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Summary 
 

Radiative particles are ubiquitous in nature and in various technologies.  Calculating 

radiative properties from known geometry and designs can be computationally expensive and 

trying to invert the problem to come up with designs specific to desired radiative properties is even 

more challenging. Here we report a machine learning (ML) based method for both the forward and 

inverse problem for dielectric and metallic particles. Our decision tree-based model is able to 

provide explicit design rules for inverse problems. Furthermore, we can use the same trained model 

for both the forward and the inverse problem, which greatly simplifies the computation. Our 

methodology shows the promise of augmenting optical design optimizations by providing 

interpretable and actionable design rules for rapidly finding approximate solutions for the inverse 

design problem. 

Keywords: Machine learning, inverse design, thermal emissivity, particle emissivity, decision 

trees, surrogate modeling, design rules, interpretability, Combined Multiple Models method 
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Introduction 

Controlling light-matter interactions is central to a variety of important applications such 

as energy harvesting1,2, solar-thermal desalination3, radiative cooling4,5, heating6, and   

computing7–9. In particular, the interaction of light with particles is ubiquitous throughout 

technological applications and the natural world. For example in combustion, flame irradiance 

depends on soot formation. Iron oxide nanoparticles are designed to couple strongly to radio 

frequency photons for targeted thermal biomedical therapies10, while other particles can be used 

for optically triggered targeted drug delivery11. Quantum dots can be used as light emitters12 and 

sensors13. Particle emulsions and mixtures can be used as radiative composite materials5 and 

spectrally-selective paints14 . In the natural world sunlight is scattered and absorbed by raindrops, 

aerosols, and other particulates in our atmosphere such as carbon black, which affects the solar 

albedo leading to detrimental effects on climate change15.  

Calculating these optical properties from known particle geometries and designs can be 

computationally expensive16, and trying to invert the problem to come up with a design that 

produces desired optical properties generally amounts to a nonlinear one-to-many problem that is 

very difficult to solve17,18. Many researchers have recently been turning to machine learning (ML) 

to speed up these calculations19–23. In this fast-emerging field of ML-accelerated optical properties 

calculations the current status is:  

1) Most of the geometries are surface based geometries. Very few studies have been conducted on 

radiative properties of particles. Peurifoy et al.19 conducted ML-based inverse design of core/shell 

spherical particles. This was a good step forward in the ML-based design of particles, however 
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spheres are the simplest geometry and these capabilities must be extended to more general 

geometries in order to be relevant for most applications. Solving both the forward and the inverse 

problem for non-spherical geomtries is significantly more complex, and of practical interest24–26, 

especially to better describe particles in nature, like dust27. 

2) A popular ML model is artificial neural networks, which have shown great promise in inverse 

design28,29. Significant work has been done to improve and understand the features learned by such 

models, and both the qualitative and quantitative relationship beween those features and the model 

predictions or properties of interest30,31. These approaches often use gradient-based methods to 

evaluate the local impact of input features on outputs and properties.  

3) Separate models are typically required for the forward and direct inverse problems, 

complicating interpretability and inefficiently decoupling the physics that must be relearned in 

both cases.  

In this paper, we propose a training methodology that results in a single Decision Tree that 

can rapidly solve both the forward and inverse problems with high accuracy for the spectral optical 

properties of diverse 3D metallic and dielectric particles. In addition to standard feature importance 

interpretability, this model also automatically provides learned global design rules for inverse 

design. We train our model on a single dataset of solid particles. The dataset consists of spectral 

emissivity curves numerically computed for 15,900 particles of varying shapes that can be 

experimentally fabricated (spheres, parallelepipeds32, triangular prisms33, and cylinders34), aspect 

ratios, sizes (nanometers to tens of microns; spanning sub-wavelength to super-wavelength 

regimes), and materials (SiO2, SiN, and Au), as summarized in Figures S2-5. Our model is able to 

efficiently learn the underlying unknown emissivity function, as a function of six input feature 

parameters as discussed later. Our training dataset samples this function with an average sampling 
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density of 4 points per parameter, holding all other parameters constant. Emissivity is calculated 

by analytical solution and direct numerical simulation (DNS) of Maxwell’s Equations (see 

Experimental Procedures). According to Kirchhoff’s law, the emissivity model we have built is 

equally valid for absorptivity, which is very important for describing natural radiation phenomena 

and its impact on climate change. 

Results and Discussion 

Training of Machine Learning Model 

We display our entire dataset in Figure 1, where every point is a unique particle whose 

optical properties were calculated via DNS. Emissivities of simulated particles cover a wide range, 

from 0.001 up to almost 10 (Figure S1). Although it is impossible for emissivity to exceed unity 

for large surfaces, it is possible for finite particles with dimensions smaller than the wavelength of 

radiation. This phenomenon is well-established in classical radiation textbooks (e.g., by Bohren 

and Huffman35) and is known in modern literature as Super-Planckian radiation, and have been 

investigated theoretically36,37 and experimentally38. The term emissivity we use in this paper is a 

synonym for emission/absorption efficiency, which is the ratio between the absorption cross 

section averaged over the entire solid angle and the particle surface area. Bohren39 has shown a 

good graphical illustration for absorption efficiency exceeding unity.  

We select Decision Trees and Random Forests (ensembles of Decision Trees)40 as our class 

of models. These models average and mix data during the training process so that they can predict 

emissivity spectra that they have never seen during training. We wish for our model to be highly 

interpretable, and for the same model to solve both the forward problem (i.e., predict optical 

properties from a given design) and the inverse problem (i.e., predict designs to produce desired 

optical properties). In general a Random Forest offers superior model accuracy and robustness as 
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compared to a Decision Tree40, but it forfeits the direct interpretability of a Decision Tree. 

Additionally, while it is possible to retrace back up a Decision Tree to perform inverse design, this 

is not possible for a Random Forest because its output is an averaged ensemble vote. We wish to 

produce a Decision Tree that embodies the performance metrics of a Random Forest. To 

accomplish this we apply a Combined Multiple Models (CMM) method41, which compresses 

ensemble-based models (e.g. RF) into a single base model (e.g. DT) without significantly affecting 

model performance (see Experimental Procedure). The use of the CMM algorithm has been largely 

limited because it requires problems for which it is cheap to generate large amounts of synthetic 

unlabeled training data. For instance, it is difficult to programmatically generate images of faces, 

dogs, or cats (canonical computer vision datasets). However, in our inverse design problem we can 

easily generate a diverse set of particles simply by randomly sampling over the ranges of (self-

consistent) material and geometric parameters. 

We train two separate models using the same dataset based on which optical properties we 

wish to target. One model targets the full emissivity spectrum (array target; emissivity as a function 

of wavelength), and the other model targets the spectrally integrated emissivity (scalar target; 

integrated average of the emissivity spectrum, weighted by the blackbody distribution at 300 K); 

see Experimental Procedures for complete details. Training each model is a two-step process: first 

we train a Random Forest on our data, and then we use that Random Forest to train a large Decision 

Tree to emulate the performance of the Random Forest (summarized in Figure S14). The end 

result is a Decision Tree with the performance of a Random Forest, which can be used for both the 

forward and inverse problems. During the first step of training, each particle in the training set is 

presented to the Random Forest as a length-6 array of parameterized geometric features and a 

material type. By carefully choosing physics-relevant parameterizations of the particles, such as 
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the area-to-volume ratio and the largest particle dimension along a principal axis, we enable our 

model to efficiently learn particle emissivity distributions without requiring excess data. We use a 

50/50 test-train split (i.e. train using 7,950 particles and test on the remaining different 7,950 

particles). For the second step of training we generate roughly 2,000,000 random, unlabeled 

particle designs. These are generated by randomly selecting self-consistent material type and 

(logarithmically distributed) geometric parameter values within the ranges spanned by the original 

dataset. We use the trained Random Forest to label these synthetic data by predicting their scalar 

or spectral emissivities.  We then train a new Decision Tree on this much larger generated synthetic 

dataset. We call this new Decision Tree DTGEN because it is trained on generated data. DTGEN 

is our final trained model. DTGEN emulates the superior performance of a Random Forest while 

preserving the interpretability and retracability of a regular Decision Tree. Thus, even though 

DTGEN is trained for inference (solving the forward problem), it can immediately be used to also 

solve the inverse problem too. DTGEN takes approximately 11 (135) CPU-ms/sample to train and 

0.005 (1.6) CPU-ms/sample to approximately solve the forward problem for scalar (spectral) 

targets, respectively (see Experimental Procedures). In contrast, DNS takes approximately 12 

CPU-hours to exactly solve the forward problem for one sample. 

The models’ performances on solving the forward problem for the test dataset are presented 

for scalar (Figures 2A and S6) and array (Figures 2B and S7) targets. The model errors (Figure 2B 

insets) are always below 10%, and generally below 5%. Higher error for Au compared to SiO2 and 

SiN is consistent with the greater diversity of optical interactions that can occur on metallic 

particles, as can be seen in Figure 1. The model can learn particle emissivity functions for 

dielectrics faster than for metals (Figure 2C) because metals can be more optically expressive. 

High symmetry shapes (spheres—1 degree of freedom) are learned faster than lower symmetry 
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shapes (cylinders—2 degrees of freedom; parallelepipeds and triangular prisms—3 degrees of 

freedom). This difference is most pronounced for metals, again due to their higher expressiveness. 

Model feature importance analysis (Figure 2D) shows that surface area-to-volume ratio is 

a more important feature for dielectrics than metals. Consequently Figure 1, which plots emissivity 

versus particle area-to-volume ratio (which represents the inverse of the characteristic particle 

size), shows a strong trend with the surface area-to-volume ratio for dielectrics, but not for metals. 

This trend can be understood as being due to the volumetric nature of photon absorption and 

emission for dielectric materials, which exhibit low attenuation42. SiN deviates from this trend 

more than SiO2, because its attenuation is slightly higher. On the other hand, the emissivity of 

metals has no clear correlation with particle size other than increased emissivity variability for 

smaller particles. This is explained by the dominating effects of surface and localized 

electromagnetic modes that can be supported by small metal particles (e.g., localized plasmons), 

which can significantly influence the emissivity. These modes depend on surface geometry more 

so than the overall particle size, as indicated in Figure 2D by the larger importance in metals of 

the particle’s longest dimension. See Experimental Procedures for a description of how feature 

importance was extracted by material. 

We also tried fitting a variety of single- and multi-variable linear models to the data 

(Figures S15 and S16). In all cases, the linear model predictions had relative errors roughly one 

order of magnitude (absolute) worse than equivalent tree-based models. This implies that although 

most of the data variation can be attributed to one or two of the most important input features for 

a given material type, the relationship between those features and emissivity is likely quite non-

linear, necessitating more complex models. 
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Emissivity spectra predictions for individual particles of each type are shown in Figure 3. These 

spectra were chosen from among the worst 20% of predictions from the test set (as measured by 

relative error) for each material and geometry class combination (more spectra are shown for gold 

in Figure S8). A single DTGEN model accurately solves the forward problem across all geometries 

and materials. For metals, the peak emissivity typically occurs at a wavelength roughly twice the 

longest dimension of the particle. For dielectrics, the wavelength of the emissivity peak is almost 

independent of the longest dimension and usually associated with materials’ absorption bands. 

This is again explained by the different mechanisms of emission for dielectrics and metals, and 

indicated in Figure 2D. 

Inverse Design for Scalar and Spectral Emissivity Targets 

To perform inverse design, we find the output label (“leaf”) on DTGEN whose value (can be a 

scalar or an array) corresponds closest to the desired optical properties we want our particle to 

produce. We trace up the Decision Tree branch from this leaf taking the intersection of all branch-

splitting criteria on all particle features encountered along the way. The result is a set of design 

rules for each feature (Figure 4). Having a set of design rules naturally captures the one-to-many 

mapping behavior of inverse design problems. We randomly sample self-consistent particle 

designs from these design rules and calculate their true optical properties using the same DNS 

scheme. The optical properties of these generated designs are then compared to the original target 

optical properties.  

The performance of these generated designs for integrated emissivity (scalar) targets is 

shown in Figure 5A. To demonstrate model flexibility, we required generation of particle designs 

using each of the three materials for those targets satisfying e	<	1 (because generally only metal 

structures have apparent emittance greater than one39,43,44). The design rules used to generate the 
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SiO2 e = 0.5 designs are shown in Figure 4A (leaf #1), along with the 9 next-closest leaves to the 

target. Because emission for dielectrics is primarily a volumetric process and does not depend on 

surface modes, the generated design rules are highly restrictive on the area-to-volume ratio in order 

to meet the target, while allowing considerable flexibility for other geometric parameters, 

consistent with Figure 2D showing “Area/Volume” being the most important feature for SiO2. The 

performance of representative generated designs for spectral emissivity are shown for Au (Figure 

5B) and SiO2 (Figure 5C). Figure 5D shows the performance of designs generated to satisfy more 

general criteria of having the emissivity peak occur at a desired wavelength, with corresponding 

design rules given in Figure 4B. This time the design rules require the material to be Au and are 

highly restrictive on the longest dimension while being loose on other parameters, because the 

emissivity peak wavelength is roughly twice the longest particle dimension for Au due to standing 

plasmon waves, consistent with Figure 2D showing “Longest Dimension” being the most 

important feature for Au. All generated designs satisfy the target optical properties to high 

accuracy.  

Conclusion 

 In conclusion, we have presented a decision tree-based method for creating an interpretable 

machine learning model that can rapidly solve both the forward and inverse design problem, and 

automatically provide intuitive design rules for generating particles with desired emissivity. We 

have applied this model to the realm of particle emissivity. The design space includes diverse 

particles, varying over shape, size, aspect ratio, and material type. A single model is able to 

efficiently learn the underlying emissivity function, valid for all materials and particle types 

spanned by the dataset. The interpretability of our models and the design rules they generate 

reconfirm that dielectric particles emit and absorb electromagnetic radiation mostly 
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volumetrically, while metallic particles’ interaction with light is dominated by surface modes and 

depends more on the longest particle dimension than on the overall characteristic particle size. The 

design rules naturally capture the one-to-many mapping of the inverse design problems, allowing 

some flexibility to facilitate design constraints. Future work should focus on experimental 

validation of generated designs, extending the framework to be more generalizable, and 

incorporating design constraints. Our approach offers an exciting avenue for the inexpensive and 

interpretable discovery of novel optical metamaterial designs. 

 

Experimental Procedures 

Resource Availability 

Lead Contact 

Further information and requests should be directed to and will be fulfilled by the Lead 

Contact, Ravi S. Prasher (rsprasher@lbl.gov). 

Materials Availability 

This study did not generate new unique reagents. 

Data and Code Availability 

The code and data to reproduce the main results of this paper can be found at:  

https://github.com/mhmodzoka/DT_inverse_design. 

Numerical emissivity calculation 

Hemispherical spectrally integrated emissivity and spectral emissivity of a finite particle 

with arbitrary shape is calculated by solving Maxwell's equations numerically. We use the 

fluctuating-surface-current formulation with the boundary-element method for its efficiency in 

directly calculating the integrated thermal radiation over all radiation directions in a single step45. 
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In this method, the radiation emitted by the particle is calculated as a result of surface current 

fluctuations, which represent the random thermal motion of charges within the material. This 

method is implemented by a free and open source software, SCUFF-EM46. In the boundary-

element method we create a surface mesh for the interfaces between any two distinct media, which 

in our case is the interface between the particle material and the surrounding vacuum. Fluctuating 

surface current is assumed at each mesh point, which is the source of thermal electromagnetic 

radiation. The radiated power at any point in space is calculated as the magnitude of the Poynting 

vector, which is then integrated over the entire surface of the finite particle to calculate the total 

radiated power. Thermal emissivity of the particle is defined as the ratio between the calculated 

total radiated power and the radiated power from a hypothetical blackbody at the same temperature 

multiplied by the same projected geometrical surface area as the particle of interest. We have 

created the surface meshes using gmsh47, an open source software. We created the meshes to have 

facets that are small compared to the shortest wavelength (1.8 μm). We display the distribution of 

the mesh edge sizes in Figure S9, which shows a mean value of 0.1632 μm for the square root of 

the surface area of the mesh surface facets. This is smaller than 10% of the shortest wavelength 

involved in our simulations. We performed a mesh convergence test to ensure the meshes were 

fine enough to achieve accurate results.  Dielectric constants for Au48, SiN49 and SiO250 were 

adopted from literature. 

Analytical emissivity calculation 

For validating numerical simulations, we have compared numerical results to analytical 

ones for simple geometries, like infinitely wide thin films, infinitely long cylinders, and spheres. 

These geometries can be described using a single dimension in cartesian, cylindrical and spherical 

coordinates, respectively, due to their high symmetry. The spectral emissivities for these 1D 
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geometries can be calculated analytically without the need for numerical solutions. For infinitely 

wide thin film, we used the transfer matrix method51 to calculate the reflectance (R) and 

transmittance (T) of a single thin film, averaged between the two light polarizations (i.e., transverse 

electric and magnetic polarizations)52. Thermal emissivity is assumed to be equal to the absorbance 

of the film (A = 1 - R - T), based on Kirchoff’s law. Hemispherical emissivity for a thin film can 

be calculated from equation 1, where 𝜃 is the angle between the incidence angle and the normal to 

the film surface. 

𝜖(𝜔) =
∫ 𝜖(𝜃, 𝜔) sin 𝜃 cos 𝜃 𝑑𝜃!
"#$

∫ sin 𝜃 cos 𝜃 𝑑𝜃!
"#$

 
(1) 

 

The emissivities of a sphere and an infinitely long cylinder were calculated analytically using Mie 

theory35,53. Sphere hemispherical emissivity is calculated as the ratio between the absorption cross 

section and the sphere projected cross section54, as shown in equation 2. 

𝜖%&'()((𝜔) =
𝜎*+%,%&'()((𝜔)

𝜋𝑟-  
(2) 

 

Sphere emissivity is independent of angle and light polarization due to the symmetry of the sphere. 

Cylinder directional emissivity is also calculated as the ratio between the absorption cross section 

and the cylinder projected cross section at a given angle (as shown in equation 3), averaged 

between the two distinct light polarizations (i.e., electric field parallel or perpendicular to the plane 

formed by the cylinder axis and the radiation direction)42: 

𝜖./0(𝜔, 𝜃) =
𝜎*+%,./0(𝜔, 𝜃)
2𝑟 sin 𝜃  

(3) 
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Where 𝜎*+%,./0 is the absorption cross section of the infinite cylinder per unit length, and 𝜃 is the 

angle between the radiation direction and the cylinder axis. Hemispherical cylinder emissivity can 

be calculated from the directional emissivity from equation 4. 

𝜖./0(𝜔) =
∫ 𝜖./0(𝜔, 𝜃)	𝑟 sin- 𝜃 	𝑑𝜃
!
-
"#$

∫ 𝑟 sin- 𝜃 	𝑑𝜃
!
-
"#$

 
(4) 

 

Absorption cross sections for the sphere and cylinder were calculated as the difference between 

extinction and scattering cross sections. 

Dataset Description 

We generated the majority of the dataset by random uniform sampling over the geometric 

parameters describing the particle for each material and geometry class: area-to-volume ratio 

(A/V), the shortest dimension (ShortDim), middle dimension (MiddleDim), and the longest 

dimension (LongDim). The range for A/V spanned from 106 m-1 to 108 m-1. We generated 15,900 

datapoints including three materials: gold (Au), silicon dioxide (SiO2), and silicon nitride (SiN); 

four geometry classes: sphere, cylinder, parallelepiped, and triangular prism; with 500, 800, 2000, 

and 2000 data points, respectively, for each material. We have shown the full distributions of 

geometry parameters in the supplementary section, Figures S2-5. 

Machine Learning Models 

Random Forests and Decision Trees were implemented in Scikit-learn55 (version 0.22.2) 

with the default hyperparameters, unless otherwise specified. Random Forests were trained using 

200 Decision Tree estimators, which is a sufficiently large number to ensure good performance 

(impact of the number of Decision Tree estimators on the model performance is illustrated in 

Figure S12, and begins to saturate around 20 estimators). Each Decision Tree estimator was 
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trained using all the training data available for the Random Forest regressor. We have used the 

mean square error as the criterion for the Decision Tree estimator to determine the quality of the 

split while training. All experiments used a 50/50 test-train split ratio, unless specified otherwise. 

We performed 100 random test-train splits with these ratios to provide estimates of the models’ 

average performances.  

During training, each particle is presented to the model as a length-6 array of parameterized 

geometric features and a material type. In particular, these 6 features are: one-hot encodings of the 

geometry class and of the material type, the area-to-volume ratio, and the mutually orthogonal 

shortest, middle, and longest dimensions of the particle measured along edges of the smallest 

bounding box, as illustrated by arrows displayed on particle cartoons in Figure 1. Each training 

data point is therefore a length-6 input array of descriptor features with a corresponding output 

scalar value (spectrally integrated emissivity) or output array (emissivity spectrum spanning near 

to far infrared). We generated a synthetic (Random Forest-labeled) dataset of 250×7950 = 

1,987,500 data points, and used that combined with the original dataset to train DTGEN. We use 

spline interpolations of the calculated emissivity spectra to generate uniformly spaced 400-points-

long emissivity spectra arrays for training. These 400 interpolation points were chosen in a linear 

spacing from 1013 rad/s to 0.8×1014 rad/s. 

All continuous input and output parameters were converted to log scale for training by 

taking the log of the inputs and then exponentiating the outputs. Log scale features result in more 

accurate and stable training and performance results for systems such as ours where parameters 

span several orders of magnitude. However, errors and loss functions were all calculated on a 

linear scale. While the models were trained by minimizing mean-squared-error (MSE) of log scale 

features, we report the relative error (of the linear scale emissivity) as the metric by which we 
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evaluate model performance. Relative error is more appropriate than squared error for human-

interpreted (linear scale) results because our emissivity data spans many orders of magnitude and 

MSE would disproportionately penalize errors of larger values for such linear scale features. We 

define relative error for integrated emissivity as |𝝐𝑴𝑳 − 𝝐𝑫𝑵𝑺|/𝝐𝑫𝑵𝑺, and for spectral emissivity as 

shown in equation 5. 

𝐸)(0 =
∫ |𝜖67 − 𝜖89:|𝑑𝜔;

∫ 𝜖89:𝑑𝜔;

 
(5) 

 

DTGEN takes approximately 11 (135) CPU-ms/sample to train, 0.005 (1.6) CPU-ms/sample to 

approximately solve the forward problem, and 0.2 (30) CPU-sec to approximately solve the inverse 

design problem for integrated (spectral) emissivity targets, respectively. Numerically solving 

Maxwell’s Equations to calculate the exact optical properties for one known particle takes about 

12 CPU-hours, or 43.2x103 CPU-sec. Assuming traditional optimization algorithms require around 

1000 iterations of solving the forward problem using DNS in order to solve the inverse problem, 

this translates to ~43.2x106 CPU-sec. While DTGEN does not solve the inverse problem exactly, 

it is expected to provide solutions accurate to within the error bounds discussed above (prediction 

uncertainties given in Figure S13). If this level of accuracy and uncertainty are acceptable for a 

given application, then DTGEN may significantly reduce the computation resources and/or time 

required to identify a candidate solution to the inverse design problem down to 0.18 (31.31) CPU-

sec for integrated (spectral) emissivities. Runtimes are shown in Figures S10 and S11 and Table 

S1. In situations where very high accuracy is desired, DTGEN can still be used to rapidly converge 

on an approximate solution, which can then be used as a close “initial guess” for an exact DNS 
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solver. We have used CPU-sec units as they are less dependent on wall clock time or particular 

configurations of the computation hardware. 

The feature importance analysis by material was performed using the standard Gini 

impurity method55. However, to calculate feature importance by material, we traversed the 

decision tree and calculated feature importance for any subtree whose root node made a split based 

on material. To our knowledge, this is the first formulation of feature importance over categorical 

one-hot encodings in a decision tree, and we believe this procedure is broadly applicable for 

interpreting decision trees produced by our method. 

Inverse design 

The purpose of the inverse design is to find particle parameters (i.e., material, geometry 

class and dimensions) that can achieve a target emissivity (either integrated or spectral) with a 

desired criterion (e.g., a desired value or distribution). 

Before we start the inverse design process, we define a criterion for how a given spectrum is far 

from a DTGEN leaf. We will call this criterion the loss function. The loss function definition 

depends on the desired inverse design target. For inverse design that requires a target integrated 

(spectral) emissivity of a given value (array), the loss function will be simply the squared error 

(sum of squared errors over frequency points) between the target emissivity and the emissivity 

predicted by DTGEN (i.e., the emissivity at the leaf of DTGEN). For the case of a desired peak 

emissivity to happen at a given frequency or wavelength with a desired spectral width, we would 

like to maximize the emissivity inside the desired spectral width, while minimize it everywhere 

else. Therefore, we define the loss function as the ratio between the area under the spectral 

emissivity curve outside and inside the desired spectral width, in frequency domain. 
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With the loss function defines, we can find the DTGEN leaf which (or a group of leaves) which 

minimizes the loss function. We call this leaf the target leaf. Using this target leaf, we can extract 

the design rules, which are the ranges imposed by DTGEN on various features (i.e., material, 

geometry class and dimensions) to reach the target leaf. Design rules are determined by finding 

the intersection of all the split rules that happened along the way that ended at the target leaf. 

We can use the design rules to generate candidate designs that should achieve an emissivity very 

close to the emissivity predicted at the target leaf. We generate the candidate designs by 

randomly choosing particle parameters within ranges dictated by the design rules, while ensuring 

these particle parameters are consistent with the geometry class, as will be illustrated later. 

Generate candidate designs from design rules 

We start generating candidate designs by choosing materials and geometries within 

categories dictated by design rules for material and geometry class features, respectively. Then, 

we generate dimensions for candidate designs, depending on the geometry class suggested by 

design rules, as follows: 

For spheres, we start by finding the diameter range that corresponds to the intersection of 

the four design rules for area-to-volume, Longest, Middle and Shortest dimensions. the diameter 

range that corresponds to the area-to-volume range can be calculated from the simple 

relationship D = 6 / area-to-volume. We use the resulted diameter range to generate diameters for 

candidate spheres. 

Cylinders can be fully described by lengths and diameters, and they can be categorized 

into long wires and flat discs, according to whether the length is greater or smaller than the 

diameter, respectively. For long wires and flat discs, we start by randomly choosing length for 

candidate designs using Longest or Shortest ranges, respectively, dictated by the design rules. 
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The diameter is chosen randomly from the intersection of the two-dimensional ranges: Middle 

and Shortest dimensions ranges for long wires, and Longest and Middle dimensions ranges for 

flat discs. Using lengths and diameters for candidate designs, we calculate their area-to-volume 

and choose only candidate designs which area-to-volume fall within the area-to-volume range 

dictated by the design rules. 

Parallelepiped and triangular prisms can be described by the Longest, Middle and Shortest 

dimensions, and they can be generated for candidate designs by choosing them randomly from 

ranges dictated by the design rules, while making sure that Longest > Middle > Shortest. We 

calculate the area-to-volume for candidate designs, and choose only candidate designs which area-

to-volume fall within the area-to-volume range dictated by the design rules. For the inverse design 

of triangular prisms, we assumed that the base height < base width < length along the extrusion 

axis. 
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figure titles and legends 

Figure 1. Integrated thermal emissivity for the training dataset. Spectrally and 
hemispherically integrated emissivity at 300 K for every particle in our training dataset as a 
function of particle area-to-volume ratio. Colors and symbol shapes represent different materials 
and geometries, respectively. Red, blue, and pink represent Au, SiO2 and SiN, respectively. 
 
Figure 2. Model training, interpretation, and inference performance. Colors and symbol 
shapes represent different materials and geometries, respectively (For Figures A – C, red, blue 
and pink represent Au, SiO2 and SiN, respectively). Machine learning predicted (𝝐𝑴𝑳) compared 
to direct numerical simulation results (𝝐𝑫𝑵𝑺) for integrated emissivity (A) and spectral emissivity 
(B). Upper inset in (B) shows relative inference error (see Experimental Procedures); lower inset 
shows relative error by material and geometry type, averaged over 100 different trained models 
with different random test-train splits. (C) Learning curves stratified by material and geometry 
type. Each point represents the average of 100 independent training runs, with random test-train 
splits. (D) Relative feature importance analysis. 
 
Figure 3. Model predictions versus numerical simulations for spectral emissivity. Model 
predictions (colored lines) compared to ground truth (black lines; from DNS) of spectral 
emissivity for particles of different shapes (columns) and materials (rows). Color conventions are 
the same as in previous figures. These examples were chosen from among the worst scoring 20% 
of predictions from the test set, as shown in Figures S6 and S7.  
 

Figure 4. Design rules for scalar and spectral inverse design. Grayed out regions show the 
range of each feature spanned by the full dataset. Colored or filled-in regions show the allowed 
range of each feature, as predicted by the algorithm, to produce a design that satisfies the target 
optical properties. Colored region is absent if the algorithm has no restriction on the feature. This 
figure shows for the specific case of scalar emissivity = 0.5 for SiO2 (A) and peak emissivity at 
7.5 μm (B). Same methodology is followed for inverse design for other targets. Using DNS, we 
have calculated the emissivities of samples generated using the design rules given in (A) leaf #1 
and (B) leaf #1, and compared these results against their corresponding emissivity targets. These 
results are given in Figure 5A and D, respectively. 
 
Figure 5. Inverse design solutions for scalar and spectral target emissivities. Black lines 
indicate the target optical properties and colored lines are the true optical properties of the 
model-generated designs, calculated via DNS. Color refer to the material, and it is consistent 
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with previous figures. (A) Performance of 53, 64, and 182 different designs generated to produce 
desired scalar emissivity targets for SiO2, SiN, and Au, respectively. The SiO2 e = 0.5 designs 
were generated using the design rules from Figure 4A leaf #1). (B) Performance of 51 Au 
designs generated to produce desired spectral emissivity target, and (C) of 15 SiO2 designs for a 
different spectral emissivity target. Targets randomly selected from test set. Lines overlap nearly 
perfectly for dielectrics. (D) Performance of 62 designs generated to produce spectral emissivity 
with its peak at a target wavelength of 7.5 μm, using design rules from Figure 4B leaf #1. 
 

 



 

Supplemental Information 
Analysis for emissivity dataset 

 
Figure S1. Integrated emissivity distribution broken by material (rows) and geometry (columns) 
 
 

 
Figure S2. Input features for sphere. Test dataset are colored in black. 
 

 
Figure S3. Input features for wires. Test dataset are colored in black. 
 



 

 
 Figure S4. Input features for triangular prisms. Test dataset are colored in black. 
 
 

 
Figure S5. Input features for parallelepiped. Test dataset are colored in black. 
 



 

 
Figure S6. Relative error for machine learning model predictions for the integrated emissivity. The vertical 
broken line represents the edge of the 80% of the data. 



 

 
Figure S7. Relative error for machine learning model predictions for the spectral emissivity. The vertical 
broken line represents the edge of the 80% of the data. 



 

 
Figure S8. Machine learning prediction compared to numerical simulation for spectral emissivity for gold 
parallelepiped. 
 



 

 
Figure S9. Distribution of the square root of the average surface area of the surface mesh elements for 
all the geometries. The mean value is 0.1632 μm. 
  



 

 
Figure S10. Direct numerical simulation wall clock time for training and test datasets using 12 cores. The 
average running time is 58 minutes.  
 

 
Figure S11. Training, inference and inverse design times for DTGEN model, per datapoint, using a single 
CPU. Average inference time for direct numerical simulation is 58 minutes using 12 cores. 
 



 

 
Figure S12. Effect of increasing the number of Decision Tree estimators for the Random Forest model on 
the model performance, trained on predicting integrated emissivity (a) and spectral emissivity (b). Each 
point represents the average of 50 independent training runs, with random test-train splits. 
  



 

 

Figure S13. Random Forest model prediction accuracy and uncertainty for integrated emissivity. Machine 
learning prediction (ϵ!") compared to direct numerical simulation results (ϵ#$%) for integrated emissivity. 
Error bars are calculated as the standard deviation among the predictions of the 200 individual Decision 
Trees estimators forming a single Random Forest ensemble. The figure displays 782 points from the test 
dataset. Because DTGEN is built to closely emulate the Random Forest, it is expected for the uncertainty 
of DTGEN to closely track that of the Random Forest. 

  



 

 
Figure S14. Flowchart describing DTGEN training protocol. First, use ~8k labeled training data points to 
train a random forest, RF. Next, use that RF to label ~2M randomly generated unlabeled data points (i.e. 
use RF to predict the emissivity for ~2M randomly generated particle geometries + materials). Finally, use 
that 2M synthetically generated labeled training data points to train a large single decision tree, DTGEN, 
whose behavior will closely emulate RF. 
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training data
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Figure S15. Performance of a linear model compared against random forest, using all geometric 
features, and trained for each pair of material type-geometry class combinations. (a) And (b) represent 
model performance predicting integrated emissivity, using random forest and linear regression, 
respectively. (c) And (d) represent model performance predicting spectral emissivity, using random forest 
and linear regression, respectively. Note the y-axis scales are different between (c) and (d). Each point 
represents the average of 20 independent training runs, with random test-train splits.  

 



 

 
Figure S16. Performance of linear models compared against random forests. For the linear model, we 
have only used the most important input feature, as predicted by feature importance analysis (i.e. largest 
dimension for Au, middle dimension for SiN and Area/Volume for SiO2). Each pair of material type-
geometry class combinations was used to train a separate model. (a) And (b) represent model 
performance predicting integrated emissivity, using random forest and linear regression, respectively. (c) 
And (d) represent model performance predicting spectral emissivity, using random forest and linear 
regression, respectively. Each point represents the average of 20 independent training runs, with random 
test-train splits. 

 

Table S1. Training, prediction and inverse design time for DTGEN model 
  Integrated emissivity Spectral emissivity 
Training time (CPU-
sec/sample) 

0.01103077 0.1350 

Inference time 
(CPU-sec/sample) 

0.0486e-4 0.00162 

Inverse design 
(CPU-sec/sample) 

0.178289 31.31 
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