UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
KA : Situating Natural Language Understanding in Design Problem Solving

Permalink
https://escholarship.org/uc/item/9wt7553n

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 16(0)

Authors
Peterson, Justin
Mahesh, Kavi
Goel, Ashok

Publication Date
1994

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9wt7553n
https://escholarship.org/uc/item/9wt7553n#author
https://escholarship.org
http://www.cdlib.org/

KA: Situating Natural Language Understanding in Design Problem Solving

Justin Peterson, Kavi Mahesh, Ashok Goel, and Kurt Eiselt
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0505
Contact: goel@cc.gatech.edu

Abstract

In this paper, we investigate the interaction between linguistic
and non-linguistic processes by considering the role of func-
tional reasoning in understanding design specifications written
in natural language. We describe KA, an experimental model-
based interpretation and design system which understands En-
glish language descriptions of the design problems it solves,
and examine whether KA's problem-solving capabilities help
i) ascertain the relevance of ambiguous design specifications
and ii) identify unspecified relations between design require-
ments. Our results demonstrate that augmenting language pro-
cessing with the ability to reason about function along the lines
suggested in KA provides effective solutions to these problems
in particular as well as to other problems in natural language
understanding.

Introduction

The modularity of “mind” is a contentious issue in Cogni-
tive Science. It has long been recognized that language un-
derstanding requires cognitive abilities far beyond what pure
linguistic knowledge permits. It is unclear, however, in what
manner, if any, linguistic and non-linguistic processes interact.
Advocates for the modularity of “mind” have argued for a very
limited form of interaction (Fodor, 1983; Jackendoff, 1987).
Others have contended that the interaction is so open-ended
as to make any boundaries between linguistic processing and
the other cognitive processes insignificant (Marslen-Wilson
& Tyler 89).

This issue also arises in computational models that integrate
language processing with other cognitive tasks. The “strong
modularity” approach has been to make the other cognitive
tasks (such as path planning or expert decision making) the
main task and add a natural language front-end to the sys-
tem. This front-end works in service of the rest of the system
and has limited abilities to translate the natural language in-
puts into another representation comprehensible to the rest
of the system (e.g., (Hayes & Simon, 1974)). Others have
opted for an “open-ended” integration, endowing their lan-
guage processing systems with a variety of domain and world
knowledge as well as a range of inference, explanation, and
reasoning capabilities (e.g., BORIS (Lehnert et al., 1983)).

In our work, we take a third approach. We propose a
modular processing architecture that contains both separate
language understanding and problem solving components.
However, these models interact in at least two significant
ways. They share common knowledge, and they communi-
cate the results of their reasoning to each other. The language
understander, for instance, uses the results of problem solving

711

operations such as case retrieval and model-based adaptation
to resolve ambiguities. The problem solver in turn uses the
decisions made by the language understander to direct the
course of its own problem decomposition and solving pro-
cess. A major difference between this approach to integrating
language with other cognitive tasks and previous approaches
is that the language understander does not need to possess
either the knowledge or the reasoning abilities to solve prob-
lems or to explain the workings of physical devices. Nor does
the problem solver need to know how to solve linguistic prob-
lems. All that the two need is to solve their own problems
partially, be able to communicate their decisions and results
with each other, and cooperate in an integrated architecture to
arrive at a negotiated solution to the overall problem.

In this paper, we present our research on the integration
of natural language understanding and problem solving capa-
bilities in the context of the design of physical devices. We
describe an experimental integrated system called KA that il-
lustrates some of the benefits of building an integrated theory
of multiple cognitive tasks focusing on language understand-
ing and its interaction with design problem solving. We show
how our work on KA imposes constraints on the target rep-
resentation of natural language understanding and how the
integrated approach redefined classical problems in language
processing such as ambiguity and underspecification in terms
of the overall goals of the KA system. Language understand-
ing imposes constraints, in return, on the task structure of the
design problem solver.

The Problem

As argued in (Pittges et al., 1993), design and diagnosis of
physical devices have been construed narrowly as problem
solving tasks, ignoring other cognitive tasks such as language
understanding, learning, and visual simulation that are part of
the overall task of design. In our work, we look at the “real”
design task which involves understanding written design re-
quirements, acquiring knowledge from books and manuals,
and understanding feedback from users and other experts. In
our view, neglecting the role of natural language understand-
ing in the overall task of design produces underconstrained
theories, design systems that communicate in artificial lan-
guages, and the hand-coding of design knowledge available
in books and manuals. Similarly, treating the understand-
ing of design specifications as a pure language understanding
problem in the absence of design problem solving also results
in underconstrained theories with ill-defined output represen-
tations.

mailto:goel@cc.gatech.edu

In our previous work (Goel, 1991a), we viewed device de-
sign as involving memory, comprehension and learning pro-
cesses in addition to problem solving in the form of device
modeling, simulation, and redesign. We represented a de-
signer’s understanding of the functioning of devices in terms
of structure-behavior-function (SBF) models. SBF models
specify the internal causal behaviors that compose the func-
tions of the structural elements of a device into its functions.
We showed both how SBF device models support memory and
learning processes in addition to problem solving, and how
these processes impose additional constraints on the models
and on model-based reasoning (E.g., Goel, 1991b). We also
showed how these tasks impose constraints on the semantics
of SBF device models and model-based functional reasoning.

In our current work, we have developed an experimen-
tal model-based interpretation and design system called KA
which embodies the expansive view of reasoning about phys-
ical devices that includes the comprehension of texts and dia-
logues on the design of physical devices as well as the design,
diagnosis, and redesign of devices. KA understands English
language descriptions of the design problems it attempts to
solve. In doing so, it addresses well-known problems of
natural language understanding such as resolving ambiguity,
interpreting indirect statements, and inferring unspecified in-
formation. For quite some time, the conventional wisdom
has been that these problems are best addressed by constraint-
based methods that employ a knowledge of natural language’s
distributional structure and rules of combination. KA di-
verges radically from this conventional wisdom, offering a
fresh approach to oft-studied problems. In KA, functional
and causal knowledge contained in SBF models as well as
model-based methods for case retrieval and adaptation (i.e.,
not just problem-solving knowledge but the very results of the
performance of problem solving) are used to understand natu-
ral language. The very same knowledge and methods in KA's
design problem solving also bias linguistic decisions for am-
biguity resolution, provide the insight necessary to interpret
indirect statements, and supply the information absent in un-
derspecified texts. KA demonstrates the merits of integrating
design problem solving with language understanding by pro-
viding partial solutions to some of the most difficult problems
in language understanding as well as design problems.

Reformulating Linguistic Problems

Because research in natural language understanding has so
decidedly separated the problems of linguistic analysis and
sentence understanding from the other problems that must
be resolved in the meaningful interpretation of texts, the re-
sources that have been applied in most text understanding
systems have been severely limited. Real world tasks such as
designing from written requirements specifications provide a
context which refocuses many of the linguistic problems that
have been central to the field, allowing us to consider novel
solutions to time-worn yet unresolved problems.

In taking this approach to our work, we have found that
linguistic problems and the problems of large texts that are
inherent to written design requirements actually become prob-
lems which require reasoning about the design of the device
in question. Requirements specifications are notoriously con-
fusing and incomplete, providing poor articulations of the

design requirements. So far, the KA project has encountered
several problems which we illustrate with the use of sample
Text 1! shownin Figure 1. Its corresponding SBF description
appears in Figure 2.

Text 1: The system shall consist of two computer ele-
ments interfaced to each other over an xxxx link. Com-
puter A shall send a K byte request packet to Computer
B every M seconds. In response to the request packet
Computer B shall send an L byte response packet back
to Computer A. Packet encoding is N bit ASCII.

Figure 1: Sample Design Specification

Input: Substance: Request-Message
Size: K Byte

QOutput: Substance: Response-Message
Size: L Byte

Structure: Component: Computer A

Component: Computer B
Component: Link
Baud-Rate: Z

Figure 2: Functional Specification for Text 1

Ambiguity

Typically, the natural language surface form of written func-
tional specifications indirectly refers to a design requirement.
The writers of such requirements specifications can usually
point out specific statements about the inputs and the outputs
of the components that indicate the general functions of the
device, but in no way are these requirements indicated in the
natural language surface form. The system must be able to
use the indirect statements given to infer the design require-
ments because, failing to do so, it would be unable to pursue
a design solution.

For example, to successfully understand Text 1 as a design
problem, one must be able determine the function of the device
being described, its inputs, and its outputs. However, none
of these characteristics are explicitly described in the text.
The text describes the device (referred to as “the system”)
in terms of its components (e.g., ** computer A", “computer
B"), their connectivity and types of information they transmit
(e.g., “request packet”). Nothing is stated about the function
of “the system”. Its inputs and outputs are not even referred
to. To understand the English description in Text 1, KA must
be able to generate functional requirements from alternate in-
formation sources, using the information provided in the text
(e.g., K byte request packet, L byte response packet) as con-
straints on generation. Before KA can use this information
to constrain generation, however, it must determine its rele-
vance to the function of the device. In the text, it is unclear
whethera “request packet” and a “‘response packet” are related
to the function of the device or to its internal workings. An
understanding of “requests” and “responses” reveals, how-
ever, that these information packets are the inputs and outputs

ISome design details have been masked to protect our sponsor’s
proprietary information.

712

Syntactic
Knowledge

Lexicon

SBF Ontology

Solving
Process

Problem
Solution

Figure 3: KA System Architecture

of the device. If KA is to make use of such indirect state-
ments about functional requirements, it must use its specific
knowledge about computing networks to infer that a request
message passed from one computer to another is the input to
the system, and the message sent in response is the output.

Underspecification

The natural language surface form does not indicate the rela-
tionships between design requirements. It identifies detailed
device requirements without articulating how these require-
ments relate to one another. For example, although baud rate,
size of an information packet, and frequency of transmission
have a well-defined relationship to one another in a computer
network, requirements specifications for computing devices
such as the one in Text 1 rarely, if ever, mention this relation-
ship. A superficial analysis of the natural language surface
form would produce three separate requirements (one for the
baud rate, one for information packet size, and one for the
frequency of transmission), entailing an extremely inefficient
problem decomposition. If the system is to pursue designs
efficiently, it must combine these disparate requirements into
a coherent specification of the design. For example, in Text
1, using the frequency of transmission in combination with
the size of the information packets, KA can infer the appro-
priate baud rate for the “xxxx’ link between the system's two
computers.

In order to map requirement specifications to useful func-
tional descriptions, KA must effectively resolve ambiguity,
fill in missing details, identify the relevance of indirect state-
ments, and combine related information. To do so efficiently,
KA uses memory, comprehension, and problem solving pro-
cesses in addition to pure language processes. In this way,
these “background” processes in KA provide a robust con-
text in which effective communication in natural language
becomes feasible.

The KA architecture
KA accepts a requirements specification written in English
and produces a design expressed as a structure-behavior-

713

function (SBF) model which meets the design requirements.
The functional architecture for KA is illustrated in Figure 3.
It consists of several knowledge sources containing syntactic,
conceptual, and episodic knowledge and employs memory,
comprehension, problem solving, and learning processes in
addition to a language process. Each of KA's components
uses a different knowledge sources to bring a unique capabil-
ity to the system.

The language process uses syntactic and conceptual knowl-
edge (i.e., a knowledge of concepts and the relations be-
tween them) to generate cues for the memory processes as
well as tentative interpretations for the comprehension pro-
cesses. If the KA system is to effectively communicate in
natural language, it must be able to resolve the different types
of ambiguities (e.g., lexical and structural ambiguities) that
arise in written texts. The language process in KA uses
an early-commitment processing strategy with robust error-
recovery to resolve word sense ambiguities (Eiselt, 1989).
This mechanism has proved itself to be quite effective. Its
early-commitment strategy provides the system with the abil-
ity of pursuing a tentative interpretation of the discourse. This
allows the system to discover the entailments of this line of
interpretation, bringing other processes on-line early in the
course of language understanding. In situations where the
early decision is incorrect, the error-recovery mechanisms
may use feedback from the comprehension process (or prob-
lem solving) to reactivate a previously retained alternative
interpretation.

The language process consists of two components, a parser
which produces syntactic structures and a semantic network
that produces conceptual interpretations. Consistent with the
early-commitment processing strategy, the semantic network
resolves word-sense ambiguities by considering processing
choices in parallel, selecting the alternative that is consistent
with the current context, and deactivating but retaining the
unchosen alternatives for as long as space and time resources
permit. If some later context proves the initial decision to be
incorrect, retained alternatives are reactivated without reac-
cessing the lexicon or reprocessing the text.

The memory process retrieves past design cases and case-
specific SBF device models from the episodic memory, and
stores newly-acquired cases and models in memory. In order
to ensure effective retrieval, the cases are indexed by the de-
vice structure and function of the stored design and the SBF
models are indexed by the cases. Both the cases and the mod-
els are represented in a common ontology that arises from a
qualitative physics.

The comprehension process provides feedback to the lan-
guage process based on the cases and models retrieved from
memory, and forms a model of new devices based on the in-
put from the language process by adapting the retrieved cases
and models using generic modification plans. The compre-
hension process selects these modification plans by using the
differences between the functions of the new device and the
functions of the retrieved design as an index.

The problem solving process adapts retrieved design cases
to solve new design problems. Repair plans are used to per-
form the adaptations to the old design’s structure. The new
design is verified by a qualitative simulation of its SBF model
and produced as a solution to the design problem. Finally, the
solution is sent to the learning process for later reuse.

The learning process learns indices to new design cases
and device models. An index specifies multiple dimensions
of generalizations that pertain to a design’s various functions.
The learning process generates these generalizations by a pro-
cess described in (Bhatta & Goel, 1992).

KA at Work

In the current investigation, we examined whether KA’s SBF
models and ability to reason about function could help infer
the relevance of indirect statements as well as identify rela-
tionships between design details underspecified in the natural
language surface form. Our approach to these problems relied
extensively on KA’s memory of design cases, case-specific
SBF models, and model-based adaptation. Our results indi-
cate that:

¢ Using case-specific SBF models as the starting point for
the interpretation of a requirements specification enables
the language process to identify the relevance of statements
that, on the surface, appear to be irrelevant to the design
requirements.

Model-based adaptation prevents missing the big picture by
fashioning a functional specification from a disparate set of
requirements that do not directly make statements about the
function of the device to be designed.

Using KA's SBF models and diagnosis capability ensures
that critical relationships between design details that are
left unarticulated in the written requirements are identified
and that these relations impact the structural specification
extracted from the text.

The Process

In this investigation, we focused on extracting the critical fea-
tures from ill-specified texts such as Text 1. Briefly, KA pro-
cesses Text 1 in the following manner. First, using its memory
of past design cases and case-specific SBF models, KA em-
ploys a complete SBF model as a baseline from which the
relevance of indirect statements about the function of the de-
vice can be inferred. The memory process extracts a relevant

714

model from its case/model memory and sends it to the com-
prehension process. This model is fed back to the language
process, Using this model as baseline, the language process
employs its inference generation capability (i.e., marker pass-
ing) to identify the relations between the feedback and the
concepts specified by the text. Once the language process
has finished its inference generation, it produces a tentative
functional specification of the design which is sent to the
comprehension process.

Second, KA performs model-based adaptation on the SBF
model, generating a new case-specific SBF model that is con-
sistent with the information provided in the tentative func-
tional specification. The comprehension process identifies
distinctions between the tentative functional specification and
the SBF model. Then, it uses these distinctions to modify the
SBF model. During adaptation, the comprehension process
modifies only those aspects of the stored model that con-
flict with the tentative specification. This leaves a significant
number of design details unaffected. In effect, design details
are transferred from the stored SBF model to the new device
model.

Third, during adaptation, KA identifies those distinctions
that require changes to the new device’s structure and adapts
the tentative design specification accordingly. The resulting
new case is stored in KA’s memory of case-specific models
for later reuse. Below, we discuss of these steps in detail.

Inferring the Relevance of Indirect Statements The mem-
ory process begins by sending a relevant SBF model to the
comprehension process which feeds it back to the semantic
network. The semantic network activates the model’s corre-
sponding concepts and conceptual relations. For example, in
the subsection of the semantic network displayed in Figure 4,
the concepts Old-Device, Y Byte, Response message, and
Response and the primitive conceptual relations that relate
these concepts (e.g., parameter, instance, part) are activated
by feedback from the Comprehension process.

The input is then parsed and the content words of each
sentence are passed to the semantic network which initiates
marker passing at each word’s comresponding concept. Us-
ing the feedback as a bridge, the semantic network identifies
conceptual relations between the concepts activated by the
text and constructs a new set of inferences. The new infer-
ences relate concepts specified in the text to the functional
specification of the new device. Finally, a tentative functional
specification of the new device is produced from these new
inferences and sent to the comprehension process.

To see how the feedback acts as a bridge between the con-
cepts activated by the text, consider the subsection of the
semantic network displayed in Figure 4. In this semantic net-
work, the concept L Byte is activated by the appearance of the
words “L byte” in the input text, Response is activated by the
appearance of “response”’, and New-Device is activated by the
appearance of “‘system”. Using only these active concepts, the
semantic network would be unable to identify critical concep-
tual relations such as that between L byte and the Qutput of
the New Device because the active concepts L byte and New
Device are only distantly related to each other. Basing its de-
cision on the length of the path between the two concepts, the
semantic network would deem it unlikely that the text intends
to relate these concepts without further evidence.

active

Figure 4: Identifying the Relevance of response and L Byte

However, when the semantic network begins with
feedback-activated concepts such as Response message, con-
ceptual relations such as that between L byte and New-Device
as well as that between Response and New-Device can be
identified. The concepts activated by the text are more closely-
related to the concepts activated by feedback than they are to
each other, so the semantic network can identify conceptual
relations between the text-activated concepts and feedback-
activated concepts (as indicated by the active paths in Figure
4). This produces inferences that serve to relate the text-
activated concepts, inferences that identify the relevance of
concepts such as Response and L byte to the function of the
New-Device .

Generating a New Functional Specification Givena tenta-
tive and underspecified functional specification produced by
the language process, the comprehension process compares
the SBF model and this underspecified functional specifica-
tion to determine the distinctions between the two device
descriptions. It notes distinctions that are extremely signifi-
cant such as the distinction between the size of the response
package (L bytes versusJ bytes) and those that are less signif-
icant such as the difference in the names of the components
(A versus C).

Once all of these distinctions have been collected, the com-
prehension process begins adapting the stored SBF model. It
modifies the component names such that they are consistent
with the new functional specification, changes the sizes of the
response package and request package, etc. In doing so, it
transfers a large amount of the stored SBF model to the new
SBF model. For example, it transfers the types of the com-
ponents in the old device to components of the new device.
The result is that all of the design details are filled in, and a
significant number of assumptions are made. The compre-
hension process assumes, for example, that the new device
has the same behavioral descriptions as the stored device and
the same structural description.

715

Identifying Relationships between Design Details During
the adaptation of the stored SBF model, the assumption that
the structural specifications of the new and stored designs are
equivalent is examined. The comprehension process consid-
ers each of the differences it has identified between the new
specification and the stored specification, looking for those
differences that may require modifications to the device struc-
ture. Differences that are particularly relevant are differences
in device inputs and outputs. For example, in this example,
the distinction between the size of the new design’s output
and the stored design's output (i.e., L bytes versusJ bytes) im-
poses new constraints on the structure of the new design. The
comprehension process collects these difference and orders
them with respect to their priority.

Examining them in order of their priority, the comprehen-
sion process retrieves generic modification plans that rectify
the differences between the new design specification and the
stored design specification by adapting the stored SBF model.
Generic modification plans are indexed in memory by the
type of differences they reduce and are made available by the
memory process. In achieving their ends, generic modifica-
tion plans manipulate, delete, and augment device structure.

After the comprehension process has received the generic
modification plans from the memory process, it begins to
diagnose the new model’s failure, in this particular example,
its failure to produce the desired output. While investigating
the causes of the new design’s failure, the comprehension
process identifies the relationship between the frequency of
transmission (i.e., every M seconds), the size of the response
packet (i.e., L bytes) and the baud rate of the link component.
Using the qualitative relations specified in the stored SBF
model, it notes that baud rate of the link component limits the
amount of information that can be transferred at a particular
frequency. It concludes the baud rate of the current link
component is to low and that increasing the baud rate of this
component would provide for the size of the response packet

in the new design and the desired frequency of transmission.
Given the diagnosis and the generic modification plans, the
comprehension process “repairs” the structural specification
of the new design, replacing the link component in the stored
SBF model with a link component that has a higher baud rate.

Discussion and Conclusions

In this work, we believe that we have found partial answers
to some of the issues that arise in integrating design problem
solving and natural language understanding:

¢ The meaning of understanding language: A piece of text
describing a design specification is understood if it can be
represented in the target (SBF) language and if it results in
a successful design of the specified device. In general, the
success of language understanding is determined in terms
of the success of the overall cognitive task.

¢ Feedback to NLP: We have identified three ways in which
the problem solving task can provide feedback to the
language process. First, previous experiences and other
knowledge structures retrieved from the problem solver’s
memory provide appropriate contexts for language under-
standing. Second, the cost of problem solving for alter-
native interpretations of texts gives a good decision metric
for resolving the ambiguities between interpretations. Fi-
nally, the ontology of the task determines correctness of an
interpretation thereby providing feedback to the language
process.

¢ Constraints imposed on NLP: The overall cognitive task
affects the NLP task by redefining classical problems in
NLP such as ambiguity resolution. It also suggests new
ways of solving those problems. In addition, the task de-
mands that the representations and the output of language
understanding be expressive enough to capture the distinc-
tions that are significant in the ontology of the task.

e Constraints imposed by NLP: The integration of NLP
with other tasks requires the task to be able to process
incomplete and incremental input and provide immediate
feedback to the language process. It demands an itera-
tive/cooperative solution to the overall task, It also requires
that the overall system must have problem solving ability
required to solve the linguistic problems: for instance, it
must have a case available in memory for resolving a par-
ticular ambiguity even if that case is never used in design
problem solving.

What lessons regarding the modularity of ‘mind’, even tenta-
tive ones, can be drawn from our work on KA? KA certainly is
modular, but the nature of the modularity depends on the level
at which it is analyzed. Modularity in KA can be viewed at
the levels of task, process and knowledge, and representation.
Atthe task level, ‘language processing’ and ‘problem solving’
are distinct modules, characterized by the types of informa-
tion they take as input and give as output. At the next level,
some of the processes are task-specific but others are shared.
Language processing and problem-solving, for example, are
both informed by the same memory processes which retrieve
episodic and conceptual information. Similarly, some of the
knowledge is task-specific and some of it is shared. Only
the language processes use lexical and syntactic knowledge,
and only the problem-solving processes use knowledge of the

716

primitive structural elements out of which devices are com-
posed (e.g., types of structural components, substances, and
relations among them). On the other hand, both the language
and problem solving processes both employ functional and
causal knowledge of devices. Finally, at the level of repre-
sentation, the language and problem-solving processes share
the same vocabulary for representing conceptual knowledge.
Thus, from the viewpoint of KA, the issue of modularity is
much more complex than either the orthodox ‘modularists’,
such as Fodor and Jackendoff, or the 'nonmodularists’, such
as Marlen-Wilson and Tyler, suggest.

Acknowledgements

This work has been supported by the National Science Foun-
dation (research grant IRI-92-10925), the Office of Naval Re-
search (research contract NO0014-92-J-1234), and Northern
Telecom (research gift). The authors would like to thank their
colleagues Sambasiva Bhatta, Andres Gomez de Silva Garza,
Jeff Pittges, and Eleni Stroulia.

References

Bhatta, S. & Goel, A. (1992). Use of mental models for Con-
straining Index Learning in Experience-Based Design. In
Proceedings of AAAI workshop on Constraining Learning
with Prior Knowledge (pp. 1-10). San Jose, CA.

Eiselt, K. (1989). Inference Processing and Error Recovery
in Sentence Understanding. Doctoral Dissertation, Irvine,
CA: University of California, Irvine, Department of Infor-
mation and Computer Science.

Fodor, J. (1983). Modularity of Mind. Cambridge, MA: MIT
Press.

Goel, A. 1991a. A Model-Based Approach to Case Adapta-
tion. In Proceedings of the Thirteenth Annual Conference
of the Cognitive Science Society (pp. 143-148). Hillsdale,
NIJ: Lawrence Erlbaum Associates.

Goel, A. 1991b. Model Revision: A Theory of Incremental
Model Learning. In Proceedings of the Eighth Interna-
tional Conference on Machine Learning (pp. 605-609),
San Mateo, CA: Morgan Kaufmann Publishers.

Hayes, J. R. & Simon, H. A. (1974). Understanding Written
Problem Instructions. In L. W. Gregg (Ed.), Knowledge
and Cognition (pp. 167-200). Potomac, MD: Lawrence
Erlbaum Associates.

Jackendoff, R. (1987). Consciousness and the Computational
Mind. Cambridge, MA: MIT Press.

Lehnert, W. G., Dyer, M. G., Johnson, P. N., Yang, C. J., &
Harley, S. (1983). BORIS - An Experiment in In-Depth
Understanding of Narratives. Artificial Intelligence, 20(1),
15-62.

Marslen-Wilson, W. & Tyler, L. (1989). Against Modularity,
In J. Garfield (Ed.), Modularity in Knowledge Represen-
tation and Natural Language Understanding. Cambridge,
MA: MIT Press.

Pittges, J., Eiselt, K., Goel, A., Gomez, A., Mahesh, K., &
Peterson, J. (1993). KA: Integrating Natural Language
Processing and Problem Solving. In Proceedings of the
Fifieenth Annual Conference of the Cognitive Science So-
ciety (pp. 818-823). Hillsdale, NJ: Lawrence Erlbaum
Associates.

	cogsci_1994_711-716

