertain. Work including realistic opacities by Movshovitz et al. [122] and Mordasini

[121] suggests that the values for the opacities used in the classical Pollack et al. [130]

simulations were too high, suggesting that it is even worth considering grain-free models

in giant planet formation. Additional models including protoplanetary disk opacities

by Piso et al. [128] showed that taking into account grain growth lowered the envelope

opacity, yielding significantly faster runaway accretion timescales.

Finally, for this 3-phase scenario to work, the timescale to accrete the ∼ 2ME

atmospheres of Uranus and Neptune would have to be comparable to or greater than

τdisk − τiso, which is a couple Myr. Furthermore, Jupiter and Saturn must have reached

runaway in the ∼ 3 Myr lifetime of the gas disk, which does not happen for the high

opacities used in Pollack et al. [130]. We note that the timescale for KH contraction (and

hence the critical core mass for low planetesimal accretion rates) varies as a function of

distance from the star primariy due to changes in opacity. Opacities in the interstellar
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medium scale with temperature as κ ∝ T 2, and, as shown in Piso et al. [128], the

critical core mass declines with distance from the star. More realistically, once grains

have grown, the opacity typically loses its temperature dependence, and the resulting

critical core mass is a weakly declining function of stellocentric distance. So, for this

scenario to be correct, Jupiter and Saturn must have had only marginally enough time

to achieve runaway.

Given the difficulty in constraining the timescales of envelope growth due to

the uncertainties in opacities, the specific opacities required to grow the atmospheres of

Jupiter and Saturn within reasonable estimates for gas disk lifetimes without turning

Uranus and Neptune into gas giants, and the challenges in halting the growth of a core

experiencing pebble accretion, we find it valuable to consider our proposed dynamical

alternative.

2.3 How Depleted is the Gas at the Onset of Gas Accre-

tion?

We have suggested that the fully grown cores of Uranus and Neptune could not

have accreted their atmospheres from a full gas disk. Instead, the cores accreted the bulk

of their gas from a depleted disk late in its lifetime. Here we calculate the maximum

gas mass available for accretion in the depleted disk. We note that the atmospheric

growth timescale is dominated by the last doubling timescale for the atmosphere [e.g.

127], and that the fully grown cores were massive enough to accrete all of the gas in
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their respective feeding zones on short timescales, unless limited by the solid accretion

luminosity (see Section 5).

To calculate how depleted the disk has to be at the onset of gas accretion

to produce the observed envelope masses of the ice giants, we set the mass of gas in

each feeding zone equal to the mass of each planet’s atmosphere, respectively. We

approximate a planetary feeding zone with an annulus at a distance a (the planet’s

semi-major axis) from the Sun, with a width of ∆a of ≃ 5 Hill radii (see Schlichting

[133]). The Hill radius, rH , is the distance from the planet at which the gravity of the

planet dominates the gravity of the Sun (i.e. the distance scale relevant to the planet’s

ability to accrete material):

rH = a

(
Mc

3M⊙

)1/3

, (2.5)

where Mc is the mass of the core, M⊙ is the mass of the Sun. The atmosphere of an ice

giant is not massive enough to contribute substantially to the planet’s gravity, so we use

the core mass instead of the total planet mass in the Hill radius definition. Thus, though

not entirely self-consistent, the following is reasonable estimate of the gas feeding zone

mass, given that the core dominates the gravitational potential of the planet:

Mg ≃ 2πa∆aΣg(a), where (2.6)

Σg(a) is the mass surface density of gas in the depleted disk at a distance a from the

Sun. We assume that Σg(a) stays roughly constant across the width of the feeding zone.

Taking ∆a ≃ 5rH , this gives us:

Mg ≃ 10πa2
(

Mc

3M⊙

)1/3

Σg(a). (2.7)
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We denote the surface density of the full gas disk as Σg,0. We define a disk

depletion factor: f ≡ Σg/Σg,0. Setting Mg = Matm in Equation 2.7 gives us the

depletion factor at the onset of gas accretion:

f =
Σg

Σg,0
≃ Matm

Mg,0
≃ Matm

10πa2Σg,0

(
3M⊙
Mc

)1/3

. (2.8)

This depletion factor can also be understood as the fraction of the original, full gas disk

feeding zone mass, Mg,0, that ended up in the atmosphere of the planet.

We use the MMSN model’s disk surface density profile [116],

Σg,0 = 1700
( a

AU

)−3/2
g cm−2, (2.9)

the current values of a, and total planetary gas masses from Nettelmann et al. [123] to

calculate that f ≃ 0.01 when Uranus and Neptune entered the stage of gas accretion

during which their atmospheres acquired most of their mass. This calculated f is

an upper limit because we assumed the planets accreted a minimum amount of gas,

and have neglected viscous feeding zone replenishment and any significant early-on gas

accretion.

We rewrite this criterion in a simple form. We define the solid-to-gas ratio in

the full gas disk: fs ≡ Σs/Σg,0. For the planet’s atmospheric mass to be comparable to

its gas feeding zone mass, we again set Mg = Matm in Equation 2.7:

Matm ≃ 10πa2
(

Mc

3M⊙

)1/3

Σg. (2.10)
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So,

Matm

Mc
≃ 10πa2Σg

(3M⊙)1/3M
2/3
c

=
10πa2

(3M⊙)1/3
M−2/3

c Σg,0f. (2.11)

The cores of Uranus and Neptune are comparable to their local isolation masses

[e.g. 113]. Though we favor pebble accretion as the dominant mode of core growth at

ice giant distances, we nonetheless find it useful to express planetary masses in units of

isolation mass because it allows us to write the scaling relations in a simple form.

Classically, the isolation mass is the mass of a core that has consumed all of

the solid material in its feeding zone:

Miso ≃ 2πa∆aΣs(a), (2.12)

where Σs(a) is the disk surface mass density in solids at a distance a from the Sun. Tak-

ing the width of the feeding zone in Equation 2.12 to be ∆a ≃ 5rH = 5a(Miso/(3M⊙))
1/3,

we solve for Miso:

Miso ≃
(10πa2Σs)

3/2

(3M⊙)1/2
(2.13)

Then,

10πa2

(3M⊙)1/3
≃ M

2/3
iso

Σs
. (2.14)

Thus, from Equations 2.11 and 2.14, we have:

Matm

Mc
≃ f

Σg,0

Σs

(
Miso

Mc

)2/3

=
f

fs

(
Mc

Miso

)−2/3

, (2.15)

and for Mc ≃ Miso, Matm/Mc ≃ f/fs. When forming an isolation-mass scale ice giant,

for the atmospheric mass to be comparable to the total planet mass, we need the surface
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density of gas to be comparable to the surface density of solids at the onset of gas

accretion (see Figure 2).
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Figure 2.2 Mp/Miso gives the planet mass in terms of the isolation mass. Matm/Mp is

the atmospheric mass fraction. Here we vary the gas-to-solid ratio, illustrating that for

∼ isolation-mass cores the gas-to-solid ratio at the onset of gas accretion is comparable

to the final atmospheric mass fraction. The horizontal lines mark ratios of 0.1 and 1,

which are reasonable for the onset of dynamical instability (see text).

This point coincides with the onset of a dynamical instability in the disk: the

gas can no longer damp the eccentricities and inclinations of the growing cores once the

surface densities of solids and gas are comparable.

The required disk gas-to-solid ratio for the onset of instability may be less than

1. For instance, Dawson et al. [108] found in simulations of planetary embryos embedded
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in a gas disk that gas stopped being able to efficiently damp the embryos’ eccentricities

at f = 10−3, i.e. f/fs ∼ 0.1. In another simulation by Ford & Chiang [112] of planetary

cores in a planetesimal disk, a dynamical instability was triggered once the density of

planetesimals dropped to roughly 0.1 times the density of big bodies. As discussed in

section 5.2 of Goldreich et al. [113], dynamical friction due to gas can be treated in the

same way as planetesimal dynamical friction, replacing the small bodies’ surface density

with that of the gas, and the random velocity of the small bodies with the local sound

speed. If the instability starts at f/fs ∼ 0.1, the eventual atmospheric masses will be

approximately 0.1 Mp, which matches the ice giants’ atmospheric masses quite well.

2.4 How Long Can the Gas Disk Stay in a Depleted State?

Observations of protoplanetary disks suggest that gas disks dissipate on a

≲ 3-5 Myr timescale, with most young stars stars losing their gas disks by 10 Myr

[115, 104, 111]. Disk dispersal mechanisms include: viscous accretion onto the host

star, viscous spreading, and photoevaporation driven by irradiation from the host star,

as well as the local interstellar radiation field. Transitional disks, if representative of

disks in the process of clearing, have lifetimes of ∼ 10% of the full disk lifetime (e.g.

Alexander et al. [104], Espaillat et al. [111]). We note that the ∼ 10% transition disk

fraction could instead reflect the ∼ 10% frequency of planets massive enough to carve

holes in the gas disk.

The predominant mode of disk dispersal can vary throughout the extent and
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lifetime of the disk, with the inner regions clearing due to accretion onto the star, and

photoevaporation driving mass loss from the outer ones. We are interested in the outer

disk, where photoevaporation can be important. The protoplanetary disk undergoes

photoevaporation as it is heated by far-ultraviolet (FUV: 6 eV to 13.6 eV), extreme-

ultraviolet (EUV: > 13.6 eV), and X-ray photons [101]. FUV photons strike the disk

and heat the gas to temperatures of ≈ 103 K, EUV photons ionize the gas and heat it

to ≈ 104 K, and X-ray flux heats the gas surface layer to ≈ 103 − 104 K. The critical

radius is the relevant length scale to determine how far in the disk photoevaporative

mass loss starts to be efficient (see Equation 1, Adams et al. [101]:

rg =
GM⊙µgasmp

kT
, (2.16)

where µgas is the mean molecular weight of the gas, and mp = 1.67 × 10−24 g is the

proton mass. Beyond rg, the local sound speed of the externally heated gas is greater

than the local escape velocity from the star, allowing heated gas to escape. For a solar-

mass star and atomic hydrogen gas, the critical radius for FUV is rg ∼ 100AU, for EUV

is rg ∼ 10AU, and for X-ray the range of critical radii is rg ∼ 10− 100AU [126].

We estimate the timescale for disk dispersal due to solar EUV-driven mass

loss, where the stellar irradiation drives thermal escape of gas with outflow velocities

of vflow ≃ 10 km s−1. We check that the hydrogen gas is mostly ionized at the τ =

1 layer of the disk, where τ is the optical depth to the EUV radiation. Since τ =

NHσion, the neutral column depth to τ = 1 is NH = 1/σion, where σion = 6.3 × 10−18

cm2 is the photoionization cross-section for hydrogen by Lyman limit photons. The
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gas outflows at the critical radius rg, where the heating puffs the disk up to a scale

height comparable to the stellocentric distance a: H ∼ cs/Ω ∼ vesc/Ω ∼ a. Thus,

the volumetric number density of neutral hydrogen at rg is nH ∼ NH/H ∼ 103 cm−3.

By balancing photoionization with recombination, we obtain the number density of

ionized hydrogen at the τ = 1 surface: nHσΦi/(4πa
2) = αnp

2, where the coefficient

for radiative recombination for hydrogen at 104 K is α = 2.6 × 10−13 cm3 s−1, np is

the number density of ionized hydrogen/electrons (assuming charge balance), a is the

stellocentric distance, and Φi is the ionizing stellar flux. For a solar-mass star,

np ≃
(

Φi

4πa3α

)1/2

≃ 105
(

Φi

1041s−1

)1/2

cm−3, (2.17)

so the assumption of ionization is correct. The the recombination timescale, τrec ≃

1/(αn2
p) ≃ 4 × 102 s, is much less than the outflow timescale τflow ≃ a/vflow ≃ 108 s,

justifying the assumption of ionization equilibrium. The mass-loss rate is therefore:

Ṁ ≃ 4πa2mpnpvflow ≃ (4πaΦi/α)
1/2mpvflow ≃ 7×10−10M⊙ yr−1, assuming an ionizing

luminosity of 1041 photons s−1 appropriate for T Tauri stars [102]. Using the MMSN

initial gas disk mass of M = 0.01M⊙ [109], the gas disk already depleted by a factor

of 100 disperses on a timescale of: τdisp = M/Ṁ = 10−4M⊙/(7 x 10−10M⊙ yr−1) ≈

105 yr. We note that this calculation is an order-of-magnitude estimate. However, it

agrees with transitional disk lifetime estimates both from statistical arguments based

on observations [120], and on theoretical work [103].

Photoevaporation of circumstellar disk gas may also be driven by far-ultraviolet

(FUV) photons from the largest stars in the local star forming region. Classically, it is
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thought that FUV can only result in substantial mass loss if the outer disk boundary

rd extends beyond the critical radius. We note that this radius is beyond the region

of the solar system’s ice giants. However, Adams et al. [101] found that FUV may be

important at disk distances of ∼ 5−10 times less than rg. Conceptually, a sub-sonic gas

outflow originates at rd, which then flows through a sonic point (being accelerated to

the sound speed), eventually reaching rg and escaping. Assuming external irradiation,

Adams et al. [101] found that FUV may drive outflows at the current locations of the

ice giants, up to stellocentric distances of ≃ 15 AU. For example, the mass-loss rates

due to photoevaporation by FUV photons are 10−9 to 10−8M⊙ yr−1 for a strongly

FUV-irradiated disk at respective disk radii of 20 to 40 AU (see Fig. 6 of Adams et al.

[101]). In this case, the gas disk depleted by a factor of 100 disperses on a timescale of:

τdisp ≡ M/Ṁ ≃ 104 to 105 years.

X-rays may play an important role in determining the gas disk lifetime. X-rays

heat the gas to T ∼ 103 − 104 K, which corresponds to a critical radius for a solar-mass

star of 10-100 AU. Owen et al. (2011) analytically estimated the mass-loss rate to be

∼ 8×10−9M⊙ yr−1 for a Solar-mass star with an X-ray luminosity of 1030 erg s−1 which

would give a lifetime of ∼ 104 yr for our depleted disk.

For completeness, we consider the timescale for viscous accretion of gas onto

the Sun. Considering the model of viscous disk accretion in a disk with turbulence

parameterized by the α parameter [134], the timescale for gas accretion in the nebula

28



is:

τacc =
1

αΩ

(
H

r

)−2

. (2.18)

We note that this timescale is independent of disk surface density. Using a passive disk

temperature profile, and an α value1 of 10−3, this timescale is ∼ 1-2 Myr on orbital

separations of 20-40 AU.

2.5 Proposed Solution

We suggest that the fine tuning problem may be resolved by proposing a dy-

namical reason for the ice giants to accrete their gas envelopes in the last ≲ 105 years of

the gas disk lifetime. Why did they start accreting their atmospheres precisely at that

time? In Section 3, we calculated that the ice giants have to accrete the bulk of their

masses in gas from a disk depleted to 10−3 − 10−2 times its original surface density,

for their current atmospheric masses to be equal to the mass of gas in their respective

feeding zones. Since the dust-to-gas ratio is ∼ 0.01 in a full gas disk, in a depleted disk

it’s order unity: Σs/Σg = Σs/Σg,0 x (Σg/Σg,0)
−1 ≃ 1.

A full gas disk efficiently damps the random velocities of protoplanetary cores,

forcing them to stay on roughly circular orbits. However, once the gas is depleted to a

point where the surface density of the solids becomes comparable to the surface density

of the gas, gas drag can no longer balance dynamical excitations by neighboring bod-

ies, causing the growing cores’ random velocities to increase. The resulting dynamical

1Values of 10−3 to 10−2 are often used partly because they give the approximate observed disk
lifetimes
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instability may cause the cores to travel to a new location, continue their core growth

there, and accrete a gas envelope from the remaining gas.

Why might the ice giants have remained small until this late stage? We suppose

that the ice giants’ cores started growing on closer-in orbits, where they were prevented

from reaching a critical core mass. There are several possibilities that could have halted

core growth on closer-in orbits. The differing turbulence structure in the disk could have

affected pebble accretion. Alternatively, the ice giants could have formed in between

Jupiter and Saturn, with Saturn consuming the infalling pebbles. Proximity to the

gas giants, which excite the random velocities of neighboring bodies, can slow growth

by accretion of large planetesimals. Finally, as the pebble isolation mass scales with

stellocentric distance, the cores could have reached a sub-critical pebble isolation mass

on closer-in initial orbits, if pebble accretion was the dominant mode of core growth

at their initial orbital locations. We note that the core growth at smaller stellocentric

distances (such as that of Jupiter and Saturn) is not limited to the pebble isolation mass,

as significant accretion of km-sized planetesimals via the standard Goldreich et al. [114]

regimes can occur within the gas disk lifetime.

Plotted in Figure 3 are estimates on limits of core growth as a function of

stellocentric distance, where the dominant accretion regime can vary depending on the

orbital timescale. The mass a core can grow to within the disk lifetime τdisk by accreting

planetesimals at a rate Ṁs is: Mcore,max = Ṁsτdisk. Using the Goldreich et al. [114]

growth rate for gravitational focusing at random planetesimal velocities of order the
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Hill velocity,

Ṁs ≃ Σs(a)ΩR
2
p

(
vesc
vH

)2

, (2.19)

where Σs(a) is the disk surface density in solids at a stellocentric distance a, Ω =

(GM⊙/a
3)1/2 is the local Keplerian frequency, Rp is the protoplanetary radius, and

vesc = (2GMcore/Rp)
1/2 is the escape velocity at its surface, we solve for the maximum

core size that a protoplanet of a mean density ρc can achieve within the disk lifetime

by accreting planetesimals:

Mcore, max ≃ 54

π

G3/2M
1/2
⊙ τ3diskΣs(a)

3

ρca3/2
. (2.20)

As the normalization of the pebble isolation mass is uncertain, we plot Equation 2.4

scaled by a factor of 1/2 for the masses to be comparable to the current ice giants’

masses. To make this plot, we chose disk surface density and temperature profiles

appropriate for the MMSN, a gas disk lifetime of 3 Myr, and a mean density ρc = 3

g cm−3 for the core.

At distances close to the star, cores can grow efficiently via standard planetes-

imal accretion: there is no timescale problem as there is in the outer disk, and the core

mass is limited instead by the supply of planetesimals. In the outer disk, the dynamical

timescales are too long to form giant planets with standard growth mechanisms without

appealing to accretion from a very thin planetesimal disk. However, as long as a core

can grow to a fraction of an ME required for pebble accretion to begin, it can grow to its

pebble isolation mass very quickly. We observe in Figure 3 a portion of the plot where

the maximum core masses falls below the nominal value for the critical core mass of 10
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ME. This dip in the plot illustrates that there can be a region in the disk where gas

giant cores cannot form in situ, surrounded by an area where they can.

We have discussed above several means by which the cores could have stayed

sub-critical until onset of the dynamical instability in the depleted disk, bearing in mind

that any model of solar system formation must keep Uranus and Neptune sub-critical

during the full disk lifetime.

Once the gas was depleted enough to allow the cores’ orbits to be gravita-

tionally excited and not damped, the gas giants flung them outward, either to their

current locations, or to a sufficient distance that they began migrating outward due to

planetesimal-driven migration. Accreting the pebbles at their new locations allowed the

cores to at least double in size to their final masses. Each core’s orbit was circularized

as a result of accreting a mass of roughly circular-orbit solids (the pebbles are coupled

to the gas) comparable to its own mass.

Under the most favorable conditions for pebble accretion, from Equation 2.3

the timescale for last doubling is tgrowth = M/Ṁ , or approximately 105 years for a

Neptune-sized core at its current location, with a surface density in solids given by

the MMSN. We note that pebble accretion continues to operate in a depleted gas disk,

though the sizes of pebbles that are effectively accreted change [132]. The depleted disk

dissipates on a ≲ 105 year timescale due to EUV- and FUV- driven mass loss. Our

depleted disk may dissipate on a shorter timescale of 104 years due to photoevaporation

driven by stellar X-ray radiation. If this shorter timescale applies, the cores of Uranus

and Neputune may nonetheless undergo their last doubling in a timescale comparable
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to the remaining disk lifetime if they accrete from a disk enhanced in solids by a factor

of only a few compared to the MMSN. Whether pebble accretion can decrease core

growth timescales sufficiently to allow Neptune-sized cores to double within 104 − 105

yr depends on the size distribution of planetesimals and the level of turbulence in the

depleted gas disk (see Rosenthal et al. [132] for a detailed discussion). Here, we merely

note that fast enough growth is possible.

Such a high accretion rate limits the atmospheric mass that a core can sustain

in a steady state [131], possibly to a fraction of an Earth mass for the ice giants. For

our scenario to work, the core accretion luminosity cannot be so high during the entire

phase of last doubling that it prevents the accumulation of a couple ME of gas.

Because the last doubling and disk dispersal timescales are comparable, it is

reasonable to suggest that the ice giants’ cores could have finished their growth as they

accreted gas envelopes from the remaining gas disk. If the ice giants’ cores doubled their

mass while finishing their growth at their final orbital locations, their growth rate during

this final doubling phase is approximately: Ṁ ≃ 6ME/(10
5yr) ≃ 1016g s−1. Rafikov

[131] estimates the critical core mass in the fast planetesimal accretion regime as the

mass of the core that can hold onto its own mass in gas. With masses of around 2ME,

the atmospheres of Uranus and Neptune are not massive enough to undergo nucleated

instability. We claim that the cores need not be super-critical to maintain ∼ 2ME

envelopes in a steady-state during rapid planetesimal accretion: a lower core mass is

sufficient. Assuming that the planetesimal accretion luminosity is transported out via

radiative diffusion through the atmosphere with a constant gas opacity κ0, Rafikov [131]
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finds that:

Matm ≃ ζ

(
GMpµ

k

)4 σ

κ0L
, (2.21)

where L is the accretion luminosity, Rp is the radius of the core, and ζ = ζ0M
δ
p , with ζ0

and δ as defined for Equation 2.1. Therefore, a core accreting at a rate Ṁ ≃ 1016g s−1 at

a distance a = 20AU can hold onto a 2ME atmosphere as long as Mcore ≳ 12ME. Thus,

the cores of Uranus and Neptune in the final stage of growth were able to capture all of

the gas in their feeding zones, forming steady state envelopes heated by fast planetesimal

accretion. We note that the evolution timescale (given by the KH timescale) to such a

steady state can be short, as a consequence of the high planetesimal accretion luminosity.

If we suppose that the dominant source of the luminosity is the accretion luminosity

(L = GMpṀ/R), then the KH timescale can be approximated as follows:

τKH ≃ E

L
≃ GMpMatm

RL
≃ Matm

Ṁ
. (2.22)

Therefore, for a 2ME atmosphere surrounding a core accreting at a rate Ṁ ≃ 1016g s−1,

the evolution timescale is approximately ≃ 3 × 104 yr. Additional effects such as the

pollution of the envelope from the disruption of icy accreting solids have been shown

to decrease this timescale substantially [136]. If the appropriate timescale for the dis-

appearance of the depleted disk is 104 years, then the rate of pebble accretion (and,

therefore, the luminosity) would have to be higher by a factor of 10 from the scenario

considered above. In that case, according to Equation 19 the cores would only be able

to hold onto ∼ 0.2 Earth masses in gas, and we would require fast accretion to be halted

before the dispersal of all of the disk gas.
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We’ve proposed a dynamical scenario in which the ice giants would complete

their core growth and accrete their gas envelopes in the time that the depleted disk

dissipates. We emphasize that even if this scenario is incorrect, pebble accretion intro-

duces a fine tuning problem in the standard scenario for the formation of Uranus and

Neptune.

2.6 Summary and Discussion

Recent work on pebble accretion successfully resolves the timescale problem

in growing gas giant cores at large orbital distances, but it gives rise to a fine tuning

problem in the formation of the ice giants. In the standard scenario, the majority of

solid accretion halts once the cores reach a certain mass, at which point the cores slowly

begin accreting significant amounts of gas. However, pebbles, which are mm- to cm-

sized particles observed to exist in the outer regions of protoplanetary disks, accrete

extremely efficiently onto protoplanetary cores at the mass scale of the ice giants. They

accrete so quickly that it is difficult for ice giant cores to exist at roughly their current

core masses for a significant fraction of the disk lifetime, while accreting a gas envelope.

To avoid runaway, they must therefore complete their growth at a specific time, when

the gas disk is partially, but not entirely, depleted. Halting core growth at a specific

point in time is fine tuned, and in this paper we propose a scenario for resolving this

problem of fine tuning in the growth of Uranus and Neptune.

We suggest that the onset of the majority of gas accretion onto the planetary
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cores coincides with a dynamical instability, where the gas was no longer able to damp

the growing cores’ random velocities. We suppose that the cores of Uranus and Neptune

could have begun their growth closer to the gas giants. Then, at the point where

Σsolid ∼ Σgas, their orbits were gravitationally excited and they may have traveled

outward to their present locations. There, the ice giants’ orbits circularized, and they

accreted their ∼ 15% atmospheres from the now-depleted nebula, avoiding atmospheric

runaway.

We emphasize that the fine tuning problem exists regardless of the explanation.

Since they never underwent runaway, the ice giant cores could not have grown to their

current masses in a full gas disk, in which they can grow rapidly by accreting pebbles.

As an alternative to our scenario, the cores may halt their growth if:

• there is no radial drift of pebbles into the ice giants’ respective feeding zones. This

is improbable, given protoplanetary disk observations of pebbles;

• the supply of pebbles in the outer disk is somehow cut off, which would require a

cutoff mechanism;

• core masses are limited by pebble isolation and the grain opacity is higher than

expected (such that Miso,peb < Mcrit for the ice giants). This high opacity is

unlikely, given the existence of the solar system’s gas giants.

We predict that the occurrence of isolation-mass scale ice giants beyond 10

AU with 0.1 atmospheres by mass may be strongly correlated with the presence of

gas giants in the system. If our proposed mechanism is correct, then gas giants—by
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facilitating substantial migration during the epoch of instability—may play a key role

in forming planets with intermediate-size atmospheres in the outer disk. Without gas

giants, planets likely won’t move around as much at our preferred time, so they are

less likely to experience enhanced growth while the gas disk is dissipating. They could

still grow to the scale of the ice giants after the gas disk is gone, but in that case, they

would have small rather than intermediate-sized atmospheres. Therefore, we predict

that when gas giants are not present, outer planets will host smaller atmospheres.
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Figure 2.3 How massive can a core grow as a function of stellocentric distance (outside

the terrestrial planet region)? Here, we speculate that pebble isolation sets the maxi-

mum core mass at distances comparable to those of the ice giants. Closer in, standard

planetesimal accretion may set the core size. The maximum core mass that can be

achieved by accreting planetesimals at random velocities of order the Hill velocity is

shown (dashed line, Equation 2.20). This mass is limited by the supply of planetesi-

mals, so plotted here is the (extreme) upper limit for standard growth. The solid line

marks the pebble isolation mass (Equation 2.4, scaled by a factor of 1/2), which is an

upper limit for core growth via pebble accretion. The shaded region below 10 MEarth

represents (roughly) the scale at which cores are sub-critical.
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Chapter 3

Signatures of a planet-planet impacts

phase in exoplanetary systems hosting

giant planets
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Abstract

Gas Giants in Extreme Environments

by

Renata Frelikh

Exoplanetary systems host giant planets on substantially non-circular, close-in orbits.

We propose that these eccentricities arise in a phase of giant impacts, analogous to

the final stage of Solar System assembly that formed Earth’s Moon. In this scenario,

the planets scatter each other and collide, with corresponding mass growth as they

merge. We numerically integrate an ensemble of systems with varying total planet mass,

allowing for collisional growth, to show that (1) the high-eccentricity giants observed

today may have formed preferentially in systems of higher initial total planet mass, and

(2) the upper bound on the observed giant planet eccentricity distribution is consistent

with planet-planet scattering. We predict that mergers will produce a population of

high-mass giant planets between 1 and 8 au from their stars.
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3.1 Introduction

Observations of exoplanetary systems have found many gas giants with or-

bital distances less than 5 au from their host stars. The orbits of these planets are

often eccentric, deviating from the roughly circular orbits in our Solar System. Several

mechanisms have been proposed to account for these eccentricities, including: secular

chaos [94], the Kozai-Lidov mechanism [e.g. 17, 44, 49, 59, 82], secular oscillations due

to an outer planetary companion [67], resonant interactions with a gas disk [13], and

planet-planet scattering [e.g. 12, 41, 68, 72, 23, 21]. However, these studies have not yet

explained an important clue to these systems’ dynamical histories: most observed plan-

ets with eccentricities e > 0.5 are more massive than Jupiter, while lower-mass planets

are confined to lower eccentricities [92]. This observation is potentially surprising, since

lower-mass planets are excited to higher eccentricities in typical dynamical simulations

[e.g. 12, Figures 14 and 20].

We explore the possibility that some stars initially host multiple hydrogen-rich

planets in their inner systems, which go through a giant-impacts phase, analogous to the

final stage of inner Solar System assembly that resulted in Earth’s moon-forming impact.

Collisions cause these planets to grow in mass. Though in a given system, the lower-

mass planets are more likely to have higher eccentricities, when viewed as a population,

the trend reverses. Stars hosting more total mass in planets produce more high-mass

giants, which in turn are able to excite each other to high orbital eccentricities. We use

the observed mass distribution for planets at semimajor axes a < 5 au to construct a

41



distribution of initial total planet masses in that region. We demonstrate, using stellar

metallicity as an observational proxy for initial mass in planets, that our ensemble

produces giant-impact phase outcomes consistent with observations.

3.2 Observational Sample

We compare our simulations to a sample of observed exoplanets obtained from

the Exoplanet Orbit Database on April 3, 2019, hosted on exoplanets.org [93]. We

include 311 planets from 243 stellar systems, discovered via the radial-velocity method,

orbiting FGK stars (0.5 to 1.4 M⊙). Following Dawson & Murray-Clay [18], we remove

70 evolved stars with log g < 4. We exclude 11 planets for which no data for log g is

reported. We further exclude 27 planets with no reported eccentricity. We note that all

of the masses in the observational data set are reported as Msini, which henceforth we

refer to as the mass. The planets in this sample are subject to several biases, including

radial-velocity selection biases toward higher-mass, close-in planets [32, 28]. It is not

appropriate to make a statistical comparison between the simulated and the observed

data sets, as there is a risk that the observational sample used is non-uniform. We

therefore focus on the qualitative features of the distribution.
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3.3 The Highest-Eccentricity Planets are Found Around

Metal-rich Stars

Figure 3.1A displays the distribution of eccentricity as a function of planetary

mass for the observational sample. The highest-eccentricity planets tend to be more

massive, contradicting our intuition that the lower masses are more readily excited.

Figure 3.1B provides a hint to the solution. After dividing the data into planets orbiting

metal-rich stars ([Fe/H]>0, blue) and metal-poor stars ([Fe/H]<0, red), we find that

planets with the highest observed eccentricities orbit stars that are preferentially metal-

rich1. Therefore, if metal-rich stars tend to produce a greater quantity of high-mass

planets, these giants would scatter their planetary companions to higher eccentricities.

This is a key point of our Letter.

Shifting our focus to the orbital-separation distribution, several further ob-

servational features become apparent. In Figure 3.2A, there is an upper limit to the

eccentricities in the inner ∼ 1 au, which we call the eccentricity envelope (black solid

line). A mass segregation in semimajor axis is seen when we separate the planets into

higher-mass (Mp > 1.17 MJ, orange) and lower-mass (Mp < 1.17 MJ, purple), when

compared to the median planet mass of 1.17MJ found in the observational sample.

Higher-mass planets are preferentially found with a > 0.5 au. Furthermore, dividing

the planets by metallicity in Figure 3.2B reveals that the planets approaching the ec-

1The Solar [Fe/H]=0 cutoff is employed because the occurrence rate of giant planets rises steeply
for stellar metallicities above [Fe/H]=0 [73, 19]. 76 planets are observed in systems with [Fe/H]<0, and
235 - in systems with [Fe/H]>0. The median metallicity in our observational sample is [Fe/H]=0.14.

43



centricity envelope (blue band) are more likely to come from higher-metallicity systems,

following the trend from Figure 3.1. In summary, the shape of the eccentricity distri-

bution, together with its mass- and metallicity-dependent features, are important clues

to the formation of these systems.

3.4 Eccentricities as a Result of a Giant-impacts Phase

The observational features that we attempt to match with our model are: (1)

the eccentricity envelope, (2) the mass-eccentricity relation, and (3) the correlation

between eccentricity and stellar metallicity. We do this by making a non-standard

assumption that the planets are the result of collisional growth in systems initially

consisting of multiple giant planets that underwent a giant-impacts phase, at least in

systems where eccentricity excitation occurs. If one is willing to make that leap, all

three features can be recovered. We plot our simulation results in Figure 3.1C, Figure

3.1D, Figure 3.2C, and Figure 3.2D.

Our proposed giant-impacts phase is analogous to a dynamical instability that

occurred in Solar System formation, where collisions assembled the inner, rocky planets.

In general, a gravitational encounter between two protoplanets leads to either a physical

collision or a scattering that results in a velocity deflection. Which is statistically more

likely to occur depends on the relative velocities of the bodies. Recall that the collision

cross section goes as σcoll ∼ πR2(1+ v2esc,p/v
2), while the strong scattering cross section

goes as σscat ∼ πR2(vesc,p/v)
4. Here, R is the physical radius, vesc,p is the planet’s
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escape velocity, and v is the protoplanets’ relative velocity. Thus, for small velocities

v < vesc,p, σcoll < σscat and scattering dominates. As v increases and approaches vesc,p,

the cross section for strong scattering approaches the physical cross section, πR2, which

is always less than or approximately equal to σcoll. Therefore, for sufficiently large v,

σcoll > σscat, and the planets are more likely to collide than be deflected further [e.g.

68]. This limits the v that can arise from scattering to, at most, ∼ vesc,p. The Solar

System’s inner planets have vesc,p (∼ 11 km/s for Earth) less than the orbital escape

velocity, vesc, star (∼ 42 km/s at 1 au). In general, they cannot readily eject each other

through gravitational encounters, allowing for the existence of a giant-impacts phase.

Conversely, the Solar System’s giant planets have vesc,p (∼ 24 km/s for Neptune, ∼ 60

km/s for Jupiter) larger than vesc, star (∼ 8 km/s at Neptune, ∼ 19 km/s at Jupiter),

making a giant-impacts phase unlikely. However, exoplanetary systems hosting close-

in giants are in the regime where vesc, star > vesc,p, allowing giant impacts to leave a

detectable imprint on the giant exoplanet mass distribution (Figure 3.3).

3.5 Methods

To generate our numerical results, we perform N-body simulations using Mer-

cury6 [10], including growth by planet-planet collisions with mass and momentum con-

servation. Our planet radii follow nominal mass-radius relations constructed from the

literature [24]. After each collision, we calculate the planet’s mass and reassign its ra-

dius using these expressions. The reason we do this is because the escape velocity is
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critical for the dynamical evolution. The radii for planets below 10 Earth masses (ME)

were calculated using the mass-radius relation for a rocky core in the absence of a gas

envelope, Fortney et al. [24, Equation 7]. Planets with masses between 10 and 200 ME

were assigned radii based on the theoretical models of Fortney et al. [24, Table 2] for a

10 ME core surrounded by a H/He envelope at 300 Myr. Planets above 200 ME were

assigned 1.1 Jupiter radii (RJ), which is consistent with the models, which show that the

radius of Jupiter-sized planets stays roughly fixed above a Jupiter mass. The computed

radii R, for planets of mass Mp, in ME, are as follows:

R =



(0.16(log10Mp)
2 + 0.74log10Mp + 1.12)R♁ if Mp < 10M♁

(−1.0× 10−6M4
p + 1.8× 10−4M3

p − 1.1× 10−2M2
p

+0.28Mp − 1.7)RJ if 10 < Mp < 28M♁

(−7.2× 10−11M4
p + 8.1× 10−8M3

p − 3.2× 10−5M2
p

+5.5× 10−3Mp + 0.8)RJ if 28 < Mp < 200M♁

1.1RJ if Mp > 200M♁.

(3.1)

The planet densities ρ in the simulations were then set to be: ρ = 3M/(4πR3).

We note that our mass-radius relation is only an approximation. Collisions cause in-

flation and they may not result in a perfect merger. For example, Hwang et al. [30]

have shown that collisions between sub-Neptune-sized bodies may result in significant

atmospheric mass loss. Given these results, collision outcomes between gas giant planets
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merit future study.

For all of the simulations presented in this Letter, the initial eccentricities

were set to 0, the mean anomalies and longitudes of the ascending node were drawn

randomly from a uniform distribution between 0 and 360 degrees. We define the limits

of the simulation to be at 1000 au from the host star, beyond which planets are removed

from the simulation. The initial timestep was set to be the minimum of 3 days or 1/15

of the orbital period of the closest-in planet, and the accuracy parameter was set to

10−12. We set the radius of the central body to 0.005 AU, the mass to 1 Solar mass,

and the Hybrid integrator changeover distance to 3 Hill radii. All simulations were run

for 2×107 years, a reasonable time beyond which instabilities become much less frequent

[12, 41]. The eccentricities reach a statistical equilibrium after this timescale [41]. We

found that our features of interest were already imprinted at 1 Myr, and persisted at 5,

10, and 15 Myr snapshots. We expect that integration for the several-Gyr ages, typical

of observed systems, would reduce the final number of planets, but only by a modest

amount.

The main results of this work are presented for a set of 694 numerical in-

tegrations, the initial inclinations i for which were drawn randomly from a uniform

distribution between 0 to 1 degree.

We call the initial total mass in planets in each system the “disk mass“. In

constructing our simulations, we first considered a single disk mass. Each disk mass has a

corresponding eccentricity envelope, which is higher for greater disk masses because they

typically form higher-mass planets. Thus, the disk mass is what determines how high the

47



eccentricities can get. As a result, higher-mass planets have higher eccentricities across

systems, contrary to our expectation for a single system. The correlation of eccentricity

and metallicity in the observational data suggests that the observed distribution reflects

a collection of varied disk masses. Therefore, to reproduce the observational data, we

need to construct a set of simulations with initial disk masses drawn from a distribution.

We do not know a priori what this distribution is. However, if we choose a distribution

that is a few times the observed planet mass distribution, our (Figure 3.3) set of systems

evolves to match the observed distribution of planet masses, after ejections and mergers.

We choose to draw the disk masses Mdisk from the exponential distribution,

f(Mdisk/MJ, 1/β) = 1/βe−Mdisk/(βMJ), (3.2)

with the scale parameter β = 20 set to produce the planet mass distribution. We re-draw

any disks with masses< 0.1MJ, as our disks need to be able to produce giant planets. An

upper disk mass cutoff of 50 MJ is employed. Our simulations are not otherwise tuned.

Each disk mass is allocated into planets in the following way: 10 planet masses are first

drawn from a uniform distribution from 0 to 1, then each planet mass is scaled, such

that the sum of the planet masses in each system is equal to the disk mass. The planets

are uniformly distributed in log(a) between 0.03 and 10 au. To justify the logarithmic

spacing in semimajor axis, we recall that the number of planetary Hill radii, RH, that

can dynamically fit into a given semimajor axis range is: a/RH = (Mp/(3Mstar))
−1/3.

Here, the Hill radius, RH = a(Mp/(3Mstar))
1/3, sets the distance scale from the planet

at which gravitational interactions with other planets become strong. Since this ratio
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is independent of a, each successive bin in log(a) from the star can fit the same number

of planetary RH as the one prior, and our uniform spacing in log(a) is appropriate.

As long as the planets were dynamically spaced close enough to interact, the

final outcome was not significantly dependent on the way we distributed the disk mass

into planets. For example, a 20 MJ disk, allocated into 7 planets, each with mass 2.9

MJ, produced similar results to a 20 MJ disk allocated into 50 planets with mass 0.4

MJ. Both typically produce planets with masses up to ∼ 10 MJ after collisions. We

chose 10 planets to allow the planets to have multiple close encounters within the first ∼

10 thousand years of the simulation, after which the number of planets decreased. We

have found, in agreement with previous work [e.g. 41, Figures 1 and 11], that although

the planet multiplicity generally dropped further as we extended the time to 108 years,

and the individual planet orbital properties varied with time, our overall features of

interest in the distributions of eccentricity with mass and semimajor axis persisted.

The final planet mass distribution from the simulations (Figure 3.3B) was consistent

with the mass distribution in the observational sample (Figure 3.3A), suggesting that

our starting guess for the disk masses was reasonable. We note that planet migration

before the gas disk dissipates may mean that fewer planets per system may be required,

if it causes planets to migrate in and experience dynamical instability.

For our simulation results, plotted in Figures 3.1C, 3.1D, 3.2C, 3.2D, 3.3B, and

3.3C, we consider planets observable if they have a < 6 au and radial velocities >2 m/s,

which roughly matches the typical precision of radial-velocity surveys contributing to our

observational sample [8]. Radial velocities, K, are estimated by 28.4(Mp/MJ)(T/yr)
1/3
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m/s, with Mp - the planet mass and T - the orbital period [52]. We comment that

including the eccentricity dependence (1 − e2)−1/2 in the expression for K does not

significantly change our results. To determine the likelihood of observing systems with

multiple planets, we “observe” each resulting system of our set of simulations from 1000

random directions. We evaluate the observability of each planet by computing the radial

velocity component along the line of sight to our random “observer“, i.e. we multiply

the mass of each planet by sini in the radial-velocity formula. We find that ∼ 70% of

systems have an observable multiplicity of 1 or 2, ∼ 20% have no observable planets

per system, and ∼ 10% have 3 or more. On average, ∼ 1.6 planets can be observed per

system. Our simulated distribution of Msini, generated by observing each system from

random angles as described above, is shown in Figure 3.3C.

Trends with stellar metallicity that arose in the observed populations were of

particular interest (Figures 3.1 and 3.2). Stellar metallicity is not a parameter in our

simulations. However, we can make a simple assumption that a higher total planet mass

is correlated with stellar metallicity, which is reasonable given that high-metallicity stars

are more likely to host close-in planets [19], and eccentric warm Jupiters are preferen-

tially found in high-metallicity systems [18]. To map the synthetic distribution of disk

masses containing observable planets to the observed distribution of stellar metallicities,

we first assume a linear relationship between log10(Mdisk/M⊙) and [Fe/H] of the form

[Fe/H] = a log10(Mdisk/M⊙)+b, where M⊙ is the Solar mass. We then find that a = 0.4

and b = 0.9 in the formula give us the best fit, such that the range of observed metal-

licities matches the range of assigned metallicities from our simulations. Therefore, we
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convert the disk mass from our simulations to metallicity using the following relation:

[Fe/H] = 0.4 log10(Mdisk/M⊙) + 0.9. We note that we do not expect there to exist a

perfect one-to-one correspondence between stellar metallicity and disk mass, and our

nominal relation is only suggestive.

3.6 Discussion

Figure 3.1B displays the distribution of eccentricities as a function of planet

mass in our simulations. Contours correspond to enclosed probabilities. The upper con-

tour encloses 90% of the points, and each successive contour below is a 10% decrement in

enclosed probability from the one above. The contours are defined the same throughout

all of the figures in this Letter, to allow one-to-one comparison of the simulations and

the observations. We remind the reader that the only tuning required was the choice of

an initial disk mass distribution to match the observed planet mass distribution, and a

sufficient number of planets to ensure dynamical interaction. Our simulations in Fig-

ure 3.1D reproduce the observational feature seen in Figure 3.1C: e > 0.6 planets have

Mp > 0.5 MJ and [Fe/H]>0. Higher-metallicity systems have more mass available for

planet formation, which leads to more and larger planets that can excite each other to

higher eccentricities.

In Figure 3.2, both the observations (A) and the simulations (C) are bounded

by the eccentricity envelope. This is the upper limit to the eccentricities produced by

planet-planet scattering, which deflects the planetary velocities in random directions.
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The orbit deviation from circular is often called the “random” velocity, and can be

approximated as vr = evK, where vK = (GMstar/a)
1/2 is the orbital Keplerian velocity,

G - the gravitational constant, and Mstar - the stellar mass [114]. Since scattering

can only excite vr up to vesc,p (Section 4), the eccentricity is limited to: vr = evK ≈

evesc,p. This yields a maximum eccentricity of e = vesc,p/vK ≈ vesc,p/vesc,star . Here,

vesc,star = (2GMstar/a)
1/2 is the escape velocity from the star at the planet’s a, which

is comparable to vK . The eccentricity envelope curves in Figure 3.2 are

e = vesc,p/vesc,star = (Mpa/(RMstar))
1/2, (3.3)

shown forMp = 1.17MJ, the median observed planet mass. Planets in higher-metallicity

systems are scattered to a greater range of eccentricities than those with lower metallicity

(blue band in Figure 3.2B and D).

Because we are interested in the implications of planet-planet scattering for

planets at all semimajor axes, not just those that are currently observable, we perform

two additional sets of simulations with 20 planets uniformly distributed in log(a) be-

tween 0.03 and 100 au. The outcome for a single disk mass of 5 MJ is presented in

Figures 3.4A and B for a set of 192 simulations. For each realization of the 20-planet

systems, we re-drew the semimajor axes uniformly in log(a), the inclinations uniformly

from 0 to 1 degree, and the mean anomalies and longitudes of the ascending node

uniformly from 0 to 360 degrees. In Figure 3.4A, the higher-mass products of planet-

planet collisions are seen to the left of the teal solid line, which marks vesc,p = vesc,star.

Lower-mass planets are seen to the right, where scattering is a more likely outcome of
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planet-planet interactions. The detailed mass distribution is shown in (B). Green, red,

and blue dots show the maximum, median, and mean masses, respectively. The vertical

blue lines display one standard deviation about the mean. The highest-mass planets

typically form interior to the distance where vesc,p = vesc,star.

The result for a distribution of disk masses is presented in Figure 3.4C and D

for a set of 175 simulations. We draw the disk masses from the exponential distribution

(Equation 3.2), scaled by a factor of 1.4 to account for the additional bin in log(a). We

employed an upper disk mass cutoff of 70 MJ. The 1-8 au region hosts planets of higher

mass. Interestingly, adding mass to the outer disk reduces the number of planets in the

inner regions of higher-mass disks. The mass needed beyond 10 au to match the mass

segregation feature from Figure 3.2A, while reproducing the metallicity feature from

Figure 3.2B, merits future study.

We find it illustrative to repeat our main simulations in two dimensions, to

avoid potential complications from Kozai oscillations. We start out with 10 planets using

the same set of initial disk masses as described in Section 3.5, except we initialize the

inclinations to 0. The starting semimajor axes of the planets are randomly distributed

in log(a) from 0.03-1 au, and from 1-10 au, with the density reduced by a factor of 5 in

the inner region. This selection is appropriate to match the observed mass-segregation

feature in Figure 3.2A. We plot the results for this set of 180 simulations in Figure 3.5,

for direct comparison to Figures 3.1 and 3.2. The features of interest are recovered in

these two-dimensional simulations, suggesting that they are a result of planet-planet

scattering. In the absence of mutually inclined orbits, the planets experience more
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collisional growth, especially in higher-mass disks, where the planets are dynamically

spaced close enough to be more likely to interact. The smaller planets in the higher-

mass disks get absorbed by collisions more frequently (Figure 3.5A) than the mutually

inclined planets in Figure 3.1C. The eccentricity vs. semimajor axis distribution in

Figure 3.5D reproduces the observational feature seen in Figure 3.2B: the planets from

higher-metallicity systems extend above the lower-metallicity region in a blue band on

the plot. We plot the same distribution, instead dividing the planets by mass, in Figure

3.5C. The initial reduction in planet number density in the inner region allowed us to

reproduce the mass segregation feature seen in the observations (Figure 3.2A). This

mass reduction may be appropriate if giant planets do not form as easily in the inner 1

au of protoplanetary disks. On average, ∼1.8 observable planets are left per system in

our 2D simulations.

3.7 Conclusion

We have suggested a giant-impacts phase in the evolution of giant exoplanetary

systems, which creates a population of higher-mass planets in the collisional growth

region (peaking at ∼ 3 au for a Solar-mass star; see Figure 3.4D). Beyond, we predict

a population of lower-mass planets that avoided mergers, some of which were scattered

out on high-eccentricity orbits. This is consistent with the results of the Gemini Planet

Imager Exoplanet Survey (GPIES) [60], who found that planets more massive than

∼ 3MJ around Solar-type stars are mostly found in the radial-velocity regime (a < 5
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au), rather than in the direct-imaging regime (a >10 au). Future microlensing and

direct imaging surveys, sensitive to finding planets outside of the distance limits of

radial-velocity surveys, will enable further observational tests of this predicted mass

separation in the outer giant exoplanet population.

As evidence of mergers could correlate with orbital eccentricities, we speculate

that inflated Jupiters would exist on preferentially eccentric orbits. Though collisions

can happen on any timescale, most occur early, so this correlation would be most likely

observable for stars with ages less than the ∼ 100 Myr cooling time for giants [24]. In

addition, since some warm Jupiters have substantial cores [85], it is reasonable to sug-

gest that early-on in their evolution planetary systems could have consisted of multiple

planets, which experienced collisional growth.
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Figure 3.1 Distribution of eccentricities as a function of planet mass for (A) & (B)

observations, and (C) & (D) simulations. The eccentricity of observed exoplanets is

correlated with planet mass (A), which is recovered in our simulations (C). In (B),

planets orbiting metal-rich ([Fe/H]>0, blue, 235 points) stars exhibit a range of eccen-

tricities. Planets orbiting metal-poor stars ([Fe/H]<0, red, 76 points) are confined to

e < 0.6. The highest-eccentricity planets (e > 0.6) are giant planets with Mp > 0.5

Jupiter masses (MJ).
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Figure 3.1 This is matched in (D), in which we use total initial mass in planets as a

proxy for metallicity (see Section section 3.6). On all panels, the upper contour denotes

an enclosed probability of 90%, and each successive contour below is a 10% decrement

to the one above.
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Figure 3.2 Eccentricity vs. semimajor axis. (A) Observational eccentricity distribution.

The high-mass giant planets (m > 1.17 MJ, orange) exhibit eccentricities 0 < e ≲ 1,

and semimajor axes generally beyond 0.3 au, while low-mass giants (purple) span 0.03-6

au in a. This is matched by the simulations in (C), though the mass segregation in a is

weaker. The eccentricity envelope (black solid line) denotes the planet-planet scattering

limit to the eccentricity (Equation 3.3).

58



Figure 3.2 In (B) and (D), we divide the planets into those belonging to systems orbiting

metal-rich ([Fe/H]>0, blue) and metal-poor ([Fe/H]<0, red) stars. Note that observed

planets in (B) with eccentricities approaching the eccentricity envelope (blue band on

plot) preferentially come from systems with super-solar metallicity ([Fe/H]>0), which

is matched by our simulations (D). The contours are defined as in Figure 3.1.

Figure 3.3 Distribution of planet masses corresponding to Figures 3.1 and 3.2 for (A)

observations and (B) & (C) simulations. (C) displays the distribution of Msini in our

simulations that would be measured by the radial-velocity method, as seen from a

random “observer” (see Section 3.5)
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Figure 3.4 Eccentricities and masses vs. semimajor axis for simulations starting with 20

planets in the semimajor axis range 0.03 to 100 au. (A) Initial planet masses are all 0.25

MJ. The inner, higher-mass planets (orange triangles) grew via planet-planet collisions.

The lower-mass (purple pluses), outermost planets never collided. The vertical teal line

at 1.6 au marks where the escape velocity of a 0.25 MJ Saturn-radius planet is equal

to the orbital escape velocity of the planet from the star. (B) shows the corresponding

distribution of planet masses, including the median (red dot), mean (blue dot), and

maximum (green dot) masses. The vertical blue bars mark one standard deviation

about the mean.
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Figure 3.4 Most high-mass planets form interior to the distance where vesc,p = vesc,star.

(C) and (D) provide corresponding plots to (A) and (B), respectively, for a set of initial

disk masses designed to match the distribution used in Figures 3.1-3.3 (see text), but

adjusted to incorporate the additional bin in log10(a) compared to the results shown in

Section 5. In (D), the values for the maximum planet masses that extend beyond the

axis range are printed in green by the error bars corresponding to each bin in semimajor

axis. The highest-mass products of collisional growth have 1 < a < 8 au.
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Figure 3.5 (A) Our 2D simulations reproduce the correlation between mass and eccen-

tricity in the distribution. (B) Planets orbiting high-metallicity ([Fe/H]>0, blue) stars

are able to be excited to a higher eccentricities than planets orbiting low-metallicity stars

([Fe/H]<0, red). Metallicities are used as a proxy for the initial disk masses (Section

3.6). (C) and (D) Distribution of eccentricities as a function of semimajor axis in our 2D

simulations. In (C), the planets of higher mass (orange) occur more frequently beyond

∼0.5 au, and can reach higher eccentricities than the lower-mass (purple) planets, which

are confined to e < 0.4.
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Figure 3.5 In (D), planets orbiting high-metallicity stars are excited to higher eccentric-

ities than planets orbiting low-metallicity stars throughout the entire semimajor axis

range where they occur. The contours are defined as in Figure 3.1.
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Chapter 4

Efficiency of Hydrodynamic Escape
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Abstract

Gas Giants in Extreme Environments

by

Renata Frelikh

We develop a flexible one-dimensional code to model the escape of hydrogen and helium

from a hot Jupiter as a result of photoionization from extreme-ultraviolet (EUV) radia-

tion. We include stellar spectrum heating and ionization, radiative cooling by Lyman-α

and H+
3 , tidal gravity, and a H-He reaction network. For our fiducial hot Jupiter, we

uncover a three-layer structure: an H+
3 -cooled layer of molecular hydrogen at the base,

enveloped by a Lyman-α-cooled layer of neutral hydrogen, which transitions into an

ionized wind layer that is cooled by adiabatic expansion. The highest spectral energy

photons are deposited in the molecular layer - they are cooled the most via H+
3 . We

run a grid of models, varying the distance of our fiducial planet from the star. We find

that Lyman-α cooling increases in significance with increasing stellocentric distance,

diverging the mass-loss rate from the energy-limited mass-loss regime substantially. At

increasing stellocentric distances, the outflow becomes increasingly more neutral. The

neutral hydrogen starts to decouple from the ionized outflow, free-streaming out and

potentially decreasing the mass-loss rate from our estimates. This two-component struc-

ture to the outflow is interesting, both in terms of evaluating where the wind is cut off,

and in terms of observational signatures.
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4.1 Introduction

Atmospheric escape is known to affect the atmospheres of hot Jupiters, gas

giants on extremely close-in orbits from their host stars. Winds reaching velocities of

order km s−1 are driven from these strongly irradiated, heated planets, resulting in

atmospheric mass loss as their hydrogen-dominated atmospheres are ionized. However,

H+
3 and Lyman-α are known to radiatively cool atmospheres of such planets. We aim

here to investigate in depth how radiative cooling affects the photoevaporative outflow

process, and how the effect varies with distance from the star. For that reason, we

need to resolve the transition from the molecular hydrogen that forms deeper in the

atmosphere, shielded from extreme ultraviolet (EUV) radiation, to the ionized hydrogen

that forms the wind.

EUV radiation drives hydrodynamic escape from planets with hydrogen- dom-

inated thermospheres by photoionizing hydrogen and heating the upper layer of the

atmosphere [91]. This escaping gas has not only been inferred from population analyses

(e.g., Owen & Wu 66), but it has been seen directly for larger planets. Atmospheric

escape has been measured for hot Jupiter HD 209458b (e.g., Vidal-Madjar et al. 88,

Vidal-Madjar et al. 89). Vidal-Madjar et al. 88 observed that, as the planet transits

its host star, the Ly-α emission line from the star is reduced significantly more than

expected purely from the planet obscuring part of the stellar surface. This suggests

that a cloud of neutral hydrogen extending out to ∼4 planetary radii surrounds the

planet. There is evidence for metals in the upper atmosphere extending beyond the
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Roche lobe (i.e. the region surrounding a planet within which material is gravitation-

ally bound to it) of the planet in transit (e.g. Vidal-Madjar et al. 89, Linsky et al. 50).

HD 189733b (Des Etangs et al. [20] and Bourrier et al. [7]) is another hot Jupiter for

which an escaping atmosphere has been observed in Lyman-α transit, with a possible

detection of O [4]. Tentative detections of metals have been reported for WASP-121b

(Sing et al. 77, Cubillos et al. 15). Escaping neutral H has also been observed in the

H-α line (e.g. Cabot et al. 9 in Wasp-121b, Jensen et al. 38 in Wasp-12b, Yan et al.

98 in Wasp-33b, and Wyttenbach et al. 95 in Kelt-9b - with additional Balmer lines).

He has been detected in the escaping atmosphere of WASP-107b [78], as well as for a

warm Neptune around GJ 3470 [61]. This is strong evidence for neutral hydrogen and

possibly metals to be undergoing hydrodynamic escape.

Theoretical work on atmospherical escape include models of escaping hydrogen

and helium atmospheres bathed in EUV radiation, in addition to possible metals en-

trained in the wind. Two important classes of hydrodynamic models are core-powered

mass loss (e.g., Ginzburg et al. [33], Ginzburg et al. [34]) and photoevaporative mass

loss driven by stellar EUV and/or X-ray radiation (e.g. Lammer et al. [46], Baraffe

et al. [2], Yelle [99], Garćıa-Muñoz [27]). We focus our work on photoevaporative mass

loss. Prior theoretical studies of stellar-irradiation driven escape from Jupiter-sized ex-

trasolar planets close to their host stars can be categorized into steady-state models

(e.g., Murray-Clay et al. [58], Oklopčić & Hirata [63]) or time-dependent models, ei-

ther one-dimensional (e.g., Garćıa-Muñoz [27], Yelle [99]), two-dimensional (e.g., Owen

& Adams [65], Trammell et al. [86]), or three-dimensional (e.g., Koskinen et al. [43],
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Tripathi et al. [87], McCann et al. [53]).

The goal of our work is to understand what fraction of a planet’s incoming stel-

lar flux is radiatively cooled, and what fraction is available to power the hydrodynamic

outflow. It is necessary to understand the interface layer from molecular hydrogen gas

(that is efficiently radiatively cooled) to the photodissociated and/or thermally dissoci-

ated atomic layer that comprises that outflow. To this end, we couple photochemistry

to an outflow model. While this transition from the radiatively cooled molecular layer

to the atomic outflow is key to understanding hot Jupiter atmospheric escape, it may

be even more important for smaller planets, whose atmospheres are significantly shaped

by these outflows, which are likely to have higher metallicities and stronger molecular

coolants. We built a self-consistent hydrodynamic photochemical model that explic-

itly addresses the transition from the radiatively cooled molecular layer to the outflow,

and how that feeds back into the efficiency of incoming stellar EUV radiation powering

atmospheric escape.

We now discuss how our model relates to a few of the aforementioned models,

to understand where it fits in the context of the broader set of models. For example,

Garćıa-Muñoz [27] and Yelle [99] created one-dimensional time-dependent models that

both introduce the general structure of hot Jupiter thermospheres: a molecular layer

of hydrogen with interesting photochemistry that transitions into an atomic outflow.

Bathed in EUV radiation, the hot Jupiters retained a molecular layer of hydrogen that

dissociated into atomic hydrogen. Garćıa-Muñoz [27] found that the escape can be

supersonic. As also discusssed in Yelle [99], the H+
3 ion was found at the base of the
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modeled atmosphere, which is an effective radiative coolant for energy deposited in that

region. They found that the escape approaches the energy-limited (Watson et al. 91,

Lammer et al. 46) regime for strongly irradiated hot Jupiter planets. However, Lyman-

α cooling was not included as part of the radiative coolants in this study. Nevertheless,

our model qualitatively agrees with both models in terms of the structure: a molecular

layer at the base cooled by H+
3 , which is thermally disssociated into atomic hydrogen,

which outflows as an ionized wind. Both models found outflows reaching of order 104 K,

which were cooled via adiabatic expansion above the H+
3 layer, however, Yelle [99] did

not model the region where the outflow reaches supersonic velocities. A one-dimensional

steady-state atmospheric escape model has been developed by Murray-Clay et al. [58],

in which the equations of hydrodynamics are coupled with the ionization equation for

atomic hydrogen and solved for via numerical relaxation. This study focused on the

region above the molecular layer, specifically on the outflow structure. Murray-Clay

et al. [58] found that Lyman-α cooling can be significant, particularly for higher stellar

ionizing fluxes. In addition, Koskinen et al. [43] found that H+
3 radiative cooling can

significantly limit outflows. In summary, the time-dependent models we mentioned here

provide a base in understanding the general thermospheric structure, while the steady-

state model provides a detailed understanding of the outflow, in particular, including

the Lyman-α cooling in the interface region. Our model incorporates both frameworks:

to understand the efficiency of hydrodynamic escape driven by EUV radiation, it is

necessary to have a detailed model of the molecular-atomic interface, as well as the

outflow region. Run to steady state, our time-dependent model produces atmospheric
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profiles as a function of height. We analyze the results of our model in terms of where

in the atmosphere the EUV photons of different energies are absorbed, as well as which

cooling terms dominate. Deposited near the base of our atmosphere, the highest-energy

photons in our spectrum are radiatively cooled by H+
3 . Lyman-α cooling is important

in the atomic-hydrogen-dominated layer just above the H+
3 -cooled region near the base.

As we move the planet out in distance from the star, Lyman-α cooling becomes a more

significant cooling source. We find that hydrodynamic outflows can be driven out to

0.9 au, as long as they’re not shut off by magnetic field confinement from the planet.

We model the outflow along the substellar ray. As long as the wind is not magnetically

confined, the energy will be redistributed around to the nightside of the planet.

We discuss the methods in Section 4.2, where we describe our model. Ad-

ditional details of the implementation are in the Appendix. Section 4.3 contains the

results for our fiducial hot Jupiter at 0.05 au, as well as a grid of models with varying

distance from the star. There we discuss the structure of the atmosphere, including the

molecular layer and the outflow, and which parts of the spectrum dominate in the at-

mosphere at different heights. For the grid, we discuss the mass-loss rates and compare

them to the energy limited regime. We conclude with Section 4.4.

4.2 Methods

To address the question of efficiency of atmospheric escape, we developed a

photochemical-hydrodynamic model that allows us to simulate a planetary outflow from
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a hydrogen- and helium-dominated atmosphere. The atmospheric composition is initial-

ized to a gas consisting of molecular hydrogen and atomic helium in ratios corresponding

to Solar abundance (the mass fraction X=0.75 for H, and Y=0.25 for He [51]). We used

a modified the low-flux solution of Murray-Clay et al. [58] as the starting point for our

fiducial planet. For Jupiter-sized planets with deep potential wells, the profiles need to

be initialized with an initial velocity greater than zero for stability purposes. The choice

of initial conditions can be relatively arbitrary - the initial profiles do not have to be

self-consistent to start, just enough to be able to evolve and avoid situations that code

might have difficulty with, such as a snowplow phase [53]. For smaller-sized planets

such as Neptune and Earth analogs, one may simply initialize the profiles to isothermal

hydrostatic.

We solve the coupled equations of hydrodynamics and chemical network for a

planet being irradiated by extreme ultraviolet (EUV) photons in the 165.3-12 eV range

by time evolving the species’ number density, bulk velocity, and specific internal energy

of the gas to steady state. The input spectrum used for ionization and subsequent

heating is from Richards et al. [74], a solar EUV flux model that we scale for the

corresponding distance from the star. This spectrum is appropriate for modeling planets

around evolved stars, as X-rays do not dominate the outflow. Our code is flexible: an

alternate spectrum may be used to model planets around stars early in their evolution,

as well as expanded into the far-ultraviolet range to include molecular photochemistry

that may be especially important in smaller-sized planet atmospheres.

A planet atmosphere can be modeled as a hydrodynamic outflow only if the
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gas remains collisional up to the sonic point. In other words, the gas can be treated as

a fluid. For the gas to be collisional, its mean free path λ = 1/(nσ) must be less than

the scale height of the atmosphere H = kBT/(µg), with µ being the mean molecular

weight and g = GMp/RP
2 - the gravitational acceleration. The collisional cross section

σ is either the Coulomb cross section σC = 3.899 × 10−14(T/104)−2 cm2 (for ion-ion

scattering) or the hard body cross section σhb = 3.519× 10−16 cm2 (for neutral-neutral

scattering), depending on whether the gas is mostly ionized (in the wind, for a high

stellar flux) or mostly neutral (at the base). We confirm that our fiducial case presented

in Section 4.3.1 is collisional throughout. We discuss collisionality in detail in Section

4.3.8.

The methods section is structured as follows: the equations of hydrodynamics

are desribed in Section 4.2.1, the numerical method used for solving them in Section

4.2.5, and the chemical reactions and solver in Section 4.2.8 and Appendix A.3. The

spectrum and a discussion of the photoionization processes are given in Section 4.2.9.

4.2.1 Hydrodynamics

The hydrodynamic equations are the conservation of mass, momentum, and

energy. Written together, these comprise the Euler equations. In conservation form,

the mass, momentum, and energy conservation equations are (e.g., Clarke & Carswell

14):

dρ

dt
+

#‰∇ · (ρ #‰u ) = 0, (4.1)
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d(ρ #‰u )

dt
+

#‰∇ · (ρ #‰u #‰u + P I) = −ρ
#‰∇Ψ, (4.2)

d(ρe)

dt
+

#‰∇ · ( #‰u (ρe+ P )) = −ρ #‰u · #‰∇Ψ+ ρ(Γ− Λ). (4.3)

Here, ρ is the mass density of all of the species of the atmosphere, and #‰u

is their bulk velocity. We note that the
#‰∇· operator in Equation (4.2) is the tensor

divergence, which in one-dimensional spherical coordinates is just r̂ ∂/∂r. Here, #‰u #‰u

is the velocity outer product, I is the identity matrix, and P is the scalar pressure

that is isotropic. The term e in Equation 4.3 is known as the specific internal energy

- the internal energy per unit mass (ρe is the internal energy density, i.e. the internal

energy per unit volume). Finally, Γ is a heating source term, and Λ is a radiative

cooling source term. The heating comes from the EUV spectrum (Section 4.2.9), and

the cooling included is Lyman-α cooling (Section 4.2.4) and infrared cooling due to H+
3

emission (Section 4.2.3)1. Bolometric heating and cooling forces the temperature in

the lower boundary region, which we interpret to be the temperature set by bolometric

heating and cooling in Section 4.2.2.

Equation (4.1) states that the mass in a fixed grid cell changes only as a result

of fluid flowing in or out, in the absence of sources or sinks. Equation (4.2) states

that the momentum in a cell changes as a result of momentum flowing in or out, the

pressure gradient, and external forces which are written in terms of the gradient of a

1Recombination cooling contributes to radiative energy loss, with the rate Λrr ≃ 6.11 ×
10−10kBT

0.11nH+ne/ρ erg s−1 [64]. We confirm in post-processing that it is negligible for the parameter
space of our models, so it is turned off in our models.
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scalar potential, −ρ
#‰∇Ψ. If the force is gravity, then Ψ = −GMP /r, and the force term

is −ρGMp/r
2 r̂. It is included on the right-hand side of the momentum equation as an

external force, and on the right-hand side of the energy equation as a potential energy

source term. Equation 4.3 states that the internal energy of a cell changes as a result of

energy flux through the cell boundary, PdV work, heating and cooling source terms, and

advection through a potential field. The total energy density E of the gas incorporates

a kinetic energy term due to the bulk velocity, in addition to the internal energy term:

E = 1/2ρu2 + ρe. The ideal gas law relates the pressure to the density:

P = NkBT = ρ
kBT

µ
= ρ

e

γ − 1
, (4.4)

where kB is the Boltzmann constant, µ is the mean molecular weight of the gas, and

N =
∑

s ns is the total number density of the gas. The mean molecular weight µ =∑
s nsms/N , where ms and ns are the molecular weight and number density of species

s, respectively. Thus, the specific internal energy is related to the pressure via: P/ρ =

e/(γ − 1). The adiabatic index γ = 5/3 for a monatomic ideal gas is used throughout.

As we are working in one dimensional spherical coordinates, Equation 4.1 can

be written

∂ρ

∂t
+

1

r2
∂

∂r
(ρur2) = 0 (4.5)

An individual mass conservation equation can be written for each species s

of our atmosphere. We add a chemical source term S on the right-hand side of the

mass conservation equation to denote the creation and destruction of species in our
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chemical network, which we solve for in a separate substep of our routine. The diffusive

velocities us and vs correspond to molecular and eddy diffusion, respectively. A detailed

discussion of diffusion is presented in Section A.2.

∂ρs
∂t

+
1

r2
∂

∂r
(ρsur

2) +
1

r2
∂

∂r
(ρs(us + vs)r

2) = S (4.6)

The bulk density ρ =
∑

s ρs is conserved.

Equation (4.5) can be rewritten as:

∂ρ

∂t
+ u

∂ρ

∂r
= − ρ

r2
∂(ur2)

∂r
(4.7)

Similarly, we write Equation 4.2. The last term on the right-hand side is the

tidal gravity term, derived in Appendix A.1:

∂u

∂t
+ u

∂u

∂r
= −GM

r2
− 1

ρ

∂P

∂r
+

3GM⋆a

r3
(4.8)

Finally, Equation 4.3 can be written (see Appendix A.5):

∂e

∂t
+ u

∂e

∂r
= − P

ρr2
∂(ur2)

∂r
+ Γ− Λ (4.9)

4.2.2 Bolometric heating and cooling

The base of our atmosphere is optically thick to incoming EUV radiation. We

implement a bolometric heating and cooling term in this region, as the EUV heating is

unable to balance the cooling processes to keep this region isothermal. Our atmosphere

is least opaque to the highest-energy photons in our spectrum (165.3 eV). Thus, our

75



calculation is only strictly physical in the region above approximately τ = 1 for the

165.3 eV photons.

In the bolometric region, the temperature is set by the balance between heating

by the entire spectrum of the star and blackbody radiation at the effective temperature

of the planet (in the infrared (IR)). We do not model the IR emitters in detail and

instead parameterize the opacity by κ = 1, which is an aritficially high value for the

opacity. A more accurate model would include dust sinking as well and contributions

to the opacity from molecular lines and atoms. Thus, a detailed calculation of the

transition between the bolometric region and the optically thin region, implementing

appropriate opacities for the optical and IR photons, is left for future work.

The bolometric heating term heats the layer below τ = 1 to the equilibrium

temperature at a given distance from the star. The effective temperature is set by a

balance between stellar heating and thermal infrared cooling. We neglect dust heating

by re-absorption of IR from the emitters, either dust or molecules. Per mass, the

effective heating rate is then: Qbol = Fnabsorbersσabsorbers/ρabsorbers = Fκabsorbers =

κabsorbersσSBT
4
eq. The cooling term radiates at the effective temperature as a blackbody

with a cooling flux per unit area Fcool = σSBT
4
eff , which per mass can be written

as: ΓIR = FcoolnabsorbersσIR/ρabsorbers = κIRσSBT
4
eff . The net bolometric heating and

infrared cooling term is then written as:

Qbol − ΓIR = κσSB(T
4
eq − T 4

eff ). (4.10)
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4.2.3 H3+

The H+
3 ion, also known as trihydrium, is a significant coolant in gas giant

planet thermospheres. In the astronomical context, it was first detected in Jupiter’s

auroral atmosphere by infrared emission. It has also been observed to be present in the

atmospheres of the Solar System giants Saturn and Uranus. However, it has not yet

been detected in an exoplanet.

It is primarily produced from the hydrogen molecule by a chain of two chemical

reactions. First, molecular hydrogen is ionized by a photon with energy above the

ionization threshold to produce the dihydrogen cation: H2 + hν → H+
2 + e−. This

ionized molecular hydrogen then reacts with neutral molecular hydrogen to form H+
3 :

H+
2 +H2 → H+

3 + H. The main destruction pathway is dissociative recombination, the

outcomes of which are twofold: H+
3 + e− → H2 + H and H+

3 + e− → H + H +H.

Due to its structure, the H+
3 molecule is an efficient emitter in the infrared.

For a detailed review of the vibrational modes contributing to the infrared spectrum of

H+
3 , see Miller et al. [57] and references therein. We implement the H+

3 cooling function

calculated by Miller et al. [56]:

E(30 < T < 300K) =− 81.9599 + 0.886768T − 0.0264611T 2 + 0.000462693T 3

− 4.70108× 10−6T 4 + 2.84979× 10−8T 5

− 1.03090× 10−10T 6 + 2.13794× 10−13T 7

− 2.26029× 10−16T 8 + 8.66357× 10−20T 9

(4.11)
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E(300 < T < 800K) = 92.2048 + 0.298920T − 0.000962580T 2

+ 1.82712× 10−6T 3 − 2.04420× 10−9T 4+

1.24970× 10−12T 5 − 3.22212× 10−16T 6

(4.12)

E(800 < T < 1800K) =− 62.7016 + 0.0526104T − 7.22431× 10−5T 2

+ 5.93118× 10−8T 3 − 2.83755× 10−11T 4+

7.35415× 10−15T 5 − 8.01994× 10−19T 6

(4.13)

E(1800 < T < 500K) =− 55.7672 + 0.0162530T − 7.68583× 10−6T 2

+ 1.98412× 10−9T 3 − 2.68044× 10−13T 4+

1.47026× 10−17T 5

(4.14)

The temperature-dependent cooling function allows us to express the H+
3 con-

tribution to the cooling term in our code as: ΓH+
3
= 4πeE(T )nH+

3
× 107/ρ. We note that

the cooling term is zero for temperatures above the range provided in Equations (4.11)

through (4.14), as we do not expect H+
3 to exist there in any significant amounts due to

its source H2 being thermally and/or photo-dissociated in the regions of the atmosphere

where these higher temperatures occur.

4.2.4 Lyman-α cooling

The other significant radiative cooling mechanism in our model is Lyman-α

cooling, which occurs after neutral hydrogen atoms that are collisionally excited by
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electrons de-excite. This cooling converts thermal energy into radiation via electron

impacts. As our gas is partially ionized - neutral hydrogen and ionized hydrogen (the

main contributor to the electrons) coexist at least near the base of the outflow, with

the gas still being mostly neutral - and the gas is sufficiently heated via EUV radiation

ionizing the gas - Lyman-α cooling is expected to be significant. We use the expression

used by Murray-Clay et al. [58] from Black [5]:

ΛLyα = −7.5× 10−19nHnee
−118348/T erg cm−3 s−1, (4.15)

where the density of electrons ne = nH+ + nH+
2
+ nH+

3
+ nHe+ + nHeH+ is the sum of the

number densities of the ionized species (we enforce charge neutrality). We note that the

Lyman-α photons must be able to escape in order for the cooling to be efficient. The

gas is not optically thin towards the radiation in this energy; however, Murray-Clay

et al. [58] show that these photons can freely escape after scattering into the Lyman-α

line wings.

4.2.5 Hydrodynamic solver

We adopt the CIP (constrained interpolation profile) scheme [96] for solving

the hydrodynamics equations. It minimizes numerical diffusion by keeping track of not

only the cell-centered quantities, but also of their spatial gradients. As suggested by

[96], we also adapt a staggered mesh to avoid the problem of damping oscillations caused

by the decoupling of odd and even grid cells. Avoiding unnecessary dissipation improves

mass and energy conservation, which is important especially for low scale heights at the
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base of the atmosphere, where spatial concentration gradients are steep. This scheme

was tested in the context of atmospheric escape by Kuramoto et al. [45], who found

that it reproduces hydrodynamic outflow solutions with relatively high accuracy.

In Section 4.2.1, we split the fluid equations (Equations 4.7, 4.8, and 4.9) into

an advective part on the left, and source terms on the right. The advective part will be

solved via the CIP method. Then, the source terms on the right are explicitly marched

forward in time with a finite differencing method. The diffusion terms are dealt with

separately via the implicit Crank-Nicolson method, and the chemical network is solved

for via the semi-implicit method from Numerical Recipes [71].

We solve the mass conservation equation of each of the 8 component species

separately. We assume that the gas is thermalized, i.e. the temperatures of the species

are the same. All of the species travel with the bulk velocity u, and diffusion is dealt

with implicitly in the mass conservation equation.

We keep track of the variables ρ, u, and e, as well as ρ′, u′, and e′, where

the primes denote the gradient of the variables n, i.e. n′ = ∂n/∂r. The initial n′

are calculated using a central difference formula, ni
′ = (ni+1 − ni−1)/(ri+1 − ri−1). A

forward difference is used for the cell at the lower boundary, n0
′ = (n1 − n0)/(r1 − r0),

and, similarly, a backward difference is used for the cell at the upper boundary, n′
−1 =

(n−1 − n−2)/(r−1 − r−2).

The method of solving the hydrodynamic equations by splitting them into an

advective and non-advective substep is known as operator splitting, which involves solv-

ing two separate sub-parts of the equation which are subsequently combined to advance
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the solution one full timestep. In the following, we discuss the advective substep.

4.2.5.1 Advective sub-step

The advection equation is any equation of the form

dn

dt
+ u

∂n

∂r
= 0. (4.16)

Here, n is the quantity that can be advected with the velocity profile u; in our case, the

quantity can be ρ, u, or e.

In the CIP method, we wish to advance the solution from timestep m − 1

to timestep m. The profile is known at the location of the cell centers of the grid at

timestep m−1. To obtain the solution at timestep m, we need to map the cell-centered

values back to their locations at the previous timestep m−1: xmi −u∆t. However, as the

locations do not coincide with the cell centers, we need to reconstruct the quantity in

each cell. To do that, we use a third-degree polynomial. Recall as we are also advecting

the gradient of the profiles, we reconstruct its solution with a second-degree polynomial.

The remapping process is what makes the code semi-Lagrangian, and the preservation

of the gradient is what makes the code less dissipative than other methods. Appendix

A.4.2 describes in detail how we reconstruct the profiles and their gradients within each

cell, as well as how the solutions are mapped from the previous timestep.

4.2.5.2 Non-advective sub-step

The right-hand side of Equations 4.7, 4.8, and 4.9 can be expressed as a central

difference. The staggered velocity grid makes it easy to express the divergence terms
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in the mass and energy conservation equations. The mass conservation term can be

written on a grid as:

∂ρi
∂t

= −ρi
r2i

ui+1r
2
h,i+1 − uir

2
h,i

rh,i+1 − rh,i
. (4.17)

The density is then updated via ρm+1
i = ρmi + (∂ρi/∂t)

m∆t. Similarly, the

non-advective derivative in the energy equation is discretized as:

∂ei
∂t

= − Pi

ρir2i

ui+1r
2
h,i+1 − uir

2
h,i

rh,i+1 − rh,i
+ Γi − Λi. (4.18)

The first term on the right hand size is the work done by expansion (or con-

traction) of the gas. The second and terms, Γi and Λi are the heating and cooling terms

per mass. The heating term encompasses the heating from EUV (extreme ultraviolet)

photons from the star, which will be described below. The cooling term is radiative

cooling: Lyman-α cooling and molecular cooling (H+
3 infrared radiation).

4.2.6 Artificial viscosity

For stability, we add a numerical viscosity term Qi to the pressure term,

analagous to Yabe & Aoki [96] for the shock-tube problem. First, we calculate the

divergence of the velocity:
#‰∇ · #‰u = ((r2u)i+1/2 − (r2u)i−1/2)/r

2
i , as suggested by Yabe

& Aoki [96]. Then, the artificial viscosity is given by a combination of two terms [48],

linear and quadratic in the divergence of velocity:

Qi = 0.75

(
−ρi

(
γPi

ρi

)1/2

(
#‰∇ · #‰u )i +

γ + 1

2
ρ(

#‰∇ · #‰u )2i

)
if (

#‰∇ · #‰u i) < 0

= 0 if (
#‰∇ · #‰u )i ≥ 0.

(4.19)
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The first term, linear in (
#‰∇ · #‰u ), is required to stabilize shock waves that might arise,

since the scheme reduces numerical dissipation [62]. It is the product of the density,

adiabatic sound speed, and the divergence of the velocity. This term reduces short-

wavelength numerical oscillations. The second term is a von-Neumann viscosity term

[90] - it supresses longer-wavelength numerical oscillations. The tunable constant of

order 1 in front of the viscosity term controls the strength of the artificial viscosity, 0.75

was chosen following Yabe & Aoki [96]. We note that our implementation is similar

to that of the tensor artificial viscosity of Stone & Norman [79], where instead of the

standard gradient implementation the divergence of velocity is used.

4.2.6.1 Grid

We solve Equations 4.7, 4.8, and 4.9 by time marching the density, velocity,

and specific internal energy to a steady state on a one-dimensional non-uniform grid in

spherical coordinates. We use a non-uniform grid to allow for a higher uniform resolution

at the base, increasing the cell size with increasing altitude. The planetary radius RP

is set to 0.7 RJ. The base cell is set to 105 cm, and the grid cell size is further set by

a geometric progression, ∆ri = 1.014∆ri−1. The grid spans 1 RP to ∼ 8.8 RP. This

grid is used for the density and energy profiles - the variables are calculated at the cell

centers. The velocity grid is staggered from the regular grid such that the cell-centered

velocity values coincide with the cell boundaries on the regular grid. Staggering the grid

this way allows for the exact computation of ∂(ur2)/∂r on the right-hand side of the

mass and energy conservation equations using adjacent cells. There are 2 ghost cells at
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the base, and 2 ghost cells at the top, for a total of 504 cells.

Regular

Staggered

Figure 4.1 Illustration of a staggered grid with uneven spacing. The staggered grid cells

are centered at the regular grid cell boundaries. The ghost cells are shaded in gray.

Using the same grid for density, velocity, and energy may result in high-

frequency oscillations in the solution. The velocity is coupled to the pressure via the

momentum equation. Ignoring the advective term on the left and the force terms on

the right, the finite-difference form of Equation (4.8) for cell i on the grid is:

∂ui
∂t

= − 1

ρi

Pi+1 − Pi−1

ri+1 − ri−1
, (4.20)

where we have used the central difference method for calculating gradients. Note that

Pi does not appear in the calculation of ∂ui/∂t - even and odd cells are decoupled, which

results in two separate modes in the solution that may appear as a zig-zag pattern (also

called odd-even grid oscillation or odd-even decoupling). This is a numerical artifact

that may impact the stability of the solution [83]. To mitigate this issue, the resolution

may be increased (at a computational cost), a filter (which may impact accuracy) or

artificial viscosity (which introduces numerical dissipation) may be used; another way

is to use a staggered grid. That way, instead of Equation (4.20) we have:

∂ui+1/2

∂t
= − 2

ρi + ρi+1

Pi+1 − Pi

ri+1 − ri
(4.21)
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with no decoupling, where we use half-indeces such as i + 1/2 to denote cells centered

on the grid staggered by half a cell size from the cells i on the regular grid.

We stagger our velocity grid with respect to the regular grid, with the cell

centers of the velocity grid matching up with the cell boundaries of the regular grid.

There is 1 ghost cell at the base, and 1 ghost cell at the top, for a total of 503 cells. Figure

4.1 illustrates our setup for a single cell on the regular grid. The size of the first cell is

set by ∆rh,0 = ∆r0. The following cells are calculated via: ∆rh,i = 2∆ri −∆rh,i−1.

4.2.7 Boundary conditions

As the flow is supersonic, we use outflow boundary conditions for the number

densities, velocity, and pressure at the outer boundary. For example, where x is ρ or

e and N is the number of grid cells, we have xN−2 = xN−3 + (xN−3 − xN−4)/(rN−3 −

rN−4)(rN−2 − rN−3), and similarly for xN−1 and the velocity boundary condition. No

boundary conditions have to be specified at the outer boundary if the flow is supersonic,

as waves cannot enter the domain from the outer boundary. At the inner boundary,

the flow is subsonic, so we specify the boundary conditions for the number densities

of each species and the pressure. We extrapolate the velocity from the grid: u0 =

u1 − (u2 − u1)/(r2 − r1)(r1 − r0): a wave can travel from the domain to the inner

boundary, as the flow is subsonic, so the value of the velocity is part of the solution and

cannot be imposed as a boundary condition.
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4.2.8 Chemical network

The chemical network of reactions (Table 4.1) includes the ionization processes

that heat the gas and drive a wind. They also include the reactions that generate H+
3 , an

important infrared coolant in the molecular layer. In addition, they determine how the

wind transitions from the molecular to the atomic layer. The reactions were compiled by

Yelle [99] and Garćıa-Muñoz [27]. The rate constants for the photoionization reactions

are determined as in Section 4.2.9. For the 7 atomic/molecular species (+electrons)

undergoing 22 reactions in our chemical network, we can write a set of differential

equations governing the evolution of their concentrations with time. As the rates of the

reactions vary by several orders of magnitude, the reactions network cannot be solved

via a straightforward explicit method - the set of equations is said to be “stiff”. We

implement the semi-implicit method of solving stiff systems of equations from Press

et al. [71], the details of which are given in Appendix A.3.

4.2.9 Spectrum

Here we describe the EUV spectrum of the star. We use the binned spectrum

of Richards et al. [74], which provides the solar flux in 37 wavelength bins corresponding

to a high level of stellar activity.

We calculate a wavelength-dependent optical depth, τν(r), for each spectral

bin:

τν(r) =
∑
s

∫ r

rout

ns(r)σν,s, (4.22)
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Table 4.1. Chemical network

Label Reaction Rate Reference

k1 H + hν → H+ Schunk & Nagy [76]

k2 H+ + e− → H 4.0× 10−12(300/T )0.64 Storey & Hummer [80]

k3 H2 + hν → H+
2 + e− Schunk & Nagy [76]

k4 H2 + hν → H+H+ + e− Schunk & Nagy [76]

k5 H+
2 + e− → H + H 2.3× 10−8(300/T )0.4 Auerbach et al. [1]

k6 H+
3 + e− → H2 + H 2.9× 10−8(300/T )0.65 Sundström et al. [81]

k7 H+
3 + e− → H + H +H 8.6× 10−8(300/T )0.65 Datz et al. [16]

k8 H+
2 +H2 → H+

3 + H 2.0× 10−9 Theard & Huntress Jr [84]

k9 H+
2 +H → H+ +H2 6.4× 10−10 Karpas et al. [42]

k10 H+ +H2 → H+
2 +H 1.0× 10−9e−2.19×104/T Yelle [99]

k11 H+
3 +H → H+

2 +H2 2.0× 10−9 Yelle [99]

k12 H2 +M → H+H+M 1.5× 10−9e−4.8×104/T Baulch et al. [3]

k13 H + H+M → H2 +M 8.0× 10−33(300/T )0.6 Ham et al. [35]

k14 He + hν → He+ Schunk & Nagy [76]

k15 He+ +H2 → HeH+ +H 4.2× 10−13 Schauer et al. [75]

k16 He+ +H2 → H+ +H+He 8.8× 10−14 Schauer et al. [75]

k17 HeH+ +H2 → H+
3 +He 1.5× 10−9 Bohme et al. [6]

k18 HeH+ +H → H+
2 +He 9.1× 10−10 Karpas et al. [42]

k19 He+ + e− → He 4.6× 10−12(300/T )0.64 Storey & Hummer [80]

k20 HeH+ + e− → He + H 1.0× 10−8(300/T )0.6 Yousif & Mitchell [100]

k21 H+ +H2 +M → H+
3 +M 3.2× 10−29 Miller et al. [55]

k22 H2 + hν → H+H Schunk & Nagy [76]
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where σν,s is the total photoabsorption cross section of species s per wavelength ν, r is

the radial coordinate, ns(r) is the number density of species s at a radial distance r,

and rout is the outer radius of the grid, where we take the optical depth to be zero.

Here we calculate the photoionization rate for species s by photons of wave-

length ν and energy Eν . The photons may be absorbed by species other than species s

if the cross sections for absorption σabs,ν for these other species are non-zero. Therefore,

we must allocate the ionizing flux in each wavelength bin between the species. Suppose

the absorbing species in our gas are H2, H, and He. Then, the fraction xH absorbed by

H can be written as [64]:

xH =
nHσabs,ν,H

nH2σabs,ν,H2 + nHσabs,ν,H + nHeσabs,ν,He
, (4.23)

and similarly for H2 and He. Here, nsσabs,ν,s is the number density of species s, and

σabs,ν,s is the cross section for absorption of species s for photons of wavelength ν. To

calculate the photoionization rate for species s in each cell, consider a cell of width ∆r

and cross-sectional area A (Figure 4.2) located at a depth r from the surface of the

atmosphere of the planet.

Suppose that the incoming flux Φ0 from the star is coming in from the left.

This incoming flux Φ0 = Φνe
−τν(r), where τν(r) is the optical depth at radius r given by

Equation 4.22. The total number of photons that gets absorbed per volume in the cell

is Φ0(1 − e−τν,cell)/∆r, where τν,cell = (nH2σabs,ν,H2 + nHσabs,ν,H + nHeσabs,ν,He)∆r for

small ∆r such that the number densities of all species are approximately constant within

each cell. Then, of the photons that get absorbed, atomic hydrogen absorbs a fraction
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Figure 4.2 Grid cell of length ∆r and cross-sectional area A containing absorbing species

H, H2, and He. Ionizing stellar flux of wavelength ν impacts the cell on the left. After

being absorbed in the cell, the flux is reduced to e−τ times the original flux, Φ0, where

τ is the optical depth through the cell for the particular wavelength of interest.

xH = τν,H,cell/τν,cell (Equation 4.23), where τν,H,cell = nHσabs,ν,H∆r is the contribution

to the optical depth in the cell due to atomic hydrogen. The rate at which photons are

absorbed by atomic hydrogen is therefore:

rate =
xHΦ0(1− e−τν,cell)

∆r
. (4.24)

For either absorbing species s, the reation rate is then:

rate = nsσion,ν,s
Fνe

−τν(r)

Eν

(1− e−τν,cell)

τν,cell
. (4.25)

Here, Fν is the energy flux per bin of wavelength ν, Eν is the average photon energy
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in the bin (we assume all photons in a bin have the same energy), and σion,ν,s is the

photoionization cross section for the specific photoionization reaction, as for example

H2 photoionization can proceed via Reaction 3 or 4.

4.2.9.1 Optically thin limit

For computational purposes, we implement the following expression for the

optically thin limit (τν,cell < 10−9): as τν,cell << 1, 1 − e−τν,cell ≈ τν,cell, reducing the

rate expression to:

rate =
τν,H,cell

τν,cell
Φ0

τν,cell
∆r

= Φ0nHσabs,ν,H, (4.26)

which allows us to calculate the photoionization rate for either species s via:

rate = nsσion,ν,s
Fνe

−τν(r)

Eν
(4.27)

Following the discussion in Section 4.2.9 on photoionization rates, we can calcu-

late the heating rate due to the photoionization of H, H2, and He, as well as the dissocia-

tive photoionization and dissociation of H2. The optical depth due to photon absorption

by H, H2, and He in a grid cell is τν,cell = (nH2σabs,ν,H2 + nHσabs,ν,H + nHeσabs,ν,He)∆r.

The incoming flux of photons of energy hν at the cell boundary is Φν(r) = Fνe
−τν(r).

Per volume, rate of photoreactions j for species s is:

rj = nsσj
Fνe

−τν(r)

Eν

(1− τν,cell)

τν,cell
(4.28)

We then calculate the heating rate per volume:

Γν =
∑
j

nsσjϵjFνe
−τν(r)

(1− τν,cell)

τν,cell
, (4.29)
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where the heating efficiency ϵj is given by:

ϵj =
(hν − Elim)

hν
, (4.30)

where Elim is the threshold energy for the ionization of H (13.6 eV), He (24.6 eV),

H2 (15.4 eV), the disssociative ionization of H2 (18.08 eV, Ford et al. [22]), and the

dissociation of H2 (4.74 eV, Herzberg & Monfils [36]).

4.3 Results

We discuss the results for our fiducial planet in Section 4.3.1. We show the den-

sity, velocity, pressure, and temperature profiles, as well as the composition by species

with altitude. We discuss our model in detail, including the deposition of photons of

varying spectral energy with altitude, and show how it produces three layers. Reaction

rates involving H, H2, and He are shown, both to demonstrate the convergence of the

model and to highlight the key reactions involved in the molecular layer and the outflow.

Heating and cooling rates are discussed, as well as the photoreactions that contribute

to the heating. In Section 4.3.2, we discuss how the cooling terms are assigned to the

heating terms, both by altitude and by wavelength. In Section 4.3.3 we introduce the

heating efficiency parameter, ϵ, that we will use to compute the energy-limited mass-loss

rate. Section 4.3.4 discusses the differences between various radiative modes of cooling

turned on and off for our fiducial hot Jupiter at 0.05 au, and Section 4.3.5 contains the

results of our grid of models, varying the semimajor axis of the planet from 0.015 to 0.9

au.
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4.3.1 HD209458b

We model the upper atmosphere of our fiducial planet with parameters similar

to that of the hot Jupiter HD209458b (Table 4.2). The steady-state profiles of our

model are shown in Figure 4.3.
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Figure 4.3 Panel (A) shows the density profile for fiducial hot Jupiter at 0.05 au. Panel

(B) - its velocity profile. The red “X” marks the sonic point of the wind. Panel (C)

displays the pressure profile, and panel (D) - the temperature profile.

The wind reaches a velocity of ∼ 8 km s−1 at the sonic point distance of 3.1

RP. The maximum temperature reached is ∼ 104 K, as the Lyman-α cooling prevents
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Figure 4.4 The composition of the atomosphere of our fiducial (0.05 au hot Jupiter)

planet by species. The dashed lines on Panel A denote the bolometric region. The

transition from: H2 → H occurs at 1.02RP, H → H+ - 1.64RP, and He → He+ - at

1.29RP. The molecular layer drops off sharply at 1.04RP.

further heating. The mass-loss rate, Ṁ ∼ ρur2 = 6.4 × 109 g s−1, is evaluated per

steradian along the ray connecting the planet to the star on the dayside. Integrating

over 4π steradians would lead to a mass-loss overestimate of the true mass-loss rate.

Figure 4.4 shows the composition of the atmosphere, zoomed in on the base

(panel a) and depicting the outflow (panel b). H2 and He are the major constituents of

the atmosphere at the base of our simulation, which we denote the molecular hydrogen

layer. This layer also contains the important coolant H+
3 . The composition transitions

to H and He in the intermediate layer between the base and the outflow layer: the H2 is

thermally dissociated and the He is not yet ionized. Finally, the outflow is dominated

by H+, which is created by ionizing H and advected away by the outflow. The ionization
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Figure 4.5 Panel (A): The heating and cooling rates as a result of the photoreactions

in the wind at the base near the molecular hydrogen layer (r < 1.04 × 1010 cm). The

H2 layer is primarily heated by the photoioization of He, with contributions from the

photoionization of H2 deeper in the layer, and the photoionization of H higher up. This is

radiated away by the H+
3 . In the atomic hydrogen layer (1.04×1010 < r < 1.4×1010 cm),

Lyman-α is the primary coolant, balancing equal contributions of the photoionization of

H and He. Panel (B): The heating and cooling rates as a result of the photoreactions in

the wind. The EUV heating is balanced by the PdV cooling in the outflow (r > 1.4×1010

cm). At the base, Lyman-α contributes significantly. The EUV heating is predominately

due to the ionization of atomic hydrogen in the wind. We note that the PdV work

term here balances the sum of the EUV heating and advection terms - as temperature

decreases with distance from the planet, thermal energy is added to power the wind.

processes contribute to heating the gas.

Specifically, the energy left over from ionization heats the gas. This energy is
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Figure 4.6 The balance of energy deposition and loss at the base of our fiducial hot

Jupiter atmosphere. Panel a is zoomed in to the H2 layer at the base, which is H+
3 -

cooled. Panel b shows the region just above, dominated by H, which is primarily

Lyman-α-cooled. The EUV heating rate (after overcoming the ionization potentials

of the ionizing species) is shown in magenta. The cooling processes that balance the

heating are: H+
3 in the molecular layer (red), Lyman-α in the neutral atomic hydrogen

layer (purple dashed), transitioning to a PdV -dominated outflow layer beyond ∼ 1.45

RP (black).
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Figure 4.6 The highest-energy photons (165.3-55.1 eV) τν = 1 surfaces lie within the

molecular layer - a significant part of the heating attributed to those energies is H+
3 -

cooled. The photons in the 55.1-15.0 eV energy range have τν = 1 within the layer

cooled by Lyman-α - heating due to especially the higher end of this energy range is

affected significantly by Lyman-α cooling. Finally, photons in the 15.0-13.6 eV energy

range ionize neutral hydrogen and are mostly all available to power the outflow.

available to either power an outflow (cool it by adiabatic expansion), or to be radiated

away. Either way, the heating received by a steady-state atmosphere must exactly

balance the cooling. Two important sources of radiative cooling are included in our

model: Lyman-α cooling and H+
3 cooling. We wish to understand how these cooling

processes affect the outflow. To do this, we identify which of the cooling processes are

dominant as a function of altitude, as well as heating from what spectral ranges are

affected by the radiative cooling processes the most. For example, the photons driving

the wind have to be absorbed close to the H+
3 for the H+

3 to matter when cooling the

wind. To form H+
3 , H2 must be present, and it also must be ionized. In Figure 4.4,

we observe the presence of both H2 and H+
2 at the base, satisfying this criterion for

forming H+
3 . Furthermore, if we look just above this molecular hydrogen layer on the

plot, we observe partially ionized (but still mostly neutral) hydrogen. The temperature

in Figure 4.3 rises steeply just outside of the molecular hydrogen layer. The H+
3 cooling

no longer effectively cools the gas here, yet in order to escape the gravitational well of

the hot Jupiter, the gas must reach a temperature that allows the thermal pressure to
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accelerate it to a significant fraction of the escape velocity, allowing adiabatic cooling

to set in. Thus, with no cooling mechanism yet available, the gas heats up enough for

Lyman-α cooling to ultimately begin: the electrons2 have high enough energies to excite

the neutral H, and there is enough of them for the cooling to be significant. Further up

still in the model, we observe the outflow being accelerated to velocities of km s−1 to tens

of km s−1 (Figure 4.3). The outflow region corresponds to the H+-dominated region in

Figure 4.4. Connecting this to the energy processes, Figure 4.5 displays the rate of EUV

heating (after subtracting the contribution to overcoming the ionization potentials) as

a function of altitude. It also displays the cooling processes: H+
3 -dominated at the

base, Lyman-α-dominated higher up, and PdV -dominated in the outflow, suggesting

a three-layer structure for our model. The H+
3 cooling term (red solid line) drops as

soon as the H2 in the layer is thermally dissociated. The temperature increases as H+
3

is no longer available to cool in the layer above, leading to an onset of Lyman-α cooling

(purple dashed line). This term drops off as the wind acquires enough energy to be

able to start climbing out of the gravitational potential of the hot Jupiter, allowing the

PdV term to cool the outflow. Note that in Panel b of Figure 4.5, the PdV term is

balanced by the sum of the EUV heating and advection terms. The advection term is

the left-hand side of the energy equation in steady-state form (Equation 4.34). When it

is negative (i.e., ∂e/∂r < 0, since ρu > 0 in the outflow), this term acts as an additional

source of energy, advecting energy from lower in the atmosphere. For this reason, we

denote it “- advection“ in the outflow. In contrast, at the base as the temperature

2We note that Lyman-α cooling occurs via collisional excitation, and electron impacts are most
efficient due to their high velocities relative to the other gas species in energy equipartition.
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rises with distance, ∂e/∂r > 0, and the advective term actually acts as an energy sink,

transporting energy up (labeled “+ advection” in Panel a).

Zooming in to the base of the atmosphere, we have Figure 4.6. In this figure,

we mark the τν = 1 surfaces on the plot, with the EUV heating rate and cooling rates

as described in Figure 4.5. Here, we get an idea of where photons of a given energy get

deposited, and therefore which mode of cooling balances their resultant heating.

Going back to our three-layer model, its structure is a result of the interplay

between photoionization reactions and the mutual reactions of the photochemical prod-

ucts. These reactions both form the constituents in the chemical network and determine

the temperature structure, which in turn determines both the reaction rates and feeds

back into the radiative cooling rates of the gas. To understand the composition in Figure

4.4, resolving the structure of the outflow, we must understand the chemical network.

We focus our discussion of the chemical network on the following three processes:

• reactions forming and destroying H+
3 ,

• reactions destroying H2 to understand the transition between molecular and atomic

hydrogen,

• ionization reactions of the neutral species H, H2, and He and which reactions

dominate the ionization.

Physically, what controls the ionization processes is the wavelength-dependent

cross section to ionization and the incoming photon flux of that wavelength. The flux

declines as e−τν as we traverse the atmosphere from the top to the base. Furthermore,
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the presence of multiple ionizing species and, for the case of molecular hydrogen, ion-

ization outcomes, means that the incoming photon flux must be allocated according to

each process’ respective cross section. The photoabsorption cross sections H2, H and He

are shown in Figure 4.7. A key constituent of the base layer of our atmosphere is H+
3 .

H+
2 must be able to form within the layer of H2 (Table 4.1, k3 and k8) in order for H+

3 to

form. H+
2 forms through ionization of H2 (Table 4.1, k3). However, the ionization of he-

lium (k14) and atomic hydrogen (k1) are the main competitors with this process. Panel

c of 4.7 displays these competing processes as a function of wavelength: photons with

energies less than the 24.6 eV ionization threshold for He are all used to ionize atomic

hydrogen. The longer-wavelength photons of our spectrum are almost completely ab-

sorbed by neutral hydrogen, leaving only the highest-energy photons in our spectrum

to ionize molecular hydrogen. As we will discuss in Section 4.3.2, these photons’ (in the

13.6-24.6 eV range) τ = 1 surfaces all lie outside of the molecular hydrogen layer: the

heating from this energy range of photons will be unaffected by cooling by H+
3 , as they

are absorbed in a layer above.

Figure 4.8 depicts the reaction rates that are relevant to the production and

destruction of molecular hydrogen at the base of our atmosphere. H2 can be ionized

by photons with energies exceeding the photoionization threshold hν = 15.4 eV via

H2 + hν → H+
2 + e− (blue line). However, in our model the layer of atomic hydrogen

absorbs most of the ionizing photons up to the 24.6 eV ionization threshold of He (Figure

4.7). Photodissociation can occur followed by the ionization of atomic hydrogen: H2 +

hν → H+H++e−. In addition, thermal dissociation can occur: H2+M → H+H+M,
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where M is a species that collisionally dissociates H2 (orange line).

Molecular hydrogen is primarily ionized by photons in the 165.7-50 eV range

(Figure 4.7), the τ = 1 surfaces of which lie within this molecular layer (Figure 4.6). Fig-

ure 4.5, panel a displays the heating and cooling rates at base of our atmosphere in the

layer of molecular hydrogen. The cooling done by H+
3 is dominant in this layer - a large

fraction of the EUV heating here is radiated away. Going back to Figure 4.8, the tran-

sition from molecular to atomic hydrogen occurs within the molecular hydrogen layer.

Here, atomic hydrogen is able to be ionized (purple line) by higher-energy photons, but

similarly that ionization heating is efficiently radiated away by H+
3 . In summary, the

ionization of molecular hydrogen ultimately does not drive hydrodynamic escape of the

atmosphere, as the energy deposited in this layer is efficiently radiated away by infrared

cooling from the H+
3 .

At the upper edge of the molecular layer, ionizing radiation heats up the gas

enough for the molecular hydrogen to dissociate (reaction k12) after collisions with the

dominant species, H2 and H. We find that photodissociation of H2 is not the main path-

way for the dissociation of H2. We also include the dissociation of molecular hydrogen

by photons in the far-ultraviolet (FUV) range of the spectrum (k22) [37, 39], with wave-

lengths > 912 Å (Figure 4.7). Shortward, ionization of H dominates over this process.

These photons resonantly excite H2, which then decays with a ∼ 10% probability of

dissociating into two hydrogen atoms (and the remaining ∼ 90% de-excites via fluores-

cent emission). The FUV photons probe deeper into the molecular hydrogen layer, and

this process is the dominant dissociation pathway of H2 (and therefore the main source
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of atomic hydrogen) further in (as opposed to thermal dissociation, which happens at

higher temperatures). The heating from this process is predominately radiated away

by H+
3 (Figure 4.10, λ > 12.4 eV), even though these are the lowest-energy photons in

our spectrum. The destruction of H2, the source of H+
2 which is the precursor of H+

3 ,

means that H+
3 cooling is shut off in this layer.

In Figure 4.9 we show the main reactions involving H. The thermal dissocia-

tion of molecular hydrogen increases as the temperature of the gas starts rising to ∼ 104

K. As molecular hydrogen gives way to atomic hydrogen, some of the atomic hydrogen

is ionized (producing electrons capable of exciting the atomic hydrogen) and the gas is

heated. Now, the predominant mode of cooling is Lyman-α cooling. Lyman-α cooling

keeps the temperature here to 104 K. Thus, atomic H can be produced here at a high

rate - which further allows for the heating of the gas and the destruction of molecular

hydrogen. We note that most of the energy leftover from ionization here in this neutral

atomic hydrogen layer above the molecular layer (Figures 4.4 and 4.5) is radiated away

by Lyman-α cooling. Some of the heating here is converted to PdV work, partially pow-

ering a hydrodynamic outflow. Further up in the wind, the gas becomes mostly ionized.

The ionizations (k1) here are not balanced by recombinations (k2), but by advection.

Figure 4.9, panel b shows the reactions involving H in the outflow: advection of H

and a minor contribution from recombination exactly balance ionization. Furthermore,

adiabatic expansion is what mostly cools the gas, as is shown in Figure 4.5, panel b.

The PdV term is the dominant cooling term in the outflow: it balances EUV heating

(magenta line) as well as heat advected from below (solid gray line). We will show in
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Section 4.3.2 that what drives the wind is photons in the 13.6-70 eV energy range.

The advective term Nu∂fs/∂r in Figures 4.8 and 4.9 is derived from the

continuity equation. The advective term for the total number density N is:

1

r2
∂

∂r

(
r2Nu

)
= u

∂N

∂r
+

N

r2
∂

∂r

(
ur2
)
. (4.31)

Therefore, in steady state we have:
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Similarly, we write the advection term for an individual species s:
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(4.33)

where we define fs = ns/N as the fraction of the total density in species s.

Figure 4.10 is a summary of the three-layer structure that is the outcome of

our model. The H2-dominated base layer is cooled by H+
3 , with the highest energies of

our spectrum (165.3-55.1 eV) deposited there. The Lyman-α-cooled layer containing a

significant fraction of neutral hydrogen absorbs photons of energies 48.4-15 eV. Finally,

the H in the PdV -dominated layer is quickly converted to H+, with 14.2-13.6 eV photons’

τ = 1 surfaces within this layer. As an exception, the 12.7 eV photons contributing to

the far-ultraviolet resonant dissociation of H2 are deposited in the H+
3 -cooled layer, not

contributing to the outflow. The distance from the planet where the wind velocity
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Table 4.2. Simulation data

Parameter Value

Planet/star parameters

Planet mass, MP (MJ) 0.7

Stellar mass, M⋆ (M⊙) 1

Planet radius, RP (cm) 1010

Semimajor axis, a (au) 0.05

Temperature at base, T0 (K) 1000

Pressure at base, P0 (dyn cm−2) 0.96

Adiabatic index, γ 5/3

Constants

Jupiter mass, MJ (g) 1.898× 1030

Solar mass, M⊙ (g) 1.989× 1033

Astronomical unit, au (cm) 1.496× 1013

Boltzmann constant, kB (cm2 g s−2 K−1) 1.380658× 10−16

Gravitational constant, g (dyn cm2 g−2) 6.67259× 10−8

Stefan-Boltzmann constant, σSB (g cm−3 K−4) 5.6704× 10−5

Photoreaction thresholds (eV)

H + hν → H+ 13.6

H2 + hν → H+
2 15.4

H2 + hν → H+H+ + e 18.08

H2 + hν → H+H 4.74

He + hν → He+ 24.6
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reaches the sound speed is the sonic point, located at 2.9 planetary radii for our fiducial

model. The Hill radius, where the tidal gravity from the star starts exceeding the gravity

of the planet, i.e. where the atmosphere becomes unbound from the planet, is shown at

4.5 planetary radii. The exobase is the location where the mean-free path to collisions

is comparable to the scale height of the atmosphere. Beyond, the particles are no longer

collisional, and the atmosphere can no longer be modeled as a hydrodynamic outflow.

The neutral species’ cross section is smaller than the Coulomb cross section appropriate

for ionized particles: they decouple from the outflow before the gas becomes collisionless,

starting to free-stream out. Kinetic modeling is appropriate for the decoupled particles,

which is beyond the scope of our work. Nevertheless, for our fiducial planet at 0.05

au, the gas remains collisional out to the sonic point, allowing us to model the outflow

hydrodynamically. Collisionality is further discussed in Section 4.3.8.

4.3.2 Energy allocation

In order to evaluate which parts of the spectrum are generating heating, and

which parts are cooled (and which location that corresponds to in the atmosphere), we

will use the steady-state version of Equation (4.9),

ρu
∂e

∂r
=

P

ρ
u
∂ρ

∂r
+ ρ(Γ− Λ), (4.34)

which we derive in Appendix A.5. The left-hand side is denoted the advective term,

and the right-hand side is the PdV work term, as well as the heating and cooling source

terms. We calculate the contribution of each heating term from each physical region
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to understand how much of the heating goes into PdV work, Lyman-α cooling, and

H+
3 cooling, and also its spectral dependence. We’re going to analyze the output of our

simulation by evaluating these terms.

To get the total heating rate at a given radius from the planet, we sum

over the spectrum: Γ(r) =
∑

ν Γν(r). We define a cumulative heating rate ΓC(r) =∫ r
RP

ρ(r)r2Γν(r)dr to get the total energy deposited after ionization heating from the

base of the atmosphere to a height r, for example, the outer radius of our grid r = rout.

Then, the heating rate is ΓC(rout). Similarly, if the radiative coolants are H+
3 cooling

ΛH+
3
and Lyman-α cooling ΛLyα, such that Λ = ΛH+

3
+ΛLyα, the cumulative cooling rate

to the outer radius is ΛC(rout) = ΛC,H+
3
(rout) + ΛC,Lyα(rout) =

∫ rout
RP

ρ(r)r2ΛH+
3
(r)dr +∫ rout

RP
ρ(r)r2ΛLyα(r)dr.

As shown in Figure 4.6, the highest-energy photons from our spectrum tend

to be deposited in the molecular layer of the atmosphere at the base (the 55.1-165.3

eV range). This layer is primarily radiatively cooled via H+
3 emission - most of the

heating in this layer is balanced by this radiative cooling. Although mostly radiated

away, a fraction of the energy deposited in this layer still contributes to PdV work and

therefore the outflow (black solid line). We are interested in the contribution of heating

in this layer to the total PdV work term. To calculate this, first we calculate the total

integrated PdV work out to a radius r. This is per unit solid angle, as we are working

in one-dimensional spherical coordinates:

PdVtot(r) =

∫ r

RP

(
P

ρ
u
∂ρ

∂r

)
r2dr, (4.35)
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where the term in parentheses is the PdV term from the steady-state energy equation.

In Figure 4.6, we point out the region between the edge of the bolometric region acting

as a boundary condition (hatched area) and the edge of the layer with significant H+
3

cooling (r = 1.039×1010 cm) - where the H+
3 cooling curve crosses the PdV work curve.

The contribution to the total PdV work from this region is 7.2%. As we go up in the

atmosphere, the next primary cooling mechanism is briefly PdV and advection. The

contribution of this region (1.039 × 1010 < r < 1.045 × 1010 cm) to the PdV work is

3.6%, after which the primary cooling mechanism transitions to Lyman-α cooling. The

primary cooling mechanism transitions back to PdV work at r ≈ 1.039× 1010 cm, and

the contribution to the total PdV from this region is 31.3%. The total contribution to

the PdV work from the radiatively-limited region is significant. Finally, 56.5% of the

PdV work comes from the cooling in the PdV -dominated upper layer, which transitions

at r = 1.42× 1010 cm.

We can look at the energy balance in this upper layer. The contribution from

PdV as a fraction of the heating and advection is 89.8%, placing the region above

approximately 1.4 planetary radii in the energy-limited regime, suggesting that the

effective radius for launching the wind is 1.4 planetary radii - higher up in the atmosphere

than the molecular layer that we have chosen as the base. We note that the sonic point

for this planet is at 3.14 planetary radii.

To calculate the percentages shown in Figure 4.11, we first define the ra-

tio of the heating from a specific energy bin to the total heating at a given radius:

fν = Γν(r)/
∑

ν Γν(r). Then, we multiply each cooling rate (ΛH+
3
,ΛLyα, and PdV ) at
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that radius by that fraction. This way, we estimate how much of each of the cool-

ing processes balance each heating energy bin: ΛH+
3 ,ν(r) = fνΛH+

3
(r), ΛLyα,ν(r) =

fνΛLyα(r), and PdVν(r) = fνPdV (r). We can obtain the total contribution to the

wavelength bin by integrating over radius3: ΛH+
3 ,ν =

∫ rout
RP

ΛH+
3 ,ν(r)ρ(r)r

2dr, ΛLyα,ν =∫ rout
RP

ΛLyα,ν(r)ρ(r)r
2dr, and PdVν =

∫ rout
RP

PdVν(r)r
2dr. Finally, we can divide this by

the total heating,
∫ rout
RP

(
∑

ν Γν(r))ρ(r)r
2dr, to find out what fraction of the heating goes

into what cooling process for each respective energy bin.

Figure 4.12 depicts the energy budget broken up into wavelength bins. The

highest-energy photons are primarily balanced by H+
3 cooling, then Lyman-α in the

64-28 eV range. Then, for energies below around 28 eV around 0.5 of the heating goes

into PdV . This may suggest that the outflow is energy-limited from the ionization

threshold of H (13.6 ev) to 28 eV. However, the τ = 1 surface for photons from 28 eV to

15 eV lies at around 1.17 planetary radii, which is where Lyman-α dominates over the

PdV work term (Figure 4.6). This is because the higher-energy photons also contribute

significantly to the heating in that region, and their contribution to the heating rate is

mostly radiated away. Thus, to determine where the base of the wind is we make Figure

4.12 for radii above 1.4 planetary radii, where the PdV term starts to dominate.

If we restrict the radius range to r > 1.4 planetary radii, we can see that 15%

of the heating goes into Lyman-α, and the rest goes into PdV or is advected away over

the entire range of the spectrum.

As in Figure 4.12, Figure 4.13 displays the cooling rates normalized by the

3After multiplying by ρ in the integrals the quantities are in units of energy, not energy density.
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available heating from the spectrum. However, we plot the PdV term as a cumulative

sum from the lower-energy bins of the spectrum (which are entirely energy-limited) to

the higher-energy bins (which are almost entirely radiation-limited). This allows us to

get a quantitative estimate for which spectral energies are driving the wind: most of

the spectral energy used to power the outflow is from energies less than ∼ 70 eV.

4.3.3 Stellar heating efficiency parameter, ϵ

A regime frequently used in the literature to evaluate the mass-loss rate is the

energy-limited regime. It gives the maximum mass-loss rate for a planetary outflow,

assuming that all of the incoming stellar UV flux goes into powering the outflow:

Ṁelim =
ϵR3

PFuv

GMp
. (4.36)

In the literature, this efficiency factor ϵ is sometimes used to mean the overall efficiency,

including the ionization and the radiative cooling. We only consider the ionization in

this section, such that the efficiency factor ϵ = 0.5 is used to account for the energy

required to ionize the species in the atmosphere, which is unavailable for heating. For

comparison with this expression, we evaluate our results for what the effective ϵ would

be. Recall that we initialized the simulations to mass fractions X=0.75 for H and Y=0.25

for He. If we assume the hydrogen is atomic, the ratio of number densities H:He is 4:3.

Then we can approximate the efficiency factor

ϵ =
4

7

∑
ν

(
Eν − IH

Eν

Fν

F

)
+

3

7

∑
ν

(
Eν − IHe

Eν

Fν

F

)
, (4.37)
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where F =
∑

ν Fν is the total EUV flux. This gives an estimate of ϵ ≃ 0.51, which we

will use in Section 4.3.5 to discuss the energy-limited mass-loss rate for a grid of models

with varying semimajor axis.

We may compute the actual heating efficiency by defining it as a fraction of

the total input EUV flux that goes into heating, after accounting for overcoming the

ionization potentials of the species. It may be computed for a given distance from the

planet (Figure 4.14, panel a), or for a given energy bin (Figure 4.14, panel b). The total

efficiency computed over the entire spectral range, integrated over the planetary radius

range, is ϵ = 0.54, showing that our estimate from Equation (4.37) is reasonable. We

note here that although the photons of higher energy are more efficient at heating the

gas, they do not necessarily power the outflow more, as they are deposited at altidudes

that have significant radiative heating, both H+
3 for the highest-energy photons in our

spectrum (∼ 165.3− 70 eV), and Lyman-α (∼ 70− 20 eV).

From our simulations including radiative cooling, we do not find mass-loss rates

equal to this energy-limited rate. We provide a calculation of the output estimate in

Section 4.3.5. The radiative cooling provides an extra factor of loss of efficiency, which

depends on distance from the star (and therefore on the EUV flux).

4.3.4 4 radiative cases for fiducial 0.05au hot Jupiter

In this section, we compare 4 cases for our fiducial hot Jupiter at a 0.05 au

orbital separation: one with full radiative cooling, a case with either just H+
3 cooling

or just Lyman-α cooing turned on, and one - with all radiative cooling turned off. We
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contrast the density, pressure, velocity in the outflow, and temperature structure in

Figure 4.15. The composition for all 4 cases is plotted in Figure 4.16, both zoomed-in

to the base (left-hand plots), and depicting the larger-scale outflow (right-hand plots).

Figure 4.17 shows a zoomed-in temperature plot on the left, along with the larger scale

shown on the right. Finally, Figure 4.18 shows the full reaction rate network for reactions

involving H2 - the molecular layer at the base - to contrast how the temperature structure

affects the dominant reaction rates, as well as the resulting composition in Figure 4.16.

In Figure 4.15, the density, pressure, and velocity in the wind drops as we turn

on radiative cooling, with H+
3 and Lyman-α having similar contributions in magnitude

to the general outflow. Both cooling mechansims have a similar (in order of magnitude)

impact on the mass-loss rate. However, they affect the temperature structure differenty,

as they operate in different regions of the outflow (as seen in the three-layer structure

revealed by our model, e.g. Figure 4.10). Both cooling mechanisms decrease the total

internal energy that the pressure-driven wind is able to draw from to power itself,

thereby decreasing both the velocity and temperature thoughout the outflow. The

temperature plot is shown in Figure 4.17 with a focus on the base of our simulated

region in panel a. While H+
3 lowers the the temperature at the base in the molecular

region, Lyman-α thermostats the peak temperature to ∼ 104 K (panel b).

In Figure 4.16, in the H+
3 -cooled base layers in panels a and e the transition

from molecular to atomic hydrogen occurs at a slightly higher altitude, as H2 is less

thermally dissociated when temperatures are low.

Figure 4.18, Panel (A) plots the reaction rates involving H2. H+
2 and H ex-
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change an electron and almost balance out to the edge of the molecular layer (yellow

solid line and dotted grey line) - these don’t involve the descruction of H2, though their

rates are quite high. The main destruction pathways for H2 are the production of H+
3

throughout the layer, and the thermal destruction of H2 at the edge of the layer, which

causes the level of H2 to drop sharply. Note that the photodissociation and ionization

reaction (H2 + hν → H + H+ + e, purple solid line) is not the dominant destruction

pathway of H2, and neither is the dissociation of H2 by far-ultraviolet photons deeper

in the molecular layer (red solid line). In panels b and d of Figure 4.18, molecular hy-

drogen is dissociated thermally throughout the layer after being advected up from the

lower boundary region - as H+
3 cooling is turned off, the temperatures get quite high.

Only when the temperature reaches ∼ 2 × 103 K is thermal destruction significant. In

contrast, in the presence of H+
3 cooling, the temperatures in the molecular layer (Figure

4.17, around 1.02 au) do not get high enough for H2 to thermally dissociate (solid green

line) throughout - instead, H+
3 formation (solid pink line) is the dominant pathway

for H2 destruction throughout the layer. With advection unable to replenish H2 at a

high enough rate from the inner boundary region, H2 falls off rapidly (Figure 4.16, left

panels), transitioning into atomic hydrogen.

Our case with Lyman-α cooling turned off is qualitatively similar to the com-

positions described in Yelle [99] and Garćıa-Muñoz [27].

111



4.3.5 Grid of models

We address the question of how the efficiency of atmospheric escape varies with

stellocentric distance a. For that purpose, we run a grid of models, placing our fiducial

hot Jupiter at 0.015-0.9 au from the host star. We scale the EUV flux by a−2, effectively

varying the distance. Tidal gravity is present in our model (Appendix A.1), enhancing

the mass-loss rate for the closest-in planets. As the term scales as a−3, beyond ∼ 0.1 au

the effect is negligible. We plot the density (panel a), velocity (panel b), pressure (panel

c), and temperature (panel d) profiles in Figure 4.19. The sonic point moves outward

as the stellar EUV flux decreases with semimajor axis and less energy is available to

lift the gas out of the potential well of the planet. The molecular hydrogen transitions

to atomic at a slightly increasing height in the atmosphere for a decreasing semimajor

axis. This is because the temperature for the close-in planets is actually lower at the

base in the molecular region, allowing a slighly more extended molecular region. This

is due to H+
3 cooling: more H+

3 is able to form close-in to the star, allowing for more

cooling.

Figure 4.20, panel a displays the fraction of the total EUV heating (after

accounting for the energy required to overcome the ionization potentials) that goes into

H+
3 cooling, Lyman-α cooling, and PdV as a function of semimajor axis. We plot the

total heating rate and the heating that goes into directly heating the gas in Figure

4.20, panel b. The heating efficiency is approximately constant over the semimajor axis

range, suggesting that our value of ϵ = 0.51 is reasonable for making an estimate of the
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energy-limited escape rate. We will use this expression for the energy-limited escape

rate to evaluate how energy-limited our wind is, i.e. what fraction of the total available

energy that is used to heat the gas goes into powering the wind. Panel b also shows

the power output in both H+
3 and Lyman-α cooling, as compared to the effective EUV

heating rate (blue line). For the set of models including both H+
3 and Lyman-α cooling

(black dashed and soild lines), the Lyman-α power output exceeds that of the H+
3 ,

comprising a greater fraction of the incoming flux further out from the star. Lyman-α

cooling drops in importance once tidal gravity becomes strong for the 0.015au case.

The mass-loss rates for our grid of models are plotted in Figure 4.21. The

silver solid line marks the mass-loss rates for our series of runs with all radiative cooling

turned off: all of the EUV heating (minus the heating required for ionization) is available

to power the outflow. The blue dashed line is the energy-limited approximation to the

mass-loss rate, with efficiency ϵ = 0.51 to account for the energy required to overcome

the ionization potentials of the ionizing species. This expresssion matches the mass-

loss rate well. The mass-loss rate for this case goes as F 1
EUV, which is not necessarily

true in cases where radiative cooling is significant. For example, the model of Murray-

Clay et al. [58] that includes Lyman-α cooling found that the energy-limited escape

rate trends with flux as F 0.9
EUV, reflecting possibly the increased importance of Lyman-α

cooling with increasing flux in the UV flux range 102 − 104 erg cm−2 s−1 of their 20 eV

grey stellar irradiation model. In our simulations, for the case where all radiative cooling

is turned on (black solid line), the mass-loss rate is approximately 0.3 times the energy-

limited rate at 0.05 au. However, the mass-loss rate does not scale as F 1
EUV ∼ a−2 - it is
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a steeper function of semimajor axis (and stellar flux). The mass-loss rate was found to

go as a−2.4, or as the energy-limited rate times a−0.4 (neglecting the increased mass-loss

rate for the 0.015au case due to tidal gravity), and is shown on the plot as a light gray

dashed line. Escape becomes less energy-limited with increasing semimajor axis, with a

greater fraction of the deposited stellar energy being radiated away by Lyman-α cooling

(Figure 4.20). Interestingly, H+
3 cooling was found to be a roughly constant fraction

of the deposited energy heating the gas for the parameter range of our grid of models.

In addition, for distances a < 0.1 au, tidal gravity enhances the mass-loss rate - note

the diverging black solid and the light gray dashed lines. The increased importance

of Lyman-α coolling can be observed in the case where H+
3 cooling is turned off (grey

dotted line) - the line trends toward the case with all radiative cooling turned on with

increasing distance, suggesting that the departure from the energy-limited regime in

the low-flux case is predominately due to Lyman-α cooling. On the other hand, the

H+
3 -only case (grey dashed line) follows the energy-limited case with semimajor axis: it

radiates away a roughly constant fraction of energy deposited as heat.

4.3.6 Stellar wind, magnetic field, and radiation pressure

The plantary outflow may be significantly redirected by the stellar wind and/or

the stellar magnetic field if the stellar wind ram pressure, P⋆, the magnetic field pres-

sure, PB,⋆, and the thermal pressure, Pk exceeds the sum of the thermal and ram

pressures from the planetary outflow, Pk,p + Pp (for example, forming a cometary

tail, as in McCann et al. 53). The stellar wind ram pressure is Pram = ρ⋆v
2
⋆. If we
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take the stellar wind velocity as the approximately constant v ∼ 400 km s−1 for our

semimajor axis range a < 0.9, and the number density of protons as approximately

np ≃ 2.4 × 103(0.05au/a)2 cm−3 [58], the ram component of the stellar wind pressure

can be estimated: Pram ≃ mHnpv
2 ≃ 6.4 × 10−6(0.05au/a)2 dyn cm−2, or 6.4 picobars

at 0.05 au. Taking the proton temperature to be 106 K, the thermal pressure due to

protons in the stellar wind is Pk = npkTp ≃ 3.3 × 10−7(0.05au/a)2 dyn cm−2, or 0.3

picobars at 0.05 au. The pressure due to the solar magnetic field is B2
r/(8π). The radial

component of the “monopole“ magnetic field Br is 5× 10−5 G (au/a)2, so we estimate

PB ∼ 4 × 10−8(0.05 au/a)4 dyn cm−2, or 0.04 picobars at 0.05 au. As the semimajor

axis range of our simulations is outside the Alfven radius, the pressure is not dominated

by the magnetic field pressure - this component is small compared to the ram and ther-

mal pressures. Therefore, we estimate the pressure to be approximately 7 picobars at

0.05 au. At the sonic point distance from the planet, the thermal and ram pressures of

the outflow are equal. At 0.05 au, both components are approximately 5 picobars, so

Pk,p + Pp ≃ 10 picobars. As this is comparable to the stellar wind pressure, especially

at close-in distances we conclude that the outflow shape may be affected by the stellar

wind.

If the pressure of the stellar wind exceeds the pressure of the planetary wind

upstream of the sonic point, the wind may be significantly redirected and possibly con-

fined. If the pressure of the stellar wind exceeds the planetary wind pressure downstream

of the sonic point, the supersonic solution is valid, as the boundary conditions will not

travel upstream.
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Radiation pressure is typically considered for interactions with dust grains.

However, radiation pressure can act on hydrogen atoms. The cross section for scattering

by ionized hydrogen is negligible compared to the scattering by neutral hydrogen of

Lyman-α photons, which can be significant [54]. With increasing distance from the

star, our outflow becomes increasingly neutral. While radiation pressure will not affect

the strongly ionized outflows close to the star, we expect radiation pressure could play a

significant role for the neutral hydrogen farther out, especially as the neutral hydrogen

starts to decouple from the ionized outflow (see also Section 4.3.8).

4.3.7 Planetary magnetic field confinement

A planetary outflow may be confined in the presence of a strong planetary

magnetic field. We estimate strength of the magnetic field at the surface of the planet,

such that the magnetic field pressure PB becomes equal to the wind pressure P =

Pk + ρv2 - the sum of the thermal and the ram pressures - at the sonic point. The

magnetic field pressure of a dipole field goes as:

PB(r) = P

(
r

rsonic

)−6

. (4.38)

Then, the magnetic field at the surface is: B = (8πPB(RP))
1/2, which for our fiducial

hot Jupiter is 0.5 G. For comparison, the magnitude of Jupiter’s magnetic field is 4.17

G, which is considered quite strong. However, the magnitude of the magnetic fields on

hot Jupiters is currently unknown.
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4.3.8 Collisionality

An outflow may be modeled as a fluid if it is collisional out to the sonic point.

In other words, the mean-free path to collisions, 1/(ncolσ) is less than the pressure scale

height, H = kBT/(µg), with the gravitational acceleration g = GMP /r
2. There are two

cross sections for collision relevant to our problem: the hard-body cross section that

is used to approximate the collision cross section for neutral hydrogen, σhb, and the

Coulomb scattering cross section used for neutrals, σC . The gas is mostly ionized in our

models close to the host star, a < 0.2 au. Beyond that, for the semimajor axis range

0.2 − 0.9 au considered for our grid of models, the gas is a mix of ions and neutrals,

with the ionization fraction approaching 0.5 for the 0.9 au case. The ionized hydrogen is

collisional throughout our semimajor axis range out to the sonic point. We note that at

the base, even the neutral hydrogen remains collisional. However, the neutral hydrogen

starts to decouple from the ionized hydrogen in the wind as we go out in semimajor axis:

the neutral hydrogen mean free path to collisions generally exceeds the scale height for

our models. We will not attempt to model the cross section for a mixture of neutral

and ionized hydrogen. As the neutral hydrogen decouples from the pressure-driven

hydrodynamic outflow, it starts to free-stream out. However, if the neutral hydrogen in

the outflow actually spends most of its time in the ionized state, where it has plenty of

time to thermalize with the surrounding ions, the neutral hydrogen can still be treated

as collisional. To evaluate this, we can compare the free-streaming timescale τfs ≃ H/u

(where u is the outflow velocity) to the ionization timescale per neutral hydrogen atom
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(τion). While the free-streaming timescale is comparable to the ionization timescale

close-in (a < 0.1 au), further out from the star the neutral hydrogen is able to travel

a scale height before ionizing. Therefore, only the ionized hydrogen can be represented

as a hydrodynamic outflow, and the mass-loss rates from our model further out in

semimajor axis will be reduced, especially as the neutral fraction goes up. The 0.9 au

case is marginal: the wind is 50% ionized hydrogen and 50% neutral, so we use that as

the maximum distance from the star we attempt to simulate (keeping in mind that the

neutral hydrogen is likely decoupled from the ionized wind at that point, reducing the

true mass-loss rate) - beyond, a kinetic model would be needed.

4.4 Discussion

Our goal was to evaluate the efficiency of atmospheric escape as a result of

EUV heating, while being radiatively cooled by H+
3 and Lyman-α. For this, we created

a one-dimensional hydrodynamic model that solves the fluid equations to steady state,

coupled to a chemical network solver that allowed us to include reactions between the

various species of H and He in our atmosphere.

As a result of our simulations, we uncovered a three-layer structure to the

atmosphere:

• a molecular hydrogen layer at the base (cooled by H+
3 ),

• an intermediate layer of predominately neutral atomic hydrogen (cooled by Lyman-

α), and
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• an outflow of H+, in which PdV was the main cooling mode.

We then ran a grid of models with increasing distance from the star. We

found that the proportion of total EUV flux that is radiatively cooled by H+
3 stayed

roughly constant within the parameter range of our study. In contrast, as the outflow

became increasingly neutral with distance, the Lyman-α cooling had an increasingly

important effect as a fraction of the total heating. This decreased the mass-loss rate

even faster than the näıve estimate of a−2: the mass-loss rate declined as a−0.4 times

the energy-limited estimate. Tidal forces enhanced the mass-loss rate close-in to the

star.

We found that H+
3 cooling preferentially affects the higher-energy bins of our

spectrum. For the purposes of theoretical modeling, ∼ 115 eV is the energy cutoff above

which ∼70% of the energy is radiated away as H+
3 cooling.

We have developed a flexible code that can be expanded to include the effects

of higher-energy photons, which are important for planets around younger stars. In

addition, expanding the spectrum to the far-ultraviolet range would allow us to include

molecular dissociation, which is especially important for smaller planets. Diffusion

has been implemented in the code, but not turned on, as its effects are negligible for

the purposes of this study. However, it is important for planets with metals in the

atmosphere.
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Figure 4.7 Cross sections for absorption and ionization of H2, H and He. The bins

are wavelength bins of width 50Å, and the dots are emission lines. Panel a: total

photoabsorption cross section of H2 (black). Plotted in black is the minimum wavelength

for dissociation of H2 into atomic hydrogen via absorption of a far-ultraviolet photon.

120



Figure 4.7 Wavelengths shortward are absorbed by atomic hydrogen. 1110 Å is the

beginning of the line-dominated spectrum: longward absorption is weakened. The H2

photoionization threshold is the gray dotted-dashed line. Panel c: rate of given photore-

action as a fraction of the total photoreaction rate rate for different spectral energies.

H absorbs all photons below the ionization threshold of He and > 13.6 eV. Panel d: the

heating rate of the gas as a function of energy, with the bins connected by the black

solid line, and the emission lines plotted as dots. Close to the ionization thresholds of

H and He, a significant fraction of the energy goes toward ionization, corresponding to

the dips in the plot. We note that this heating rate is the energy available to heat the

gas after taking ionization into account, not accounting for radiative cooling.
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Figure 4.8 Selected reaction rates involving H2. The advective term is plotted as derived

in Equation (4.33). The brown solid and purple dashed lines represent the process of

H2 and H exchanging an electron: this reaction pair does not lead to the destruction of

H2. Instead, H2 is thermally dissociated (orange line) at ∼ 1.04 planetary radii. The

key reaction of H+
2 with H2 to form H+

3 , the most important coolant in this layer, is

plotted in red. The photoionization of H2 is plotted in blue; the formation of H+
2 is a

crucial step in forming H+
3 . Interestingly, the far-ultraviolet dissociation of H2 (green

line) increases as we go deeper in the layer - the 12.7 eV photons responsible for this

process are also some of the lowest-energy in our spectrum. Advection is plotted as a

gray dotted line; its sign follows the convention established in Figure 4.5: as the sign is

negative, the advective term represents an addition of H2 from the boundary.
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Figure 4.9 Reaction rates involving H. Panel a: zoomed in to molcular hydrogen layer.

Panel b: 1.06 to ∼ 8.8RP. As in Figure 4.8, the green solid and red dotted lines represent

the electron exchange between H2 and H. The purple solid line marks the production

of H as a result of the thermal dissociation of H2 at the boundary of the molecular

layer. The blue solid line is the photoionization of H. In the outflow (Panel b), the

ionization of H is exactly balanced by the advection of H (brown dashed line), with a

small contribution from recombination (orange). The sign convention for advection is

“−“ for the advection in of H, and “+” for the advection of H away, as in Figures 4.5

and 4.8.
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LyαH3+ PdV

Sonic point, r=2.9 rP

Hill radius, r= 4.5 rP

Exobase, λ = H

H2 H H+

Figure 4.10 The three-layer diagram of the outcome of our model. The inner layer

is the H2 layer cooled by H+
3 , where the highest-energy photons are deposited. The

neutral atomic hydrogen layer further up is predominately cooled by Lyman-α, with a

contribution from PdV as well. Intermediate-energy photons are depostied there. The

outflow layer is cooled via PdV . Its structure is shown as a hydrodynamic outflow

out to the sonic point, extending out to the Hill radius of the planet, where the gas

becomes unbound from the planet. The exobase, where the outflow can is no longer

collisional, is shown. The spectrum below the diagram corresponds to the P200 model

from Richards et al. [74] with a high level of steller activity. The dots on the spectrum

represent emission lines, and the bins are 20 wavelength bins with widths of 50 Å.
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Figure 4.10 The 165.3-55.1 eV photons’ τ = 1 surfaces lie within the H+
3 -cooled layer, the

48.4-15.0 eV - within the Lyman-α-cooled layer, and the 14.2-13.6 - within the outflow

layer. The 12.7 eV photons responsible for the resonant dissociation of H2 reach deeper

in the H+
3 - cooled layer.
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Figure 4.11 Heating and cooling rates for selected energy bins. The energy is allocated

according to the expressions from Section 4.3.2. The panels display the breakdown of

the heating rate as a result of all of the photoreactions with radius. Panels a-f are

zoomed in at the base, where radiative cooling is important. H+
3 cooling dominates

panels a-c, whilst Lyman-α is the main cooling source in panels d-f. He ionization is an

important heating source in panels a-c, while H ionization becomes more important for

heating in panels d-i.
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Figure 4.11 Although dominated by Lyman-α, panels g and h still display significant

contributions to the PdV term from the intermediate energy ranges in our spectrum.

Finally, panel i displays an energy bin whose heating is primarily goes into driving

the PdV outflow (though the advective term here pulls extra energy from the internal

energy of the gas in addition to the heating). The heating in this bin is all due to H

ionization. The advective term sign convention follows that of Figure 4.5.
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Figure 4.12 PdVν , ΛH+
3 ,ν , ΛLyα,ν normalized by the stellar heating rate Γν . The cool-

ing terms balance the sum of advection and stellar heating (normalized by the stellar

heating) in steady state (Equation (4.34)). Panel a is shown for the entire radius range

(beyond the bolometric region acting as a boundary region). Panel b is shown for

r > 1.035RP, the transition between H+
3 - and Lyman-α-dominated cooling (Figure 4.6).

Panel c is shown for r > 1.4RP, beyond which the outflow becomes energy-limited.
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Figure 4.13 As in Figure 4.12, ΛH+
3 ,ν and ΛLyα,ν are normalized by the stellar heating

rate Γν . The PdV term is shown as a cumulative fraction from the low- to the high-

energy bins. As the low-energy bins are dominated by PdV -cooling (red line), the

cumulative term gives a sense of where in the spectrum most of the PdV outflow power

is derived. 0.25 of the PdV comes from bins left of the vertical dotted line, 0.5 - of

the solid line, 0.75 - of the dashed line, and 0.96 - of the dashed-dotted line. Beyond

∼ 70.8 eV, almost all of the energy is radiated away, predominately by H+
3 from the

base molecular layer in the atmosphere.
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Figure 4.14 Efficiency of EUV heating, defined as the fraction of total EUV heating

that is available to heat the gas by ionization processes, after overcoming the ionization

potential of the species. Panel a shows the efficiency with radius - heating is more

efficient in the base molecular layer, as the photons deposited there are of higher energy.

Panel b shows the efficiency with energy. The vertical dashed line marks the ionization

threshold of He: as the photons rightward are available to ionize, the efficiency drops

slightly. We emphasize that this is a deposition efficiency of heating, after accounting

only for the ionization processes. This does not yet include any losses due to radiative

cooling, either H+
3 or Lyman-α.
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Figure 4.15 Density, velocity, pressure, and temperature profiles for our 4 radiative

cases: H+
3 and Lyman-α cooling turned on (dashed), only H+

3 - dotted, only Lyman-α

- solid, and no radiative cooling - dashed-dotted lines.
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Figure 4.16 The composition of the atomosphere of our fiducial (0.05 au hot Jupiter)

planet by species. The two upper panels show our fiducial planet with Lyman-α and

H+
3 cooling turned on.
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Figure 4.16 Panels c and d - with only Lyman-α cooling turned on, panels d and f -

with only H+
3 cooling turned on, and the lower panels - with radiative cooling turned

off. The dashed lines on the left panels denote the bolometric region. In panel a, the

transition from: H2 → H occurs at 1.02RP, H → H+ - 1.64RP, and He → He+ - at

1.29RP. The molecular layer drops off sharply at 1.04RP.
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Figure 4.17 Temperature profiles for our fiduial hot Jupiter at 0.05au. The case with

radiative cooling turned off (red line) reaches the highest mean outflow temperatures.

Including either Lyman-α (orange line) or H+
3 (green line) cooling produces similar mean

outflow temperatures, yet only the case with Lyman-α turned off reaches temperatures

exceeding 104 K. Lyman-α thermostats the temperature to ∼ 104 K (orange and blue

lines) in the region where it is significant (∼ 1.04−1.4 au, Figure 4.6). The full radiative

heating model is shown in blue. In summary, H+
3 cools the lower layer, and Lyman-α

brings down the peak temperature. We note the temperature in the bolometric region

is forced to 103 K, acting as a lower boundary condition.
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Figure 4.18 Reation rates involving molecular hydrogen. Panel a shows our fiducial hot

Jupiter model with full radiative cooling. Panel b - only Lyman-α cooling, panel c -

only H+
3 cooling, and panel d - all radiative cooling turned off. The hatched region at

the base denotes the bolometric region.
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Figure 4.19 Density (panel a), velocity (panel b), pressure (panel c), and temperature

(panel d) profiles for varying semimajor axes in the range 0.05-0.9 au.
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Figure 4.20 Panel a: fraction of the total heating (after accounting for energy required

for ionization) that ultimately is balanced by PdV work (dotted), Lyman-α cooling

(dashed), and H+
3 cooling (solid). The PdV fraction decreases with distance, implying

that the outflow is increasingly not energy-limited with greater distance from the star.

The H+
3 fraction remains relatively constant: we expect the power output from H+

3 to go

as a−2. The increasing neutral fraction of the outflow causes an increase in the Lyman-α

cooling as a fraction of the total avaiable heating. Panel b: the total power output for

the model including both H+
3 and Lyman-α cooling is plotted in black, dashed and solid

lines respectively. The dark and light gray lines plot models with either mode of cooling

turned on.
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Figure 4.20 The total EUV flux from the star incident on the planet is plotted in orange.

The heating rate (after ionization) is plotted in blue. The heating efficiency is the

fraction of the total EUV flux that goes into heating the gas, as opposed to overcoming

the ionization potential energy of the species in the gas. Over the entire semimajor axis

range, the heating efficiency is approximately 0.53-0.55, making our initial estimate of

0.51 reasonable. The H+
3 lines (dashed) scale with the EUV input power, while the

Lyman-α decreases more slowly with distance than the input flux.
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Figure 4.21 Mass-loss rate as a function of distance. Shown are the mass-loss rates

Ṁ = ρur2 per solid angle for radiative cooling turned off (silver solid line), only H+
3

cooling (grey dashed line), only Lyman-α cooling (grey dotted line) and for both H+
3 and

Lyman-α cooling turned on (black line). The mass-loss rates for planets with radiative

cooling turned off approach the energy-limited mass-loss rate (blue dashed line, plotted

for ϵ = 0.51). The energy-limited mass-loss, scaled by a factor of 0.3 (a/0.05 au)−0.4

approximates the mass loss for the full radiative cooling case (light gray dashed line).
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Appendix A

Appendix for Efficiency of

Hydrodynamic Escape

A.1 Tidal gravity term

Consider the substellar ray of length a from the center of the planet (with mass

MP , radius Rp) to the center of the star (with mass M⋆). Consider a test particle that

is a distance r from the planet, such that r << a. In the frame centered on the planet

and co-rotating with the planet, the forces on the particle are: the gravitational force

from the planet (−GMp/r
2) and the star (−GM⋆/(a − r)2), as well as the centrifugal

force Ω × Ω × (r − rCM ), where rCM = aM⋆/(M⋆ + MP ). Though present in the co-

rotating frame, we neglect the Coriolis term as we are working in one dimensions. Here,

Ω = G(MP + M⋆)/a
3 is the Keplerian orbital frequency. The centrifugal force acting
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on the particle is therefore:

Fcent =
G(MP +M⋆)

a3

(
r − a

M⋆

MP +M⋆

)
=

rG(MP +M⋆)

a3
− GM⋆

a2
. (A.1)

We make the approximation Mp << M⋆ in the first term of the centrifugal force:

Fcent ≈
rGM⋆

a3
− GM⋆

a2
. (A.2)

Liekwise, we make the approximation r << a in the gravitational term due

to the star: GM⋆/(a − r)2 = GM⋆/(a
2(1 − r/a)2) ≈ GM⋆/a

2(1 + 2r/a) = GM⋆/a
2 +

2rGM⋆/a
3. Together, after making these approximations the total forces on the particle

are:

Ftot ≈ −GMP

r2
+

3rGM⋆

a3
. (A.3)

The last term in Eq. (A.3) is the tidal term: it is the sum of the gravitational term due

to the star and the centrifugal term.

A.2 Diffusion

The mass conservation equation in one-dimensional spherical coordinates for

the bulk gas comprising our atmosphere is:

∂ρ

∂t
+

1

r2
∂

∂r
(ρur2) = 0 (A.4)

Here, ρ =
∑

s ρs is the total mass density of the gas, and it is defined as the

sum of all the individual densities ρs of the species comprising the fluid. The bulk

velocity u describes the bulk motion of fluid parcels without any individual change in

composition.
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For each species s of our atmosphere, we can write a separate conservation

equation that includes a diffusive term on the left-hand side and a chemical source term

on the right-hand side:

∂ρs
∂t

+
1

r2
∂

∂r
(ρsur

2) +
1

r2
∂

∂r
(ρs(us + vs)r

2) = S (A.5)

The conservation equations for each species can be added up together, recov-

ering Eq. (A1): the diffusive terms and chemical source terms all add up to zero after

summing over all of the species. Now we focus our discussion on molecular diffusion, so

we drop the chemical source term and the advective term due to the bulk gas velocity

from Eq. (A2). We keep the diffusive velocity term with the molecular (us) component:

∂ρs
∂t

+
1

r2
∂

∂r
(ρsusr

2) = 0. (A.6)

We substitute the number density ns = ρs/ms, with ms the molecular weight

of species s in Eq. 4.6 to keep our discussion in terms of concentration rather than mass

density:

∂ns

∂t
= − 1

r2
∂

∂r
(nsusr

2) = − 1

r2
∂

∂r
(Φsr

2). (A.7)

The flux Φs = nsus describes the flow of species s across a cell boundary due to

diffusion. We will now express the diffusive velocity us in terms of a diffusion coefficient

and a concentration and temperature gradient1. For a binary gas mixture of gases of

concentration n1 and n2, with the total gas concentration N = n1 + n2, the diffusion

1We neglect the barodiffusion coefficient, as it is present only in fluids with significant pressure
gradients (for example, due to external fields) not applicable to our problem.
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velocity of gas 1 relative to gas 2 is written as [11, Eq. 14.1.1]:

us = − N2

n1n2
D12

(
∂n10

∂r
+

n1n2(m2 −m1)

Nρ

∂logP

∂r
+ kT

1

T

∂T

∂r

)
, (A.8)

where n10 = n1/N . Here, the first two terms on the right-hand side describe the con-

centration gradient, and the last term describes thermal diffusion with kT the coefficient

of thermal diffusion2. This can be simplified to:

us = −D12

[
N

n2

(
1

n1

∂n1

∂r
− 1

N

∂N

∂r

)
+

(
m2 −m1

µ

1

P

∂P

∂r

)
+

N2

n1n2
kT

1

T

∂T

∂r

]
, (A.9)

where µ = ρ/N is the mean molecular weight of the entire gas. We can substitute the

thermal diffusion factor α for the coefficient of thermal diffusion kT = αn1n2/N
2. We

are interested in the diffusion of species s against the entire fluid. We can associate gas

1 with species s and gas 2 with the total gas, giving

us = −Ds

(
1

ns

∂ns

∂r
− 1

N

∂N

∂r
+

(
1− ms

µ

)
1

P

∂P

∂r
+

α

T

∂T

∂r

)
, (A.10)

where the diffusion coefficient Ds is for the diffusion of species s against the total gas.

This matches Eq. (24) of Johnstone et al. [40], where Φs = nsus. We now describe the

method of solving this equation, which is adapted from Johnstone et al. [40]. From the

ideal gas law P = NkT , ∂P/∂r = Nk∂T/∂r + kT∂N/∂r. Equation A.10 becomes:

us = −Ds

(
1

ns

∂ns

∂r
− 1

N

∂N

∂r
+

(
1− ms

µ

)
1

P

(
Nk

∂T

∂r
+ kT

∂N

∂r

)
+

α

T

∂T

∂r

)
, (A.11)

which, after simplifying, gives us the flux:

Φs = −Ds

(
∂ns

∂r
− ms

µ

ns

N

∂N

∂r
+

(
α+ 1− ms

µ

)
ns

T

∂T

∂r

)
(A.12)

2Landau & Lifshitz [47] call it the thermal diffusion ratio, with kTD the thermal diffusion coefficient.
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.

We wish to solve Equation (A.7) by discretizing it on a grid. From now on, we

drop the subscript s when referring to species s, and we will use the subscript i when

referring to cell i. We use the Crank-Nicolson method by combining the derivatives at

timestep n with timestep n+ 1:

nn+1
i − nn

i

∆t
=

1

2

(
∂n

∂t

)n+1

i

+
1

2

(
∂n

∂t

)n

i

. (A.13)

Using Equation (A.7), we write the time derivatives of n at timestep n as the differences

of the diffusion fluxes at the boundaries of cell i:

(
∂n

∂t i

)n

= − 1

r2i

(
r2i+1/2Φ

n
i+1/2 − r2i−1/2Φ

n
i−1/2

ri+1/2 − ri−1/2

)
, (A.14)

and analogously for timestep n + 1. Then, we can use Equation (A.14) in Equation

(A.13):

nn+1
i − nn

i

∆t
= − 1

2r2i

(
r2i+1/2Φ

n+1
i+1/2 − r2i−1/2Φ

n+1
i−1/2

∆ri
+

r2i+1/2Φ
n
i+1/2 − r2i−1/2Φ

n
i−1/2

∆ri

)
.

(A.15)

In other words,

nn+1
i +

∆t

2r2i∆ri

(
r2i+1/2Φ

n+1
i+1/2 − r2i−1/2Φ

n+1
i−1/2

)
=

nn
i − ∆t

2r2i∆ri

(
r2i+1/2Φ

n
i+1/2 − r2i−1/2Φ

n
i−1/2

)
.

(A.16)

We are interested the fluxes at the boundaries of cell i, Φi+1/2 and Φi−1/2. We write
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Equation (A.12) for the right-hand boundary of cell i:

Φi+1/2 =
ni − ni+1

ri+1 − ri
Di+1/2+[

1

2

m

µi+1/2

1

Ni+1/2

(
∂N

∂r

)
i+1/2

Di+1/2 −
1

2

(
α+ 1− m

µi+1/2

)
1

Ti+1/2

(
∂T

∂r

)
i+1/2

Di+1/2

]

× (ni+1 + ni) ,

(A.17)

where we approximate ni+1/2 = (ni+1+ni)/2 and (∂n/∂r)i+1/2 = (ni+1−ni)/(ri+1−ri).

We can call the factor in square brackets in Equation (A.17) Ci+1/2, and we group the

factors of ni+1 and ni:

Φi+1/2 = ni

(
Di+1/2

ri+1 − ri
+ Ci+1/2

)
+ ni+1

(
−

Di+1/2

ri+1 − ri
+ Ci+1/2

)
. (A.18)

Similarly, for the flux on the left-hand boundary of cell i we have:

Φi−1/2 =
ni−1 − ni

ri − ri−1
Di−1/2+[

1

2

m

µi−1/2

1

Ni−1/2

(
∂N

∂r

)
i−1/2

Di−1/2 −
1

2

(
α+ 1− m

µi−1/2

)
1

Ti−1/2

(
∂T

∂r

)
i−1/2

Di−1/2

]

× (ni−1 + ni) .

(A.19)

Then,

Φi−1/2 = ni

(
−

Di−1/2

ri − ri−1
+ Ci−1/2

)
+ ni−1

(
Di−1/2

ri − ri−1
+ Ci−1/2

)
, (A.20)

where the factor in square brackets in Equation (A.19) is Ci−1/2. We can now use the

expressions for the boundary fluxes in Equation (A.16). The diffusion coefficients and

Cis are assumed to vary slowly with respect to time, thus they are calculated at the
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beginning of a timestep.

nn+1
i +

∆t

2r2i∆ri
r2i+1/2n

n+1
i

(
Di+1/2

ri+1 − ri
+ Ci+1/2

)
+

∆t

2r2i∆ri
r2i+1/2n

n+1
i+1

(
−

Di+1/2

ri+1 − ri
+ Ci+1/2

)
− ∆t

2r2i∆ri
r2i−1/2n

n+1
i

(
−

Di−1/2

ri − ri−1
+ Ci−1/2

)
− ∆t

2r2i∆ri
r2i−1/2n

n+1
i−1

(
Di−1/2

ri − ri−1
+ Ci−1/2

)
= nn

i
::

− ∆t

2r2i∆ri
r2i+1/2n

n
i

::

(
Di+1/2

ri+1 − ri
+ Ci+1/2

)
− ∆t

2r2i∆ri
r2i+1/2n

n
i+1

::::
::::

(
−

Di+1/2

ri+1 − ri
+ Ci+1/2

)

+
∆t

2r2i∆ri
r2i−1/2n

n
i

::

(
−

Di−1/2

ri − ri−1
+ Ci−1/2

)
+

∆t

2r2i∆ri
r2i−1/2n

n
i−1. . . . .

(
Di−1/2

ri − ri−1
+ Ci−1/2

)
.

(A.21)

We wish to write Equation (A.21) in the form ain
n+1
i−1 + bin

n+1
i + cin

n+1
i+1 + di = 0. Thus

we have:

ai = − ∆t

2r2i∆ri
r2i−1/2

(
Di−1/2

ri − ri−1
+ Ci−1/2

)
bi = 1 +

∆t

2r2i∆ri
r2i+1/2

(
Di+1/2

ri+1 − ri
+ Ci+1/2

)
− ∆t

2r2i∆ri
r2i−1/2

(
−

Di−1/2

ri − ri−1
+ Ci−1/2

)
ci =

∆t

2r2i∆ri
r2i+1/2

(
−

Di+1/2

ri+1 − ri
+ Ci+1/2

)
di = ain

n
i−1 − (2− bi)n

n
i + cin

n
i+1.

(A.22)

The polynomial ain
n+1
i−1 + bin

n+1
i + cin

n+1
i+1 + di = 0 represents a system of

equations that can be solved via LU decomposition and forward substitution, followed

by back substitution. This is a standard way of solving a linear system of equations.
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First, we loop from the base of the atmosphere:

ui = ci

li = ai/di−1

di = bi − liui−1

zi = ri − lizi−1,

(A.23)

then we back substitute, starting with the outer boundary condition xN−1 = zN−1/dN−1,

and then:

ni = (zi − uini+1)/di. (A.24)

A.3 Chemical network solver

We label each reaction i in Table 4.1 by its rate constant ki, which has units

of cm3s−1 for bimolecular reactions and cm6s−1 for termolecular reactions. The system

of equations resulting from the chemical network presented in Table 4.1 is stiff. As the

rate constants for the reactions can vary by many orders of magnitude, using a single

timestep for explicitly integrating the reactions becomes computationally unfeasible,

introducing errors and instabilities. Therefore, implicit methods are needed. We use

semi-implicit Euler method, described in Section 17.5.2 of Press et al. [71], to solve the

system of equations for the concentrations of the species in our chemical network. We

now briefly describe the method.
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A.3.1 Scheme

The concentrations of the species in our network evolve under a set of differ-

ential equations. We can write the set of concentrations of the species as a vector #‰y .

Consider the set of equations for a vector quantity #‰y whose derivative is a function of

y that is not necessarily linear:

#‰

y′ =
#      ‰

f(y) (A.25)

We can explicitly advance #‰y to the next timestep: #      ‰yn+1 =
# ‰yn + dt

# ‰

y′n - the derivative is

computed at timestep n. On the other hand, we can advance the solution implicitly by

computing the derivative at timestep n+1 instead: #      ‰yn+1 =
# ‰yn+dt

#      ‰

y′n+1. The advantage

of implicit schemes is that they maintain the stability of the solution (generally at a

computational cost). We can use the implicit differencing scheme to advance Equation

(A.25):

#      ‰yn+1 =
# ‰yn + dt

#               ‰

f(yn+1). (A.26)

As
#               ‰

f(yn+1) is unknown, we can construct a Jacobian matrix ∂
#‰

f /∂ #‰y (evaluated at # ‰yn)

to linearize the equations:

#               ‰

f(yn+1) =
#         ‰

f(yn) +
∂

#‰

f

∂ #‰y
· ( #      ‰yn+1 − # ‰yn). (A.27)

Together with Equation (A.26), this gives:

#      ‰yn+1 =
# ‰yn + dt

(
#         ‰

f(yn) +
∂

#‰

f

∂ #‰y
· ( #      ‰yn+1 − # ‰yn)

)
, (A.28)

or, after rearranging,

#      ‰yn+1 =
# ‰yn +

(
1− dt

∂
#‰

f

∂ #‰y

)−1

dt
#         ‰

f(yn), (A.29)
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where 1 is the identity matrix. We rewrite this as:

#         ‰

f(yn) =

(
1

dt
1− ∂

#‰

f

∂ #‰y

)
( #      ‰yn+1 − # ‰yn). (A.30)

This equation is solved via LU decomposition with forward substitution, fol-

lowed by back substitution, as implemented in section (2.3) of Press et al. [71].

The Jacobian ∂
#‰

f /∂ #‰y is calculated analytically for our problem, as are the

time derivatives of the concentrations on the left-hand side of Equation A.30. The

integration timestep dt must be chosen carefully. Even though we wish to advance the

solution by a desired timestep ∆t, we need to cross the interval ∆t with a series of

timesteps dti, for each of which we solve Equation A.30. One cannot always use an

arbitrarily large timestep in this method - the time interval must be subdivided into

sufficiently small timesteps to obtain an accurate solution. The method attempts to

increment the solution by dti, after which a polynomial extrapolation is performed as

described for the Bulirsch-Stoer Method in section (17.3.2) of Press et al. [71] to check

for the suitability of the timestep. The timestep is then adjusted as necessary according

to the step size sequence defined in (17.5.41) of Press et al. [71].

As an example, consider separately a reaction network formed by reactions 8

and 11, with rate constants k8 and k11:

H+
2 +H2

k8−→ H+
3 +H (A.31)

H+
3 +H

k11−−→ H+
2 +H2. (A.32)
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We label the time derivatives of the concentrations (ns) of H+
2 , H2, H

+
3 , and

H as f(ns):

f(nH+
2
) =

dnH+
2

dt
= −k8nH+

2
nH2 + k11nH+

3
nH,

f(nH2) =
dnH2

dt
= −k8nH+

2
nH2 + k11nH+

3
nH,

f(nH+
3
) =

dnH+
3

dt
= k8nH+

2
nH2 − k11nH+

3
nH,

f(nH) =
dnH

dt
= k8nH+

2
nH2 − k11nH+

3
nH.

(A.33)

As applied to our problem, the Jacobian matrix ∂
#‰

f /∂ #‰y is the matrix of partial

derivatives of the time rates of change of the concentrations of each species with respect

to the concentrations of all of the other species in the network. The Jacobian matrix

for this system of equations is:

df(n
H+
2
)

dn
H+
2

df(n
H+
2
)

dnH2

df(n
H+
2
)

dn
H+
3

df(n
H+
2
)

dnH

df(nH2
)

dn
H+
2

df(nH2
)

dnH2

df(nH2
)

dn
H+
3

df(nH2
)

dnH

df(n
H+
3
)

dn
H+
2

df(n
H+
3
)

dnH2

df(n
H+
3
)

dn
H+
3

df(n
H+
3
)

dnH

df(nH)
dn

H+
2

df(nH)
dnH2

df(nH)
dn

H+
3

df(nH)
dnH


=



−k8nH2 −k8nH+
2

k11nH k11nH+
3

−k8nH2 −k8nH+
2

k11nH k11nH+
3

k8nH2 k8nH+
2

−k11nH k11nH+
3

k8nH2 k8nH+
2

−k11nH k11nH+
3


(A.34)

Specifically in the Press et al. [71] implementation, we use the StepperSie

method3 with the parameters as defined in Press et al. [71]: rtol = 1.0 × 10−7, atol =

1.0× 10−4rtol, h1 = 1.0× 10−6, hmin = 0.0.

3As the grid cells are independent, we are able to run the chemical network in parallel.
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A.4 Hydrodynamic solver

The hydrodynamic equations can all be re-cast in the form:

∂X

∂t
+ u

∂X

∂r
= GX . (A.35)

Here, the left-hand side describes the advection of a quantity X such as density, mo-

mentum, or energy, and u is the bulk velocity of the fluid. The right-hand side contains

the non-advective term. For the mass conservation equation it is:

Gρ = − ρ

r2
∂(ur2)

∂r
, (A.36)

which describes the compression and/or expansion of the gas. For the momentum

equation it is:

Gu = −1

ρ

∂P

∂r
− GM

r2
+

3GM⋆a

r3
, (A.37)

where right-hand side describes the force due to a pressure gradient, gravity, and tidal

gravity. Finally, for the energy equation it is:

Ge = − P

ρr2
∂(ur2)

∂r
+ Γ− Λ, (A.38)

which contains the PdV work term, as well as the heating and cooling terms as described

in Section 4.2.1. We can solve Equation A.35 by separating the advective part from the

non-advective part. This method of solving our differential equation is called operator

splitting: as the terms represent distinct physical processes, the numerical methods best

suited for solving each of them may be different.

We now apply the CIP (Cubic-Interpolated Propagation) method [96, 97] to

solve these equations. Going back to Equation A.35, we can take the spatial derivative
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with respect to r of this equation to get:

∂

∂r

(
∂X

∂t

)
+

∂u

∂r

∂X

∂r
+ u

∂

∂r

(
∂X

∂r

)
=

∂GX

∂r
, (A.39)

or written in the form of Equation A.35

∂X ′

∂t
+ u

∂X ′

∂r
= −∂u

∂r
X ′ +G′

X , (A.40)

where we define X ′ = ∂X/∂r and G′
X = ∂G′

X/∂r. Equation A.40 can also be split into

an advective part on the right-hand side, and a non-advective part on the left.

A.4.1 Non-advective part

A.4.1.1 Hydrodynamic equations

We write the non-advective substep of Equation A.35 as:

∂X̃

∂t
= GXn . (A.41)

Given Xn, we solve for X̃ by explicitly integrating with respect to time using a finite

difference:

X̃ = X +∆tGX . (A.42)

On our staggered grid described in Section 4.2.6.1, the mass conservation equation

becomes:

ρ̃i = ρni − ρni
r2i

uni+1/2 − uni−1/2

∆r
∆t. (A.43)

The momentum equation becomes:

ũi+1/2 = uni+1/2 + (− 2

ρni+1 + ρni

Pn
i+1 − Pn

i

∆r
+

GMP

r2i
+

3GM⋆a

r3i
)∆t, (A.44)
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where we’ve estimated ρi+1/2 as (ρi+1 + ρi)/2. The energy equation becomes:

ẽi = eni − Pn
i

ρni r
2
i

r2i+1/2ũ1+1/2 + r2i+1/2u1+1/2 − r2i−1/2ũ1−1/2 − r2i−1/2u1−1/2

2∆r
+ Γi − Λi,

(A.45)

with the heating and cooling terms Γi and Λi as described in Section 4.2.

A.4.1.2 Derivative of the hydrodynamic quantities

As in Section A.4.1.1, we can write the non-advective substep of Equation A.40

as:

∂X̃ ′

∂t
= −∂u

∂r
X ′ +G′

X . (A.46)

We can write the finite difference form for the non-advection X ′
i associated with G′

i by

approximating X ′ with a central difference of X:

X̃ ′
i −X ′n

i

∆t
=

1

∆t

(
X̃i+1 − X̃i−1

2∆r
− Xn

i+1 −Xn
i−1

2∆r

)
=

(X̃i+1 −Xn
i+1) + (Xn

i−1 − X̃i−1)

2∆r∆t
.

(A.47)

Using Equation (A.43), we can write the grouped terms of the right-hand side as:

X̃i+1 −Xn
i+1

∆t
= GX,i+1 (A.48)

X̃i−1 −Xn
i−1

∆t
= GX,i−1 (A.49)

So Equation A.47 becomes:

X̃ ′
i −X ′n

i

∆t
=

GX,i+1 −GX,i−1

2∆t
(A.50)

The term on the right-hand side can be complicated to evaluate, so we will use Equation

(A.47) instead, as all the terms are known. This allows us to avoid having to evaluate
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G. We can write the finite difference form for the first term on the right-hand side of

Equation (A.46) as:

−X̃ ′
i

ui+1 − ui−1

2∆t
, (A.51)

so the full equation becomes:

X̃ ′
i −X ′n

i

∆t
=

(X̃i+1 −Xn
i+1) + (Xn

i−1 − X̃i−1)

2∆r∆t
− X̃ ′

i

ui+1 − ui−1

2∆t
. (A.52)

We use this equation to solve for the non-advective part of the time evolution of the

gradient of ρ, u, and e.

A.4.2 Advective part

After solving the non-advective part of the fluid equations, we solve the ad-

vection equation:

∂X

∂t
+ u

∂X

∂r
= 0. (A.53)

This equation is solved by the cubic interpolating profile method, in which we keep track

of the variables X and also of their gradients X ′. We differentiate (A.53) to obtain:

∂X ′

∂t
+ u

∂X ′

∂r
= −∂u

∂r
X ′ =

∂Y

∂t
+ u

∂Y

∂r
= −∂u

∂r
Y, (A.54)

where we define Y ≡ X ′. For timestep n, we know X and Y at all grid points. We

can write the solution to Equation (A.53) at point i and time t as: Xi(ri, t) = Xi(ri −

u∆t, t −∆t): we advect the profiles from the previous timestep at time t −∆t to the

current time t. However, the exact solution is only given at time t−∆t at the center of

the gridpoints ri. We don’t know the profile within the cell, so we must interpolate and
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we choose a third-order polynomial to do so. The polynomial takes the general form:

Fi(r̃) = air̃
3 + bir̃

2 + cir̃ + di (A.55)

where r̃ = r − ri. For timestep n+ 1, we shift the profile:

Xn+1 = F (r − u∆t), and (A.56)

Y n+1 =
d

dr
F (r − u∆t). (A.57)

dF (r)/dr = 3ar2 + 2br + c. At r = 0, dF/dr = c, so ci = Y n
i . Furthermore, at r = 0,

F = d, so di = Xn
i . Then, we also know F and dF/dr at ri+1. r̃ = ri+1 − ri = ∆r,

which is the grid size. We can solve the following two equations for the constants:

F (ri+1) = ai∆r3 + bi∆r2 + Y n
i ∆r +Xn

i = Xn
i+1, and (A.58)

∂F (ri+1)

∂r
= 3ai∆r2 + 2bi∆r + Y n

i = Y n
i+1. (A.59)

The constants are:

ai =
Y n
i+1 + Y n

i

∆r2
− 2(Xn

i+1 −Xn
i )

∆r3
, and (A.60)

bi =
3(Xn

i+1 −Xn
i )

∆r2
− Y n

i+1 − 2Y n
i

∆r
. (A.61)

A.5 Hydrodynamic equations

Garćıa-Muñoz [27] has the hydrodynamic equations in the following form:

∂r2ρ

∂t
+

∂

∂r
(r2ρu) = 0 (A.62)

∂(r2ρu)

∂t
+

∂

∂r
(r2(ρu2 + P )) = r2ρfext + 2Pr (A.63)
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∂(r2ρE)

∂t
+

∂

∂r
(r2(ρE + P )u) = ρur2fext + ρr2(Γ− Λ). (A.64)

Here, the total energy density E = 1/2u2 + e is the sum of the kinetic energy density

due to the bulk fluid motion and the internal energy density. For the purposes of our

numerical method, we wish to write this energy equation as a conservation equation for

the internal energy density.

∂

∂t

(
r2ρ

(
u2

2
+ e

))
+

∂

∂r

(
r2
(
ρ

(
u2

2
+ e

)
+ P

)
u

)
= ρur2fext+ ρr2(Γ−Λ). (A.65)

Now we focus on the underlined terms relating to the kinetic energy density:

∂

∂t

(
r2ρu2

2

)
+

∂

∂r

(
r2ρu2 · u

2

)
=

1

2

[
u
∂(ur2ρ)

∂t
+ u

∂(r2ρu2)

∂r

]
+

1

2

[
ur2ρ

∂u

∂t
+ ur2ρ · u∂u

∂r

]
=

u

2

[
r2ρfext − r2

∂P

∂r

]
+

ρur2

2

[
fext −

1

ρ

∂P

∂r

]
= ρur2fext − ur2

∂P

∂r
.

(A.66)

We can also rewrite the double-underlined term:

∂(r2Pu)

∂r
= P

∂(ur2)

∂r
+ ur2

∂P

∂r
. (A.67)

Thus, we are left with:

∂(r2ρe)

∂t
+

∂

∂r
(r2ρeu) = −P

∂(ur2)

∂r
+ ρr2(Γ− Λ). (A.68)

If we set ∂(r2ρe)/∂t = 0, we recognize this as the steady-state energy equation,
#‰∇ ·

(ρe #‰u ) = −P
#‰∇ · #‰u + ρ(Γ− Λ). Expanding the derivatives, we have:

e

(
∂(r2ρ)

∂t
+

∂

∂r
(r2ρu)

)
+ r2ρ

(
∂e

∂t
+ u

∂e

∂r

)
= −P

∂(ur2)

∂r
+ ρr2(Γ− Λ). (A.69)
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We can use the mass conservation equation to eliminate the first two terms on the left,

and we are left with:

∂e

∂t
+ u

∂e

∂r
= − P

r2ρ

∂(ur2)

∂r
+ Γ− Λ. (A.70)

From mass conservation, we recognize that ∂(ur2)/∂r = −ur2/ρ∂ρ/∂r. In steady state,

∂e/∂t = 0, so we have:

ρu
∂e

∂r
=

P

ρ
u
∂ρ

∂r
+ ρ(Γ− Λ), (A.71)

which is a form of Equation (3) from Murray-Clay et al. [58].

169


	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Formation of Uranus and Neptune: Fine-tuning in Core Accretion
	Abstract
	Introduction
	Avoiding runaway
	Can the cores stay sub-critical due to fast planetesimal accretion?
	Discussion of the Classical Core Accretion Scenario

	How Depleted is the Gas at the Onset of Gas Accretion?
	How Long Can the Gas Disk Stay in a Depleted State?
	Proposed Solution
	Summary and Discussion

	Signatures of a planet-planet impacts phase in exoplanetary systems hosting giant planets
	Abstract
	Introduction
	Observational Sample
	The Highest-Eccentricity Planets are Found Around Metal-rich Stars
	Eccentricities as a Result of a Giant-impacts Phase
	Methods
	Discussion
	Conclusion

	Efficiency of Hydrodynamic Escape
	Abstract
	Introduction
	Methods
	Hydrodynamics
	Bolometric heating and cooling
	H3+
	Lyman- cooling
	Hydrodynamic solver
	Artificial viscosity
	Boundary conditions
	Chemical network
	Spectrum

	Results
	HD209458b
	Energy allocation
	Stellar heating efficiency parameter, 
	4 radiative cases for fiducial 0.05au hot Jupiter
	Grid of models
	Stellar wind, magnetic field, and radiation pressure
	Planetary magnetic field confinement
	Collisionality

	Discussion

	Appendix for Efficiency of Hydrodynamic Escape
	Tidal gravity term
	Diffusion
	Chemical network solver
	Scheme

	Hydrodynamic solver
	Non-advective part
	Advective part

	Hydrodynamic equations







