UCLA
UCLA Previously Published Works

Title

Model Checking Finite-Horizon Markov Chains with Probabilistic
Inference

Permalink

https://escholarship.org/uc/item/9wv5s2i§

ISBN
978-3-030-81687-2

Authors

Holtzen, Steven
Junges, Sebastian
Vazquez-Chanlatte, Marcell

Publication Date
2021

DOI
10.1007/978-3-030-81688-9_27

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/9wv5s2j8
https://escholarship.org/uc/item/9wv5s2j8#author
https://escholarship.org
http://www.cdlib.org/

Alexandra Silva
K. Rustan M. Leino (Eds.)

Computer Aided
Verification

33rd International Conference, CAV 2021
Virtual Event, July 20-23, 2021
Proceedings, Part Il

(@)
O
N~
N
—
v
)
=
—

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12760

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexandra Silva - K. Rustan M. Leino (Eds.)

Computer Aided
Verification

33rd International Conference, CAV 2021
Virtual Event, July 20-23, 2021
Proceedings, Part II

@ Springer

Editors

Alexandra Silva K. Rustan M. Leino
University College London Automated Reasoning Group | AWS
London, UK Seattle, WA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-81687-2 ISBN 978-3-030-81688-9 (eBook)

https://doi.org/10.1007/978-3-030-81688-9
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-81688-9
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2021, the 33rd International
Conference on Computer-Aided Verification. CAV 2021 was held as a virtual con-
ference during July 20-23, 2021. The tutorial days were on July 19 and July 24, 2021,
and the pre-conference workshops were held during July 18-19, 2021. Due to the
COVID-19 outbreak, all events took place online.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This puts CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2021 received a very high number of submissions (290). We accepted 16 tool
papers, 3 case studies, and 60 regular papers, which amounts to an acceptance rate of
roughly 27%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, machine learning, and industrially
deployed systems. The program featured keynote talks by Loris D’Antoni
(UW-Madison), Corina Pasarecanu (NASA), and Anna Slobodova (Centaur Technol-
ogy, Inc.) as well as invited tutorials by Nate Foster (Cornell University), Zak Kincaid
(Princeton) together with Tom Reps (UW-Madison), and Nadia Polikarpova (UC San
Diego). Furthermore, we continued the tradition of Logic Lounge, a series of discus-
sions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2021 hosted the following workshops:
Formal Approaches to Certifying Compliance (FACC), Formal Methods for
ML-Enabled Autonomous Systems (FoMLAS), Formal Methods for Blockchains
(FMBC), Numerical Software Verification (NSV), Theory and Practice of String
Solving (TPSS), Verifying Probabilistic Programs (VeriProP), Synthesis (SYNT),
Satisfiability Modulo Theories (SMT), and Verification Mentoring Workshop (VMW).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2021 consisted of 79 members — a
committee of this size ensures that each member has to review only a reasonable
number of papers in the allotted time. In all, the committee members wrote over 900
reviews while investing significant effort to maintain and ensure the high quality of the
conference program. We are grateful to the CAV 2021 Program Committee for their
outstanding efforts in evaluating the submissions and making sure that each paper got a
fair chance. Like last year’s CAV, we made the artifact evaluation mandatory for tool
paper submissions and optional, but encouraged, for the rest of the accepted papers.
This year saw an unprecedented number of 66 artifact submissions. The Artifact
Evaluation Committee consisted of 72 members who put in significant effort to eval-
uate each artifact. The goal of this process was to provide constructive feedback to tool

vi Preface

developers and help make the research published in CAV more reproducible. We are
also very grateful to the Artifact Evaluation Committee for their hard work and ded-
ication in evaluating the submitted artifacts.

CAYV 2021 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2021 a success. First, we would like to thank Clément Pit-Claudel and Maria Schett for
chairing the Artifact Evaluation Committee and John Cyphert for putting together the
proceedings. We also thank Arie Gurfinkel for chairing the workshop organization,
Bor-Yuh Evan Chang for managing sponsorship, Thomas Wies for arranging student
fellowships, Norine Coenen for handling publicity, Leopold Haller for organising the
Logic Lounge, and Peter Miiller for putting together the Ask me Anything program. We
also thank Jean-Baptiste Jeannin and Arjun Radhakrishna for chairing the Mentoring
Committee. Putting together an online conference is a complex task and we are grateful
to the virtualization chair Tiago Ferreira, the student volunteer coordinators Tobias
Kappé and Tao Gu, the local organizers for the Asia timezone, Ichiro Hasuo and
Krishna S, and the team at Slides Live for all their efforts. Last but not least, we would
like to thank the members of the CAV Steering Committee (Kenneth McMillan, Aarti
Gupta, Orna Grumberg, and Daniel Kroening) for helping us with several important
aspects of organizing CAV 2021.

We hope that you will find the proceedings of CAV 2021 scientifically interesting
and thought-provoking!

June 2021 Alexandra Silva
Rustan Leino

Organization

Steering Committee

Ornal Grumberg Technion, Israel

Aarti Gupta Princeton University, USA

Daniel Kroening Amazon, USA

Kenneth Mcmillan University of Texas at Austin, USA

Conference Co-chairs

K. Rustan M. Leino Amazon, USA
Alexandra Silva University College London, UK

Artifact Co-chairs

Clément Pit-Claudel Massachusetts Institute of Technology, USA
Maria Schett University College London, UK

Workshop Chair

Arie Gurfinkel University of Waterloo, Canada

Verification Mentoring Workshop Organizing Committee

Jean-Baptiste Jeannin University of Michigan, USA
(Co-chair)
Arjun Radhakrishna Microsoft Research, USA
(Co-chair)
Suguman Bansal University of Pennsylvania, USA
Roopsha Samanta Purdue University, USA
Caterina Urban Inria and Ecole Normale Supérieure, France

Logic Lounge Organizer

Leopold Haller Google Inc., USA

Ask Me Anything Organizer

Peter Miiller ETH Ziirich, Switzerland

viii Organization
Publicity Chair

Norine Coenen

Sponsorship Chair

Bor-Yuh Evan Chang

Fellowship Chair

Thomas Wies

CISPA Helmholtz Center for Information Security,

Germany

University of Colorado Boulder, USA

New York University, USA

Student Volunteer Coordinators

Tao Gu
Tobias Kappé

University College London, UK
Cornell University, USA

Proceedings and Talks Chair

John Cyphert

Virtualization Chair

Tiago Ferreira

University of Wisconsin—-Madison, USA

University College London, UK

Local Organization Chairs

Ichiro Hasuo
Krishna S.

Program Committee

Erika Abraham
Elvira Albert
Christel Baier
Clark Barrett
Ezio Bartocci
Josh Berdine
Armin Biere

Sam Blackshear
Jasmin Blanchette
Roderick Bloem
Borzoo Bonakdarpour
Ahmed Bouajjani
Tevfik Bultan

National Institute of Informatics, Japan
IIT Bombay, India

RWTH Aachen University, Germany
Universidad Complutense de Madrid, Spain
TU Dresden, Germany

Stanford University, USA

TU Wien, Austria

Facebook, UK

Johannes Kepler University Linz, Austria
Novi, USA

Vrije Universiteit Amsterdam, Netherlands
Graz University of Technology, Austria
Michigan State University, USA

Université de Paris, France

University of California, Santa Barbara, USA

Sagar Chaki

Bor-Yuh Evan Chang
Hana Chockler
Cristina David
Jennifer Davis

Yuxin Deng

Rayna Dimitrova

Alastair Donaldson
Constantin Enea
Joao Fernandes
Bernd Finkbeiner

Vijay Ganesh
Pierre Ganty
Aarti Gupta

Arie Gurfinkel
Ichiro Hasuo
Marieke Huisman
David N. Jansen

Jean-Baptiste Jeannin

Ranjit Jhala

Rajeev Joshi

Temesghen Kahsai

Benjamin Lucien Kaminski

Joost-Pieter Katoen

Guy Katz

Laura Kovacs

Mitja Kulczynski

Mohit Kumar Tekriwal

Orna Kupferman

Marta Kwiatkowska

Shuvendu Labhiri

Akash Lal

Kim Larsen

Marijana Lazic

Owolabi Legunsen

K. Rustan M. Leino
(Co-chair)

Rupak Majumdar

Ruben Martins

Ken McMillan

Aina Niemetz

Ruzica Piskac

Sylvie Putot

Organization ix

Mentor Graphics, USA

University of Colorado Boulder and Amazon, USA

King's College London, UK

University of Bristol, UK

Collins Aerospace, USA

East China Normal University, China

CISPA Helmholtz Center for Information Security,
Germany

Imperial College London, UK

Université de Paris, France

University of Porto, Portugal

CISPA Helmholtz Center for Information Security,
Germany

University of Waterloo, Canada

IMDEA Software Institute, Spain

Princeton University, USA

University of Waterloo, Canada

National Institute of Informatics, Japan

University of Twente, Netherlands

Institute of Software, Chinese Academy of Sciences,
China

University of Michigan, USA

University of California, San Diego, USA

Amazon, USA

The University of lowa, USA

University College London, UK

RWTH Aachen University, Germany

The Hebrew University of Jerusalem, Israel

Vienna University of Technology, Austria

Kiel University, Germany

University of Michigan, USA

The Hebrew University of Jerusalem, Israel

University of Oxford, UK

Microsoft Research, USA

Microsoft Research, India

Aalborg University, Denmark

Technical University of Munich, Germany

University of Illinois at Urbana-Champaign, USA

Amazon, USA

Max Planck Institute for Software Systems, Germany
Carnegie Mellon University, USA

University of Texas at Austin, USA

Stanford University, USA

Yale University, USA

Ecole Polytechnique, France

X Organization

Markus N. Rabe
Talia Ringer
Kristin Yvonne Rozier
Philipp Ruemmer
Krishna S.
Roopsha Samanta
Sanjit A. Seshia
Natarajan Shankar
Natasha Sharygina
Sharon Shoham
Alexandra Silva (Co-chair)
Tachio Terauchi
Cesare Tinelli
Aaron Tomb
Ashutosh Trivedi
Caterina Urban
Margus Veanes
Jules Villard
Yakir Vizel

Chao Wang

Wang Yi
Mingsheng Ying
Nobuko Yoshida
Lijun Zhang

Google, USA

University of Washington, USA

Iowa State University, USA

Uppsala University, Sweden

IIT Bombay, India

Purdue University, USA

University of California, Berkeley

SRI International, USA

Universita della Svizzera italiana, Switzerland

Tel Aviv University, Israel

University College London, UK

Waseda University, Japan

The University of Iowa, USA

Galois, Inc., USA

University of Colorado Boulder, USA

Inria, France

Microsoft, USA

Facebook, UK

Technion, Israel

University of Southern California, USA

Uppsala University, Sweden

University of Technology Sydney, Australia

Imperial College London, UK

Institute of Software, Chinese Academy of Sciences,
China

Artifact Evaluation Committee

Rosa Abbasi Boroujeni
Guy Amir

Vincent Archambault
M. Fareed Arif
Filipe Arruda

Kshitij Bansal
Suguman Bansal
Shraddha Barke
Kevin Batz

Heiko Becker

Julia Belyakova
Murphy Berzish
Ranadeep Biswas
Alexandra Bugariu
Katherine Cordwell
Martin Desharnais
Zafer Esen

Mathias Fleury

Max Planck Institute for Software Systems, Germany
The Hebrew University of Jerusalem, Israel
University of Montreal, Canada

The Unviersity of lowa, USA

Universidade Federal de Pernambuco, Brazil
Facebook, USA

Rice University, USA

University of California, San Diego, USA

RWTH Aachen University, Germany

Max Planck Institute for Software Systems, Germany
Southern Federal University, Russia

University of Waterloo, Canada

Université de Paris, France

ETH Zurich, Switzerland

Carnegie Mellon University, USA

Bundeswehr University Munich, Germany

Uppsala University, Sweden

Johannes Kepler University Linz, Austria

Isabel Garcia-Contreras

Luke Geeson

Nick Giannarakis
Pablo Gordillo
Laura Graves
Zheng Guo

Vedad Hadzi¢
Miguel Isabel
Anastasiia Izycheva
Chris Jenkins
Daniela Kaufmann
Brian Kempa
Bettina Konighofer
Mitja Kulczynski
Mohit Kumar Tekriwal
Stella Lau

Julien Lepiller
Chunxiao Li

Junyi Liu

Debasmita Lohar
Makai Mann

Roy Margalit

Sidi Mohamed Beillahi
Marcel Moosbrugger
Marianela Morales
Jasper Nalbach
Andres Noetzli
Mario Pereira
Mateo Perez
Elizabeth Polgreen
Mathias Preiner
Tim Quatmann
Bob Rubbens
Vimala S.

Philipp Schroer
Joseph Scott
Amanda Stjerna
Zachary Susag
Hira Syeda

Martin Tappler
Michael Tautschnig
Saeid Tizpaz Niari
Hazem Torfah
Deivid Vale

Organization Xi

IMDEA Software Institute and Universidad Politecnica
de Madrid, Spain

Arm, UK

University of Wisconsin-Madison, USA

Universidad Complutense de Madrid, Spain

University of Waterloo, Canada

University of California, San Diego, USA

Graz University of Technology, Austria

Universidad Politécnica de Madrid, Spain

Technical University of Munich, Germany

University of Iowa, USA

Johannes Kepler University Linz, Austria

Iowa State University, USA

Graz University of Technology, Austria

Kiel University, Germany

University of Michigan, USA

Massachusetts Institute of Technology, USA

Yale University, USA

University of Waterloo, Canada

Institute of Software, Chinese Academy of Sciences,
China

Max Planck Institute for Software Systems, Germany

Stanford University, USA

Tel Aviv University, Israel

Université de Paris and CNRS, France

TU Wien, Austria

Inria, France

RWTH Aachen University, Germany

Stanford University, USA

Universidade NOVA de Lisboa, Portugal

University of Colorado Boulder, USA

University of California, Berkeley, USA

Stanford University, USA

RWTH Aachen University, Germany

University of Twente, Netherlands

Indian Institute of Technology, Madras, India

RWTH Aachen University, Germany

University of Waterloo, Canada

Uppsala University, Sweden

University of Wisconsin-Madison, USA

Chalmers Universityof Technology, Sweden

Graz University of Technology, Austria

Queen Mary University of London, UK

University of Texas at El Paso, USA

University of California, Berkeley, USA

Radboud University Nijmegen, Netherlands

xii Organization

Masaki Waga Kyoto University, Japan

Peixin Wang Shanghai Jiao Tong University, China
Sarah Winkler Free University of Bozen-Bolzano, Italy
Tobias Winkler RWTH Aachen University, Germany

Ali Younes Bauman Moscow State University, Russia
Xiao-Yi Zhang National Institute of Informatics, Japan
Yuhao Zhang University of Wisconsin-Madison, USA

Additional Reviewers

Ahmad, Hammad
An, Jie
Armborst, Lukas

Defourné, Antoine
Downing, Mara
Darwin, Oscar

Almagor, Shaull Dill, David
Arenas, Puri Dunn, Isaac
Asadi, Sepideh Dave, Vrunda
Amir, Guy Dohmen, Taylor

Arif, Fareed

Asarin, Eugene
Baanen, Anne

Batz, Kevin

Berzish, Murphy

Bacci, Giovanni
Baumeister, Jan

Blicha, Martin
Balasubramanian, A. R.
Belo Lourenco, Claudio
Boker, Udi

Barbosa, Haniel
Bentkamp, Alexander
Bonneland, Frederik M.
Barwell, Adam

Berger, Jana

Brain, Martin
Castellano, Ezequiel
Chen, Mingshuai
Coenen, Norine
Castro-Pérez, David
Chida, Nariyoshi
Cogumbreiro, Tiago
Cetinkaya, Ahmet
Chipara, Octav

Correas Fernandez, Jesus
Cheang, Kevin

Dai, Gaoyang

Dureja, Rohit

De Masellis, Riccardo
Doveri, Kyveli
Eberhart, Clovis
Eiers, William

Esen, Zafer

Ebrahimi, Masoud
Farzan, Azadeh

Feng, Yuan

Fleury, Mathias
Fedyukovich, Grigory
Ferraiuolo, Andrew
Gardy, Patrick
Godefroid, Patrice
Graham-Lengrand, Stéphane
Gehani, Ashish
Gomez-Zamalloa, Miguel
Grumberg, Orna
Genaim, Samir

Goorden, Martijn

Guan, Ji

Georgiou, Pamina
Gordillo, Pablo

Guha, Shibashis
Giacobbe, Mirco

Graf, Susanne

Gupta, Ashutosh

Giesl, Jirgen

Habermehl, Peter
Helfrich, Martin
Huang, Chengchao
Hadzic, Vedad
Hofmann, Jana
Huber, Nikolaus
Hark, Marcel

Holik, Lukas
Hyvirinen, Antti
Hecking-Harbusch, Jesko
Hozzova, Petra
Irfan, Ahmed
Isabel, Miguel
Jaber, Nouraldin
Jha, Susmit
Jovanovi¢, Dejan
Jensen, Mathias Claus
Jiang, Xu

Junges, Sebastian
Jensen, Peter Gjol
Kadron, Burak
Klikovits, Stefan
Koenighofer, Bettina
Kempa, Brian
Klinkenberg, Lutz
Kremer, Gereon
Kheterpal, Nishant
Kliippelholz, Sascha
Kura, Satoshi

Kim, Edward

La Malfa, Emanuele
Li, Jianlin

Lin, Shaokai
Lachnitt, Hanna

Li, Yangjia

Lorber, Florian
Larraz, Daniel

Li, Yong

Lukina, Anna
Lathouwers, Sophie
Limperg, Jannis
Luppen, Zachary
Lee, Sang-Hwa
Maderbacher, Benedikt
Merayo, Alicia
Mora, Federico

Organization

Madnani, Khushraj
Metzger, Niklas
Mueller, Peter
Mallik, Kaushik
Michelmore, Rhiannon
Mundkur, Prashanth
Mann, Makai
Mohageqi, Morteza
Murali, Vishnu
Martin-Martin, Enrique
Monti, Raul

Mbohle, Sibylle
Mazzucato, Denis
Moosbrugger, Marcel
Nagisetty, Vineel
Nenzi, Laura

Noll, Thomas
Narodytska, Nina
Niksi¢, Filip
Nummelin, Visa
Nejati, Saeed
Otoni, Rodrigo
Ozdemir, Alex
Ozkan, Burcu
Overbeek, Roy
Pant, Yash Vardhan
Perez, Mateo
Polgreen, Elizabeth
Passing, Noemi
Philipoom, Jade
Poulsen, Danny Bogsted
Patane, Andrea
Pick, Lauren
Preiner, Mathias
Pereira, Mario
Piribauer, Jakob
Purser, David
Quatmann, Tim
Reynolds, Andrew
Rubbens, Bob
Ryan, Megan
Rowe, Reuben
Sato, Sota
Sebastiani, Roberto
Stanford, Caleb
Schupp, Stefan

Xiii

Xiv Organization

Shah, Ameesh
Stankovic, Miroslav
Schurr, Hans-Jorg
Solovyev, Alexey
Stein, Benno
Schwenger, Maximilian
Spel, Jip

Tabar, Asmae
Torfah, Hazem
Tsiskaridze, Nestan
Tekriwal, Mohit
Tschaikowski, Max
Turrini, Andrea
Tibo, Alessandro
Unno, Hiroshi
Vasconcelos, Vasco

Vediramana Krishnan, Hari Govind

Vukmirovi¢, Petar

Vazquez-Chanlatte, Marcell

Venkatesan, Abinaya
Waga, Masaki
Wang, Qisheng

Wilson, Amalee
Wagner, Christopher
Weil-Kennedy, Chana
Winkler, Tobias
Wang, Benjie
Welzel, Christoph
Wu, Haoze
Wang, Fang
Wicker, Matthew
Wu, Min

Wang, Peixin
Xue, Bai

Yu, Emily

Zelji¢, Aleksandar
Zhang, Linpeng
Zhou, Mengchu
Zhang, Hanwei
Zhao, Hengjun
Zuleger, Florian
Zhang, Hengjun
Zhou, Li

Contents — Part 11

Complexity and Termination

Learning Probabilistic Termination Proofs 3
Alessandro Abate, Mirco Giacobbe, and Diptarko Roy

Ghost Signals: Verifying Termination of Busy Waiting 27
Tobias Reinhard and Bart Jacobs

Reflections on Termination of Linear Loops. 51
Shaowei Zhu and Zachary Kincaid

Decision Tree Learning in CEGIS-Based Termination Analysis. 75
Satoshi Kura, Hiroshi Unno, and Ichiro Hasuo

ATLAS: Automated Amortised Complexity Analysis of Self-adjusting
Data Structures 99
Lorenz Leutgeb, Georg Moser, and Florian Zuleger

Decision Procedures and Solvers

Theory Exploration Powered by Deductive Synthesis. 125
Eytan Singher and Shachar Itzhaky

CoqQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver. ... 149
Xiaomu Shi, Yu-Fu Fu, Jiaxiang Liu, Ming-Hsien Tsai,
Bow-Yaw Wang, and Bo-Yin Yang

Porous Invariants 172
Engel Lefaucheux, Joél Ouaknine, David Purser, and James Worrell

JavaSMT3: Interacting with SMT SolversinJava.................... 195
Daniel Baier, Dirk Beyer, and Karlheinz Friedberger

Efficient SMT-Based Analysis of Failure Propagation 209
Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires,
Alberto Griggio, Martin Jonds, and Greg Kimberly

ddSMT 2.0: Better Delta Debugging for the SMT-LIBv2 Language
and Friends e 231
Gereon Kremer, Aina Niemetz, and Mathias Preiner

Xvi Contents — Part II

Learning Union of Integer Hypercubes with Queries:
(with Applications to Monadic Decomposition). 243
Oliver Markgraf, Daniel Stan, and Anthony W. Lin

Interpolation and Model Checking for Nonlinear Arithmetic. 266
Dejan Jovanovi¢ and Bruno Dutertre

An SMT Solver for Regular Expressions and Linear Arithmetic

over String Length L 289
Murphy Berzish, Mitjia Kulczynski, Federico Mora, Florin Manea,
Joel D. Day, Dirk Nowotka, and Vijay Ganesh

Counting Minimal Unsatisfiable Subsets 313
Jaroslav Bendik and Kuldeep S. Meel

Sound Verification Procedures for Temporal Properties

of Infinite-State Systems 337
Quentin Peyras, Jean-Paul Bodeveix, Julien Brunel,
and David Chemouil

Hardware and Model Checking

Progress in Certifying Hardware Model Checking Results 363
Emily Yu, Armin Biere, and Keijo Heljanko

Model-Checking Structured Context-Free Languages. 387
Michele Chiari, Dino Mandrioli, and Matteo Pradella

Model Checking w-Regular Properties with Decoupled Search 411
Daniel Gnad, Jan Eisenhut, Alberto Lluch Lafuente, and Jorg Hoffmann

AIGEN: Random Generation of Symbolic Transition Systems 435
Swen Jacobs and Mouhammad Sakr

GPU Acceleration of Bounded Model Checking with ParaFROST. 447
Muhammad Osama and Anton Wijs

Pono: A Flexible and Extensible SMT-Based Model Checker 461
Makai Mann, Ahmed Irfan, Florian Lonsing, Yahan Yang,
Hongce Zhang, Kristopher Brown, Aarti Gupta, and Clark Barrett

Logical Foundations

Towards a Trustworthy Semantics-Based Language Framework via
Proof Generation. 477
Xiaohong Chen, Zhengyao Lin, Minh-Thai Trinh, and Grigore Rosu

Contents — Part II Xvii

Foundations of Fine-Grained Explainability 500
Sylvain Hallé and Hugo Tremblay

Latticed k-Induction with an Application to Probabilistic Programs 524
Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, Christoph Matheja, and Philipp Schroer

Stochastic Systems

Runtime Monitors for Markov Decision Processes. 553
Sebastian Junges, Hazem Torfah, and Sanjit A. Seshia

Model Checking Finite-Horizon Markov Chains

with Probabilistic Inference 577
Steven Holtzen, Sebastian Junges, Marcell Vazquez-Chanlatte,
Todd Millstein, Sanjit A. Seshia, and Guy Van den Broeck

Enforcing Almost-Sure Reachability in POMDPs 602
Sebastian Junges, Nils Jansen, and Sanjit A. Seshia

Rigorous Roundoff Error Analysis of Probabilistic

Floating-Point Computations.« ..ttt 626
George Constantinides, Fredrik Dahlqvist, Zvonimir Rakamaric,
and Rocco Salvia

Model-Free Reinforcement Learning for Branching Markov Decision

Processes . . . o 651
Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi,
Ashutosh Trivedi, and Dominik Wojtczak

Software Verification

Cameleer: A Deductive Verification Tool for OCaml. 677
Mario Pereira and Antonio Ravara

LLMC: Verifying High-Performance Software 690
Freark 1. van der Berg

Formally Validating a Practical Verification Condition Generator 704
Gaurav Parthasarathy, Peter Miiller, and Alexander J. Summers

Automatic Generation and Validation of Instruction Encoders and Decoders. . 728
Xiangzhe Xu, Jinhua Wu, Yuting Wang, Zhenguo Yin, and Pengfei Li

An SMT Encoding of LLVM’s Memory Model for Bounded
Translation Validation 752
Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

Xviil Contents — Part 11

Automatically Tailoring Abstract Interpretation to Custom

Usage Scenariosot 777
Muhammad Numair Mansur, Benjamin Mariano, Maria Christakis,
Jorge A. Navas, and Valentin Wiistholz

Functional Correctness of C Implementations of Dijkstra’s, Kruskal’s,
and Prim’s Algorithms. 801
Anshuman Mohan, Wei Xiang Leow, and Aquinas Hobor

Gillian, Part II: Real-World Verification for JavaScript and C. 827
Petar Maksimovié, Sacha-Elie Ayoun, José Fragoso Santos,
and Philippa Gardner

Debugging Network Reachability with Blocked Paths 851
S. Bayless, J. Backes, D. DaCosta, B. F. Jones, N. Launchbury,
P. Trentin, K. Jewell, S. Joshi, M. Q. Zeng, and N. Mathews

Lower-Bound Synthesis Using Loop Specialization and Max-SMT 863
Elvira Albert, Samir Genaim, Enrique Martin-Martin, Alicia Merayo,
and Albert Rubio

Fast Computation of Strong Control Dependencies 887
Marek Chalupa, David Klaska, Jan Strejcek, and Lukas” Tomovic

Dirry: Inductive Reasoning of Array Programs Using
Difference Invariants L 911
Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat

Author Index e 937

Contents — Part 1

Invited Papers

NNREeraIR: Constraint-Based Repair of Neural Network Classifiers 3
Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller,
and Corina S. Pdsareanu

Balancing Automation and Control for Formal Verification
Of MICTOPIOCESSOLS . . o . v v ottt e et e e e e e e e e e e e e e e 26
Shilpi Goel, Anna Slobodova, Rob Sumners, and Sol Swords

Algebraic Program Analysis. 46
Zachary Kincaid, Thomas Reps, and John Cyphert

Programmable Program Synthesis 84
Loris D’Antoni, Qinheping Hu, Jinwoo Kim, and Thomas Reps

Deductive Synthesis of Programs with Pointers: Techniques, Challenges,
Opportunities: (Invited Paper). 110
Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe,
and Ilya Sergey

Al Verification

DNNV: A Framework for Deep Neural Network Verification. 137
David Shriver, Sebastian Elbaum, and Matthew B. Dwyer

Robustness Verification of Quantum Classifiers 151
Ji Guan, Wang Fang, and Mingsheng Ying

BDD4BNN: A BDD-Based Quantitative Analysis Framework
for Binarized Neural Networks 175
Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, and Taolue Chen

Automated Safety Verification of Programs Invoking Neural Networks 201
Maria Christakis, Hasan Ferit Eniser, Holger Hermanns,
Jorg Hoffmann, Yugesh Kothari, Jianlin Li, Jorge A. Navas,
and Valentin Wiistholz

Scalable Polyhedral Verification of Recurrent Neural Networks 225
Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh,
Andrei Dan, and Martin Vechev

XX Contents — Part 1

Verisig 2.0: Verification of Neural Network Controllers Using Taylor

Model Preconditioning. 249
Radoslav Ivanov, Taylor Carpenter, James Weimer, Rajeev Alur,
George Pappas, and Insup Lee

Robustness Verification of Semantic Segmentation Neural Networks Using

Relaxed Reachability. 263
Hoang-Dung Tran, Neelanjana Pal, Patrick Musau,
Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang,
Stanley Bak, and Taylor T. Johnson

PEREGRINN: Penalized-Relaxation Greedy Neural Network Verifier 287
Haitham Khedr, James Ferlez, and Yasser Shoukry

Concurrency and Blockchain

Isla: Integrating Full-Scale ISA Semantics and Axiomatic

Concurrency Models 303
Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte,
and Peter Sewell

Summing up Smart Transitions.t 317
Neta Elad, Sophie Rain, Neil Immerman, Laura Kovdcs,
and Mooly Sagiv

Stateless Model Checking Under a Reads-Value-From Equivalence. 341
Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak,
Andreas Pavilogiannis, and Viktor Toman

Gobra: Modular Specification and Verification of Go Programs 367
Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn,
Jodo C. Pereira, and Peter Miiller

Andrew Johnson and Thomas Wahl

Checking Data-Race Freedom of GPU Kernels, Compositionally 403
Tiago Cogumbreiro, Julien Lange, Dennis Liew Zhen Rong,
and Hannah Zicarelli

GENMC: A Model Checker for Weak Memory Models 427
Michalis Kokologiannakis and Viktor Vafeiadis

Contents — Part [

Hybrid and Cyber-Physical Systems

Synthesizing Invariant Barrier Certificates via

Difference-of-Convex Programming.

Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan,
and Joost-Pieter Katoen

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear

Systems via Barrier Certificate Generation

Zhengfeng Yang, Yidan Zhang, Wang Lin, Xia Zeng, Xiaochao Tang,
Zhenbing Zeng, and Zhiming Liu

HyBrIDSYNCHAADL: Modeling and Formal Analysis of Virtually

Synchronous CPSs in AADL

Jaehun Lee, Sharon Kim, Kyungmin Bae, and Peter Csaba Olveczky

Computing Bottom SCCs Symbolically Using Transition

Guided Reduction

Nikola Benes, Lubos Brim, Samuel Pastva, and David gafrdnek

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems

Sergio Mover, Alessandro Cimatti, Alberto Griggio, Ahmed Irfan,
and Stefano Tonetta

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability

Etienne André

Formally Verified Switching Logic for Recoverability

of Aircraft Controller.

Ratan Lal, Aaron McKinnis, Dustin Hauptman, Shawn Keshmiri,
and Pavithra Prabhakar

SceneChecker: Boosting Scenario Verification Using Symmetry

ADSITACHIONS o e

Hussein Sibai, Yangge Li, and Sayan Mitra

Effective Hybrid System Falsification Using Monte Carlo Tree Search

Guided by QB-Robustness

Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo,
and Jianjun Zhao

Fast Zone-Based Algorithms for Reachability in Pushdown

Timed Automata. e

S. Akshay, Paul Gastin, and Karthik R. Prakash

XXi

595

XXil Contents — Part 1

Security

Verified Cryptographic Code for Everybody. 645
Brett Boston, Samuel Breese, Joey Dodds, Mike Dodds, Brian Huffman,
Adam Petcher, and Andrei Stefanescu

Not All Bugs Are Created Equal, But Robust Reachability Can
Tell the Difference e 669
Guillaume Girol, Benjamin Farinier, and Sébastien Bardin

A Temporal Logic for Asynchronous Hyperproperties 694
Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour,
Bernd Finkbeiner, and César Sanchez

Product Programs in the Wild: Retrofitting Program Verifiers to Check
Information Flow Security 718
Marco Eilers, Severin Meier, and Peter Miiller

Constraint-Based Relational Verification 742
Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

Pre-deployment Security Assessment for Cloud Services Through
Semantic Reasoning 767
Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk

Synthesis

Synthesis with Asymptotic Resource Bounds 783
Qinheping Hu, John Cyphert, Loris D ’Antoni, and Thomas Reps

Program Sketching by Automatically Generating Mocks from Tests 808
Nate F. F. Bragg, Jeffrey S. Foster, Cody Roux,
and Armando Solar-Lezama

Counterexample-Guided Partial Bounding for Recursive
Function Synthesis 832
Azadeh Farzan and Victor Nicolet

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 856
Roman Andriushchenko, Milan Ceska, Sebastian Junges,
Joost-Pieter Katoen, and Simon Stupinsky

Adapting Behaviors via Reactive Synthesis 870
Gal Amram, Suguman Bansal, Dror Fried, Lucas Martinelli Tabajara,
Moshe Y. Vardi, and Gera Weiss

Contents — Part 1 XXiii

Causality-Based Game Solving. 894
Christel Baier, Norine Coenen, Bernd Finkbeiner, Florian Funke,
Simon Jantsch, and Julian Siber

Author Index e 919

http://dx.doi.org/10.1007/978-3-030-81685-8_1

Complexity and Termination

®

Check for
updates

Learning Probabilistic Termination Proofs

Alessandro Abate®™) Mirco Giacobbe®),
and Diptarko Roy®)

University of Oxford, Oxford, UK
{alessandro.abate,mirco.giacobbe,
diptarko.roy}@cs.ox.ac.uk

Abstract. We present the first machine learning approach to the ter-
mination analysis of probabilistic programs. Ranking supermartingales
(RSMs) prove that probabilistic programs halt, in expectation, within
a finite number of steps. While previously RSMs were directly synthe-
sised from source code, our method learns them from sampled execution
traces. We introduce the neural ranking supermartingale: we let a neu-
ral network fit an RSM over execution traces and then we verify it over
the source code using satisfiability modulo theories (SMT); if the latter
step produces a counterexample, we generate from it new sample traces
and repeat learning in a counterexample-guided inductive synthesis loop,
until the SMT solver confirms the validity of the RSM. The result is thus
a sound witness of probabilistic termination. Our learning strategy is
agnostic to the source code and its verification counterpart supports the
widest range of probabilistic single-loop programs that any existing tool
can handle to date. We demonstrate the efficacy of our method over a
range of benchmarks that include linear and polynomial programs with
discrete, continuous, state-dependent, multi-variate, hierarchical distri-
butions, and distributions with undefined moments.

1 Introduction

Probabilistic programs are programs whose execution is affected by random vari-
ables [17,19,23,29,36]. Randomness in programs may emerge from numerous
sources, such as uncertain external inputs, hardware random number generators,
or the (probabilistic) abstraction of pseudo-random generators, and is intrinsic
in quantum programs [34]. Notable exemplars are randomised algorithms, cryp-
tographic protocols, simulations of stochastic processes, and Bayesian inference
[7,33]. Verification questions for probabilistic programs require reasoning about
the probabilistic nature of their executions in order to appropriately characterise
properties of interest. For instance, consider the following question, correspond-
ing to the program in Fig. 1: will an ambitious marble collector eventually gather
any arbitrarily large amounts of red and blue marbles? Intuitively, the question
has an affirmative answer regardless of the initially established target amounts,
since there is always a chance of collecting a marble of either color. Notice that,
if the probabilistic choice is replaced with non-determinism, as often happens
in software verification, an adversary may exclusively draw one color of marble
© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 326, 2021.
https://doi.org/10.1007/978-3-030-81688-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_1

4 A. Abate et al.

and make the program run forever. The question that matches the original intu-
ition is whether the expected number of steps to termination is finite; this is the
positive almost-sure termination (PAST) question [8,10,13,19,27].

1 while (red > 0 || blue > 0) do
2 p ~ Bernoulli(.01);

3 if p == 1 then

4 red = red - 1

5 else

6 blue = blue - 1

7 fi

8 od

Fig. 1. The ambitious marble collector (the variables red and blue are initialised non-
deterministically).

Probabilistic termination analysis is typically mechanised through the auto-
mated synthesis of ranking supermartingales (RSMs), which are functions of the
program variables whose value (i) decreases in expectation by a discrete amount
across every loop iteration and (ii) is always bounded from below; an RSM
formally witnesses that a program is PAST [10,13]. Early techniques for discov-
ering RSMs reduced the synthesis problem from the source code of the program
into constraint solving [10]. These methods have lent themselves to various gen-
eralisations, including polynomial programs, programs with non-determinism,
lexicographic and modular termination arguments, and persistence properties
[2,14-16,20,25]. Recently, for special classes of probabilistic programs or term
rewriting systems, novel automated proof techniques that leverage computer
algebra systems and satisfiability modulo theories (SMT) have been introduced
[5,6,38,39,41]. All the above methods are sound and, under specific assumptions,
complete; they represent the state of the art for the class of programs they have
been designed for. However, their assumptions are often too restrictive for the
analysis of many simple programs. In particular, to the best of our knowledge,
none can identify an RSM for the program in Fig. 1. For this simple program, it
is easy to argue that the expected output of the neural network depicted in Fig. 2
decreases after every iteration of the loop and that it is always non-negative (see
Ex. 1). As such, this neural network is an appropriate RSM for the program.

ReLU

red — 1

1 ReLU 1
blue —

Fig. 2. A neural ranking supermartingale for the program in Fig. 1.

Learning Probabilistic Termination Proofs 5

We present a novel method for discovering RSMs using machine learning
together with SMT solving. We introduce the neural ranking supermartingale
(NRSM) model, which lets a neural network mimic a supermartingale over sam-
pled execution traces from a program. We train an NRSM using standard optimi-
sation algorithms over a loss function that makes the neural network decrease—
in average—across sampled iterations. We phrase the certification problem into
that of computing a counterexample for the NRSM. To do so, we encode the
neural network together with the expected value of the program variables; then,
we use an SMT solver for verifying that the expected output of the network
decreases along every execution. If the solver falsifies the NRSM, then it pro-
vides a counterexample that we use to guide a resampling of the execution
traces; with this new data we retrain the neural network and repeat verifica-
tion in a counterexample-guided inductive synthesis (CEGIS) fashion, until the
SMT solver determines that no counterexample exists [4,44]. In the latter case,
the solver has certified the generated NRSM; our method thus produces a sound
PAST proof or runs indefinitely. Our procedure does not return for programs that
are not PAST and may, in general, not return for some PAST instances. How-
ever, we experimentally demonstrate that, in practice, our method succeeds over
a broad range of PAST benchmarks within a few CEGIS iterations. Previously,
machine learning has been applied to the termination analysis of deterministic
programs and to the stability analysis of dynamical systems [1,12,21,24,28,30~-
32,42,43,45]; our method is the first machine learning approach for probabilistic
termination analysis.

Our approach builds upon two key observations. First, the average of expres-
sions along execution traces statistically approximates their true expected value.
Thanks to this, we obtain a machine learning model for guessing RSM candidates
that only requires execution traces and is thus agnostic to the source code. Sec-
ond, solving the problem of checking an RSM is simpler than solving the entire
termination analysis problem. Reasoning about source code is entirely delegated
to the checking phase which, as such, supports programs that are out of reach
to the available probabilistic termination analysers.

We experimentally demonstrate that our method is effective over many pro-
grams with linear and polynomial expressions, with both discrete and continuous
distributions. This includes joint distributions, state-dependent distributions,
distributions whose parameters are in turn random (hierarchical models), and
distributions with undefined moments (e.g., the Cauchy distribution). We com-
pare our method with a tool based on Farkas’ lemma and with the tools AMBER
and ABSYNTH [2,39,41]; whilst our software prototype is slower than these alter-
natives, it covers the widest range of benchmark single-loop programs.

Summarising, our contribution is fivefold. First, we present the first machine
learning method for the termination analysis of probabilistic programs. Second,
we introduce a loss function for training neural networks to behave as ranking
supermartingales over execution traces. Third, we show an approach to verify
the validity of ranking supermartingales using SMT solving, which applies to
a wide variety of single-loop probabilistic programs. Fourth, we experimentally

6 A. Abate et al.

demonstrate over multiple baselines and newly-defined benchmarks the practical
efficacy of our method. Fifth, we built a software prototype for evaluating our
method.

x € Vars (variables)
NelRr (numerals)
Opy =+ | - | * [&& | || |<|<=|==]... (binary operators)
E:=z|N|Eopy, E|-E (arithmetic expressions)
D ::=Bernoulli(E) | Gaussian(E, E) |... (probability distributions)
B:=DBop, B|!B|FE op, E | true | false (Boolean expressions)
C ::= skip (commands)
|x=FE (deterministic assignment)
|~ D (probabilistic assignment)

|C; C (sequential composition)

| if B then C else C fi (conditional composition)

Fig. 3. Syntax of loop-free probabilistic programs.

2 Termination Analysis of Probabilistic Programs

We treat the termination analysis of single-loop probabilistic programs. We con-
sider an imperative language that includes C-like arithmetic and Boolean expres-
sions, and sequential and conditional composition of commands [13,17,19,23].

Syntaz. A grammar for this language is shown in Fig. 3. We analyse single-loop
programs of the form
while G do
U
od

where the loop guard G is a Boolean expression and the update statement U is
a command. Variables are real-valued and can be either assigned to arithmetic
expressions using the usual = operator, or sampled from probability distributions
using the ~ operator. Probability distributions, which can be either discrete or
continuous, take not only parameters that are constant, and thus known at
compile time, but also parameters that depend on other variables, and thus
determined only at run time. In other words, distributions may depend on the
current state of the program, which is a random variable. Also, they may depend
on other random variables; as such, distributions may be multi-variate, resulting
from models with coupled and hierarchically-structured variables.

Learning Probabilistic Termination Proofs 7

Semantics. The operational semantics of a probabilistic program induces a prob-
ability space over runs, together with a stochastic process [13]. A state of the
process is an element of IR™ with n = |Vars|, that is, a valuation of the variables
in the program. The space of outcomes {2, of a program is the set of runs. A
run is a possibly infinite sequence of variable valuations (taken at the beginning
of every loop iteration). This comes with a o-algebra F of measurable subsets of
vun- Initial states are chosen non-deterministically and, thereafter, the process
is purely probabilistic. Every initial state o € IR"™ determines a unique prob-
ability measure P(*o): F — [0,1], namely a probability measure conditional on

the state 9. The associated stochastic process is X (®0) = {X,f(m‘))}te]N7 where
Xt(x‘)) is a random vector representing the state at the ¢-th step, initialised as
X(()wo) = 2. Given an initial condition zo and a solution process X (o). the asso-
ciated termination time is a random variable T(*0) denoting the length of an
execution, which takes values in INU {oo}.

Positive Almost-Sure Termination. Runs are probabilistic and thus also the
notion of termination requires a quantitative semantics. The termination ques-
tion is generalised to the notions of almost-sure and positive almost-sure termina-
tion. Almost-sure termination (AST) indicates whether the joint probability of
all runs that do not terminate is zero; positive almost-sure termination (PAST),
which is stronger, indicates whether the expected number of steps to termination
is finite. Formally, a probabilistic program terminates positively almost-surely
if E[T(*0)] < oo for all zop € IR™. Notably, this implies that the program also
terminates almost-surely, that is, P[T(*0) < co] = 1 for all 2 € IR™. We provide
conditions ensuring that probabilistic programs are PAST and, consequently,
that they are AST. Notice that the converse may not be true, that is, there
exist programs that are AST but not PAST. Our method addresses the PAST
question only, by building upon the theory of ranking supermartingales [10].

Ranking Supermartingales. A scalar stochastic process {M;} is an RSM if, for
some € > 0 and lower bound K € R,

E[Mpy1 | My =my, ..., Mo =mo| <my — ¢ (1)

and M; > K for all ¢t > 0. In other words, this a process whose values are
bounded from below and whose expected value decreases by a discrete amount
at each step of the program. We prove that a program is PAST by mapping
X (@) into an RSM. Our goal is finding a function 7: R — IR such that, for
every initial condition xg, it satisfies the following two properties:

(i) E[n(Xt(f_”l)) | X" = 2] < n(x) — ¢ for all z € T and

(ii) n(z) > K for all z € I,

where I C IR" is some sufficiently strong loop invariant that can be the loop
guard or, possibly, a stronger condition. Function 1 maps the entire stochastic
process into an RSM. For this reason, we call n an RSM for the program.

8 A. Abate et al.

Input: Single-loop probabilistic program (G, U),
Initial state zo € R™
Output: Transition samples S C IR" x P(IR"™)

18« 0

2 P —{xzo};

3 for i« 1 to k do // k = path length
4 P — P,

5 P —

6 p < pick arbitrary element from P;

7 if eval(G,p) = True then

8 for j — 1 to m do // m = branching factor
9 L P’ — P'U{exec(U,p)}
10 S — Su{(p,P};

11 return S
Algorithm 1: Interpreter

Ezample 1. Consider the ambitious marble collector problem from Fig.1. An
RSM for this program is a function 1 mapping variables red and blue to IR.
Rephrasing condition (i) over this program, 7 is required to satisfy

0.01 - n(red — 1,blue) + 0.99 - n(red,blue — 1) < n(red,blue) —¢, (2)

for all red,blue € ZZ that satisfy red > 0V blue > 0, that is, the loop guard.
So, for example, function 7(red,blue) = red + blue satisfies this condition;
however, it may take any negative value over the arguments red and blue such
that red > 0V blue > 0, thus violating condition (ii). By contrast, the neural
network in Fig.2 succeeds at satisfying both conditions. In fact, the network
realises function 7n(red,blue) = max{red,0} + max{blue,0}, which satisfies
Eq. (2) and is bounded from below by zero. O

3 Training Neural Ranking Supermartingales

Our framework synthesises RSMs by learning from program execution traces. We
define a loss function, that measures the number of sampled program transitions
that do not satisfy the RSM conditions. Applying gradient-descent optimisa-
tion to the loss function guides the parameters to values at which the candi-
date’s value decreases, on average, across sampled program transitions. Since
the learner does not require the underlying program (only execution traces),
the learner is agnostic to the structure of program expressions, and the cost of
evaluating the loss function does not scale with the size of the program.

A dataset of sampled transitions is produced using an instrumented program
interpreter (Algorithm 1). At a program state p, the interpreter runs the loop
body m times to sample successor states P’, where m is a branching factor hyper-
parameter, before resuming execution from an arbitrarily chosen successor. The
dataset S consists of the union of pairs (p, P’) generated by the interpreter.

Learning Probabilistic Termination Proofs 9

Learnable parameters Sum of f

Fig. 4. Neural ranking supermartingale architecture.

The loss function is used to optimise the parameters of an NRSM, whose
architecture is shown in Fig.4. This is a neural network with n inputs, one
output neuron, and one hidden layer. The hidden layer has h neurons, each of
which applies an activation function f to a weighted sum of its inputs. In our
experiments, the activation function f is either f(x) = 22 or f(z) = ReLU(x),
where ReLU(z) = max{z,0}.

Therefore, we employ either of the two following functional templates, defined
over the learnable parameters w; ; and b;:

— Sum of ReLU (SOR):

h n
77(3;‘1,...,33”) = ZRGLU Zwi,jxj +b; |; (3)
i=1 =1

— Sum of Squares (SOS):

h
T]($1,...,$n) :Z Zwi,jxj +bl . (4)

These choices of activation mean that our NRSMs are restricted to non-negative
outputs, and therefore satisfy condition (ii) by construction. The learner there-
fore needs to find parameters that satisfy condition (i), which requires n to
decrease in expectation by at least some positive constant € > 0.

The role of the loss function is to allow the learner parameters to be optimised
such that the NRSM decreases, on average, across sampled transitions. That is,
the loss function evaluates the number of sampled transitions for which the
NRSM does not satisfy the RSM condition (i), and the lower its value, the more
the neural network behaves like an RSM.

10 A. Abate et al.

Concretely, the loss associated with a state p and its successors P’ is:

L(p, P") = softplus (Ey ~p/[n(p")] — 11 (p) +€), (5)

where softplus(z) = In(1 + €%), and E,p/[n(p’)] is the average of n over the
sampled successor states p’ from P’.
We then train an NRSM by solving the following optimisation problem:

rninL Z L(p, P, (6)

|S| (p,P")eS

which aims to minimise the average loss over all sampled transitions in the
dataset .S, over the trainable weights w1 1,...,ws,, € R and biases by,...,b, €
IR. This objective is non-convex and non-linear, and we resort to gradient-based
optimisation (see Sect. 6).

The softplus in Eq. (5) forces the parameters to satisfy condition (i) uni-
formly across all sampled transitions in the dataset, rather than decreasing by
a large amount in expectation over some transitions at the expense of failing to
decrease sufficiently quickly for others. Furthermore, for NRSMs of SOR, form we
replace the ReLLU activation function by softplus, to help gradient descent con-
verge faster. Softplus approximates the ReLLU function, and has the same asymp-
totic behaviour, but results in an NRSM that is differentiable w.r.t. the network
parameters at all inputs, unlike ReLU [22, p.193]. However, since softplus is a
transcendental function, we revert back to using a simpler ReLU activation when
verifying an SOR candidate.

Probabilistic program G,U
|

Transition

samples S NRSM 7
Interpreter Learner Verifier —— PAST

Counterexample Zcex

Fig. 5. CEGIS architecture for the adversarial training of NRSM.

A CEGIS loop integrates the learner and verifier (Fig.5). The dataset S
sampled by the interpreter is used to train an NRSM candidate i according to
Eq. (6). The verifier checks whether 7 satisfies condition (i), concluding either
that the program is PAST, or producing a counterexample program state Zcex
for which 7 does not satisfy (i). The interpreter generates new traces, starting
at Teex, forcing it to explore parts of the state space over which the NRSM fails
to decrease sufficiently in expectation.

Learning Probabilistic Termination Proofs 11

Probabilistic a
program ——{ Encode - l

(G,U) U PAST

— E[7] -
Marginalise Verify
N -
— Lcex
NRSM n —— Round il T

Fig. 6. Verifier architecture.

4 Verifying Ranking Supermartingales by SMT Solving

To verify an NRSM we must check that it decreases in expectation by at least
some constant (condition (i)). Condition (ii) is satisfied by construction because
the network’s output is non-negative for every input, leaving only condition (i)
to verify. The architecture of the verifier is depicted in Fig. 6. First, a program
(G,U) is translated into an equivalent logical formulation denoted by G and
U (‘Encode’ block), which are used to construct a closed-form term E[f] for
the NRSM’s expected value at the end of the loop body (‘Marginalise’ block).
Secondly, given an NRSM 7, its parameters are rounded and encoded as a logical
term 7 (‘Round’ block). Then, the satisfiability of the following formula is decided
using SMT solving:

Gyr...xn) NE[f)(x1 ... 20) > 7j(z1...2pn) — €. (7)

This is the dual satisfiability problem for the validity problem associated with
condition (i) on page 5. If Eq. (7) is unsatisfiable, then 7 is a valid RSM and we
conclude the program is PAST. Otherwise, the solver yields a counterexample
state Teex € IR".

The rounding strategy (‘Round’ block) provides multiple candidates to the
verifier by adding i.i.d. noise to parameters and rounding them to various preci-
sions. Setting parameters that are numerically very small to zero is useful since
learning that a parameter should be exactly zero could require an unbounded
number of samples; rounding provides a pragmatic way of making this work in
practice. If none of the generated candidates are valid NRSMs, all counterexam-
ples are passed back to the interpreter which generates more transition samples
for the learner (Fig.5).

x € Vars (variables)
NeclRR (numerals)
Tuo=xz|N|rt+7|7=—7]... (terms)
pu=T | d|oNP|dVS|T<T|T=T]... (formulae)

Fig. 7. Quantifier-free first-order logic formulae.

12 A. Abate et al.

Notice that, if a program’s guard predicate is not strong enough to allow a
valid RSM to be verified as such, the CEGIS loop will run indefinitely. In general,
stronger supporting loop invariants may need to be provided.

4.1 From Programs to Symbolic Store Trees

We now introduce a translation from a loop-free probabilistic program to a
symbolic store tree (Fig.8), a datastructure representing the distribution over
program states at the end of a loop iteration as a function of the variable val-
uation at its start. Marginalising out the probabilistic choices made in the loop
yields the NRSM expectation E[7].

m =T | Bernoulli(7) | Gaussian(7,7) | ... (probabilistic terms)
Y=Az1—=m,...,zn = T} (symbolic store)
o ::=node(¢,0,0) | X (symbolic store tree)

Fig. 8. Symbolic store tree.

This requires a form of symbolic execution. We represent program states
symbolically using symbolic stores, denoted X' (Fig. 8), which map program vari-
ables to probabilistic terms. A probabilistic term 7 can be either a first-order
logic term (Fig.7) representing an arithmetic expression, or a placeholder for a
probability distribution whose parameters are terms (allowing them to be func-
tions of the program state). Finally, symbolic store trees o (Fig.8) represent the
set of control-flow paths through the loop body, arising from if-statements; it is
a binary tree with symbolic stores at the leaves, and internal nodes labelled by
logical formulae over program variables.

enc(X,x) = X(x)
enc(X, —0) = —enc(X,0) enc(X,! O) = —enc(X, O)
enc(X, 01 op, O2) = enc(X,01) enc(X,01)

e

(

(

(

nc(X, skip) = X

enc(X,z = E) = X[z’ + enc(Z, E)]
(2 01] Cz) = enc(enc(Z Cl) 02)

enc(X,if B then C else C fi) = node(enc(X, B),enc(X, C1), enc(X, C2))
(
(&2
(

enc

enc(node(¢, o1,02),C) = node (¢, enc(o1,C), enc(oz, C))

,x ~ Bernoulli(FE)) = X[z’ + v, v + Bernoulli(enc(X, E))]
enc(X,x ~ Gaussian(E1, Fs)) = X[z’ + v, v > Gaussian(enc(X, E1), enc(X, E2))]

enc

where every ~ command creates a fresh v variable.

Fig. 9. Translation from a loop-free command to a symbolic store tree.

Learning Probabilistic Termination Proofs 13

Figure 9 defines a translation from an initial symbolic store tree and command
to a new symbolic store tree characterising the distribution over states after
executing the command. At the top level, we provide the command G (the loop
body) and the initial symbolic store {2} — z1,...,2z!, — xz,}, where primed
variables represent the variable valuation at the end of the iteration, whereas
unprimed variables represent the variable valuation at the beginning of the loop.

The first four cases of Fig.9 define the translation of arithmetic expressions
(to terms) and Boolean expressions (to formulae), by replacing program syntax
with the corresponding logical operators.

The next four cases define the translation of commands. skip leaves the
symbolic store unchanged. For deterministic assignments, the right hand side
of the assignment is translated in the current symbolic store and bound to the
variable. Sequential composition involves translating the first command, and
translating the second command in the resulting store tree. A conditional state-
ment creates a new node in the symbolic store tree that selects between the two
recursively-translated branches, based on the formula derived from the guard
predicate. These rules assume the store tree to be a leaf-level symbolic store,
because the next rule handles the case where the initial symbolic store tree
is a node. Finally, if the command is a probabilistic assignment, we translate
the parameters to terms, and bind the resulting probabilistic term to a freshly
generated symbol. This allows variables to be overwritten by multiple proba-
bilistic sampling operations in the body of the loop. The mapping of variables
to distributions in leaf-level stores defines the probability density over particular
probabilistic choices.

Example 2. Figure 10 is the store tree produced for the ambitious marble collec-
tor program (Fig. 1). Each leaf-level store in the program’s store tree corresponds
to a particular control-flow path through the loop body. The interpretation of a
symbolic store tree is that if we fix the outcomes of the probabilistic sampling
operations performed by the loop body, then the state of the variables at the
end of the iteration is determined by the predicates labelling the internal nodes.

v#1 v=1
L ‘
red +— red red — red — 1
blue’ — blue — 1 blue’ — blue
p=v p=v
v — Bernoulli(0.01) v — Bernoulli(0.01)

Fig. 10. A store tree for the program in Fig. 1.

14 A. Abate et al.

4.2 Marginalisation

To construct the closed-form logical term representing the NRSM’s expected
value at the end of an iteration, the probabilistic choices in the symbolic store
tree must be marginalised out. If the program is limited to discrete random
variables with finite support, we automatically marginalise the random choices
by enumeration (for both SOR- and SOS-form NRSMs), as illustrated by Ex. 3.

Example 3. The ambitious marble collector program of Fig. 1, yields the sym-
bolic store tree of Fig. 10. Suppose we want to marginalise the NRSM:

n(red,blue) = ReLU(w; 1 - red + wy 2 - blue + by)
+ ReLU(wg,1 - red + wa o - blue + ba) (8)

with respect to this symbolic store tree. We first apply the encoding of the NRSM
to each leaf-level symbolic store of Fig. 10, and enumerate the possible choices for
the probabilistic choices (which in this example is limited to v € {0,1}), using
the bindings of v to distributions in leaf-level stores to compute the probability
mass of each choice. After resolving the predicates for each choice of v, this
yields:

0.01 - p(red — 1,blue) + 0.99 - n(red, blue — 1). 9)

The term (9) is then provided as the value of the NRSM’s expectation to the
verifier. O

If the program samples from continuous distributions, we marginalise SOS-
form NRSMs (but not SOR-form NRSMs) by substituting symbolic moments
for a set of supported built-in distributions, including Gaussian, Multivari-
ateGaussian, and Exponential, though could include any distribution whose
closed-form symbolic moments are available. Example 4 provides an example.
This strategy is general enough to support a wide variety of programs, includ-
ing those of Sect.5. If a sampling distribution lacks symbolic moments, the
cumulative distribution function can also be utilised, which is illustrated in the
slicedcauchy case study (Fig.15).

Ezample 4. Consider an NRSM 7(x) = (wx + b)? and a symbolic store tree
node(p = 1,01,02) where 01 = {& — z + v,v — Exp(\),p — Bernoulli(3/4)}
and oo = {&# — x —v,v — Exp(\),p — Bernoulli(3/4)}. Exp(\) denotes
the exponential distribution with parameter A, with pdf denoted pgxpcrn) (v).
We apply 71 to each leaf-level symbolic store, and marginalise the probabilis-
tic choices. We marginalise p first by enumerating over its possible values, and
then marginalise v. There are no dependencies between the distributions in this
example, so the order in which they are marginalised does not matter.

/OOO (i”(ﬂ‘j +o) + in(m - U)) Pexpv) (v)dv. (10)

Learning Probabilistic Termination Proofs 15

The result of marginalisation is a closed-form expression for Eq. (10). Note that
since

n(x 4+ v) = w?? + 2(wz + b)wv + (wzr + b)? (11)
and fooo V" Prxp) (V)dv = %, we use linearity of integration to perform the
following simplification, by substituting expressions for the moments of v in
terms of the parameter \:

b 2w? 2wz + bw
/ n(x + v)Pexpny (v)dv = BVl + % + (wz + b)2, (12)
0

which is used to reduce Eq. (10) to a closed form. This is the method used to
perform marginalisation for several case studies, including crwalk, gaussrw and
expdistrw. O

Notably, our verifier requires the expected value of the RSM to be com-
puted (or soundly approximated) in closed form. We automate marginalisation
for discrete distributions of finite support, but require manual intervention for
continuous distributions. Nevertheless, our learning component is automated in
both cases. Characterising the space of programs with continuous distributions
that admit fully automated verification of an RSM is an open question.

5 Case Studies

Existing tools for synthesising RSMs reduce the problem to constraint-solving
[2,10,11,14], which can limit the generality of the synthesis framework. For
instance, methods that convert the RSM constraints into a linear program using
Farkas’ lemma can only handle programs with affine arithmetic, and can only
synthesise linear/affine (lexicographic) RSMs [2,10]. A second restriction of exist-
ing approaches is that they typically require the moments of distributions to be
compile-time constants. This rules out programs whose distributions are deter-
mined at runtime, such as hierarchical and state-dependent distributions. Since
the loss function of Eq. (6) only requires execution traces, our learner is agnostic
to the structure of program expressions, imposing minimal restrictions on the
kinds of expressions that can occur, or the kinds of distributions that can be
sampled from. This allows us to learn RSMs for a wider class of programs com-
pared to existing tools, as we will illustrate in this section using a number of
case studies.

5.1 Non-linear Program Expressions and NRSMs

Many simple programs do not admit linear or polynomial RSMs, such as Fig. 1.
Since the program cannot be encoded as a prob-solvable loop (due to the dis-
junctive guard predicate which cannot be replaced by a polynomial inequality),

16 A. Abate et al.

it cannot be handled by another recent tool, AMBER [39]. However, this program
admits the following piecewise-linear NRSM:

ReLU(0-red 4+ 1-blue + 11) + ReLU(1 - red + 0 - blue + 11), (13)

whose parameters are learnt by our method, within the first CEGIS iteration.

1 while (i <= 10 && s > 0) do

2 r ~ DiscreteUniform({-2, 2});
3 s =r + s *x i;

4 p ~ Bernoulli (3/4);

5 if (p == 1) then

6 i=1i+1

7 else

8 i=1i-1

9 fi

10 od

Fig. 11. Probabilistic factorial (probfact).

Similarly, we learn the piecewise-linear NRSM:
ReLU(-1-1+0-s4+12)+ReLU0-i4+0-s+9) (14)

for the program in Fig. 11, which contains a bilinear assignment (cf. multiplica-
tion of s and i on line 3), so this program is not supported by [2]. The conjunction
in the guard means it is not supported by AMBER, either.

1 while (x < 10) do

2 rho ~ ContinuousUniform(-0.5, 1);

3 covM = [[1, rhol, [rho, 111;

4 wl, w2 ~ MultivariateGaussian ([0, 0], covM);
5 x = x + power ((wl + w2), 2) - 2

6 od

Fig. 12. Random walk with correlated variables (crwalk).

5.2 Multivariate and Hierarchical Distributions

Figure 12 is a random walk that samples from a multivariate Gaussian distribu-
tion, with zero mean, unit variances, and correlation sampled uniformly in the
range [—%7 1}. The MultivariateGaussian of line 4 is an instance of a hierar-
chical distribution, having parameters that are random variables. This program
also contains a non-linear (polynomial) expression that updates the value of x.
For crwalk we learn an SOS-form NRSM:

(0.1-x —47.2)2, (15)

Learning Probabilistic Termination Proofs 17

proving this program is PAST. To verify this, the NRSM expectation is com-
puted via the symbolic moments of the multivariate Gaussian distribution, given
its covariance matrix (line 3), and then marginalising w.r.t. rho (again, using
the moments of the uniform distribution over [—%, 1]). Unfortunately, it is chal-
lenging to translate many simple programs containing hierarchical distributions
into ones that can be handled by existing tools. For instance, although it is
possible to simulate sampling from a bivariate Gaussian of arbitrary correla-
tion by sampling from independent standard Gaussian distributions, this would
involve computing a non-polynomial function of the correlation. Similarly, for
the program in Fig. 14 (further discussed below), if a variable is exponentially
distributed, X ~ Exponential(l), then £ ~ Exponential()), providing a way
of simulating an exponential distribution with arbitrary parameter \. However,
this again requires a non-polynomial program expression (i.e. the reciprocal of
A) when A is part of the program state and not a constant, and therefore out of
scope for methods that restrict program expressions to being linear/polynomial.

5.3 State-Dependent Distributions and Non-Linear Expectations

1 while (x < 0 && y < 0) do

2 sl ~ Gaussian(0, 1/4);

3 vx = min(2, max (0.1, vx + sl1));

4 s2 ~ Gaussian(0, 1/4);

5 vy = min(2, max(0.1, vx + s2));

6 s3 ~ Gaussian (0, 1/4);

7 rho = min(1, max(-1, rho + s3));

8 mean = [sqrt(l+power(x, 2)),sqrt(l+power(y, 2))1];
9 cov = rho * sqrt(vx * vy);

10 covM = [[vx cov], [cov vyll;

11 wl, w2 ~ MultivariateGaussian(mean, covM);
12 X = x + wl;

13 y =y + w2

14 od

Fig. 13. Gaussian random walk with time-varying and coupled noise (gaussrw).

Once we allow hierarchical distributions, it is natural to consider state-dependent
distributions, i.e. distributions whose parameters depend on the program state
rather than being sampled from other distributions. As an example, consider the
program in Fig. 13 (a 2-dimensional Gaussian random walk with state-dependent
moments). This is unsupported by existing tools because the mean of the Gaus-
sian is a non-polynomial function of the program state. However, after defining
the function v/1 + x2 by means of the following polynomial logical inequalities:

mu_x* =1+ x* (16)
mux > 1 (17)

18 A. Abate et al.

(similarly for mu_y), we express the expected value of an SOS-form NRSM in
terms of symbolic moments mu_x, etc. Since these moments are state-dependent,
we cannot marginalise them out as in the hierarchical case. Instead we perform
non-deterministic abstraction, providing inequalities % <vx,vy <2and —1<
rho < 1 as further verifier assumptions.

1 while (x < 10) do

2 s ~ Gaussian (0, 1);

3 lambda = min(10, max (1, lambda + s);
4 step ~ Exponential (lambda);

5 p ~ Bernoulli(3/4);

6 if (p == 1) then

7 X = x + step

8 else

9 X = X - step

10 fi

11 od

Fig. 14. State-dependent exponential random walk (expdistrw).

Even if program expressions are linear, the presence of state-dependent dis-
tributions can result in a non-linear verification problem, if the moments are
themselves non-linear functions of the program variables. For instance, the pro-
gram in Fig. 14 represents a 1-dimensional random walk, with steps sampled
from an exponential distribution. Since the n*® moment of Exponential(\) is
%, the expectation of an SOS-form NRSM is non-polynomial but still express-
ible in the theory of non-linear real arithmetic (see Ex.4). For expdistrw we
learn

(0.1-x —3.3)% (18)
whereas for gaussrw in Fig. 13 we learn
(0-x—1-y+11)*4+(0-x+0-y+8)° (19)

We translate the program in Fig. 14 for AMBER by replacing the update for A
by instead sampling it uniformly from [1,10]. AMBER correctly identifies the
program is AST, and that (10 —x) is a supermartingale expression (note, not an
RSM), though does not report that the program is PAST (answering “maybe”).

5.4 Undefined Moments

The ability to evaluate the cumulative distribution function (CDF) of a sampled
distribution could be useful in marginalisation, even if the moments of the sam-
pled distribution are undefined or not known analytically to infinite precision.
An example is Fig. 15: the program samples from the standard Cauchy distri-
bution, for which all moments are undefined. Since the sampled value is only

Learning Probabilistic Termination Proofs 19

used to determine which branch of a conditional is taken, the RSM expectation
is well defined, and can be expressed in terms of the standard Cauchy CDF.
Namely, the if-branch is taken with probability ¢ = 1 — (arctan(10) + 3). This
equation is not expressible using polynomials; so we perform a sound approx-
imation by introducing a new variable that is quantified over a small interval
surrounding a finite precision approximation to g. This allows us to learn and
verify the SOR-form NRSM:

ReLU(1.2-x+9.1). (20)

while (x > 0) do
p ~ StandardCauchy ();
if (p > 10) then
X = x + 2
else

W N

x = x -1
fi

0 N & w

od

Fig. 15. Sliced Cauchy distribution (slicedcauchy).

For our experimental evaluation (Sect. 6) we create a modified version of each
of the six case studies described in this section, as follows:

— program marbles3 is a generalisation of marbles to three marble types,
instead of two;

— probfact2 uses 5/8 as the Bernoulli parameter, rather than 3/4;

— crwalk2 samples rho from a Beta(l,3) distribution, instead of a uniform
distribution over [—%, 1];

— expdistrw2 samples from an exponential distribution, where parameter
lambda is replaced by lambda*lambda;

— gaussrw2 uses [3+ 1/(1 —x),3 +1/(1 —y)]T for its mean vector, instead of
[V1+x2,{/1+y?"; and

— slicedcauchy? has a loop guard of x < 10, instead of x > 0, and swaps the
two branches of the conditional.

5.5 Rare Transitions

A limitation of relying on a sampled transition dataset to learn NRSM parame-
ters is we rely on the average E, . p/ [n(p')] in Eq. (5) being accurate (see Sect. 3).
This assumption is challenged by programs that have certain control-flow paths
of very low probability, which are unlikely to be sampled by the interpreter. For
example, in the context of the ambitious marble collector (Fig. 1), Fig. 16 shows
that when the probability of obtaining a red marble decreases below 277, our
success rate drops. This is because a lower probability makes the corresponding
control-flow path rarer in the dataset, to the point where the expected value of
the NRSM cannot be estimated accurately.

20 A. Abate et al.

1 X X X X X X
X 300
o 0.8
= X -
0.6 > 200
2 £
€ 04 S
= 100 X
9 0.2 X
X
0 0 XXXXXX
1 2345678910 1 2345678910
—log,p —log, p

(a) (b)

Fig. 16. Success rate and execution times for the ambitious marble collector program
(Fig. 1), where p is the probability of taking the if-branch. Success rate refers to the
fraction of 10 executions that succeeded in finding an NRSM before a timeout of 300s.
Execution times show the median time with the error bar ranging between the minimum
and maximum times of the 10 executions.

6 Experimental Results

We built a prototype implementation of our framework (in Python) and present
experimental results for benchmarks adapted from previous work, as well as our
own case studies (from Sect.5). The case studies illustrate programs for which
our framework synthesises an RSM, yet existing tools cannot prove to be PAST.

The learner is implemented with JAX [9]. To train NRSMs, we use AdaGrad
[18] for gradient-based optimisation, with a learning rate of 10~2. Parameters
are initialised by sampling from Gaussian distributions: weight parameters are
sampled from a zero-mean Gaussian, whereas the bias parameters are sampled
either from a Gaussian with mean 10 (for SOR candidates) or mean 0 (for SOS
candidates). We verify the NRSMs using the SMT solver Z3 [26,40]. The out-
comes are obtained on the following platform: macOS Catalina version 10.15.4,
8 GB RAM, Intel Core i5 CPU 2.4 GHz QuadCore, 64-bit.

As mentioned in Sect.4, the verifier checks a candidate NRSM over states
satisfying the loop predicate, which characterises the set of reachable states. For
our experiments, we manually provide the NRSM expectation, and augment the
guard predicate with additional invariants where necessary. We generate out-
comes using two different rounding strategies (Sect.4): an “aggressive” rounding
strategy which generated between 80 and 120 candidates per CEGIS iteration,
and a “weaker” rounding strategy producing between 15 to 25 candidates per
CEGIS iteration. The outcomes in Table 1 used the aggressive rounding strategy.

Learning Probabilistic Termination Proofs 21

Table 1. Experimental results over existing (top section) and newly added bench-
marks (bottom section); (c) indicates the benchmark uses continuous distributions, (d)
indicates it only uses discrete distributions. All reported times are in seconds, oot indi-
cates time-out after 300s, n/a indicates the tool terminated without definite answer,
and—indicates the benchmark is unsupported. Our method is run 10 times with dif-
ferent seeds; the overall success rate is reported. Runtimes of interpretation, training,
verification phases, and # of CEGIS iterations refer to the run with median total
runtime.

Program AMBER |Farkas’ | ABSYNTH |Succ. |Inter.|Train. | Verif. |#iter NRSM
[39] lemma [2]| [41] rate
Hare & Tortoise (d) 0.04 ~0 0.09 10/10| 0.61| 3.86 |0.70 |0 SOR
exmini/terminate (d) — 0.02 oot 10/10| 1.75|29.35 |7.67 |2 SOR
aaron2 (d) 0.03 0.02 0.02 10/10| 0.04 | 2.27 |0.01 |0 SOR
catmouse (c) 0.03 0.02 — 9/10 | 0.39|12.41 [3.68 |1 SOS
counterexic (d) — 0.02 0.22 8/10 | 1.00| 6.71 [0.02 |0 SOR
easyl (d) 012 |0.01 0.05 10/10] 1.12] 5.55 |1.27 |0 SOR
easy2 (c) 0.04 0.02 — 10/10| 1.55| 6.79 |0.18 |0 SOS
ndecr (d) 0.04 0.02 0.03 10/10| 1.18| 5.63 |0.02 |0 SOR
randomid (c) 0.05 0.02 — 10/10| 1.14| 4.86 |0.79 |0 SOS
rsd (d) error |0.01 oot 10/10| 1.14| 6.18 |2.04 |0 SOR
speedFails1 (d) 0.07 0.01 0.04 10/10| 0.45| 4.09 |0.67 |0 SOR
speedP1di2 (d) 0.02 0.40 9/10 1.36 | 7.85 |0.02 |0 SOR
speedP1di3 (d) — 0.02 0.36 8/10 | 2.58 [30.70 |2.12 |1 SOR
speedP1did (d) — 0.02 0.17 10/10| 0.68] 5.07 |0.04 |0 SOR
speedSingleSingle (¢) |0.03 0.02 — 10/10| 0.39| 2.85 |0.51 |0 SOS
speedSingleSingle2 (d) |— 0.02 0.15 10/10| 0.83| 7.30 |0.04 |0 SOR
wcetO (d) — 0.02 0.10 10/10| 1.45| 5.64 |0.09 |0 SOR
wcetl (d) — 0.02 0.10 10/10| 0.85| 4.31 |0.09 |0 SOR
probfact (d) — — n/a 10/10] 0.49] 6.12 [0.16 |0 SOR
probfact2 (d) — — n/a 10/10| 0.45| 5.89 |0.23 |0 SOR
marbles (d) — — n/a 10/10| 0.84|10.83 |0.91 |0 SOR
marbles3 (d) — — n/a 10/10| 0.40 |70.14 |7.87 |2 SOR
crwalk (c) — — — 10/10| 0.53| 3.06 [1.56 |1 SOS
crwalk2 (c) — — — 10/10] 1.32] 3.11 |0.75 |1 SOS
expdistrw (c) n/a — — 10/10| 0.05| 1.53 |0.01 |0 SOS
expdistrw2 (c) n/a — — 10/10| 4.92| 3.15 |1.03 |1 SOS
gaussry (c) — — — 10/10]10.30 | 3.45 |0.75 |0 SOS
gaussrw2 (c) — — — 9/10 |15.46 | 4.91 |5.33 |0 SOS
slicedcauchy (c) 10/10| 0.02| 3.31 |0.01 |0 SOR
slicedcauchy?2 (c) — — — 10/10| 0.01| 2.16 |0.03 |0 SOR

Benchmarks from Previous Work. We run our prototype on single-loop programs
from the WT'C benchmark suite [3], augmented with probabilistic branching and
assignments [2]. These correspond to the programs in the first section of Table 1.
We perturb assignment statements by adding noise sampled from a discrete
uniform distribution of support {—2,2}, or a continuous uniform distribution on

22 A. Abate et al.

the interval [—2, 2]. The while loops are also made probabilistic; with probability
1/2 the loop is executed, and with the remaining probability a skip command
is executed.

We compare our framework against three existing tools. The first is AMBER
[39]: where possible, we translate instances from the WTC suite into the lan-
guage of AMBER, but this is not possible for some programs where the loop pred-
icate is a logical conjunction or disjunction of predicates (indicated by dashes in
Table 1). Second, we compare against a tool for synthesising affine lexicographic
RSMs (referred to as Farkas’ lemma) for affine programs (i.e. containing only lin-
ear expressions), based on reduction to linear programming via Farkas’ lemma
[2]. This is applicable to probabilistic programs with nested-loops, unlike our
method. However, since it is limited to affine programs and affine lexicographic
RSMs, it is not able to analyse all the programs we consider (again, indicated
by dashes in Table 1). The third tool is ABSYNTH [41], for which we are able to
encode all programs that were limited to discrete random variables.

The experimental results (Table 1) show that for all the WT'C benchmarks
our approach has a success rate of at least 8/10, and is able to synthesise an RSM
within 2 iterations (for the seed that results in median total execution time). For
15 of the 18 WTC benchmarks no full CEGIS iterations are required. As expected
our approach, particularly the learning component, is much slower than all three
tools. However, our framework has broader applicability, as illustrated with the
next set of experiments.

Newly Defined Case Studies. The examples in the second section of Table 1
(from Sect. 5) are not proven PAST by any of the three tools. Our approach
is able to do so with a success rate of at least 9/10, under the “aggressive”
rounding strategy. Of the new examples, marbles3 (Sect. 5) requires the longest
time, since we use an NRSM with A = 3 ReLU nodes (see Sect. 3), and six of
the nine parameters must be brought sufficiently close to zero to learn a valid
RSM. For gaussrw/gaussrw2, we find it necessary to set an SMT solver time
limit within the CEGIS loop (of 200ms for gaussrw, and 5s for gaussrw2),
such that candidates taking longer than this to verify are skipped. The fact that
these examples are harder to verify is unsurprising, given that they give rise
to non-polynomial decision problems, containing equationally defined rational
expressions. In comparing the two rounding strategies, we find that using the
“aggressive” strategy tends to result in fewer CEGIS iterations, reducing the
learner time, while increasing the verifier time: this is to be expected, since a
larger number of candidates needs to be checked in each CEGIS iteration.

7 Conclusion

We have presented the first machine learning method for the termination anal-
ysis of probabilistic programs. We have introduced a loss function for training
neural networks so that they behave as RSMs over sampled execution traces; our
training phase is agnostic to the program and thus easily portable to different

Learning Probabilistic Termination Proofs 23

programming languages. Reasoning about the program code is entirely delegated
to our checking phase which, by SMT solving over a symbolic encoding of pro-
gram and neural network, verifies whether the neural network is a sound RSM.
Upon a positive answer, we have formally certified that the program is PAST;
upon a negative answer, we obtain a counterexample that we use to resample
traces and repeat training in a CEGIS loop. Our procedure runs indefinitely for
programs that are not PAST, as these necessarily lack a ranking supermartin-
gale, and may run indefinitely for some PAST programs. Nevertheless, we have
experimentally demonstrated over several PAST benchmarks that our method
is effective in practice and covers a broad range of programs w.r.t. existing tools.

Our method naturally generalises to deeper networks, but whether these
are necessary in practice remains an open question; notably, neural networks
with one hidden layer were sufficient to solve our examples. We have exclu-
sively tackled the PAST question, and techniques for almost-sure (but not nec-
essarily PAST) termination and non-termination exist [16,37,39]. Our results
pose the basis for future research in machine learning (and CEGIS) for the for-
mal verification of probabilistic programs. Different verification questions will
require different learning models. Our approach lends itself to extensions toward
probabilistic safety, exploiting supermartingale inequalities, and towards the
non-termination question, using repulsing supermartingales [16]. Adapting our
method to termination analysis with infinite expected time is also a matter for
future investigation [37]. Moreover, we have exclusively considered purely proba-
bilistic single-loop programs: generalisations to programs with non-determinism,
arbitrary control-flow, and concurrency are material for future work [15,20,35].

Acknowledgments. This work was in part supported by a partnership between
Aerospace Technology Institute (ATI), Department for Business, Energy & Industrial
Strategy (BEIS) and Innovate UK under project HICLASS (113213), by the Engineer-
ing and Physical Sciences Research Council (EPSRC) Doctoral Training Partnership,
by the Department of Computer Science Scholarship, University of Oxford, and by the
DeepMind Computer Science Scholarship.

References

1. Abate, A., Ahmed, D., Giacobbe, M., Peruffo, A.: Formal synthesis of Lyapunov
neural networks. IEEE Control. Syst. Lett. 5(3), 773-778 (2021)

2. Agrawal, S., Chatterjee, K., Novotny, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. Proc. ACM Pro-
gram. Lang. 2(POPL), 34:1-34:32 (2018)

3. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) Static Analysis, pp. 117-133. Springer, Berlin, Heidelberg (2010)

4. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1-8. IEEE (2013)

5. Avanzini, M., Dal Lago, U., Yamada, A.: On probabilistic term rewriting. Sci.
Comput. Program. 185, 102338 (2020)

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

A. Abate et al.

Avanzini, M., Moser, G., Schaper, M.: A modular cost analysis for probabilistic
programs. Proc. ACM Program. Lang. 4(OOPSLA), 172:1-172:30 (2020)

Batz, K., Kaminski, B.L., Katoen, J.-P., Matheja, C.: How long, O Bayesian net-
work, will T sample thee? In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp.
186-213. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_7
Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl,
J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 323-337. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32033-3_24

Bradbury, J., et al.: JAX: composable transformations of Python+NumPy pro-
grams (2018). http://github.com/google/jax

Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511-526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_34
Chakarov, A., Voronin, Y.-L., Sankaranarayanan, S.: Deductive proofs of almost
sure persistence and recurrence properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 260-279. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9_15

Chang, Y., Roohi, N., Gao, S.: Neural Lyapunov control. In: NeurIPS, pp. 3240—
3249 (2019)

Chattenjee, K., Fu, H., Novotny, P.: Termination analysis of probabilistic programs
with martingales. In: Barthe, G., Katoen, J.P., Silva, A. (eds.) Foundations of
Probabilistic Programming, p. 221-258. Cambridge University Press (2020)
Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3-22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4_1

Chatterjee, K., Fu, H., Novotny, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
ACM Trans. Program. Lang. Syst. 40(2), 7:1-7:45 (2018)

Chatterjee, K., Novotny, P., Zikelic, D.: Stochastic invariants for probabilistic ter-
mination. In: POPL, pp. 145-160. ACM (2017)

Dahlqvist, F., Silva, A.: Semantics of probabilistic programming: a gentle intro-
duction. In: Barthe, G., Katoen, J.P., Silva, A. (eds.) Foundations of Probabilistic
Programming, pp. 1-42. Cambridge University Press (2020)

Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learn-
ing and stochastic optimization. In: COLT, pp. 257-269. Omnipress (2010)
Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: Soundness, completeness,
and compositionality. In: POPL, pp. 489-501. ACM (2015)

Fu, H., Chatterjee, K.: Termination of nondeterministic probabilistic programs. In:
Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 468-490. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11245-5_22

Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. CoRR
abs/2102.03824 (2021)

Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press (2016)
Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE, pp. 167-181. ACM (2014)

Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-
nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797-813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_53

https://doi.org/10.1007/978-3-319-89884-1_7
https://doi.org/10.1007/978-3-540-32033-3_24
http://github.com/google/jax
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1007/978-3-319-08867-9_53

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Learning Probabilistic Termination Proofs 25

Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for
almost-sure termination of probabilistic programs. Proc. ACM Program. Lang.
3(0OOPSLA), 129:1-129:29 (2019)

Jovanovié, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339-354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

Kaminski, B.L., Katoen, J.-P., Matheja, C.: On the hardness of analyzing prob-
abilistic programs. Acta Informatica 56(3), 255-285 (2018). https://doi.org/10.
1007/s00236-018-0321-1

Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Aréchiga, N.: Simulation-
guided Lyapunov analysis for hybrid dynamical systems. In: HSCC, pp. 133—-142.
ACM (2014)

Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328—
350 (1981)

Kura, S., Unno, H., Hasuo, I.: Decision tree learning in CEGIS-based termination
analysis. In: CAV (2021)

Le, T.C., Antonopoulos, T., Fathololumi, P., Koskinen, E., Nguyen, T.: DynamiTe:
Dynamic termination and non-termination proofs. Proc. ACM Program. Lang.
4(OOPSLA), 189:1-189:30 (2020)

Lee, W., Wang, B.-Y., Yi, K.: Termination analysis with algorithmic learning.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 88-104.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_12

Lee, W., Yu, H., Rival, X., Yang, H.: Towards verified stochastic variational infer-
ence for probabilistic programs. Proc. ACM Program. Lang. 4(POPL), 16:1-16:33
(2020)

Li, Y., Ying, M.: Algorithmic analysis of termination problems for quantum pro-
grams. Proc. ACM Program. Lang. 2(POPL), 35:1-35:29 (2018)

Lin, A.W., Riimmer, P.: Liveness of randomised parameterised systems under arbi-
trary schedulers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780,
pp. 112-133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_7
Mclver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, Berlin (2005)

Mclver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-
sure termination. Proc. ACM Program. Lang. 2(POPL), 33:1-33:28 (2018)
Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer
programs using expected sizes. In: TACAS 2021. LNCS, vol. 12651, pp. 250-269.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_14
Moosbrugger, M., Bartocci, E., Katoen, J.-P., Kovécs, L.: Automated termina-
tion analysis of polynomial probabilistic programs. In: ESOP 2021. LNCS, vol.
12648, pp. 491-518. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72019-3-18

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource anal-
ysis for probabilistic programs. In: PLDI, pp. 496-512. ACM (2018)

Nori, A.V., Sharma, R.: Termination proofs from tests. In: ESEC/SIGSOFT FSE,
pp. 246-256. ACM (2013)

Richards, S.M., Berkenkamp, F., Krause, A.: The Lyapunov neural network: Adap-
tive stability certification for safe learning of dynamical systems. In: CoRL. Pro-
ceedings of Machine Learning Research, vol. 87, pp. 466-476. PMLR (2018)

https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1007/978-3-642-31424-7_12
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-540-78800-3_24

26 A. Abate et al.

44. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404-415. ACM (2006)

45. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and
pieces. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
54-70. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-49674-9_4
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Ghost Signals: Verifying Termination
of Busy Waiting

Tobias Reinhard ®® and Bart Jacobs

imec-DistriNet Research Group, KU Leuven, Leuven, Belgium
{tobias.reinhard,bart.jacobs}@kuleuven.be

Abstract. Programs for multiprocessor machines commonly perform
busy waiting for synchronization. We propose the first separation logic
for modularly verifying termination of such programs under fair schedul-
ing. Our logic requires the proof author to associate a ghost signal with
each busy-waiting loop and allows such loops to iterate while their cor-
responding signal s is not set. The proof author further has to define
a well-founded order on signals and to prove that if the looping thread
holds an obligation to set a signal s’, then s’ is ordered above s. By using
conventional shared state invariants to associate the state of ghost signals
with the state of data structures, programs busy-waiting for arbitrary
conditions over arbitrary data structures can be verified.

1 Introduction

Programs for multiprocessor machines commonly perform busy waiting for syn-
chronization [22,23]. In this paper, we propose a separation logic [24,31] to mod-
ularly verify termination of such programs under fair scheduling. Specifically, we
consider programs where some threads busy-wait for a certain condition C' over
a shared data structure to hold, e.g., a memory flag being set by other threads.
By modularly, we mean that we reason about each thread and each function in
isolation. That is, we do not reason about thread scheduling or interleavings. We
only consider these issues when proving the soundness of our logic. Assuming
fair scheduling is necessary since busy-waiting for a condition C' only termi-
nates if the thread responsible for establishing the condition is sufficiently often
scheduled to establish C.

Busy waiting is an example of blocking behaviour, where a thread’s progress
requires interference from other threads. This is not to be confused with non-
blocking concurrency, where a thread’s progress does not rely on—and may
in fact be impeded by—interference from other threads. Existing proposed
approaches for verifying termination of concurrent programs consider only pro-
grams that only involve non-blocking concurrent objects [32], or primitive block-
ing constructs of the programming language, such as acquiring built-in mutexes,
receiving from built-in channels, joining threads, or waiting for built-in monitor
condition variables [2,5,19], or both [11]. Existing techniques that do support
busy waiting are not Hoare logics; instead, they verify termination-preserving

© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 27-50, 2021.
https://doi.org/10.1007/978-3-030-81688-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_2&domain=pdf
http://orcid.org/0000-0003-1048-8735
http://orcid.org/0000-0002-3605-249X
https://doi.org/10.1007/978-3-030-81688-9_2

28 T. Reinhard and B. Jacobs

contextual refinements between more concrete and more abstract implementa-
tions of busy-waiting concurrent objects [15,21]. In contrast, we here propose
the first conventional program logic for modular verification of termination of
programs involving busy waiting, using Hoare triples as module specifications.

In order to prove that a busy-waiting loop terminates, we have to prove that
it performs only finitely many iterations. To do this we introduce a special form
of ghost resources [13] which we call ghost signals. As ghost resources they only
exist on the verification level and hence do not affect the program’s runtime
behaviour. Signals are initially unset and come with an obligation to set them.
Setting a signal does not by definition correspond to any runtime condition. So,
in order to use a signal s effectively, anyone using our approach has to prove an
invariant stating that s is set if and only if the condition of interest holds. Further,
the proof author must prove that every thread discharges all its obligations by
performing the corresponding actions, e.g., by setting a signal and establishing
the corresponding condition by setting the memory flag.

In our verification approach we tie every busy-waiting loop to a finite set of
ghost signals S that correspond to the set of conditions the loop is waiting for.
Every iteration that does not terminate the loop must be justified by the proof
author proving that some signal s € S has indeed not been set, yet. This way,
we reduce proving termination to proving that no signal is waited for infinitely
often.

Our approach ensures that no thread directly or indirectly waits for itself by
requiring the proof author (i) to choose a well-founded and partially ordered set
of levels Levs and (ii) to assign a level to every signal and by (iii) only allowing
a thread to wait for a signal if the signal’s level is lower than the level of each
held obligation. This guarantees that every signal is waited for only finitely often
and hence that every busy-waiting loop terminates. We use this to prove that
every program that is verified using our approach indeed terminates.

We start by gradually introducing the intuition behind our verification app-
roach and the concepts we use. In Sect. 2.1 and Sect. 2.2 we present the main
aspects of using signals to verify termination. We start by treating them as phys-
ical thread-safe resources and only consider busy waiting for a signal to be set.
Then, we drop thread-safety and explain how to prove data-race- and deadlock-
freedom. In Sect. 2.3 and Sect. 2.4 we generalize our approach to busy waiting
for arbitrary conditions over arbitrary data structures and then lift signals to
the verification level by introducing ghost signals.

In Sect. 3 we sketch the verification of a realistic producer-consumer example
involving a bounded FIFO to demonstrate our approach’s usability and address
fine-grained concurrency in Sect. 4. Further, we describe the available tool sup-
port in Sect. 5 and discuss integrating higher-order features in Sect. 6. We con-
clude by comparing our approach to related work and reflecting on it in Sect. 7
and Sect. 8.

We formally define our logic and prove its soundness in the extended version
of this paper [28]. To keep the presentation in this paper simple, we assume busy-
waiting loops to have a certain syntactical form. In our technical report [29] we

Ghost Signals 29

present a generalised version of our logic and its soundness proof. Further, we
verify the realistic example presented in Sect. 3 in full detail in the extended
version of this paper and in the technical report, using the respective version of
our logic. We used our tool support to verify C versions of the bounded FIFO
example and the CLH lock. The tool we used and the annotated .c files can be
found at [10,26,27].

2 A Guide on Verifying Termination of Busy Waiting

When we try to verify termination of busy-waiting programs, multiple challenges
arise. Throughout this section, we describe these challenges and our approach to
overcome them. In Sect. 2.1 we start by discussing the core ideas of our logic. In
order to simplify the presentation we initially consider a simple language with
built-in thread-safe signals and a corresponding minimal example where one
thread busy-waits for such a signal. Signals are heap cells containing boolean
values that are specially marked as being solely used for busy waiting. Through-
out this section, we generalize our setting as well as our example towards one
that allows to verify programs with busy waiting for arbitrary conditions over
arbitrary shared data structures. In Sect. 2.2 we present the concepts neces-
sary to verify data-race-, deadlock-freedom and termination in the presence of
built-in signals that are not thread safe. In Sect. 2.3 we explain how to use these
non-thread-safe signals to verify programs that wait for arbitrary conditions over
shared data structures. We illustrate this by an example waiting for a shared
heap cell to be set. In Sect. 2.4 we erase the signals from our program and lift
them to the verification level in the form of a concept we call ghost signals.

2.1 Simplest Setting: Thread-Safe Physical Signals

We want to verify programs that busy-wait for arbitrary conditions over arbi-
trary shared data structures. As a first step towards achieving this, we first
consider programs that busy-wait for simple boolean flags, specially marked as
being used for the purpose of busy waiting. We call these flags signals. For now,
we assume that read and write operations on signals are thread-safe. Consider
a simple programming language with built-in signals and with the following
commands: (i) new_signal for creating a new unset signal, (ii) set_signal(x)
for setting = and (iii) await is_set(x) for busy-waiting until z is set. Figure 1
presents a minimal example where two threads communicate via a shared sig-
nal sig. The main thread creates the signal sig and forks a new thread that
busy-waits for sig to be set. Then, the main thread sets the signal. As we assume
signal operations to be thread-safe in this example, we do not have to care about
potential data races. Notice that like all busy-waiting programs, this program is
guaranteed to terminate only under fair thread scheduling: Indeed, it does not
terminate if the main thread is never scheduled after it forks the new thread. In
this paper we verify termination under fair scheduling.

30 T. Reinhard and B. Jacobs

let sig := new_signal in
fork await is_set(sig);
set_signal(sig)

Fig. 1. Minimal example with two threads communicating via a physical thread-safe
signal.

Augmented Semantics

Obligations. The only construct in our language that can lead to non-termination
are busy-waiting loops of the form await is_set(sig). In order to prove that
programs terminate it is therefore sufficient to prove that all created signals are
eventually set. We use so-called obligations [5,6,16,19] to ensure this. These are
ghost resources [13], i.e., resources that do not exist during runtime and can hence
not influence a program’s runtime behaviour. They carry, however, information
relevant to the program’s verification. Generally, holding an obligation requires
a thread to discharge it by performing a certain action. For instance, when
the main thread in our example creates signal sig, it simultaneously creates an
obligation to set it. The only way to discharge this obligation is to set sig.

We denote thread IDs by 6 and describe which obligations a thread 6 holds
by bundling them into an obligations chunk 0.0bs(O), where O is a multiset of
signals. We denote multisets by double braces {...} and multiset union by W.
Each occurrence of a signal s in O corresponds to an obligation by thread 6 to
set s. Consequently, 0.obs(()) asserts that thread 6 does not hold any obligations.

Augmented Semantics. In the real semantics of the programming language we
consider here, ghost resources such as obligations do not exist during runtime.
To prove termination, we consider an augmented version of it that keeps track
of ghost resources during runtime. In this semantics, we maintain the invariant
that every thread holds exactly one obs chunk. That is, for every running thread
0, our heap contains a unique heap cell 6.obs that stores the thread’s bag of
obligations. Further, we let a thread get stuck if it tries to finish while it still holds
undischarged obligations. Note that we use the term finish to refer to thread-
local behaviour while we write termination to refer to program-global behaviour,
i.e., meaning that every thread finishes. For every augmented execution there
trivially exists a corresponding execution in the real semantics.

Figure 2 presents some of the reduction rules we use to define the augmented
semantics. We use h to refer to augmented heaps, i.e., heaps that can contain

ghost resources. A reduction step has the form /i\z, c ﬁ,aug B ,c', T expresses that

thread 0 reduces heap h (which is shared by all threads) and command c¢ to heap
1 and command ¢. Further, T represents the set of threads forked during this
step. It is either empty or a singleton containing the new thread’s ID and the
command it is going to execute, i.e., {(6f,cs)}. We omit it whenever it is clear
from the context that no thread is forked. Further, we denote disjoint union of

sets by LI

Ghost Signals 31

Our reduction rules comply with the intuition behind obligations we outlined
above. AUG-RED-NEWSIGNAL creates a new signal and simultaneously a corre-
sponding obligation. The only way to discharge it is by setting the signal using
AUG-RED-SETSIGNAL.

AUG-RED-NEWSIGNAL R
id & ids(h) L € Levs

7L {0.0bs(O)}, new _signal -, h LI {0.0bs(O W {(id, L)}), signal((id, L))}, id

AUG-RED-SETSIGNAL
h L {0.0bs(O W {s})}, set_signal(s.id) ~>aug h LI {0.0bs(O), signalSet(s)}, tt

AuG-RED-FORK N
0 ¢ thlds(h)

7L {0.0bs(O & O5)}, fork ¢ .. h LI {0.0bs(0), 0.0bs(Op) }, tt, {(6f,)}

AUG-RED-AWAIT R N
0.0bs(O) € h signal(s) € h signalSet(s) € h s.lev <L O

h, await is_set(s.id) &aug h, await is_set(s.id)

Fig. 2. Reduction rules for augmented semantics.

Forking. Whenever a thread forks a new thread, it can pass some of its obliga-
tions to the newly forked thread, cf. AUG-RED-FORK. Forking a new thread with
ID 0 also allocates a new heap cell 6;.obs to store its bag of obligations. Since
this is the only way to allocate a new obs heap cell, we will never run into a heap
h U {f.0bs(O)} U {#.0bs'(O’)} that contains multiple obligations chunks belong-
ing to the same thread . Remember that threads cannot finish while holding
obligations. This prevents them from dropping obligations via dummy forks.

Levels. In order to prove that a busy-waiting loop await is_set(sig) terminates,
we must ensure that the waiting thread does not directly or indirectly wait for
itself. We could just check that it does not hold an obligation for the signal it
is waiting for, but that is not sufficient as the following example demonstrates:
Consider a program with two signals sig;, sig, and two threads. Let one thread
hold the obligation for sig, and execute await is_set(sig;); set_signal(sig,).
Likewise, let the other thread hold the obligation for sig; and let it execute
await is_set(sig,); set_signal(sig;).

To prevent such wait cycles modularly, we apply the usual approach [3,4,19].
For every program that we want to execute in our augmented semantics, we
choose a partially ordered set of levels Levs. Further, during every reduction
step in the augmented semantics that creates a signal s, we pick a level L €
Levs and associate it with s. Note that much like obligations, levels do not exit
during runtime in the real semantics. Signal chunks in the augmented semantics

32 T. Reinhard and B. Jacobs

have the form signal((id, L)) where id is the unique signal identifier returned
by new_signal. The level assigned to any signal can be chosen freely, cf. Auc-
RED-NEWSIGNAL. In practice, determining levels boils down to solving a set of
constraints that reflect the dependencies. In our example, however, the choice
is trivial as it only involves a single signal. We choose Levs = {0} and 0 as
level for sig and thereby get signal((sig,0)). Generally, we denote signal tuples
by s = (id, L). Now we can rule out cyclic wait dependencies by only allowing a
thread to busy-wait for a signal s if its level s.lev is smaller than the level of each
held obligation, cf. AUG-RED-AWAIT!. Given a bag of obligations O, we denote
this by s.lev < O.

Proving Termination. As we will explain below, the augmented semantics has
no fair infinite executions. We can use this as follows to prove that a program
c terminates under fair scheduling: For every fair infinite execution of ¢, show
that we can construct a corresponding augmented execution. (This requires that
each step’s side conditions in the augmented semantics are satisfied. Note that
we thereby prove certain properties for the real execution, like absence of cyclic
wait dependencies.) As there are no fair infinite executions in the augmented
semantics, we get a contradiction. It follows that ¢ has no fair infinite executions
in the real semantics.

Soundness. In order to prove soundness of our approach, we must prove that
there indeed are no fair infinite executions in the augmented semantics. This
boils down to proving that no signal can be waited for infinitely often. Consider
any program and any fair augmented execution of it. Consider the execution’s
program order graph, (i) whose nodes are the execution steps and (ii) which has
an edge from a step to the next step of the same thread and to the first step
of the forked thread, if it is a fork step. Notice that for each obligation created
during the execution, the set of nodes corresponding to a step made by a thread
while that thread holds the obligation constitutes a path that ends when the
obligation is discharged. We say that this path carries the obligation.

It is not possible that a signal is waited for infinitely often. Indeed, suppose
some signals S°° are. Take sy, € S°° with minimal level. Since sy, is never
set, the path in the program order graph that carries the obligation must be
infinite as well. Indeed, suppose it is finite. The final node N of the path cannot
discharge the obligation without setting the signal, so it must pass the obligation
on either to the next step of the same thread or to a newly forked thread. By
fairness of the scheduler, both of these threads will eventually be scheduled. This
contradicts N being the final node of the path.

The path carrying the obligation for sp;, waits only for signals that are
waited for finitely often. (Remember that AUG-RED-AWAIT requires the signal
waited for to be of a lower level than all held obligations, i.e., a lower level than
that of spin.) It is therefore a finite path. A contradiction.

! For simplicity, our augmented semantics assumes that the level order and the level
associated with any object remains fixed for the entire execution. However, following
the approach presented in [18], it would be sound to add a step rule that allows a
thread to change the level of an object it has exclusive access to (cf. Sect. 2.2).

Ghost Signals 33

Notice that the above argument relies on the property that every non-empty
set of levels has a minimal element. For this reason, for termination verification
we require that Levs is not just partially ordered, but also well-founded.

Program Logic

Directly using the augmented semantics to prove that our example program
terminates is cumbersome. In the following, we present a separation logic that
simplifies this task.

Safety. We call a program c¢ safe under a (partial) heap b if it provides all
the resources necessary such that both ¢ and any threads it forks can execute
without getting stuck in the augmented semantics. (This depends on the angelic
choices.) We denote this by safe(h, c) [33]2.

Consider a program c that is safe under an augmented heap h. Let h be the real
heap that matches h apart from the ghost resources. Then, for every real execution
that starts with h we can construct a corresponding augmented execution.

Specifications. We use Hoare triples { A} ¢ {\r. B(r)} [8] to specify the behaviour
of a program c. Such a triple expresses the following: Consider any evaluation con-
text F, such that for every return value v, running F[v] from a state that satisfies
B(v) is safe. Then, running F|c] from a state that satisfies A is safe.

Proof System. We define a proof relation F which ensures that whenever
we can prove K {A} c {)\7'. B(r)}, then ¢ complies with the specification
{A} ¢{\r. B(r)}. Figure 3b presents some of the proof rules we use to define I-.
As we evolve our setting throughout this section, we also adapt our proof rules.
Rules that will be changed later are marked with a prime in their name. The
full set of rules is presented in the extended version of this paper [28]. Our proof
rules PR-SETSIGNAL’ and PR-AWAIT’ are similar to the rules for sending and
receiving on a channel presented in [19)].

Notice how the proof rules enforce the side-conditions of the augmented
semantics. Hence, all we have to do to prove that a program c terminates is
to prove that every thread eventually discharges all its obligations. That is, we
have to prove - {obs(@)} c {obs((?))}. Figure 3a illustrates how we can apply our
rules to verify that our minimal example terminates.

2.2 Non-Thread-Safe Physical Signals

As a step towards supporting waiting for arbitrary conditions over shared data
structures, including non-thread-safe ones, we now move to non-thread-safe sig-
nals. For simplicity, in this paper we consider programs that use mutexes to syn-
chronize concurrent accesses to shared data structures. (Our ideas apply equally
to programs that use other constructs, such as atomic machine instructions.)
Figure 4 presents our updated example.

2 For a formal definition see this paper’s extended version [28] and the technical
report [29].

34 T. Reinhard and B. Jacobs

{obs(0)}
let sig := new_signal in PR-NEWSIGNAL’ with L =0
{obs({(sig, 0)]}) * signal((sig, 0))} s := (sig, 0)
fork ({obs(0) = signal(s)}
await is_set(sig) slev=0=<_0
{obs(0) x signal(s)});
{obs({s})}
set_signal(sig)
{obs(®)}

(a) Proof outline for program from Fig. 1. Applied proof rule marked in purple. Abbre-
viation marked in brown. General hint marked in red.

PR-NEWSIGNAL’
L € Levs

F {obs(O)} new_signal {Ar.obs(O w {(r, L)}) * signal((r, L)) }

PR-SETSIGNAL’
 {obs(O w {s})} set_signal(s.id) {obs(O)}

PR-FORK’
F {obs(Of) x A} ¢ {obs(0) * B}
F {obs(On W Of) * A} fork ¢ {obs(On)}

PR-AwAIT’
s.lev <L O

F {obs(O) x signal(s) } await is_set(s.id) {obs(O) = signal(s) }

PR-LET
F{A} c{dr.C(r)} Vo, F{C()} 'v/z] {B}
F {A} let z:=cin ¢ {B}

(b) Proof rules. Rules only used in this section marked with ’.

Fig. 3. Verifying termination of minimal example with physical thread-safe signal.
(Color figure online)

let sig := new_signal in

let mut := new_mutex in with mut await ¢ := (while acquire mut;
fork with mut await is_set(sig); let r:=cin
acquire mut; release mut;
set_signal(sig); -
release mut do skip)

(a) Code. (b) Syntactic sugar. r not free in mut.

Fig. 4. Minimal example with two threads communicating via a physical non-thread-
safe signal protected by a mutex.

Ghost Signals 35

As signal sig is no longer thread-safe, the two threads can no longer use it
directly to communicate. Instead, we have to synchronize accesses to avoid data
races. Hence, we protect the signal by a mutex mut created by the main thread.
In each iteration, the forked thread acquires the mutex, checks whether sig has
been set and releases it again. After forking, the main thread acquires the mutex,
sets the signal and releases it again.

Exposing Signal Values. Signals are specially marked heap cells storing boolean
values. We make this explicit by extending our signal chunks from signal(s) to
signal(s,b) where b is the current value of s and by updating our proof rules
accordingly. Upon creation, signals are unset. Hence, creating a signal sig now
spawns an unset signal chunk signal((sig, L), False) for some freely chosen level L
and an obligation for (sig, L), cf. PR-NEWSIGNAL”. We present our new proof
rules in Fig. 6 and demonstrate their application in Fig. 5.

{obs(0)}
let sig := new_signal in PR-NEwWSIGNAL” with L =1
{obs({(sig, 1)}) * signal((sig, 1), False) } PR-VIEWSHIFT & VS-SEMIMP
{obs({(sig, 1)}) * 3b. signal((sig,1),b)} s := (sig,1), P := 3b. signal(s,b)
let mut := new_mutex in PR-NEWMUTEX” with L =0
{obs({s}) * mutex(m, P)} PR-VIEWSHIFT
{obs({s}) * mutex(m, P) * mutex(m, P)} & VS-CLoNEMUT”
fork ({obs(0) x mutex(m, P)}

with m await m.lev, s.lev < ()

{obs({m}]) = P} PR-EXISTS
Vb. {obs({m}) * signal(s, b)}
is_set(sig)
{Ar.obs({m}) = signal(s,b) Ar = b} PR-VIEWSHIFT & VS-SEMIMP
Ar.obs({m})
xif r then P else signal(s, False)}

{obs(0) * mutex(m, P)} PR-VIEWSHIFT & VS-SEMIMP

{obs(0)});
{obs({s}) * mutex(m, P)}
acquire mut; m.dev=0<1=s.lev
{obs({s, m]}) locked(m, P) x 3b. signal(s,b)} PR-EXIsTS

Vb. {obs({s, m]) x locked(m, P) * signal(s, b)}
set_signal(sig);
{obs({m}) * locked(m, P) * signal(s, True)} PR-VIEWSHIFT & VS-SEMIMP
{obs({m}) * locked(m, P) x P}
release mut

{obs(0) * mutex(m, P)} PR-VIEWSHIFT & VS-SEMIMP
{obs(0)}

Fig. 5. Proof outline for program Fig.4, verifying termination with mutexes & non-
thread safe signals. Applied proof and view shift rules marked in purple. Abbreviations
marked in brown. General hints marked in red. (Color figure online)

36 T. Reinhard and B. Jacobs

PR-NEWSIGNAL”
L € Levs

F {obs(O)} new_signal {\id.obs(O W {(id, L)}) * signal((id, L), False) }

PR-SETSIGNAL”
F {obs(O W {s}) = signal(s, —) } set_signal(s.id) {obs(O) * signal(s, True) }

PR-ISSIGNALSET”
+ {signal(s,b)} is_set(s.id) {Ar.signal(s,b) AT =b}

PR-AwAIT”
m.lev, s.lev < O signal(s, False) * R = P
F {obs(O W {m}) * P} ¢ {\r.0obs(O & {m]) « if r then P else signal(s, False) x R}

t {obs(O) * mutex(m, P)} with m.loc await ¢ {obs(O) * mutex(m, P)}

(a) Signals & busy waiting.

PR-NEWMUTEX”
L € Levs

F {P} new_mutex {\. mutex((¢, L), P)}

PR-ACQUIRE” PR-RELEASE”

{obs(O) * mutex(m, P) Am.lev <. O} {obs(O w {m}}) * locked(m, P) * P}
F acquire m.loc F release m.loc

{obs(O v {m}}) * locked(m, P) * P} {obs(O) * mutex(m, P)}

(b) Mutexes.

PR-FRAME PR-EXISTS
F{AY ¢ {B} Va e A. F {a} ¢ {B}
F{AxF}c{B=F} k{\/A}c{B}
PR-FoORrRK PR-VIEWSHIFT
F {obs(Of) x A} ¢ {obs()} A= A F{A'} ¢ {B'} B'=B
- {obs(Om W Of) * A} fork c {obs(Om)} = {A} c {B}

(c) Standard rules.

VS-SEMImMP VS-TRANS
VH. consistentn(H) AN H Fa A= H Fa B A=C C=1B
A= B A= B

VS-CLoNEMUT”
mutex(m, P) = mutex(m, P) * mutex(m, P)

(d) View shifts.

Fig. 6. Proof rules and view shift rules for mutexes and non-thread safe signals. Rules
only used in this section marked with 7.

Ghost Signals 37

Data Races. As read and write operations on signals are no longer thread-safe,
our logic has to ensure that two threads never try to access sig at the same time.
Hence, in our logic possession of a signal chunk signal(s, b) expresses (temporary)
exclusive ownership of s. Further, our logic requires threads to own any signal
they are trying to access. Specifically, when a thread wants to set sig, it must hold
a chunk of the form signal((sig, L), b), cf. PR-SETSIGNAL”. The same holds for
reading a signal’s value, cf. PR-ISSIGNALSET”. Note that signal chunks are not
duplicable and only created upon creation of the signal they refer to. Therefore,
holding a signal chunk for sig indeed guarantees that the holding thread has the
exclusive right to access sig (while holding the signal chunk).

Synchronization and Lock Invariants. After the main thread creates sig, it exclu-
sively owns the signal. The main thread can transfer ownership of this resource
during forking, cf. PR-FORK’, and thereby allow the forked thread to busy-wait
for sig. This would, however, leave the main thread without any permission to
set the signal and thereby discharge its obligation.

We use mutexes to let multiple threads share ownership of a common set of
resources in a synchronized fashion. Every mutex is associated with a lock invari-
ant P, an assertion chosen by the proof author that specifies which resources the
mutex protects. In our example, we want both threads to share sig. To reflect
the fact that the signal’s value changes over time, we choose a lock invariant
that abstracts over its concrete value. We choose P := 3b. signal((sig, L), b).
Let us ignore the chosen signal level L for now. Creating the mutex mut con-
sumes this lock invariant and binds it to mut by creating a mutex chunk
mutex((mut,...), P), cf. PR-NEWMUTEX”. Thereby, the main thread loses
access to sig. The only way to regain access is by acquiring mut, cf. PR-
AcCQUIRE”. Once the thread releases mut, it again loses access to all resources
protected by the mutex, cf. PR-RELEASE”.

Deadlocks. We have to ensure that any acquired mutex is eventually released,
again. Hence, acquiring a mutex spawns a release obligation for this mutex
and the only way to discharge this obligation is indeed by releasing it, cf. PR-
ACQUIRE” and PR-RELEASE”.

Any attempt to acquire a mutex will block until the mutex becomes available.
In order to prove that our program terminates, we have to prove that it does
not get stuck during an acquisition attempt. To prevent wait cycles involving
mutexes, we require the proof author to associate every mutex as well (just like
signals) with a level L. This level can be freely chosen during the mutex’ creation,
cf. PR-NEWMUTEX”. Mutex chunks therefore have the form mutex((¢, L), P)
where / is the heap location the mutex is stored at. Their only purpose is to
record the level and lock invariant a mutex is associated with. Hence, these
chunks can be freely duplicated as we will see later. Generally, we denote mutex
tuples by m = (¢, L). We only allow to acquire a mutex if its level is lower than
the level of each held obligation, cf. PR-ACQUIRE”. This also prevents any thread
from attempting to acquire mutexes twice, e.g., acquire mut; acquire mut or
with mut await acquire mut.

38 T. Reinhard and B. Jacobs

View Shifts. When verifying a program, it can be necessary to reformulate the
proof state and to draw semantic conclusions. To allow this we introduce a so-
called view shift relation = [14]. By applying proof rule PR-VIEWSHIFT and VS-
SEMIMP we can strengthen the precondition and weaken the postcondition. In
our example, we use this to convert the unset signal chunk into the lock invariant
which abstracts over the signal’s value, i.e., signal(s, False) = 3b. signal(s, b).

The logic we present in this work is an intuitionistic separation logic that
allows us to drop chunks.® This allows us to simplify the postcondition of our
fork proof rule’s premise from obs()) * B to obs(f)), cf. PR-FORK, and drop all
unneeded chunks via a semantic implication obs((})) x B = obs(0).

We also allow to clone mutex chunks via view shifts, cf. VS-CLONEMUT”.
In our example, this is necessary to inform both threads which level and lock
invariant mutex mut is associated with. That is, the main thread clones the
mutex chunk mutex(m, P) and passes one chunk on when it forks the busy-
waiting thread.

In Sect. 2.4 we extend our view shift relation and revisit our interpretation of
what a view shift expresses. The full set of rules we use to define = is presented
in the extended version of this paper [28].

Busy Waiting. In the approach presented in this paper, for simplicity we only
support busy-waiting loops of the form with mut await ¢, which is syntactic
sugar for while acquire mut;let r:=c¢ in release mut; -r do skip where r
denotes a fresh variable.* In each iteration, the loop tries to acquire mut, executes
¢, releases mut again and lets the result returned by c¢ determine whether the
loop continues. Such loops can fail to terminate for two reasons: (i) Acquiring
mut can get stuck and (ii) the loop could diverge.

We prevent the loop from getting stuck by requiring mut’s level to be lower
than the level of each held obligation, cf. PR-AwAIlT”. Further, we enforce ter-
mination by requiring the loop to wait for a signal. That is, when verifying a
busy-waiting loop using our approach, the proof author must choose a fixed sig-
nal and prove that this signal remains unset at the end of every non-finishing
iteration. This way, we can prove that the loop terminates by proving that every
signal is eventually set, just as in Sect. 2.1. And just as before, our logic requires
the level of the waited-for signal to be lower than the level of each held obligation.

Acquiring the mutex in every iteration makes the lock invariant available
during the verification of the loop body c. This lock invariant has to be restored
at the end of the iteration such that it can be consumed during the mutex’s
release. PR-AwAIT” allows for an additional view shift to restore the invariant.
In our example, we end our busy-waiting loop’s non-finishing iterations with the
assertion signal(s, False). We use a semantic implication view shift to convert the
signal chunk into the mutex invariant 3b. signal(s,b).

3 This allows a thread to drop its obligations chunk obs(O). Note, however, that by
dropping this chunk the thread does not drop its obligations, but only its ability to
show what its obligations are. In particular the thread would be unable to present
an empty obligations chunk upon termination.

4 As we discuss in Sect. 5, in the technical report accompanying this paper we present
a more general logic that imposes no such syntactic restrictions.

Ghost Signals 39

Choosing Levels. In our example, we have to assign levels to the mutex mut
and to the signal sig. Our proof rules for mutex acquisition and busy wait-
ing impose some restrictions on the levels of the involved mutexes and signals.
By analysing the corresponding rule applications that occur in our proof, we
can derive which constraints our level choice must comply with. Our example’s
verification involves one application of PR-ACQUIRE” and one application of
PR-AWAIT”: (i) Our main thread tries to acquire mut while holding an obliga-
tion to set sig. (ii) The forked thread busy-waits for sig while not holding any
obligations. Our assignment of levels must therefore satisfy the single constraint
m.lev < s.lev. So, we choose Levs = {0,1}, m.lev =0 and s.lev = 1.

2.3 Arbitrary Data Structures

The proof rules we introduced in Sect. 2.2 allow us to verify programs busy-
waiting for arbitrary conditions over arbitrary shared data structures as follows:
For every condition C the program waits for, the proof author inserts a signal
s into the program. They ensure that s is set at the same time the program
establishes C' and prove an invariant stating that the signal’s value expresses
whether C' holds. Then, the waiting thread can use s to wait for C'. We illustrate
this here for the simplest case of setting a single heap cell in Fig. 7a.

let x := cons(0) in let x := cons(0) in

let mut := new_mutex in let sig := new_signal in
fork with mut await [x] = 1; let mut := new_mutex in
acquire mut; fork with mut await [x] = 1;
[x] :=1; acquire mut;

release mut x| :=1;

t_signal(sig);
(a) Example program with busy wait- RS

ing for heap cell x to be set. release mut

(b) Example program 7a with addi-
tional signal sig inserted, marked in
green . sig and x are kept in sync.

[e] =€ = (let r:=[¢]inr=2¢)

(c) Syntactic sugar. r free in €’.

Fig. 7. Minimal example illustrating busy waiting for condition over heap cell. (Color
figure online)

The program involves three new non-thread-safe commands: (i) cons(v) for
allocating a new heap cell and initializing it with value v, (ii) [¢] := v for assigning
value v to heap location ¢, (iii) [¢] for reading the value stored in heap location .
We use [¢] = v as syntactic sugar for let r:=[e] in r = €.

In our example, the main thread allocates x, initializes it with the value 0 and
protects it using mutex mut. It forks a new thread busy-waiting for x to be set.
Afterwards, the main thread sets x. As explained above, we verify the program by
inserting a signal sig that reflects whether x has been set, yet. Figure 7b presents
the resulting code. The main thread creates the signal and sets it when it sets x.

40 T. Reinhard and B. Jacobs

{obs(0)}
let x := cons(0) in

{obs(0) * x +— 0}

let sig := new_signal in PR-NEWSIGNAL” with L =1
let mut := new_mutex in PR-NEWMUTEX” with L =0
s := (sig,1), m := (mut,0)

P :=3Fv. x — v *signal(s,v = 1)

{obs({s}) * mutex(m, P) * mutex(m, P)}

fork ({obs(0) * mutex(m, P)}

with m await m.lev, s.lev < 0
{obs({m]}}) * P}
Vo. {obs({m}) * x — v« signal(s,v = 1)}
x| =1
Ar.obs({m}])
* if r then P
else x — v A v # 1 x signal(s, False)
{obs(0)});
{obs({s}) * mutex(m, P)}
acquire mut; m.ev=0<1=s.lev
Vu. {obs({s, m]}) x locked(m, P) x x — v x signal(s,v = 1)}
(X :=1;

{obs({s,m}) * locked(m, P) % x — 1« signal(s,v = 1)}

set_signal(sig);

{obs({m]}) * locked(m, P) * x — 1 x* signal(s, True)}

release mut

{obs(0)}
(a) Proof outline for program 7b. Applied proof rules marked in purple. Abbreviations
marked in brown. General hints marked in red.

PR-Cons PR-AssiGNTOHEAP
F {True} cons(v) {\.¢— v} F{t— _} [Q:=0v {t— v}
PR-Exp

PR-READHEAPLOC”’

F {[= U} [K] {)\'F.r —v*xl— ’U} [[5]] € Values

F{True} e {Ar.r = [e]}

(b) Proof rules. Evaluation function [-]. Rules only used in this section marked with ”’.

Fig. 8. Verifying termination of busy waiting for condition over heap cell. (Color figure
online)

Heap Cells. Verifying this example does not conceptually differ from the example
we presented in Sect. 2.2. Figure 8b presents the new proof rules we need and Fig. 8a
sketches our example’s verification. As with non-thread-safe signals, we have to
prevent multiple threads from trying to access x at the same time in order to pre-
vent data races. For this we use so-called points-to chunks [24,31]. They have the
form ¢ — v and express that heap location ¢ stores the value v. When a thread
holds such a chunk, it exclusively owns the right to access heap location /.

Heap locations are unique and the only way to create a new points-to chunk
is to allocate and initialize a new heap cell via cons(v), cf. PR-CoNs. Hence,

Ghost Signals 41

there will never be two points-to chunks involving the same heap location. In
order to read or write a heap cell via [{] or [¢]:=e, the acting thread must first
acquire possession of the corresponding points-to chunk, cf. PR-AssicNToHEAP
and PR-READHEAPLOC””.

Relating Signals to Conditions. In our example, the forked thread busy-waits for
x to be set while our proof rules require us to justify each iteration by showing
an unset signal. That is, we must prove an invariant stating that the value of x
matches sig. As this invariant must be shared between both threads, we encode
it in the lock invariant: P := Ju. x — v * signal(s,v = 1). This does not only
allow both threads to share the heap cell and the signal but it also automatically
enforces that they maintain the invariant whenever they acquire and release the
mutex.

2.4 Signal Erasure

In the program from Fig. 7b signal sig is never read and does hence not influence
the waiting thread’s runtime behaviour. Therefore, we can verify the original
program presented in Fig.7a by erasing the physical signal and treating it as
ghost code.

Ghost Signals. Central aspects of the proof sketch we presented in Fig. 8a are
that (i) the main thread was obliged to set sig and that (ii) the value of sig
reflected whether x was already set. Ghost signals allow us to keep this infor-
mation but at the same to remove the physical signals from the code. Ghost
signals are essentially identical to the physical non-thread-safe signals we used
so far. However, as ghost resources they cannot influence the program’s runtime
behaviour. They merely carry information we can use during the verification
process.

View Shifts Revisited. We implement ghost signals by extending our view shift
relation. In particular, we introduce two new view shift rules: VS-NEWSIGNAL
and VS-SETSIGNAL presented in Fig. 9b. The former creates a new unset signal
and simultaneously spawns an obligation to set it. The latter can be used to set
a signal and thereby discharge a corresponding obligation. We say that these
rules change the ghost state and therefore call their application a ghost proof
step. With this extension, a view shift A = B expresses that we can reach
postcondition B from precondition A by (i) drawing semantic conclusions or by
(ii) manipulating the ghost state. In Fig. 9a we use ghost signals to verify the
program from Fig. 7a.

Note that lifting signals to the verification level does not affect the soundness
of our approach. The argument we presented in Sect. 2.1 still holds. We formalize
our logic and provide a formal soundness proof in the extended version of this
paper [28] and in the technical report [29]. The latter contains a more general
version of the presented logic that (i) is not restricted to busy-waiting loops of
the form with mut await ¢ and that (ii) is easier to integrate into existing tools
like VeriFast [12], as explained in Sect. 5.

42 T. Reinhard and B. Jacobs

{obs(0)}
let x := cons(0) in
{obs(®) * x — 0}

new_ghost_signal; VS-NEWSIGNAL with L = 1.
{3sig. obs({(sig, 1)}}) * x — 0 = signal((sig, 1), False)} s := (sig,1)
Vsig. {obs({s]}) * x — 0 * signal(s, False)} P :=Fv. x— v xsignal(s,v = 1)
let mut := new_mutex in PR-NEWMUTEX” with L =0
obs({s]}) * mutex((mut, 0), P) o
{* mutex((mut, 0), P) } m = (mut,0)
fork ({obs(®) * mutex(m, P)}
with m await m.lev, s.lev < ()
{obs({m}}) x P}
Vo. {obs({m}) x x — v x signal(s,v = 1)}
x| =1
Ar.obs({m]) *
if 7 then P
else x — v A v # 1 * signal(s, False)
{obs(0)});
{obs({s]}) * mutex(m, P)}
acquire mut; m.dev=0<1=s.lev

obs({s, m}) * locked(m, P)
Yo. ;

*X — v *signal(s,v = 1)
X:=1;
set_ghost_signal(s);

obs({m}) * locked(m, P)

* X — 1« signal(s, True)
release mut

{obs(0)}

(a) Proof outline for the program presented in Fig. 7a. Auxiliary commands hinting at
view shifts and general hints marked in red. Applied proof and view shift rules marked
in purple. Abbreviations marked in brown.

VS-NEWSIGNAL
L € Levs

obs(O) = Jid. obs(O W {(id, L)}) = signal((id, L), False)

VS-SETSIGNAL
obs(O W {s}) * signal(s, —) = obs(O) * signal(s, True)

(b) Proof rules.

Fig. 9. Verifying termination with ghost signals. (Color figure online)

3 A Realistic Example

To demonstrate the expressiveness of the presented verification approach, we
verified the termination of the program presented in Fig. 10a. It involves two
threads, a consumer and a producer, communicating via a shared bounded FIFO

Ghost Signals 43

with a maximal capacity of 10. The producer enqueues numbers 100, ..., 1 into
the FIFO and the consumer dequeues those. Whenever the queue is full, the
producer busy-waits for the consumer to dequeue an element. Likewise, whenever
the queue is empty, the consumer busy-waits for the producer to enqueue the
next element. Each thread’s finishing depends on the other thread’s productivity.
This is, however, no cyclic dependency. For instance, in order to prove that the
producer eventually pushes number ¢ into the queue, we only need to rely on the
consumer to pop ¢ 4+ 10. A similar property holds for the consumer.

alloc_ghost_signal IDs(id}p, zdpmh) for 1 <4 <100;
Liop :=102 —4, Lyp,g, :=101 — 4, s; := (id;, Ly) for 1 <4 <100

pop
init_ghost blgndlb(po(}]” 511,?121,);

{obs({spop: spusnl) * - - -}
let fifoio := cons(nil) in let mut := new_mutex in
let ¢, := cons(100) in let c. := cons(100) in

fork (while (cp decreases in each iteration.
with mut await (Busy-wait for fifoip not being full.
{obs({[s;ﬁlsh, (mut, 0)}) *...} — Wait for consumer to pop.
let f := [fifoio] in
if size(f) < 10 then (If fifo1o not full, push next element.
let ¢ := [cp] in [fifolo] :=f-(c); [cp]:=c — 1;

set_ghost_signal(sp .);
if ¢ — 1 # 0 then init_ghost_signal(s pu‘éh)).

size(f) # 10); if size(f) = 10 then wait for sip'"
[cp] # 0) Lop'® =92 — ¢, < 101 — ¢, = Lppu>h
do skip);
while (c. decreases in each iteration.
with mut await (Busy-wait for fifoig not being empty.
{obs({st%p, (mut,0)}) * ...} — Wait for producer to push.
let f := [fifoio] in
if size(f) > 0 then (If fifo1o not empty, pop next element.
let ¢ := [cc] in [fifoio] :=tail(f); [c]:=c—1;
set_ghost_signal(s5op);
if ¢ — 1 # 0 then init_ghost_signal(s$,,));
size(f) > 0); if size(f) = 0 then wait for s,
[cc] #0) L = 101 —cc <102 —cc = L,
do skip);

(a) Example program with two threads communicating via a shared bounded FIFO
with maximal size 10. Auxiliary commands hinting at view shifts and general hints
marked in red. Abbreviations marked in brown. Hints on proof state marked in blue.

VS-SiGgINIT
¥rS;A5L>L;c|)%SIGnIiIr?itSi (id) obs(O) * uninitSig(id)
u id. u g(? = obs(O W {(id, L)}) = signal((id, L), False)

(b) Fine-grained view shift rules for signal creation.

Fig. 10. Realistic example program. (Color figure online)

44 T. Reinhard and B. Jacobs

Fine-Tuning Signal Creation. To simplify complex proofs involving many signals
we refine the process of creating a new ghost signal. For simplicity, we combined
the allocation of a new signal ID and its association with a level and a boolean
in one step. For some proofs, such as the one we outline in this section, it
can be helpful to fix the IDs of all signals that will be created throughout the
proof already at the beginning. To realize this, we replace view shift rule VS-
NEWSIGNAL by the rules presented in Fig. 10b and adapt our signal chunks
accordingly. With these more fine-grained view shifts, we start by allocating
a signal ID, cf. VS-ALLOCSIGID. Thereby we obtain an wuninitialized signal
uninitSig(id) that is not associated with any level or boolean, yet. Also, allocating
a signal ID does not create any obligation because threads can only wait for
initialized (and unset) signals. When we initialize a signal, we bind its already
allocated ID to a level of our choice and associate the signal with False, cf. VS-
SiGINIT. This creates an obligation to set the signal.

Loops and Signals. In our program, both threads have a local counter initially
set to 100 and run a nested loop. The outer loops are controlled by their thread’s
counter, which is decreased in each iteration until it reaches 0 and the loop stops.
For such loops, we introduce a conventional proof rule for total correctness of
loops, cf. this paper’s extended version [28]. Verifying termination of the inner
loops is a bit more tricky and requires the use of ghost signals.

So far, we had to fix a single signal for the verification of every await loop.
We can relax this restriction to considering a finite set of signals the loop may
wait for, cf. PR-AWAIT presented in [28]. Apart from being a generalisation, this
rule does not differ from PR-AWAIT” introduced in Sect. 2.2.

Initially, we allocate 200 signal IDs idll)?lgm .. ,idplmsh, id;g& . 7Z'dpl)0p. We are
going to ensure that always at most one push signal and at most one pop signal
are initialized and unset. The producer and consumer are going to hold the
obligation for the push and pop signal, respectively. The producer will hold the
obligation for s;ush while ¢ is the next number to be pushed into the FIFO and
it will set s;ush when it pushes the number ¢ into the FIFO. Meanwhile, the
;)ush
is empty. Similarly, the consumer will hold the obligation for s

consumer will use s to wait for the number 7 to arrive in the queue when it

;Op while number
i is the next number to be popped from the FIFO and will set s}, when it pops
the number 7. The producer uses s, to wait for the consumer to pop ¢ from
the queue when it is full. At any time, we let the mutex mut protect the two

active signals and thereby make them accessible to both threads.

Choosing the Levels. Note that we ignored the levels so far. The producer and the
consumer both acquire the mutex while holding an obligation for a signal. Hence,
we choose Levs = N, m.lev = 0 and s.lev > 0 for every signal s. Both threads will
justify iterations of their respective await loop by using an unset signal at the
end of such an iteration. Our proof rules allow us to ignore the mutex obligation
during this step. Hence, the mutex level does not interfere with the level of the
unset signal. Whenever the queue is full, the producer waits for the consumer

Ghost Signals 45

to pop an element and whenever the queue is empty, the consumer waits for

the producer to push. That is, the producer waits for sif1% while holding an

obligation for s;ush and the consumer waits for sfmsh while holding an obligation

for spop So, we have to choose the signal levels such that sif10.lev < spush lev
and 8busn-lev < s} -lev hold. We solve this by choosing s},,.lev = 102 — i and
Spush-lev =101 — 4.

Verifying Termination. This setup suffices to verify the example program. Via
the lock invariant, each thread has access to both active signals. Whenever the
producer pushes a number ¢ into the queue, it sets s;ush which discharges the held
obligation and decreases its counter. Afterwards ifi > 1, it uses the uninitialized
signal chunk uninitSig (i dpugh) to initialize s*- 1 = (id’ .}, 101 — (i — 1)) and

replaces s’ push 11 the lock invariant by spush before it releases the lock. If i = 1,
the counter reached 0 and the loop ends. In this case, the producer holds no
obligation. The consumer behaves similarly. Since we proved that each thread
discharged all its obligations, we proved that the program terminates. Figure 10a
illustrates the most important proof steps. We present the program’s verification
in full detail in the extended version of this paper [28] and in the technical
report [29]. Furthermore, we encoded [27] the proof in VeriFast [12].

The number of threads in this program is fixed. However, our approach also
supports the verification of programs where the number of threads is not even
statically bounded. In [28] we present and verify such a program. It involves N
producer and N consumer threads that communicate via a shared buffer of size
1, for a random number N > 0 determined during runtime.

push pu§h7

4 Specifying Busy-Waiting Concurrent Objects

Our approach can be used to verify busy-waiting concurrent objects with respect
to abstract specifications. For example, we have verified [26] the CLH lock [7]
against a specification that is very similar to our proof rules for built-in mutexes
shown in Fig. 6. The main difference is that it is slightly more abstract: when a
lock is initialized, it is associated with a bounded infinite set of levels rather than
with a single particular level. (To make this possible, an appropriate universe
of levels should be used, such as the set of lists of natural numbers, ordered
lexicographically.) To acquire a lock, the levels of the obligations held by the
thread must be above the elements of the set; the new obligation’s level is an
element of the set.

5 Tool Support

We have extended the VeriFast tool [10] for separation logic-based modular ver-
ification of C and Java programs so that it supports verifying termination of
busy-waiting C or Java programs. When verifying termination, VeriFast con-
sumes a call permission at each recursive call or loop iteration. In the technical

46 T. Reinhard and B. Jacobs

report [29] we define a generalised version of our logic that instead of providing
a special proof rule for busy-waiting loops, provides wait permissions and a wait
view shift. A call permission of a degree § can be turned into a wait permission
of a degree ¢’ < ¢ for a given signal s. A wait view shift for an unset signal s for
which a wait permission of degree § exists produces a call permission of degree
0, which can be used to fuel a busy-waiting loop. When busy-waiting for some
signal s, we can generate new permissions to justify each iteration as long as
s remains unset.

VeriFast allows threads to freely exchange permissions. This is useful to verify
termination of non-blocking algorithms involving compare-and-swap loops [11].
However, we must be careful to prevent self-fueling busy-waiting loops. Hence,
we restrict where a permission can be consumed based on the thread phase it
was created in. The main thread’s initial phase is e. When a thread in phase p
forks a new thread, its phase changes to p.Forker and the new thread starts in
phase p.Forkee. We allow a thread in phase p to consume a permission only if it
was produced in an ancestor thread phase p' C p.

The only change we had to make to VeriFast’s symbolic execution engine
was to enforce the thread phase rule. We encoded the other aspects of the logic
simply as axioms in a trusted header file. We used this tool support to verify
the bounded FIFO (Sect. 3) and the CLH lock (Sect. 4). The bounded FIFO
proof [27] contains 160 lines of proof annotations for 37 lines of code (an anno-
tation overhead of 435%) and takes 0.08s to verify. The CLH lock proof [26]
contains 343 lines of annotations for 49 lines of code (an overhead of 700%) and
takes 0.1s to verify.

6 Integrating Higher-Order Features

The logic we presented in this paper does not support higher-order features such
as assertions that quantify over assertions, or storing assertions in the (logical)
heap as the values of ghost cells. While we did not need such features to carry
out our example proofs, they are generally useful to verify higher-order program
modules against abstract specifications. The typical way to support such features
in a program logic is by applying step indexing [1,17], where the domain of logical
heaps is indexed by the number of execution steps left in the (partial) program
trace under consideration. Assertions stored in a logical heap at index n+ 1 talk
about logical heaps at index n; i.e., they are meaningful only later, after at least
one more execution step has been performed.

It follows that such logics apply directly only to partial correctness prop-
erties. Fortunately, we can reduce a termination property to a safety property
by writing our program in a programming language instrumented with runtime
checks that guarantee termination. Specifically, we can write our program in a
programming language that fulfils the following criteria: It tracks signals, obliga-
tions and permissions at runtime and has constructs for signal creation, waiting
and setting a signal. The fork command takes as an extra operand the list of
obligations to be transferred to the new thread (and the other constructs simi-
larly take sufficient operands to eliminate any need for angelic choice). Threads

Ghost Signals 47

get stuck when these constructs’ preconditions are not satisfied, such as when a
thread waits for a signal while holding the obligation for that signal. We can then
use a step-indexing-based higher-order logic such as Iris [14] to verify that no
thread in our program ever gets stuck. Once we established this, we know none
of the instrumentation has any effect and can be safely erased from the program.

7 Related and Future Work

In recent work [30] we propose a separation logic to verify termination of pro-
grams where threads busy-wait to be abruptly terminated. We generalize this
work to support busy waiting for arbitrary conditions.

In [11] we propose an approach based on call permissions to verify termi-
nation of single- and multithreaded programs that involve loops and recursion.
However, that work does not consider busy-waiting loops. In the technical report,
we present a generalised logic that uses call permissions and allows busy waiting
to be implemented using arbitrary looping and/or recursion. Furthermore, the
use of call permissions allowed us to encode our case studies in our VeriFast tool
which also uses call permissions for termination verification.

Liang and Feng [20,21] propose LiLi, a separation logic to verify liveness of
blocking constructs implemented via busy waiting. In contrast to our verification
approach, theirs is based on the idea of contextual refinement. In their approach,
client code involving calls of blocking methods of the concurrent object is verified
by first applying the contextual refinement result to replace these calls by code
involving primitive blocking operations and then verifying the resulting client
code using some other approach. In contrast, specifications in our approach are
regular Hoare-style triples and proofs are regular Hoare-style proofs.

In [9] we propose a Hoare logic to verify liveness properties of the 1/0
behaviour of programs that do not perform busy waiting. By combining that
approach with the one we proposed in this paper, we expect to be able to verify
I/0 liveness of realistic concurrent programs involving both I/O and busy wait-
ing, such as a server where one thread receives requests and enqueues them into
a bounded FIFO, and another one dequeues them and responds. To support this
claim, we encoded the combined logic in VeriFast and verified a simple server
application where the receiver and responder thread communicate via a shared
buffer [25].

8 Conclusion

We propose what is to the best of our knowledge the first separation logic for
verifying termination of programs with busy waiting. We offer a soundness proof
of the system of the paper in its extended version [28], and of a more general
system in the technical report [29]. Further, we demonstrated its usability by
verifying a realistic example. We encoded our logic and the realistic example in
VeriFast [27] and used this encoding also to verify the CLH lock [26]. Moreover,
we expect that our approach can be integrated into other existing concurrent
separation logics such as Iris [14].

48 T. Reinhard and B. Jacobs
References
1. Appel, A.W., McAllester, D.: An indexed model of recursive types for foundational

10.

11.

12.

13.

14.

15.

proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657-683 (2001).
https://doi.org/10.1145/504709.504712

Bostrom, P., Miiller, P.: Modular verification of finite blocking in non-terminating
programs. In: Boyland, J.T. (ed.) 29th European Conference on Object-Oriented
Programming, ECOOP 2015, 5-10 July 2015, Prague, Czech Republic. LIPIcs,
vol. 37, pp. 639-663. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik (2015).
https://doi.org/10.4230/LIPIcs. ECOOP.2015.639

Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Prevent-
ing data races and deadlocks. OOPSLA (2002). https://doi.org/10.1145/582419.
582440

. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:

Extended static checking for Java. In: PLDI 2002 (2002). https://doi.org/10.1145/
512529.512558

Hamin, J., Jacobs, B.: Deadlock-free monitors. In: Ahmed, A. (ed.) ESOP 2018.
LNCS, vol. 10801, pp. 415-441. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89884-1_15

Hamin, J., Jacobs, B.: Transferring Obligations Through Synchronizations. In: 33rd
European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 134, pp. 19:1-19:58 (2019).
https://doi.org/10.4230/LIPIcs. ECOOP.2019.19

Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, 1st edn. Revised
Reprint. Morgan Kaufmann Publishers Inc., San Francisco (2012)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12, 576-580 (1968). https://doi.org/10.1145/363235.363259

Jacobs, B.: Modular verification of liveness properties of the I/O behavior of imper-
ative programs. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 509-524. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
429

Jacobs, B. (ed.): VeriFast 21.04. Zenodo (2021). https://doi.org/10.5281/zenodo.
4705416

Jacobs, B., Bosnacki, D., Kuiper, R.: Modular termination verification of single-
threaded and multithreaded programs. ACM Trans. Program. Lang. Syst. 40, 12:1-
12:59 (2018). https://doi.org/10.1145/3210258

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41-55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5.4

Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming (2016). https://doi.org/10.1145/2951913.2951943

Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, €20 (2018). https://doi.org/10.1017/S0956796818000151
Kim, J., Sjéberg, V., Gu, R., Shao, Z.: Safety and liveness of MCS lock-layer by
layer. In: Asian Symposium on Programming Languages and Systems (2017)

https://doi.org/10.1145/504709.504712
https://doi.org/10.4230/LIPIcs.ECOOP.2015.639
https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/512529.512558
https://doi.org/10.1007/978-3-319-89884-1_15
https://doi.org/10.1007/978-3-319-89884-1_15
https://doi.org/10.4230/LIPIcs.ECOOP.2019.19
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-030-61362-4_29
https://doi.org/10.1007/978-3-030-61362-4_29
https://doi.org/10.5281/zenodo.4705416
https://doi.org/10.5281/zenodo.4705416
https://doi.org/10.1145/3210258
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Ghost Signals 49

Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233-247. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11817949_16

Lars Birkedal, Kristian Stgvring, J.T.: The category-theoretic solution of recursive
metric-space equations. Theoret. Comput. Sci. 411(47), 4102-4122 (2010). https://
doi.org/10.1016/j.tcs.2010.07.010

Leino, K.R.M., Miiller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378-393. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9_27

Leino, K.R.M., Miiller, P., Smans, J.: Deadlock-free channels and locks. In: Gordon,
A.D. (ed.) Programming Languages and Systems. LNCS, vol. 6012, pp. 407-426.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6_22
Liang, H., Feng, X.: A program logic for concurrent objects under fair scheduling.
POPL (2016). https://doi.org/10.1145/2837614.2837635

Liang, H., Feng, X.: Progress of concurrent objects with partial methods. Proc.
ACM Program. Lang. 2, 20:1-20:31 (2017). https://doi.org/10.1145/3158108
Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9, 21-65 (1991).
https://doi.org/10.1145/103727.103729

Miihlemann, K.: Method for reducing memory conflicts caused by busy waiting
in multiple processor synchronisation. IEE Proc. E - Comput. Digit. Techniques
127(3), 85-87 (1980). https://doi.org/10.1049/ip-¢.1980.0017

O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1-19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0-1

Reinhard, T., Jacobs, B.: VeriFast proof of I/O liveness for a simple server
with a receiver and a responder thread communicating via a shared buffer
(2020). https://github.com/verifast/verifast/blob/master/examples/busywaiting/
ioliveness/echo_live_mt.c

Reinhard, T., Jacobs, B.: VeriFast proof of safety for CLH lock (2020). https://
github.com /verifast /verifast /blob/master /examples/busywaiting /clhlock/clhlock.
c

Reinhard, T., Jacobs, B.: VeriFast proof of termination for consumer-producer
problem with bounded FIFO (2020). https://github.com/verifast /verifast/blob/
master/examples/busywaiting/bounded_fifo.c

Reinhard, T., Jacobs, B.: Ghost signals: verifying termination of busy waiting
(extended version) (2021). https://arxiv.org/abs/2010.11762

Reinhard, T., Jacobs, B.: Ghost signals: verifying termination of busy waiting
(technical report). Zenodo (2021). https://doi.org/10.5281/zenodo.4775181
Reinhard, T., Timany, A., Jacobs, B.: A Separation Logic to Verify Termination of
Busy-Waiting for Abrupt Program Exit, New York, NY, USA, pp. 26-32. Associ-
ation for Computing Machinery (2020). https://doi.org/10.1145/3427761.3428345
Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp.
55-74 (2002). https://doi.org/10.1109/LICS.2002.1029817

da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P., Sutherland, J.: Modular ter-
mination verification for non-blocking concurrency. In: Thiemann, P. (ed.) ESOP
2016. LNCS, vol. 9632, pp. 176-201. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49498-1_8

https://doi.org/10.1007/11817949_16
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-11957-6_22
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/3158108
https://doi.org/10.1145/103727.103729
https://doi.org/10.1049/ip-e.1980.0017
https://doi.org/10.1007/3-540-44802-0_1
https://github.com/verifast/verifast/blob/master/examples/busywaiting/ioliveness/echo_live_mt.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/ioliveness/echo_live_mt.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/clhlock/clhlock.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/clhlock/clhlock.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/clhlock/clhlock.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/bounded_fifo.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/bounded_fifo.c
https://arxiv.org/abs/2010.11762
https://doi.org/10.5281/zenodo.4775181
https://doi.org/10.1145/3427761.3428345
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-662-49498-1_8
https://doi.org/10.1007/978-3-662-49498-1_8

50 T. Reinhard and B. Jacobs

33. Vafeiadis, V.: Concurrent separation logic and operational semantics. In: Elec-
tronic Notes in Theoretical Computer Science, 276, pp. 335-351 (2011). https://
doi.org/10.1016/j.entcs.2011.09.029, twenty-seventh Conference on the Mathemat-
ical Foundations of Programming Semantics (MFPS XXVII)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1016/j.entcs.2011.09.029
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Reflections on Termination of Linear
Loops

Shaowei Zhu®™)® and Zachary Kincaid

Princeton University, Princeton, NJ 08544, USA
{shaoweiz,zkincaid}@cs.princeton.edu

Abstract. This paper shows how techniques for linear dynamical sys-
tems can be used to reason about the behavior of general loops. We
present two main results. First, we show that every loop that can be
expressed as a transition formula in linear integer arithmetic has a best
model as a deterministic affine transition system. Second, we show that
for any linear dynamical system f with integer eigenvalues and any inte-
ger arithmetic formula G, there is a linear integer arithmetic formula
that holds exactly for the states of f for which G is eventually invari-
ant. Combining the two, we develop a monotone conditional termination
analysis for general loops.

Keywords: Termination - Conditional termination - Best abstraction -
Reflective subcategory - Linear dynamical systems - Monotone analysis

1 Introduction

Linear and affine dynamical systems are a model of computation that is easy to
analyze (relative to non-linear systems), making them useful across a broad array
of applications. In the context of program analysis, affine dynamical systems
correspond to loops of the form

while (G(x)) do x := Ax + b)
where G is a formula, A is a matrix, x is a vector of program variables, and b is
a constant vector. The termination problem for such loops has been shown to be
decidable for several variations of this model [4,9,12,24,29]. However, few loops
in real programs take this form, and so this work has not yet made an impact on
practical termination analysis tools. This paper bridges the gap between theory
and practice, showing how techniques for linear and affine dynamical systems
can be used to reason about general programs.

Example 1. We illustrate our methodology using the example program in Fig. 1
(left). First, observe that although the body of this loop is not of the form (), the
value of the sum x 4 y decreases by z each iteration, and z remains the same.
Thus, we can approximate the loop by the linear dynamical system in Fig. 1
(right), where the nature of the approximation is given by the linear map in the
center of Fig. 1 (i.e., the a coordinate corresponds to x +y, and the b coordinate

© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 51-74, 2021.
https://doi.org/10.1007/978-3-030-81688-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_3&domain=pdf
http://orcid.org/0000-0002-0335-1151
http://orcid.org/0000-0002-7294-9165
https://doi.org/10.1007/978-3-030-81688-9_3

52 S. Zhu and Z. Kincaid

w

1 z:=1 m_{ouo} x

2 while (z > 0 A y > 0) do bl |10001] |y

3 w = 3w+ z+ 1 z a 1-1] Ta
4 if ((x-y h2==0: =----------o-omoe- ’ M = [0 1} M
5 T i=x -z

6 else:

7 Y =y -z

Fig. 1. Over-approximation of a loop by a linear dynamical system.

to z). The linear map is a simulation, in the sense that it transforms the state
space of the program into the state space of the linear dynamical system so that
every step in the loop has a corresponding step in the linear dynamical system.

Next, we compute the image of the guard of the loop (z > 0 Ay > 0)
under the simulation, which yields @ > 0 (corresponding to the constraint = +
y > 0 over the original program variables). We can compute a closed form for
this constraint holding on the kth iteration of the loop by exponentiating the
dynamics matrix of the linear dynamical system, multiplying on the left by the
row vector corresponding to the constraint, and on the right by the simulation:

i {1—1}’“[0110}
0 Jot1] |ooot
Constraint ~———~—""—~—"

Dynamics Simulation

=(z+y)— k=

e 8 8

We then analyze the asymptotic behavior of the closed form:

—oo ifz>0
Ask —oo,(x+y)—kz—<z+y ifz=0
00 if <0

We conclude that z > 0V (z + y) < 0 is a sufficient condition for the loop to
terminate. N

The paper is organized as follows. To serve as the class of “linear models”
of loops, we introduce deterministic affine transition systems (DATS), a com-
putational model that generalizes affine dynamical systems. Sect.3 shows that
any loop expressed as a linear integer arithmetic formula has a DATS-reflection,
which is a best representation of the behavior of the loop as a DATS. Moreover,
this holds for a restricted class of DATS with rational eigenvalues. Section 4
shows that for a linear map f with integer eigenvalues and a linear integer arith-
metic formula G, there is a linear integer arithmetic formula that holds exactly
for those states such that G(f*(z)) holds for all but finitely many k € N.
Section 5 brings the results together, showing that the analysis of a DATS with
rational eigenvalues can be reduced to the analysis of a linear dynamical system

Reflections on Termination of Linear Loops 53

with integer eigenvalues. The fact that DATS-reflections are best implies mono-
tonicity of the analysis. Finally, in Sect. 6, we demonstrate experimentally that
the analysis can be successfully applied to general programs, using the framework
of algebraic termination analysis [34] to lift our loop analysis to a whole-program
conditional termination analysis. Some proofs are omitted for space, but may be
found in the extended version of this paper [33].

2 Preliminaries

This paper assumes familiarity with linear algebra — see for example [19]. We
recall some basic definitions below.

In the following, a linear space refers to a finite-dimensional linear space
over the field of rational numbers Q. For V a linear space and U C V', span(U)
is the linear space generated by U; i.e., the smallest linear subspace of V' that
contains U. An affine subspace of a linear space V is the image of a linear
subspace of V under a translation (i.e., a set of the form {v+ vy : v € U} for
some linear subspace U C V and some vy € V). For any scalar a € Q, and any
linear space V', we use a to denote the linear map @ : V — V that maps v — av
(in particular, 1 is the identity). A linear functional on a linear space V is a
linear map V' — @Q; the set of all linear functionals on V' forms a linear space
called the dual space of V', denoted V*. A linear map f : Vi — V5 induces a
dual linear map f* : V3* — V;* where f*(g) = go f. For any linear space V, V is
naturally isomorphic to V**, where the isomorphism maps x — Af : V*.f(z).

Let V be a linear space. A linear map f : V — V is associated with a
characteristic polynomial p(x), which is defined to be the determinant of
(I — Ay), where Ay is a matrix representation of f with respect to some basis
(the choice of which is irrelevant). Define the spectrum (set of eigenvalues)
of f to be the set of (possibly complex) roots of its characteristic polynomial,
spec(f) = {X € C : py(\) = 0}. We say that f has rational spectrum if
spec(f) C Q; equivalently (by the spectral theorem — see e.g. [19, Ch. 6, Theorem

7):

— There is a basis {x1,...,x,} for V consisting of generalized (right) eigenvec-
tors, satisfying (f — Ai)™(x;) = 0 for some \; € spec(f) and some 7; > 1 (r;
is called the rank of x;)

— There is a basis {g1, ..., gn } for V* consisting of generalized left eigenvectors,
satisfying g; o (f — Ai)"™ = 0 for some \; € spec(f) and some 7; > 1

Tt is possible to determine whether a linear map has rational spectrum (and com-
pute the basis of eigenvectors for V' and V*) in polynomial time by computing
its characteristic polynomial [15], factoring it [22], and checking whether each
factor is linear.

54 S. Zhu and Z. Kincaid

The syntax of linear integer arithmetic (LIA) is given as follows:

2 € Variable
neci
teTermu=x |n|n-t|t;+ts
F e Formulaz:=t; <ty | (n|t) | A ANFy | LV Fy | -F | 32.F | Vo.F

Let X C Variable be a set of variables. A valuation over X isamap v : X —
Z. If F is a formula whose free variables range over X and v is a valuation over
X, then we say that v satisfies F' (written v = F) if the formula F is true when
interpreted over the standard model of the integers, using v to interpret the free
variables. We write F' |= G if every valuation that satisfies F' also satisfies G.

2.1 Transition Systems

A transition system T is a pair T = (Sp, Rr) where St is a set of states and
Ry C St x St is a transition relation. Within this paper, we shall assume that
the state space of any transition system is a finite-dimensional linear space (over
Q). We write z —7 2’ to denote that the pair (z,z’) belongs to Ry. We define
the domain of a transition system 7, dom(T') = {z € St : 3z’.x —r 2'}, to be
the set of states that have a T-successor. We define the w-domain dom®(7") of
T to be the set of states from which there exist infinite T-computations:

dom®(T) £ {z¢ € St : Ix1, 3, ... such that zg —7 x; —7 29 —p---} .

A transition formula F(X,X’) is an LIA formula whose free variables
range over a designated finite set of variables X and a set of “primed copies”
X' ={2': x € X}. For example, a transition formula that represents the body
of the loop in Fig. 1 is

z>0Ny>0Nw =3w+z+1A2 =2

/\<v((2Iw—y)Aw’=m—sz’=y))> (1)

CQlz—y) Ay =y—zAa' ==z

We use TF to denote the set of tramsition formulas. A transition formula
F(X, X’) defines a transition system where the state space is the set of functions
X — Q, and where v —p ¢’ if and only if both (1) v and v' map each x € X
to an integer and (2) [v,v'] E F, where [v,v'] denotes the valuation that maps
each z € X to v(z) and each 2’ € S’ to v'(z). Defining the state space of F to
be X — Q rather than X — Z is a technical convenience (X — Q = QXlis a
linear space), but does not materially affect the results of this paper since only
(integral) valuations are involved in transitions.
Let T'= (St, Rr) be a transition system. We say that T is:

— linear if Rt is a linear subspace of St x St,
— affine if Rr is an affine subspace of Sp x S,
— deterministic if x —r 2} and ¢ — 2} implies 2} = 4

Reflections on Termination of Linear Loops 55

— total if for all x € St there exists some 2’ € St with z —1 2’
For example, the transition system 7" with transition relation

o Ta 10 o 21 . 0
w2 LB oo)= o Bl
v 0of Y o1 W1 1
is deterministic and affine, but not linear or total. The transition system U with
transition relation

w ({6 el -l

is total, linear (and affine), but not deterministic. The classical notion of a linear
dynamical system—a transition system where the state evolves according to
a linear map—corresponds to a total, deterministic, linear transition system.
Similarly, an affine dynamical system is a transition system that is total,
deterministic, and affine.

For any map s : X — Y, and any relation R C X x X, define the image
of R under s to be the relation s[R] = {(s(x),s(z')): (x,2') € R}. For any
relation R C Y x Y, define the inverse image of R under s to be the relation
s7THR] = {{(z,2') : (s(z),s(z')) € R}. Let T = (St, Rr) and U = (Sy, Ry) be
transition systems. We say that a linear map s : S — Sy is a linear simulation
from T to U, and write s : T — U, if for all z —¢ 2/, we have s(z) —y s(z’).
Observe that the following are equivalent: (1) s is a simulation, (2) s[Rr] C Ry,
and (3) Ry C s~ [Ry].

An example of a simulation between a transition formula and a linear dynam-
ical system is given in Fig. 1. In fact, there are many linear dynamical systems
that over-approximate this loop; however, the simulation and linear dynamical
system given in Fig. 1 is its best abstraction.

To formalize the meaning of best abstractions, it is convenient to use the
language of category theory [17]. Any class of transition systems defines a cat-
egory, where the objects are transitions systems of that class, and the arrows
are linear simulations between them. We use boldface letters (Linear, Affine,
Deterministic, Total) to denote categories of transition systems (e.g., DATS
denotes the category of Deterministic Affine Transition Systems).

If T is a transition system and C is a category of transition systems, a C-
abstraction of T is a pair (U, s) consisting of a transition system U belonging to
C and a linear simulation s : T'— U. A C-reflection of T is a C-abstraction that
satisfies a universal property among C-abstractions of T: for any C-abstraction
(V,t) of T there exists a unique simulation ¢ : U — V such that t o s = ¢; i.e.,

the following diagram commutes:
/i
t
S

S---d <

T

56 S. Zhu and Z. Kincaid

If D is a category of transition systems and C is a subcategory such that
every transition system in D has a C-reflection, we say that C is a reflective
subcategory of D.

Our ultimate goal is to bring techniques from linear dynamical systems to
bear on transition formulas. Fig. 1 gives an example of a program and its linear
dynamical system reflection. Unfortunately, such reflections do not exist for all
transition formulas, which motivates our investigation of alternative models.

Proposition 1. The transition formula x' = x Ax = 0 has no TDATS-
reflection.

Proof. Let F be the 1-dimensional transition formula 2’ = x A x = 0. For a
contradiction, suppose that (A, s) is a TDATS-reflection of F'. Since F' contains
the origin, then so must the transition relation of A, and so A is linear. Next,
consider that for any A € QQ, we have the simulation id : F' — A), where id is
the identity function and Ay = (Q, z — Az). Since (A4, s) is a reflection of F, for
any A, there is some ty such that ¢ty : A — Ay and id = t) o s. Since ty is a
simulation, we have Aty = Ay oty = t) o A. Since id = t) o s, we must have ¢,
non-zero, and so ty is a left eigenvector of A with eigenvalue A. Since this holds
for all A, A must have infinitely many eigenvalues, a contradiction.

3 Linear Abstractions of Transition Formulas

Proposition 1 shows that not every transition formula has a total deterministic
affine reflection. In the following we show that totality is the only barrier: every
transition formula has a (computable) DATS-reflection. Moreover, we show that
every transition formula has a rational spectrum DATS (Q-DATS)-reflection,
a restricted class of DATS that generalizes affine maps x — Ax + b where A
has rational eigenvalues. The restriction on eigenvalues makes it easier to reason
about the termination behavior of Q-DAT'S.

In the remainder of this section, we show that every transition formula has
a Q-DATS-reflection by establishing a chain of reflective subcategories:

Corollary 1
T emmal g bemmad o g YOO L6 DATS

The fact that Q-DATS is a reflective subcategory of TF then follows from
the fact that a reflective subcategory of a reflective subcategory is reflective.

3.1 Affine Abstractions of Transition Formulas

Let F(X, X’) be a transition formula. The affine hull of F', denoted aff(F), is
the smallest affine set off(F) C (X UX') - Q 2 (X — Q) x (X — Q) that
contains all of the models of F. Reps et al. give an algorithm that can be used
to compute aff(F'), by using an SMT solver to sample a set of generators [26].

Reflections on Termination of Linear Loops 57

Lemma 1. Let F(X,X’) be a transition formula. The affine hull of F (con-
sidered as a transition system) is the best affine abstraction of F (where the
sitmulation from F to aff(F) is the identity).

Ezxample 2. Consider the example program in Fig. 1. Letting F' denote the tran-
sition formula corresponding to the program, aff(F') can be represented as the
solutions to the constraints

!
1000 ;”, 310 0 Z’ (1)
o110l |5 | =]0o11-1 + 1, (2)
0001 |?, 000 1| Y
z z 0

Notice that aff(F') is 4-dimensional and has a transition relation defined by
3 constraints, and thus is not deterministic. The next step is to find a suitable
projection onto a lower-dimensional space so that the resulting transition system
is deterministic.

3.2 Reflections via the Dual Space

This section presents a key technical tool that will be used in the next two
subsections to prove the existence of reflections. For any transition system T,
an abstraction (U, s) of T consisting of a transition system U and a simulation
s : St — Sy induces a subspace of S7., which is the range of the dual map s*
(i.e., the set of all linear functionals on St of the form g o s where g € Sfy).
The essential idea is we can apply this in reverse: any subspace A of S7. induces
a transition system U and a simulation s : T — U that satisfies a universal
property among all abstractions (V,v) of T" where the range of v* is contained
in A. We will now formalize this idea.

Let T be a transition system, and let A be a subspace of S%. Define a4 (T)
to be the pair a,(T) = (U, s) consisting of a transition system U and a linear
simulation s : T'— U where

— 8:S7 — A* sends each © € St to Af : A.f(x)
~ Sy & A* and Ry = s[Rr) = {{s(x),s(z")) : (x,2') € Rr}

Lemma 2 (Dual space simulation). Let T be a transition system, let A be
a subspace of S%., and let (U, s) = aa(T). Suppose that Z is a transition system
and z : T — Z is a simulation such that the range of z* is contained in A. Then
there exists a unique simulation Z : U — Z such that Zo s = z.

Proof. The high-level intuition is that since the range of z* is contained in A,
we may consider it to be a map z* : S} — A; dualizing again, we get a map
2** 1 A* — 8%, whose domain is Sy and codomain is (isomorphic to) Sz.

More formally, let j : Sz — S3* be the natural isomorphism between Sz and
S%* defined by j(y) £ \g : S%.g(y). Define z : A* — Sz by

Z(h) &7 (Ag : S5(go) .

58 S. Zhu and Z. Kincaid

First we show that Zos = z. Let x € Sz. Then we have

(Zos)(z) = 5(8(93))
77 (Ag: 85.(s(x))(g02))
JTH g S5 Af(@)(g02))
77 (Ag + S%g(2()))
(93)

Next we show that Z is a simulation. Suppose y —¢ ¢'. Since Ry = s[Rr], there
is some z, ' € St such that © —7 2/, s(z) =y, and s(z’) =¢'. Since z: T — Z
is a simulation, we have that z(x) —z z(x), and so z(s(z)) —z Z(s(z’)), and we
may conclude that z(y) —z z(y').

Finally, observe that s is surjective, and therefore the solution to the equation
Z o s = z is unique.

We conclude this section by illustrating how to compute the function « for
affine transition systems. Suppose that T is an affine transition system of dimen-
sion n. We can represent states in St by vectors in Q™, and the transition rela-
tion Ry by a finite set of transitions B C Q™ x Q" that generates Rp (i.e.,
Ry = aff(B)). Suppose that A is an m-dimensional subspace of S%; elements of
S7. can be represented by n-dimensional row vectors, and /A can be represented
by a basis fT,... fT. We can compute a representation of (U,s) = as(T) as
follows. The elements of Sy = A* can be represented by m-dimensional vectors
(with respect to the basis g1, ..., gm such that g; is the linear map that sends
ij to 1if ¢ = j and to 0 otherwise). The simulation s can be represented by the
m X n matrix where the ith row is f7. Finally, the transition relation Ry can be
represented by a set of generators {(s(x), s(x')) : (x,x’) € B}.

3.3 Determinization

In this section, we show that any transition system operating over a finite-
dimensional vector space has a best deterministic abstraction, and give an algo-
rithm for computing the best deterministic affine abstraction (or determiniza-
tion) of an affine transition system.

Towards an application of Lemma 2, we seek to characterize the determiniza-
tion of a transition system by a space of functionals on its state space. For any
linear space V and space of functionals A on V', define an equivalence relation
=ponVbyax=,yiff f(x)= f(y)forall f € A If T is a transition system and
A, A" are spaces of functionals on St, we say that T is (A, A’)-deterministic
if for all @y, 2o 2,24 such that 21 =4 2, 1 —71 2}, and 3 —7 25, then we
also have x} =4/ 2. Observe that if D is a deterministic transition system and
d:T — D is a simulation, then 7" must be (A4, A4)-deterministic, where A, is
the range of the dual map d*.

For any T and A, define Det(T,A) £ {f:T is (A, {f})-deterministic} to
be the greatest set of functionals such that T is (A, Det(T, A))-deterministic.

Reflections on Termination of Linear Loops 59

Observe that Det(T, —) is a monotone operator on the complete lattice of linear
subspaces of S% (i.e., if A3 C A then Det(T, A;) C Det(T, Az), since A; induces
a coarser equivalence relation than As). By the Knaster-Tarski fixpoint theorem
[28], Det(T,—) has a greatest fixpoint, which we denote by Det(T). Then we
have that T is (Det(T'), Det(T))-deterministic, and Det(7T") contains every space
A such that T is (4, A)-deterministic.

Lemma 3 (Determinization). For any transition system T, apeyr)(T) is a
deterministic reflection of T.

Proof. Let (D, d) = apet(7) (T). First, we show that D is deterministic. Suppose
that y —p y] and y —p yb; we must show that y]; = y}. Since Rp is defined
to be d[Rr], there must be x1, 2, 2}, and x4 in Sy such that x1 —p 2,
xo —1 xh, d(z1) = d(z2) =y, d(z}) = yi, and d(xh) = y2. Since d(z1) = d(z2),
we have (Af : Det(T').f(x1)) = (Af : Det(T). f(x2)), and therefore 21 =pey(ry 2.
We thus have o} =pet(1,pet(1)) 75, and since Det(T', Det(T')) = Det(T'), we have
i = d(ah) = d(z}) — v,

It remains to show that (D,d) is a deterministic reflection of T. Suppose
that (U, u) is another deterministic abstraction of T'. Define G to be the range
of u*. Since U is deterministic, we must have G C Det(T, G), and since Det(T)
is the greatest fixpoint of Det(T, —) we have G C Det(T). By Lemma 2, there is
a unique linear simulation @ : D — U such that wod = u.

If a transition system T is affine, then its determinization can be computed in
polynomial time. Fixing a basis for the state space St (of some dimension n), we
can represent the transition relation of 7" in the form Ry = {(x,x’) : Ax’" = Bx+
c} where A, B € Q™*" and ¢ € Q™ (for some m). We can represent functionals
on St by n-dimensional vectors, where the vector v € Q™ corresponds to the
functional that maps u — vTu. A linear space of functionals A can be represented
by a system of linear equations A = {x : Mx = 0}. The ith row a]v = bJu+¢;,
of the system of equations Ax’ = Bx + ¢ can be read as “T" is ({b]},{a]})-
deterministic.” Thus, the functionals fT such that T is (A, {fT7})-deterministic
are those that can be written as a linear combination of the rows of A such that
the corresponding linear combination of the rows of B belongs to 4; i.e.,

Det({(x,x) : AxX' = Bx+c},{f: Mf =0}) ={d: Jy.MBTy =0A ATy =d} .

A representation of Det(T, A) can be computed in polynomial time using Gaus-
sian elimination. Since the lattice of linear subspaces of S} has height n, the
greatest fixpoint of Det(T', —) can be computed in polynomial time.

Ezxample 3. Continuing the example from Fig. 1 and Example 2, we consider the
determinization of the affine transition system in Eq. (2). The rows of the matrix
on the left-hand side correspond to generators for Det(aff(F),Q*"):

Det(aff(F),Q*") = span({[1000],[0110],[0001]})
Det(aff(F), Det(aff(F),Q*")) = span({[0110],[0001]})

60 S. Zhu and Z. Kincaid

which is the greatest fixpoint Det(aff(F')). Intuitively: after one step of aff(F),
the values of w, = + y, and z are affine functions of the input; after two steps
x4y and z are affine functions of the input but w is not, since the value of w on
the second step depends upon the value of x in the first, and x is not an affine
function of the input.

This yields the deterministic reflection (D, d) (pictured in Fig.1) where

wo= {0 = TR e o= Band]

3.4 Rational-Spectrum Reflections of DATS

In this section, we define rational-spectrum DATS and show that every DATS
has a rational-spectrum-reflection.

In the following, it is convenient to work with transition systems that are
linear rather than affine. We will prove that every deterministic linear transition
system has a best abstraction with rational spectrum. The result extends to the
affine case through the use of homogenization: i.e., we embed a (non-empty) affine
transition system into a linear transition system with one additional dimension,
such that if we fix that dimension to be 1 then we recover the affine transition
system. If the transition relation of a DATS is represented in the form Ax’ =
Bx + ¢, then its homogenization is simply

A0] [x'| _|Be| |x

01| |y| |01] |y
For a DATS T, we use homog(T') to denote the pair (L, h), consisting the DLT'S
L resulting from homogenization and the affine simulation h : T'— L that maps

1 (i.e., the affine simulation h formalizes the idea that if we

fix the extra dimension y to be 1, we recover the original DATS T').

Let T be a deterministic linear transition system. Since our goal is to analyze
the asymptotic behavior of T', and all long-running behaviors of T" reside entirely
within dom®(T'), we are interested in the structure of dom® (7) and T"’s behavior
on this set. First, we observe that dom®”(7T) is a linear subspace of Sy and is
computable. For any k, let T% denote the linear transition system whose transi-
tion relation is the k-fold composition of the transition relation of R. Consider
the descending sequence of linear spaces

each x € St to {X}

dom(T) D dom(T?) D dom(T3) D ...

(i.e., the set of states from which there are T computations of length 1, length
2, length 3, ...). Since the space St is finite dimensional, this sequence must
stabilize at some k. Since the states in dom(7*) have T-computations of any
length and 7T is deterministic, we have that dom(7T"%) is precisely dom®(T).
Since T is total on dom®“(T) and the successor of a state in dom®(7") must
also belong to dom®(T'), T defines a linear map T, : dom“(T") — dom® (7). In

Reflections on Termination of Linear Loops 61

this way, we can essentially reduce asymptotic analysis of DATS to asymptotic
analysis of linear dynamical systems. The asymptotic analysis of linear dynam-
ical systems developed in Sects.4 and 5 requires rational eigenvalues; thus we
are interested in DATS T such that T'|, has rational eigenvalues. With this in
mind, we define spec(T) = spec(T|,), and say that T has rational spectrum
if spec(T) C Q. Define Q-DLTS to be the subcategory of DLTS with rational
spectrum, and Q-DATS to be the subcategory of DATS whose homogenization
lies in Q-DLTS.

Ezample 4. Consider the DLTS T with

1 100] 20 1]
Ry 2 M R LI D R (2T
i 0o1| |7, 0037

000 1-10

The bottom-most equation corresponds to a constraint that only vectors where
the z and y coordinates are equal have successors, so we have:

dom(T") = {[myzr cx =y}

Supposing that the = and y coordinates are equal in some pre-state, they are
equal in the post-state exactly when z = 0, so we have

dom(T?) = {[zy2]T :a=yAz=0}

It is easy to check that dom(7) = dom(7?), and therefore dom®“ (T") = dom(7?).
The vector [11 0] is a basis for dom“(T’), and the matrix representation of T,
with respect to this basis is [2] (i.e., [1 1 O]T —7 [2 2 O}T). Thus we can see
spec(T) = {2}, and T is a Q-DLTS. J

Towards an application of Lemma 2, define the generalized rational
eigenspace of a DLTS T to be

Eo(T) £ span ({f € S} :IN€ Q,Ir e NT.fo (T|, — A)" =0}).

Lemma 4. Let T be a DLTS, and define (Q,q) = agyr)(T). Then for any
Q-DLTS U and any simulation s : T — U, there is a unique simulation S :
Q — U such that so q = s.

While ag, () (T) satisfies a universal property for Q-DLTS, it does not neces-
sary belong to Q-DLT'S itself because it need not be deterministic. However, by
iterative interleaving of Lemma 4 and determinization as shown in Algorithm 1,
we arrive at a Q-DLTS-reflection. Example 5 demonstrates how we calculate a
Q-DLTS-reflection of a particular DLTS.

62 S. Zhu and Z. Kincaid

Ezample 5. Consider the DLTS T with transition relation

o1 T 1000] -, 1100
i o1oof |“ 1100
RTé<§,z,>:oo1o z,:0001§
117 0001 |7, 00 -10f”
0000 1-100
T

We can calculate the w-domain of T dom® (T") = { [w Ty z] Tw = m}, which has

abasis B=[1100]",[0010]",[0001]". With respect to B, T|,, corresponds
to the matrix
200

Tl,=1001
0-10

and so we have spec(T) = {2,i, —i}. We may calculate Eg(T') by finding (gener-
alized) left eigenvectors with eigenvalue 2, the only rational number in spec(T):

188 200 200
Eqo(T) vivT 001 -1020]=0
010
001 0-10 002
~——
T Tl 21

= span([1100],[1-100])

Finally, we have (Q, q) = ag,)(T), where

R aa’_(l)? a’_gga 1100
SN ol T] L = 11-100
Q is deterministic and has rational spectrum, so (@, ¢) is a Q-DLTS-reflection

of T.

Theorem 1. For any deterministic linear transition system, Algorithm 1 com-
putes a Q-DLTS-reflection.

Finally, by homogenization and Theorem 1, we conclude with the desired
result:

Corollary 1. Q-DATS is a reflective subcategory of DATS.

4 Asymptotic Analysis of Linear Dynamical Systems

This section is concerned with analyzing the behavior of loops of the form

while (G(x)) do x := Ax ,

Reflections on Termination of Linear Loops 63

Input : A DLTST.
Output : Q-DLTS-reflection of T'
U—T;
s — Axr.x /* Invariant: s is a simulation from T to U */
while spec(Ul.) € Q do
(Q,q) — agy,a)(U) ; /* Lemma 4 */
(U, d) — aper(0)(Q) ; /* Lemma 38 */

s« dogqos;

b =R B VI VI

return (U, s)
Algorithm 1: Computation of a Q-DLTS-reflection of a DLTS

where the G(x) is an LIA formula and A is a matrix with integer spectrum. Our
goal is to capture the asymptotic behavior of iterating the map A on an initial
state xo with respect to the formula G. Specifically, we show that

Theorem 2. For any LIA formula G and any matriz A with integer spectrum,
there is a periodic sequence of LIA formulas Hy, Hy1, Hs, ... such that for any
initial state xo € Q", there exists K such that for any k > K, G(A*x) holds if
and only if Hi(xo) does.

Recall that an infinite sequence Hy, H1, Ha, ... is periodic if it is of the form
(Ho,Hy,...,Hp)” 2 Hy,Hy,...,Hp,Hy,Hy,..., Hp, ...

We call the periodic sequence (Hg, H1,...,Hp)¥ the characteristic sequence of
the guard formula G with respect to dynamics matrix A, and denote it by
x(G, A). Note that G(A¥xq) holds for all but finitely many k exactly when
AL, Hi(xo) holds.

In the remainder of this section, we show how to compute characteristic
sequences. Let G be an LIA formula and let A be a matrix with integer spectrum.
To begin, we compute a quantifier-formula G’ that is equivalent to G (using,
for example, Cooper’s algorithm [7]). We define x(G’, A) by recursion on the
structure of G’. For the logical connectives A, V, and —, characteristic sequences
are defined pointwise:

X(ﬁHv A) £ (ﬁ(X(Ha A)O)? ﬁ(X(I—L A)l)a .-)
X(Hy A Ha, A) £ (x(Hy, A)o A x(Ha, A)o, x(H1, A)1 A x(Hz, A)1,...)
X(H1V Ha, A) £ (x(Hy, A)o V x(Hz, A)o, x(H1,A)1 V x(Ha, A)1, ...)

It remains to show how x acts on atomic formulas, which take the form of
inequalities t; < to and divisibility constraints n | t. An important fact that we
employ in both cases is that for any linear term c¢Tx over the variables x, we can
compute a closed form for cT A¥(x) by symbolically exponentiating A. Since (by
assumption) A has integer eigenvalues, this closed form has the form %(p(x, k))
where @@ € N and p is an integer exponential-polynomial term, which takes

the form
MEDalx +--- + M\ pdmal x (3)

64 S. Zhu and Z. Kincaid
where \; € spec(A), d; € N, and a; € Z".!

Characteristic Sequences for Inequalities. Our method for computing
characteristic sequences for inequalities is a variation of Tiwari’s method for
deciding termination of linear loops with real eigenvalues [29)].

First, suppose that p(x, k) is an integer exponential-polynomial of the form
in Eq. (3) such that each)\; is a positive integer. Further suppose that the
summands are ordered by asymptotic growth, with the dominant term appearing
earliest in the list; i.e., for # < j we have either A\; > A;, or A; = A; and d; > d;.
If we imagine that the variables x are fixed to some x¢ € Z", then we see that
p(xo, k) is either identically zero or has finitely many zeros, and therefore its
sign is eventually stable. Furthermore, the sign of p(xg, k) as k tends to oo is
simply the sign of its dominant term — that is, the sign of alx for the least
i such that aJx(is non-zero. Thus, we may define a function DTA that maps
any exponential-polynomial term p(x, k) (with positive integral ;) to an LIA
formula such that for any x¢ € Z", xo = DTA(p) holds if and only if p(xg, k) is
eventually non-negative (p(xg, k) > 0 for all but finitely many k& € N). DTA is
defined as follows:

DTA(0) £ true
DTA(Nk%aTx +p) £ aTx > 1V (aTx = 0 A DTA(p))
Finally, we define the characteristic sequence of an inequality atom as follows.

An inequality ¢; < ty over the variables x can be written as ¢Tx + d > 0 for
c € Z" and d € Z. Let ﬁpeven(x,k) and ﬁpodd(x,k) be the closed forms
of cTA%*(x) and cTA%**+1(x), respectively; by splitting into “even” and “odd”
cases, we ensure that the exponential-polynomial terms peyen(x, k) and poqa(X, k)
have only positive \; and thus are amenable to the dominant term analysis DTA
described above. Then we define:

X (CTX + d Z Oa A) £ (DTA(peven(Xa k) + dQeven), DTA(podd(X> k) + ondd))w

Example 6. Consider the matrix A and its exponential A* below:

x 110 0 0] |z
Y 011 0 0] |y
A z = (001 0 Of |=
a 000-30{ |a
b 000 0 2| |b
x 1k @ 0 0 (= 1(zk? + (2y — 2)k + 22)
y 01 k 0 ofly zk+y
ARzl | =100 1 0 0f |z = z
a 00 0 (=3)%0] |a (—3)*a
b 00 0 0 2% |b 2kp

! Technically, we have %(A]fkdl al +--- 4+ AFkdmal) = cTA"x for all k greater than
rank of the highest-rank generalized eigenvector of 0, but since we are only interested

in the asymptotic behavior of A we can disregard the first steps of the computation.

Reflections on Termination of Linear Loops 65

First we compute the characteristic sequence x(x > 0, A). Applying the domi-
nant term analysis of the closed form of = yields

z2>0
DTA (zk* + (2y —2)k+2) = [V(z=0A2y — 2> 0) ,
V(iz=0A2y—2z=0A2>0)

Since the closed form involves only positive exponential terms, we need not split
into an even and odd case, and we simply have:
xX(x>0,A)=(z2>0V(z=0A2y—2>0)V(z=0A2y—2=0Az>0))*

Next we compute the characteristic sequence x(a — b > 0, A), which does
require a case split. Applying dominant term analysis of the closed form of

(a —b) yields
DTA(a- (=3)* —b-22*) =a >0V (a=0A—b>0)
DTA(a- (=3)**! —b- 2%ty = 4> 0V (—a=0A—-b>0).
and thus we have
x(a—b>0,A)=(a>0V(a=0A-b>0),—a>0V(—a=0A-b>0))*.

|

Characteristic Sequences for Divisibility Atoms. Last we show how to
define y for divisibility atoms n | t. Write the term ¢ as ¢™x + d and let the
closed form of ¢TA¥(x) be

1
Q

The formula n | ¢T A¥(x) +d is equivalent to Qn | \¥k@1a]x+ - -+ \E kdmal x +
Qd. For any i, the sequence (A¥k% mod Qn)2, is ultimately periodic, since
(1) (kmod Qn), = (0,1,...,Qn — 1)*, (2) (A\¥ mod Qn)32, is ultimately
periodic (with period and transient length bounded above by Qn)?, and (3)
ultimately periodic sequences are closed under pointwise product. It follows that
for each i, there is a periodic sequence of integers (zi7k>;°=0 that agrees with
(AFk% mod Qn)22, on all but finitely many terms. Finally, we take

(MWEBalx 4+ \E Edmal x) .

x(n|t,A) £(Qn | z1pa]x + -+ + 2m raf,x + Qd)pZ, -

Example 7. Consider matrix A and the closed form of its exponents below

T 110] |z T 10| |z

Al lyl | =1(o10] |y Ayl =010 |y

2 005| |z z 005%| |2
2 An infinite sequence s, 51, Sz, . . . is ultimately periodic, if there exists N such that
SN, SN+1,SN+2,-.. i1 a periodic sequence. We call N the transient length of this

sequence.

66 S. Zhu and Z. Kincaid

We show the characteristic sequences for some divisibility atoms w.r.t A:
X3 a,4) = (3] 2,3 |2 +y,3 |z +2)"
(31 5+2,4)= (3| 2+2,3 | 5+y+2,3|z+2y+2)
X3z A4)=31z3]22)° -

5 A Conditional Termination Analysis for Programs

This section demonstrates how the results from Sects. 3 and 4 can be combined
to yield a conditional termination analysis that applies to general programs.

Integer-Spectrum Restriction for Q-DLTS. Section 3 gives a way to com-
pute a Q-DATS-reflection of any transition formula. Yet the analysis we devel-
oped in Sect. 4 only applies to linear dynamical systems with integer spectrum.
We now show how to bridge the gap. Let V be a Q-DATS. As discussed in
Sect. 3.4, we may homogenize V to obtain a Q-DLTS T'. Define Z(T) to be the
space spanned by the generalized (right) eigenvectors of T'|,, that correspond to
integer eigenvalues:

Z(T) = span({x € dom®(T) : Ir e Nt X\ € Z.(T|, — A)"(z) = 0})

Since Z(T) is invariant under T, and thus T, T defines a linear map 7|z :
Z(T) — Z(T), and by construction T'|z has integer spectrum. The following
lemma justifies the restriction of our attention to the subspace Z(T).

Lemma 5. Let F be a transition formula, let (V,s) be a Q-DATS-reflection of
F, and let (T, h) = homog(V'). For any state v € dom”(F'), we have h(s(v)) €
Z(T).

Ezample 8. The following loop computes the number of trailing 0’s in the binary
representation of integer x and its corresponding transition formula:

Il ¢:=0 @] z)

i thl_lex(/xé 2==0) do F(z,e,2’,d)=| Az —1< 22" A2 < x)
J = /

4 c=c+1 A =etl)

The homogenization of the Q-DATS-reflection of F' is the Q-DLTS T,

x T’ T %OO x
Rp = <c Ll >: dl =1011] |¢
h I I 001f (A

The w-domain of T is the whole state space Q3. Since the eigenvector [1 0 0] T of
the transition matrix corresponds to a non-integer eigenvalue %, the z-coordinate
of states in Z(T') must be 0; i.e., Z(T) = {(z,¢,y) : © = 0}. We conclude that
x # 0 is a sufficient condition for the loop to terminate.

Reflections on Termination of Linear Loops 67

Input : A transition formula F(x,x’) € TF in linear integer arithmetic.

Output : A mortal precondition mp(F') for F.
1 A« off(F); /* Affine hull [26]; Lemma 1 */
2 (D,d) «+ ape(a)(A) ; /* Determinize; Lemma 3 */
3 (V,q) — Q-DATS-reflection of D ; /* Algorithm 1 */
4 v+gqod; /*{(V,v) is a Q-DATS-reflection of F */
5 (T, h) < homog(V) ; /* Homogenization of V. */
6 L« howv; /*t is an affine simulation F — T */
7 p < (any) linear projection of St onto Z(T);

8 C < matrix such that Cw =0 <= w € Z(T);
Let G(w) « 3x,x" . F(x,x') Aw = p(t(x)) A Ct(x) = 0;
10 (Ho(w),...,Hp(w))* « x(G(w),T|z) ; /* Section 4 */
11 return - ((A, Hi(p(t(x)))) A Ct(x) = 0)
Algorithm 2: Procedure for computing mp(F).

©

The Mortal Precondition Operator. Algorithm 2 shows how to compute
a mortal precondition for an LIA transition formula F(x,x’) (i.e., a sufficient
condition for which F' terminates). The algorithm operates as follows. First, we
compute a Q-DATS-reflection of F, and homogenize to get a Q-DLTS T and
an affine simulation ¢ : F — T. Let p denote an (arbitrary) projection from St
onto Z(T) (so p is a simulation from T to T'|z). We then compute an LIA formula
G which represents the states w of T'| such that there is some v € dom(F") such
that t(v) € Z(T) and p(t(v)) = w. Letting (Hy, ..., Hp)“ be the characteristic
sequence x(G,T|z), we have that for any v € dom®(F), t(v) must belong to
Z(T) and p(t(v)) satisfies each H;, so we define

mp(F) £ {v e Sp:t(v) ¢ Z(T) or v [/\Hl(p(t(x)))

Within the context of the algorithm, we suppose that states of F' are repre-
sented by n-dimensional vectors, states of T are represented as m-dimensional
vectors, and state of T'|; are represented as g-dimensional vectors. The affine sim-
ulation ¢ is represented in the form x — Ax + b, where A € Z™*" and b € Z™,
the projection p as a Z?*™ matrix, and the linear map T'|z as a Q?*? matrix. The
fact that p and ¢ have all integer (rather than rational) entries is without loss of
generality, since any simulation can be scaled by the least common denominator
of its entries.

Theorem 3 (Soundness). For any transition formula F, for any state s such
that s € mp(F), we have s ¢ dom”(F).

Proof. Let T, t, p, C, G, and Hy,...,Hp be as in Algorithm 2. We prove the
contrapositive: we assume v € dom® (F') and prove v ¢ mp(F), or equivalently
v = H;(p(t(x))) for each i and t(v) € Z(T). We have t(v) € Z(T) by Lemma 5,
so it remains only to show that v = H;(p(¢(x))) for each i.

Since v € dom®“(F), there exists an infinite trajectory of F' starting from
v: v —p v; —p V2 —p ... For any j, let w; = T|}(p(t(v))). Since pot

68 S. Zhu and Z. Kincaid

is an (affine) simulation, we have w; = p(t(v;)) for all j. It follows that for
any j, we have [v;,v,41] | F(x,x) A w; = p(t(x;)) A Ct(x;) = 0, and so
G(w;) = 3Ix,x" . F(x,x")Aw; = p(t(x))ACt(x) = 0 holds for all j. By Theorem 2,
H;(p(t(x))) holds for all H;.

The proof of soundness requires only that we can compute Q-DATS-
abstractions of transition formulas. The following is the culmination of our devel-
opment of Q-DATS-reflections:

Theorem 4 (Monotonicity). For any transition formulas Fy and Fy such that
F, E F», we have mp(Fy) E mp(F1).

The desire for monotonicity is inspired by the principle that changes to a pro-
gram should have a predictable impact on its analysis [34]. Monotonicity guaran-
tees that more information into the analysis always leads to better results—for
example, if a user annotates a procedure with pre-conditions or adds loop invari-
ants into the program, our termination analysis can only produce weaker (that
is, better) preconditions for termination. Moreover, in the context of this work,
monotonicity also guarantees that if we cannot prove termination using the mp
operator that we defined, then any linear abstraction of the loop has reachable
non-terminating states.

6 Evaluation

Section 5 shows how to compute mortal preconditions for transition formulas.
Using the framework of algebraic termination analysis [34], we can “lift” the
analysis to compute mortal preconditions for whole programs. The essential idea
is to compute summaries for loops and procedures in “bottom-up” fashion, apply
the mortal precondition operator from Sect.5 to each loop body summary, and
then propagate the mortal preconditions for the loops back to the entry of the
program (see [34] for more details). We can verify that a program terminates by
using an SMT solver to check that its mortal precondition is valid.

We have implemented Algorithm 2 as a mortal precondition operator mp;
(“mortal precondition via Linear Reflections”) in ComPACT, a tool that imple-
ments the termination analysis framework presented in [34]. We compare the
performance of our analysis against 2LS [5], Ultimate Automizer [10] and
CPAchecker [23], the top three competitors in the termination category of
Competition on Software Verification (SV-COMP) 2020.

Experiments are run on a virtual machine with Ubuntu 18.04, with a single-
core Intel Core i7-9750H @ 2.60 GHz CPU and 8 GB of RAM. All tools were run
with a time limit of 10 min.

Benchmarks. We tested on a suite of 263 programs divided into 4 categories.
The termination and recursive suites contain small programs with challeng-
ing termination arguments, while the polybench suite contains larger real-world
programs that have relatively simple termination arguments. The termination

https://sv-comp.sosy-lab.org/2020

Reflections on Termination of Linear Loops 69

Table 1. Termination verification benchmarks; time in seconds.

Benchmark |#tasks| mppr 2LS UAutomizer CPAChecker
F#£correct |time |#correct |time |#correct|time F#£correct | time
Termination|171 98 100.8|115 1966.0 (161 4772.2|126 12108.6
Recursive 42 4 51.0 |- - 30 1781.7| 23 530.6
Polybench 30 30 128.3| 0 7602.7 0 16241.6| O 4035.8
Linear 20 20 37.0/ 6 17.6| 8 2841.3| 3 3470.7
Total 263 152 317.1|121 9586.3 | 199 25636.8|152 20145.7

Table 2. Comparing mp; z and ComPACT; time in seconds.

F#tasks| mpr ComPACT-mpr g | ComPACT+mpr »
F£correct |time | #correct | time #£correct | time
Termination | 171 98 100.8 141 1184 |146 114.4
Recursive 42 4 51.0 31 95.4 32 94.6
Polybench 30 30 128.3| 30 179.6 30 179.1
Linear 20 20 37.0| 15 116.5 20 65.1
Total 263 152 317.1 217 509.9 |228 453.3

category consists of the non-recursive, terminating benchmarks from SV-COMP
2020 in the Termination-MainControlFlow suite. The recursive category con-
sists of the recursive, terminating benchmarks from the recursive directory and
Termination-MainControlFlow. Note that 2LS does not handle recursive pro-
grams, so we exclude it from the recursive category. Finally, we created a new
test suite linear consisting of programs with terminating linear abstractions.
This suite is designed to exercise the capabilities of the mp; g, and includes
all examples from Ben-Amram and Genaim'’s article [1] on multi-phase ranking
functions, loops with disjunctive and/or modular arithmetic guards, and loops
that model integer division and remainder calculation.

How Does Our Analysis Compare with the State-of-the-Art? The comparison of
ComPACT using the mp; p operator against state-of-the-art termination analy-
sis tools is shown in Table 1. ComPACT with mp; i is competitive with (but not
dominating) leading tools in terms of number of tasks solved across the suite,
and uses substantially less time. The mp; g analysis is least successful on the
termination and recursive suites, which are designed to have difficult termi-
nation arguments. Most competitive tools use a portfolio of different termina-
tion techniques to approach such problems (e.g., Ultimate Automizer synthesizes
linear, nested, multi-phase, lexicographic and piecewise ranking functions); we
investigate the use of mp;r in a portfolio solver in the following.

ComPACT with mp; solves all tasks in the polybench suite, which con-
tains numerical programs that have simple termination arguments, but which
are larger than the SV-COMP tasks. 2LLS, Ultimate Automizer, and CPAChecker

70 S. Zhu and Z. Kincaid

exhaust time or memory limits on all tasks. Nested loops are a problematic pat-
tern that appears in these programs, e.g.,

for(int ¢ = 0; ¢ < 4096; ¢ += step)
for (int j = 0; j < 4096; j += step)
// mo modifications to i, j, or step

For such loops, mp; is guaranteed to synthesize a conditional termination
argument that is at least as weak as step > 0 (regardless of the contents of the
inner loop) by monotonicity and the fact that the loop body formula entails
1 < 4096 A 7' = i + step A step’ = step. Ultimate Automizer, CPAChecker, and
2LS cannot make such theoretical guarantees.

The linear suite demonstrates that mp; is capable of proving termination
of programs that lie outside the boundaries of the other tools.

Can Our Analysis Improve a Portfolio Solver? We compare mp;r and Com-
PACT in Table2. The columns correspond to running ComPACT with the fol-
lowing options: excluding the portfolio from [34] (mpyR), including the port-
folio but excluding mp;r (ComPACT-mp;), and including the portfolio and
mprr (ComPACT+mp;). ComPACT+mp;r can solve 11 additional tasks
over ComPACT-mp; rp while adding negligible runtime overhead. In fact, adding
mppr to the portfolio decreases the amount of time it takes for ComPACT to
complete all benchmark suites. Note that the combined tool is successful on the
most termination tasks among all the tools we tested, both overall and for each
individual suite except the termination category.

7 Related Work

Termination Analysis of Linear Loops. The universal termination problem for
linear loops (or total deterministic affine transition systems, in the terminology
of Sect.4) was posed by Tiwari [29]. The case of linear loops over the reals was
resolved by Tiwari [29], over the rationals by Braverman [4], and finally over
the integers by Hosseini et al. [14]. In principle, we can combine any of these
techniques with our algorithm for computing DATS-reflections of transition
formulas to yield a sound (but incomplete) termination analysis. The significance
of computing a DATS-reflection (rather than just “some” abstraction) is that is
provides an algorithmic completeness result: if it is possible to prove termination
of a loop by exhibiting a terminating linear dynamical system that simulates it,
the algorithm will prove termination.

The method introduced in Sect.4 to compute characteristic sequences of
inequalities is based on the method that Tiwari used to prove decidability of
the universal termination problem for linear loops with (positive) real spectra
[29]. Tiwari’s condition of having real spectra is strictly more general than the
integer spectra used by our procedure; requiring that the spectrum be integer
allows us express the DTA procedure in linear integer arithmetic rather than
real arithmetic. Similar procedures appear also in [12,18]. We note in particular

Reflections on Termination of Linear Loops 71

that our results in Sects.4 and 5 subsume Frohn and Giesl’s decision proce-
dure for universal termination for upper-triangular linear loops [12]; since every
rational upper-triangular linear loop has a rational spectrum (and is therefore a
Q-DATS), the mortal precondition computed for any rational upper-triangular
linear loop is valid iff the loop is universally terminating.

Linear Abstractions. The formulation of “best abstractions” using reflective sub-
categories is based on the framework developed in [17]. A variation of this method
was used in the context of invariant generation, based on computing (weak)
reflections of linear rational arithmetic formulas in the category of rational vec-
tor addition systems [27]. This paper is the first to apply the idea to termination
analysis.

A method for extracting polynomial recurrence (in)equations that are
entailed by a transition formula appears in [16]. The algorithm can also be
applied to compute a TDATS-abstraction of a transition formula. The pro-
cedure does not guarantee that the TDATS-abstraction is a reflection (best
abstraction); Proposition 1 demonstrates that no such procedure exists. In this
paper, we generalize the model to allow non-total transition systems, and show
that best abstractions do exist. The techniques from Sect.3 can be used for
invariant generation, improving upon the methods of [16].

Kincaid et al. show that the category of linear dynamical systems with peri-
odic rational spectrum is a reflective subcategory of the category of linear dynam-
ical systems [18]. A complex number n is periodic rational if n? is rational for
some p € Z>°. Combining this result with the technique from Sect. 3 yields the
result that the category of DATS with periodic rational spectrum is a reflec-
tive subcategory of TF. The decision procedure from Sect.4 extends easily to
the periodic rational case, which results in a strictly more powerful decision
procedure.

Termination Analysis. Termination analysis, and in particular conditional ter-
mination analysis, has been widely studied. Work on the subject can be divided
into practical termination analyses that work on real programs (but offer few
theoretical guarantees) [2,6,8,11,13,20,30-32], and work on simplified model
(such as linear, octagonal, and polyhedral loops) with strong guarantees (but
cannot be applied directly to real programs) [1,3,4,14,21,25,29]. This paper
aims to help bridge the gap between the two, by showing how to apply analyses
for linear loops to general programs, while preserving some of their desirable
theoretical properties, in particular monotonicity.

Acknowledgments. This work was supported in part by the NSF under grant num-
ber 1942537 and by ONR, under grant N00014-19-1-2318. Opinions, findings, conclu-
sions, or recommendations expressed herein are those of the authors and do not nec-
essarily reflect the views of the sponsoring agencies.

72

S. Zhu and Z. Kincaid

References

10.

11.

12.

13.

14.

15.

. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:

Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601-620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_32

. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodriguez-Carbonell,

E., Rubio, A.: Proving termination through conditional termination. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99-117. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_6

Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491-504. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988_48

Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372-385. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817963_34

Chen, H., David, C., Kroening, D., Schrammel, P., Wachter, B.: Bit-precise
procedure-modular termination analysis. ACM Trans. Program. Lang. Syst. 40(1),
1:1-1:38 (2018). https://doi.org/10.1145/3121136

Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
328-340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1.32

Cooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7(91-99), 300 (1972)

Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In:
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2012, pp. 245-258. Association for Com-
puting Machinery, New York (2012). https://doi.org/10.1145/2103656.2103687
Cyphert, J., Breck, J., Kincaid, Z., Reps, T.: Refinement of path expressions for
static analysis. Proc. ACM Program. Lang. 3(POPL) (2019). https://doi.org/10.
1145/3290358

Dietsch, D., Heizmann, M., Nutz, A., Schétzle, C., Schiissele, F.: Ultimate taipan
with symbolic interpretation and fluid abstractions. In: TACAS 2020. LNCS, vol.
12079, pp. 418-422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45237-7_32

D’Silva, V., Urban, C.: Conflict-driven conditional termination. In: Kroening, D.,
Pasareanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 271-286. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21668-3_16

Frohn, F., Giesl, J.: Termination of triangular integer loops is decidable. In: Dillig,
1., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 426-444. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5_24

Ganty, P., Genaim, S.: Proving termination starting from the end. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 397-412. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8_27

Hosseini, M., Ouaknine, J., Worrell, J.: Termination of linear loops over the inte-
gers. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) ICALP.
LIPIcs, vol. 132, pp. 118:1-118:13. Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik (2019). https://doi.org/10.4230/LIPIes. ICALP.2019.118

Keller-Gehrig, W.: Fast algorithms for the characteristic polynomial. Theor. Com-
put. Sci. 36(2-3), 309-317 (1985)

https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/11817963_34
https://doi.org/10.1145/3121136
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1145/2103656.2103687
https://doi.org/10.1145/3290358
https://doi.org/10.1145/3290358
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-319-21668-3_16
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-642-39799-8_27
https://doi.org/10.4230/LIPIcs.ICALP.2019.118

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Reflections on Termination of Linear Loops 73

Kincaid, Z., Cyphert, J., Breck, J., Reps, T.: Non-linear reasoning for invariant
synthesis. PACMPL 2(POPL), 54:1-54:33 (2018)

Kincaid, Z.: Numerical invariants via abstract machines. In: Podelski, A. (ed.)
SAS 2018. LNCS, vol. 11002, pp. 24-42. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99725-4_3

Kincaid, Z., Breck, J., Cyphert, J., Reps, T.: Closed forms for numerical loops.
Proc. ACM Program. Lang. 3(POPL) (2019). https://doi.org/10.1145/3290368
Lax, P.D.: Linear Algebra and Its Applications, 2 edn. Wiley-Interscience (2007)
Le, T.C., Qin, S., Chin, W.N.: Termination and non-termination specification infer-
ence. In: PLDI, PLDI 2015, pp. 489-498. Association for Computing Machinery,
New York (2015). https://doi.org/10.1145/2737924.2737993

Leike, J., Heizmann, M.: Ranking templates for linear loops. In: TACAS, pp. 172—
186 (2014)

Lenstra, A.K., Lenstra, HW., Lovéasz, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515-534 (1982)

Ott, S.: Implementing a termination analysis using configurable program analysis.
Master’s thesis, University of Passau (2016)

Ouaknine, J., Pinto, J.S., Worrell, J.: On termination of integer linear loops. In:
SODA, pp. 957-969 (2015)

Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: VMCALI, pp. 239-251 (2004)

Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252-266.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0-21
Silverman, J., Kincaid, Z.: Loop summarization with rational vector addition sys-
tems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 97-115.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_7

Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285-309 (1955)

Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70-82. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9_6

Urban, C.: The abstract domain of segmented ranking functions. In: Logozzo, F.,
Fahndrich, M. (eds.) SAS, pp. 43-62 (2013)

Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412-431. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54833-8_22

Urban, C., Miné, A.: A decision tree abstract domain for proving conditional ter-
mination. In: Miiller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp.
302-318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10936-7_19
Zhu, S., Kincaid, Z.: Reflections on termination of linear loops (2021). https://
arxiv.org/abs/2105.13941

Zhu, S., Kincaid, Z.: Termination analysis without the tears (2021)

https://doi.org/10.1007/978-3-319-99725-4_3
https://doi.org/10.1007/978-3-319-99725-4_3
https://doi.org/10.1145/3290368
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1007/978-3-030-25543-5_7
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-319-10936-7_19
https://arxiv.org/abs/2105.13941
https://arxiv.org/abs/2105.13941

74 S. Zhu and Z. Kincaid

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Decision Tree Learning in CEGIS-Based
Termination Analysis

Satoshi Kura!2(®) Hiroshi Unno®*, and Ichiro Hasuo'2

! National Institute of Informatics, Tokyo, Japan
kura@nii.ac.jp
2 The Graduate University for Advanced Studies
(SOKENDALI), Kanagawa, Japan
3 University of Tsukuba, Ibaraki, Japan
4 RIKEN AIP, Tokyo, Japan

Abstract. We present a novel decision tree-based synthesis algorithm
of ranking functions for verifying program termination. Our algorithm is
integrated into the workflow of CounterExample Guided Inductive Syn-
thesis (CEGIS). CEGIS is an iterative learning model where, at each
iteration, (1) a synthesizer synthesizes a candidate solution from the
current examples, and (2) a validator accepts the candidate solution if
it is correct, or rejects it providing counterexamples as part of the next
examples. Our main novelty is in the design of a synthesizer: building
on top of a usual decision tree learning algorithm, our algorithm detects
cycles in a set of example transitions and uses them for refining decision
trees. We have implemented the proposed method and obtained promis-
ing experimental results on existing benchmark sets of (non-)termination
verification problems that require synthesis of piecewise-defined lexico-
graphic affine ranking functions.

1 Introduction

Termination Verification by Ranking Functions and CEGIS. Termination verifi-
cation is a fundamental but challenging problem in program analysis. Termina-
tion verification usually involves some well-foundedness arguments. Among them
are those methods which synthesize ranking functions [16]: a ranking function
assigns a natural number (or an ordinal, more generally) to each program state,
in such a way that the assigned values strictly decrease along transition. Exis-
tence of such a ranking function witnesses termination, where well-foundedness
of the set of natural numbers (or ordinals) is crucially used.

We study synthesis of ranking functions by CounterExample Guided Induc-
tive Synthesis (CEGIS) [29]. CEGIS is an iterative learning model in which a
synthesizer and a validator interact to find solutions for given constraints. At
each iteration, (1) a synthesizer tries to find a candidate solution from the cur-
rent examples, and (2) a validator accepts the candidate solution if it is correct,
or rejects it providing counterexamples. These counterexamples are then used
as part of the next examples (Fig. 1).

© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 75-98, 2021.
https://doi.org/10.1007/978-3-030-81688-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_4

76 S. Kura et al.

Synthesizer: a candidate solution o lcc)nstraints c

find a candidate Validator:
solution o that is e Is o a solution for C?
consistent with £ No: a set € of examples

No solutionl (Validator adds new examples to &)

Yes: answer o

Fig. 1. The CEGIS architecture

CEGIS has been applied not only to program verification tasks (synthesis of
inductive invariants [17,18,25,26], that of ranking functions [19], etc.) but also
to constraint solving (for CHC [12,14,28,36], for pwCSP(7) [30,31], etc.). The
success of CEGIS is attributed to the degree of freedom that synthesizers enjoy.
In CEGIS, synthesizers receive a set of individual examples that synthesizers
can use in various creative and speculative manners (such as machine learning).
In contrast, in other methods such as [5-8,24,27], synthesizers receive logical
constraints that are much more binding.

Segmented Synthesis in CEGIS-Based Termination Analysis. The choice of a
candidate space for candidate solutions ¢ is important in CEGIS. A candidate
space should be expressive: by limiting a candidate space, the CEGIS architec-
ture may miss a genuine solution. At the same time, complexity should be low:
a larger candidate space tends to be more expensive for synthesizers to handle.

This tradeoff is also in the choice of the type of examples: using an expressive
example type, a small number of examples can prune a large portion of the can-
didate space; however, finding such expressive examples tends to be expensive.

In this paper, we use piecewise affine functions as our candidate space for
ranking functions. Piecewise affine functions are functions of the form

a1 - F+b TeL
@) = : (1)

n-T+b, zT€EL,

where {Lj,...,L,} is a partition of the domain of f(Z) such that each L; is a
polyhedron (i.e. a conjunction of linear inequalities). We say segmented synthesis
to emphasize that our synthesis targets are piecewise affine functions with case
distinction. Piecewise affine functions stand on a good balance between expres-
siveness and complexity: the tasks of synthesizers and validators can be reduced
to linear programming (LP); at the same time, case distinction allows them to
model a variety of situations, especially where there are discontinuities in the
function values and/or derivatives.

We use transition examples as our example type (Table 1). Transition exam-
ples are pairs of program states that represent transitions; they are much cheaper
to handle compared to trace ezamples (finite traces of executions until termi-
nation) used e.g. in [15,33]. The current work is the first to pursue segmented
synthesis of ranking functions with transition examples; see Table 1.

Decision Tree Learning in CEGIS-Based Termination Analysis 7

Table 1. Ranking function synthesis by CEGIS

Candidate space\Example type Trace examples | Transition examples
Affine ranking functions [15,33] [19]

Piecewise affine ranking functions | [15,33] Our method

(@)
{ef,ef} “ e 1:(@)
God e e e

(a) For i iant (b) For ranking functions
a) For invariants

Fig. 2. Decision tree learning

Decision Tree Learning for CEGIS-Based Termination Analysis: a Challenge. In
this paper, we represent piecewise affine functions (1) by the data structure of
decision trees. The data structure suits the CEGIS architecture (Fig. 1): iterative
refinement of candidate solutions can be naturally expressed by growing decision
trees. The main challenge of this paper is the design of an effective synthesizer
for decision trees—such a synthesizer learns decision trees from examples.

In fact, decision tree learning in the CEGIS architecture has already been
actively pursued, for the synthesis of invariants as opposed to ranking func-
tions [12,14,18,22,36]. It is therefore a natural idea to adapt the decision tree
learning algorithms used there, from invariants to ranking functions. However,
we find that a naive adaptation of those algorithms for invariants does not suffice:
they are good at handling state examples that appear in CEGIS for invariants;
but they are not good at handling transition examples.

More specifically, when decision tree learning is applied to invariant syn-
thesis (Fig.2a), examples are given in the form of program states labeled as
positive or negative. Decision trees are then built by iteratively selecting the
best halfspaces—where “best” is in terms of some quality measures—until each
leaf contains examples with the same label. One common quality measure used
here is an information-theoretic notion of information gain.

We extend this from invariant synthesis to ranking function synthesis where
examples are given by transitions instead of states (Fig.2b). In this case, a
major challenge is to cope with examples that cross a border of the current
segmentation—such as the transition e4 crossing the border hy in Fig.2b. Our

78 S. Kura et al.

decision tree learning algorithm should handle such crossing examples, taking
into account the constraints imposed on the leaf labels affected by those examples
(the affected leaf labels are f1(Z) and f5(Z) in the case of e4).

Our Algorithm: Cycle-Based Decision Tree Learning for Transition Ezamples.
We use what we call the cycle detection theorem (Theorem 17) as a theoretical
tool to handle such crossing examples. The theorem claims the following: if
there is no piecewise affine ranking function with the current segmentation of
the domain (such as the one in Fig.2b given by h; and hsy), then this must be
caused by a certain type of cycle of constraints, which we call an implicit cycle.

In our decision tree learning algorithm, when we do not find a piecewise affine
ranking function with the current segmentation, we find an implicit cycle and
refine the segmentation to break the cycle. Once all the implicit cycles are gone,
the cycle detection theorem guarantees the existence of a candidate piecewise
affine ranking function with the segmentation.

We integrate this decision tree learning algorithm in the CEGIS architecture
(Fig. 1) and use it as a synthesizer. Our implementation of this framework gives
promising experimental results on existing benchmark sets.

Contribution. Our contribution is summarized as follows.

— We provide a decision tree-based synthesizer for ranking functions integrated
into the CEGIS architecture. Our synthesizer uses transition examples to find
candidate piecewise affine ranking functions. A major challenge here, namely
handling constraints arising from crossing examples, is coped with by our
theoretical observation of the cycle detection theorem.

— We implement our synthesizer for ranking functions implemented in MUVAL
and report the experience of using MUVAL for termination and non-
termination analysis. The experiment results show that MUVAL’s perfor-
mance is comparable to state-of-the-art termination analyzers [7,10,13,21]
from Termination Competition 2020, and that MUVAL can prove (non-)ter-
mination of some benchmarks with which other analyzers struggle.

Organization. Section2 shows the overview of our method via examples.
Section 3 explains our target class of predicate constraint satisfaction problems
and how to encode (non-)termination problem into such constraints. In Sect. 4,
we review CEGIS architecture, and then explain simplification of examples into
positive/negative examples. Section 5 proposes our main contribution, our deci-
sion tree-based ranking function synthesizer. Section 6 shows our implementation
and experimental results. Related work is discussed in Sect. 7, and we conclude
in Sect. 8.

2 Preview by Examples

We present a preview of our method using concrete examples. We start with an
overview of the general CEGIS architecture, after which we proceed to our main
contribution, namely a decision tree learning algorithm for transition examples.

Decision Tree Learning in CEGIS-Based Termination Analysis 79

2.1 Termination Verification by CEGIS

Our method follows the usual workflow of termination verification by CEGIS.
It works as follows: given a program, we encode the termination problem into
a constraint solving problem, and then use the CEGIS architecture to solve the
constraint solving problem.

Encoding the Termination Problem. The first step of our method is to encode
the termination problem as the set C of constraints.

Example 1. As a running example, consider the following C program.
while(x !'= 0) { if(x < 0) { x++; } else { x--; } }

The termination problem is encoded as the following constraints.

r<0A2 =2+1 = R(z,2) (2)
(<0 A2’ =2—-1 = R(x,2). (3)

Here, R is a predicate variable representing a well-founded relation, and term
variables x, z’ are universally quantified implicitly.

The set C of constraints claims that the transition relation for the given
program is subsumed by a well-founded relation. So, verifying termination is now
rephrased as the existence of a solution for C. Note that we omitted constraints
for invariants for simplicity in this example (see Sect. 3 for the full encoding).

Constraint solving by CEGIS. o i
. synthesizer validator
The next step is to solve C by £—1
N —————C =

CECS. () e)

In the CEGIS architecture, a & =1{R(1,0)} (i)
synthesizer and a validator itera- (i) R(z,2)=z>a' Az >0 .
tively exchange a set £ of exam-) € = {R(1,0), R(~2, ~1)} —(iv)
ples and a candidate solution
R(zx, ') for C. At the moment, we
present a rough sketch of CEGIS,
leaving the details of our imple-
mentation to Sect. 2.2.

PEE———

— R(z,2’) = |z| > |2'| A|z] > 0 —3 (vi)

Fig. 3. An example of CEGIS iterations

Example 2. Figure3 shows how the CEGIS architecture solves the set C of
constraints shown in (2) and (3). Figure 3 consists of three pairs of interactions
(i)—(vi) between a synthesizer and a validator.

(i) The synthesizer takes £ = () as a set of examples and returns a candidate
solution R(z,2’) = L synthesized from . In general, candidate solutions
are required to satisfy all constraints in £, but the requirement is vacuously
true in this case.

80 S. Kura et al.

(ii) The validator receives the candidate solution and finds out that the candi-
date solution is not a genuine solution. The validator finds that the assign-
ment x = 1,2’ = 0 is a counterexample for (3), and thus adds R(1,0) to €
to prevent the same candidate solution in the next iteration.

(iii) The synthesizer receives the updated set &€ = {R(1,0)} of examples, finds
a ranking function f(xz) = x for £ (i.e. for the transition from =z = 1 to
a2’ =0), and returns a candidate solution R(z,z') =x > 2’ Az > 0.

(iv) The validator checks the candidate solution, finds a counterexample x =
—2,2' = —1 for (2), and adds R(—2,-1) to &.

(v) The synthesizer finds a ranking function f(z) = |z| for £ and returns
R(z,2’) = |z| > |2'| A]z| > 0 as a candidate solution. Note that the
synthesizer have to synthesize a piecewise affine function here, but details
are deferred to Sect. 2.2.

(vi) The validator accepts the candidate solution because it is a genuine solution

for C.

2.2 Handling Cycles in Decision Tree Learning

We explain the importance of handling
cycles in our decision tree-based synthesizer
of piecewise affine ranking functions.

In what follows, we deal with such deci-
sion trees as shown in Fig.4: their inter-
nal nodes have affine inequalities (i.e. half-
spaces); their leaves have affine functions;
and overall, such a decision tree expresses f(r,y)=2-1 f(z,y)=1-=z
a piecewise affine function (Fig.4). When
we remove leaf labels from such a decision fla,y) =
tree, then we obtain a template of piecewise
functions where condition guards are given z—1 y20Az-120
but function bodies are not. We shall call l—2z y=20Azx—-1<0
the latter a segmentation. -y y <0

Input and Output of our Synthesizer. The

input of our synthesizer is a set & of

transition examples (e.g. £ = {R(1,0), Fig.4. An example of a decision
R(—2,—1)}) as explained in Sect.2.1. The tree jchat repr'esents a piecewise affine
output of our synthesizer is a well-founded ranking function f(z,y)

relation R(Z, ') = f(Z) > f(@’') A f(Z) > 0 where T is a sequence of variables
and f(Z) is a piecewise affine function, which is represented by a decision tree
(Fig.4). Therefore our synthesizer aims at learning a suitable decision tree.

Refining Segmentations and Handling Cycles. Roughly speaking, our synthesizer
learns decision trees in the following steps.

Decision Tree Learning in CEGIS-Based Termination Analysis 81

4 A

-2 -1

7 S

o 1 2 2 1 0 1 2
(a) Good (z > 0) (b) Bad (z > —2)

Fig. 5. Selecting halfspaces. Transition examples are shown by red arrows. Boundaries
of halfspaces are shown by dashed lines.

1. Generate a set H of halfspaces from the given set £ of examples. This H
serves as the vocabulary for internal nodes. Set the initial segmentation to be
the one-node tree (i.e. the trivial segmentation).

2. Try to synthesize a piecewise affine ranking function f for & with the current
segmentation—that is, try to find suitable leaf labels. If found, then use this
f in a candidate well-founded relation R(Z,2") = f(z) > f(z') A f(T) > 0.

3. Otherwise, refine the current segmentation with some halfspace in H, and go
to Step 2.

The key step of our synthesizer is Step 3. We show a few examples.

Example 3. Suppose we are given £ = {R(1,0), R(—2,—1)} as a set of exam-
ples. Our synthesizer proceeds as follows: (1) Our synthesizer generates the set
H = {zx > 1,z > 0,x > =2,z > —1} from the examples in £. (2) Our
synthesizer tries to find a ranking function of the form f(z) = ax 4+ b (with
the trivial segmentation), but there is no such ranking function. (3) Our syn-
thesizer refines the current segmentation with (x > 0) € H because z > 0
“looks good”. (4) Our synthesizer tries to find a ranking function of the form
f(x) =if © > 0 then azx + b else cx + d, using the current segmentation. Our
synthesizer obtains f(z) = if © > 0 then z else — z and use this f(z) for a
candidate solution.

How can we decide which halfspace in H “looks good”? We use quality mea-
sure that is a value representing the quality of each halfspace and select the
halfspace with the maximum quality measure.

Figure 5 shows the comparison of the quality of x > 0 and x > —2 in this
example. Intuitively, £ > 0 is better than © > —2 because we can obtain a
simple ranking function if > 0 then z else — x with > 0 (Fig. 5a) while we
need further refinement of the segmentation with 2 > —2 (Fig. 5b). In Sect. 5,
we introduce a quality measure for halfspaces following this intuition.

Our synthesizer iteratively refines segmentations following this quality mea-
sure, until examples contained in each leaf of the decision tree admit an affine
ranking function. This approach is inspired by the use of information gain in the
decision tree learning for invariant synthesis.

Example 3 showed a natural extension of a decision tree learning method for
invariant synthesis. However, this is not enough for transition examples, for the
reasons of explicit and implicit cycles. Here are their examples.

82 S. Kura et al.

-2 -1 0 1 2 3

Fig. 6. Two examples R(—1,1) and R(1,0) make an implicit cycle between = > 1 and
-(z>1).

Example 4. Suppose we are given & = {R(1,0), R(0,1)}. In this case, there
is no ranking function because £ contains a cycle 1 — 0 — 1 witnessing non-
termination. We call such a cycle an explicit cycle.

Example 5. Let & = {R(-1,1), R(1,0), R(—1,-2), R(2,3)} (Fig.6). Our syn-
thesizer proceeds as follows. (1) Our synthesizer generates the set H = {z >
1,z > 0,...} of halfspaces. (2) Our synthesizer tries to find a ranking function
of the form f(z) = ax + b (with the trivial segmentation), but there is no such.
(3) Our synthesizer refines the current segmentation with (z > 1) € H because
x > 1 “looks good” (i.e. is the best with respect to a quality measure).

We have reached the point where the naive extension of decision tree learn-
ing explained in Example 3 no longer works: although all constraints con-
tained in each leaf of the decision tree admit an affine ranking function, there
is no piecewise affine ranking function for £ of the form f(z) = if =z >
1 then ax + b else cx + d.

More specifically, in this example, the leaf representing x > 1 contains
R(2,3), and the other leaf representing —(z > 1) contains R(—1, —2). The exam-
ple R(2,3) admits an affine ranking function fi(z) = —z + 2, and R(-1, —2)
admits fo(x) = x + 1, respectively. However, the combination f(z) = if = >
1 then fi(z) else fa(x) is not a ranking function for £. Moreover, there is no
ranking function for £ of the form f(z) =if x > 1 then ax + b else cx + d.

It is clear that this failure is caused by the crossing examples R(—1,1) and
R(1,0). It is not that every crossing example is harmful. However, in this case,
the set {R(—1,1),R(1,0)} forms a cycle between the leaf for x+ > 1 and the
leaf for =(x > 1) (see Fig.6). This “cycle” among leaves—in contrast to ezplicit
cycles such as {R(1,0), R(0,1)} in Example 4—is called an implicit cycle.

Once an implicit cycle is found, our synthesizer cuts it by refining the current
segmentation. Our synthesizer continues the above steps (1-3) of decision tree
learning as follows. (4) Our synthesizer selects (x > 0) € H and cuts the implicit
cycle {R(—1,1), R(1,0)} by refining segmentations. (5) Using the refined seg-
mentation, our synthesizer obtains f(z) = if x > 1 then — z + 2 else if = >
0 then 0 else x + 3 as a ranking function for €.

As explained in Example 4, and 5, handling (explicit and implicit) cycles
is crucial in decision tree learning for transition examples. Moreover, our cycle
detection theorem (Theorem 17) claims that if there is no explicit or implicit
cycle, then one can find a ranking function for £ without further refinement of
segmentations.

Decision Tree Learning in CEGIS-Based Termination Analysis 83

3 (Non-)Termination Verification as Constraint Solving

We explain how to encode (non-)termination verification to constraint solving.
Following [31], we formalize our target class pwCSP of predicate constraint
satisfaction problems parametrized by a first-order theory 7.

Definition 6. Given a formula ¢, let ftv(¢) be the set of free term variables
and fpu(¢) be the set of free predicate variables in ¢.

Definition 7. A pwCSP is defined as a pair (C,R) where C is a finite set of
clauses of the form

0 m
PV (\/ Xz‘(ﬂ)) Vv (V _‘Xi(tNi)> (4)

i=0+1

and R C fpu(C) is a set of predicate variables that are required to denote well-
founded relations. Here, 0 < £ < m. Meta-variables ¢t and ¢ range over 7 -terms
and 7-formulas, respectively, such that ftv(¢) = (. Meta-variables z and X
range over term and predicate variables, respectively.

A pwCSP (C,R) is called CHCs (constrained Horn clauses, [9]) if R = 0 and
¢ <1 for all clauses ¢ € C. The class of CHCs has been widely studied in the
verification community [12,14,28,36].

Definition 8. A predicate substitution o is a finite map from predicate variables
X to closed predicates of the form Awy, ..., 2. x).¢. We write dom(c) for the
domain of ¢ and o(C) for the application of o to C.

Definition 9. A predicate substitution o is a (genuine) solution for (C,R) if (1)
fov(C) C dom(o); (2) E Ac(C) holds; and (3) for all X € R, o(X) represents
a well-founded relation, that is, sort(c(X)) = (5,5) — e for some sequence § of
sorts and there is no infinite sequence vy, 09, ... of sequences v; of values of the
sorts § such that = p(X)(v;,0;41) for all ¢ > 1.

Encoding Termination. Given a set of initial state +(Z) and a transition relation
7(Z,2"), the termination verification problem is expressed by the pwCSP (C, R)
where R = {R}, and C consists of the following clauses.

u(2) = I(2) Tz,)N (7)) = I(2') (@,)N I(Z) = R(Z,7)
We use ¢ = 1 as syntax sugar for —¢ V 1, so this is a pwCSP. The well-

founded relation R asserts that 7 is terminating. We also consider an invariant
I for 7 to avoid synthesizing ranking functions on unreachable program states.

84 S. Kura et al.

Encoding Non-termination. We can also encode a problem of non-termination
verification to pwCSP via recurrent sets [20]. For simplicity, we explain the
encoding for the case of only one program variable z. We consider a recurrent
set R satisfying the following conditions.

tx) = R(x) (5)
R(z) = 32'.7(z,2") A R(2) (6)

To remove 3 from (6), we use the following constraint that is equivalent to (6).

R(z) = E(z,0) (7)
E(z,2') = (7(z,2") AR(2'))
V(S(@' 2" = 1) AE(z, 2’ = 1))V (S(@,2' + 1) A E(z,2' +1)) (8)

The intuition is as follows. Given x in the recurrent set R, the relation F(x, ')
searches for the value of 32’ in (6). The search starts from 2’ = 0 in (7), and
2’ is nondeterministically incremented or decremented in (8). The well-founded
relation S asserts that the search finishes within finite steps. As a result, we
obtain a pwCSP for non-termination defined by (C,R) where R = {S} and C is
given by (5), (7), and (the disjunctive normal form of) (8).

Example 10. Consider the following C program.
while(x > 0) { x = -2 * x + 9; }

The non-termination problem is encoded as the pwCSP (C,R) where R = {S},
and C consists of

x>0 = R(z) R(z) = E(z,0)
E(z,2) = 2’ = -2x+9AR(2)
V(S 2 —1)ANE(@,2 — 1)V (S, 2" +1) A E(z,2" +1)).

The program is non-terminating when x = 3. This is witnessed by a solution o for
(C,R), which is given by o(R)(z) =2z = 3, 0(E)(z,2’) = 2 = 3A0 < 2/ Az’ < 3,
and o(S)(2/,2") =2" =2' +1Nn2"” <3.

4 CounterExample-Guided Inductive Synthesis (CEGIS)

We explain how CounterExample-Guided Inductive Synthesis [29] (CEGIS for
short) works for a given pwCSP (C, R) following [31]. Then, we add the extraction
of positive/negative examples to the CEGIS architecture, which enables our
decision tree-based synthesizer to use a simplified form of examples.

CEGIS proceeds through the iterative interaction between a synthesizer and
a validator (Fig. 1), in which they exchange examples and candidate solutions.

Definition 11. A formula ¢ is an ezample of C if ftv(¢) =) and A C = ¢ hold.
Given a set £ of examples of C, a predicate substitution o is a candidate solution
for (C,R) that is consistent with £ if o is a solution for (€, R).

Decision Tree Learning in CEGIS-Based Termination Analysis 85

Synthesizer. The input for a synthesizer is a set £ of examples of C collected from
previous CEGIS iterations. The synthesizer tries to find a candidate solution
o consistent with € instead of a genuine solution for (C,R). If the candidate
solution o is found, then o is passed to the validator. If £ is unsatisfiable, then
& witnesses unsatisfiability of (C,R). Details of our synthesizer is described in
Sect. 5.

Validator. A validator checks whether the candidate solution ¢ from the synthe-
sizer is a genuine solution of (C,R) by using SMT solvers. That is, satisfiability
of E =~ A c(C) is checked. If = = A o(C) is not satisfiable, then o is a genuine
solution of the original pwCSP (C,R), so the validator accepts this. Otherwise,
the validator adds new examples to the set £ of examples. Finally, the synthesizer
is invoked again with the updated set £ of examples.

If E = Ao(C) is satisfiable, new examples are constructed as follows. Using
SMT solvers, the validator obtains an assignment 6 to term variables such that =
=0(1)) holds for some 1) € o(C). By (4), = —0(¢) is a clause of the form = =60(¢)A
(/\f:1 ﬁJ(Xi)(Q(E))) A (/\;1“_1 J(XZ)(O(tNZ))) To prevent this counterexample
from being found in the next CEGIS iteration again, the validator adds the
following example to £.

_\/ Xi(0(t:)) v _ \ —Xi(6(%) 9)

The CEGIS architecture repeats this interaction between the synthesizer and
the validator until a genuine solution for (C,R) is found or £ witnesses unsatis-
fiability of (C,R).

Extraction of Positive/Negative Examples. Examples obtained in the above
explanation are a bit complex to handle in our decision tree-based synthesizer:
each example in £ is a disjunction (9) of literals, which may contain multiple
predicate variables.

To simplify the form of examples, we extract from £ the sets 5;5 and £ of
positive examples (i.e., examples of the form X (v)) and negative examples (i.e.,
examples of the form —X (v)) for each X € fpv(&). This allows us to synthesize a
predicate o(X) for each predicate variable X € fpv(€) separately. For simplicity,
we write v € £F and ¥ € £ instead of X (v) € £ and ~X (v) € £5.

The extraction is done as follows. We first substitute for each predicate vari-
able application X (v) in £ a boolean variable by) to obtain a SAT problem
SAT(E). Then, we use SAT solvers to obtain an assignment 7 that is a solution
for SAT(E). If a solution 7 exists, then we construct positive/negative examples
from n; otherwise, £ is unsatisfiable.

Definition 12. Let n be a solution for SAT(E). For each predicate variable
X € fpu(€), we define the set S} of positive examples and the set 8} of negative
ezamples under the assignment 1 by €% = {0 | n(bx (7)) = true} and €5 = {7 |
n(bx)) = false}.

86 S. Kura et al.

Note that some of predicate variable applications X (v) may not be assigned true
nor false because they do not affect the evaluation of SAT(E). Such predicate
variable applications are discarded from {(£5,Ex)} xefpu(e)-

Our method uses the extraction of positive and negative examples when the
validator passes examples to the synthesizer. If X € fpv(£) N'R, then we apply
our ranking function synthesizer to (€¥,£y). If X € fpu(€) \ R, then we apply
an invariant synthesizer.

We say a candidate solution o is consistent with {(£¥,E%)}xepu(e) if =
(X)) and = —o(X)(07) hold for each predicate variable X € fpv(€), v €
EF,and v~ € Ex. If a candidate solution o is consistent with {(£3, EX)}xefu(e)
then o is also consistent with &.

Note that unsatisfiability of {(£%, Ex)} xefpu(e) does not immediately implies
unsatisfiability of € nor (C, R) because {(£¥, €x)} xejpu(e) depends on the choice
of the assignment 7. Therefore, the CEGIS architecture need to be modified: if
synthesizers find unsatisfiability of {(£3, %)} xefpu(e), then we add the negation
of an unsatisfiability core to £ to prevent using the same assignment 7 again.

Note that some restricted forms of (9) have also been considered in previous
work and are called implication examples in [17] and implication/negation con-
straints in [12]. Our extraction of positive and negative examples is applicable
to the general form of (9).

5 Ranking Function Synthesis

In this section, we describe one of the main contributions, that is, our decision
tree-based synthesizer, which synthesizes a candidate well-founded relation o(R)
from a finite set S;{ of examples. We assume that only positive examples are given
because well-founded relations occur only positively in pwCSP for termination
analysis (see Sect.3). The aim of our synthesizer is to find a piecewise affine
lexicographic ranking function f(f) for the given set 5;5 of examples. Below, we
fix a predicate variable R € R and omit the subscript £} = £7.

5.1 Basic Definitions

To represent piecewise affine lexicographic ranking functions, we use decision
trees like the one in Fig. 4. Let = = (x1,...,x,) be the program variables where
each x; ranges over Z.

Definition 13. A decision tree D is defined by D := g(z) | if h(Z) > 0 then D
else D where §(Z) = (9x(Z),...,90(T)) is a tuple of affine functions and h(Z)
is an affine function. A segmentation tree S is defined as a decision tree with
undefined leaves L: that is, S := L | if A(Z) > 0 then S else S. For each
decision tree D, we can canonically assign a segmentation tree by replacing the
label of each leaf with L. This is denoted by S(D). For each decision tree D, we

denote the corresponding piecewise affine function by fp () : Z" — ZF+1.

Decision Tree Learning in CEGIS-Based Termination Analysis 87

Each leaf in a segmentation tree .S corresponds to a polyhedron. We often identify
the segmentation tree S with the set of leaves of S and a leaf with the polyhedron
corresponding to the leaf. For example, we say something like “for each L € S,
v € L is a point in the polyhedron L”.

Suppose we are given a segmentation tree S and a set £t of examples.

Definition 14. For each L, Ly € S, we denote the set of example transitions
from Ly to Ly by 52‘17L2 = {(v,0") € € | v € L1,v" € Ls}. An example
(0,0") € ET is crossing w.r.t. S if (v,0') € 52’17L2 for some Ly # Lo, and non-
crossing if (v,7") € S;L for some L.

Definition 15. We define the dependency graph G(S,E™) for S and £F by the
graph (V, E) where vertices V = S are leaves, and edges E = {(L1,L2) | L1 #
Ly, 3(0,0") € &F, L, are crossing examples.

We denote the set of start points ¥ and end points ¥’ of examples (v,?") € £
by £ :={v | (v,0") € ET}U{P' | (V,0") € ET}.

5.2 Segmentation and (Explicit and Implicit) Cycles:
One-Dimensional Case

For simplicity, we first consider the case where f(ﬂ?) = f(Z): Z" — Z is a one-
dimensional ranking function. Our aim is to find a ranking function f(Z) for £¥,
which satisfies V(0,0") € ET. f(v) > f(¥') and V(0,7") € ET. f(v) > 0. If our
ranking function synthesizer finds such a ranking function f(Z), then a candidate
well-founded relation Ry is constructed as Ry (z,2") == f() > 0A f(z) > f(Z').

Our synthesizer builds a decision tree D to find a ranking function fp(Z) for
ET. The main question in doing so is “when and how should we refine partitions
of decision trees?” To answer this question, we consider the case where there
is no ranking function fp(Z) for £T with a fixed segmentation S, and classify
reasons for this into three cases as follows.

Case 1: Explicit Cycles in Evamples. We define an explicit cycle in €1 as a
cycle in the graph (Z", ET). An explicit cycle witnesses that there is no ranking
function for £ (see e.g., Example 4).

Case 2: Non-crossing Examples are Unsatisfiable. The second case is when there
is a leaf L € S such that no affine (not piecewise affine) ranking function for the
set EZ“ ;, of non-crossing examples exists. This prohibits the existence of piecewise
affine function fp(Z) for £F with segmentation S = S(D) because the restriction
of fp(Z) to L € S must be an affine ranking function for 5; -

Case 3: Implicit Cycles in the Dependency Graph. We define an implicit cycle
by a cycle in the dependency graph G(S,E%1). Case 3 is the case where an
implicit cycle prohibits the existence of piecewise affine ranking functions for £+
with the segmentation S (e.g., Example 5). If Case 1 and Case 2 do not hold

88 S. Kura et al.

but no piecewise affine ranking function for £t with the segmentation S exists,
then there must be an implicit cycle by (the contraposition of) the following
proposition.

Proposition 16. Assume £ is a set of examples that does not contain explicit
cycles (i.e. Case 1 does not hold). Let S be a segmentation tree and assume
that for each L € S, there exists an affine ranking function fr,(Z) for EZ'L (i.e.
Case 2 does not hold). If the dependency graph G(S,E™) is acyclic, then there
exists a decision tree D with the segmentation S(D) = S such that fp(Z) is a
ranking function for ET.

Proof. By induction on the height (i.e. the length of a longest path from a
vertex) of vertices in G(S,ET). We construct a decision tree D as follows. If
the height of L € S is 0, then we assign f7(Z) := fL(Z) to the leaf L where
f1(F) is a ranking function for £ ;. If the height of L € S is n > 0, then we
assign fi(@) = fr(T) + c to the leaf L where ¢ € Z is a constant that satisfies
Y(v,v") € SL 1 fL(0) + ¢ > f1,(0") for each cell L' with the height less than n.

O

Note that the converse of Proposition 16 does not hold: the existence of implicit
cycles in G(S,E™) does not necessarily imply that no piecewise affine ranking
function exists with the segmentation S.

5.3 Segmentation and (Explicit and Implicit) Cycles:
Multi-Dimensional Lexicographic Case

We consider a more general case where f(Z) = (fx(Z), ..., fo(¥)) is a multi-
dimensional lexicographic ranking function and k is a fixed nonnegative integer.

Given a function f(Z), we consider the well-founded relation R #(z, z') defined
inductively as follows.

R)(Z,%") =L R, 1)@ 7) = fu(Z) > 0A fulT) > fu(@) (10)
V(@) = fr@) A Rig_y . p0) (T, 7)

Our aim here is to find a lexicographic ranking function f(i) for £T,ie. a
function f(x) such that Rz (~ ¥') holds for each (v,?2") € £T. Our synthesizer
does so by building a dec1s10n tree. The same argument as the one-dimensional
case holds for lexicographic ranking functions.

Theorem 17 (cycle detection). Assume E1 is a set of examples that does not
contain explicit cycles. Let S be a segmentation tree and assume that for each L €
S, there exists an affine function fr(T) that satisfies ¥(v,0") € €L+L,R (v,7").

If the dependency graph G(S,ET) is acyclic, then there exists a deczszon tree D
with the segmentation S(D) = S such that Rg_(0,v") holds for each (v,7") € ET.

Proof. The proof is almost the same as Proposition 16. Here, note that if f’(f)

f(i) + ¢ where ¢ is a tuple of nonnegative integer constants, then Rf,(f, T’

~—

O

subsumes R, z").

Decision Tree Learning in CEGIS-Based Termination Analysis 89

Algorithm 1 Building decision trees.

Input: a set &1 of examples, an integer k > 0
Output: a well-founded relation R such that V(z,7') € €1, R(Z,7")
1. if E has a cycle then

2: return unsatisfiable

3: end if

4: D = RESOLVECASE2(E)

5: while true do

6: C' := GETCONSTRAINTS(D, E)

7 O = SuMABSPARAMS(D)

8: p = MiNnmvize(O, C)

9: if p is defined then
10: @) = Fom) (@)
11: return R 7
12: else
13: get an unsat core in C'
14: find an implicit cycle (91,71),. .., (v1,7;) in the unsat core
15: find a cell C and two distinct points v, ;41 € C in the implicit cycle
16: add a halfspace to separate ¥ and v;41 and update D
17: end if

18: end while

5.4 Our Decision Tree Learning Algorithm

We design a concrete algorithm based on Theorem 17. It is shown in Algorithm 1
and consists of three phases. We shall describe the three phases one by one.

Phase 1. Phase 1 (Line 1-3) detects explicit cycles in £ to exclude Case 1.
Here, we use a cycle detection algorithm for directed graphs.

Phase 2. Phase 2 (Line 4) detects and resolves Case 2 by using RESOLVE-
Casg2 (Algorithm 2), which is a function that grows a decision tree recur-
sively. RESOLVECASE2 takes non-crossing examples in a leaf, divides the leaf,
and returns a template tree that is fine enough to avoid Case 2. Here, template
trees are decision trees whose leaves are labeled by affine templates.

Algorithm 2 shows the detail of RESOLVECASE2. RESOLVECASE2 builds a
template tree recursively starting from the trivial segmentation S = L and all
given examples. In each polyhedron, RESOLVECASE2 checks whether the set C'
of constraints imposed by non-crossing examples can be satisfied by an affine
lexicographic ranking function on the polyhedron (Line 2-3). If the set C' of
constraints is not satisfiable, then RESOLVECASE2 chooses a halfspace h(Z) > 0
(Line 6) and divides the current polyhedron by the halfspace.

There is a certain amount of freedom in the choice of halfspaces. To guaran-
tee termination of the whole algorithm, we require that the chosen halfspace h
separates at least one point in £ = {v | (0,7") € ET}U{V | (0,0) € &}
from the other points in £F. That is:

90 S. Kura et al.

Algorithm 2 Resolving Case 2.

1: function RESOLVECASE2(E'T)

2: f = MAKEAFFINETEMPLATE()

3 C := GETCONSTRAINTS(f, £')

4: p = GETMODEL(C)

5: if p is undefined then

6: h := CHOOSEQUALIFIER(E')

7 D> = RESOLVECASE2({(7,7") € &' | (D) > 0 A h(T') > 0})
8: D<o = RESOLVECASE2({(7,7) € &' | h(T) < 0O A R(W') < 0})
9: return (if ~A(Z) > 0 then D>, else Do)

10: else B
11: return f
12: end if

13: end function

14: function GETCONSTRAINTS(D, V)

15: return {R7 (v,) | (3,0') € T} where fp is the tuple of piecewise affine
functions corresponding to D

16: end function

Algorithm 3 A criterion for eager qualifier selection.

1: function QUALITYMEASURE(h, &)

20 Eiy={(@0,v) €& |h@®) >0AhR@®) >0}

3: Ei_ = {(®,v) €& | h@®) > 0AhK®D) <0}

4 E_, ={{@®7)€&" | @) <0AhI(@®) >0}

5 E__ ={{©,7) €& | h{®) <0AhI®) <0}

6: f = MAKEAFFINETEMPLATE ()

7 Cy = GETCONSTRAINTS(fN', Eiy) C_ = GETCONSTRAINTs(f, E__)
8: N4 = MaxSmt(Cy) N_ == MaxSMT(C-)

9: return Ny + N_+ (|Bs |+ [E_4)(1 — entropy (| B+ |, | E—+1))

10: end function

Assumption 18. If halfspace h(z) > 0 is chosen in Line 6 of Algorithm 2, then
there exist v,u € €T such that h(?) > 0 and h(u) < 0.

We explain two strategies (eager and lazy) to choose halfspaces that can be
used to implement CHOOSEQUALIFIER. Both of them are guaranteed to termi-
nate, and moreover, intended to yield simple decision trees.

Eager Strategy. In the eager strategy, we eagerly generate a finite set H of
halfspaces from the set £ of all examples beforehand and choose the best one
from H with respect to a certain quality measure. To satisfy Assumption 18,
H are generated so that any two points 4,7 € £% can be separated by some
halfspace (h(z) > 0) € H.

For example, we can use intervals H = {+(z; —a;) > 0] i =1,...,nA
(a1,...,a,) € €} and octagons H = {*+(z; —a;) £ (z; —aj) > 0| @ #
jA(a1,...,a,) € EY} where T = (x1,...,3,). For any input &t C £t of

Decision Tree Learning in CEGIS-Based Termination Analysis 91

RESOLVECASE2, intervals and octagons satisfy § # H' .= {h(Z) > 0| Jv,u €
E.h(W) > 0 A R(uw) < 0}, so Assumption 18 is satisfied by choosing the best
halfspace with respect to the quality measure from H’.

For each halfspace (h(Z) > 0) € H’, we calculate QUALITYMEASURE in
Algorithm 3, and choose one that maximizes QUALITYMEASURE(h, £'T). QUAL-
ITYMEASURE(h, £'T) calculates the sum of the maximum number of satisfiable
constraints in each leaf divided by h(z) > 0 plus an additional term (|Ey_| +
|E_|)(1 — entropy(|E;_|, | B4 |)) where entropy(z,) = — =2 log, z& — =
log, 4. Therefore, the term (|Ey_| + [E_[)(1 — entropy(|E4—|,[E_4])) is
close to |Ey_|+ |E_4| if almost all examples in E_ UFE_, cross h in the same
direction and close to 0 if |E4_| is almost equal to |E_|.

Lazy Strategy. In the lazy strategy, we lazily generate halfspaces. We divide the
current polyhedron so that non-crossing examples in the cell point to almost the
same direction.

First, we label states that occur in EZC’C as follows. We find a direction that
most examples in C point to by solving the MAX-SMT a := max, |{(5, V') €
52‘_,0 | a- (v —71") > 0} For each (v,70") € Eac, we label two points ¥, 7" with
+1lifa-(v—7") >0 and with —1 otherwise.

Then we apply weighted C-SVM to generate a hyperplane that separates
most of the positive and negative points. To guarantee termination of Algo-
rithm 1, we avoid “useless” hyperplanes that classify all the points by the same
label. If we obtain such a useless hyperplane, then we undersample a majority
class and apply C-SVM again. By undersampling suitably, we eventually get
linearly separable data with at least one positive point and one negative point.

Note that since coefficients of hyperplanes extracted from C-SVM are floating
point numbers, we have to approximate them by hyperplanes with rational coef-
ficients. This is done by truncating continued fraction expansions of coefficients
by a suitable length.

Phase 3. In Line 5-18 of Algorithm 1, we further refine the segmentation S(D)
to resolve Case 3. Once Case 2 is resolved by RESOLVECASE2, Case 2 never
holds even after refining S(D) further. This enables to separate Phases 2 and 3.

Given a template tree D, we consider the set C of constraints on parameters
in D that claims fp(Z) is a ranking function for €7 (Line 6).

If C is satisfiable, we use an SMT solver to obtain a solution of C' (i.e. an
assignment p of integers to parameters) while minimizing the sum of absolute
values of unknown parameters in D at the same time (Line 8). This minimization
is intended to give a simple candidate ranking function. The solution p is used
to instantiate the template tree D (Line 11).

If C' cannot be satisfied, there must be an implicit cycle in the dependency
graph G(S(D),ET) by Theorem 17. The implicit cycle can be found in an unsat-
isfiable core of C. We refine the segmentation of D to cut the implicit cycle in
Line 16. To guarantee termination, we choose a halfspace satisfying the following
assumption, which is similar to Assumption 18.

92 S. Kura et al.

Assumption 19. If halfspace h(Z) > 0 is chosen in Line 16 of Algorithm 1,
then there exist v, u € £F such that h(v) > 0 and k(@) < 0.

We have two strategy (eager and lazy) to refine the segmentation of D.

In eager strategy, we choose a halfspace (h(z) > 0) € H that separates two
distinct points ¥} and v;41 in the implicit cycle. In doing so, we want to reduce
the number of implicit cycles in G(S(D),E™), but adding a new halfspace may
introduce new implicit cycles if there exists (v,?') € 550 that crosses the new
border from the side of ¥} to the side of v; ;. Therefore, we choose a hyperplane
that minimizes the number of new crossing examples.

In lazy strategy, we use an SMT solver to find a hyperplane h(Z) € H that
separates v} and v;41 and minimizes the number of new crossing examples.

Termination. Assumption 18 and Assumption 19 guarantees that every leaf
in S(D) contains at least one point in the finite set £. Because the number
of leaves in S(D) strictly increases after each iteration of Phase 2 and Phase 3,
we eventually get a segmentation S(D) where each L € S(D) contains only one
point in £T in the worst case. Since we have excluded Case 1 at the beginning,
Theorem 17 guarantees the existence of ranking function with the segmentation
S(D). Therefore, the algorithm terminates within |[£*| times of refinement.

Theorem 20. If Assumption 18 and Assumption 19 hold, then Algorithm 1
terminates. If Algorithm 1 returns a piecewise affine lezicographic function f(T),
then the function satisfies R (7, T') for each (z,7') € ET where ET is the input
of the algorithm. O

5.5 Improvement by Degenerating Negative Values

There is another way to define well-founded relation from the tuple f (x)
(fr(@),..., fo(Z)) of functions, that is, the well-founded relation R/ (z,7

defined inductively by R()(z,7") == L and R, . (Z.7") = fi(@) 2

fi(@) > @)V (fr@) < 0\/ @) = @) ARy, (@ T).

In this definition, we loosen the equality f;(Z) = f;(Z’) (where i =1,...,k)
of the usual lexicographic ordering (10) to f;(Z') < 0V f;(z) = f;(2’). This
means that once f;(Z) becomes negative, f;(Z) must stay negative but the value
do not have to be the same, which is useful for the synthesizer to avoid complex
candidate lexicographic ranking functions and thus improves the performance.

However, if we use this well-founded relation R’A(Z,2') instead of Ry(z,2")

>_>H

n (10), then Theorem 17 fails because R;;(%, Z') is not necessarily subsumed
by le‘.},.’& where ¢ = (¢k,...,c0) is a nonnegative constant (see the proof of
Proposition 16 and Theorem 17). As a result, there is a chance that no implicit
cycle can be found in line 14 of Algorithm 1. Therefore, when we use R');(EE,),
we modify Algorithm 1 so that if no implicit cycle can be found in line 14, then
we fall back on the former definition of R(z,2') and restart Algorithm 1.

Decision Tree Learning in CEGIS-Based Termination Analysis 93

6 Implementation and Evaluation

Implementation. We implemented a constraint solver MUVAL that supports
invariant synthesis and ranking function synthesis. For invariant synthesis, we
apply an ordinary decision tree learning (see [12,14,18,22,36] for existing tech-
niques). For ranking function synthesis, we implemented the algorithm in Sect. 5
with both eager and lazy strategies for halfspace selection. Our synthesizer uses
well-founded relation explained in Sect.5.5. Given a benchmark, we run our
solver for both termination and non-termination verification in parallel, and
when one of the two returns an answer, we stop the other and use the answer.
MUVAL is written in OCaml and uses Z3 as an SMT solver backend. We used
clang and llvm2kittel [1] to convert C benchmarks to T2 [3] format files, which
are then translated to pwCSP by MUVAL.

Ezperiments. We evaluated our implementation MUVAL on C benchmarks from
Termination Competition 2020 (C Integer) [4]. We compared our tool with
APROVE [10,13], IRANKFINDER [7], and ULTIMATE AUTOMIZER [21]. Experi-
ments are conducted on StarExec [2] (CentOS 7.7 (1908) on Intel(R) Xeon(R)
CPU E5-2609 0 @ 2.40GHz (2393 MHZ) with 263932744 kB main memory). The
time limit was 300s.

Results. Results are shown in Table2. Table 2. Numbers of solved benchmarks

Yes/No/TO/U means the number of Yoo TtoTo
benchmarks that these tools could MOVAL (cager) 02185 122 | o
verify termination/could verify non- MUVAL (lazy) 20084 |51 | o
termination/could not answer within APROVE 216100 |16 | 3
300s and timed out (TimeOut)/gave IRANKFINDER 2081927 | 0 |84
JLTIMATE AU 5

up before 300s (Unknown), respec- e in it
thely- We alSO ShOW scatter DIOtS Of result of IRANKFINDER because the answer
runtime in Fig. 7. Was Wrong.

MUuUVAL was able to solve more benchmarks than ULTIMATE AUTOMIZER.
Compared to IRANKFINDER, MUVAL solved slightly fewer benchmarks, but was
faster in a large number of benchmarks: 265 benchmarks were solved faster by
MUVAL, 68 by IRANKFINDER, and 2 were not solved by both tools within 300s
(here, we regard U (unknown) as 300s). Compared to APROVE, MUVAL solved
fewer benchmarks. However, there are several benchmarks that MUVAL could
solve but APROVE could not. Among them is “TelAviv-Amir-Minimum_true-
termination.c”, which does require piecewise affine ranking functions. MUVAL
found a ranking function f(x,y) =if —y > 0 then y else z, while APROVE
timed out.

We also observed that using CEGIS with transition examples itself showed
its strengths even for benchmarks that do not require piecewise affine ranking
functions. Notably, there are three benchmarks that MUVAL could solve but the
other tools could not; they are examples that do not require segmentations. Fur-
ther analysis of these benchmarks indicates the following strengths of our frame-
work: (1) the ability to handle nonlinear constraints (to some extent) thanks to

94 S. Kura et al.

5, g, 5., .
=3 =3 =3
= = =
0 00 T o 00 T o 00
AProve irankfinder v1.3.2 Ultimate Automizer

Fig. 7. Scatter plots of runtime. ULTIMATE AUTOMIZER and APROVE sometimes gave
up before the time limit, and such cases are regarded as 300s.

the example-based synthesis and the recent development of SMT solvers; and
(2) the ability to find a long lasso-shaped non-terminating trace assembled from
multiple transition examples. See [23, Appendix A] for details.

7 Related Work

There are a bunch of works that synthesize ranking functions via constraint solv-
ing. Among them is a counterexample-guided method like CEGIS [29]. CEGIS
is sound but not guaranteed to be complete in general: even if a given constraint
has a solution, CEGIS may fail to find the solution. A complete method for
ranking function synthesis is proposed in [19]. They collect only extremal coun-
terexamples instead of arbitrary transition examples to avoid infinitely many
examples. A limitation of their method is that the search space is limited to
(lexicographic) affine ranking functions.

Another counterexample-guided method is proposed in [33] and implemented
in SEAHORN. This method can synthesize piecewise affine functions, but their
approach is quite different from ours. Given a program, they construct a safety
property that the number of loop iterations does not exceed the value of a
candidate ranking function. The safety property is checked by a verifier. If it
is violated, then a trace is obtained as a counterexample and the candidate
ranking function is updated by the counterexample. The main difference from
our method is that their method uses trace examples while our method uses
transition examples (which is less expensive to handle). FREQTERM [15] also
uses the connection to safety property, but they exploit syntax-guided synthesis
for synthesizing ranking functions.

Aside from counterexample-guided methods, constraint solving is widely
studied for affine ranking functions [27], lexicographic affine ranking func-
tions [5,7,24], and multiphase affine ranking functions [6,8]. Their implemen-
tation includes RANKFINDER and IRANKFINDER. Farkas’ lemma or Motzkin’s
transposition theorem are often used as a tool to transform 3V-constraints to 3-
constraints. However, when we apply this technique to piecewise affine ranking
functions, we get nonlinear constraints [24].

Decision Tree Learning in CEGIS-Based Termination Analysis 95

Abstract interpretation is also applied to segmented synthesis of ranking
functions and implemented in FUNCTION [32,34,35]. In this series of work, deci-
sion tree representation of ranking functions is used in [35] for better handling
of disjunctions. Compared to their work, we believe that our method is more
easily extensible to other theories than linear integer arithmetic as long as the
theories are supported by SMT solvers (although such extensions are out of the
scope of this paper).

Other state-of-the-art termination verifiers include the following. ULTIMATE
AUTOMIZER [21] is an automata-based method. It repeatedly finds a trace and
computes a termination argument that contains the trace until termination argu-
ments cover the set of all traces. Biichi automata are used to handle such traces.
APROVE [10,13] is based on term rewriting systems.

8 Conclusions and Future Work

In this paper, we proposed a novel decision tree-based synthesizer for ranking
functions, which is integrated into the CEGIS architecture. The key observa-
tion here was that we need to cope with explicit and implicit cycles contained in
given examples. We designed a decision tree learning algorithm using the theoret-
ical observation of the cycle detection theorem. We implemented the framework
and observed that its performance is comparable to state-of-the-art termination
analyzers. In particular, it solved three benchmarks that no other tool solved,
a result that demonstrates the potential of the current combination of CEGIS,
segmented synthesis, and transition examples.

We plan to extend our ranking function synthesizer to a synthesizer of piece-
wise affine ranking supermartingales. Ranking supermartingales [11] are prob-
abilistic version of ranking functions and used for verification of almost-sure
termination of probabilistic programs.

We also plan to implement a mechanism to automatically select a suitable
set of halfspaces with which decision trees are built. In our ranking function
synthesizer, intervals/octagons/octahedron/polyhedra can be used as the set of
halfspaces. However, selecting an overly expressive set of halfspaces may cause
the problem of overfitting [25] and result in poor performance. Therefore, apply-
ing heuristics that adjusts the expressiveness of halfspaces based on the current
examples may improve the performance of our tool.

Acknowledgement. We thank Andrea Peruffo and the anonymous referees for many
suggestions. This work was supported by JST ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603) and JSPS KAKENHI Grant Numbers
20H04162, 20H05703, 19H04084, and 17H01720.

96

S. Kura et al.

References

=W N

10.

11.

12.

13.

14.

15.

16.

17.

. lvm2KITTeL. https://github.com/hkhlaaf/llvm2kittel

. StarExec. https://www.starexec.org

. T2 temporal logic prover. https://github.com/mmjb/T2

. Termination Competition 2020: C Integer. https://termcomp.github.io/Y2020/

job_41519.html

. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-

gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117-133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1_8

. Ben-Amram, A.M., Doménech, J.J., Genaim, S.: Multiphase-linear ranking func-

tions and their relation to recurrent sets. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS,
vol. 11822, pp. 459-480. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32304-2_22

. Ben-Amram, A.M., Genaim, S.: Ranking functions for linear-constraint loops. J.

ACM 61(4), 1-55 (2014)

. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:

Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601-620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_32

. Bjgrner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for

program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24-51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2
Brockschmidt, M., Stréoder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for Java bytecode. In: Beckert, B., Dami-
ani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123-141. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31762-0_9

Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N.; Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511-526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_34
Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10805, pp. 365-384. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89960-2_20

Emmes, F., Enger, T., Giesl, J.: Proving non-looping non-termination automati-
cally. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI),
vol. 7364, pp. 225-240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31365-3-19

Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ICE
learning for synthesizing invariants and contracts. Proc. ACM Program. Lang.
2(OOPSLA), 131:1-131:25 (2018)

Fedyukovich, G., Zhang, Y., Gupta, A.: Syntax-guided termination analysis. In:
Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 124-143.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_7

Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposium on
Applied Mathematics, vol. 19, pp. 19-32 (1967)

Garg, P., Loding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for
learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 69-87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_5

https://github.com/hkhlaaf/llvm2kittel
https://www.starexec.org
https://github.com/mmjb/T2
https://termcomp.github.io/Y2020/job_41519.html
https://termcomp.github.io/Y2020/job_41519.html
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-642-31365-3_19
https://doi.org/10.1007/978-3-642-31365-3_19
https://doi.org/10.1007/978-3-319-96145-3_7
https://doi.org/10.1007/978-3-319-08867-9_5

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Decision Tree Learning in CEGIS-Based Termination Analysis 97

Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: POPL 2016, pp. 499-512. ACM (2016)
Gonnord, L., Monniaux, D., Radanne, G.: Synthesis of ranking functions using
extremal counterexamples. In: PLDI 2015, pp. 608-618. ACM (2015)

Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving
non-termination. In: POPL 2008, pp. 147-158. ACM (2008)

Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-
nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797-813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_-53
Krishna, S., Puhrsch, C., Wies, T.: Learning invariants using decision trees. CoRR
abs/1501.04725 (2015). http://arxiv.org/abs/1501.04725

Kura, S., Unno, H., Hasuo, I.: Decision tree learning in CEGIS-based termination
analysis. CoRR abs/2104.11463 (2021). https://arxiv.org/abs/2104.11463

Leike, J., Heizmann, M.: Ranking templates for linear loops. In: Abrahém, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 172-186. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8_12

Padhi, S., Millstein, T., Nori, A., Sharma, R.: Overfitting in synthesis: theory and
practice. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 315-334.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_17

Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: PLDI 2016, pp. 42-56 (2016)

Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239-251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0-20

Satake, Y., Unno, H., Yanagi, H.: Probabilistic inference for predicate constraint
satisfaction. In: Proceedings of AAAT 2020 (2020)

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: ASPLOS XII, pp. 404-415. ACM (2006)

Unno, H., Satake, Y., Terauchi, T., Koskinen, E.: Program verification via predicate
constraint satisfiability modulo theories. CoRR abs/2007.03656 (2020). https://
arxiv.org/abs/2007.03656

Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
CAV 2021. Springer, Cham (2021)

Urban, C.: The abstract domain of segmented ranking functions. In: Logozzo, F.,
Fahndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 43-62. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38856-9_5

Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and
pieces. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
54-70. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_4
Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412-431. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54833-8_22

Urban, C., Miné, A.: A decision tree abstract domain for proving conditional ter-
mination. In: Miiller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp.
302-318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10936-7_19
Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: PLDI 2018,
pp. 707-721. ACM (2018)

https://doi.org/10.1007/978-3-319-08867-9_53
http://arxiv.org/abs/1501.04725
https://arxiv.org/abs/2104.11463
https://doi.org/10.1007/978-3-642-54862-8_12
https://doi.org/10.1007/978-3-030-25540-4_17
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://arxiv.org/abs/2007.03656
https://arxiv.org/abs/2007.03656
https://doi.org/10.1007/978-3-642-38856-9_5
https://doi.org/10.1007/978-3-662-49674-9_4
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-319-10936-7_19

98 S. Kura et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

ATLAS: Automated Amortised
Complexity Analysis of Self-adjusting
Data Structures

Lorenz Leutgeb?®™) | Georg Moser!, and Florian Zuleger?

! Department of Computer Science, Universitét
Innsbruck, Innsbruck, Austria
2 Institute of Logic and Computation 192/4,
Technische Universitdt Wien, Vienna, Austria
lorenz@leutgeb.xyz

Abstract. Being able to argue about the performance of self-adjusting
data structures such as splay trees has been a main objective, when
Sleator and Tarjan introduced the notion of amortised complexity.

Analysing these data structures requires sophisticated potential func-
tions, which typically contain logarithmic expressions. Possibly for these
reasons, and despite the recent progress in automated resource analy-
sis, they have so far eluded automation. In this paper, we report on
the first fully-automated amortised complexity analysis of self-adjusting
data structures. Following earlier work, our analysis is based on potential
function templates with unknown coefficients.

We make the following contributions: 1) We encode the search for
concrete potential function coefficients as an optimisation problem over a
suitable constraint system. Our target function steers the search towards
coefficients that minimise the inferred amortised complexity. 2) Automa-
tion is achieved by using a linear constraint system in conjunction with
suitable lemmata schemes that encapsulate the required non-linear facts
about the logarithm. We discuss our choices that achieve a scalable anal-
ysis. 3) We present our tool ATLAS and report on experimental results
for splay trees, splay heaps and pairing heaps. We completely automati-
cally infer complexity estimates that match previous results (obtained by
sophisticated pen-and-paper proofs), and in some cases even infer better
complexity estimates than previously published.

Keywords: Amortised cost analysis -+ Functional programming -
Self-adjusting data structures - Automation - Constraint solving

1 Introduction

Amortised analysis, as introduced by Sleator and Tarjan [47,49], is a method
for the worst-case cost analysis of data structures. The innovation of amortised
analysis lies in considering the cost of a single data structure operation as part of
a sequence of data structure operations. The methodology of amortised analysis
allows one to assign a low (e.g., constant or logarithmic) amortised cost to a

© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 99-122, 2021.
https://doi.org/10.1007/978-3-030-81688-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_5

100 L. Leutgeb et al.

data structure operation even though the worst-case cost of a single operation
might be high (e.g., linear, polynomial or worse). The setup of amortised analysis
guarantees that for a sequence of data structure operations the worst-case cost
is indeed the number of data structure operations times the amortised cost.
In this way amortised cost analysis provides a methodology for worst-case cost
analysis. Notably, the cost analysis of self-adjusting data structures, such as
splay trees, has been a main objective already in the initial proposal of amortised
analysis [47,49]. Analysing these data structures requires sophisticated potential
functions, which typically contain logarithmic expressions. Possibly for these
reasons, and despite the recent progress in automated complexity analysis, they
have so far eluded automation.

In this paper, we present the first fully-automated amortised cost analysis
of self-adjusting data structures, that is, of splay trees, splay heaps and pairing
heaps, which so far have only (semi-) manually been analysed in the literature.
We implement and extend a recently proposed type-and-effect system for amor-
tised resource analysis [26,27]. This system belongs to a line of work (see [20, 22—
25,28] and the references therein), where types are template potential functions
with unknown coefficients and the type-and-effect system extracts constraints
over these coefficients in a syntax directed way from the program under analy-
sis. Our work improves over [26,27] in three regards: 1) The approach of [26,27]
only supports type checking, i.e. verifying that a manually provided type is cor-
rect. In this paper, we add an optimisation layer to the set-up of [26,27] in order
to support type inference, i.e. our approach does not rely on manual annota-
tions. Our target function steers the search towards coefficients that minimise
the inferred amortised complexity. 2) The only case study of [26,27] is partial,
focusing on the zig-zig case of the splay tree function splay, while we report
on the full analysis of the operations of several data structures. 3) [26,27] does
not report on a fully-automated analysis. Besides the requirement that the user
needs to provide the resource annotation, the user also has to apply the struc-
tural rules of the type system manually. Our tool ATLAS is able to analyse our
benchmarks fully automatically. Achieving full automation required substantial
implementation effort as the structural rules need to be applied carefully—as
we learned during our experiments—in order to avoid a size explosion of the
generated constraint system. We evaluate and discuss our design choices that
lead to a scalable implementation.

With our implementation and the obtained experimental results we make
two contributions to the complexity analysis of data structures:

1.) We automatically infer complexity estimates that match previous results
(obtained by sophisticated pen-and-paper proofs), and in some cases even infer bet-
ter complexity estimates than previously published. In Table 1, we state the com-
plexity bounds computed by ATLAS next to results from the literature. We match
or improve the results from [37,41,42]. To the best of our knowledge, the bounds for
splay trees and splay heaps represent the state-of-the-art. In particular, we improve
the bound for the delete function of splay trees and all bounds for the splay heap
functions. For pairing heaps, Iacono [29,30] has proven (using a more involved
potential function) that insert and merge have constant amortised complexity,

Automated Amortised Complexity 101

Table 1. Amortised complexity bounds for splay trees (module name SplayTree,
abbrev. ST), splay heaps (SplayHeap, SH) and pairing heaps (PairingHeap, PH).

Function name | ATLAS (automated) [42] (manual)® [37] (semi-automated)
ST.oplay | #2logs(lt) Yologa() 11| 3/2logy(t]) + 1
ST.splay.max | 3/2log,(|t|) - 3/21ogy ([t]) + 1
ST.insert 2logy (|t]) + 3/2 2logy ([t] + 1) + O(1) | 2logy([¢]) + 3/2
ST.delete 5/21og,(|t]) + 3 3log,([t| +1) + O(1) | 3logy([t]) + 2
SH.partition |3/4logy(|t])+ - 2logy([t| +1)+1
log (] + 1)
SH.insert 3/41ogy (|t])+ - 3logy([t| +2) +1
logy ([t] + 1) +3/2
SH.del min log, (|t]) _ 2logy([t|+1)+1
PH.merge_pairs | 3/2log,(|h]) - 3logy(|h]) +4
PH.insert 1/21ogs(|R]) - logy(|h| +1)+1
PH.merge | 1/2logy(hal + [hal) + 1| 1/2logg(h] + [hal) | logy(ha] + [hal +1) +2
PH.del min log, (|h|) log, (|h|) 3logy(lh| +1)+4

a[42] uses a different cost metric, i.e. the numbers of arithmetic comparisons, whereas we and
[37] count the number of (recursive) function applications. We adapted the results of [42] to
our cost metric to make the results easier to compare, i.e. the coefficients of the logarithmic
terms are by a factor 2 smaller compared to [42].

while the other data structure operations continue to have an amortised complex-
ity of klog,(|t]); while we leave an automated analysis based on Iacono’s potential
function for future work, we note that his coefficients k in the logarithmic terms
are large, and that therefore the small coefficients in Table 1 are still of interest.
We will detail below that we used a simpler potential function than [37,41,42] to
obtain our results. Hence, also the new proofs of the confirmed complexity bounds
can be considered a contribution.

2.) We establish a new approach for the complexity analysis of data structures.
Establishing the prior results in Table 1 required considerable effort. Schoenmak-
ers studied in his PhD thesis [42] the best amortised complexity bounds that can
be obtained using a parameterised potential function ¢(t), where t is a binary
tree, defined by ¢(leaf) :=0 and ¢((, d, 1)) = ¢(I)+Blog, (|l|+[r]) + ¢(r),
for real-valued parameters a,3 > 0. Carrying out a sophisticated optimisa-
tion with pen and paper, he concluded that the best bounds are obtained
by setting & = /4 and § = % for splay trees, and by setting o = /2 and
B8 = % for pairing heaps (splay heaps were proposed only some years later
by Okasaki in [38]). Brinkop and Nipkow verify his complexity results for
splay trees in the theorem prover Isabelle [37]. They note that manipulating
the expressions corresponding to 3log,, (|t|) could only partly be automated®.

! Nipkow et al. [37] state “The proofs in this subsection require highly nonlinear arith-
metic. Only some of the polynomial inequalities can be automated with Harrison’s
sum-of-squares method [16]”.

102 L. Leutgeb et al.

For splay heaps, there is to the best of our knowledge no previous attempt to
optimise the obtained complexity bounds, which might explain why our optimis-
ing analysis was able to improve all bounds. For pairing heaps, Brinkop and Nip-
kow did not use the optimal parameters reported by Schoenmakers—probably
in order to avoid reasoning about polynomial inequalities—, which explains the
worse complexity bounds. In contrast to the discussed approaches, we were able
to verify and improve the previous results fully automatically. Our approach uses
a variation of Schoenmakers’ potential function, where we roughly fix o = 2 and
leave as a parameter for the optimisation phase (see Sect.2 for more details).
Despite this choice, our approach was able to derive bounds that match and
improve the previous results, which came as a surprise to us. Looking back at
our experiments and interpreting the obtained results, we recognise that we
might have been in luck with the particular choice of the potential function
(because we can obtain the previous results despite fixing o = 2). However,
we would not have expected that an automated analysis is able to match and
improve all previously reported coefficients, which shows the power of the opti-
misation phase. Thus, we believe that our results suggest a new approach for
the complexity analysis of data structures. So far, self-adjusting data structures
had to be analysed manually. This is possibly due to the use of sophisticated
potential functions, which may contain logarithmic expressions. Both features
are challenging for automated reasoning. Our results suggest that the following
alternative (see Sects. 2 and 4.2 for more details): (i) Fix a parameterised poten-
tial function; (ii) derive a (linear) constraint system over the function parameters
from the AST of the program; (iii) capture the required non-linear reasoning in
lemmata, and use Farkas’ lemma to integrate the application of these lemmata
into the constraint system (in our case two lemmata, one about an arithmetic
property and one about the monotonicity of the logarithm, were sufficient for
all of our benchmarks); and finally (iv) find values for the parameters by an
(optimising) constraint solver. We believe that our approach will carry over to
other data structures: one needs to adapt the potential functions and add suit-
able lemmata, but the overall setup will be the same. We compare the proposed
methodology to program synthesis by sketching [48], where the synthesis engi-
neer communicates her main insights to the synthesis engine (in our case the
potential functions plus suitable lemmata), and a constraint solver then fills in
the details. As conclusion from our benchmarking, we observe that an auto-
mated analysis of sophisticated data structures are possible without the need to
(i) resort to user guidance; (ii) forfeit optimal results; or (iii) be bogged down in
computation times. These results also show how dependencies on properties of
functional correctness of the code can be circumvented.

Related Work. To the best of our knowledge the here presented automated
amortised analysis of self-adjusting data-structures is novel and unparalleled in
the literature. However, there is a vast amount of literature on (automated)
resource analysis. Without hope for a completeness, we briefly mention [1-7,9-
11,14,15,17,18,20,22-25,39,44-46,52] for an overview of the field. Logarithmic
and sublinear bounds are typically not in the focus of the cited approaches, but

Automated Amortised Complexity 103

can be inferred by some tools. In the recurrence relations based approach to cost
analysis [1] refinements of linear ranking functions are combined with criteria
for divide-and-conquer patterns; this allows the tool PUBS to recognise logarith-
mic bounds for some problems, but examples such as mergesort or splaying are
beyond the scope of this approach. Logarithmic and exponential terms are inte-
grated into the synthesis of ranking functions in [8], making use of an insightful
adaption of Farkas’ and Handelman’s lemmas. The approach is able to handle
examples such as mergesort, but again not suitable to handle self-balancing data
structures. A type based approach to cost analysis for an ML-like language is
presented in [50], which uses the Master Theorem to handle divide-and-conquer-
like recurrences. Recently, support for the Master Theorem was also integrated
for the analysis of rewriting systems [51], extending [4] on the modular resource
analysis of rewriting to so-called logically constrained rewriting systems [12].
The resulting approach also supports the fully automated analysis of mergesort.

Structure. In Sects.2 and 3 we review the type system of [26,27]. We sketch
the challenges to automation in Sect. 4 and present our contributions in Sects. 5
and 6. Finally, we conclude in Sect. 7.

2 Step by Step to an Automated Analysis of Splaying

In this and the next section we sketch the theory developed by Hofmann et al.
in [27], in order to be able to present the contributions of this article in Sect.4
and 5. For brevity, we restrict our exposition to those parts essential in the
analysis of a particular program code. As motivating example consider splay
trees, introduced by Sleator and Tarjan [47,49]. Splaying is the most important
operation on splay trees, which performs rotation. Consider Fig.1, a depiction
of the zig-zig case of splay, which implements splaying.

The analysis of [27] (see also [26]) is formulated in terms of the physicist’s
method of amortised analysis in the style of Sleator and Tarjan [47,49]. The
central idea of this approach is to assign a potential to the data structures
of interest such that the difference in potential before and after executing a
function is sufficient to pay for the actual cost of the function, i.e. one chooses
potential functions ¢, such that ¢(v) > c¢(v) + ¢ (f(v)) holds for all inputs v
to a function f, where c¢;(v) denotes the worst-case cost of executing function
f on v. This generalises the original formulation, which can be seen by setting
o(v) == ay(v) + ¢ (v), where ay(v) denotes the amortised cost of f.

In order to be able to analyse self-adjusting data structures such as splay
trees, one needs potential functions that can express logarithmic amortised cost.
Hofmann et al. [26,27] propose to make use of a variant of Schoenmakers’ poten-
tial, rk(t) for a tree ¢, cf. [37,41,42], defined inductively by

rk(leaf) :=1 rk(, d,) :=rk(l) +logy(]l]) + logs(|7]) + rk(r) ,

where [, r are the left resp. right child of the tree (I, d, 7), |t| denotes
the size of a tree (defined as the number of leaves of the tree), and d is some

104 L. Leutgeb et al.

1 | splay a t = match t with

2 | (cl, ¢, cr) -> match cl with

3 | (bl, b, br) -> let s = splay a bl in match s with
4 | (al, a’, ar) -> (al, a’, (ar, b, (br, c, cr)))

Fig. 1. Zig-zig case of the splay function.

data element that is ignored by the potential function. Besides Schoenmakers’
potential, further basic potential functions need to be added to the analysis: For
a sequence of m trees ty,...,t,, and coefficients a;,b € N, the potential function

P(ay,...,am,b) (th ce 7tm) = 1Og2(a/1 ' |t1| + -t ay, - |t’m| + b)

denotes the logarithm of a linear combination of the sizes of the tree.

Following [37], we set the cost Cspiay(t) of splaying a tree ¢ to be the number of
recursive calls to splay. Splaying and all operations that depend on splaying can
be done in O(log, n) amortised cost. Employing the above introduced potential
functions, the analysis of [27] is able verify the following cost annotation for
splaying (the annotation needs to be provided by the user):

rk(t) + 3 - p(1,0)(t) + 1 > cepray(t) +rk(splay a t) . (1)

From this result, one directly reads off 3 - p(; 0)(t) +1 = 3 - log,(|t]) + 1 as
bound on the amortised cost of splaying.?

Based on earlier work [6,20,22-25,27,28] employs a type-and-effect system
that uses template potential functions, i.e. functions of a fixed shape with inde-
terminate coefficients. The key challenge is to identify templates that are suitable
for logarithmic analysis and that are closed under the basic operations of the
considered programming language. For example, one introduces the coefficients
@+, 4(1,0) 4(0,2) > Lo qu,o)’ qE072) and introduces the potential function templates

B(t:T|Q) = qu - rk(t) + q1,0) - P1,0)(t) + A(0,2) * P(0,2) (t)
P(splay a t:T|Q'):=¢. -rk(splay a t)+
+d(1,0) " P(1,0)(sP1ay a t) + q(g o) - P(0.2)(sPlay a t) ,

for the input and output of the splay function. The type system then derives
constraints on the template function coefficients, as indicated in the sequel. We
take up further discussion of the constraint system, in particular how to maintain
a scalable analysis, in Sect. 4.

We explain the use of the type system on the motivating example. For brevity,
type judgements and the type rules are presented in a simplified form. In par-
ticular, we restrict our attention to tree types, denoted as T. This omission is
inessential to the actual complexity analysis. For the full set of rules see [27].

2 For ease of presentation, we elide the underlying semantics for now and simply write
“splay a t” for the resulting tree t’, obtained after evaluating splay a t.

Automated Amortised Complexity 105

splay:T'Q — T|Q/ (app) . ,
blT‘Q F splay a b1:T|Q/ -1 A|R H splay a bl:T|R

er:T,br:T,5: T|Q4 F match & with |(al,a’,ar) >t :T|Q’

let: T
er:T,bl:T,br:T|Qs - el : T|Q' W) ()
w
er:T,ol: T, br:T|Q2 F e : T|Q' (match)
matc
cl:T,er:T|Q1 F match cl with [(bl,b,br) -> e1:T|Q’
(match)

t:T|Q b match ¢ witnl (cl,c cr) -> e1:T|Q’

Fig. 2. Partial typing derivation for the motivating example spiay.

Let e denote the body of the function definition of splay a t , depicted in
Fig. 1. Our automated analysis infers an annotated type of splaying, by verifying
that the type judgement

t:TIQFe:T|Q, (2)

is derivable. As above, types are decorated with annotations @ :=
[4+,4(1,0),4(0,2)] and Q" := [qfk,qzlwo),qzo,z)]—employed to express the potential
carried by the arguments to splay and its results.

The soundness theorem of the type system (Theorem 1) expresses that if
the above type judgement is derivable, then the total cost Cspiay(t) of splay-
ing is bound by the difference between @(t: T|Q) and ?(splay a t:T|Q’), i..

P(t:T|Q) > cspray(t) + P(splay a t:T|Q') In particular, Eq.1 can be derived
in this way.

We now provide an intuition on the type-and-effect system, stepping through
the code of Fig.1. The corresponding type derivation tree is depicted in Fig. 2.
We note that the tree contains further annotations @1, @2, @3, Q4 (besides the
annotations @) and @') which again represent the unknown coefficients of poten-
tial function templates. The goal of the type-and-effect system is to provide
constraints for each programming construct that connect the annotations in sub-
sequent derivation steps, e.g. Q2 and Q3. The type-and-effect system operates
syntaz-directed and formulates one rule per programming languages construct.
We now discuss some of these rules for the partial derivation for splay.

The outermost command of e is a match statement, for which the following
rule is applied:

cl:T,er:TIQu b ex: T|Q (match)
matc
t:T|QF match ¢ with | (cl,c,er) => er: T|Q' .

Here e; denotes the subexpression of e, which constitutes the nested pattern
match. Primarily, this is a standard type rule for pattern matching. The novelty
are the constraints on the annotations @, @' and Q7. More precisely, (match)
induces the constraints

106 L. Leutgeb et al.

q = q; = G« 9(11,170) = 4(1,0) q(117o,0) = q(lo,1,o) = qx q(10,0,2) = 4(0,2) 5
which can be directly read-off the definition of rk(t) = rk(el) + logs(|cl|) +

logy(|er|) + rk(er). Similarly, the nested match command, starting expression e,
is subject to the same rule; the resulting constraints amount to

2 2 2 2 1 2
d1 =492 =43 4(0,0,0,2) = 49(0,0,2) 41,1,1,00 = 9(1,1,0)

2 1 2 1 2 1
4(0,1,1,00 = 4(1,0,0) 4(1,0,0,0) = 49(0,1,0) 4(0,1,0,00 = 9(0,0,1,0) = 91 -

—~

Besides the rules for programming language constructs, the type-and-effect
system contains structural rules, which operate on the type annotations them-
selves. The weakening rule allows a suitable adaptation of the coefficients of the
potential function @(I']Q2) to obtain a new potential function ¢(I"|Q3), where
we use the shorthand I' :=cr:T,bl:T,br: T:

IQs ke TIQ" &(I'Q2) = &(I'|Q3)
IQa ey : TR

(w)

The difficulty in applying the weakening rule, consists in discharging the
constraint:

P(I'Q2) > P(I'|Qs) 3)

Note, that the comparison is to be performed symbolically, that is, abstracted from
the concrete value of the variables. We emphasise that this step can neither be
avoided, nor easily moved to the axioms of the derivation, as in related approaches
in the literature [19,21-23,28,31,35]. We use Farkas’ Lemma in conjunction with
two facts about the logarithm to linearise this symbolic comparison, namely the
monotonicity of the logarithm and the fact that 2+1log, (x) +1ogs(y) < 2logy(x+
y) for all x,y > 1. For example, for the facts log,(|bl]) < log,(|bl] + |br]) and
2 + logy ([bl]) + logy([er| + |br]) < 2logs(|cr| + |bl] + |br|), we use Farkas’ Lemma
to generate the constraints

2 3
%0002 T2/ Z 40,002 5 3
9 3 o100 TF+924q (0100)
>
q(1,o,1,o) + f 24010 N
4(0,1,1,0) 9249 (0 1,1,0)
q(1,1,1,0) —2f > (1(1 1,1,0)

for some coefficients f, g > 0 introduced by Farkas’ Lemma. We note that Farkas’
Lemma can be interpreted as systematically exploring all positive-linear com-
binations of the considered mathematical facts. This can be seen on the above
example: one can combine g times the first fact with f times the second fact.

Automated Amortised Complexity 107

Next, we apply the rule for the 1et expression. This rule is the most involved
typing rule in the system proposed by Hofmann et al. [27].

A‘Q"@gZT‘Q/—l A|R |_Cf 62:T‘R/ (‘)|Q4}_€32T|QI
er:T,bl: T, br:T|Qs F let s = eg in e3: T|Q’

(let: T)

Ignoring the annotations and in particular the second premise for a moment,
the type rule specifies a standard typing for a let expression. We note that,
as required by the rule, all variables in the type context I occur at most once
in the let-expression. I can then be split into contexts A := bl: T and 6 =
cr:T,br:T. Here, €2 := splay a bl and ez denotes the last match statement
in e. The let-rule facilitates a splitting of the potential @3 for the evaluation
of es and e3 according to the type contexts A and @. Abusing notation, the
distribution of potentials facilitated by the let-rule can be stated very roughly
as two “equalities”, that is, (i) “Q3 = Q+R+P” and (i) “Q4 = (Q'—1)+R'+P”.
(i) states that the potential Q3 pays for evaluating the splay expression ey (with
and without costs, requiring the potential @ and R) and leaves the remainder
potential P. (ii) states that the potential Q4 is constituted of the remainder
potential P and of the potentials left after evaluating e; (with and without
costs, i.e. potentials Q' —1 and R’). E.g. Q4 is given by the following constraints

4 3 4 4 3 4 .

q =q a3 = q. 4(1,0,0,00 = 49(1,0,0,00 49(1,1,1,0) — ’/(1,0)
4 3 4 3 4 3

92 =43 9(0,1,0,00 = 9(0,0,1,0) 9(1,1,0,00 = 9(1,0,1,0)

where the coefficients ¢® stem from the remainder potential of @3, the coefficient
¢, from Q" — 1 and 7/(; ¢y from R'.

The most original part of this type rule is the second premise
A|R Ffsplay a bl:T|R'. Here, - denotes the same kind of typing judge-
ment as used in the overall typing derivation, but where all costs are set to zero
(hence, the superscript cost-free). Let us assume R = [r(1 o)}, R’ = [1'(1,0)], and
that ATLAS was able to establish that

D(bl: T|R) = logy(|bl]) = log,(|s|) = &(s: T|R') , (4)

establishing the coefficients r(; oy = 1 and 7’ 1,00 = L. (We note that cost-free
typing derivations as in Eq. (4) constitute a size analysis that relates the sizes
of input and output). Then, ATLAS infers from (4), taking advantage of the
monotonicity of log, that

logy([er| + [bl] + [br]) = logy(ler| + [br] + |s]) -

This inequality expresses that if the summand log, (|cr|+[bl|4]br]|) is included in
the potential @(I'|Q3), then the summand log, (|er| 4 [br| + |s|) may be included
in the potential @(cr:T,br:T,s: T|Q4). (The two logarithmic terms correspond
to the coefficients q?1,1,1,0) and qzll,l,LO) marked in red above.) Thus, the cost-free

108 L. Leutgeb et al.

derivation allows the potential R to pass from Q3, via R’, to Q4. This is crucial
for being able to pay for the evaluation of es.

The let-rule has the three premises A|Q F ex: T|Q' — 1, AR F<f eq: T|R/
and O|Q4 F e3: T|Q'. We focus here on the first premise and do not state the
derivations for the other two premises (such derivations can be found in [27]). The
judgement A|Q F splay a t:T|Q —1 can be derived by the rule for function
application, which states a cost of 1 with regard to the type signature of splay,
represented by decrementing the potential induced by the annotation Q’.

splay: T|Q — T|Q’
t:TIQF splay a t:T|Q —1

(app)

The rule for function application is an axiom, and closes this branch of the
typing derivation. This concludes the presentation of the partial type inference
given in Fig. 2. Similarly to the above example of splay, estimates for the amor-
tised costs of insertion and deletion on splay trees can be automatically inferred
by our tool ATLAS. Further, our analysis handles similar self-adjusting data
structures like pairing heaps and splay heaps (see Sect.6.1).

3 Technical Foundation

In this short section, we provide a more detailed account of the formal system
underlying our tool ATLAS. We state the soundness of the system in Theorem 1.

A typing context is a mapping from variables V to types; denoted by upper-
case Greek letters. A program P is a set of typed function definitions of the form
f(x1,...,x,) = e, where the z; are variables and e an expression. A substitution
(or an environment) o is a mapping from variables to values that respects types.
Substitutions are denoted as sets of assignments: o = {x1 — t1,..., 2, — t,}.
We employ a simple cost-sensitive big-step semantics based on eager evaluation,
dressed up with cost assertions. The judgement o |£ e = v means that under
environment o, expression e is evaluated to value v in exactly ¢ steps. Here
only rule applications emit (unit) costs. For brevity, the formal definition of the
semantics is omitted but can be found in [27].

In Sect.2, we introduced a variant of Schoenmakers’ potential function,
denoted as rk(t), and the additional potential functions p(a,a,..5)(f1, - - - s tm) :=
logy(ay - [t1]|+ -+ am - [tm|+b), denoting the log, of a linear combination of tree
sizes. log, denotes the logarithm to the base 2; throughout the paper we stipulate
log,(0) := 0 in order to avoid case distinctions. Note that the constant function 1
is representable: 1 = At.1ogy(0 - [t| +2) = p(g,2). We are now ready to state the
resource annotation of a sequence of trees:

Definition 1. A resource annotation or simple annotation of length m is a
sequence Q = [q1,. -, qm]| U [(Q(an,....an.b))as,beN], vanishing almost everywhere.

Automated Amortised Complexity 109

Let t1,...,tn be a sequence of trees. Then, the potential of t1,...,t, wrt. Q is
given by

m
B(t1, .. tm|Q) =D qi - rk(t:) + > Qar,eramyb) “Platy.yam,b) E1s - s tm) -
=1

In case of an annotation of length 1, we sometimes write ¢, instead of ¢, as
we already did above.

Ezample 1. Let t be a tree, then its potential could be defined as follows: rk(t) +
3 -logy(]t]) + 1. Wrt. the above definition this potential becomes representable
by setting ¢. := 1, q(1,0) := 3,q(0,2) := 1. Thus, &(t|Q) = rk(t) + 3 - logy(|t]) + 1.

O

Let o be a substitution, let I" denote a typing context and let x1:T,..., Ty T
denote all tree types in I'. A resource annotation for I' or simply annota-
tion is an annotation for the sequence of trees xi0,...,x,,0. We define the
potential of the annotated context I'|Q wrt. a substitution o as &(o; Q) =

b(z10,...,2m0|Q).

Definition 2. An annotated signature F maps functions f to sets of pairs of
the annotation type for the arguments and the annotation type of the result:

F(f) ={a1 x - xa,|Q — B|Q": Q,Q" are annotations, Q is of length m}.
We suppose f takes n arguments of which m are trees; m < n by definition.

Instead of a3 X -+ X a,|Q — B|Q" € F(f), we sometimes succinctly write
frag x -+ X an|Q — B|Q’. The cost-free signature, denoted as F<', is similarly
defined.

Example 2. Consider the function splay from above. Its signature is formally
represented as B x T|Q — T|Q’, where Q := [g.] U [(¢(a,p))a,pen] and Q" :=
[¢:] U(q(4p))a.ben]- We leave it to the reader to specify the coefficients in Q, Q'
so that the rule (app) as depicted in Sect. 2 can indeed by employed to type the
recursive call of splay.

Let @ = [g+] U [(q(a,p))aben] be an annotation such that g4 > 0. Then
Q' := Q—1 is defined as follows: Q' = [q*]u[(qga,b))mbel\;], where qE0,2) = qo,2)—1
and for all (a,b) # (0,2) an,b) ‘= q(a,p)- By definition the annotation coefficient
q(0,2) is the coefficient of the basic potential function pg o) (t) = logy(0[t|+2) = 1,
so the annotation @) — 1, decrements cost 1 from the potential induced by Q.

Type-and-Effect System. The typing system makes use of a cost-free semantics,
which does not attribute any costs to the calculation. Le. the rule (app) (Sect. 2)
is changed so that no cost is emitted. The cost-free application rule is denoted
as (app : cf). The cost-free typing judgement is written as I'|Q F°f e: a|Q’. The
judgement I'|Q F e:«a|Q’ is governed by a plethora of typing rules. We have

110 L. Leutgeb et al.

illustrated several typing rules in Sect. 2 (the complete set of typing rules can be
found in [27]).

A program P is called well-typed if for any rule f(x1,...,2x) = e € P and any
annotated signature f: ay x -+ X ax|Q — B|Q’, we have x1:aq,. ..,z ak|Q
e:B|Q’. A program P is called cost-free well-typed, if the cost-free typing relation
is employed.

Hofmann et al. establish the following soundness result:?

Theorem 1 (Soundness Theorem). Let P be well-typed and let o be an envi-
ronment. Suppose I'|Q F e:a|Q" and o I£ e = v. Then &(o; Q) —P(v|Q’) = ¢.
Further, if I'|Q =¥ e:a|Q’, then &(0; Q) > ¢(v|Q’).

4 The Road to Automation, Continued

The above sketched type-and-effect system, originally proposed in [27], is only a
first step towards full automation. Several challenges need to be overcome, which
we detail in this section.

4.1 Type Checking

Comparison between logarithmic expressions, constitutes a first major challenge,
as such a comparison cannot be directly encoded as a linear constraint problem.
To achieve such linearisation, [27] makes use of the following: (i) a subtly and
surprisingly effective variant of Schoenmakers potential (see Sect. 2); (ii) math-
ematical facts about the logarithm function—like Lemma 1 below—referred to
as expert knowledge; and finally (iii) Farkas’ Lemma for turning the universally-
quantified premise of the weakening rule into an existentially-quantified state-
ment that can be added to the constraint system—see Lemma 2.

A simple mathematical fact that is employed by Hofmann et al.— following
earlier pen-and-paper proofs in the literature [37,38,41]—states as follows:

Lemma 1. Let z,y > 1. Then 2 + logy(x) + logy(y) < 2logy(z + y).

We remark that our automated analysis shows that this lemma is not only
crucial in the analysis of splaying, but also for the other data structures we have
investigated. Further, Hofmann et al. state and prove the following variant of
Farkas’ Lemma, which lies at the heart of an effective transformation of com-
parison demands like (3) into a linear constraint problem. Note that @ and f
denote column vectors of suitable length.

is solvable. Then the
= @'% < X\ and (i)

Lemma 2 (Farkas’ Lemma). Suppose AT < g,f
following assertions are equivalent. (i) VZ > 0. AZ
Af >0 @l < fTANfTE< A

>0
<b

3 Note that soundness assumes a terminating execution o }L e = v of P. We point out
that our analysis does not guarantee the termination of P for all environments o.

Automated Amortised Complexity 111

The lemma allows the assumption of expert knowledge through the assump-
tion AZ < b for all & > 0. E.g., thus formalised expert knowledge is a clear
point of departure for additional information. E.g. Hofmann et al. [27] propose
the following potential extensions: (i) additional mathematical facts on the log
function; (ii) a dedicated size analysis; (iii) incorporation of basic static analysis
techniques. The incorporation of Farkas’ Lemma with suitable expert knowledge
is already essential for type checking, whenever the symbolic weakening rule (3)
needs to be discharged.

ATLAS incorporates two facts into the expert knowledge: Lemma 2 and the
monotonicity of the logarithm (see Sect.5). We found these two facts to be
sufficient for handling our benchmarks, i.e. expert knowledge of form (ii) and
(iii) was not needed. (We note though that we have experimented with adding a
dedicated size analysis (ii), which interestingly increased the solver performance,
despite generating a large constraint system).

We indicate how ATLAS may be used to solve the constraints generated
for the example in Sect.2. We recall the crucial application of the weakening
step between annotations QQ2 and (3. This weakening step can be automatically
discharged using the monotonicity of logs and Lemma 1. (More precisely, ATLAS
employs the mode w{mono 12xy} see, Sect.5.) For example, ATLAS is able to
verify the validity of the following concrete constants:

Qidi=qs=q3=1 Qs:qi =qs=q3=1
4{0.0.0,2 =1 Qo0 =1 4(0,0,0,2) =2 401000 =1
Q(Qo,o,l,o) =1 ‘Z(21,0,0,0) =1 Q(30,O,1,0) =1 q?l,o,l,o) =1
Q(20,1,0,0) =1 Q(21,1,1,0) =3 Q?0,1,0,0) =3 (151,1,1,0) =1

4.2 Type Inference

We extend the type-and-effect system of [27] from type checking to type infer-
ence. Further, we automate the application of structural rules like sharing or
weakening, which have so far required user guidance.

The two central contributions of this paper, as delineated in the introduction,
are based on significant improvement over the state-of-the-art as described above.
Concretely, they came about by a novel (i) optimisation layer; (ii) a careful
control of the structural rules; (iii) the generalisation of user-defined proof tactics
into an overall strategy of type inference; and (iv) provision of an automated
amortised analysis in the sense of Sleator and Tarjan. In the sequel of the section,
we will discuss these stepping stones towards full automation in more details.

Optimisation Layer. We add an optimisation layer to the set-up, in order to
support type inference. This allows for the inference of (optimal) type annota-
tions based on user-defined type annotations. For example, assume the user-
provided type annotation rk(t)+3logy([t|)+1 — rk(splay(t)) can in principle
be checked automatically. Then—instead of checking this annotation—ATLAS
automatically optimises the signature, by minimising the deduced coefficients.

112 L. Leutgeb et al.

(match (*x t *) leaf
(match (* cl *) ?
(w{l2xy} (let:tree:cf (*x s *)
app (* splay_eq a bl *)
(match leaf
(let:tree:cf node (let:tree:cf node (w{mono} node))))))))

N

o

Fig. 3. Tactic that matches the zig-zig case of splay as shown in Fig. 1.

(In Sect. 5 we discuss how this optimisation step is performed.) That is, ATLAS
reports the following annotation

splay: 1/2rk(t) + 3/2log,([t]) — '/2rk(splay(?)) ,

which yields the optimal amortised cost of splaying of 3/21og,(|t|). Optimality
here means that no better bound has been obtained by earlier pen-and-paper
verification methods (compare the discussion in Sect. 1).

Structural Rules. We observed that an unchecked application of the structural
rules, that is of the sharing and the weakening rule, quickly leads to an explosion
of the size of the constraint system and thus to de-facto unsolvable problems. To
wit, an earlier version of our implementation ran continuously for 24/7 without
being able to infer a type for the complete definition of the function splay.*

The type-and-effect system proposed by Hofmann et al. is in principle linear,
that is, variables occur at most once in the function body. For example, this is
employed in the definition of the let-rule, cf. Sect.2. However, a sharing rule is
admissible, that allows to treat multiple occurrences of variables. Occurrences
of non-linear variables are suitably renamed apart and the carried potential is
shared among the variants. (See [27] for the details.) The number of variables
strongly influences the size of the constraint problem. Hence, eager application
of the sharing rule proved infeasible. Instead, we restricted its application to
individual program traces. For the considered benchmark examples, this removed
the need for sharing altogether.

With respect to weakening, a careful application of the weakening rule proved
necessary for performance reasons: First, we apply weakening only selectively.
Second, when applying weakening, we employ different levels of granularity. We
may only perform a simple coefficient comparison, or we may apply monotonicity
or Lemma 1 or both in conjunction with Farkas’ Lemma. We give the details in
Sect. 5.

Proof Tactics. Hofmann et al. [27] already propose user-defined proof plans,
so-called tactics, to improve the effectivity of type checking. In combination
with our optimisation framework, tactics allow to significantly improve type
annotations. To wit, ATLAS can be invoked with user-defined resource annota-
tions for the function splay, representing its “standard” amortised complexity
(e.g. copied from Okasaki’s book [38]) and an easily definable tactic, cf. Fig. 3.

* The code ran single-threaded on AMD®) Ryzen 7 3800 @ 3.90 GHz.

Automated Amortised Complexity 113

Then, ATLAS automatically derives the optimal bound reported above. Still, for
full-automation tactics are clearly not sufficient. In order to obtain type inference
in general, we developed a generalisation of all the tactics that proved useful on
our benchmark and incorporated this proof search strategy into the type infer-
ence algorithm. Using this, the aforementioned (unsuccessful) week-long quest
for a type inference of splaying can now be successfully answered (in an optimal
form) in mere minutes.

We’d like to argue that ATLAS proof search strategy for full automation is
free of bias towards the provided complexity analysis. As detailed in Sect. 5, the
heuristics incorporates common design principles of the data structures analysed.
Thus, we exploit recurring patterns in the input (destructuring of input trees,
handling base/recursive cases, rotations) not in the solution. The situation is
similar to the choice of the potential functions, which we expect to generalise to
other data structures. Similarly, we expect generalisability of the current proof
search strategy.

Automated Amortised Analysis. In Sect.2, we provided a high-level introduc-
tion into the potential method and remarked that Sleator and Tarjan’s original
formulation is re-obtained, if the corresponding potential functions are defined
such that ¢(v) := af(v) + ¥(x), see page 5. We now discuss how we can extract
amortised complexities in the sense of Sleator and Tarjan from our approach.
Suppose, we are interested in an amortised analysis of splay heaps. Then, it suf-
fices to equate the right-hand sides of the annotated signatures of the splay heap
functions. That is, we set del_min: T|Q; — T[|Q’) insert: B x T|Qy — T|Q’
and partition: B x T|Q3 — T|Q' for some unknown resource annotations
Q1,Q2,Q3,Q’. Note that we use the same annotation @’ for all signatures. We
can then obtain a potential function from the annotation @’ in the sense of
Sleator and Tarjan and deduce @Q; — @’ as an upper bound on the amortised
complexity of the respective function. In Sect. 5, we discuss how to automati-
cally optimise @; — Q' in order to minimise the amortised complexity bound.
This automated minimisation is the second major contribution of our work. Our
results suggest a new approach for the complexity analysis of data structures.
On the one hand, we obtain novel insights into the automated worst-case run-
time complexity analysis of involved programs. On the other hand, we provide
a proof-of-concept of a computer-aided analysis of amortised complexities of
data-structures that so far have only been analysed manually.

5 Implementation

In this section, we present our tool ATLAS, which implements type inference for
the type system presented in Sects.2 and 3. ATLAS operates in three phases:

1.) Preprocessing, ATLAS parses and normalises the input program;

2.) Generation of the Constraint System, ATLAS extracts constraints from the
normalised program according to the typing rules (as sketched in Sect. 2);

3.) Solving, the derived constraint system is handed to an optimising constraint
solver and the solver output is converted into a type annotation.

114 L. Leutgeb et al.

1 | LNF[if a<a’ 1 | let x1 = a<a’ in if x1

2 then (1l,a,(leaf,a’,r)) 2 then LNF[(1l,a,(leaf,a’,r))]
3 else ((1,a’,leaf),a,r)] 3 else LNF[((1,a’,leaf),a,r)]
1 let x1 = a < a’ in if x1

2 then let x2 = leaf in let x3 = (x2,a’,r) in (1,a,x3)

3 else let x4 = leaf in let x5 = (l,a’,x4) in (x5,a,r)

Fig. 4. Preprocessing: let normal forms.

In terms of overall resource requirements, the bottleneck of the system is phase
three. Preprocessing is both simple and fast. While the code implementing con-
straint generation might be complex, its execution is fast. All of the underlying
complexity is shifted into the third phase. On modern machines with multiple
gibibytes of main memory, ATLAS is constrained by the CPU, and not by the
available memory. In the remainder of this section, we first detail these phases of
ATLAS. We then go into more details of the second phase. Finally, we elaborate
the optimisation function which is the key enabler of type inference.

5.1 The Three Phases of ATLAS

1.) Preprocessing. The parser used in the first phase is generated with ANTLR?
and transformation of the syntax is implemented in Java. The preprocessing
performs two tasks: (i) Transformation of the input program into let-normal-
form, which is the form of program input required by our type system. (ii) The
unsharing conversion creates explicit copies for variables that are used multiple
times. Making multiple uses of a variables explicit is required by the let-rule of
the type system.

In order to satisfy the requirement of the let-rule, it is actually sufficient
to track variable usage on the level of program paths. It turns out that in our
benchmarks variables are only used multiple times in different branches of an
if-statement, for which no unsharing conversion is needed. Hence, we do not
discuss the unsharing conversion further in this paper and refer the interested
reader to [27] for more details.

Let-Normal-Form Conversion. The let-normal-form conversion is performed
recursively and rewrites composed expressions into simple expressions, where
each operator is only applied to a variable or a constant. This conversion is
achieved by introducing additional let-constructs. We exemplify let-normal-form
conversion on a code snippet in Fig. 4.

2.) Generation of the Constraint System. After preprocessing, we apply the typ-
ing rules. Importantly, the application of all typing rules, except for the weaken-
ing rule, which we discuss in further detail below, is syntaz-directed: This means

5 See antlr.org.

https://antlr.org

Automated Amortised Complexity 115

that each node of the AST of the input program dictates which typing rule is
to be applied. The weakening rule could in principle be applied at each AST
node, giving the constraint solver more freedom to find a solution. This degree
of freedom needs to be controlled by the tool designer. In addition, recall that the
suggested implementation of the weakening rule (see Sect.4.1) is to be parame-
terised by the expert knowledge, fed into the weakening rule. In our experiments
we noticed that the weakening rule has to be applied sparingly in order to avoid
an explosion of the resulting constraint system.

We summarise the degrees of freedom available to the tool designer, which can
be specified as parameters to ATLAS on source level. 1.) The selected template
potential functions, i.e. the family of indices @, b for which coefficients ¢z 5 are
generated (we assume not explicitly generated are set to zero). 2.) The number
of annotated signatures (with costs and without costs) for each function. 3.) The
policy for applying the (parameterised) weakening rule.

We detail our choices for instantiating the above degrees of freedom in
Sect. 5.2.

3.) Solving. For solving the generated constraint system, we rely on the Z3
SMT solver. We employ Z3’s Java bindings, load Z3 as a shared library, and
exchange constraints for solutions. ATLAS forwards user-supplied configuration
to Z3, which allows for flexible tuning of solver parameters. We also record
73’s statistics, most importantly memory usage. During the implementation
of ATLAS, Z3’s feature to extract unsatisfiable cores has proven valuable. It
supplied us with many counterexamples, often directly pinpointing bugs in our
implementation. The tool exports constraint systems in SMT-LIB format to the
file system. This way, solutions could be cross-checked by re-computing them
with other SMT solvers that support minimisation, such as OptiMathSAT [43].

5.2 Details on the Generation of the Constraint System

We now discuss our choices for the aforementioned degrees of freedom.

Potential Function Templates. Following [27], we create for each node in the AST
of the considered input program, where n variables of tree-type are currently in
context, the coefficients qq,...,q, for the rank functions and the coefficients
q(ap) for the logarithmic terms, where @ € {0,1}" and b € {0,2}. This choice
turned out to be sufficient in our experiments.

Number of Function Signatures. We fix T(1.1,2)

the number of annotations for each / l \
function f Lo Xooee X Oén‘Q — ﬁ|QI to Z(0,1,2) T(1,0,2) T(1,1,0)
one regular and one cost-free signature. l >< >< l
This was sufficient for our experiments. T(0,0,2) ©(0,1,00 T(1,0,0)
Weakening. We need to discharge sym- \ l /

Z(0,0,0)

bolic comparisons of form &(I'|P) <

P(I'|Q). As indicated in Sect.4, we Fig. 5. Monotonicity Lattice for |Q| = 2.

116 L. Leutgeb et al.

employ Farkas’ Lemma to derive constraints for the weakening rule. For con-
text I' = ty,...,t,, we introduce variables xz; where @ € {0,1}",b € {0,2},
which represent the potential functions pz) = logy(ailti| + ... + anlty| + b).
Next, we explain how the monotonicity of log, and Lemma 1 can be used to
derive inequalities on the variables x(z p), which can then be used to instantiate
matrix A in Farkas’ Lemma as stated in Sect. 4.

Monotonicity. We observe that ppy = logg(arlti] + ... + anlts| +b) <
logy(ay|ta] + ... + apltn] +b') = pa .y, if ax < dl,...,a, < aj, and b < b'.
This allows us to obtain the lattice shown in Fig. 5. A path from z g i) to z(ap)
signifies Gy < T(a) 1€SP. Tgp) — T) < 0, represented by a row with
coefficients 1 and —1 in the corresponding columns of matrix A.

Mathematical Facts, Like Lemma 1. For an annotated context of length 2,
Lemma 1 can be stated by the inequality 22 (0,0,2)+%(0,1,0)+%(1,0,0)—2%(1,1,0) < 0;
we add a corresponding row with coefficients 2,1,1, —2 to the matrix A. Like-
wise, for contexts of length > 2, we add, for each subset of 2 variables, a row
with coefficients 2,1, 1, —2, setting the coefficients of all other variables to 0.

Sparse Expert Knowledge Matriz. We observe for both kinds of constraints that
matrix A is sparse. We exploit this in our implementation and only store non-zero
coefficients.

Parametrisation of Weakening. Each applications of the weakening rule is param-
eterised by the matrix A. In our tool, we instantiate A with either the constraints
for (i) monotonicity, shortly referenced as w{mono}; (ii) Lemma 1 (w{12xy}); (iii)
both (w{mono 12xy}); or (iv) none of the constraints (w).

In the last case, Farkas’ Lemma is not needed because weakening defaults to
point-wise comparison of the coefficients p(z 3y, which can be implemented more
directly. Each time we apply weakening, we need to choose how to instantiate
matrix A. Our experiments demonstrate that we need to apply monotonicity
and Lemma 1 sparingly in order to avoid blowing up the constraint system.

Tactics and Automation. ATLAS supports manually applying the weakening
rule—for this the user has to provide a tactic—and a fully-automated mode.

Naive Automation. Our first attempt to automation applied the weakening rule
everywhere instantiated with the full amount of available expert knowledge. This
approach did not scale.

Manual Mode via Tactics. A tactic is given as a text file that contains a tree of
rule names corresponding to the AST nodes of the input program, into which
the user can insert applications of the weakening rule, parameterised by the
expert knowledge which should be applied. A simple tactic is depicted in Fig. 3.
Tactics are distributed with ATLAS, see [32]. The user can name sub-trees for
reference in the result of the analysis and include ML-style comments in the
tactics text. We provide two special commands that allow the user to directly
deal with a whole branch of the input program: The question mark (?) allows
partial proofs; no constraints will be created for the part of the program thus

Automated Amortised Complexity 117

marked. The underscore (_) switches to the naive automation of ATLAS and
will apply the weakening rule with full expert knowledge everywhere. Both, ?
and _, were invaluable when developing and debugging the automated mode. We
note that the manual mode still achieves solving times that are by a magnitude
faster than the automated mode, which may be of interest to a user willing to
hand-optimise solving times.

Automated Mode. For automation, we extracted common patterns from the tac-
tics we developed manually: Weakening with mode w{mono} is applied before
(var) and (leaf), w{mono 12xy} is applied only before (app). (We recall that the
full set of rules employed by our analysis can be found in [27].) Further, for AST
subtrees that construct trees, i.e. which only consist of (node), (var) and (leaf)
rule applications, we apply w{mono} for each inner node, and w{12xy} for each
outermost node. For all other cases, no weakening is applied. This approach is
sufficient to cover all benchmarks, with further improvements possible.

5.3 Optimisation

Given an annotated function f: a3 X -+ X @,|Q — B|Q’, we want to find val-
ues for the coefficients of the resource annotations @) and @’ that minimise
S(I'Q) — P(I'|Q"), since this difference is an upper bound on the amortised
cost of f, cf. Sect.4.2. However, as with weakening, we cannot directly express
such a minimisation, and again resort to linearisation: We choose an optimisa-
tion function that directly maps from @ and @’ to Q. Our optimisation function
combines four measures, three of which involve a difference between coefficients
of Q and @', and a fourth one that only involves coefficients from @ in order
to minimise the absolute values of the discovered coefficients. We first present
these measures for the special case of |Q| = 1.

The first measure dy(Q, Q') := ¢« — ¢, reflects our goal of preserving the
coefficient for rk; note that for di(Q,Q’) # 0, the resulting complexity bound
would be super-logarithmic. The second measure do(Q, Q") = Z(mb) (9(a,p) —
qE a,b)) -w(a, b) reflects the goal of achieving logarithmic bounds that are as small
as possible. Weights are defined to penalise more complex terms, and to exclude
constants. (Recall that 1 is representable as log,(0 + 2).) We set

(b) Oa fOr (a7 b) = (07 2)7
w(a,b) =
’ (a+ (b+1)%)?2, otherwise.

The third measure d3(Q,Q’) = qq,2) — q20,2) reflects the goal of minimising
constant cost. Lastly, we set dy(Q, Q') := Z(a,b) q(ap) in order to obtain small
absolute numbers. The last measure does not influence bounds on the amortised
cost, but leads to more beautiful solutions. These measures are then composed to
the linear objective function min Z?Zl d;i(Q, Q") - w;. In our implementation, we
set w; = [16127,997,97, 2]; these weights are chosen (almost) arbitrary, we only
noticed that w;, must be sufficiently large to guarantee its priority. (We note that
these weights were sufficient for our experiments; we refer to the literature for
more principled ways of choosing the weights of an aggregated cost function [34].)

118 L. Leutgeb et al.

Multiple Arguments. For |Q| > 1, we set dy := 212'1 ¢ — ¢, and da(Q,Q’) =
Z(a,a,...,b)(q(a,a,...,b) - an,w) -w(a,b). The required changes for ds and d4 are
straight-forward. In our benchmarks, there is only one function (merge of pairing
heaps) that requires this minimisation function.

6 Evaluation

We first describe the benchmark functions employed to evaluate ATLAS and then
detail this experimental evaluation, already depicted in Table 1.

6.1 Automated Analysis of Splaying et al.

Splay Trees. Introduced by Sleator and Tarjan [47,49], splay trees are self-
adjusting binary search trees with strictly increasing in-order traversal, but with-
out an explicit balancing condition. Based on splaying, searching is performed
by splaying with the sought element and comparing to the root of the result.
Similarly, insertion and deletion are based on splaying. Above we used the zig-zig
case of splaying, depicted in Fig.1 as motivating code example. While the pen-
and-paper analysis of this case is the most involved, type inference for this case
alone did not directly yield the desired automation of the complete definition.
Rather, full automation required substantial implementation effort, as detailed
in Sect. 5. As already emphasised, it came as a surprise to us that our tool ATLAS
is able match up and partly improve upon the sophisticated optimisations per-
formed by Schoenmakers [41,42]. This seems to be evidence of the versatility
of the employed potential functions. Further, we leverage the sophistication of
our optimisation layer in conjunction with the current power of state-of-the-art
constraint solvers, like Z3 [36].

Splay Heaps. To overcome deficiencies of splay trees when implemented func-
tionally, Okasaki introduced splay heaps. Splay heaps are defined similarly to
splay trees and their (manual) amortised cost analysis follows similar patterns
as the one for splay trees. Due to the similarity in the definitions between splay
heaps and splay trees, extension of our experimental results in this direction
did not pose any problems. Notably, however, ATLAS improves the known com-
plexity bounds on the amortised complexity for the functions studied. We also
remark that typical assumptions made in pen-and-paper proofs are automati-
cally discharged by our approach: Schoenmakers [41,42] as well as Nipkow and
Brinkop [37] make use of the (obvious) fact that the size of the resulting tree ¢’
or heap h' equals the size of the input. As discussed, this information is captured
by a cost-free derivation, cf. Sect. 2.

Pairing Heaps. These are another implementation of heaps, which are rep-
resented as binary trees, subject to the invariant that they are either leaf,
or the right child is leaf, respectively. The left child is conceivable as list
of pairing heaps. Schoenmakers and Nipkow et al. provide a (semi-)manual

Automated Amortised Complexity 119

Table 2. Experimental results

Function Proof|| automated automated manual
(w) (naive) (improved)

ST.splay (zig-zig) Selective n/a 7718 185 | 2552 <18
’ All 11792 455 | 9984 19S | 2864 <1S

ST.splay Selective n/a 42095 8MIS (19111 128
) All 68103 t/0 24H (54377 14M19S |23323 1M27S

SH.partition Selective n/a 33729 7TMOS 15213 6S
’ All 51995 t/o 24H |43549 15M2S (16829 10S

PH.merge_pairs Selective n/a 25860 1M3S | 6414 <1S
’ - All 43515 t/o 24H 34918 13M41S | 6558 <1S

(a) Comparison of the number of constraints generated and time taken for the type
inference of the core operation of each benchmark plus the zig-zig case of splay.

Module automated manual

Assertions Time Memory Assertions Time Memory
ST 54794 24M17S 3204 24677 43S 280
SH 37911 7M35S 1482 17877 12S 237
PH 29493 3M42S 760 7987 1S 29

(b) Number of assertions, solving time and maximum memory usage (in mebibytes)
for the combined analysis of functions per-module.

analysis of pairing heaps, that ATLAS can verify or even improve fully-
automatically. We note that we analyse a single function merge_pairs, whereas
[37] breaks down the analysis and studies two functions pass_1 and pass_2 with
merge_pairs = pass_2 o pass_1. All definitions can be found at [33].

6.2 Experimental Results

Our main results have already been stated in Table1 of Sect. 1. Table 2a com-
pares the differences between the “naive automation” and our actual automation
(“automated mode”), see Sect.5. Within the latter, we distinguish between a
“selective” and a “full” mode. The “selective” mode is as described on page 18.
The “full” mode employs weakening for the same rule applications as the “selec-
tive” mode, but always with option w{mono 12xy}. The same applies to the
“full” manual mode. The naive automation does not support selection of expert
knowledge. Thus the “selective” option is not available, denoted as “n/a”. Time-
outs are denoted by “t/0”. As depicted in the table, the naive automation does
not terminate within 24 h for the core operations of the three considered data
structures, whereas the improved automated mode produces optimised results
within minutes. In Table 2b, we compare the (improved) automated mode with
the manual mode, and report on the sizes of the resulting constraint system
and on the resources required to produce the same results. Observe that even
though our automated mode achieves reasonable solving times, there is still a

120 L. Leutgeb et al.

significant gap between the manually crafted tactics and the automated mode,
which invites future work.

7 Conclusion

In this paper we have for the first time been able to automatically conduct an
amortised analysis for self-adjusting data structures. Our analysis is based on
the “sum of logarithms” potential function and we have been able to automate
reasoning about these potential functions by using Farkas’ Lemma for the linear
part of the calculations and adding necessary facts about the logarithm. Imme-
diate future work is concerned with replacing the “sum of logarithms” potential
function in order to analyse skew heaps and Fibonacci heaps [42]. In particu-
lar, the potential function for skew heaps, which counts “right heavy” nodes, is
interesting, because it is also used as a building block by Tacono in his improved
analysis of pairing heaps [29,30]. Further, we envision to extend our analysis to
related probabilistic settings such as priority queues [13] and skip lists [40].

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. JAR 46(2), 161-203 (2011)

2. Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost
analysis. In: SAS, pp. 405-421 (2012)

3. Avanzini, M., Lago, U.D., Moser, G.: Analysing the complexity of functional pro-
grams: higher-order meets first-order. In: ICFP, pp. 152-164. ACM (2015)

4. Avanzini, M., Moser, G.: A combination framework for complexity. IC 248, 22-55
(2016)

5. Avanzini, M., Moser, G., Schaper, M.: TcT: Tyrolean complexity tool. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 407-423. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_24

6. Bauer, S., Jost, S., Hofmann, M.: Decidable inequalities over infinite trees. In:
LPAR, vol. 57, pp. 111-130 (2018)

7. Brézdil, T., Chatterjee, K., Kucera, A., Novotny, P., Velan, D., Zuleger, F.: Effi-
cient algorithms for asymptotic bounds on termination time in VASS. In: LICS,
pp. 185-194 (2018)

8. Chatterjee, K., Fu, H., Goharshady, A.K.: Non-polynomial worst-case analysis of
recursive programs. In: CAV, pp. 41-63 (2017)

9. Colcombet, T., Daviaud, L., Zuleger, F.: Size-change abstraction and max-plus
automata. In: MFCS, pp. 208-219 (2014)

10. Fiedor, T., Holik, L., Rogalewicz, A., Sinn, M., Vojnar, T., Zuleger, F.: From shapes
to amortized complexity. In: VMCAI, pp. 205-225 (2018)

11. Flores-Montoya, A.: Cost analysis of programs based on the refinement of cost
relations. Ph.D. thesis, Darmstadt University of Technology, Germany (2017)

12. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained
rewriting induction. TOCL 18(2), 14:1-14:50 (2017)

13. Gambin, A., Malinowski, A.: Randomized meldable priority queues. In: SOFSEM,
pp. 344-349 (1998)

https://doi.org/10.1007/978-3-662-49674-9_24

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

Automated Amortised Complexity 121

Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. JAR 1, 3-31 (2017)

Gulwani, S., Zuleger, F.: The reachability-bound problem. In: PLDI, pp. 292-304
(2010)

Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: TPHOLSs,
pp. 102-118 (2007)

Hermenegildo, M., et al.: An overview of ciao and its design philosophy. TPLP
12(1-2), 219-252 (2012)

Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency
pair method. In: IJCAR, pp. 364-380 (2008)

Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
In: Proceedings of 38th POPL, pp. 357-370. ACM (2011)

Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
TOPLAS 34(3), 14 (2012)

Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 781-786. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7_64

Hoffmann, J., Das, A., Weng, S.C.: Towards automatic resource bound analysis for
OCaml. In: POPL, pp. 359-373 (2017)

Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: POPL, pp. 185-197 (2003)

Hofmann, M., Moser, G.: Amortised resource analysis and typed polynomial inter-
pretations. In: Proceedings of Joint 25th RTA and 12th TLCA, pp. 272-286 (2014)
Hofmann, M., Moser, G.: Multivariate amortised resource analysis for term rewrite
systems. In: TLCA, pp. 241-256 (2015)

Hofmann, M., Moser, G.: Analysis of logarithmic amortised complexity (2018)
Hofmann, M., Leutgeb, L., Moser, G., Obwaller, D., Zuleger, F.: Type-based anal-
ysis of logarithmic amortised complexity. MSCS (2021, to appear). https://arxiv.
org/abs/2101.12029

Hofmann, M., Rodriguez, D.: Automatic type inference for amortised heap-space
analysis. In: ESOP, pp. 593-613 (2013)

Tacono, J.: Improved upper bounds for pairing heaps. In: SWAT, pp. 32-45 (2000)
Tacono, J., Yagnatinsky, M.V.: A linear potential function for pairing heaps. In:
COCOA, pp. 489-504 (2016)

Jost, S., Vasconcelos, P., Florido, M., Hammond, K.: Type-based cost analysis for
lazy functional languages. JAR 59(1), 87-120 (2017)

Leutgeb, L.: ATLAS: Automated Amortised Complexity Analysis of Self-Adjusting
Data Structures (2021). https://doi.org/10.5281/zenodo.4724917

Leutgeb, L.: ATLAS: Examples (2021). https://doi.org/10.5281/zenodo.4880499
Marques-Silva, J., Argelich, J., Graga, A., Lynce, I.: Boolean lexicographic opti-
mization: algorithms & applications. Ann. Math. Artif. Intell. 62(3-4), 317-343
(2011)

Moser, G., Schneckenreither, M.: Automated amortised resource analysis for term
rewrite systems. Sci. Comput. Program. 185, 102306 (2020)

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: TACAS, pp. 337-340
(2008)

Nipkow, T., Brinkop, H.: Amortized complexity verified. JAR 62(3), 367-391
(2019)

Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cam-
bridge (1999)

https://doi.org/10.1007/978-3-642-31424-7_64
https://arxiv.org/abs/2101.12029
https://arxiv.org/abs/2101.12029
https://doi.org/10.5281/zenodo.4724917
https://doi.org/10.5281/zenodo.4880499

122 L. Leutgeb et al.

39. Pani, T., Weissenbacher, G., Zuleger, F.: Rely-guarantee reasoning for automated
bound analysis of lock-free algorithms. In: FMCAD, pp. 1-9 (2018)

40. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33(6), 668-676 (1990)

41. Schoenmakers, B.: A systematic analysis of splaying. IPL 45(1), 41-50 (1993)

42. Schoenmakers, B.: Data structures and amortized complexity in a functional set-
ting. Ph.D. thesis, Eindhoven University of Technology (1992)

43. Sebastiani, R., Trentin, P.: Optimathsat: a tool for optimization modulo theories.
In: CAV, pp. 447-454 (2015)

44. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 745-761. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9_50

45. Sinn, M., Zuleger, F., Veith, H.: Difference constraints: an adequate abstraction
for complexity analysis of imperative programs. In: Kaivola, R., Wahl, T. (eds.)
FMCAD, pp. 144-151. IEEE (2015)

46. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imper-
ative programs using difference constraints. JAR 59(1), 3-45 (2017)

47. Sleator, D., Tarjan, R.: Self-adjusting binary search trees. JACM 32(3), 652-686
(1985)

48. Solar-Lezama, A.: The sketching approach to program synthesis. In: APLAS, pp.
4-13 (2009)

49. Tarjan, R.: Amortized computational complexity. STAM J. Alg. Disc. Meth 6(2),
306-318 (1985)

50. Wang, P., Wang, D., Chlipala, A.: TiML: a functional language for practical com-
plexity analysis with invariants. Proc. ACM Program. Lang. 1(OOPSLA), 1-26
(2017)

51. Winkler, S., Moser, G.: Runtime complexity analysis of logically constrained rewrit-
ing. In: Proceedings of LOPSTR 2020 (2020)

52. Zuleger, F.: The polynomial complexity of vector addition systems with states. In:
FOSSACS, pp. 622-641 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1007/978-3-319-08867-9_50
http://creativecommons.org/licenses/by/4.0/

Decision Procedures and Solvers

®

Check for
updates

Theory Exploration Powered
by Deductive Synthesis

Eytan Singher®™) and Shachar Itzhaky

Technion, Haifa, Israel
{eytan.s,shachari}@cs.technion.ac.il

Abstract. This paper presents a symbolic method for automatic theo-
rem generation based on deductive inference. Many software verification
and reasoning tasks require proving complex logical properties; coping
with this complexity is generally done by declaring and proving relevant
sub-properties. This gives rise to the challenge of discovering useful sub-
properties that can assist the automated proof process. This is known
as the theory exploration problem, and so far, predominant solutions
that emerged rely on evaluation using concrete values. This limits the
applicability of these theory exploration techniques to complex programs
and properties.

In this work, we introduce a new symbolic technique for theory explo-
ration, capable of (offline) generation of a library of lemmas from a
base set of inductive data types and recursive definitions. Our approach
introduces a new method for using abstraction to overcome the above
limitations, combining it with deductive synthesis to reason about
abstract values. Our implementation has shown to find more lemmas
than prior art, avoiding redundant lemmas (in terms of provability),
while being faster in most cases. This new abstraction-based theory
exploration method is a step toward applying theory exploration to soft-
ware verification and synthesis.

Keywords: Theory exploration - Synthesis -+ Automatic theorem
proving

1 Introduction

Most forms of software verification and synthesis rely on some form of logical rea-
soning to complete their task. Whether it is checking pre- and post-conditions,
deriving specifications for sub-problems [1,19], or equivalence reduction [39],
these methods rely on assumptions from both the input and relevant background
knowledge. Domain-specific knowledge can reinforce these methods, whether via
the design of a domain-specific language [29,36,45], specialized decision proce-
dures [28], or decomposing specifications [35]. While hand-crafted techniques can
treat whole classes of programs, every library or module contributes a collection
© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 125-148, 2021.
https://doi.org/10.1007/978-3-030-81688-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_6

126 E. Singher and S. Itzhaky

of new primitives, requiring tweaking or extending these methods. Automatic for-
mation of background knowledge can enable effortless treatment of such libraries
and programs.

In the context of verification tools, such as Dafny [27] and Leon [7], as well
as interactive proof assistants, such as Coq [12] and Isabelle/HOL [33], back-
ground knowledge is typically given as a set of lemmas. Usually, these libraries
of lemmas (i.e. the background knowledge) are created by human engineers and
researchers who are tasked with formulating them and proving their correctness.
When a proof or verification task requires auxiliary lemmas missing from the
existing background knowledge, the user is required to add and prove it, some-
times repeating this process until the proof is trivial or can be found automati-
cally. For example, both Dafny and Leon fail to prove that addition is associative
and commutative from first principles—based on an algebraic construction of
the natural numbers. However, when given knowledge of these properties (i.e.
encoded as lemmas: (v +y) +2z=a+ (y+2) and x +y = y + 2)!, they readily
prove composite facts such as (x +5) +y =5+ (z 4+ y).

A possible solution is to eagerly generate valid lemmas, and to do so automat-
ically, offline, as a precursor to any work that would be built on top of the library.
This paradigm is known as theory exploration [8,9], and differs from the com-
mon conjecture generation approach (in theorem provers and SMT solvers [37])
that is guided by a proof goal. As opposed to using proof goal as the basis for
discovering sub-goals, when eagerly generating lemmas there is a vast space of
possible lemmas to consider. Currently, two main approaches exist for filter-
ing candidate conjectures, counterexample-based and observational equivalence-
based [18,22,23,43]. These filtering techniques are all based on testing and there-
fore require automatic creation of concrete examples.

Testing with concrete values allows for fast evaluation and filtering of terms
when the data types involved are simple. However, when scaling to larger data
types and function types it becomes a bottleneck of the theory exploration pro-
cess. Previous research effort has revealed that testing-based discovery is sen-
sitive to the number and size of type definitions occurring in the code base.
For example, QuickSpec, which is based on QuickCheck (as are all the existing
testing-based theory exploration methods), employs a heuristic to restrict the set
of types allowed in terms in order to make the checker’s job easier. Compound
data types such as lists can be nested up to two levels (lists of lists, but not lists
of lists of lists). This presents an obstacle towards scaling the approach to real
software libraries, since “QuickCheck’s size control interacts badly with deeply
nested types [...] will generate extremely large test data.” [38]

Following are two example scenarios that attempt to represent cases from
software systems where structured data types and complicated APIs exist: (i) A
series of tree data-types T; where each T; is a tree of height i with i children of
type T;_1, and the base case is an empty tree. Creating concrete examples for T;
will be resource expensive, as each tree has O(i!) nodes, and each node requires a

! In fact, these properties are hard-wired into decision procedures for linear integer
arithmetic in SMT solvers.

Theory Exploration Powered by Deductive Synthesis 127

value. (i) An ADT (Algebraic Data Type) A with multiple fields where each can
contain a large amount of text or other ADTs, and a function over A that only
accesses one of the fields. Even if evaluating the function is fast, fully creating
A is expensive and will impact the theory exploration run-time.

This paper presents a new symbolic theory exploration approach that takes
advantage of the characteristics of induction-based proofs. To overcome the
blowup in the space of possible values, we make use of symbolic values, which con-
tain interpreted symbols, uninterpreted symbols, or a mixture of the two. Con-
ceptually, each symbolic value is an abstraction representing (infinitely) many
possible values. This means that preexisting knowledge on the symbolic value
can be applied without fully creating interpreted values. Still, when necessary,
uninterpreted values can be expanded, creating larger symbolic values, thus refin-
ing the abstraction, and facilitating the necessary computation. We focus on the
formation of equational theories, that is, lemmas that curtail the equivalence of
two terms, with universal quantification over all free variables.

We show that our symbolic method for theory exploration is more applicable
and faster in many different scenarios than state-of-the-art. As an example, given
standard definitions for the list functions: ++ drop take filter our method proves
facts that were not found by current state-of-the-art such as:

(take i zs) ++ (drop i zs) = zs
filter p (zs ++ ys) = (filter p xs) ++ (filter p ys)

Main Contributions. This paper provides the following contributions:

— A system for theory synthesis using symbolic values to take advantage of
value abstraction. Our implementation, TheSy, can discover more lemmas
than were found by testing-based tools, while being faster in most cases.

— A technique to compare universally quantified terms using term rewriting
techniques and a given set of lemmas, called symbolic observational equiva-
lence (SOE). SOE overapproximates term equalities deducible by the given
lemmas (i.e., will find more equalities), thus can be used for equality reduc-
tion in context of uninterpreted values, enabling fully symbolic reasoning over
a large set of terms.

— An evaluation of our theory exploration system on a set of benchmarks for
induction proofs taken from CVC4 [37] and TIP 2015 [11], specifically the
IsaPlanner benchmarks [21]. We compare our implementation with a current
leading theory exploration system, Hipster [18], using a novel metric. This
metric is insensitive to the amount of found lemmas, but rather measures
their usefulness in the context of theorem proving.

2 Overview

Our theory exploration method, named TheSy (Theory Synthesizer, pronounced
Tessy), is based on syntax-guided enumerative synthesis. Similarly to previ-
ous approaches [10,20,38], TheSy generates a comprehensive set of terms from

128 E. Singher and S. Itzhaky

iterative deepening

Term Conjecture Conjecture Induction
base —»| Generation —— Inference |—»| Screening F—*| Prover new
knowledge | (SyGuE) (SOE) (cong. closure) knowledge
t 1 ¥ [

augment knowledge

Fig. 1. TheSy system overview: breakdown into phases, with feedback loop.

the given vocabulary and looks for pairs that seem equivalent. Notably, TheSy
employs deductive reasoning based on term rewriting systems to propose these
pairs by extrapolating from a set of known equalities, employing a relatively
lightweight (but unsound) reasoning procedure. The proposed pairs are passed
as equality conjectures to a theorem prover capable of reasoning by induction.

The process (as shown in Fig. 1) is separated into four stages. These stages
work in an iterative deepening fashion and are dependent on the results of each
other. A short description is given to help the reader understand their context
later on.

1. Term Generation. Build symbolic terms of increasing depth, based on the
given vocabulary. Use known equalities for pruning via equivalence reduction.

2. Conjecture Inference. Evaluate terms on symbolic inputs, and apply
deductive inference to extract new equalities, thus forming conjectures.

3. Conjecture Screening. Some of the conjectures, even valid ones, are special
cases of known equalities or are trivially implied by them. We deem these con-
jectures redundant. TheSy culls such conjectures before continuing to prove
the rest.

4. Induction Prover. The prover attempts to prove conjectures that passed
screening using a normal induction scheme derived from algebraic data struc-
ture definitions in the given vocabulary. Conjectures that were successfully
proven are then declared lemmas and added to the known equalities.

The phases are run iteratively in a loop, where each iteration deepens the
generated terms and, hence, the discovered lemmas. These lemmas are fed back
to earlier phases; this form of feedback contributes to discovering more lemmas
thanks to several factors:

(i) Conjecture inference is dependent upon known equalities. Additional equal-
ities enable finding new conjectures.

(ii) Accurate screening by merging equivalence classes based on known equali-
ties.

(iii) The prover is based on known equalities with a congruence closure proce-
dure. The more lemmas are known to the system, the more lemmas become
provable by this method.

(iv) Term generation benefits from the equivalence reduction, avoiding duplicate
work for equivalent terms.

Theory Exploration Powered by Deductive Synthesis 129

V={]] list T, c ={][],=}
= T —list T — list T,
++ list 7" — list T — list T,
filter (T — bool) — list T — list T }

E={[]++1=1, (zxs)++1 =z (zs++1),
filter p [| =[], filter p (z::xs) = if px then z ::filter p s else filter p xs }

Fig. 2. An example input to TheSy.

Running Example. To illustrate TheSy’s theory exploration procedure, we intro-
duce a simple running example based on a list ADT. The input given to TheSy
is shown in Fig. 2; it consists of a vocabulary V (of which C is a subset of ADT
constructors) and a set of known equalities £. The vocabulary V contains the
canonical list constructors [] and ::, and two basic list operations ++ (concate-
nate) and filter. The equalities £ consist of the definitions of the latter two.

At a very high level, the following process is about to take place: TheSy
generates symbolic terms representing length-bound lists, e.g., [], [v1], [v2, v1].
Then, it will evaluate all combinations of function applications, up to a small
depth, using these symbolic terms as arguments. If these evaluations yield com-
mon values for all possible assignments, the two application terms yielding them
are conjectured to be equal. Since the evaluated expressions contain symbolic
values, their result is a symbolic value. Comparing such symbolic values is done
via congruence closure-based reasoning; we call this process symbolic observa-
tional equivalence, by way of analogy to observational equivalence [2] that is
carried out using concrete values.

Out of the conjectures computed using symbolic observational equivalence,
TheSy selects minimal ones according to a combined metric of compactness and
generality. These are passed to a prover that employs both congruence closure
and induction to verify the correction of the lemmas for all possible list values.

Some lemmas that TheSy can discover this way are:

filter p (filter p 1) = filter p { li++ (Lo 4+ 13) = (lh++ 1) ++13
filter p Iy ++ filter p Iy = filter p (I1++12)

As briefly mentioned, our system design relies on congruence closure-based
reasoning over universally quantified first-order formulas with uninterpreted
functions. Congruence closure is weak but fast and constitutes one of the core
procedures in SMT solvers [31,32]. On top of that, universally-quantified assump-
tions [4] are handled by formulating them as rewrite rules and applying some
depth-bounded term rewriting as described in Subsect. 3.1. Additionally, TheSy
implements a simple case splitting mechanism that enables reasoning on condi-
tional expressions. Notably, this procedure cannot reason about recursive defi-
nitions since such reasoning routinely requires the use of induction. To that end,
TheSy is geared towards discovering lemmas that can be proven by induction;
a lemma is considered useful if it cannot be proven from existing lemmas by

130 E. Singher and S. Itzhaky

congruence closure alone, that is, without induction. Discovering such lemmas
and adding them to the background knowledge evidently increases the reason-
ing power of the prover, since at least the fact of their own validity becomes
provable, which it was not before.

3 Preliminaries

This work relies heavily on term rewriting techniques, which is employed across
multiple phases of the exploration. Term rewriting is implemented efficiently
using equality graphs (e-graphs). In this section, we present some minimal back-
ground of both, which will be relevant for the exploration procedure described
later.

3.1 Term Rewriting Systems

Consider a formal language £ of terms over some vocabulary of symbols. We
use the notation R = t¢; >ty to denote a rewrite rule from t; to t. For a
(universally quantified) semantic equality law t; = t2, we would normally create
both t1 — to and to — t1. We refrain from assigning a direction to equalities since
we do not wish to restrict the procedure to strongly normalizing systems, as
is traditionally done in frameworks based on the Knuth-Bendix algorithm [24].
Instead, we define equivalence when a sequence of rewrites can identify the terms
in either direction. A small caveat involves situations where FV(¢;) # FV(t2),
that is, one side of the equality contains variables that do not occur on the
other. We choose to admit only rules t; —t¢; where FV(¢;) D FV(¢;), because
when FV(t;) C FV(t;), applying the rewrite would have to create new symbols
for the unassigned variables in t;, which results in a large growth in the number
of symbols and typically makes rewrites much slower as a result.
This slight asymmetry is what motivates the following definitions.

Definition 1. Given a rewrite rule R = t1 —ty, we define a corresponding

relation = such that $1 R, S92 <= s1 = C[t10] A sz = C[tao] for some context
C' and substitution o for the free variables of t1,ts. (A context is a term with a
single hole, and C|t] denotes the term obtained by filling the hole with t.)

Definition 2. Given a relation — we define its symmetric closure:

tlLtQ < 1 2>t2 \Y tggtl

Definition 3. Given a set of rewrite rules Gr = {R;}, we define a relation as

R; ~ i
union of the relations of the rewrites: LB 2 U, N

R} "
In the sequel, we will mostly use its reflexive transitive closure, RLIN .

Theory Exploration Powered by Deductive Synthesis 131

—O— filter

Fig. 3. An e-graph representing the expression filter p (I1 ++12) (dark) and the equiv-
alent expression filter p [1 ++ filter p 2 (light).

The relation RUZIN is reflexive, transitive, and symmetric, so it is an equiv-
alence relation over £. Under the assumption that all rewrite rules in {R;} are

Ri} ™
semantics preserving, for any equivalence class [t] € £ / AR, , all terms belong-
ing to [t] are definitionally equal. However, since £ may be infinite, it is essentially
. . Ri} "~ . .
impossible to compute AR, . Any algorithm can only explore a finite subset

. R} "
7T C L, and in turn, construct a subset of M .

3.2 Compact Representation Using Equality Graphs

In order to be able to cover a large set of terms 7, we need a compact data
structure that can efficiently represent many terms. Normally, terms are rep-
resented by their ASTs (Abstract Syntax Trees), but as there would be many
instances of common subterms among the terms of 7, this would be highly
inefficient. Instead, we adopt the concept of equality graphs (e-graphs) from
automated theorem proving [15], which also saw uses in compiler optimizations
and program synthesis [30,34,41], in which context they are known as Program
Expression Graphs (PEGs). An e-graph is essentially a hypergraph where each
vertex represents a set of equivalent terms (programs), and labeled, directed
hyperedges represent function applications. Hyperedges therefore have exactly
one target and zero or more sources, which form an ordered multiset (a vector,
basically). Just to illustrate, the expression filter p (I ++12) will be represented
by the nodes and edges shown in dark in Fig. 3. The nullary edges represent the
constant symbols (p, l1, l2), and the node wuy represents the entire term. The
expression filter p 1 ++ filter p lo, which is equivalent, is represented by the light
nodes and edges, and the equivalence is captured by sharing of the node uy.
When used in combination with a rewrite system {R;}, each rewrite rule
is represented as a premise pattern P and a conclusion pattern C. Applying a
rewrite rule is then reduced to searching the e-graph for the search pattern and
obtaining a substitution o for the free variables of P. The result term is then
obtained by substituting the free variables of C using o. This term is added to
the same equivalence class as the matched term (i.e. Po), meaning they will
both have the same root node. Consequently, a single node can represent a set

132 E. Singher and S. Itzhaky

of terms exponentially large in the number of edges, all of which will always be

*
equivalent modulo RLIN .

In addition, since hyperedges always represent functions, a situation may
arise in which two vertices represent the same term: This happens if two edges
@ 5 vy and @ 5 vy are introduced by {R;} for vy # vy. In a purely functional
setting, this means that v; and vy are equal. Therefore, when such duplication is
found, it is beneficial to merge v and vs, eliminating the duplicate hyperedge.
The e-graph data structure therefore supports a vertex merge operation and
a congruence closure-based transformation [44] that finds vertices eligible for
merge to keep the overall graph size small. This procedure can be quite expensive,
so it is only run periodically.

4 Theory Synthesis

In this section, we go into a more detailed description of the phases of theory
synthesis and explain how they are combined within an iterative deepening loop.
To simplify the presentation, we describe all the phases first, then explain how
the output from the last phase is fed back to the next iteration to complete a
feedback loop. We continue with the input from the running example in Sect. 2
(Fig. 2) and dive deeper by showing intermediate states encountered during the
execution of TheSy on this input. Throughout the execution, TheSy maintains
a state, consisting of the following elements:

— V, a sorted vocabulary

— C CV, a subset of constructors for some or all of the types

— &, a set of equations initially consisting only of the definitions of the (non-
constructor) functions in V

— 7, a set of terms, initially containing just atomic terms corresponding to
symbols from V.

4.1 Term Generation

The first step is to generate a set of terms over the vocabulary V. For the
purpose of generating universally-quantified conjectures, we introduce a set of
uninterpreted symbols, which we will call placeholders. Let Ty be the set of types
occurring as the type of some argument of a function symbol in V. For each type
7 occurring in) we generate placeholders o;, two for each type (we will explain
later why two are enough). These placeholders, together with all the symbols in
V, constitute the terms at depth 0.

At every iteration of deepening, TheSy uses the set of terms generated so
far, and the (non-nullary) symbols of V, to form new terms by placing existing
ones in argument positions. For example, with the definitions from Fig. 2, we
will have terms such as these at depths 1 and 2:

T—bool list T' list T list T
1 filter (o5} 01 01 ++ 09
T—bool list T' list T T—bool list T
2 [] ++ filter o7 oy o1 ++ (filter o7 o) (1)

T—bool list T list T' T—bool list T T—bool list T"

filter " o7 (07 ++ 03) (filter o7 ©o1) ++ (filter o7 09)

Theory Exploration Powered by Deductive Synthesis 133

T—bool list T" T—bool list T"

It is easy to see that filter o; o; and []++filter o; o7 are equivalent in
any context; this follows directly from the definition of ++, available as part of £.
It is therefore acceptable to discard one of them without affecting completeness.
TheSy does not discard terms—since they are merged in the e-graph, there is
no need to—rather, it chooses the smaller term as representative when it needs
one. This sort of equivalence reduction is present, in some way or another, in
many automated reasoning and synthesis tools.

To formalize the procedure of generating and comparing the terms, in an
attempt to discover new equality conjectures, we introduce the concept of Syn-
tax Guided Enumeration (SyGuE). SyGuE is similar to Syntax Guided Synthesis
(SyGusS for short [3]) in that they both use a formal definition of a language to
find program terms solving a problem. They differ in the problem definition:
while SyGuS is defined as a search for a correct program over the well-formed
programs in the language, SyGuE is the sub-problem of iterating over all dis-
tinct programs in the language. SyGuS solvers may be improved using a smart
search algorithm, while SyGuE solvers need an efficient way to eliminate dupli-
cate terms, which may depend on the definition of program equivalence. We

implement our variant of SyGuE, over the equivalence relation &, using
the aforementioned e-graph: by applying and re-applying rewrite rules, provably
equivalent terms are naturally merged into hyper-vertices, representing equiva-
lence classes.

4.2 Conjecture Inference and Screening

Of course, in order to discover new conjectures, we cannot rely solely on term
rewriting based on £. To find more equivalent terms, TheSy carries on to gen-
erate a second set of terms, called symbolic examples, this time using only the
constructors C C V and uninterpreted symbols for leaves. This set is denoted S7,
where 7 is an algebraic datatype participating in V (if several such datatypes are
present, one S per type is constructed). The depth of the symbolic examples
(i.e. depth of applied constructors) is also bounded, but it is independent of the
current term depth and does not increase during execution. For example, using
the constructors of list 7' with an example depth of 2, we obtain the symbolic
examples S"tT = {[] v;::[],v5:012:[]}, corresponding to lists of length up to 2
having arbitrary element values. Intuitively, if two terms are equivalent for all
possible assignments of symbolic examples to hgiT , then we are going hypothe-
size that they are equivalent for all list values. This process is very similar to
observational equivalence as used by program synthesis tools [2,42], but since
it uses the symbolic value terms instead of concrete values, we dub it symbolic
observational equivalence (SOE).

Consider, for example, the simple terms S and 0, ++ []. In placeholder form,
none of the rewrite rules derived from &£ applies, so it cannot be determined that
these terms are, in fact, equivalent. However, with the symbolic list examples
above, the following rewrites are enabled:

134 E. Singher and S. Itzhaky

R} ¥ R} Ri} "
N+ <Z5 0 one B wnn vemen e < o]
A similar case can be made for the two bottom terms in (1). For symbolic
values l1,lo € 8™ 7T it can be shown that

filter " o1 (I1 ++ Iy) AR, (filter

T—sbool T—bool

01 l—l)++(ﬁlter 01]2)

oy . . . list T' . . list T .
In fact, it is sufficient to substitute for o;, while leaving oo alone, uninter-
list T' {Ri} ™ T— bool T—sbool list T

preted: e.g., filter oy ([]++03) «—2 (filter oy [])++ (filter o1 0). This
reduces the number of equivalence checks significantly, and is more than a mere
heuristic: since we are going to rely on a prover that proceeds by applying induc-
tion to one of the arguments, it makes perfect sense to only bound that argument.
If computation is blocked on the second argument, we would prefer to first infer
an auxiliary lemma first, then use it to discover the blocked lemma later. See
Example 1 below for an idea of when this situation arises.

The attentive reader may notice that the cases of vy::[] and vy:ivi::[] are a
bit more involved: to proceed with the rewrite of filter, the expressions TBTD‘ vy,
57" v, must be resolved to either true or false. However, the predicate "o as

well as the arguments v, , are uninterpreted. In this case, TheSy is required
to perform a case split in order to enable the rewrites and unify the symbolic

T—bool

terms separately in each of the resulting four (22) cases. Notice that leaving o;
uninterpreted means that the cases are only split when evaluation is blocked by
one or more rewrite rule applications, potentially saving some branching. The
following steps are then carried out for each case.

TheSy applies all the available rewrite rules to the entire e-graph, containing
all the terms and symbolic examples. For every two terms t1, ¢ such that for all
viable substitutions o of placeholders to symbolic examples of the corresponding
types, t1o and too were shown equal—that is, ended up in the same equivalence

class of the e-graph—the conjecture t; = ¢, is emitted. E.g., in the case of the
running example:
ﬁlter Tgtioo\ (I'\sot:’lf Tt Hsot;) ; (ﬁlter Tgtioo\ I'\sotlT) Tt (ﬁltel Tgliool I\SO(;)
In the presence of multiple cases, the results are intersected, so that a con-
jecture is emitted only if it follows from all the cases.

Screening. Generating all the pairs according to the above criteria potentially
creates many “obvious” equalities, which are valid propositions, but do not con-
tribute to the overall knowledge and just clutter the prover’s state. For example,

T—bool ,list T' list T' ? T— bool (list T list T')

filter o1 (o1 ++ o2) = filter o1 (o1 ++ ([J++02)

which follows from the definition of ++ and has nothing to do with filter. The
synthesizer avoids generating such candidates, by choosing at most one term
from every equivalence class of placeholder-form terms induced during the term

Theory Exploration Powered by Deductive Synthesis 135

generation phase. If both sides of the equality conjecture belong to the same
equivalence class, the conjecture is dropped altogether.

The conjectures that remain are those equalities t; <ty where t; and to
got merged for all the assignments S7 to some o1, and, furthermore, ¢; and
to themselves were not merged in placeholder form, prior to substitution. Such
conjectures, if true, are guaranteed to increase the knowledge represented by £ as
(at least) the equality ¢; = to was not previously provable using term rewriting
and congruence closure.

4.3 Induction Prover
For practical reasons, the prover employs the following induction tactic:

— Structural induction based on the provided constructors (C).

— The first placeholder of the inductive type is selected as the decreasing argu-
ment.

— Exactly one level of induction is attempted for each candidate.

The reasoning behind this design choice is that for every multi-variable
term, e.g. hng ++ “Soth , the synthesizer also generates the symmetric counterpart
hsoth ++ lng . So electing to perform induction on hng does not impede generality.

In addition, if more than one level of induction is needed, the proof can
(almost) always be revised by factoring out the inner induction as an auxiliary
lemma. Since the synthesizer produces all candidate equalities, that inner lemma
will also be discovered and proved with one level of induction. Lemmas so proven
are added to £ and are available to the prover, so that multiple passes over the
candidates can gradually grow the set of provable equalities.

When starting a proof, the prover never needs to look at the base case,
as this case has already been checked during conjecture inference. Recall that
placeholders o, are instantiated with bounded-depth expressions using the con-

structors of 7, and these include all base cases (non-recursive constructors) by
default. For the example discussed above, the case of filter TB;W' ([]++ "32T) =

(filter "o7™ []) ++ (filter "o7"'3)) has been discharged early on, otherwise the
conjecture would not have come to pass. The prover then turns to the induction
step, which is pretty routine but is included in Fig. 4 for completeness of the
presentation.

It is worth noting that the conjecture inference, screening and induction
phases utilize a common reasoning core based on rewriting and congruence clo-
sure. In situations where the definitions include conditions such as match px
in Fig. 4 (in this case, desugared from if px), the prover also performs auto-
matic case split and distributes equalities over the branches. Details and specific
optimizations are described in Sect. 5.

136 E. Singher and S. Itzhaky

Assume filter p (zs ++11) = filter p zs++filter p l1
Prove filter p ((x:: xs) ++11) = filter p (z:: zs) ++filter p [1
via (1) filter p ((z::xs)++11) = filter p (z::(xs++11))
(2) = match (pz) with true = z :: filter p (zs++11)
false = filter p (zs++11)
(IH) (3) = match (pz) with true = z :: (filter p zs ++filter p I1)
false = filter p xs ++filter p Iy
(4) filter p (z:: zs) ++filter p I1
= (match (px) with true = z :: filter p s
false = filter p a:s) ++filter p Iy
(5) = match (pz) with true = z :: (filter p zs ++filter p I1)
O false = filter p xs ++filter p I1

Fig. 4. Example proof by induction based on congruence closure and case splitting.

Speculative Generalization. When the prover receives a conjecture with multiple

list T' list T list T ? list T list T' listT .. .
occurrences of a placeholder, e.g. o1 ++ (0g ++ 07) = (07 ++ 02) ++ 07, it is

designed to first speculate a more general form for it by replacing the multiple
occurrences with fresh placeholders. Recall that in Subsect. 4.1 we argued that
two placeholders of each type is going to be sufficient; this is the mechanism that
enables it. There is more than one way to generalize a given conjecture: for this
example, there are two ways (up to alpha-renaming):

list T list T list T ? list T list T list T list T list T list T ? list T list T list T
01 ++ (02 ++ 03) = (01 ++ 03) ++ 03 01 ++ (02 ++ 03) = (03 ++ 05) ++ 0,

The prover must attempt both. Failing that, it would fall back to the origi-
nal conjecture. Formally, given an equality conjecture s =t we can consider an
assignment ¢ such that r = so, ¢ = to; where the original conjecture uses an
assignment with only two values per type. The prover thus must iterate through
different assignments o; with more possible values per type, and attempt to
prove a new conjecture ro; = qo;. This incurs more work for the prover but is

well worth its cost compared to a-priori generation of terms with three place-
holders.

4.4 Looping Back

The equations obtained from Subsect. 4.3 are fed back in four different but
interrelated ways. The first, inner feedback loop is from the induction prover to
itself: the system will attempt to prove the smaller lemmas first, so that when
proving the larger ones, these will already be available as part of £. This enables
more proofs to go through. The second feedback loop uses the lemmas obtained
to filter out proofs that are no longer needed. The third, outer loop is more
interesting: as equalities are made into rewrite rules, additional equations may

Theory Exploration Powered by Deductive Synthesis 137

now pass the inference phase, since the symbolic evaluation core can equate more
terms based on this additional knowledge. The fourth resonates with the third,
applying the new rewrite rules acts as an equality reduction mechanism, reducing
the number of hyperedges added to the e-graph during term generation.

It is worth noting that while concrete observational equivalence uses a triv-
ially simple equivalence checking mechanism with the trade-off that it may gen-
erate many incorrect equalities, our symbolic observational equivalence is conser-
vative in the sense that a symbolic value may represent infinitely many concrete
inputs, and only if the synthesizer can prove that two terms will evaluate to equal
values on all of them, by way of constructing a small proof, are they marked as
equivalent. This means that some actually-equivalent terms may be “blocked”
by the inference phase, which cannot happen when using concrete values—but
also means that having additional inference rules (£) can improve this equiva-
lence checking, potentially leading to more discovered lemmas. This property of
TheSy is appealing because it allows an explored theory to evolve from basic
lemmas to more complex ones.

Ezample 1 (Lemma seeding). To understand this last point, consider the stan-
dard definition of list reversal for the list datatype:

rev [] =]
rev (x:ixs) =rev as++ (x 1 [])
. list T' list T' list T' list T .
Given the terms t; = rev (o] ++ 09) and t3 = revoy ++ revop, symbolic
observational equivalence with the assignments {&; — S"t7} fails to unify
them. This is due to ++ being defined by induction on its first argument, hence,
e.g.—

rev (vg 510y 1t []++ O) —* (rev Oy ++ (v ::[])) ++ (v2 1 [])
list T list T
rev o9 ++ rev vo vy [} —* rev oy ++ (vg vg i[])

Without the associativity property of ++, it would not be possible to show

that these symbolic values are equivalent, so the conjecture t; = to will not even
. . list T list T list T ? list T list T list T
be generated. Luckily, having proven oj ++ (0 ++ 03) = (05 ++ 09)++ 03,

these rewrites are “unblocked”, so that the equality can be conjectured and
ultimately proven.

One caveat is that whenever £ is updated by the addition of a new lemma,
some of the previously emitted conjectures may consequently become redundant.
Moreover, conjectures that were passed to the prover before but failed validation
may now succeed, and new ones may be emitted in the generation phase. To take
these into account, the actual loop performed by TheSy is a bit more involved
than has been described so far. For each term depth, TheSy performs all phases
as described, but each time a lemma is discovered TheSy re-runs the conjecture
generation, screening, and prover phases. Only when no more conjectures are
available does TheSy increase the term depth and generate new terms.

138 E. Singher and S. Itzhaky

5 Evaluation

We implemented TheSy in Rust, using the e-graph manipulation library egg [44].
TheSy accepts definitions in SMTLIB-2.6 format [6], based on the UF theory
(uninterpreted functions), limited to universal quantifications. Type declarations
occurring in the input are collected and comprise V; universal equalities form &
and are translated into rewrite rules (either uni- or bidirectional, as explained
in Subsect. 3.1). Then SyGuE is performed on V, generating candidate conjec-
tures using SOE. SyGuE uses egg for equivalence reduction, and SOE uses it
for comparing symbolic values. Conjectures are then dismissed using TheSy’s
induction-based prover. This is done in an iterative deepening loop.

Case Split. Both SOE and the prover use a case splitting mechanism; This mech-
anism detects when rewriting cannot match due to an opaque value (an unin-
terpreted symbol), and applies case splitting according to the constructors of
relevant ADT's. However, doing so for every rule is too costly and, in most cases,
redundant—TheSy generates a variety of terms, so if one term is blocked due to
an uninterpreted symbol, another one exists with a symbolic example instead.
A situation where this is not the case is when multiple uninterpreted symbols
block the rewrite (recall that TheSy only substitutes one placeholder per term
with symbolic examples). To illustrate, consider the case in Fig. 4 where both
the list = :: xs and px are used in match expressions, therefore a case split is
needed by px € {true, false}. Therefore, TheSy only performs case splitting for
rewrite rules that require multiple match patterns but only one is blocked.

The splitting mechanism itself, operates by copying the e-graph and applying
the term rewriting logic separately for each case. Each copy then yields a parti-
tion of the existing equivalence classes. These partitions are intersected between
all cases, and each of the resulting intersections lead to merging of equivalence
classes in the original e-graph. It is worth noting that TheSy never needs to back-
track a case split it has elected to apply. As a consequence, execution time is
not exponential in the total number of case splits performed, only in the nesting
level of such splits (which is bounded by 2 in our experiments).

We compare TheSy to the most recent and closely related theory explo-
ration system, Hipster [23]—which is based on random testing (backed by Quick-
Spec [38]) with proof automations from and frontend in Isabelle/HOL [33]. Hip-
ster represents the culmination of several works on existing theory exploration
(see Sect. 6). Both systems generate a set of proved lemmas as output, each
such set encompassing a conceptual volume of knowledge that was discovered
automatically. We note that the same knowledge can be represented in various
ways, so directly comparing the sets of lemmas is going to be meaningless.

5.1 Evaluating Theory Exploration Quality

We define a comparison method for two theory exploration systems A and B
starting from a common initial theory (defined as a set of closed formulas) 7.
As a metric for the quality and efficacy of results obtained from theory explo-
ration, and, therefore, their perceived usefulness, we use the notion of knowledge

Theory Exploration Powered by Deductive Synthesis 139

TheSy (w/o case split) vs. Hipster TheSy (w/ case split) vs. Hipster
1@ [L 2 [L [@ [1@ L ’ L ? L 2 O‘ @ [
[] []
[]
0.8 — -0 0.8 — e Ooo 4 = J
© ° o
0.6 — ®e e 0.6 — % o
Tt % Ta o® | o ° Tt % Ta oo o
0.4 — - 0.4 — o .
° oo ©
0.2 — . - 0.2 —) -
°
o \ \ \ \ o \ \ \ \
0 0.2 0.4 06 0.8 1 0 0.2 0.4 06 0.8 1
Ta%Tr Ta%Tr

Fig. 5. A scatter plot showing the ratio of lemmas in theories discovered by each tool
that were subsumed by the theory discovered by its counterpart (T = TheSy, H =
Hipster). Each point represents a single test case. The vertical axis shows how many of
the lemmas discovered by Hipster were subsumed by those discovered by TheSy, and
the horizontal axis shows the converse.

(inspired by “knowledge base” in Theorema [8]). A theory 7 in a given logical
proof system induces a collection of attainable knowledge, K7 = {¢ |7 F ¢},
that is, characterized by the set of (true) statements that can be proven based
on 7. In practice, a “pure” notion of knowledge based on provability is imprac-
tical, because most interesting logics are undecidable, and automated proving
techniques cannot feasibly find proofs for all true statements. We, therefore,
parameterize knowledge relative to a prover—a procedure that always termi-
nates and can prove a subset of true statements. Termination can be achieved
by restricting the space of proofs by either size or resource bounds. We say that
T8 @ when a prover, S, is able to verify the validity of ¢ in a theory 7. A
more realistic characterization of knowledge would then be K3 = {go | T P <p}.
Assuming that the prover S is fixed, a theory 7" is said to increase knowledge
over 7 when K3, D K5.

We utilize the notion of K5 described above to test the knowledge gained by
A against that of B, and vice versa. We take the set of lemmas 74 generated by
A and check whether it is subsumed by 75, generated by B, by checking whether
Ty C IC%JTB; we then carry out the same comparison with the roles of A and B
reversed. A working assumption is that both A and B include some mechanism
for screening redundant conjectures. That is, a component that receives the
current set of known lemmas 7; and a conjecture ¢ and decides whether the
conjecture is redundant. It is important to choose S such that whenever A (or
B) discards ¢, due to redundancy, it holds that ¢ € lCé’:

Incorporating the solver into the comparison makes the evaluation resistant
to large amounts of trivial lemmas, as they will be discarded by A or B. It is

140 E. Singher and S. Itzhaky

still possible for some lemmas to be “better” than others, so knowledge is not
uniformly distributed; this is hard to quantify, though. A few possible mea-
sures of usefulness come to mind, such as lemma utilization in a task (such as
proof search), proof complexity, or matching to a given context, but given just
the exploration task, there is not sufficient information to apply them. A first
approximation is to consider the discovered lemmas themselves, i.e., 74 U 7,
as representing proof objectives. In doing so, we pit A and B in direct contest
with one another. We choose this avenue because it is straightforward to apply,
admitting that it may be inaccurate in some cases.

To evaluate our approach and its implementation, we run both TheSy
and Hipster on functional definitions collected from the TIP 2015 benchmark
suite [11], specifically the IsaPlanner [21] benchmarks (85 benchmarks in total),
for compatibility between the two systems. TIP benchmarks also contain goal
propositions, but for the purpose of evaluating the exploration technique, these
are redacted. This experiment uses the simple rewrite-driven congruence-closure
decision procedure with a case split mechanism in the role of the solver, S,
occurring in the definition of knowledge K. Hipster uses Isabelle/HOL’s simpli-
fier as a conjecture redundancy filtering mechanism, which is in itself a simple
rewrite-driven decision procedure, therefore S provides a suitable comparison.
We compute the portion of lemmas found by Hipster that were provable (by)
from TheSy’s results and vice versa. In other words, we check the ratio given by
|74 N K5 7,1/ |Tal, which we denote Tp % 7Ty, in both directions. Figure 5 dis-
plays the ratios, where each point represents a single test case. Points above the
diagonal line represent test cases where TheSy’s ratio was higher and for points
under the line Hipster’s ratio was higher. We conduct this experiment twice:
Once with the case-splitting mechanism of TheSy turned off for its exploration,
and once with it turned on. (Hipster does not have such a switch as it always
generates concrete values.) The reason for this is that case splitting increases
the running time significantly (as we show next), so we want to evaluate its con-
tribution to the discovery of lemmas. Comparing the two charts, while TheSy
performs reasonably well compared to Hipster without case splitting (in 48 out
of the 85 TheSy’s ratio was better and equal in 12), enabling it leads to a clear
advantage (in 65 out of the 85 TheSy’s ratio was better and equal in 6).

Performance. To compare runtime efficiency, we consider the time it took to
fully explore the IsaPlanner test suite. We consider an exploration “full” when
it has finished enumerating all the terms, and associated candidate conjectures,
up to the depth bound (k = 2)? with TheSy or size bound with Hipster (s = 7),
and check them; or when a timeout of one hour is reached, whichever is sooner.
We then sort the benchmarks from shortest- to longest-running for each of the
tools, and report the accumulated time to explore the first ¢ benchmarks (i =
1..85). The results are shown in the graph in Fig. 6, for Hipster, TheSy with
case split disabled, and TheSy with case split enabled. In both configurations,

2 Qur experience shows that choosing larger ks greatly affects the run-time, but does
not lead to many useful lemmas.

Theory Exploration Powered by Deductive Synthesis 141

="

—o— Hipster

—_
[en)
o
TTTIT

—e— TheSy (w/ case split)

—_
en)
[
T

—x— TheSy (w/o case split)

103

ool 1l

TTTII
|

accumulated time (s)

TTTT
|

|

15 30 45 60 75 85
benchmarks solved

Fig.6. Time to fully explore the 85 IsaPlanner benchmarks. A full exploration is
considered one where either all terms up to the depth bound have been enumerated
or a timeout of 1h has been reached. The y axis shows the amount of time needed
to complete the first x benchmarks, when they are sorted from shortest- to longest-
running. (Time scale is logarithmic; lower is better.)

TheSy is very fast for the lower percentiles, but begins to slow down, due to case
splitting, towards the end of the line. To illustrate, in the 25th percentile TheSy
was ~380 times faster (0.48 s vs. 182.47 s); in the 50th percentile, ~57 times faster
(5.28s ws. 305.37s); and in the 75th percentile, ~6 times faster (141.24 to 883.8).
Overall TheSy took 51.6K seconds and Hipster 47.1K, meaning Hipster was ~1.1
times faster. It is evident from the chart that case splitting is largely responsible
for the longer execution times. Without case splitting, TheSy is much faster, and
completes all 85 benchmarks in less time than it takes Hipster. Of course, in that
mode of operation, TheSy finds fewer lemmas (as shown in Fig. 5), but is still
superior to Hipster. Future work needs to focus on improving the case-splitting
mechanism, similar to their treatment in SAT and SMT, allowing TheSy to deal
with such theories more efficiently.

5.2 Efficacy to Automated Proving

While the mission statement of TheSy is solely to provide lemmas based on core
theories, we wish to claim that such discovered theories are beneficial toward
proving theorems in general, based on the same core theory. We used a collec-
tion of benchmarks for induction proofs used by CVC4 [37], and conducted the
following experiment: First, the proof goals are skipped and only the symbol dec-
larations and provided axioms are used to construct an input to TheSy. Then,
whenever a new lemma is discovered and passes through the prover, we also
attempt to prove the goal—utilizing the same mechanism used for vetting con-
jectures. As soon as the latter goes through, the exploration process is aborted,
and all lemmas collected are discarded. The experiments are thus independent
across the individual benchmarks.

142 E. Singher and S. Itzhaky

Table 1. Results of the CVC4 benchmark suite (number of successful proofs in each
category).

Total | Z3 | CVC4 | CVC4+ig | TheSy

clam 136 |25 20 108 102

hipspec 42 6| 7 33 29

isaplanner | 87 |35 |34 79 47

leon 46 9/ 9 40 9

Total 311 |75 |70 260 187

clam hipspec
108 T f ™ ET T T E|
109 ;g Jf g; 10— 1 iE ;
101 E = s F Bl
o F E| 10 E E|
10 E E E
107‘5 :E / g: - / é
1o—4 B L L] 10—4 &L L L 1
0 50 100 0 10 20 30
leon isaplanner
SN — T T [E— 2 | T T3
—1 E; i 100 “‘ E
o Y]
1072 E 1072 % . %
10-3 /(- 1073 é / 3;
I I I I 1074 t t g
2 4 6 8 0 20 40

Fig. 7. Accumulated time-to-solve for each of the benchmark suites from the CVC4 col-
lection. The y axis shows the amount of time needed to complete the first (successful)
proofs, when benchmarks are sorted from shortest- to longest-running.

Even though this setting is unfavorable to TheSy—because it does not take
advantage of the fact that theory exploration can be done offline, then its results
re-used for proofs over the same core theory—we report considerable success in
solving these benchmarks. Out of the 311 benchmarks, our theory exploration
+ simple-minded induction was able to prove 187 (with a 5-min timeout, same
as in the original CVC4 experiments). For comparison, Z3 and CVC4 (with-
out conjecture generation) were able to prove 75 and 70 of them, respectively.
This shows that the majority of instances were not solvable without the use of
induction. CVC4 with its conjecture generation enabled was able to solve 260
of them. Table 1 shows the number of successful proofs achieved for each of the
four suites. Figure 7 shows the accumulated time required for the benchmarks;
the vast majority of the success cases occur early on, because in some cases a
rather small auxiliary lemma is all that is needed to make the proof go through.

Theory Exploration Powered by Deductive Synthesis 143

6 Related Work

Equality Graphs. Originally brought into use for automated theorem proving [15],
e-graphs were popularized as a mechanism for implementing low-level compiler
optimizations [41], under the name PEGs. These e-graphs can be used to repre-
sent a large program space compactly by packing together equivalent programs.
In that sense they are similar to Version Space Algebras [26], but their prime
objective is entirely different. While VSAs focus on efficient intersections, e-
graphs are used to saturate a space of expressions with all equality relations
that can be inferred. They have found use in optimizing expressions for more
than just speed, for example to increase numerical stability of floating-point pro-
grams in Herbie [34]. There are two key differences in the way e-graphs are used
in this work compared to prior: (i) equality laws are not hard-coded nor fixed,
they are fertilized as the system proves more lemmas automatically; (ii) satu-
ration cannot be guaranteed or even obtained in all cases, which we overcome
by a bound on rewrite-rule application depth. (The latter point is an indirect
consequence of the former.)

Automated Theorem Provers. Many systems rely on known theorems or are
designed to support users in semi-automated proving. Congruence closure is also
a proven method for tautology checking in automated theorem provers, such as
Vampire [25], and is used as a decision procedure for reasoning about equality
in leading SMT solvers Z3 [14] and CVC4 [5]. There, it is limited mostly to
first-order reasoning, but can essentially be applied unchanged to higher-level
scenarios such as ours.

Related to theory exploration, but using separate techniques, are Zipperpo-
sition [13], and the conjecture generation mechanism implemented as part of
the induction prover in CVC4 [37]. It should be noted, that these are directed
toward a specific proof goal, as opposed to theory exploration, which is presumed
to be an offline phase. As such, the above two techniques incorporate genera-
tion of inductive hypotheses into the saturation proof search/SMT procedure,
respectively.

Theory Exploration. IsaCoSy [22] pioneered the use of synthesis techniques for
bottom-up lemma discovery. IsaCoSy combines equivalence reduction with coun-
terexample-guided inductive synthesis (CEGIS [40]) for filtering candidate lem-
mas. This requires a solver capable of generating counterexamples to equiva-
lence. Subsequent development was based on random generation of test values,
as implemented in QuickSpec [38] for reasoning about Haskell programs, later
combined with automated provers for checking the generated conjectures [10,20].
We have mentioned the deficiencies of using concrete values (as opposed to sym-
bolic ones) and random testing in Sect. 1 and make an empirical comparison
with Hipster, a descendent of IsaCoSy and QuickSpec, in Sect. 5.

Inductive Synthesis. In the area of SyGuS [3], tractable bottom-up enumeration
is commonly achieved by some form of equivalence reduction [39]. When dealing
with concrete input-output examples, observational equivalence [2,42] is very

144 E. Singher and S. Itzhaky

effective. The use of symbolic examples in synthesis has been suggested [17], but
to the best of our knowledge, ours is the only setting where symbolic observa-
tional equivalence has been applied. Inductive synthesis, in combination with
abduction [16], has also been used to infer specifications [1], although not as an
exploration method but as a supporting mechanism for verification.

7 Conclusion

We described a new method for theory exploration, which differentiates itself
from existing work by basing the reasoning on a novel engine based on term
rewriting. The new approach differs from previous work, specifically those based
on testing techniques, in that:

1. This lightweight reasoning is purely symbolic, supporting value abstraction
and performs better then prior art.

2. Functions are naturally treated as first-class objects, without specific support
implementation.

3. The only needed input is the code defining the functions involved, and no
support code such as a specific theory solver or random value generators.

4. TheSy has a unique feedback loop between the prover and the synthesizer,
allowing more conjectures to be found and proofs to succeed.

By creating a feedback loop between the four different phases, term genera-
tion, conjecture inference, conjecture screening and induction prover, this system
manages to efficiently explore many theories. This goes beyond similar feedback
loops in existing tools, aiming to reduce false and duplicate conjectures. As
explained in Subsect. 4.2, this form is also present in TheSy, but TheSy utilizes
this feedback in more phases of the computation.

Theory exploration carries practical significance to many automated reason-
ing tasks, especially in formal methods, verification and optimization. Complex
properties lead to an ever-growing number of definitions and associated lemmas,
which constitute an integral part of proof construction. These lemmas can be
used for SMT solving, automated and interactive theorem proving, and as a
basis for equivalence reduction in enumerative synthesis. The term rewriting-
based method that we presented in this paper is simple, highly flexible, and has
already shown results surpassing existing exploration methods. The generated
lemmas allow even this simple method to prove conjectures that normally require
sophisticated SMT extensions. Our main conclusion is that deductive techniques
and symbolic evaluation can greatly contribute to theory exploration, in addition
to their existing applications in invariant and auxiliary conjecture inference.

Acknowledgements. This research was supported by the Israeli Science Foundation
(ISF) Grants No. 243/19 and 2740/19 and by the United States-Israel Binational Sci-
ence Foundation (BSF) Grant No. 2018675.

Theory Exploration Powered by Deductive Synthesis 145

References

10.

11.

12.

13.

14.

15.

16.

Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specification synthesis. In: Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, pp. 789-801. Association for Computing
Machinery, New York (2016)

Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 934-950. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-39799-8_67

Alur, R., et al.: Syntax-guided synthesis. Dependable Softw. Syst. Eng. 40, 1-25
(2015)

Barbosa, H., Fontaine, P., Reynolds, A.: Congruence closure with free variables.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 214-230.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_13
Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171-177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the Leon verification
system: verification by translation to recursive functions. In: Proceedings of the
4th Workshop on Scala, SCALA 2013. Association for Computing Machinery, New
York (2013)

Buchberger, B.: Theory exploration with theorema. Analele Universitatii Din
Timisoara, ser. Matematica-Informatica 38(2), 9-32 (2000)

Buchberger, B., et al.: Theorema: towards computer-aided mathematical theory
exploration. J. Appl. Logic 4(4), 470-504 (2006)

Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 392-406. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38574-2_27

Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM
2015. LNCS (LNAI), vol. 9150, pp. 333-337. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-20615-8_23

The Coq Development Team: The Coq Proof Assistant Reference Manual, version
8.7 (October 2017)

Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172-188. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66167-4_10

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3-24

Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365-473 (2005)

Dillig, I., Dillig, T., Li, B., McMillan, K., Sagiv, M.: Synthesis of circular compo-
sitional program proofs via abduction. Int. J. Softw. Tools Technol. Transf. 19(5),
535-547 (2015). https://doi.org/10.1007/s10009-015-0397-7

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10009-015-0397-7

146

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

E. Singher and S. Itzhaky

Drachsler-Cohen, D., Shoham, S., Yahav, E.: Synthesis with abstract examples.
In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 254-278.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_13
Einarsdéttir, S.H., Johansson, M., Aman Pohjola, J.: Into the infinite - theory
exploration for coinduction. In: Fleuriot, J., Wang, D., Calmet, J. (eds.) AISC
2018. LNCS (LNAI), vol. 11110, pp. 70-86. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99957-9_5

Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Grove, D., Blackburn, S. (eds.) Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, Portland, OR, USA, June 15-17, 2015, pp. 229-239. ACM (2015)
Johansson, M.: Automated theory exploration for interactive theorem proving. In:
Ayala-Rincén, M., Muifioz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 1-11.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0-1

Johansson, M., Dixon, L., Bundy, A.: Case-analysis for rippling and inductive
proof. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp.
291-306. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-
521

Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories.
J. Autom. Reason. 47, 251-289 (2010)

Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory
exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 108-122.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_9

Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computation
(Artificial Intelligence). Springer, Heidelberg (1983). https://doi.org/10.1007/978-
3-642-81955-1_23

Kovécs, L., Voronkov, A.: First-order theorem proving and VAMPIRE. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1-35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

Lau, T., Wolfman, S.A., Domingos, P., Weld, D.S.: Programming by demonstration
using version space algebra. Mach. Learn. 53(1-2), 111-156 (2003)

Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348-370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4.20

Milder, P., Franchetti, F., Hoe, J.C., Piischel, M.: Computer generation of hardware
for linear digital signal processing transforms. ACM Trans. Des. Autom. Electron.
Syst. 17(2), 1-33 (2012)

José, M.F., et al.: Spiral: Automatic implementation of signal processing algo-
rithms. In: HPEC, HPEC 2000 (2000)

Nandi, C., et al.: Synthesizing structured cad models with equality saturation and
inverse transformations. In: Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2020, pp. 31-44.
Association for Computing Machinery, New York (2020)

Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356-364 (1980)

Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions. Inf. Com-
put. 205(4), 557-580 (2007)

https://doi.org/10.1007/978-3-319-63387-9_13
https://doi.org/10.1007/978-3-319-99957-9_5
https://doi.org/10.1007/978-3-319-99957-9_5
https://doi.org/10.1007/978-3-319-66107-0_1
https://doi.org/10.1007/978-3-642-14052-5_21
https://doi.org/10.1007/978-3-642-14052-5_21
https://doi.org/10.1007/978-3-319-08434-3_9
https://doi.org/10.1007/978-3-642-81955-1_23
https://doi.org/10.1007/978-3-642-81955-1_23
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Theory Exploration Powered by Deductive Synthesis 147

Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: PLDI, vol. 50, pp. 1-11. ACM, New
York (2015)

Polozov, O., Gulwani, S.: Flashmeta: a framework for inductive program synthesis.
SIGPLAN Not. 50(10), 107-126 (2015)

Ragan-Kelley, J., et al.: Halide: decoupling algorithms from schedules for high-
performance image processing. Commun. ACM 61(1), 106-115 (2018)

Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80-98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8_5

Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick specifications for
the busy programmer. J. Funct. Program. 27, e18 (2017)

Smith, C., Albarghouthi, A.: Program synthesis with equivalence reduction. In:
Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 24-47. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11245-5_2

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, pp. 404-415 (2006)
Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach
to optimization. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, pp. 264-276.
Association for Computing Machinery, New York (2009)

Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M.K.,
Alur, R.: Transit: specifying protocols with concolic snippets. ACM SIGPLAN
Not. 48(6), 287-296 (2013)

Valbuena, I.L., Johansson, M.: Conditional lemma discovery and recursion induc-
tion in hipster. ECEASST 72, 1-15 (2015)

Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: Egg:
fast and extensible equality saturation. Proc. ACM Program. Lang. 5(POPL), 1-29
(2021)

Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: a language and compiler
for DSP algorithms. In: Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, PLDI 2001, pp. 298-308.
Association for Computing Machinery, New York (2001)

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-030-11245-5_2

148 E. Singher and S. Itzhaky

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

CoqQFBYV: A Scalable Certified SMT
Quantifier-Free Bit-Vector Solver

Xiaomu Shi', Yu-Fu Fu?, Jiaxiang Liu'®), Ming-Hsien Tsai,

Bow-Yaw Wang?, and Bo-Yin Yang®

! Shenzhen University, Shenzhen, China
2 Qeorgia Institute of Technology, Atlanta, USA
3 Academia Sinica, Taipei City, Taiwan

Abstract. We present a certified SMT QF-BV solver COQQFBYV built
from a verified bit blasting algorithm, KI1SsAT, and the verified SAT cer-
tificate checker GRATCHK in this paper. Our verified bit blasting algo-
rithm supports the full QF_BV logic of SMT-LIB; it is specified and for-
mally verified in the proof assistant C0Q. We compare COQQFBYV with
CVC4, BrrwuzLA, and BOOLECTOR on benchmarks from the QF.-BV
division of the single query track in the 2020 SMT Competition, and real-
world cryptographic program verification problems. COQQFBYV surpris-
ingly solves more program verification problems with certification than
the 2020 SMT QF_BV division winner BITWUZLA without certification.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers for the Quantifier-Free Bit-Vector
(QF_BV) logic have been used to verify programs with bit-level accuracy [9,
10]. In such applications, a program verification problem is reformulated as an
SMT QF._BV query. An SMT QF_BYV solver is then invoked to compute a query
result. The query result in turn decides the answer to the program verification
problem. For cryptographic assembly programs, a missing carry or borrow flag
will result in incorrect computation. Bit-accurate verification is thus necessary
for cryptographic programs. SMT QF_BV solvers in fact have been employed to
verify such programs [8,25]. These solvers nonetheless are very complex programs
with possibly unknown bugs [7,18]. Since bugs in SMT QF_BV solvers may
induce incorrect query results, program verification cannot be taken without a
grain of salt when SMT QF_BV solvers are employed.

In order to check SMT QF._BV query results independently, SMT QF.BV
solvers can generate certificates to validate their answers. In the LFSC certifi-
cates [14,23], for instance, an SMT QF_BV query result is certified by correct bit
blasting and Boolean Satisfiability (SAT) solving. Such certificates demonstrate
that the SMT QF_BV query is reduced to a Boolean SAT query correctly and
the corresponding SAT query is solved correctly. Although one can certify SAT
query results with certificates from SAT solvers [24], it is not always easy to cer-
tify correct bit blasting due to complex arithmetic operations in SMT QF_BV

© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 149-171, 2021.
https://doi.org/10.1007/978-3-030-81688-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_7

150 X. Shi et al.

queries. Developing correct and efficient checkers for SMT QF_BV certificates
can be very challenging. Indeed, an LFSC certificate checker based on the proof
assistant COQ has been developed to improve confidence [12]. Yet the CoQ-based
certificate checker does not fully support arithmetic operations and thus cannot
certify results of SMT QF_BV queries with complicated arithmetic operations.
Consequently, the correctness of cryptographic programs still relies on the cor-
rectness of SMT QF_BV solvers or their unverified certificate checkers.

In this paper, we take a more direct approach to ensure the correctness of
SMT QF-BV query results. Instead of certifying correct bit blasting for every
SMT QF_BV query, we specify a bit blasting algorithm and prove its correct-
ness in the proof assistant CoQ. In order to formalize the correctness of our bit
blasting algorithm, we develop a formal bit-vector theory in CoQ. Naturally,
the formal theory has to support all arithmetic functions (addition, subtraction,
multiplication, division, and remainder) for both signed and unsigned represen-
tations as needed in SMT-LIB [3]. Based on our new bit-vector theory, we give
a formal semantics for SMT QF_BV queries in CoQ. Our semantics follows the
SMT-LIB semantics carefully. Particularly, division and remainder are total
arithmetic operations even when the divisor is zero. Using our COQ bit-vector
theory and semantics, we prove that our bit blasting algorithm always returns a
corresponding Boolean formula correctly on any SMT QF_BV query. Since our
algorithm has been formally verified, bit blasting is always correct and need not
be certified. Through the OCAML program extracted from our verified bit blast-
ing algorithm, a corresponding SAT query is obtained for each SMTQF.BV
query and sent to a SAT solver. A SAT certificate checker suffices to validate
SAT query results and hence the correctness of answers to SMT QF_BV queries.
Since neither complicated SMT QF_BV solvers nor their certificate checkers are
trusted, our work can improve the confidence of SMT QF_BV query results.

To our knowledge, our bit-vector theory is the first CoQ formalization
designed for bit blasting queries from the QF_BV logic of SMT-LIB. Our seman-
tics is the first CoQ formalization for full SM'T QF_BV queries. We are not aware
of any verified bit blasting algorithm or program for full SMT QF_BV queries
of SMT-LIB at the time of writing. Even the correctness of its results could be
ensured, our certified SMT QF_BV solver COQQFBYV would not be very useful
if it were extremely inefficient. In order to evaluate its performance, we run CoQ-
QFBYV on benchmarks from the QF_BV division of the single query track in the
2020 SMT Competition. With the same memory and time limits in the competi-
tion, our solver successfully finishes 88.72% of the 6861 queries with certification.
In comparison, CVC4 with its certificate checker solves 55.97% with certifi-
cation, and the division winner BITWUZLA solves 98.22% of the benchmarks
without certification. Our certified solver outperforms CVC4 with certification
significantly. Generating and checking certificates make our certified solver finish
about 10% of the queries less than the division winner. The price of accuracy
perhaps is not unacceptable for the benchmarks in the competition. To fur-
ther evaluate COQQFBYV, the certified solver is used to verify linear arithmetic
assembly programs from various cryptography libraries such as OpenSSL [30].

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 151

CoQQFBYV gives certified answers to 96.88% out of the 96 SMT QF_BV queries
from real-world cryptographic program verification. CVC4 with its certificate
checker certifies 19.79%. Compared with efficient SMT QF_BV solvers without
certification, BOOLECTOR is able to solve 100% and BITWUZLA solves 91.67% of
the queries. Intriguingly, our certified SMT QF_BYV solver outperforms the 2020
division winner BITWUZLA in queries from real-world verification problems. Our
certified solver is probably useful for real-world verification problems.

Related Work. As mentioned, SMT certificate generating and checking are chal-
lenging. There are few efforts developing SMT QF_BV certificate checkers, let
alone verified ones. CVC4 is able to produce unsatisfiability certificates for
QF.BV queries, and also equipped with an (unverified) certificate checker [14].
SMTCoq [12] is proposed to check certificates from SMT solvers VERIT and
CVCA4. It supports fragments of several logics including the QF_BYV logic. More-
over, its correctness is formally proved in CoQ. However, the QF_BV logic is
not fully supported by SMTCo0Q. Z3 also supports certificate generation for the
QF.BV logic [19]. The proofs can be reconstructed, thus checked, within proof
assistants HOL4 and ISABELLE [6]. But the lack of details in Z3’s generated
certificates makes proof reconstruction particularly challenging.

With a similar approach in this paper, GL is a framework for bit blasting
finitely bounded ACL2 theorems into SAT queries [28]. Its bit blasting algorithm
is formally verified in ACL2. Though it is not designed for SMT-LIB, most of
the operations defined in the QF_BV logic are supported, except division and
concatenation for instance. A bit blasting algorithm is defined and verified in
HOL4 as well [13]. Neither [28] nor [13] aims to develop a scalable SMT QF_BV
solver. COQQFBYV accepts SMT-LIB inputs with fully supported QF_BV logic
while adopting performance optimizations such as caches.

In IsaBELLE and HOL4, one can use the bit-vector libraries to conform
SMT-LIB operations, see [17] for example. Under the frame of CoQ, coq-bits
is a formalization of logical and arithmetic operations on bit-vectors [15]. The
library provides the mapping between bit-vector operations and abstract number
operations. Different from our theory, it does not support division/remainder or
signed operations. WHY3 [11] provides a bit-vector theory which is formalized
in CoQ too. It defines the division by zero in a different way from SMT-LIB.
Moreover, the operations are defined based on integer operations. Our new bit-
vector theory instead defines bit-vector operations through bit manipulation. It
is more suitable for the correctness proof of bit blasting algorithms.

We have the following organization. After the introduction, an overview is
given in Sect.2. Section 3 reviews preliminaries. Our formal bit-vector theory
is presented in Sect. 4. It is followed by the formal semantics of SMT QF.BV
queries (Sect.5). The correctness of our bit blasting algorithm is established in
Sect. 6. Section 7 outlines the construction of our certified SMTQF._BV solver.
Experiments are presented in Sect.8. Section 9 concludes our presentation.

152 X. Shi et al.

2 Methodology Overview

Given an SMT QF_BV query, a bit blasting algorithm computes a Boolean
formula such that the SMT QF_-BV query is satisfiable if and only if the
Boolean formula is satisfiable. The QF_BV logic contains arithmetic operations
for bit-vectors. Computing an equi-satisfiable Boolean formula for an arbitrary
SMT QF_BV query can be very complicated and susceptible to errors. Our goal
is to construct a correct bit blasting program for every SMT QF_BV query. The
correctness of the program moreover is verified by the proof assistant CoqQ to
minimize gaps or even errors in hand-written proofs.

Our construction is based on a new formal bit-vector theory coq-nbits
(Sect. 4). In cog-nbits, we define bit-vectors and their functions on top of the
CoqQ data type for Boolean sequences. In order to support the QF_BV logic
of SMT-LIB fully, five arithmetic bit-vector functions (addition, subtraction,
multiplication, division, and remainder) are defined in our formal theory. To
establish the correctness of our definitions, formal proofs are provided to relate
bit-vector functions with their arithmetic counterparts. For instance, we show the
number represented by the output of the bit-vector negation function is indeed
the arithmetic negation of the number represented by the input bit-vector.

Using our cog-nbits theory, we then give a formal semantics for
SMTQF.BV queries as defined in SMT-LIB (Sect.5). In our formalization,
a QF_BYV predicate denotes a Boolean value; and a QF_BV expression denotes
a bit-vector. An SMT QF._BV query is formalized as a Boolean combination of
QF_BYV predicates on QF_BV expressions over QF_BV variables and bit-vector
constants. In order to demonstrate the correctness of our formal semantics for
SMT QF_BV queries, formal proofs are provided to show that our formal seman-
tics coincides with those defined in SMT-LIB.

Our bit blasting algorithm is given in CoQ (Sect.6). It extends Tseitin
transformation for Boolean formulae to SMT QF_BV queries. More precisely, a
QF_BV predicate is transformed to a literal with a Boolean formula; a QF-BV
expression is transformed to a literal sequence with a Boolean formula. Using
our formalization of SMT QF_BV queries, the correctness of bit blasting algo-
rithm is established in CoQ by mutual induction. To improve efficiency, our bit
blasting algorithm is further optimized with more economic transformations and
a cache. The optimized bit blasting algorithm is also verified with formal CoQ
proofs.

Our formally verified bit blasting algorithm is written in the C0OQ specifica-
tion language. It is not yet a program compilable into executable binary codes.
Using the code extraction mechanism in CoQ, an OCAML program is extracted
from our verified bit blasting algorithm. The OCAML program takes expressions
in our formal SMT QF_BV query syntax as inputs and returns expressions in
our formal syntax for Boolean formulae as outputs. SAT solvers can be employed
to decide satisfiability of output Boolean formulae. Their certificates can be val-
idated by SAT certificate checkers independently (Sect. 7).

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 153

3 Preliminaries

Let v be a Boolean variable with values ff and tt. A literal is of the form v or —w.
A clause is a disjunction lo VI, V- - - VI of literals g, 1, ..., lx. A Boolean formula
in the conjunctive normal form (CNF) is a conjunction cgAcy A+ - - Acy, of clauses
€05Cly- -5 Cm- A SAT query is a Boolean CNF formula. An environment maps
Boolean variables to their values. Given a SAT query, the Boolean satisfiability
problem is to decide if the query evaluates to ¢t on some environments.

A bit-vector of width w is written as #bby,_1b,—2 - - - bg with b; € {0,1} for 0 <
i < w. In the unsigned representation, the bit-vector #bb,,_1b,_o - - - by denotes
the natural number (non-negative integer) >, ., bi2"; in two’s complement
(signed) representation, it denotes the integer ZO<i<w—1 b; 2" — 2w—1p, 4. For
instance, #1010 denotes 10 and —6 in the unsigned and two’s complement
representations respectively. We use bv2nat(bv) for the natural number denoted
by the bit-vector bv in the unsigned representation; and nat2bv(w, i) stands for
the bit-vector of width w representing the natural number ¢ modulo 2.

Let bv = #bby,_1by_o-- by and cv = #bcy_1¢y_2---co be bit-vectors of
widths w and u respectively. The following QF_BV operations are defined in the
QF_BV logic of SMT-LIB: concat bv cv £ #bby_1by—_2- - boCy_1Cuz - Co
is the concatenation of bv and cv; extract i j bv 2 #bbib;_q--- b; extracts
bits from bv where 0 < 7 < ¢ < w; bvnot bv, bvand bv cv, and bvor bv cv
are the bitwise complement, and, or operations respectively. Additionally,
buneg bv = nat2bv(w,2” — bv2nat(bv)) is the arithmetic negation operation;
bvadd bv cv = nat2bv(w, bv2nat(bv) + bv2nat(cv)) is the arithmetic addition
operation; and bvmul bv cv £ nat2bv(w, bv2nat(bv) x bv2nat(cv)) is the arith-
metic multiplication operation. The arithmetic division and remainder opera-
tions are

boudiv by cv 2 { nat2bv(w, 2% — 1) if bu2nat(cv) =0
1 nat2bv(w, bv2nat (bv) + bv2nat(cv)) otherwise
bu if bu2nat(cv) =0

S
bvurem bv cv = { nat2bv(w, bv2nat(bv) mod bv2nat(cv)) otherwise.

Note that the arithmetic division and remainder operations are defined
even when the divisor represents the number zero. Finally, the operations
bushl bv cv £ nat2bv(w, bv2nat(bv) x 20v27e4(cv)) shifts the bit-vector bv to
the left by bv2nat(cv) bits; bulshr bv cv £ nat2bv(w, bv2nat(bv) + 20v2nat(ev))
shifts the bit-vector bv to the right by bu2nat(cv) bits. In addition to bit-vector
operations, the QF_BV logic of SMT-LIB defines QF_-BV predicates on bit-
vectors. The predicate bveq bv cv is true when the bit-vectors bv and cv are
equal; bvult bv cv is true if bv2nat(bv) < bv2nat(cv). In the QF_BV logic of
SMT-LIB, both operands of binary operations and predicates must have the
same width. Overall, seventeen bit-vector operations and predicates are defined
in the QF_BV logic of SMT-LIB. Particularly, arithmetic division and remain-
der operations with operands in both unsigned and two’s complement signed
representations are defined in SMT-LIB.

154 X. Shi et al.

A QF_BV wariable denotes a bit-vector. A QF_BV expression is constructed
from QF_BYV operations over QF_BV variables and bit-vectors. An SMT QF_BV
query is a Boolean combination of QF_BV predicates on QF_BV expressions. Let
stores be mappings from QF_BYV variables to bit-vectors. Given an SMT QF_-BV
query, the satisfiability modulo QF_-BV theory problem is to decide if the query
evaluates to ¢t on some stores.

4 Bit-Vector Theory

We present our formal CoqQ bit-vector theory cog-nbits in this section. The
cog-nbits theory supports bit-vectors in both unsigned and two’s complement
signed representations. In coq-nbits, a bit-vector is represented by a Boolean
sequence of the data type bits in the least significant bit-first order.

H Definition bits : Set := seq bool.

In the definition, bool and seq are the data types for Boolean values (false and
true) and sequences in COQ respectively. For instance, the bit-vector #b100 is
represented by [:: false;false;true| in cog-nbits.

CoqQ functions defined for sequences are applicable to bit-vectors. Particu-
larly, size bv computes the width of the bit-vector bv and bv ++ cv is the concate-
nation of the bit-vectors bv and cv. It is also straightforward to define auxiliary
bit-vector functions. For example, zeros n returns the bit-vector of n false’s;
ones n returns the bit-vector of n true’s; extract ¢ j bv returns the sub-sequence
of the bit-vector bv with indices from j to ¢ where 0 < j < i < size bv. Let
a = [:: false;false; true|. Then size a = 3 and extract 2 1 a = [:: false; true].

Bitwise functions are defined as easily. For instance, the bitwise inverse func-
tion maps each Boolean value to its complement:

H Definition invB bv : bits := map (fun b => “"b) bv.

Other bitwise functions are defined similarly. Specifically, bitwise and andB,
bitwise or orB, logical left shift shiB, logical right shift shrB are all defined
in cog-nbits. Let b £ [:: false;true;true]. We have invB b = [:: true;
false; false], andB a b = [:: false;false;true|, and shiB 1 b = [:: false;
false;true].

Arithmetic bit-vector functions are slightly more complicated. To prove
properties about arithmetic functions, cog-nbits provides conversion functions
between bit-vectors and natural numbers.

Definition to.N (bv : bits) : N :=
foldr (fun b res => N_of_bool b + 7es * 2) 0 bv.

In the definition, to_N bv converts the bit-vector bv to a natural number where
N_of _bool false = 0 and N_of_bool true = 1. The to_N function multiplies the
previous result by two and adds the least significant bit b. For instance, to_N a
= to_N [:: false;false;true| = 4. The function from_N w n, on the other hand,
converts any natural number n to a bit-vector of width w.

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 155

“ Fixpoint from_.N (w : nat) (n : N) : bits :=
match w with

| 0 => [::]
| S w => (N.odd n)::(from_N v (N.div n 2))
end.

The function first checks the width w. If the width is zero, it returns the empty
bit-vector. Otherwise, the function returns the bit-vector with the least signif-
icant bit N.odd n and the remaining w — 1 bits representing n divided by two.
Observe that two CoQ formalizations of natural numbers are used. The nat
theory uses the unary representation suitable for inductive proofs; N uses the
succinct binary representation. The following lemma is proved in CoQ:

Lemma 1. The following properties hold:

1. Ybv,from_N (size bv) (to_N bv) = bv.
2. Yw n,n < 2% = to_N (from_N w n) = n.

The first property shows that bit-vectors can be converted to natural numbers
and back to themselves. The second property shows that natural numbers can
be converted to bit-vectors with sufficient widths and back to themselves. To see
how they are used to prove properties about bit-vector functions in cog-nbits,
consider the definition of the successor bit-vector function.

H Fixpoint succB (bv : bits) : bits :=
match bv with
:] => [::]
::tl => if hd then false::(succB tl) else true::il

If the input is the empty bit-vector, the function returns the empty bit-vector.
Otherwise, succB checks the least significant bit of the input bit-vector. If the bit
is true, the function computes the successor of the remaining bits and appends
false as the least significant bit. If the least significant bit of the input is
false, the function simply changes the least significant bit to true and copies
the remaining bits. Using the conversion functions, the bit-vector successor is
related to the arithmetic successor in the following lemma:

Lemma 2. Vbv,succB bv = from_N (size bv) ((to-N bv) + 1).

Lemma 2 says that succB bv does compute the bit-vector representing the arith-
metic successor of the natural number represented by the bit-vector bv. Observe
that the successor bit-vector function is correct when the input bit-vector is
empty. It is also correct when there is overflow. Indeed, both sides are zeros of
width size bv when overflow occurs.

Other arithmetic bit-vector functions are defined and proved in cog-nbits
similarly. Specifically, the arithmetic negation negB, addition addB, subtrac-
tion subB, unsigned multiplication mulB, unsigned division divB, and unsigned
remainder remB functions are supported by cog-nbits. We give properties to
relate the arithmetic functions for bit-vectors and natural numbers.

156 X. Shi et al.

Lemma 3. The following properties hold:

1. Ybv cv,size bv = size cv = to_N (addB bv cv) = (to_N bv + to_N cv) mod

25ize bv'

Vb cv,to_N (mulB bv cv) = (to_N bv x to_N cv) mod 252¢ b*,

Vbv n,divB bv (zeros n) = ones (size bv).

Vbv bu,size bv = size cv = cv # zeros (size cv) = to_N (divB bv cv) =

(to-N bv) div (to_N cv).

Ybv n,remB bv (zeros n) = buv.

6. Ybv cv,size bv = size cv = cv # zeros (size cv) = to_N (remB bv cv) =
(to-N bv) mod (to_N cv).

7. VYbv n,to_ N (shiB n bv) = ((to_N bv) x 2™) mod 2577 bv

8. ¥bu n,to_N (shrB n bv) = (to_N bv) div 2.

™ o e

&

Let bv, cv be bit-vectors of width w. Lemma 3 shows that the natural number
represented by the bit-vector addB bv cv is equal to the modular sum of the natu-
ral numbers represented by bv and cv. Similarly, the natural number represented
by mulB bv cv is equal to the modular product of the natural numbers repre-
sented by bv and cv. The division and remainder functions in cog-nbits follow
the SMT-LIB semantics. Specifically, the quotient of any bit-vector divided by
zero is equal to the bit-vector of all true’s; the remainder of a bit-vector divided
by zero is the bit-vector itself. For non-zero divisors, the division and remainder
functions behave as expected. The natural number represented by the bit-vector
divB bv cv is the quotient of the number represented by bv divided by the number
represented by cv; and the bit-vector remB bv cv represents the remainder of the
number represented by bv divided by the number represented by cv. Last but not
least, the logical left (shIB) and right (shrB) shifts correspond to multiplication
and division by powers of two respectively.

cog-nbits also provides comparison predicates. In addition to the equality
predicate == inherited from Boolean sequences, ItB bv cv and leB bv cv compare
the natural numbers represented by the bit-vectors bv and cv. Properties about
comparison predicates have also been proved in CoQ.

Lemma 4. The following properties hold:

1. Ybv cv,size bv = size cv = ItB bv cv = (to_N bv < to_N cv).
2. Ybu cv,size bv = size cv = leB bv cv = (to_N bv < to_N cv).

In addition to arithmetic functions and predicates in the unsigned represen-
tation, our formal bit-vector theory moreover defines arithmetic functions and
predicates for bit-vectors in two’s complement representation. For the signed
representation, bit-vectors are converted to integers by the to_Z function. Arith-
metic bit-vector functions and predicates in the signed representation are related
to arithmetic integer functions and predicates as follows.

Lemma 5. The following properties hold:

1. Ybu,~(msb bv A dropmsb bv = zeros (size bv — 1)) = to_Z (negB bv) =
—to_Z bu.

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 157

2. ¥Ybu n,1 < size bu = to_Z (sarB n bv) = (to_Z bv) quot 2".

3. Vbv cv,size bv = size cv => to_Z (mulB (sext (size cv) bv) (sext (size bv)
cv)) =to_Z bv X to_Z cv.

4. Ybu cv,1 < size bu = size bv = size cv = [=(msb buAdropmsb bv = zeros
(size bu — 1))V cv # ones (size cv)] = to_Z (sdivB bv cv) = (to_-Z bv) quot
(to_Z cv).

5. Vbu cv,1 < size bu = size bv = size cv = to_Z (sremB bv cv) =
(to_Z bv) rem (to_Z cv).

6. Ybu cv,size bv = size cv = sltB bv cv = (to_Z bv < to_Z cv).

7. Vbv cv,size bv = size cv = sleB bv cv = (to_Z bv < to_Z cv).

In the lemma, sext n bv extends the bit-vector bv by n bits with the sign
bit of bv, msb bv returns the sign bit of bv, and dropmsb bv drops the sign bit
of bv. quot and rem are the quotient and remainder functions for CoqQ integers.
Consider, for instance, the signed division function sdivB bv cv in cog-nbits
(Lemma 5(4)). If the dividend bv is of width > 1, the widths of bv and the
divisor cv are equal, and bv is not of the form #b100---0 or cv is not of the
form #b11---1, then the bit-vector sdivB bv cv represents the quotient of the
integers represented by bv and cv. The condition may appear counter-intuitive.
To see why it is necessary, consider bv = #b100---0 and cv = #b11---1 both of
width w. bv and cv thus represent the integers —2%*~! and —1 respectively. Their
quotient 2*~1 however cannot be represented by bit-vectors of width w in two’s
complement representation. The corner input case is hence excluded. The corner
case is also excluded from the arithmetic negation function (Lemma 5(1)).

The cog-nbits theory has several important differences from the prior CoQ
formalization in [15]. Our formal bit-vector theory supports both unsigned and
two’s complement signed representations. It also provides the arithmetic division
and remainder functions. Since these features are needed in the QF_BV logic of
SMT-LIB, they are essential to the formalization of SMT QF_BV queries. Such
important features unfortunately are lacking in the prior formalization. Another
noted difference is the numeric representations used in theory developments.
Since integers are needed for the QF_BV logic, cog—nbits naturally uses binary
representations for integers and natural numbers in COQ. The prior formalization
on the other hand is mainly based on the unary natural number representation
but provides conversion to positive integers in the binary representation.

5 Theory for SMT QF BV Queries

Using coq-nbits, we formalize SMT QF_BV queries. Our formalization con-
sists of two parts: a syntactic representation for SMT QF_BV queries in CoQ
inductive types and a formal semantics in our bit-vector theory cog-nbits.

5.1 Syntax of SMT QF BV Queries

An SMT QF_BV query is a CoQ term of the data type bexp. It can be constants
Bfalse or Btrue, a unary predicate Bnot, or binary predicates Band or Bor for

158 X. Shi et al.

Boolean connectives. Additionally, Bbveq and Bbvult with two arguments of the
data type exp are binary QF_BV predicates.

H Inductive bexp : Type := Bfalse : bexp | Btrue : bexp

| Bnot : bexp -> bexp

| Band : bexp -> bexp -> bexp | Bor : bexp -> bexp -> bexp
| Bbveq : exp -> exp -> bexp | Bbvult : exp -> exp -> bexp
(* other QF_BV predicates x*)

end with exp : Type :=

| Evar : var -> exp | Econst : bits -> exp

| Ebvnot : exp -> exp

| Ebvand : exp -> exp -> exp | Ebvor : exp -> exp -> exp

| Ebvshl : exp -> exp -> exp | Ebvlshr : exp -> exp -> exp
| Ebvneg : exp -> exp

| Ebvadd : exp -> exp -> exp | Ebvmul : exp -> exp -> exp
| Ebvudiv : exp -> exp -> exp | Ebvurem : exp -> exp -> exp
| Eextract : nat -> nat -> exp -> exp

| Econcat : exp -> exp -> exp

(* other QF_BV operations x*)

|

Ebvsub : exp -> exp -> exp
end.

A Coq term of the data type exp represents a QF_-BV expression. It can be
a QF_BV variable Evar vid with a variable identifier vid : var, a bit-vector con-
stant Econst bv with bv : bits, a bitwise-not operation Ebvnot eg, a bitwise-and
operation Ebvand eg e1, a bitwise-or operation Ebvor ej e;, a logical left-shift
operation Ebvshl ey e1, or a logical right-shift operation Ebvlshr ey e;. For
arithmetic operations, there are Ebvneg ey for negation, Ebvadd eg e; for addi-
tion, Ebvmul eq ey for multiplication, Ebvudiv ey ey for unsigned division, and
Ebvurem eg e; for unsigned remainder with eg, e; : exp. Finally, the extraction
Eextract i j ey and the concatenation Econcat ey e; operations have the data
type exp with ¢, j : nat and eg, €7 : exp.

5.2 Semantics of SMT QF.-BV Queries

In our CoQ formalization, an SMT QF_BV query is interpreted on stores. A
store is a mapping from QF_BYV variables to bits. Let o be a store. The inter-
pretation of be : bexp on ¢ is a Boolean value; the interpretation of e : exp on o
is a bit-vector. Semantic functions eval_bexp and eval_exp are as follows.

H Fixpoint eval bexp (be : bexp) (o : store) : bool :=
match be with

| Bfalse => false

Btrue => true

|

| Bnot bey => ~~ (eval_bexp beg o)

| Band beo ber => (eval bexp beg o) && (eval_bexp bei o)
| Bor beg ber => (evalbexp beg o) || (eval bexp bei o)
| Bbveq egp e1 => (evalexp ey o) == (evalexp e o)

I

Bbvult eg e1 => tB (eval_exp e9p o) (eval_exp e1 o)

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 159

(¥ other QF_BV predicates *)

end with evalexp (e : exp) (o : store) : bits :=

match e with

| Evar v => Store.acc v o

| Econst bv => bv

| Ebvnot ey => invB (eval_exp ey o)

| Ebvand ep e; => andB (eval_exp ey o) (eval_exp e; o)

| Ebvor ey e1 => orB (eval_exp eyp o) (eval_exp ei o)

| Ebvshl ey e; => shlB (to_nat (eval_exp e; o)) (eval_exp ey o)
| Ebvlshr ey e; => shrB (to_nat (eval_exp ei1 o)) (eval_exp ey o)
| Ebvneg ey => negB (eval_exp ey o)

| Ebvadd ep e; => addB (eval_exp ey o) (eval_exp e1 o)

| Ebvmul ey e; => mulB (eval exp ey o) (evalexp e; o)

| Ebvudiv ep e1 => divB (eval_exp ey o) (eval_exp e o)

| Ebvurem ey e; => remB (eval_exp ey o) (eval_exp e; o)

| Eextract ¢ j eg => extract i j (eval_exp ey o)

| Econcat ep e1 => (eval_exp e; o) ++ (eval_exp ey o)

(¥ other QF_BV operations *)

| Ebvsub ey e; => subB (eval exp ey o) (evalexp e o)

end.

An SMT QF_BV query denotes a value in the CoQ data type bool. Bfalse
and Btrue denote false and true respectively. Boolean negation, conjunction,
and disjunction correspond to ~~, &&, and || in bool respectively. For QF-BV
predicates, the bit-vector equality Bbveq is interpreted by the equality == for
Boolean sequences. The cog-nbits function ItB is used to interpret Bbvult.

A QF_BV expression denotes a bit-vector. For basic cases, QF_.BV variables
are interpreted by corresponding bit-vectors in the store o through the store
access function Store.acc; bit-vector constants are interpreted by themselves.
Bitwise logical operations Ebvnot, Ebvand, and Ebvor are interpreted by cor-
responding cog-nbits functions invB, andB, and orB respectively. For logical
shift operations, the offset e; is first converted to a natural number through
to_nat (eval_exp e; o) and then passed to the corresponding logical shift func-
tions shIB or shrB in cog-nbits. QF_-BV arithmetic operations are interpreted by
corresponding coq-nbits arithmetic functions as expected. Finally, the extrac-
tion Eextract and concatenation Econcat operations are interpreted by extract
and ++ in coq-nbits respectively.

In an SMT QF.BV query, a QF_.BV variable designates a bit-vector of a
certain width. An SMT QF_BV query is hence associated with a signature X
mapping QF_BV variables to their respective widths. A store o conforms to a
signature X if the interpretation of each QF_BV variable on ¢ has the same width
as specified in Y. Given an SMT QF_BV query be : bexp with its signature X/,
be is satisfiable if there is a store o conforming to X' and eval _bexp be 0 = true.

5.3 Derived QF.BV Operations and Predicates

In the QF_BV logic of SMT-LIB, a number of QF_-BV operations and predi-
cates are derived from a small set of core operations and predicates. Consider

160 X. Shi et al.

the signed comparison predicate bvsit bv cv in SMT-LIB:

buslt bv cv = (or (and (= (estract (w —1) (w —1) bv) #b1)
(= (extract (w—1) (w—1) cv) #b0))
(and (= (extract (w—1) (w—1) bv)
(extract (w—1) (w—1) cv))
(bvult bv cv))).

To compare two bit-vectors of width w in two’s complement representation,
the sign bits are checked. If bv is negative but cv is positive, buslt bv cv is true.
Otherwise, the signed predicate checks that both operands have the same sign
and compares the operands using the unsigned comparison predicate. Interest-
ingly, the arithmetic subtraction operation is actually a derived operation in
SMT-LIB: bvsub bv cv £ bvadd bv (buneg cv). The arithmetic operation is
defined to be the bit-vector sum of minuend and the negation of subtrahend.
It is not, for instance, defined as nat2bv(w, bv2nat(bv) — bv2nat(cv)) because
bv2nat(bv) — bv2nat(cv) may not be a natural number.

For derived operations and predicates, there is a subtle yet important dif-
ference between our formal semantics and those defined in SMT-LIB. In our
formal bit-vector theory coq-nbits, most functions and predicates are defined
directly. Particularly, the arithmetic subtraction function subB is defined by one-
bit subtractors in cog-nbits. Our formal semantics for the QF_BV arithmetic
operation bvsub therefore is defined by the corresponding bit-vector function
subB. Since our formal semantics did not define bvsub by bvadd and buneg, it
could be different from those in SMT-LIB. In order to build a certified solver
for the QF_BYV logic of SMT-LIB, it is necessary to establish semantic equiva-
lences between both semantic definitions for all derived QF_BV operations and
predicates.

To justify our formal semantics, we show the semantics of our definitions and
those of SMT-LIB indeed denote the same bit-vector functions or predicates.
Consider again the subtraction operation. Recall the semantics of the arithmetic
operations bvadd and buneg are defined by the bit-vector functions addB and
negB respectively. The next lemma is useful to show the semantic equivalence:

Lemma 6. Vbv cv,size bv = size cv = subB bv cv = addB bv (negB cv).

For all derived QF-BYV operations and predicates, we give COQ proofs for the
equivalence between our formal semantics and those of SMT-LIB. Particularly,
semantics of all QF_.BV arithmetic operations and predicates over two’s comple-
ment representation are equivalent to those in SMT-LIB. Our formal semantics
for QF_BV queries is thus certified to be equivalent to SMT-LIB.

6 Certified Bit Blasting

Recall that a SAT query is a Boolean CNF formula. Given an SMT QF_BV
query, a bit blasting algorithm computes a SAT query that is satisfiable if and
only if the given SMT QF_BV query is satisfiable. Although it is the standard

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 161

technique for solving SMT QF_BV queries, bit blasting can be very complex
due to arithmetic operations and various optimizations. Bit blasting algorithms
therefore can be tedious to construct and thus prone to errors. We verify a bit
blasting algorithm for SMT QF_BV queries using our Coq formalization.

Let us start with a simple formalization of Boolean CNF formulae. In our
formalization, a clause is represented by a sequence of literals; a CNF formula
in turn is represented by a sequence of clauses. Let bvar be the data type for
Boolean variables. We have the following data types in C0oQ:

Inductive 1it : Set := Pos of bvar | Neg of bvar.
Definition clause : Set := seq lit.
Definition CNF : Set := seq clause.

Define an environment € to be a mapping from bvar to bool. Given a literal
£, a CNF formula f, and an environment e, it is straightforward to define the
semantic functions eval 1it £ € : bool and eval_cnf f €:bool. A SAT query
f is satisfiable if there is an environment € such that eval_cnf f € = true.

To illustrate how our CoqQ proof works, consider Tseitin transformation for
the logical negation operation:

Definition bit_blast Bnot ¢ : 1lit * CNF :=
let r := a fresh literal in

(r, [:: [:: r; €15 [:: ey 2] 1).

Given a literal ¢, bit_blast_Bnot £ returns a new literal r and the CNF
formula (rV £) A (=rV —=f). Tseitin transformation ensures the interpretations of
¢ and r are complementary on any environment e evaluating the CNF formula
to true. We give a formal proof using our formalization in CoQ:

Lemma 7. Vr cnf ¢ ¢,(r,cnf) = bit_blast Bnot £ —> eval_cnf cnf ¢ =
true = eval lit r e = "~ (eval_lit { ¢).

The idea is generalized to QF_BV operations naturally. For each QF-BV
operation, we construct a literal sequence 7 and a Boolean CNF formula cnf.
If enf evaluates to true on an environment ¢, the interpretation of 7 on € needs
to reflect the semantics of the QF_BV operation. For instance, a CoQ proof is
given for the QF_BV addition operation:

Lemma 8. V7 cnf o 01 ¢, (7,cnf) = bit_blast Ebvadd fy /1 —> eval.
cnf enf e =true = eval lits 7e = addB (eval_lits {y€) (eval lits ¢; €).

Given two literal sequences E_E) and Zl, bit_blast_Ebvadd E_E) Zl returns a literal
sequence 7 and a CNF formula cnf. If ¢nf evaluates to true on an environment e,
then the interpretation of the literal sequence 7 on € is indeed the bit-vector sum
of the interpretations of £y and ¢; on €. Bit blasting algorithms for other QF_-BV
operations are given and shown to reflect the semantics of corresponding func-
tions defined in the bit-vector theory cog-nbits. Particularly, our bit blasting
algorithms for arithmetic division and remainder correctly reflect corresponding
arithmetic bit-vector functions in cog-nbits.

162 X. Shi et al.

Recall that the semantics for SMT QF_BV queries is defined over stores for
QF_BYV variables. In order to prove the correctness of bit blasting algorithms,
one has to relate stores for QF_.BV wvariables with environments for Boolean
variables. The relation is explicated through literal correspondences. A literal
correspondence 7 is a mapping from QF_BV variables to sequences of literals.
For each QF_BV variable v, the literal sequence 7(v) is meant to interpret v on
environments for Boolean variables. More formally, let eval lits 7 € : bits be
the bit-vector for the literal sequence 7 interpreted on the environment e. The
bit-vector eval_lits 7(v) € is hence the interpretation of the QF_BV variable v
on the environment €. Let o be a store and 7 a literal correspondence. An envi-
ronment € is consistent with o through w if the bit-vectors eval_lits w(v) € and
Store.acc v o are equal for every QF_BV variable v in o. Thus, an environment
is consistent with a store if their interpretations of variables coincide.

It is now straightforward to give our bit blasting algorithm for SM'T QF._BV
queries. For each QF_BV expression, our algorithm first computes literals and
CNF formulae for operands recursively. It then invokes an auxiliary bit blasting
algorithm to construct result literals and a CNF formula for the QF_-BV oper-
ation. The literal correspondence is also updated when literals are allocated for
QF_BYV variables. Finally, the result literals and the updated literal correspon-
dence are returned along with the concatenation of all CNF formulae.

Definition bit_blast.bexp X 7 b : 1lit * correspondence * CNF :=
match be with
| Bnot bey =>
let (ro, 7', ecnfy) := bit_blastbexp X m beg in
let (r, cnf) := bit_blastBnot rp in
(r, @, cnf ++ cnfy)
(* other QF_BV predicates x*)
end with bit_blast.exp X m e : seq lit * correspondence * CNF :=
match e with
| Evar v =>
if w(v) is defined then (w(v), w, [::1)
else let 7 := fresh literals for v according to X in
let n' := update m with v— 7 in
7, «', [::1)
| Ebvadd eg e} =>

let (7o, 7', cnfy) := bit_blast.exp X 7 ey in
let (71, 7w, cnfy) := bitblastexp ¥ n’ e; in
let (7, cnf) := bit_blast Ebvadd 79 71 in
(7, ©, enf ++ cnfy ++ cnfy)

(¥ other QF_BV operations *)

end.

The following CoQ theorem establishes the connection between the output
literals and the input SMT QF_BV query or expression of the algorithm.

Theorem 1. Let be : bexp be an SMT QF._BV query with the signature XY,
e : exp a QF_BV expression with the signature Y., and my the empty literal
correspondence.

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 163

1. ¥r wenf o€, (r,m, enf) = bit_blast_bexp Xy mo be = o conforms to Xy,
= ¢ is consistent witho through m = eval_cnf cnf € = true —
eval_lit r € = eval_bexp be o.

2. VP 7 enf o €, (F,m cnf) = bit blast_exp Y. mp ¢ = o conforms to X,
= € is consistent with o through m = eval_cnf cnf € = true —
eval lits ¥ e = eval_exp e 0.

Let be be an SMT QF.BV query with the signature X}., v and cnf the
literal and CNF formula returned by bit_blast_bexp respectively. Consider any
store conforming to X, and any environment consistent with the store. If the
environment evaluates the formula cnf to true, Theorem 1 says that the literal r
and the SMT QF_BV query be evaluate to the same Boolean value on the envi-
ronment and store respectively. In other words, the algorithm bit_blast_bexp
is a generalized Tseitin transformation for SMT QF_BV queries. Particularly,
all QF.BV arithmetic operations (addition, subtraction, multiplication, divi-
sion, and remainder in the unsigned and two’s complement representations) are
transformed to CNF formulae with formal proofs of correctness in CoQ.

A useful corollary to Theorem 1 is the reduction of the satisfiability of
SMT QF_BV queries to the satisfiability of SAT queries.

Corollary 1. Let be : bexp be an SMT QF_-BV query with the signature Xy,
and my the empty literal correspondence. Then

Vr m enf, (r,m, enf) = bit_blast bexp Xy m be =
[(30,0 conforms to Xy, A eval_bexp be 0 = true) <=
(Je,eval_cnf ([:: [r]] ++ cnf) € = true)].

Corollary 1 gives the formal proof of correctness for our bit blasting algorithm
bit_blast_bexp. Let be be an arbitrary SMT QF_BV query, r and cnf the literal
and the CNF formula returned by the algorithm. The corollary shows that the
query be is satisfiable if and only of the SAT query r A ¢nf is satisfiable. An
equi-satisfiable SAT query is indeed obtained from the bit blasting algorithm
on every input SMT QF_BV query with a formal proof of correctness.

Recall that several QF_BV operations and predicates are derived from a
small number of operations and predicates in SMT-LIB. A naive bit blasting
algorithm could expand derived operations or predicates, and then perform bit
blasting on a small set of operations and predicates. Such an algorithm would
have a simpler proof of correctness but generate more intermediate literals and
clauses. For instance, the naive algorithm for bvsub would perform bit blasting on
buneg followed by bvadd with intermediate literals and clauses. Our bit blasting
algorithm for bvsub on the other hand reflects our semantics defined by the bit-
vector function subB. Intermediate literals or clauses are not needed. Our bit
blasting algorithm hence transforms bvsub more economically than the naive
algorithm.

To improve our bit blasting algorithm further, a cache for QF_BV expressions
and predicates is added. In large queries, QF_BV expressions and predicates can

164 X. Shi et al.

occur a number of times. If a QF_BV expression has several occurrences, our
basic bit blasting algorithm will generate result literals and CNF formulae for
each occurrence. Consider the SMTQF_BV query

(and (buslt #61000 (bvadd x y)) (buslt (bvadd x y) #b0111)).

The query checks whether the sum of the QF_BV variables x and y can be in
a proper range. Since the Boolean predicate and has two operands, our basic
algorithm invokes the auxiliary bit blasting algorithm for the two comparison
predicates. It in turn blasts the same expression bvadd = y twice. Repeated bit
blasting on the same expression or predicate is redundant. A hash function can
detect repeated QF_BV expressions and predicates easily. When an expression
or a predicate recurs, the previously computed literals with the empty CNF
formula are returned from a cache as the result. More importantly, we give a
formal CoQ proof of Corollary 1 for the bit blasting algorithm with a cache.

7 A Certified SMT QF BV Solver

We have so far built a formally verified bit blasting algorithm for SMT QF_BV
queries. Using the code extraction mechanism in CoQ, an OCAML program
corresponding to the verified bit blasting algorithm is obtained. Using a SAT
solver and a SAT certificate checker, a certified SMTQF_BV solver can be
constructed. Figure 1 gives the flow of our certified solver.

SAT SAT
be : bexp OCaMmL | enf :CNF [SAT
> >
program solver
Um\) certificate UNSAT

checker

Fig. 1. Certified SMT QF_BV Solver

In the figure, the extracted OCAML program takes an OCAML expression be
of the type bexp as an input (Sect. 5). The verified program performs bit blasting
on the SMT QF.BV query and returns an OCAML expression cnf of the type
lit list list representing a SAT query (Sect.6). Precisely, an OCAML term
of the type 1it represents a literal. The OCAML type lit list corresponds
to the data type for clauses; and the type 1it list list corresponds to the
data type for CNF formulae. The expression cnf is sent to a SAT solver to
check satisfiability. If the SAT solver reports SAT, the SMT QF.-BV query
represented by be is satisfiable. Otherwise, the SAT solver reports UNSAT with
a certificate. The certificate is sent to a SAT certificate checker for validation.
If it is validated, the SM'T QF_BV query be is unsatisfiable with certification.

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 165

8 Experiments

In order to evaluate the performance of our verified OCAML bit blasting pro-
gram, we instantiate our SMT QF_BV solver COQQFBYV based on Fig.1 as
follows. We write an OCAML parser to translate a text file in the SMT-LIB
format to an SMT QF_BV query in our formal syntax. The query is sent to
the verified OCAML program for bit blasting. We then add an OCAML pro-
gram to transform the output SAT query to a text file in the DIMACS format.
The 2020 SAT Competition winner Ki1ssAT [5] is used to check the satisfiabil-
ity of the SAT query. If the SAT solver reports UNSAT with a certificate in
the DRAT format [31], the certificate is sent to the verified certificate checker
GRATCHK [16] for validation. Certificate checkers for SAT solvers use much sim-
pler algorithms than certificate checkers for SMT solvers. They are hence easier
to build and prove correct. The correctness of GRATCHK is in fact verified by the
proof assistant ISABELLE [22]. We need not trust the certificate checker either.

We ran two experiments to evaluate our certified SMT QF_BV solver. The
first experiment is the QF_.BV division of the single query track in the 2020
SMT Competition [2]. The second experiment consists of verification problems
from various assembly implementations for linear field arithmetic in cryptog-
raphy libraries such as OpenSSL [30], RELIC [1], and BLST [29]. We compare
CoQQFBYV against three SMT QF_BV solvers: CVC4 [4] with an LFSC certifi-
cate checker [27], the 2020 SMTQF_BV division winner BiTwuzra [20], and the
2019 SMT QF_BV division winner BOOLECTOR [21]. BiTwuzLA and BOOLEC-
TOR are designed for efficiency without certification. CVC4 provides an LFSC
certificate checker implemented in C [26]. The certificate checker can validate
certificates from different theories but is itself not verified. All experiments were
run on a Linux machine with a 3.20 GHz CPU and 1 TB memory."

8.1 SMT QF_ BV Competition

The first experiment is running our certified solver COQQFBYV on tasks from
the QF_BYV division of the 2020 SMT Competition. We set 60 GB memory limit
and 20 min timeout for each task as in the competition. A task solves a single
SMT-LIB file sequentially. The SMT QF_BYV division contains 6861 files in the
SMT-LIB format. All files are marked with unsat, sat, or unknown indicating
expected query results. To save running time, we ran 10 tasks concurrently. The
experimental results are summarized in Table 1.

In the table, the column Ng¢ indicates the number of solved tasks with
certification. Og¢ is the number of timeouts. Esc shows the number of unsolved
tasks due to tool errors. Ts¢ is the average time for solved tasks. COQQFBV
solves 6087 (88.72%) and CVC4 with its certificate checker solves 3840 (55.97%)
with certification. We observe three stack overflow errors during bit blasting in
CoQQFBV. These errors are induced by deep recursion. Among 328 errors from
CV (4, 249 are segmentation faults raised by the LFSC certificate checker.

1 CoQQFBYV is available at https://github.com/fmlab-iis/coq-qfbv.git.

https://github.com/fmlab-iis/coq-qfbv.git

166 X. Shi et al.

Table 1. Experimental results on the 2020 SMT QF_-BV division

Tool Nsc Osc | Esc | Tsc Ng Os |Es | Ts

CoQQFBV | 6087 | (88.72%) | 771 |3 119.69 | 6169 | (89.91%) | 689 |3 | 81.74
CVC4 3840 | (55.97%) | 2693 | 328 | 74.63 | 4255 (62.02%) 2544 | 62 | 56.87
BrrwuzLa |- - - - - 6739 | (98.22%) | 122 |0 |16.09
BOOLECTOR | — - - - - 6719 | (97.93%) | 142 |0 |15.44

)
)
)
)

Table 2. Experimental results on the 2020 SMT QF_BV division by categories

Tool 'Nsc Tsc | Psu | Ns Ts
4238 unsat tasks

CoQQFBV | 3838 (90.56%) | 146.72 | 291.35 MB | 3920 | (92.50%) | 86.51
CcvcC4 1762 | (41.58%) | 86.68 |266.61 MB | 2177 | (51.37%) | 49.68
Bitwuzra |- - - - 4188 | (98.82%) | 12.75
BOOLECTOR | — - - - 4180 | (98.63%) | 11.72
2553 sat tasks

CoQQFBV |- |- - - 2242 | (87.82%) | 73.26
CVC4 - |- - - 2078 | (81.39%) | 64.41
BirwuzLa | — - - - 2524 | (98.86%) | 21.08
BOOLECTOR | — - - - 2516 | (98.55%) | 21.31
70 unknown tasks

CoQQFBV |5 (7.14%) | 173.17 203.52 MB| 7 (10.00%) 128.26
CVC4 - |- - - 0 (0.00%) | —
BiTwuzra |- - - - 27 (38.57%) | 66.36
BOOLECTOR | — - - - 23 (32.86%) | 48.58

The same table also compares against efficient but uncertified solvers. To
evaluate the overhead from certificate checking, the two certified solvers CoQ-
QFBYV and CVC4 still generate certificates but do not validate them. The
column Ng gives the number of solved tasks without certification. Og is the
number of timeouts. F¢ indicates the number of errors, and Ty is the average
time for solved tasks. Our certified solver COQQFBYV finishes 6169 (89.91%)
tasks. The CVC4 solver finishes 4255 (62.02%) tasks. COQQFBV and CVC4
solve 82(= 6169 — 6087) and 415(= 4255 — 3840) more tasks without certifi-
cation respectively. Since our bit blasting algorithm is verified for all inputs,
CoQQFBYV does not certify bit blasting on each query and hence induces less
overhead. The 2020 and 2019 SMT QF_BV division winners BITWUZLA and
BOOLECTOR finish 6739 (98.22%) and 6719 (97.93%) tasks without certification
respectively. COQQFBYV solves about 10% less tasks with certification than the
2020 track winner BITWUZLA without certification. It also performs significantly
better than CVC4 with a general SMT certificate checker.

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 167

Table 2 compares the four solvers by tasks from the three expected query
results. Among the 4238 unsat tasks, COQQFBV and CVC4 give certified
answers to 3838 (90.56%) and 1762 (41.58%) of them respectively. The col-
umn Psy gives the average size of certificates. Efficient solvers BITWUZLA and
BOOLECTOR give 4188 (98.82%) and 4180 (98.63%) uncertified answers respec-
tively.

Among the 2553 sat tasks, BITWUZLA and BOOLECTOR finish 2524 (98.86%)
and 2516 (98.55%) of them respectively. COQQFBV and CVC4 solve only 2242
(87.82%) and 2078 (81.39%) sat tasks respectively. For the 70 tasks marked
unknown, BITWUzLA and BOOLECTOR respectively answer 27 (38.57%) and
23 (32.86%) of them without certification. Our certified SMT QF.BV solver
finds two sat and five unsat tasks. Answers to the five unsat tasks are all cer-
tified. CVC4 with its certificate checker fails to solve any unknown task. For
the benchmarks from the 2020 SMT QF_BV division, our certified solver COQ-
QFBYV appears to be more scalable than CVC4 with its general SM'T certificate
checker.

Table 3. Average time for COQQFBYV components

Task Tpp | Tsar |Tcert
unsat 41.84 | 49.9273.51
sat 37.08| 62.09 |—

unknown | 32.34 | 121.99 | 62.86

Table 3 further decomposes the time spent on different components in CoQ-
QFBV. The column Tpp gives the average time for our verified OCAML bit
blasting program; Tsar gives the average time used by the SAT solver KISSAT;
and T+ contains the average time for the certificate checker GRATCHK. For
the tasks in the QF_BV division, the time for SAT solving and certificate check-
ing are comparable. In comparison, the OCAML bit blasting program seems to
take an unexpectedly large amount of time and hence can still be improved.

8.2 Linear Field Arithmetic in Cryptography

In this section, we evaluate our certified SMT QF_BV solver on benchmarks from
real-world assembly implementations in various cryptography libraries such as
OpenSSL [30], RELIC [1], and BLST [29]. In elliptic curve cryptography, arith-
metic operations over large finite fields are needed. A field element is typically
represented by hundreds of bits. A field arithmetic operation takes two field ele-
ments and returns a field element as the result. In the signature scheme Ed25519
used in OpenSSH, for instance, a field element belongs to the residue system
modulo the prime number 225° — 19. Field sum of two field elements is obtained
by the arithmetic sum modulo 22%° — 19. Commodity processors however do not

168 X. Shi et al.

Table 4. Experimental results on cryptographic assembly program verification

Tool Nsc Tsc Psy Ns Ts

CoQQFBV |93 (96.88%) | 121.42 168.45 MB | 93| (96.88%) | 68.96
CvVC4 191 (19.79%) | 6.66 | 267.92 MB | 46 | (47.92%) | 40.16
Birwuzra |- |- - - 881(91.67%) |16.07
BOOLECTOR | — | — - - 96 | (100.00%) | 18.25

support arithmetic instructions with operands in hundreds of bits natively. Field
arithmetic has to be implemented by 32- or 64-bit instructions. The functional
specification of the field addition used in Ed25519 may look as follows.

{307 a; x 20057 < 2255 19 A S8 py x 204%7 < 2255 _ 19}
x25519,fe64,add(r0, 1, 7’2,]7’3, ap, a1, a2,as, bo, bl, bg, bg)
Z?:o r; x 264%i = Z?:o a; x 264x1 4 Z?:o b; x 264X (mod 22°° — 19)
A
S0 g x 264%7 < 225 19

Let a;, b;, ¢; be 64-bit variables (registers) for 0 < ¢ < 3. The specification
says that the output field element represented by r;’s computed by the program
x25519_fe64_add is the field arithmetic sum of the input elements represented
by a;’s and b;’s. In finite field arithmetic programs, over- or under-flow in assem-
bly instructions lead to incorrect results, and bit-accurate program verification is
required. We obtain 46 implementations and generate 96 SMT QF_BV queries
from verification conditions in order to evaluate our certified solver in this exper-
iment.

Table 4 shows the verification results with the same memory and time limits
in the 2020 SMT Competition. All SMT QF_BV queries are expected to be
unsatisfiable. BOOLECTOR successfully solves all queries (100%) without certifi-
cation. The 2020 QF_BV track winner BITWUZLA finishes 88 queries (91.67%)
without certification. Surprisingly, COQQFBV gives certified answers to 93
queries (96.88%). The verified SAT certificate checker GRATCHK used in COQ-
QFBYV successfully validates all certificates for the real-world cryptographic pro-
gram verification problems. In comparison, CVC4 solves 46 queries (47.92%)
but certifies only 19 (19.79%). The CVC4 certificate checker raises segmenta-
tion faults on the 27 (= 46 —19) solved but uncertified queries. These certificates
are perhaps too complicated to be validated by the unverified LFSC certificate
checker. For the SMT QF_BV queries from real-world program verification prob-
lems, our certified solver COQQFBYV seems to perform slightly better than the
efficient but uncertified SMT QF_-BV solver BITwuzLA. Our certified solver is
probably scalable enough for certain bit-accurate program verification problems.

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 169

9 Conclusion

We combine algorithm design with interactive theorem proving to build a scal-
able certified SMT QF_BV solver COQQFBYV in this work. Our certified solver
employs a verified OCAML bit blasting program and the verified certificate
checker GRATCHK to improve the confidence in SMT QF_-BV query results.
Experiments on the QF_BV division of the 2020 SMT Competition and real-
world cryptographic program verification suggest that COQQFBYV is useful.
For future work, we plan to specify and verify more heuristics to further opti-
mize COQQFBV. Particularly, cryptographic program verification requires more
sophisticated range checks. More verified bit blasting algorithms for such checks
will undoubtedly improve the confidence of bit-accurate program verification.

Acknowledgements. We thank all the anonymous reviewers for their insightful com-
ments and suggestions. We thank the authors of SSReflect for its powerful language
and libraries. We would like to give special thanks to Prof. Moshe Vardi for his encour-
agement. The work is supported by National Natural Science Foundation of China
under the Grant Numbers 62002228, 61802259 and 61836005; the Guangdong Science
and Technology Department under the Grant Number 2018B010107004; Ministry of
Science and Technology of Taiwan under the Grant Numbers MOST108-2221-E-001-
010-MY3 and MOST108-2221-E-001-009-MY2; Academia Sinica for Sinica Investigator
Award AS-TA-109-M01; the Data Safety and Talent Cultivation Project AS-KPQ-109-
DSTCP.

References

1. Aranha, D.F., Gouvéa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is
an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit /relic

2. Barbosa, H., Hoenicke, J., Hyvarinen, A.: International Satisfiability Modulo The-
ories Competition (SMT-COMP) (2020). https://smt-comp.github.io/2020/

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017). http://
smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf

4. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171-177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

5. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCal, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Balyo, T., Frol-
eyks, N., Heule, M., Iser, M., Jarvisalo, M., Suda, M. (eds.) SAT Competition 2020
- Solver and Benchmark Descriptions. B, vol. B-2020-1, pp. 50-53. University of
Helsinki (2020)

6. Bohme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector
proofs in HOL4 and Isabelle/HOL. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP
2011. LNCS, vol. 7086, pp. 183-198. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25379-9_15

7. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Dutertre,
B., Strichman, O. (eds.) Satisfiability Modulo Theories (SMT), pp. 1-5. ACM
(2009)

https://github.com/relic-toolkit/relic
https://smt-comp.github.io/2020/
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-25379-9_15
https://doi.org/10.1007/978-3-642-25379-9_15

170

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

X. Shi et al.

Chen, Y.F., et al.: Verifying Curve25519 software. In: Ahn, G.J., Yung, M., Li, N.
(eds.) ACM Computer and Communications Security (CCS), pp. 299-309. ACM
(2014)

Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15
Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamee, D., Tomb, A.: Con-
structing semantic models of programs with the software analysis workbench. In:
Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 56—72. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-48869-1_5

Dross, C., Fumex, C., Gerlach, J., Marché, C.: High-Level Functional Properties
of Bit-Level Programs: Formal Specifications and Automated Proofs. Research
Report RR-8821, INRIA Saclay, December 2015. https://hal.inria.fr /hal-01238376
Ekici, B., Katz, G., Keller, C., Mebsout, A., Reynolds, A.J., Tinelli, C.: Extending
SMTCoq, a certified checker for SMT (extended abstract). In: Electronic Proceed-
ings in Theoretical Computer Science, vol. 210, pp. 21-29 (2016)

Fox, A.C.J.: LCF-style bit-blasting in HOL4. In: van Eekelen, M., Geuvers, H.,
Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 357-362. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22863-6_26

Hadarean, L., Barrett, C., Reynolds, A., Tinelli, C., Deters, M.: Fine grained SMT
proofs for the theory of fixed-width bit-vectors. In: Davis, M., Fehnker, A., Mclver,
A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 340-355. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48899-7_24

Kennedy, A., Benton, N., Jensen, J.B., Dagand, P.E.: Coq: the world’s best macro
assembler? In: Schrijvers, T. (ed.) Principles and Practice of Declarative Program-
ming (PPDP), pp. 13-24. ACM (2013)

Lammich, P.: Efficient verified (UN)SAT certificate checking. In: de Moura, L.
(ed.) CADE 2017. LNCS (LNATI), vol. 10395, pp. 237-254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63046-5_15

Lochbihler, A.: Fast machine words in Isabelle/HOL. In: Avigad, J., Mahboubi, A.
(eds.) ITP 2018. LNCS, vol. 10895, pp. 388-410. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94821-8_23

Mansur, M.N., Christakis, M., Wiistholz, V., Zhang, F.: Detecting critical bugs in
SMT solvers using blackbox mutational fuzzing. In: Devanbu, P., Cohen, M., Zim-
mermann, T. (eds.) ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ESEC/FSE),
pp. 701-712. ACM (2020)

de Moura, L.M., Bjgrner, N.: Proofs and refutations, and Z3. In: Rudnicki, P., Sut-
cliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of the LPAR 2008
Workshops, Knowledge Exchange: Automated Provers and Proof Assistants, and
the 7th International Workshop on the Implementation of Logics. CEUR Work-
shop Proceedings, vol. 418. CEUR-WS.org (2008). http://ceur-ws.org/Vol-418/
paper10.pdf

Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020). https://arxiv.org/abs/2006.01621

Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisfiability Boolean Mod-
eling Comput. 9(1), 53-58 (2014)

Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL — A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-48869-1_5
https://hal.inria.fr/hal-01238376
https://doi.org/10.1007/978-3-642-22863-6_26
https://doi.org/10.1007/978-3-662-48899-7_24
https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-319-94821-8_23
https://doi.org/10.1007/978-3-319-94821-8_23
http://ceur-ws.org/Vol-418/paper10.pdf
http://ceur-ws.org/Vol-418/paper10.pdf
https://arxiv.org/abs/2006.01621
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

23.

24.

25.

26.
27.

28.

29.

30.

31.

CoQQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 171

Oe, D., Reynolds, A., Stump, A.: Fast and flexible proof checking for SMT. In:
Dutertre, B., Strichman, O. (eds.) Satisfiability Modulo Theories (SMT), pp. 6—
13. ACM (2009)

Ozdemir, A., Niemetz, A., Preiner, M., Zohar, Y., Barrett, C.: DRAT-based bit-
vector proofs in CVC4. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol.
11628, pp. 298-305. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
24258-9_21

Polyakov, A., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic assembly
programs in cryptographic primitives. In: Schewe, S., Zhang, L. (eds.) Concurrency
Theory (CONCUR), pp. 4:1-4:16. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2018)

Reynolds, A., Stump, A.: LFSC checker. https://github.com/CVC4/LFSC
Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Formal Methods Syst. Des. 42, 91-118 (2013)

Swords, S., Davis, J.: Bit-blasting ACL2 theorems. In: Hardin, D., Schmaltz, J.
(eds.) The ACL2 Theorem Prover and its Applications (ACL2). EPTCS, vol. 70,
pp. 84-102 (2011)

The blst Developers: The blst BLS12-381 signature library. https://github.com/
supranational /blst

The OpenSSL Project: The OpenSSL repository. https://github.com/openssl/
openssl

Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422—429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3_31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-24258-9_21
https://doi.org/10.1007/978-3-030-24258-9_21
https://github.com/CVC4/LFSC
https://github.com/supranational/blst
https://github.com/supranational/blst
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Porous Invariants

1 1(=)

Engel Lefaucheux!®, Joél Ouaknine
and James Worrell?

, David Purser

1 \unct,b
Max Planck Institute for Software Systems, /PN
Saarland Informatics Campus, Saarbriicken, Germany Sk A
<o"alua\"'6

dpurser@mpi-sws.org
2 Department of Computer Science, Oxford University, Oxford, UK

Abstract. We introduce the notion of porous invariants for multipath
(or branching/nondeterministic) affine loops over the integers; these
invariants are not necessarily convex, and can in fact contain infinitely
many ‘holes’. Nevertheless, we show that in many cases such invariants
can be automatically synthesised, and moreover can be used to settle
(non-)reachability questions for various interesting classes of affine loops
and target sets.

Keywords: Linear dynamical systems - Linear loops - Invariants -
Reachability - Presburger arithmetic

1 Introduction

We consider the reachability problem for multipath (or branching) affine loops
over the integers, or equivalently for nondeterministic integer linear dynamical
systems. A (deterministic) integer linear dynamical system consists of an update
matrix M € Z4*? together with an initial point 2(?) € Z¢. We associate to such
a system its infinite orbit (x(i)) consisting of the sequence of reachable points
defined by the rule 20+ = Mz, The reachability question then asks, given
a target set Y, whether the orbit ever meets Y, i.e., whether there exists some
time i such that (¥ € Y. The nondeterministic reachability question allows the
linear update map to be chosen at each step from a fixed finite collection of
matrices.

When the orbit does eventually hit the target, one can easily substantiate this
by exhibiting the relevant finite prefix. However, establishing non-reachability is
intrinsically more difficult, since the orbit consists of an infinite sequence of
points. One requires some sort of finitary certificate, which must be a relatively
simple object that can be inspected and which provides a proof that the set
Y is indeed unreachable. Typically, such a certificate will consist of an over-
approximation I of the set R of reachable points, in such a manner that one can
check both that Y NI = () and R C I; such a set I is called an invariant.

Formally we study the following problem for inductive invariants:

The full version of this paper is available at http://arxiv.org/abs/2106.00662.

© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 172-194, 2021.
https://doi.org/10.1007/978-3-030-81688-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_8&domain=pdf
http://orcid.org/0000-0003-0875-300X
http://orcid.org/0000-0003-0031-9356
http://orcid.org/0000-0003-0394-1634
http://orcid.org/0000-0001-8151-2443
http://arxiv.org/abs/2106.00662
https://doi.org/10.1007/978-3-030-81688-9_8

Porous Invariants 173

Meta Problem 1. Consider a system with update functions fi,..., fn. A set I
is an inductive invariant if f;(I) C I for alli. Given a reachability query (x,Y)
we search for a separating inductive invariant I such that x € I and Y N1 = .

Meta Problem 1 is parametrised by the type of invariants and targets that
are considered; that is, what are the classes of allowable invariant sets I and
target sets Y, or equivalently how are such sets allowed to be expressed.

Fixing a particular invariant and target domain, a reachability query has
three possible scenarios: (1) the instance is reachable, (2) the instance is unreach-
able and a separating invariant from the domain exists, or (3) the instance is
unreachable but no separating invariant exists. Ideally, one would wish to pro-
vide a sufficiently expressive invariant domain so that the latter case does not
occur, whilst keeping the resulting invariants as simple as possible and com-
putable. For some classes of systems, it is known that distinguishing reachability
(1) from unreachability (2, 3) is undecidable; it can also happen that determin-
ing whether a separating invariant exists (i.e., distinguishing (2) from (3)) is
undecidable.

We note that the existence of strongest inductive invariants® is a desirable
property for an invariant domain—when strongest invariants exist (and can be
computed), separating (2) from (1, 3) is easy: compute the strongest invariant,
and check whether it excludes the target state or not; if so, then you are done,
and if not, no other invariant (from that class) can possibly do the trick either.
However, unless (3) is excluded, computing the strongest invariant does not nec-
essarily imply that reachability is decidable. Unfortunately, strongest invariants
are not always guaranteed to exist for a particular invariant domain, although
some separating inductive invariant may still exist for every target (or indeed
may not).

In prior work from the literature, typical classes of invariants are usually
convex, or finite unions of convex sets. In this paper we consider certain classes of
invariants that can have infinitely many ‘holes’ (albeit in a structured and regular
way); we call such sets porous invariants. These invariants can be represented via
Presburger arithmetic?. We shall work instead with the equivalent formulation
of semi-linear sets, generalising ultimately periodic sets to higher dimensions,
as finite unions of linear sets of the form {b +p;N+ .-+ p,,N} (by which we
mean {b+ a1p1 + -+ + amPm | a1, ..., am € N}, see Definition 2).

Let us first consider a motivating example:

Ezample 1 (Hofstadter’s MU Puzzle [7]). Consider the following term-rewriting
puzzle over alphabet {M, U, I'}. Start with the word M1, and by applying the
following grammar rules (where y and z stand for arbitrary words over our
alphabet), we ask whether the word MU can ever be reached.

yl - yIlU | My— Myy | ylllz—yUz | yUUz— yz

! Given two invariants I and I’, we say that I is stronger than I’ iff I C I'; thus
strongest invariants correspond to smallest invariant sets.

2 Presburger arithmetic is a decidable theory over the natural numbers, comprising
Boolean operations, first-order quantification, and addition (but not multiplication).

174 E. Lefaucheux et al.

The answer is no. One way to establish this is to keep track of the number
of occurrences of the letter ‘I’ in the words that can be produced, and observe
that this number (call it z) will always be congruent to either 1 or 2 modulo 3.
In other words, it is not possible to reach the set {x | z = 0 mod 3}. Indeed,
Rules 2 and 3 are the only rules that affect the number of I’s, and can be
described by the system dynamics = — 2z and x — x — 3. Hence the MU Puzzle
can be viewed as a one-dimensional system with two affine updates,® or a two-
dimensional system with two linear updates.* The set {1 + 3Z} U {2 + 3Z} is
an inductive invariant, and we wish to synthesise this. (The stability of this set
under our two affine functions is easily checked: both components are invariant
under x — x — 3, and {1+ 3Z} — {2+ 6Z} C {2+ 3Z} under x — 2z, and
similarly {2 + 3Z} — {4+ 6Z} C {1 + 3Z}.)

The problem can be rephrased as a safety property of the following multipath
loop, verifying that the ‘bad’ state x = 0 is never reached, or equivalently that
the above loop can never halt, regardless of the nondeterministic choices made.

x=1
while x #0
x=2x|x=x-3 (where || represents nondeterministic branching)

The MU Puzzle was presented as a challenge for algorithmic verification in [4];
the tools considered in that paper (and elsewhere, to the best of our knowledge)
rely upon the manual provision of an abstract invariant template. Our approach
is to find the invariant fully automatically (although one must still abstract from
the MU Puzzle the correct formulation as the program z — 2z || x — x — 3).

Main Contributions. Our focus is on the automatic generation of porous
invariants for multipath affine loops over the integers, or equivalently nondeter-
ministic integer linear dynamical systems.

— We first consider targets consisting of a single vector (or ‘point targets’), and
present the classes of invariants and systems for which invariants can and
cannot be automatically computed for the reachability question. A summary
of the results for linear and semi-linear invariants for these targets is given in
Table 1. For completeness we also consider R, R, -(semi)-linear sets, where we
complete the picture from prior work by showing that strongest R-semi-linear
invariants are computable.

o We establish the existence of strongest Z-linear invariants, and show that
they can be found algorithmically (Theorem 2). These invariants may or
may not separate the target under consideration.

e If a Z-linear invariant is not separating, we may instead look for an N-
semi-linear invariant (which generalises both Z-semi-linear and N-linear
invariants), and we show that such an invariant can always be found

3 One-dimensional affine updates are functions of the form f(z) = az + b.

4 (a b) (m) — (et b models affine functions using a matrix representation, hold-

01 1 1
ing one of the entries fixed to 1.

Porous Invariants 175

Table 1. Results for integer linear dynamical systems for a point target. Det/Non refers
to deterministic or nondeterministic LDS. “Subsumed by ...” means that sufficient
invariants can be generated, but of a more general type.

Dom | D/N | Linear Semi-linear (SL)

Z Det | Strongest computable (Theorem 2) No strongest (Sect. 4.1); subsumed by N-SL

Z Non | Strongest computable (Theorem 2) No strongest (Sect. 4.1)

N Det | No strongest (Sect. 4.1); subsumed by N-SL | No strongest (Sect. 4.1), but sufficient computable (Theorem 4)
N Non | No strongest (Sect. 4.1) 1d-affine decidable (Theorem 6); undec. in general (Theorem 5)
R Det | Strongest: affine relations by Karr [17] Strongest: affine closure on Zariski closure (Theorem 1)

R Non | Strongest: affine relations by Karr [17] Strongest: affine closure on Zariski closure (Theorem 1)

R4 | Det | No strongest (Sect. 4.1); subsumed by R4-SL | No strongest, but sufficient computable [8]

R4 | Non | No strongest (Sect. 4.1) Undecidable [8]

for any unreachable point target when dealing with deterministic integer
linear dynamical systems (Theorem 4).

e However, for nondeterministic integer linear dynamical systems, comput-
ing an N-semi-linear invariants is an undecidable problem in arbitrary
dimension (Theorem 5). Nevertheless we show how such invariants can be
constructed in a low-dimensional setting, in particular for affine updates
in one dimension (Theorem 6). As an immediate consequence, this estab-
lishes that the multipath loop associated with the MU Puzzle belongs to a
class of programs for which we can automatically synthesise N-semi-linear
invariants.

— For full-dimensional® Z-linear targets we show that reachability is decidable,
and, in the case of unreachability that a Z-semi-linear invariant can always
be exhibited as a certificate (Theorem 3). If the target is not full-dimensional
then the reachability problem is Skolem-hard and undecidable for determin-
istic and nondeterministic systems respectively.

— In Sect. 6 we present our tool POROUS which handles one-dimensional affine
systems for both point and Z-linear targets, solving both the reachability
problem and producing invariants. Inter alia, this allows one to handle the
multipath loop derived from the MU Puzzle in fully automated manner.

1.1 Related Work

The reachability problem (in arbitrary dimension) for loops with a single affine
update, or equivalently for deterministic linear dynamical systems, is decidable
in polynomial time for point targets (that is Y = {y}), as shown by Kannan and
Lipton [16]. However for nondeterministic systems (where the update matrix is
chosen nondeterministically from a finite set at each time step), reachability is
undecidable, by reduction from the matrix semigroup membership problem [22].

In particular this entails that for unreachable nondeterministic instances we
cannot hope always to be able to compute a separating invariant. In some cases

5 The affine span covers the entire space.

176 E. Lefaucheux et al.

we may compute the strongest invariant (which may suffice if this invariant
happens to be separating for the given reachability query), or we may compute
an invariant in sub-cases for which reachability is decidable (for example in low
dimensions). For some classes of invariants, it is also undecidable whether an
invariant exists (e.g., polyhedral invariants [8]).

Various types of invariants have been studied for linear dynamical systems,
including polyhedra [8,23], algebraic [15], and o-minimal [1] invariants. For cer-
tain classes of invariants (e.g., algebraic [15]), it is decidable whether a separating
invariant exists, notwithstanding the reachability problem being undecidable.
Other works (e.g., [5]) use heuristic approaches to generate invariants, without
aiming for any sort of completeness.

Kincaid, Breck, Cyphert and Reps [18] study loops with linear updates,
studying the closed forms for the variables to prove safety and termination prop-
erties. Such closed forms, when expressible in certain arithmetic theories, can be
interpreted as another type of invariant and can be used to over-approximate the
reachable sets. The work is restricted to a single update function (deterministic
loops) and places additional constraints on the updates to bring the closed forms
into appropriate theories.

Bozga, Tosif and Konecny’s FLATA tool [2] considers affine functions in arbi-
trary dimension. However, it is restricted to affine functions with finite monoids;
in our one-dimensional case this would correspond to limiting oneself to counter-
like functions of the form f(z) =« + b.

Finkel, Goller and Haase [9], extending Fremont [10], show that reachability
in a single dimension is PSPACE-complete for polynomial update functions
(and allowing states can be used to control the sequences of updates which can
be applied). The affine functions (and single-state restriction) we consider are a
special case, but we focus on producing invariants to disprove reachability.

Other tools, e.g., APROVE [11] and Biichi Automizer [14] may (dis-)prove
termination/reachability on all branches, but may not be able to prove termi-
nation/reachability on some branch.

Inductive invariants specified in Presburger arithmetic have been used to
disprove reachability in vector addition systems [20]. A generalisation, ‘almost
semi-linear sets’ [21] are also non-convex and can capture exactly the reachable
points of vector addition systems. Our nondeterministic linear dynamical sys-
tems can be seen as vector addition systems over Z extended with affine updates
(rather than only additive updates).

2 Preliminaries

We denote by Z the integers and N the non-negative integers. We say that
z,y € Z are congruent modulo d € N, denoted z = y mod d, if d divides
x —y. Given an integer = and natural d we write (z mod d) for the number in
{0,...,d — 1} such that (z mod d) =z mod d.

Porous Invariants 177

Definition 1 (Integer Linear Dynamical Systems). A d-dimensional inte-
ger linear dynamical system (LDS) (2, {My,..., My}) is defined by an initial
point (0 € Z¢ and a set of integer matrices My, ..., M, C Z4%%. An LDS is
deterministic if it comprises a single matriz (k = 1) and is otherwise nondeter-
ministic.

A point y is reachable if there exists m € N and By, ..., B,, such that
Bi - Bz =y and B; € {My,..., My} foralll <i<m.

The reachability set @ C Z% of an LDS is the set of reachable points.

Definition 2 (K-(semi)-linear sets). A linear set L is defined by a base vector
b € Z% and period vectors p1,...,pq € Z¢ such that

L:{b+a1p1+--~+adpd|a1,...,ad€K}.

For convenience we often write {b+ p1 K+ -+ - + paK} for L. A set is semi-linear
if it is the finite union of linear sets.

N-semi-linear sets are precisely those definable in Presburger arithmetic
(FO(Z,+, <)) [12]. However, we can also consider Z-semi-linear sets (correspond-
ing to FO(Z, +) without order), and the real counterparts (R and R,). Note that
even if K = N we still allow p; € Z.

Definition 3. Given an integer linear dynamical system (z(©, {My, ..., My}),
a set I is an inductive invariant if

-z e, and
- {Mz |z eI} CI forallie{l,...,k}.

Note in particular that every inductive invariant contains the reachability set
(O C I). We are interested in the following problem:

Definition 4 (Invariant Synthesis Problem). Given an invariant domain
D, an integer linear dynamical system (z(©), {M, ..., M}}), and a target Y, does
there exist an inductive invariant I in D disjoint from Y ?

In our setting, we are interested in classes D of invariants that are linear, or
semi-linear. When a separating inductive invariant I exists, we also wish to
compute it. Since (semi)-linear invariants are enumerable, the decision problem
is, in theory, sufficient—although all of our proofs are constructive.

3 R Invariants: R-linear and R-semi-linear

Before delving into porous invariants, let us consider invariants over the real
numbers, i.e., described as R-(semi)-linear sets.

Strongest R-linear invariants are given precisely by the affine hull of the
reachability set, and can be computed using Karr’s algorithm [17]. Moreover, we
will show that strongest R-semi-linear invariants also exist and can be computed
by combining techniques for algebraic invariants [15] and R-linear invariants.

178 E. Lefaucheux et al.

R-linear. Recall that a set L is R-linear if L = {vg + v1R + - -+ 4+ v;R} for some
V0, .. .,v € Z4 that can be assumed to be linearly-independent® without loss of
generality (and thus ¢ < d). Given two distinct points of L, every point on the
infinite line connecting them must also be in L. Generalising this idea to higher
dimensions, given a set S C R4, let the affine hull be

k k
5 = {Z)\m |k eN,z; € S\ eKZ)\i—l}.

i=1 =1

Fix an LDS (z(® {M;,...,M}) and consider its reachability set O =
{M;, - Mz [meN,iy,... in € {1,...,k}}. Then O" is precisely the
strongest R-linear invariant. Karr’s algorithm [17,26] can be used to compute
this strongest invariant in polynomial time. The next lemma follows from The-
orem 3.1 of [26].

Lemma 1. Given an LDS (2O, {My,..., My}) of dimension d, we can compute
in time polynomial in d, k, and logu (where p > 0 is an upper bound on the
absolute values of the integers appearing in) and My, ..., M), a Q-affinely
independent set of integer vectors Ry C O such that:

1. 20 ¢ Ry, o o
2. the affine span of Ry and the affine span of O are the same (Roa = Oa),
3. the entries of the vectors in Ry have absolute value at most pg := (d,u)d.

Let Ry = {x(o),rl, . ,rd/} be obtained as per Lemma 1, with d’ < d. The

R-linear invariant of the LDS is the affine span Foa, which can be written as the
R-linear set Lo = {2 + (r1 — 2R + - + (rg — 2O)R}.

R-semi-linear. Let us now generalise this approach to R-semi-linear sets. The
collection of R-semi-linear sets, {\J"; L; | m € N, L1, .., L,, are R-linear sets},
is closed under finite unions and arbitrary intersections’. Thus for any given set
X, the smallest R-semi-linear set containing X is simply the intersection of all

R-semi-linear sets containing X. Let us denote by X = this smallest R-semi-linear
R
set. We are interested in O .

Theorem 1. The strongest R-semi-linear invariant 0" of O is computable.

Algebraic sets are those that are definable by finite unions and intersections
of zeros of polynomials. For example, {(z,y) | xy = 0} describes the lines x =0
and y = 0. The (real) Zariski closure X~ of a set X is the smallest algebraic
subset of R? containing the set X. The Zariski closure of the set of reachable

points, @, can be computed algorithmically [15].

5 20, ...,vm are linearly independent if there does not exist ao, ..., am € R, not all 0,

such that apvo + -+ + amvm = 0.

" When intersecting a linear set with a semi-linear set, either the latter does not
change, or one obtains a finite union of elements of smaller dimension. Thus, in an
infinite intersection, only a finite number of intersections affects the original set.

Porous Invariants 179

An algebraic set A is irreducible if whenever A C B U C, where B and C
are algebraic sets, then we have A C B or A C C. Any algebraic set (and
in particular a Zariski closure) can be written effectively as a finite union of
irreducible sets [3].

Proposition 1. Let X =A4,U---U Ay, with A;’s irreducible. Then YR =
iZ]R — — —qQa —Qa
X =AU UA =AU U

. <R .. .
Proof. Since A; C X =U;L;, and A; is irreducible, we have A; C L; for some
j (as the L;’s are algebraic sets). Since L; is R-linear, and 4;" is the smallest
R R J— R
R-linear set covering A;, we have Aia C L;. Taking X = Ala U-- -UAka is thus
optimal. O

Thus @R can be obtained by computing A" for each irreducible A;, where
O =AU ---UAy. To complete the proof of Theorem 1 it remains to confirm
that affine hulls of algebraic sets can be computed algorithmically. Let us fix
an algebraic set A, and let W denote a set variable. Proceed as follows. Start
with W « {a} for some point 2 € A, and repeatedly let W «— W U {y}a7 where
y € A\ W. Such a point y can always be found using quantifier elimination in
the theory of the reals. Each step necessarily increases the dimension, which can
occur at most d times, ensuring termination, at which point one has A =w.

4 Strongest Z-linear Invariants

Recall that a Z-linear set {q+ p1Z+---+ ppZ} is defined by a base vector
q € Z% and period vectors p1, ...,pn € Z%. Equivalently, a Z-linear set describes
a lattice, i.e., {p1Z + - - - + ppZ}, in d-dimensional space, translated to start from
q rather than 0.

Theorem 2. Given a d-dimensional dynamical system (z(©, {My,..., M}),
the strongest Z-linear inductive invariant containing the reachability set O exists
and can be computed algorithmically.

The image of a Z-linear set L = {¢ + p1Z + --- + p,Z} by a matrix M is the
Z-linear set: M(L) = {Mq+ (Mp1)Z+ ---+ (Mp,)Z}. The following lemma
asserts that when two points are in a Z-linear set, the direction between these
two points can be applied from any reachable point, and hence this direction
can be included as a period without altering the set.

Proposition 2. Let L = {g+ a1p1 + -+ + anpn | a1,...,a, € Z} be a Z-linear
set. If x,y € L then for all z € L and all @’ € Z we have z + (y — x)a’ € L. In
particular, we have L = {q+ ai1p1 + -+ anpn + ' (y —) | a1,...,an,d’ € Z}.

Proof. f x =q+aip1+---+app, and y =q+bip1 + - + bypp then y —x =
Q+b1p1+"'+bnpn_(q+a1p1+"‘+anpn): (bl_al)p1+"'+(bn_an)pn'

Then for any z = g+ ¢1p1 + -+ - + ¢ppn, we have z+d'(y —) = ¢+ c1p1 +
ot Capn + 0/ (b= a)pr+ -+ (bn — an)pn) = g+ (1 +a'(by —ar))pr +-- - +
(cn + @' (by, — ap))pn) where (¢; +a/(b; — a;)) € Z,s0 z+d'(y — x) € L. 0

180 E. Lefaucheux et al.

Proposition 3. Given two Z-linear sets Ly = {q+ p1Z + -+ ppZ} and Ly =
{s+t1Z+ -+t 2}, there exists a smallest Z-linear set L containing L1 U La:
the set L={q+ (s —Q)Z+pmZ+ - +pZ+t,1Z+ -+ t,Z}.

Proof. First we show Ly U Ly C L:

~Ifx=q+api+---+anpy € L1, then x = g+ (s —¢)0+aipy +- -+ anpp +
0ty +---+0t,, € L.

- Ifz=s+4+0bit1+ -+ bmntm € Lo, then c =g+ (s —q¢)1 +0py + -+ + Op,, +
bit1 + -+ + bt € L.

Next we show minimality as a straightforward consequence of Proposition 2.
Clearly the vectors p1,...,p, can be added by Proposition 2 because any
two points of Ly differing by p; guarantees that adding p; does not alter the
resulting set. Similarly, ¢4, ..., t,, can also be included. Finally, by Proposition 2,
the vector s — ¢ can be included because ¢ and s both belong to Ly U L. O

A d-dimensional lattice can always be defined by at most d vectors; and thus
if d is the dimension of the matrices, no more than d period vectors are needed
in total. However, Proposition 3 induces a representation which may over-specify
the lattice by producing more than d vectors to define the lattice.

Ezample 2. Consider the lattice {(2,2)Z + (0,6)Z + (2,6)Z}, specified with
three vectors, which is equivalent to the lattice {(2,0)Z + (0,2)Z}. Note that one
may not simply pick an independent subset of the periods, as none of the fol-
lowing sets are equal: {(2,2)Z + (0,6)Z}, {(2,2)Z + (2,6)Z}, {(0,6)Z + (2,6)Z},
and {(2,2)Z + (0,6)Z + (2,6)Z}.

The Hermite normal form can be used to obtain a basis of the vectors that
define the lattice. Consider a lattice L; = {p1Z + - - - + paZ}. The lattice remains
the same if p; is swapped with p;, if p; is replaced by —p;, or if p; is replaced by
p; + apj where a is any fixed integer®.

These are the unimodular operations. The Hermite normal form of a matrix
M is a matrix H such that M = UH, where U is a unimodular matrix (formed
by unimodular column operations) and H is lower triangular, non-negative and
each row has a unique maximum entry which is on the main diagonal. Such
a form always exists, and the columns of H form a basis of the same lattice
as the columns of M, because they differ up to unimodular (lattice-preserving)
operations. There are many texts on the subject; we refer the reader to the
lecture notes of Shmonin [25] for more detailed explanations.

The columns of a matrix in Hermite normal form constitute a unique basis for
the lattice (up to additional redundant zero columns). Hence a basis of minimal
dimension can be obtained by computing the Hermite normal form of the matrix
formed by placing the period vectors into columns.

8 The last replacement is valid, since if 2 = y+8p; € L then z = y+B(p;+ap;) — Bap;
is in the new lattice.

Porous Invariants 181

We now prove the main theorem:

Proof (Proof of Theorem 2). We claim that Algorithm 1 returns the strongest
Z-linear invariant I.
Algorithm 1 proceeds in two phases:

— First find a necessary subset Ly C I of the invariant having already the same
dimension as I.

— Then compute a growing sequence Lo C L1 C --- C Ly, = Ly, = I, where
at each step the algorithm merely increases the density of the attendant sets
in order to ‘fill in’ missing points of the invariant.

Recall the set Ry = {x(o), r,...,r¢ } €O, with d’ < d, from Lemma 1. The
resulting Z-linear set Lo = {2 + (r; —2©)Z+ - + (rg — 2(©)Z} is then a
d’-dimensional porous subset of the d’-dimensional affine hull of the orbit (L C
@a). Applying My, ..., M}, can only increase the density, but not the dimension.
As each r; and (9 are in O, by Proposition 2 we can assume that each of the
directions (r; — 2(9)) must be represented in any Z-linear set containing O, and
we therefore have that Ly C 1.

In the second phase, we ‘fill in’ the lattice as required to cover the whole of
O. To do this we repeatedly apply the covering procedure of Proposition 3. That
is, L;11 is the smallest Z-linear set covering L; U My (L;)U---U My(L;). To keep
the number of vectors small, we keep the period vectors of the Z-linear set in
Hermite normal form.

The vectors p1 = (11 — D),py = (re — (9) form a parallelepiped
(hyper-parallelogram) that repeats regularly. There are a finite number of inte-
gral points inside this parallelepiped. If new points are added in some step, they
are added to every parallelepiped. Thus we can add new points finitely many
times before saturating or becoming fixed. The volume of the parallelepiped is
bounded above by |p1|- - |pa]-

At each step, the volume of the parallelepiped must at least halve, thus the
volume at step t is vol; < |p1|---|pa|/2t. The procedure must saturate at or
before the volume becomes 1, which occurs after at most log(|p1|-- - |pa|) =
> ;log(|pi|) steps. At each step, for efficiency considerations, we convert the
Z-linear set into Hermite normal form to retain exactly d’ period vectors.

Claim (1 is the strongest invariant). For every invariant J, we have I C J.

By induction, let us prove that every invariant J must contain L;. Clearly this
is the case for Ly because all points of Ry C O must be in J and every period
vectors in Lg can be present, without loss of generality, thanks to Proposition
2. Assume L; C J. Then it must be the case that J contains every M;(L;), as
otherwise it would not be an invariant. It therefore follows that J must contain
Li+1, since the latter is the minimal Z-linear set containing L; and M, (L;) for
all j < k. Finally, since I is itself one of the L;’s, we have I C J as required. O

Remark 1. Note that a Z-linear set is not sufficient for the MU puzzle: both 1
and 2 are in the reachability set, thus {1+ 1Z} = Z is the strongest Z-linear
invariant.

182 E. Lefaucheux et al.

Algorithm 1: Strongest Z-linear invariant for LDS (z(9, My, ..., My,)
Input: az<0),M17 .., My,
Compute Ry = {:E(O),T'1, e ,rd/} co
Compute p; =r; —z@ fori e {1,...,d'}
Lo = {m(o) +piZ+--- +pd/Z}

while True do
Li = Covering(Li,l U M1 (Lifl) U---u Mk(szl))
H; = HermiteNormalForm(L;)

L; = {33(0) +hZ+ -+ hyZ| h; column of HZ}

if Lz = Li—l then
| return L;
end

end

4.1 Extensions of Z-linear Sets Without Strongest Invariants

In this section we show that several generalisations of Z-linear domains fail to
admit strongest invariants.

Z-semi-linear sets are unions of Z-linear sets, and therefore can include sin-
gletons. Consider the deterministic dynamical system starting from point 1 and
doubling at each step M = (1,(z + 2z)). This system has reachability set
0= {2’C |keN }, which is not even N-semi-linear (our most general class). For
this LDS we can construct the invariant {2,4,8, - 2’“} U {2k+1p1 | p1 € Z} for
each k. For any proposed strongest Z-semi-linear invariant, one can find a k for
which the corresponding invariant is an improvement.

N-linear sets generalise Z-linear sets (observe that Z-linear sets are a proper
subclass, since {z + p;Z} can be expressed as {z + (—p;)N + p;N}, but {z + p;N}
is clearly not Z-linear). Consider the LDS ((x1,22),(9§)), with a reachability
set consisting of just two points x = (z1,22) and y = (z2,21). There are two
incomparable candidates for the minimal N-linear invariant: {x 4+ (y —)N} and
{y + (z — y)N}. Similarly for R -linear invariants, the sets {y + (z — y)R;} and
{z + (y —)Ry} are incomparable half-lines.

4.2 Z-linear Targets

We have so far only considered invariants for point targets. We now turn to
lattice-like targets, in particular targets specified as full-dimensional Z-linear
sets.

Theorem 3. [t is decidable whether a given LDS (9, {Mj,..., My}) reaches
a full-dimensional Z-linear target Y = {x + p1Z + - - + paZ}, with x,p; € 7.

Furthermore, for unreachable instances, a Z-semi-linear inductive invariant
can be provided.

Porous Invariants 183

Theorem 3 requires the targets to be full-dimensional. For nondeterministic
systems reachability is undecidable for non-full-dimensional targets (in particu-
lar point targets) [22]. However, even for deterministic systems, when Z-linear
targets fail to be full-dimensional the reachability problem becomes as hard as
the Skolem problem (see, e.g. [24]), for example by choosing as target the set
{(0,29,...,24) | x2,..., 24 €EZ} = {0+ e2Z + - - - + eqZ}, where ¢; € {O,l}d is
the standard basis vector, with (e;); = 1 and (e;); = 0 for ¢ # j.

Towards proving Theorem 3, we first show that full-dimensional linear sets
can be expressed as ‘square’ hybrid-linear sets. Hybrid-linear sets are semi-linear
sets in which all the components share the same period vectors, and thus differ
only in starting position (whereas semi-linear sets allow each component to have
distinct period vectors). By square, we mean that all period vectors are the same
multiple of standard basis vectors.

Lemma 2. Let Y = {z +p1Z+ -+ + pisZ} be a full-dimensional Z-linear set.
Then there exists m € N and a finite set B C [0,m — 1] such that Y =
Upe {0+ me1Z + - - + meyZ}.

p1
Proof. Suppose p1,...,pq span a d-dimensional vector space. Let P = (: >

Pd
be the matrix with rows pi,...,pq. Since P is full row rank it is invertible,

hence there exists a rational matrix P~! such that e; = i)_llpl + -+ Pijdlpd.
In particular let m; be such that PZ_Jlml is integral for all j. Then there is an
integral combination of py, ..., pg such that m;e; is an admissible direction in Y.

Let m =lem {my,...,mq}. Then me; is an admissible direction in Y. Hence
by Proposition 2, Y is equivalent to {ac + pZ + -+ paZ + me Z + -+
medZ}. By the presence of me1Z + --- + meygZ we have that x € Y if and
only 2’ € Y where z} = (x; mod m).

And therefore Y can be written as (Jycp {0+ mei1Z + - -+ meqZ}, where
B=1[0,m-1¢nY. O

We now prove Theorem 3.

Proof (Proof of Theorem 3). Choose m and B as in Lemma 2, so that Y is of
the form (J,c5 {0+ mei1Z + --- +meqZ}. We build an invariant I of the form
Upep {b+me1Z + - -- + megZ} for some B’ C [0,m — 1]%.

We initialise the set Iy = {x + me1Z + - - - + meqgZ}, where z € [0,m — 1]¢
such that z; = (xgo) mod m). We then build the set I; by adding to Iy the sets
{y +me1Z + - - - + megZ} where for each choice of M;, y € [0,m — 1]¢ is formed
by y; = ((M;z); mod m) for some = € Iy. We iterate this construction until it
stabilises in an inductive invariant I. Termination follows from the finiteness of
[0,m —1]¢ (noting in particular that if termination occurs with B’ = [0, m — 1],
then I = Z< which is indeed an inductive invariant).

184 E. Lefaucheux et al.

If there exists y € B NI then return REACHABLE. This is because the same
sequence of matrices applied to z(®) to produce y € I would, thanks to the
modulo step, wind up inside the set {y + me1Z + - - - + meyZ}, which is a part
of the target.

Otherwise, return UNREACHABLE and [as invariant. By construction, I is
indeed an inductive invariant disjoint from the target set. O

Remark 2. By the same argument, Theorem 3 extends to a restricted class of
Z-semi-linear targets: the finite union of full-dimensional Z-linear sets.

5 N-Semi-linear Invariants

We now consider N-semi-linear invariants, our most general class. N-semi-linear
invariants gain expressivity thanks to the ‘directions’ provided by the period
vectors. For example, the only possible Z-semi-linear invariant for the LDS
(0, (x — x4+ 1)) is Z, yet the reachability set, N, is captured exactly by an N-
linear invariant. We show that a separating N-semi-linear invariant can always
be found for unreachable instances of deterministic integer LDS, although the
computed invariant will depend on the target. However, finding invariants is
undecidable for nondeterministic systems, at least in high dimension. Neverthe-
less, we show decidability for the low-dimensional setting of the MU Puzzle—one
dimension with affine updates.

5.1 Existence of Sufficient (but Non-minimal) N-semi-linear
Invariants for Point Reachability in Deterministic LDS

Kannan and Lipton showed decidability of reachability of a point target for
deterministic LDS [16]. In this subsection, we establish the following result to
provide a separating invariant in unreachability instances.

Theorem 4. Given a deterministic LDS (z(), M) together with a point target
y, if the target is unreachable then a separating N-semi-linear inductive invariant
can be provided.

To do so, we will invoke the results from [8] to compute an R -semi-linear
inductive invariant, and then extract from it an N-semi-linear inductive invari-
ant. More precisely, the authors of [8] show how to build polytopic inductive
invariants for certain deterministic LDS. Such polytopes are either bounded or
are R;-semi-linear sets. In the first case, the polytope contains only finitely
many integral points, which can directly be represented via an N-semi-linear set.
In the second case, we build an N-semi-linear set containing exactly the set of
integral points included in the R -semi-linear invariant, thanks to the following
lemma.

Lemma 3. Given an Ry -linear set S = {x+ >, p;Ry}, where the vectors p;
have rational coefficients and x is an integer vector, one can build an N-semi-
linear set N comprising precisely all of the integral points of S.

Porous Invariants 185

Proof (Proof of Theorem 4). We note that every invariant produced in [8] has
rational period vectors, as the vectors are given by the difference of successive
point in the orbit of the system, and thus Lemma 3 can be applied. The authors
of [8] build an inductive invariant in all cases except those for which every eigen-
value of the matrix governing the evolution of the LDS is either 0 or of modulus
1 and at least one of the latter is not a root of unity. This situation however
cannot occur in our setting. Indeed, the eigenvalues of an integer matrix are alge-
braic integers, and an old result of Kronecker [19] asserts that unless all of the
eigenvalues are roots of unity, one of them must have modulus strictly greater
than 1 (the case in which all eigenvalues are 0 being of course trivial).

This concludes the proof of Theorem 4. a

5.2 Undecidability of N-semi-linear Invariants for Nondeterministic
LDS

If the enhanced expressivity of N-semi-linear sets allows us always to find an
invariant for deterministic LDS, it contributes in turn to making the invariant-
synthesis problem undecidable when the LDS is not deterministic. We establish
this through a reduction from the infinite Post correspondence problem (w-PCP)
that can be defined in the following way: given m pairs of non-empty words
{(ut,v1),..., (u™ v™)} over alphabet {0,2}, does there exist an infinite word
w = wyws ... over alphabet {1,...,m} such that u*tu®2... = v¥v*2 This
problem is known to be undecidable when m is at least 8 [6,13].

Theorem 5. The invariant synthesis problem for N-semi-linear sets and linear
dynamical systems with at least two matrices of size 91 is undecidable.

Proof (Sketch). We first establish the result in the case of several matrices in
low dimension; this can then be transformed in a standard way to two larger
matrices (of size 91).

The proof is by reduction from the infinite Post correspondence problem.
Given an instance of this problem the pair of words corresponding to each
sequence of tiles has an integer representation, using base-4 encoding. An impor-
tant property of our encoding is that the operation of appending a new tile to
an existing pair of words can be encoded by matrix multiplication.

Recall that if the instance of w-PCP is negative, then every generated pair
of words will differ at some point. Our encoding is such that this difference of
letters creates a difference in their numerical encodings that can be identified
with an N-semi-linear invariant. On the other hand, when there is a positive
answer to the w-PCP instance, there can be no N-semi-linear invariant. a

5.3 Nondeterministic One-Dimensional Affine Updates

The previous section shows that point reachability for nondeterministic LDS
is undecidable once there sufficiently many dimensions, motivating an analysis
at lower dimensions. The MU Puzzle requires a single dimension with affine

186 E. Lefaucheux et al.

updates (or equivalently two dimensions in matrix representation, with the
coordinate along the second dimension kept constant). We consider this one-
dimensional affine-update case, and therefore, rather than taking matrices as
input, we directly work with affine functions of the form f;(z) = a;z + b;.

Theorem 6. Given 0,y € Z, along with a finite set of functions {f1,..., fx}
where f;(x) = a;x + by, a;,b; € Z for 1 < i < k, it is decidable whether y is
reachable from x(©).

Moreover, when y is unreachable, an N-semi-linear separating inductive
invariant can be algorithmically computed.

We note that decidability of reachability is already known [9,10]. We refine
this result by exhibiting an invariant which can be used to disprove reachability.
In fact our procedure will produce an N-semi-linear set which can be used to
decide reachability, and which, in instances of non-reachability, will be a sep-
arating inductive invariant. We have implemented this algorithm into our tool
POROUS, enabling us to efficiently tackle the MU Puzzle as well as its generali-
sation to arbitrary collections of one-dimensional affine functions. We report on
our experiments in Sect. 6.

We build a case distinction depending on the type of functions that appear:

Definition 5. A function f(x) = ax +b...

— ... is redundant if f(z) = b, (including possibly b=0), or if f(x) = x.

— ... is counter-like if f(z) =z + b, b # 0. Two counter-like functions, f(x) =
x+b and g(x) = x + ¢ are opposing if b > 0 and ¢ < 0 (or vice-versa).

— ... 4s growing if f(z) = ax + b and |a| > 2. We say a growing function is
inverting if a < —2.

— ... is pure inverting if f(z) = —z + b.

Simplifying Assumptions

Lemma 4. Without loss of generality, redundant functions are redundant; more
precisely, we can reduce the computation of an invariant for a system having
redundant functions to finitely many invariant computations for systems devoid
of such functions.

Proof. Clearly the identity function has no impact on the reachability set, and
so can be removed outright. For any other redundant function, its impact on
the reachability set does not depend on when the function is used, and we may
therefore assume that it was used in the first step, or equivalently, using an alter-
native starting point. Hence the invariant-computation problem can be reduced
to finitely many instances of the problem over different starting points, with
redundant functions removed. Finally, taking the union of the resulting invari-
ants yields an invariant for the original system. a

Lemma 5. Without loss of generality, =(9) > 0.

Porous Invariants 187

Proof. We construct a new system, where each transition f(z) = az + b is
replaced by f(z) = ax —b. Then z(9) reaches y in the original system if and only
if —2(9 reaches —y in the new system. To see this, observe that if f(z) = azx+b,
then f(—xz) = —az — b= —f(x). O

Lemma 6. Suppose there are at least two distinct pure inverting functions (and
possibly other types of functions). Then without loss of generality there are two
opposing counters.

Proof. Consider f(z) = —x + b, and g(x) = —z + ¢. Then f(g(z)) = —(—z +
c)+b=x+b—cand g(f(x)) = —(—x+b)+c=a+c—b. Sinceb—c= —(c—b)
and b # ¢ (as f # g) these two functions are opposing. O

Two Opposing Counters. Let us first observe that when there are two oppos-
ing counters, we essentially move in either direction by some fixed amount. This
will entail that only Z-(semi)-linear invariants can be produced, rather than
proper N-(semi)-linear invariants.

Lemma 7. Suppose there are two opposing counters, f(x) =z +b, and g(z) =
x — c. Then for any reachable x we have {x + dZ} C I for d = ged(b, c).

Therefore, starting with {x(o) +dZ} € I we can ‘saturate’ the invariant
under construction using the following lemma:

Lemma 8. Let h(z) = x + d be chosen as a reference counter amongst the
counters. If {x +dZ} € I, then {f(x) + dZ} € I for every function f.

Proof (Proof of Lemma 8). Consider the function f(z) = ax+b.If x = y+dk € I,
then f(z) =ax+b=ay+adk+b= f(y) + adk € I.

Now thanks to the presence of counter h(xz) = x + d, by choosing the initial
k € Z appropriately and applying h(z) sufficiently many times (say m € N
times), one can reach f(x) + adk + dm = f(x) + dn for any desired n € Z. O

Without loss of generality if {x + dZ} is in the invariant, then 0 < x < d.
We then repeatedly use Lemma 8 to find the required elements of the invariant.
Since there are only finitely many residue classes (modulo d), every reachable
residue class {c¢1, ..., ¢, } can be found by saturation (in at most d steps), yielding
invariant {¢; + dZ} U --- U {c, + dZ}.

Thanks to Lemma 6, in all remaining cases there is without loss of generality
at most one pure inverter.

Only Pure Inverters. If there is exactly one pure inverter f(x) = —x+b (and
no other types of functions), then f(z(®) = —2(4band f(—z(@ +b) = 2O —p+
b = 2(9 thus the reachability set is finite, with exact invariant {IC(O), —20) ¢ b}.

188 E. Lefaucheux et al.

No Counters. If we are not in the preceding case and there are no counters, then
there must be growing functions and by Lemma 6, without loss of generality at
most one pure inverter. We show that all growing functions increase the modulus
outside of some bounded region.

Lemma 9. For every M > 0 and every growing function f(x) = ax+b, |a| > 2,
there exists O} > 0 such that if |x| > C}' then |f(x)| > |z + M.

Proof. By the triangle inequality we have: |f(z)| = |az + b| > |a||z| — |b]. Thus
bl+| M

o > B — alla] - [b] > [o] + M| = |f(2)] > [2] + M. 0

This is the only situation in which the invariant is not exactly the reachability

set, and requires us to take an overapproximation.

Let C = max{C’%, .
there are no pure inverters then {—C — N} U {C' + N} is invariant (although
may not yet contain the whole of). However, we can return the inductive
invariant {—C — N} U {C +N} U (O n (—=C,C)). The set O N (—C,C) is finite
and can elicited by exhaustive search, noting that once an element of the orbit
reaches absolute value at least C', the remainder of the corresponding trajectory
remains forever outside of (—C, C).

If there is one pure inverter g(x) = —z + d then observe that —C' is mapped
to C +d and C + d is mapped to —C'. Thus intuitively we want to use the
interval (—C,C + d). However two problems may occur: (a) since d could be
less than 0 then C' + d may no longer be growing (under the application of the
growing functions), and (b) an inverting growing function only ensures that —C'is
mapped to a value greater than or equal to C, rather than C'+d. Hence, we choose
C’ to ensure that C’ £ d is still growing by at least |d| (under the application

of our growing functions). Let C’ = max {Clclll, . ,Clil, ly| + 1} +|d|. Then the
invariant is {—C' =N} U {C'+d+ N} U (ON(-C',C’" + d)).

,CY Lyl + 1}, for fi,...,fx growing functions. If

Non-opposing Counters. The only remaining possibility (if there do not exist
two opposing counters, and not all functions are growing or pure inverters),
is that there are counter-like functions, but they are all counting in the same
direction. There may also be a single pure inverter, and possibly some growing
functions.

Pick a counter h(x) = z+d to be the reference counter; the choice is arbitrary,
but it is convenient to pick a counter with minimal |d|. As a starting point, we
have {z(® +dN} C I.

Lemma 10. If there is an inverter g(x) = —ax + b, with a > 0,b € Z, and we
have {x + dN} C I then {g(x) +dZ} C I.

The crucial difference with Lemma 8 is the observation that now an N-linear set
has induced a Z-linear set.

Porous Invariants 189

Proof. Let r = g(x) + dm for m € Z. We show r € I. Consider = + dn for
n € N, then g(z + dn) = —a(z + dn) + b = —ax + b — adn = g(z) — adn. Hence
g(z) —adn + dk, n,k € N| is reachable by applying k times the function h(x).
Hence for any m € Z there exists k,n € N such that k£ — na = m, so that r is
indeed reachable. O

Similarly to the situation with two opposing counters, whenever the invariant
contains some Z-linear set, Lemma 8 allows us to saturate amongst the finitely
many reachable residue classes.

However, the invariant may contain subsets that are not Z-linear. Consider
{z + dN} C I, which is not yet invariant. We repeatedly apply non-inverting
functions to {x 4+ dN} to obtain new N-linear sets (not Z-linear sets). When
the function applied ‘moves’ in the direction of the counters this will ultimately
saturate (in particular when applying other counter functions). However, in the
opposite direction, we may generate infinitely many such classes.

Ezxample 3. Consider the reference counter h(x) = x+4, with initial point 5. This
yields an initial set {5 + 4N} C O, where 5 is the initial point and 4N is derived
from the counter increment. Now when applying = — 2z + 6 to {5+ 4N} we
obtain {10 + 6 + 8N + 4N} = {16 + 4N}, then {38 4+ 4N}, and then {82 + 4N}.
However {82 + 4N} C {38 + 4N} and we can therefore stop with the invariant
{5+ 4N} U {16 + 4N} U {38 + 4N}.

However, if the initial sequence is not moving in the direction of the reference
counter, this saturation does not occur. Consider {5+ 4N} with the function
2z +— 2z — 6. Then {5+ 4N} maps to {10 — 6 + 8N + 4N} = {4 + 4N}, which
maps to {2+ 4N}, {—2 4+ 4N}, {—10 + 4N}, {—26 + 4N}, and so on. However
—2 and —10 are both 2 modulo 4 (and so is —26 as well). This means in the
negative direction we can obtain arbitrarily large negative values congruent to
2 modulo 4 and then use the reference counter h(x) = x + 4 to obtain any value
of {2+ 4Z}. O

Clearly we can examine all reachable residue classes defined by our reference
counter. Any residue class reachable after an inverting function induces a Z-linear
set. So it remains to consider those N-linear sets reachable without inverting
functions. The remaining case to handle occurs when we repeatedly induce N-
linear sets until they repeat a residue class in the direction opposite to that of
the reference counter.

We consider the case for h(z) = z+d with d > 0. The case with h(z) = 2 —d
is symmetric. It remains to detect when a set {x + dN} leads to {y + dN} by
a sequence of non-inverting functions with x = y mod d. Then by repeated
application of these functions one can reach sets {z + dN} with z arbitrarily
small, hence we can replace {z + dN} by {z + dZ}. We give further details in
the full version.

Reachability. The above procedure is sufficient to decide reachability. In all
cases apart from that in which there are no counters, the invariants produced
coincide precisely with the reachability sets. A reachability query therefore
reduces to asking whether the target belongs to the invariant.

190 E. Lefaucheux et al.

In the remaining case, the invariant obtained is parametrised by the target via
the bound C”. The target lies within the region (—C’, C’'+d), within which we can
compute all reachable points. Thus once again, the target is reachable precisely
if it belongs to the invariant. However, for a new target of larger modulus, a
different invariant would need to be built.

Complexity

Lemma 11. Assume that all functions, starting point, and target point are given
i unary. Then the invariant can be computed in polynomial time.

Without the unary assumption, the invariant could have exponential size,
and hence require at least exponential time to compute. That is because the
invariant we construct could include every value in an interval, for example,
(=C,C), where C is of size polynomial in the largest value.

As shown in [10], the reachability problem is at least NP-hard in binary,
because one can encode the integer Knapsack problem (which allows an object to
be picked multiple times rather at most once). Moreover the Knapsack problem
is efficiently solvable in pseudo-polynomial time via dynamic programming; that
is, polynomial time assuming the input is in unary, matching the complexity of
our procedure.

6 The POROUS Tool

Our invariant-synthesis tool POROUS? computes N-semi-linear invariants for
point and Z-linear targets on systems defined by one-dimensional affine func-
tions. POROUS includes implementations of the procedures of Theorem 3
(restricted to one-dimensional affine systems) and Theorem 6. POROUS is built
in Python and can be used by command-line file input, a web interface, or by
directly invoking the Python packages.

POROUS takes as input an instance (a start point, a target, and a collection of
functions) and returns the generated invariant. Additionally it provides a proof
that this set is indeed an inductive invariant: the invariant is a union of N-linear
sets, so for each linear set and each function, POROUS illustrates the application
of that function to the linear set and shows for which other linear set in the
invariant this is a subset. Using this invariant, POROUS can decide reachability; if
the specific target is reachable the invariant is not in itself a proof of reachability
(since the invariant will often be an overapproximation of the global reachability
set). Rather, equipped with the guarantee of reachability, POROUS searches for
a direct proof of reachability: a sequence of functions from start to target (a
process which would not otherwise be guaranteed to terminate).

9 Tool: invariants.davidpurser.net Code: github.com/davidjpurser/porous-tool.

http://invariants.davidpurser.net
https://github.com/davidjpurser/porous-tool

Porous Invariants 191
Table 2. Results varying by size parameter (last row includes all instances tested).
Times are given in seconds, with the average and maximum shown (except reachability
proof time, which are all approximately 30 s due to instances that terminate just before
the timeout).

Size |Invariant Unreachable |Invariant Reachable Reachable Reachability
build time instances proof time | instances with proofs |proof time
Avg |Max Avg |Max Within &30s | Avg

8 0.001/0.009 |100 (9.84%) |0.005/0.261 |916 (90.2%) |911 (99.5%) |0.033

16 0.001/0.020 |122 (12.0%) |0.010/0.788 |894 (88.0%) |885 (99.0%) |0.053

32 10.003/0.068 134 (13.2%) |0.020/0.911 |882 (86.8%) |843 (95.6%) |0.203

64 10.008/0.261 150 (14.8%) |0.052/2.969 |866 (85.2%) |766 (88.5%) |0.294

128 10.021/0.557 |153 (15.1%) |0.0962.426 |863 (84.9%) |719 (83.3%) |0.464

256 |0.088/2.838 |166 (16.3%) |0.316|43.587 |850 (83.7%) |620 (72.9%) |0.998

512 |0.428/9.312 |162 (15.9%) |0.899|21.127 |854 (84.1%) |570 (66.7%) |1.120

1024 1.121|20.252 |173 (17.0%) |3.27565.397 | 843 (83.0%) |514 (61.0%) |1.646

All 10.209/20.252 11160 (14.3%) |0.584 | 65.397 | 6968 (85.7%) | 5828 (83.6%) | 0.499

Experimentation. POROUS was tested on all 27 — 1 possible combinations of
the following function types, with @ > 2,b > 1: positive counters (x — x + b),
negative counters (z — x — b), growing (x +— ax £ b), inverting and growing
(z — —az £ b), inverters with positive counters (x — —x + b), inverters with
negative counters (x — —x — b) and the pure inverter (z — —z). For each such
combination a random instance was generated, with a size parameter to control
the maximum modulus of ¢ and b, ranging between 8 and 1024. The starting
point was between 1 and the size parameter and the target was between 1 and 4
times the size parameter. Ten instances were tested for each size parameter and
each of the 27 — 1 combinations, with between 1 and 9 functions of each type
(with a bias for one of each function type).

Our analysis, summarised in Table 2, illustrates the effect of the size param-
eter. The time to produce the proof of invariant is separated from the process of
building the invariant, since producing the proof of invariant can become slower
as || becomes larger; it requires finding Ly € I such that f;(L;) C Ly, for every
linear set L; € I and every affine function f;. In every case POROUS successfully
built the invariant, and hence decided reachability very quickly (on average well
below 1s) and also produced the proof of invariance in around half a second on
average. To demonstrate correctness in instances for which the target is reachable
POROUS also attempts to produce a proof of reachability (a sequence of functions
from start to target). Since our paper is focused on invariants as certificates of
non-reachability, our proof-of-reachability procedure was implemented crudely
as a simple breadth-first search without any heuristics, and hence a timeout of
30s was used for this part of the experiment only.

192 E. Lefaucheux et al.

Our experimental methodology was partially limited due to the high preva-
lence of reachable instances. A random instance will likely exhibit a large (often
universal) reachability set. When two random counters are included, the chance
that ged(by,be) = 1 (whence the whole space is covered) is around 60.8% and
higher if more counters are chosen.

Overall around 86% of instances were reachable (of which 84% produced a
proof within 30s). Of the 14% of unreachable instances, all produced a proof,
with the invariant taking around 0.2 s to build and 0.6 s to produce the proof. The
30-s timeout when demonstrating reachability directly is several orders of mag-
nitudes longer than answering the reachability query via our invariant-building
method.

A typical academic/consumer laptop was used to conduct the timing and
analysis (a four-year-old, four-core MacBook Pro).

7 Conclusions and Open Directions

We introduced the notion of porous invariants, which are not necessarily convex
and can in fact exhibit infinitely many ‘holes’, and studied these in the context
of multipath (or branching/nondeterministic) affine loops over the integers, or
equivalently nondeterministic integer linear dynamical systems. We have in par-
ticular focused on reachability questions. Clearly, the potential applicability of
porous invariants to larger classes of systems (such as programs involving nested
loops) or more complex specifications remains largely unexplored.

Our focus is on the boundary between decidability and undecidability, leav-
ing precise complexity questions open. Indeed, the complexity of synthesising
invariants could conceivably be quite high, except where we have highlighted
polynomial-time results. On the other hand, the invariants produced should be
easy to understand and manipulate, from both a human and machine perspective.

On a more technical level, in our setting the most general class of invariants
that we consider are N-semi-linear. There remains at present a large gap between
decidability for one-dimensional affine functions, and undecidability for linear
updates in dimension 91 and above. It would be interesting to investigate whether
decidability can be extended further, for example to dimensions 2 and 3.

Acknowledgements. This work was funded by DFG grant 389792660 as part
of TRR 248 (see perspicuous-computing.science). Joél Ouaknine was supported by
ERC grant AVS-ISS (648701), and is also affiliated with Keble College, Oxford
as emmy.network Fellow. James Worrell was supported by EPSRC Fellowship
EP/N008197/1.

References

1. Almagor, S., Chistikov, D., Ouaknine, J., Worrell, J.: O-minimal invariants for
discrete-time dynamical systems (2019, preprint, submitted). https://arxiv.org/
abs/1802.09263

https://perspicuous-computing.science
http://emmy.network/
https://arxiv.org/abs/1802.09263
https://arxiv.org/abs/1802.09263

10.

11.

12.

13.

14.

15.

16.

Porous Invariants 193

Bozga, M., Tosif, R., Konecny, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided Verification, 22nd
International Conference, CAV 2010, Edinburgh, UK, 15-19 July 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6174, pp. 227-242. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-14295-6_23. Extended VERIMAG
technical report, TR-2012-10, 2012: http://www-verimag.imag.fr/TR/TR-2012-
10.pdf

Chistov, A.: Algorithm of polynomial complexity for factoring polynomials and
finding the components of varieties in subexponential time. J. Soviet Math. 34(4),
1838-1882 (1986). https://doi.org/10.1007/BF01095643

Clarke, E.M., et al.: Abstraction and counterexample-guided refinement in model
checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583-604 (2003).
https://doi.org/10.1142/S012905410300190X

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) Conference Record
of the Fifth Annual ACM Symposium on Principles of Programming Languages,
Tucson, Arizona, USA, January 1978, pp. 84-96. ACM Press (1978). https://doi.
org/10.1145/512760.512770

Dong, J., Liu, Q.: Undecidability of infinite post correspondence problem for
instances of size 8. RAIRO Theor. Informatics Appl. 46(3), 451-457 (2012).
https://doi.org/10.1051/ita/2012015

Douglas, R.H.: Godel, Escher, Bach: An Eternal Golden Braid. Basic Books, New
York (1979)

Fijalkow, N., Lefaucheux, E., Ohlmann, P., Ouaknine, J., Pouly, A., Worrell, J.:
On the Monniaux problem in abstract interpretation. In: Chang, B.-Y.E. (ed.) SAS
2019. LNCS, vol. 11822, pp. 162-180. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32304-2_9

Finkel, A., Goller, S., Haase, C.: Reachability in register machines with polynomial
updates. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 409—
420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2_37
Fremont, D.: The reachability problem for affine functions on the integers. CoRR
abs/1304.2639 (2013). http://arxiv.org/abs/1304.2639

Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reason. 58(1), 3-31 (2016). https://doi.org/10.1007/s10817-
016-9388-y

Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. Trans. Am. Math.
Soc. 113(2), 333-368 (1964). https://doi.org/10.1090/S0002-9947-1964-0181500- 1
Halava, V., Harju, T.: Undecidability of infinite post correspondence problem
for instances of size 9. RAIRO Theor. Informatics Appl. 40(4), 551-557 (2006).
https://doi.org/10.1051/ita:2006039

Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-
nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797-813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_53
Hrushovski, E., Ouaknine, J., Pouly, A., Worrell, J.: Polynomial invariants for
affine programs. In: Dawar, A., Gridel, E. (eds.) Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
09-12 July 2018, pp. 530-539. ACM (2018). https://doi.org/10.1145/3209108.
3209142

Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. J.
ACM 33(4), 808-821 (1986). https://doi.org/10.1145/6490.6496

https://doi.org/10.1007/978-3-642-14295-6_23
http://www-verimag.imag.fr/TR/TR-2012-10.pdf
http://www-verimag.imag.fr/TR/TR-2012-10.pdf
https://doi.org/10.1007/BF01095643
https://doi.org/10.1142/S012905410300190X
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1051/ita/2012015
https://doi.org/10.1007/978-3-030-32304-2_9
https://doi.org/10.1007/978-3-030-32304-2_9
https://doi.org/10.1007/978-3-642-40313-2_37
http://arxiv.org/abs/1304.2639
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1090/S0002-9947-1964-0181500-1
https://doi.org/10.1051/ita:2006039
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/6490.6496

194 E. Lefaucheux et al.

17. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,
133-151 (1976). https://doi.org/10.1007/BF00268497

18. Kincaid, Z., Breck, J., Cyphert, J., Reps, T.W.: Closed forms for numerical loops.
Proc. ACM Program. Lang. 3(POPL), 55:1-55:29 (2019). https://doi.org/10.1145/
3290368

19. Kronecker, L.: Zwei Sétze iiber Gleichungen mit ganzzahligen Coefficienten. Jour-
nal fiir die reine und angewandte Mathematik 57(53), 173-175 (1857)

20. Leroux, J.: The general vector addition system reachability problem by presburger
inductive invariants. Log. Methods Comput. Sci. 6(3) (2010). https://doi.org/10.
2168/LMCS-6(3:22)2010

21. Leroux, J.: Vector addition system reachability problem: a short self-contained
proof. In: Ball, T., Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, 26-28 January 2011, pp. 307-316. ACM (2011). https://doi.
org/10.1145/1926385.1926421

22. Markov, A.: On certain insoluble problems concerning matrices. Doklady Akad.
Nauk SSSR. 57, 539-542 (1947)

23. Monniaux, D.: On the decidability of the existence of polyhedral invariants in
transition systems. Acta Informatica 56(4), 385-389 (2018). https://doi.org/10.
1007/s00236-018-0324-y

24. Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In:
Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 21-28.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33512-9_3

25. Shmonin, G.: Lattices and Hermite normal form, February 2009. Lecture notes for
the course Integer Points in Polyhedra at the Swiss Federal Institute of Technology
Lausanne (EPFL)

26. Tzeng, W.: A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM J. Comput. 21(2), 216-227 (1992). https://doi.org/10.1137/
0221017

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BF00268497
https://doi.org/10.1145/3290368
https://doi.org/10.1145/3290368
https://doi.org/10.2168/LMCS-6(3:22)2010
https://doi.org/10.2168/LMCS-6(3:22)2010
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1007/s00236-018-0324-y
https://doi.org/10.1007/s00236-018-0324-y
https://doi.org/10.1007/978-3-642-33512-9_3
https://doi.org/10.1137/0221017
https://doi.org/10.1137/0221017
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

JavaSMT 3: Interacting with SMT Solvers in Java

Daniel Baier ™, Dirk Beyer ™, and Karlheinz Friedberger

LMU Munich, Munich, Germany

Abstract. Satisfiability Modulo Theories (SMT) is an enabling technology
with many applications, especially in computer-aided verification. Due to
advances in research and strong demand for solvers, there are many SMT
solvers available. Since different implementations have different strengths,
it is often desirable to be able to substitute one solver by another. Un-
fortunately, the solvers have vastly different APIs and it is not easy to
switch to a different solver (lock-in effect). To tackle this problem, we
developed JavasMT, which is a solver-independent framework that unifies
the API for using a set of SMT solvers. This paper describes version 3
of JavaSMT, which now supports eight SMT solvers and offers a simpler
build and update process. Our feature comparisons and experiments show
that different SMT solvers significantly differ in terms of feature support
and performance characteristics. A unifying Java API for SMT solvers is
important to make the SMT technology accessible for software developers.
Similar APIs exist for other programming languages.

Keywords: Satisfiability Modulo Theories - SMT Solver - Java - API

1 Introduction

SMT solvers [6, 21] are used in a multitude of applications, e.g., in formal software
analysis, where automated test-case generation [7, 16,29, 30], SMT-based algo-
rithms for software verification [10, 34|, and interactive theorem proving [27, 44|
are used. Applications and users rely on efficiency and expressiveness (sup-
ported SMT theories) to compute reasonable results in time. For application
developers, the usability and API of the solver are also important aspects, and
some features needed in applications, such as interpolation or optimization,
are not available in some solvers.

Using the solver’s own API directly makes it difficult to switch to another
solver without rewriting extensive parts of the application, as there is no stan-
dardized binary API for SMT solvers. The SMT-LIB2 standard [4] improves
this issue by defining a common language to interact with SMT solvers. How-
ever, this communication channel does not define a solver interface for special
features like optimization or interpolation.! Additionally, the application has to
parse the data provided by the SMT solver on its own, and this of course
slightly changes from solver to solver.

1A proposal for adding interpolation queries exists since 2012, see https://ultimate.
informatik.uni-freiburg.de/smtinterpol/proposal.pdf .
© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 195-208, 2021.
https://doi.org/10.1007/978-3-030-81688-9_9

https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_9&domain=pdf
https://orcid.org/0000-0001-9116-1974
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-7624-654X
https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf
https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf
https://doi.org/10.1007/978-3-030-81688-9_9

196 D. Baier, D. Beyer, and K. Friedberger

JAVASMT [37] provides a common API layer across multiple back-end solvers
to address these problems. Our Java-based approach creates only minimal over-
head, while giving access to most solver features. JAvaASMT is available under
the Apache 2.0 License on GitHub.?

Contribution. Our contribution consists of three parts:

e We integrated more SMT solvers into the API framework JavaSMT (new:
BooLECTOR [43], CVC4 [5], and Yices2 [25]).

e We simplified the steps to get started using JavaSMT, by including support
for more operating systems (new: MacOS and Windows) and more build
techniques (new: AnT and MAVEN).

e We evaluated the performance of several algorithms for software verification
to show that different SMT solvers have different strengths.

Outline. This paper first provides a brief overview of JAvaASMT in Sect. 2, ex-
plaining the inner structure and features. Sect. 3 discusses the development since
the previous publication [37]: more integrated SMT solvers and extended support
for operating systems and build processes. Sect. 4 describes a case study, based
on SMT-based algorithms [10] in a common verification framework.

Related Work. SMT-LIB2 [4] is the established standard format for exchanging
SMT queries. It provides simple usage, is easy to debug, and widely known in
the community. However, it requires extra effort to parse and transform formulas
in the user application. Features like optimization, interpolation, and receiving
nested parts of formulas are not defined by the standard, such that some SMT
solvers provide their own individual solution for that. Alternatively, several SMT
solvers already come with their special bindings for some programming languages.
Most SMT solvers are written in C/C++, so interacting with them in these
low-level languages is the easiest way. However, the support for higher-level
languages is sparse. The most prominent language binding for several SMT
solvers is Python, as it directly allows the access to C code and avoids automated
memory management operations like asynchronous garbage collection. Bindings
for Java are available for some SMT solvers, such as MATHSATS5 and Z3, but
missing, unsupported, or unmaintained for others, such as BooLecTor and CVC4.

In the following, we discuss libraries, similar to JAvaSMT, that provide access
to several underlying SMT solvers via a common user interface in different popular
languages, and their binding mechanism, i.e., whether the solver interaction is
based on a native interface or text-based on SMT-LIB2. With SMT-LIB2, an ar-
bitrary SMT solver can be queried, but the interaction happens through communi-
cating processes and the solver is mostly limited to features defined in the standard.
Accessing a native interface directly allows to support more features of the under-
lying solver, e.g., using callbacks, simplifying formulas, or eliminating quantifiers.

Table 1 provides an overview of the libraries for interacting with SMT solvers.
We enumerate several special features that are not available in some libraries,

2 https://github.com/sosy-1lab/java-smt

https://github.com/sosy-lab/java-smt

JavaSMT 3: Interacting with SMT Solvers in Java 197

Table 1: Comparison of different interface libraries for SMT solvers

w 2 = 5| £ 5 3 E

o)) E a % é % % % Lg 2 >: g

e 2 < 2/ 2 8§ E2| L L =0

gz ¢ Jlg & E 58| 8 38 2%

g ¥ =2 E|g§ 8 E RS o T T

2 3 ZE|5ES & &£ & &5

JAVASMT 37 Java vV X |V V / v 22 90 2021
PySMT [28] Python v V|V V / X 99 363 2021
SMT Kit C/IC++ v X |V X X X 4 36 2014
SMT-SWITCH B8] C/C++ vV X |V V X v 15 40 2021
JSMTLIB [20] Java X V|V X X X 15 21 2020
METASMT [45] C/C++ X V| X X ve 19 43 2016
RSMT2 Rust X vV |v X X X 10 24 2021
SBV Haskell X v |/ X / X 17 134 2021
ScaLa SMT-LIB Scala X vV |/ X X v 18 44 2021
ScALASMT [17] Scala, X vV I|Xx X X v 1 4 2019
WHAT4 Haskell X Vv |V X X X 5 97 2021

such as unsat cores, interpolation, or optimization queries. Those features depend
on the support by the underlying SMT solver, but can be provided in general
by an API on top of them. Most libraries use their own formula representation
and not just wrap the objects provided by the SMT solver. This potentially
allows for easier formula decomposition and inspection, e.g., by using the visitor
pattern. JaAvASMT directly provides formula decomposition if available in the
SMT solver. The provided numbers of forks and stars of the project repositories
on GitHub or Bitbucket can be seen as a measurement of popularity.

PySMT [28] is a Python-based project and aims at rapid prototyping of
algorithms using the native API of the installed SMT solvers. It has the ability to
perform formula manipulation without a back-end SMT solver and additionally
supports the conversion of boolean formulas to plain SAT problems and then
apply a SAT solver or a BDD library. This approach comes with the drawback
of a noticeable memory overhead and performance of an interpreted language.
METASMT [45], SMT Kit, and Smr-Switch [38] provide solver-agnostic APIs for
interacting with various SMT solvers in C/C++ to focus on the application instead
of the solver integration. 5SMTLIB [20], Scara SMT-LIB, and ScaLaSMT [17] are
solver-independent libraries written in Java or Scala and interact via SMT-LIB2
with SMT solvers. Scara SMT-LIB and ScaLaSMT allow to use an additional
domain-specific language to interact with SMT solvers and rewrite Scala syntax
into valid SMT-LIB2 and back. Both partially extend the SMT-LIB2 standard,
e.g., by offering the ability to overload operators or receive interpolants. SBV
and wrat4 are generic Haskell libraries based on process interaction via SMT-
LIB2 and support several SAT and SMT solvers. rsmT2 offers a generic Rust
library that currently supports three SMT solvers.

https://github.com/sosy-lab/java-smt
https://github.com/pysmt/pysmt
http://ahorn.github.io/smt-kit/
https://github.com/makaimann/smt-switch
https://smtlib.github.io/jSMTLIB
https://github.com/agra-uni-bremen/metaSMT
https://github.com/kino-mc/rsmt2
https://github.com/LeventErkok/sbv
https://github.com/regb/scala-smtlib
https://bitbucket.org/franck44/scalasmt
https://github.com/GaloisInc/what4
https://github.com/pysmt/pysmt
https://github.com/agra-uni-bremen/metaSMT
http://ahorn.github.io/smt-kit/
https://github.com/makaimann/smt-switch
https://smtlib.github.io/jSMTLIB
https://github.com/regb/scala-smtlib
https://bitbucket.org/franck44/scalasmt
https://github.com/regb/scala-smtlib
https://bitbucket.org/franck44/scalasmt
https://github.com/LeventErkok/sbv
https://github.com/GaloisInc/what4
https://github.com/kino-mc/rsmt2

198 D. Baier, D. Beyer, and K. Friedberger

2 JavaSMT’s Architecture and Solver Integration

In the following, we describe the architecture of JAvASMT and its main con-
cepts. Afterwards, we give an overview of the integrated SMT solvers and their
features. The architecture did not significantly change, but we added a few
new SMT solvers, as shown in Fig. 1.

Architecture. JaAvaSMT provides a common API for various SMT solvers. The
architecture, shown in Fig. 1, consists of several components: As common context,
we use a SolverContext that loads the underlying SMT solver and defines the
scope and lifetime of all created objects. As long as the context is available,
we track memory regions of native SMT-solver libraries. When the context is
closed, the corresponding memory is freed and garbage collection wipes all unused
objects. Within a given context, JAVASMT provides FormulaManagers for creating
formulas in various theories and ProverEnvironments for solving SMT queries.

A FormulaManager allows to create symbols and formulas in the correspond-
ing theories and provides a type-safe way to combine symbols and formulas
in order to encode a more complex SMT query. We support the structural
analysis (like splitting a formula into its components or counting all function
applications in a formula) and transformations (like substituting symbols or
applying equisatisfiable simplifications) of formulas.

Each ProverEnvironment represents a solver stack and allows to push/pop
boolean formulas and check them for satisfiability (the hard part). This follows
the idea of incremental solving (if the underlying SMT solver supports it). After a
satisfiability check, the ProverEnvironment provides methods to receive a model,
interpolants, or an unsatisfiable core for the given formula.

JAavASMT guarantees that formulas built with a single FormulaManager
can be used in several ProverEnvironments, e.g., the same formula can be
pushed onto and solved within several distinct ProverEnvironments. The in-
teraction with independent ProverEnvironments works from multiple threads.
However, some SMT solvers require synchronization (e.g., locking for an in-
terleaved usage) and other solvers do not require external synchronization
(this allows concurrent usage).

SMT-Solver Integration and Bindings. Of the eight SMT solvers that are available
in JAvASMT, only Princess [46] and SMTINTERPOL [18] were ‘easy’ to integrate,
as they are written in Scala and Java, respectively. Those solvers also use
the available memory management and garbage collection of the Java Virtual
Machine (JVM). All other solvers are written in C/C++ and need a Java Native
Interface (JNI) wrapper to interface with JavaSMT. Z3 [40] and CVC4 [5]
provide their own Java wrappers, while the bindings used for MaTuSATS5 [19],
BooLecTor [42], and Yices2 [25] are maintained by us. Those bindings are
self-written or partially based on a version of the solver developers, extended
with exception handling, and usable for debugging in JAvaASMT. By providing
language bindings for solvers in our library, we relieve the solver developers
from this burden, and the implementation of exception handling and memory
management is done in an efficient and common manner across several solvers.

JavaSMT 3: Interacting with SMT Solvers in Java 199

JAVASMT
N
e N
SolverContext
FormulaManager <—>
RN (o
>l a— I | & Mmmsats
< ! (I .5
o ! Formula | ! Formula | B
. . > ! ! nm
Application =1 |
| |
|| Environment | | Environment |8 |, (" suTivrencor)
e)
Interpolant ‘ Interpolant ‘ * ’
Unsat Core‘ Unsat Core‘

Fig. 1: Overview of JAvASMT

Table 2: Size (LOC) of the Java-based solver wrappers and native solver bindings

BooLEcTOR
MaTHSATS
OrPTIMATHSAT
PRINCESS
SMTINTERPOL
YI1CES2

CvVC4

2]
N

Java-based Wrapper | 1644 1918 3229 3229 2042 2117 2728 2674
JNI Bindings 3136 1388 1508 1598

Table 2 lists the size (lines of code) of the wrappers to integrate each solver
in JAvASMT, in order to get a rough impression of the required effort to get a
solver and its bindings usable in JavaSMT. The size information consists of two
parts, namely the JNI bindings that are written in C/C++ and the Java code
that implements the necessary interfaces of JaAvaSMT. An expressive solver API
(like MATHSATS or OpTIMATHSAT [47]) needs more code for their binding, with
only a small increment in complexity compared to other solver bindings.

Note that the evolution of JavaSMT depends on the evolution of the underlying
SMT solvers. Z3 is well-known, has a large user group, and an active develop-
ment team. Yet, interpolation support for Z3 was dropped with release 4.8.1.%
Brrwuzra [41] is the successor of the SMT solver BooLecTor, for which the
developers still provide small fixes. BirwuzLa can be supported in JavaSMT in
the future. CVC4 has been developed further to CVC5. However, the maintainers

3 https://github.com/Z3Prover/z3/releases/tag/z3-4.8.1

https://github.com/Z3Prover/z3/releases/tag/z3-4.8.1

200 D. Baier, D. Beyer, and K. Friedberger

dropped the existing Java API, partially because of issues with the Java garbage
collection, and plan to replace it.* Yices2 is also actively maintained and adds
new features regularly. For example, the developers added support for third-party
SAT solvers such as CaD1CaL and CrRYPTOMINISAT [48].

3 New Contributions in JavaSMT 3

This section describes the improvements over the JAvASMT version from five
years ago [37], split into two parts. First, we describe newly integrated solvers
and theory features. Second, we provide information about the build process.

Support for Additional SMT Solvers. JaAvaSMT 3 provides access to eight SMT
solvers. Besides the solvers that were already integrated before, MaTHSATS,
OpTIMATHSAT, Z3, PriNcESs, and SMTINTERPOL, the user can now additionaly
use BooLECcTOR, CVC4, and Yices2. Table 3 lists available theories and impor-
tant features supported by each individual solver. BooLECTOR is specialized in
Bitvector-based theories, but does not support the Integer theory. It is shipped
with several back-end SAT solvers, from which the user can choose a favorite:
CADICAL, CryPTOMINISAT [48], LINGELING, MINISAT [26], and PicoSAT [13]. All
solvers support the input of plain SMT-LIB2 formulas. However, the feature
most requested by JAvaSMT users is the input and output of SMT queries via
the API, i.e., parsing and printing boolean formulas for a given context. This
feature is required for (de-)serializing formulas to disk, for network transfer, and
to translate formulas from one solver to another one. This feature is unfortu-
nately missing for the newly integrated solvers, even though each solver internally
already contains code for parsing and printing SMT-LIB2 formulas.

For formula manipulation, JAvaSMT accesses the components of a formula,
e.g., operators and operands. We do not require full access to the internal data
structures of the SMT solvers, but only limited access to the most basic parts.
Only BoorecTor does not provide the necessary API.

Build Simplification. JAvaASMT 3 also supports more operating systems than
before. Besides the existing support for Linux, we started to provide pre-compiled
binaries for MacOS and Windows for more than half of the available solvers.
This simplifies the initial steps for new users, which previously were required to
compile and link the solvers on their own. This was an involving task, because
of the diversity of build systems and dependencies of each solver.

In addition to this, we now offer direct support for two popular build sys-
tems for Java applications, namely AnT and Maven. JAVASMT comes with
several examples and documentation, such that the mentioned build systems
can be used to set up JAVASMT in a ready-to-go state on most systems. This
eliminates the need for complex manual set up of dependencies and eases the
use of JAvASMT and the SMT solvers.

4 https://github.com/cvehs/cveb/issues/5018

https://github.com/arminbiere/cadical
https://github.com/msoos/cryptominisat
https://github.com/arminbiere/cadical
https://github.com/msoos/cryptominisat
https://github.com/arminbiere/lingeling
http://minisat.se
http://fmv.jku.at/picosat
https://github.com/cvc5/cvc5/issues/5018

JavaSMT 3: Interacting with SMT Solvers in Java 201

Table 3: SMT theories and features supported by SMT solvers in JAvASMT 3

BooLEcTOR
PRINCESS
SMTINTERPOL

Z3

Integer
Rational
Array
Bitvector
Float

UF
Quantifier

SMT Theories

Incremental Solving

Model

Assumption Solving
Interpolation

Optimization

UnsatCore

UnsatCore with Assumptions

Features

SMT-LIB2 (plain text input)
SMT-LIB2 (via API)

Quantifier Elimination

N X SN NSNS NSNS N[x NN SN SN SN SN | OpTIMATHSAT

™ X X N X X X X NN NN N X NN X %

COUX U%U% X% CSN[NNNN NS oves
Cx NN NN % NN N N[% NN N N N N | MarHSATS
N N N N N N N N N NN

AN N N N N N TN I N NN

Cx % NN N %X NN NN N X N % N N | Yiees2
N N N N N N N N N N N N N N NN

Formula Decomposition

4 Evaluation

Frameworks that provide a unified API to SMT solvers (such as JavaSMT,
PySMT, and ScaLaSMT) are necessary because the characteristics of the SMT
solvers vary a lot. In the evaluation we provide support for this argument.
We inlined a discussion of the features already in the previous section. Table 3
provides the overview of supported theories and shows that certain theories are
available only for a subset of SMT solvers. The table also shows that there are
several features that restrict the choice of SMT solvers for certain applications.
In terms of performance, we evaluate JAvaSMT 3 as a component of
CPAcHECKER [11], which is an open-source software-verification framework °
that provides a range of different SMT-based algorithms for program analysis [10]
and encoding techniques for program control flow [8,12]. We compare three
well-known and successful SMT-based algorithms for software model checking
and show that — when using the same algorithm and identical problem encoding
— the performance result of an analysis depends on the used SMT solver. Some

5 https://cpachecker.sosy-lab.org

https://github.com/sosy-lab/java-smt
https://github.com/pysmt/pysmt
https://bitbucket.org/franck44/scalasmt
https://cpachecker.sosy-lab.org

202 D. Baier, D. Beyer, and K. Friedberger

algorithms depend on special features of the SMT solver, e.g., to provide a certain
type of formula (such as interpolants) and operation on a formula (such as access
to subformulas). There are SMT solvers that can not be used for some algorithms.

We aim to show that depending on the feature set of the SMT solvers, it is
important to support a common API, and additionally, that using the text-based
interaction via SMT-LIB2 is not an efficient solution, when it comes to formula
analysis like adding additional information into a formula.

Benchmark Programs. We evaluate the usage of JAvaASMT on a large subset
of the SV-benchmark suite® containing over 1000 verification tasks. To have
a broad variation of benchmark tasks, we include reachability problems from
the categories BitVectors, ControlFlow, Heap, and Loops.

BitVectors depends on bit-precise reasoning and thus, the SMT solver needs
to support Bitvector logic. Heap depends on modeling heap memory access, e.g.,
which is either encoded in the theory of Arrays or as Uninterpreted Functions.
The category Loops contains tasks where the state space is potentially quite large.

Experimental Setup. We run all our experiments on computers with Intel Xeon
E3-1230 v5 CPUs with 3.40 GHz, and limit the CPU time to 15min and the
memory to 15 GB. We use CPACHECKER revision r36714, which internally uses
JavASMT 3.7.0-73. The time needed for transforming the input program into
SMT queries is rather small compared to the analysis time. Additionally, the
progress of an algorithm depends on the result (e.g., model values or interpolants)
returned from an SMT solver, thus we do not explicitly extract the run time
required by the SMT solver itself for answering the satisfiability problem, but we
measure the complete CPU time of CPAcHECKER for the verification run.

Analysis Configuration. We use three different SMT-based algorithms for software
verification [10]. The first approach is bounded model checking (BMC) [14, 15],
which is applied in software and hardware model checking since many years. In this
approach, a verification problem is encoded as single large SMT query and given
to the SMT solver. No further interaction with the SMT solver is required. In our
evaluation, we use a loop bound k£ = 10, which limits the size of the SMT query.

The second approach is k-induction [9, 24], which extends BMC, and which
uses auxiliary invariants to strengthen the induction hypothesis. In this approach,
the algorithm generates several SMT queries (base case, inductive-step case, each
with increasing loop bound) and uses an invariant generator that provides the
auxiliary invariants. We use an interval-based invariant generator that provides
not only the invariants, but also information about pointers and aliases, which
must be inserted into the SMT formula using the formula visitor.

The third approach is predicate abstraction [3, 12,31, 35], which uses Craig
interpolation [22, 32, 39] to compute predicate abstractions of the program. This
approach does not only query the SMT solver multiple times, but also uses
(sequential) interpolation, which is currently supported only by MaTHSATS5,
Princess, and SMTINTERPOL.

6 https://github.com/sosy-1lab/sv-benchmarks

https://github.com/sosy-lab/sv-benchmarks

JavaSMT 3: Interacting with SMT Solvers in Java 203

1000 F T E
. || —i— BooLEcTOR —¢— CVC4 R
z | —@— MATHSATS5 —@— PRINCESS]
é 100 | —A— YICES2 —6— 73 4
+ - .
= | :
© 10 - o E
e \ \ i

0 250 500

n-th fastest result

Fig. 2: Quantile plot for the runtime of k-induction with several SMT solvers

All approaches are executed in two configurations, depending on the used
encoding of program statements: First, we apply a bitvector-based encoding that
precisely models bit-precise arithmetics and overflows of the program. Second,
an encoding based on linear integer arithmetic is used, which approximates the
concrete program execution and is sufficient for some programs.

Solver Configuration. Overall, we aim to show that each solver provides a unique
fingerprint of features and results. We aim for a precise program analysis and
thus configure the SMT solvers to be as precise as possible, but with a rea-
sonable configuration for each solver (i.e., without using a feature combination
that is unsupported by the SMT solver).

SMTInTERPOL does not support efficient solving of SMT queries in Bitvector
logic, thus, it is configured to use only Integer logic. BooLECcTOR misses Integer
logic, thus, it is applied only to the bit-precise configurations. Additionally, this
SMT solver does not support formula inspection and decomposition, which is
required by several components in k-induction, e.g., to encode proper pointer
aliasing for the program analysis. While the code for formula inspection is called
quite often, its influence on the results for the selected benchmark tasks is small.
In order to be comparable as far as possible, we deactivate pointer aliasing when
using BooLECTOR. YICES2 misses proper support for Array logic, thus, we use a
UF-based encoding of heap memory as alternative for this solver, which results
in a slightly unsound analysis, but a comparable formula size and run time.

Results and Discussion. Figure 2 provides the quantile plot for the results of
k-induction configurations with bit-precise encoding using several SMT solvers.
The plot shows the CPU time for valid analysis results, i.e., proofs or counterex-
amples found, for both expected results true and false. We aim for providing all
result that are useful for a user and do not show results where the tool (or SMT
solver) crashes or runs out of resources. We do not subtract the run time required
for the framework CPAcHECKER itself (which starts a Java virtual machine), as
we assume it to be comparable per program task; we are only interested in the
asymptotics in this evaluation. The overall performance of SMT solvers is similar
for simple verification tasks, i.e., those with a small run time in the analysis. For
difficult tasks with harder SMT queries, the differences of the SMT solvers emerge.
When applying k-induction, the analysis inserts additional constraints into the

204 D. Baier, D. Beyer, and K. Friedberger

Table 4: Run time for using different SMT solvers for bounded model checking
(‘BMC’), k-induction (‘KI’), and predicate abstraction (‘PA’) with the theories
of Bitvectors (‘BV’) and Integers (‘Int’); CPU time given in seconds with two
significant digits, ¢ TO’ indicates timeouts (900s), ¢ ERR’ indicates errors, and
empty cells indicate that the theory or interpolation was not supported

N o
= S _ -
4 2 i E 2
= + ! Q — — |
|72] — [) 1 3} E <
=] < | = — 4 =3 =
S) a) = [o = -
p=] — i) > = 2 N e) G)|
8 & < | g = b g g~
5 \ £ © 3 s 8 I B
>) 2 a R = E =& 2 03T g
Algorithm BMC BMC KI KI KI KI PA PA PA PA
Encoding Int BV Imt Int BV BV Int Int BV BV
BOOLECTOR 5.8 ERR ERR
CcvVC4 340 6.4 TO TO 110 TO
MaTuSATS 17 7.8 200 53 60 54 TO 11 16 7.1
PRINCESS TO TO 530 TO 260 TO 38 160 TO ERR
SMTINTERPOL 50 TO 140 TO 13
Yi1cES2 14 7.7 340 23 34 28
73 15 6.7 130 66 43 21

SMT formula and requires the SMT solver to allow access to components of
existing formulas. As BooLECcTOR misses this specific feature, k-induction cannot
be very effective here. Other SMT solvers are the preferred choice.

Table 4 contains some example tasks from all used algorithms and encodings,
where the difference between distinct SMT solvers is noteworthy. Choosing the
optimal SMT solvers for an arbitrary problem task is not obvious.

5 Conclusion

We contribute JAvaSMT 3, the third generation of the unifying Java API for
SMT solvers. The package now contains more SMT solvers, an improved build
process, and support for MacOS and Windows. The project has over 20 con-
tributors, 2500 commits, and overall about 41000 lines of code.” JAvASMT is
used in Java applications (e.g., [23,33,36]) as a solution to combine convenience
and performance for the interaction with SMT solvers, or to switch between
different solvers and compare them [11,49]. The most prominent application using
JavaSMT is the verification framework CPAcHECKER (a widely-used software

" https://www.openhub.net/p/java-smt

https://www.openhub.net/p/java-smt

JavaSMT 3: Interacting with SMT Solvers in Java 205

project ® with 73 forks on GitHub alone), for which JavaSMT was originally
developed. In the future, we plan to support more SMT solvers, operating sys-
tems, and hardware architectures, while keeping the user interface stable. We
hope that even more researchers and developers of Java applications can benefit
from SMT solving via a convenient and powerful APIL.

Data Availability Statement. All benchmark tasks for evaluation, configuration
files, a ready-to-run version of our implementation, and tables with detailed
results are available in our reproduction package on Zenodo as virtual machine [1]
and as ZIP archive [2]. The source code of the open-source library JavaSMT [37]
is available in the project repository; see https://github.com/sosy-1lab/java-smt.

Funding. This project was supported by the Deutsche Forschungsgemeinschaft
(DFG) - 378803395 (ConVeY).

References

1. Baier, D., Beyer, D., Friedberger, K.: Reproduction package (VM) for ar-
ticle ‘JAVASMT 3: Interacting with SMT solvers in Java’'. Zenodo (2021).
https://doi.org/10.5281 /zenodo.4708050

2. Baier, D., Beyer, D., Friedberger, K.: Reproduction package (ZIP) for ar-
ticle ‘JAVASMT 3: Interacting with SMT solvers in Java’. Zenodo (2021).
https://doi.org/10.5281 /zenodo.4865175

3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: Proc. TACAS. pp. 268-283. LNCS 2031, Springer (2001).
https://doi.org/10.1007/3-540-45319-9 19

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proc.
SMT (2010)

5. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. CAV. pp. 171-177. LNCS 6806, Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1 14

6. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305-343. Springer (2018). https://doi.org/10.1007/978-3-319-10575-
8 11

7. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326-335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

8. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proc. FMCAD. pp. 25-32. IEEE
(2009). https://doi.org/10.1109/FMCAD.2009.5351147

9. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Proc. CAV. pp. 622-640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4 42

10. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifica-
tion. J. Autom. Reasoning 60(3), 299-335 (2018). https://doi.org/10.1007/s10817-
017-9432-6

8 https://github.com/sosy-1lab/cpachecker

https://github.com/sosy-lab/java-smt
https://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.5281/zenodo.4708050
https://doi.org/10.5281/zenodo.4865175
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://github.com/sosy-lab/cpachecker

206

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

D. Baier, D. Beyer, and K. Friedberger

Beyer, D., Keremoglu, M.E.: CPACHECKER: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184-190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1 16

Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189-197. FMCAD (2010)

Biere, A.: PicoSAT Essentials. JSAT 4(2-4), 75-97 (2008).
https://doi.org/10.3233/SAT190039

Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Proc. TACAS. pp. 193-207. LNCS 1579, Springer (1999).
https://doi.org/10.1007/3-540-49059-0 14

Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Advances in Computers 58, 117-148 (2003). https://doi.org/10.1016 /S0065-
2458(03)58003-2

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209-224.
USENIX Association (2008)

Cassez, F., Sloane, A.M.: ScaAarLaSMT: Satisfiability modulo theory
in Scala (tool paper). In: Proc. SCALA. pp. 51-55. ACM (2017).
https://doi.org/10.1145/3136000.3136004

Christ, J., Hoenicke, J., Nutz, A.: SMTINTERPOL: An interpolating SMT solver. In:
Proc. SPIN. pp. 248-254. LNCS 7385, Springer (2012). https://doi.org/10.1007/978-
3-642-31759-0 19

Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MATHSAT5
SMT solver. In: Proc. TACAS. pp. 93-107. LNCS 7795, Springer (2013).
https://doi.org/10.1007 /978-3-642-36742-7 7

Cok, D.R.: s5SMTLIB: Tutorial, validation, and adapter tools for SMT-LIBv2. In:
Proc. NFM. pp. 480-486. LNCS 6617, Springer (2011). https://doi.org/10.1007/978-
3-642-20398-5 36

Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207-242
(2016)

Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log. 22(3), 250-268 (1957). https://doi.org/10.2307/2963593

Demarchi, S., Menapace, M., Tacchella, A.: Automating elevator design with
satisfiability modulo theories. In: Proc. ICTAIL pp. 26-33. IEEE (2019).
https://doi.org/10.1109/ICTAIL.2019.00013

Donaldson, A.F., Haller, L., Kréning, D., Riimmer, P.: Software verification
using k-induction. In: Proc. SAS. pp. 351-368. LNCS 6887, Springer (2011).
https://doi.org/10.1007/978-3-642-23702-7 26

Dutertre, B.: YICES 2.2. In: Proc. CAV. pp. 737-744. LNCS 8559, Springer (2014).
https://doi.org/10.1007,/978-3-319-08867-9 49

Eén, N., Sérensson, N.: An extensible SAT-solver. In: Proc. SAT. pp. 502-518.
LNCS 2919, Springer (2003). https://doi.org/10.1007/978-3-540-24605-3 37
Ernst, G., Huisman, M., Mostowski, W., Ulbrich, M.: VerifyThis: Verification
competition with a human factor. In: Proc. TACAS. pp. 176-195. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3 12

Gario, M., Micheli, A.: PYSMT: A solver-agnostic library for fast prototyping of
SMT-based algorithms. In: Proc. SMT (2015)

Godefroid, P., Sen, K.: Combining model checking and testing. In: Handbook of
Model Checking, pp. 613-649. Springer (2018). https://doi.org,/10.1007/978-3-319-
10575-8 19

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.3233/SAT190039
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1145/3136000.3136004
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-20398-5_36
https://doi.org/10.1007/978-3-642-20398-5_36
https://doi.org/10.2307/2963593
https://doi.org/10.1109/ICTAI.2019.00013
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

JavaSMT 3: Interacting with SMT Solvers in Java 207

Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proc. NDSS. The Internet Society (2008)

Graf, S., Saidi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV.
pp. 72-83. LNCS 1254, Springer (1997). https://doi.org/10.1007/3-540-63166-6 10
Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs.
In: Proc. POPL. pp. 232-244. ACM (2004). https://doi.org/10.1145/964001.964021
Ibrhim, H., Khattab, S., Elsayed, K., Badr, A., Nabil, E.: A formal methods-
based rule verification framework for end-user programming in campus build-
ing automation systems. Building and Environment 181, 106983 (2020).
https://doi.org/10.1016 /j.buildenv.2020.106983

Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009). https://doi.org/10.1145/1592434.1592438

Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program
verification. In: Handbook of Model Checking, pp. 447-491. Springer (2018).
https: //doi.org/10.1007/978-3-319-10575-8 15

Joshaghani, R., Black, S., Sherman, E., Mehrpouyan, H.: Formal specification and
verification of user-centric privacy policies for ubiquitous systems. In: Proc. IDEAS.
pp. 31:1-31:10. ACM (2019). https://doi.org/10.1145/3331076.3331105
Karpenkov, E.G., Friedberger, K., Beyer, D.: JAVASMT: A unified interface for
SMT solvers in Java. In: Proc. VSTTE. pp. 139-148. LNCS 9971, Springer (2016).
https://doi.org/10.1007/978-3-319-48869-1 11

Mann, M., Wilson, A., Tinelli, C., Barrett, C.W.: SMT-SwITCH: A solver-agnostic
C++ API for SMT solving. arXiv/CoRR (2007.01374) (2020), https://arxiv.
org/abs/2007.01374

McMillan, K.L.: Interpolation and model checking. In: Handbook of Model Checking,
pp. 421-446. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8 14

de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solver. In: Proc. TACAS. pp.
337-340. LNCS 4963, Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

Niemetz, A., Preiner, M.: BirwuzrLA at the SMT-COMP 2020. arXiv/CoRR
(2006.01621) (2020), https://arxiv.org/abs/2006.01621

Niemetz, A., Preiner, M., Biere, A.: BOOLECTOR 2.0. J. Satisf. Boolean Model.
Comput. 9(1), 53-58 (2014). https://doi.org/10.3233/sat190101

Niemetz, A., Preiner, M., Wolf, C., Biere, A.: BTor2, BTORMC, and
BooLECTOR 3.0. In: Proc. CAV. pp. 587-595. LNCS 10981, Springer (2018).
https: //doi.org/10.1007/978-3-319-96145-3 32

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. LNCS 2283, Springer (2002). https://doi.org/10.1007/3-540-45949-9
Riener, H., Haedicke, F., Frehse, S., Soeken, M., Grofe, D., Drechsler, R., Fey, G.:
METASMT: Focus on your application and not on solver integration. Int. J. Softw.
Tools Technol. Transf. 19(5), 605-621 (2017). https://doi.org/10.1007 /s10009-016-
0426-1

Riimmer, P.: A constraint sequent calculus for first-order logic with linear in-
teger arithmetic. In: Proc. LPAR. pp. 274-289. LNCS 5330, Springer (2008).
https://doi.org/10.1007/978-3-540-89439-1 20

Sebastiani, R., Trentin, P.: OPTIMATHSAT: A tool for optimization mod-
ulo theories. In: Proc. CAV. pp. 447-454. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4 27

Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic
problems. In: Kullmann, O. (ed.) Proc. SAT. pp. 244-257. LNCS 5584, Springer
(2009). https://doi.org/10.1007/978-3-642-02777-2 24

https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1145/964001.964021
https://doi.org/10.1016/j.buildenv.2020.106983
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1145/3331076.3331105
https://doi.org/10.1007/978-3-319-48869-1_11
https://arxiv.org/abs/2007.01374
https://arxiv.org/abs/2007.01374
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/2006.01621
https://doi.org/10.3233/sat190101
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s10009-016-0426-1
https://doi.org/10.1007/s10009-016-0426-1
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-642-02777-2_24

208 D. Baier, D. Beyer, and K. Friedberger

49. Sprey, J., Sundermann, C., Krieter, S., Nieke, M., Mauro, J., Thiim, T., Schaefer,
I.: SMT-based variability analyses in FEATUREIDE. In: Proc. VaMoS. pp. 6:1-6:9.
ACM (2020). https://doi.org/10.1145/3377024.3377036

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3377024.3377036
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Efficient SMT-Based Analysis of Failure
Propagation

1®, Alessandro Cimatti'@®, Anthony Fernandes Pires!,

2(5)

Marco Bozzano
Alberto Griggio'®, Martin Jonas'®, and Greg Kimberly

uncy.
meaq

! Fondazione Bruno Kessler, Trento, Italy
{bozzano,cimatti,griggio,mjonas}@fbk.eu
2 The Boeing Company, Seattle, USA
greg.kimberly@boeing.com

Jaluats

Abstract. The process of developing civil aircraft and their related sys-
tems includes multiple phases of Preliminary Safety Assessment (PSA).
An objective of PSA is to link the classification of failure conditions and
effects (produced in the functional hazard analysis phases) to appro-
priate safety requirements for elements in the aircraft architecture. A
complete and correct preliminary safety assessment phase avoids poten-
tially costly revisions to the design late in the design process. Hence,
automated ways to support PSA are an important challenge in modern
aircraft design. A modern approach to conducting PSAs is via the use of
abstract propagation models, that are basically hyper-graphs where arcs
model the dependency among components, e.g. how the degradation of
one component may lead to the degraded or failed operation of another.
Such models are used for computing failure propagations: the fault of a
component may have multiple ramifications within the system, causing
the malfunction of several interconnected components. A central aspect
of this problem is that of identifying the minimal fault combinations,
also referred to as minimal cut sets, that cause overall failures.

In this paper we propose an expressive framework to model failure
propagation, catering for multiple levels of degradation as well as cyclic
and nondeterministic dependencies. We define a formal sequential seman-
tics, and present an efficient SMT-based method for the analysis of failure
propagation, able to enumerate cut sets that are minimal with respect to
the order between levels of degradation. In contrast with the state of the
art, the proposed approach is provably more expressive, and dramatically
outperforms other systems when a comparison is possible.

1 Introduction

The process of developing civil aircraft and their related systems is guided by
documents ARP4754A [17] and ARP4761 [16] produced by the engineering and
standards organization SAE International. These documents describe a struc-
tured process for the safety assessment of these classes of platforms. An impor-
tant stage is that of the Preliminary Aircraft Safety Assessment (PASA) and

© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 209-230, 2021.
https://doi.org/10.1007/978-3-030-81688-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_10&domain=pdf
http://orcid.org/0000-0002-4135-103X
http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0002-3311-0893
http://orcid.org/0000-0003-4703-0795
https://doi.org/10.1007/978-3-030-81688-9_10

210 M. Bozzano et al.

Preliminary System Safety Assessment (PSSA). The PASA is followed by mul-
tiple PSSA, carried out at the level of the systems composing the aircraft. One
important goal of these process stages is to link the classification of failure con-
ditions and effects (produced in the aircraft functional hazard analysis phase) to
appropriate safety requirements for elements in the aircraft architecture. These
safety requirements drive, among other things, assignment of target Develop-
ment Assurance Levels (DAL) for items within the architecture. A complete and
correct preliminary safety assessment phase avoids potentially costly revisions
to the design late in the design process. Hence, automated ways to support PSA
are an important challenge in modern aircraft design [18].

An important goal of PSAs is to fully understand how faults of simple func-
tions (e.g. providing electrical power, on-ground braking) interact and propagate
to affect the overall behaviours (e.g. landing, take-off, taxiing). A modern app-
roach to conducting such safety assessments is via propagation models [1,14,19],
that model the dependency among components, e.g. how the degradation of one
component may lead to the degraded or failed operation of another. Such mod-
els are used for computing failure propagations: the fault of a component may
have multiple ramifications within the system, causing the malfunction of several
interconnected components. A central problem is identifying the minimal fault
combinations, also referred to as minimal cut sets, that cause overall failures [12].

Given that PSAs occur in the early stages of the development process when
limited information regarding the design is available, reasoning is carried out at
a very high level of abstraction. Therefore, instead of using behavioural models
(e.g., infinite-state transition systems) adopted in formal verification, the system
is more naturally modeled by a simpler formalism of propagation graphs. This
does not make PSA any easier. There are in fact several aspects that must be
taken into account. The first problem is the sheer size of propagation graphs,
both in terms of nodes and hyper-paths to be explored, which make enumerative
techniques completely inadequate.

Second, the propagation is non-Boolean [19]. That is, fu
the degradation levels of the system functions are not
binary (working vs not working) but the functions may be
subject to different levels of degradation (e.g. fully oper- fs fd
ational, partly failed, completely failed), and fail in dif- \ /
ferent ways (e.g. detected vs undetected, stuck open vs w
stuck closed), and different failures may be associated to
different probabilities [19]. For example, the state of a com- Fig.1. Hasse dia-
ponent can be abstractly modeled into working (w), failed 8ram of the FDs
safe (fs), failed detected (fd), or failed undetected (fu), with W3F [14].
degrees of degradation partially ordered as shown in Fig. 1.

In this setting, the notion of minimality needs to take into account the order
among the levels of degradation, and can not be simply considered in terms of
minimality with respect to set-inclusion. Third, various forms of failure propaga-
tion may be possible, e.g., nondeterministic, temporally-constrained, cyclic. For
example, the failure of a power generator may lead, within a certain amount of

Efficient SMT-Based Analysis of Failure Propagation 211

time, to a depleted battery and then to the loss of an engine. In turn, the loss of
an engine may compromise the ability to generate power, which clearly requires
the ability to deal with cyclic propagation graphs. Additionally, a failure of the
control system might cause a pressure valve to become either stuck open or stuck
closed; this requires the ability to deal with nondeterministic propagations.

In this paper we tackle the problem of analyzing failure propagation in the full
generality required by real-world applications. We start from Finite Degradation
Structures (FDS) [14], a recently-proposed modeling framework, which unifies
various combinational models traditionally used in safety analysis (such as fault
trees and minimal cut sets) and generalizes them to deal with different levels of
degradation. We propose a framework, referred to as PGFDS (Propagation Graphs
over FDS), that allows to model non-deterministic and cyclic propagation graphs.
The framework is general and can be used in other safety-critical domains.

In order to deal with cyclic behaviours, PGFDS require a sequential semantics,
expressed via symbolic transition systems. The computation of minimal cut sets
over PGFDS can be carried out by means of techniques based on model checking,
developed for the general case of behavioural models [6].

Then, we prove that it is possible to carry out the same analysis within a
combinational setting, leveraging two widely adopted assumptions: that faults
are persistent and that the fault propagation is monotone. These assumptions
allow us to devise an efficient algorithm that can analyze fault propagations of
realistic industrial benchmarks that are currently out of reach of state-of-the-art
methods. The analysis of PGFDS is reduced to model enumeration for an SMT
formula that does not require the explicit unrolling of the transition system.
We tackle two key difficulties. The first one is to ensure causality and rule out
self-supporting fault configurations in the combinational encoding. This is done
by imposing cycle-breaking constraints requiring the existence of a partial order
that is then constructed by the SMT solver during the analysis. The second one
is to devise efficient enumeration techniques of models that are FDS-minimal,
i.e., minimal with respect to the severity of the degradation given by the FDS.
To this end, we propose an SMT-based enumerator of FDS-minimal models.

We have experimentally evaluated our approach on a comprehensive set of
realistic benchmarks, also generating random systems that have a similar struc-
ture as our proprietary systems'. The results demonstrate substantial advances
with respect to the state of the art. Our approach is clearly superior to the app-
roach proposed in [14], that is limited to the case of acyclic deterministic PGFDS.
For the cyclic PGFDSs, we contrast our approach against the sequential approach
based on model-checking and show that our approach is able to scale to large
PGFDS, dramatically outperforming the sequential approach.

This paper is structured as follows. In Sect.2 we present the mathematical
notation and background on FDS. In Sect. 3 we describe Propagation Graphs over
FDS (PGFDS). In Sect.4 we present the combinational encoding of PGFDS into
SMT. In Sect.5 we describe how to use the SMT encoding for the enumeration
of FDs-minimal cut sets. In Sect. 6 we discuss some related work, and in Sect. 7

! Unfortunately the proprietary systems cannot be disclosed.

212 M. Bozzano et al.

we present the experimental evaluation. In Sect. 8 we draw some conclusions and
outline directions for future work.

2 Preliminaries

In the section, we explain the basic mathematical conventions that are used
in the paper. We assume that the reader is familiar with the basic ideas of
Satisfiability Modulo Theories (SMT) and in particular with the theory of linear
integer arithmetic and the DPLL(T) procedure, as presented, e.g., in [2].

If convenient, we define unary functions with small domains in-place exten-
sionally, e.g., {1 +— 2,2 +— 3} is a function with domain {1,2} that maps 1 to 2
and 2 to 3. We say that the n-ary function f(z1,xa,...,2,) depends on its for-
mal argument z; if there are some values vy, vs, ..., v,, v} in the corresponding
domains such that f(vi,va,..., v, ... 0,) # f(v1,02,...,0),...v,). Given sets A
and B, we denote as B4 the set of all functions from A to B. Given a partially
ordered set (A, <), its subset B C A is called an upper (resp. lower) set if for
all b € B, a € A, the condition a > b (resp. a < b) implies a € B.

A Finite Degradation Structure (FDS) [14] is a triple (FM, <, 1), where FM
is a finite set of failure modes and < is a partial order on FM with the least
element L. For any set A and an FDs B = (FMp,<p, Lp), the FDs B4 for
the set of functions from A to FM p is defined as ((FM p)*, <ga, La), where
lpa(a) = Lpforalla € A, and f <ga f’ if and only if f(a) <p f'(a) for all
a € A. We assume that each FDS contains at least two elements. We say that
an FDS is Boolean if it is isomorphic to the structure ({L, T}, L < T, 1). In the
following, for an FDS D = (FM,<, 1), we denote elements of the set FMwith
f, f and call them failure modes.

Given a first-order formula ¢ over the language of the theory of linear integer
arithmetic, an assignment p that assigns a value u(b) € {false,true} to each
free Boolean variable b of ¢ and a value pu(n) € Z to each free integer variable n
of ¢ is called a model of ¢ (denoted p = ¢) if u makes ¢ true. If B is a subset
of free Boolean variables of ¢, the model pu | ¢ is called subset-minimal with
respect to B if there is no model u' = ¢ such that {b € B | 1//(b) = true} C {b €
B | u(b) = true}.

A transition system TS is a tuple (X,I,T) where X is a set of (state) vari-
ables, I(X) is a formula representing the initial states, and 7'(X, X’) is a formula
representing the transitions. A state of T'S is an assignment to the variables X.
A trace of M is a (possibly infinite) sequence sg, s1, . . . of states such that so = I
and, for all i > 0, s;,5; ; =T.

3 Propagation Graphs over FDSs

In this section, we introduce our model for fault propagation, which we call
Propagation Graphs over FDSs (PGFDS), and provide a sequential semantics for
it which can be used to encode PGFDSs into transition systems.

Efficient SMT-Based Analysis of Failure Propagation 213

Intuitively, a Propagation Graph over FDS (PGFDS) consists of a set of com-
ponents of the system and of the mext function. In each step of the failure
propagation, each component is in some failure mode from the underlying FDS.
In the next step of the failure propagation, each component can either 1) stay in
its previous failure mode or 2) switch to an arbitrary failure mode from the set
of possible next failure modes. The set of possible next failure modes for each
component is given by the function nezt, based on the current failure modes of
all components in the system.

Definition 1 (Propagation Graph over FDS (PGFDS)). Given a finite
degradation structure D = (FM,<, 1), a propagation graph over D is a pair
S = (C, next), where

- C' is a finite set of system components, and

- next: C — (FMC — 2FMY s a mapping that assigns to each component
¢ € C a next failure mode function next(c), which maps failure modes of all
components in C to a set of possible next failure modes of c.

A state of S is a mapping s: C — FM that assigns a failure mode f € FM to
each system component c € C.

Ezample 1. Consider a system with three components, H (hydraulic), E (elec-
tric), and G (control on ground), over the Boolean FDs ({1, T} L < T,1).
Each of the components is either working correctly (represented by the failure
mode L) or incorrectly (T). Component G depends on the correct functionality
of either E or H. Component E depends on H to function correctly and, symmet-
rically, H depends on E. The failure propagation of this system can be described
by a PGFDS S = ({G, E, H}, next), where

— next(G)(s) = {T}if s(E) = s(d) = T and next(G)(s) = () otherwise;
— next(E)(s) = {T}if s(H) = T and next(E)(s) = 0 otherwise;
— next(H)(s) = {T}if s(E) = T and next(H)(s) = 0 otherwise.

Note that nezt(c)(s) = @ means that if the system is in the state s, the component
¢ cannot change its current failure mode.

The structure is intuitively associated with the hypergraph depicted in Fig. 2.
The dashed rectangles represent the fact that each component can fail on its own
(locally); the hyper-arc from E and H to G is conjunctive, while the arcs incoming
into a node are disjunctive. a

The important assumption of our approach is that we consider only fault-
persistent propagations, i.e., fault propagations where each component can fail
only once and after it does, it stays in the same failure mode forever. Note that
this is a realistic assumption that is also used in other techniques for reliability
analysis [5]. It is also implicitly used in other modeling techniques that are purely
combinational (e.g., [19]) because they model the system only in a single time
step, without considering any change in time whatsoever. Single propagation step
of such computations can be described by a fault-persistent transition relation;
the whole such computation as fault-persistent failure propagation.

214 M. Bozzano et al.

' H-local - - - - ~ ****J‘E—locall

Fig. 2. The hypergraph view of a simple PGFDS.

Definition 2 (Fault-persistent transition relation). Let S = (C, next) be
a PGFDS over an FDS with the least element L. The fault-persistent transition
relation of S, denoted as Ry, is the binary relation between states of S such that
for all states s, s, the relation Rs(s,s’) holds if and only if for each c € C

- §'(c) = s(c) or
- s(c) = L and s'(c) € next(c)(s).

Definition 3 (Fault-persistent failure propagation). Given a PGFDS S =
(C, next), its fault-persistent transition relation R, and k € N, the sequence
(si)o<i<k of states of S is called a fault-persistent failure propagation if the
relation Rs(s;, $;+1) holds for all 0 <i < k.

Because we deal only with fault-persistent failure propagations in this paper,
we from now on refer to the fault-persistent transition relation and the fault-
persistent failure propagation only as transition relation and failure propagation,
respectively.

Definition 4 (Cyclic PGFDS). Let S = (C, next) be a PGFDS. A component
¢ € C depends on a component d € C iff next(c)(s) # next(c)(s’) for some
s,8': C — FM such that s(d) # s'(d) and s(c) = §'(¢') for all ¢ # d. Let
deps(c) := {d € C | ¢ depends on d}, D C C x C be such that D(c,c') if and
only if ¢ € deps(c), and let DV be the transitive closure of D. Then we say that
S is cyclic if and only if there exists c € C such that D% (c,c¢) holds.

Ezample 2. In the PGFDS S from Example 1, the component G depends on com-
ponents E and H, the component E depends on H, and the component H depends
on E. The PGFDS S is therefore cyclic because E (and also H) transitively depends
on itself. O

To analyze reliability of the modeled system, it is important to identify the
failures of its components (i.e., assignment of failure modes to the components)
which cause the system to reach a given set of dangerous states, usually called top
level event (TLE). Such assignments are called cut sets. Since the number of all
cut sets can be prohibitively large, it is often enough to identify the least severe
failures in terms of the underlying FDS that are sufficient to cause the TLE.
Such cut sets are called FDS-minimal, or minimal for short. These concepts are
formalized in the following definitions.

Efficient SMT-Based Analysis of Failure Propagation 215

Definition 5 (Top Level Event). Given a PGFDS S, a Top Level Event
(TLE) is an arbitrary set of states of S.

Definition 6 ((FDS-Minimal) Cut Set). Given a PGFDS S = (C, next), and
a top level event TLE, a cut set is any state s for which there is a fault-persistent
failure propagation that starts in s and ends in some sy € TLE. A cut set is
called FDs-minimal (or minimal for short) if it is minimal with respect to the
pointwise ordering < of the underlying FDS.

Given a system S and a top level event TLE, we denote the set of all correspond-
ing cut sets as CS(S, TLE) and the set of all minimal cut sets as MCS(S, TLE).
As a convention, when talking about cut sets, we will explicitly mention only
the components to which the cut set assigns a failure mode different from L.

Ezample 3. Consider again the PGFDS S from Example 1 and the top level event
TLE = {s: {¢,E,H} — {T,1} | s(¢) = T}, which corresponds to the compo-
nent G not working correctly. The minimal cut sets for the PGFDS S and the
given top level event are

1. {G — T}, witnessed by a failure propagation ({G — T,E — L, H+— 1}) of
length 1.

2. {E — T}, witnessed by a failure propagation ({G+— L,E— T,H+— 1}, {G—
1L,E—~T,H—~ThHh{G— T,E— T,H— T}) of length 3.

3. {H+— T}, witnessed by a failure propagation ({G+— L,E— L H+— T}, {G—
1,E—~T,H—~ThHh{G— T,E— T,H— T}) of length 3.

Note that besides these three minimal cut sets, there are other cut sets that are
not minimal, such as {E+— T,H— T}. O

Fault-persistent computations of a PGFDS can be easily represented as traces
of a (symbolic) transition system.

Definition 7 (Fault-persistent transition system). Given a PGFDS S =
(C,next) and an ¥Ds D = (FM, <, 1), the corresponding fault-persistent (sym-
bolic) transition system is given by T'Ss = (X, true,T'), where:

- X ={x. | c€ C} is the set of state variables, with domain FM ;

- T(X,X’) is a symbolic encoding of the fault-persistent transition relation of
S as given in Definition 2. That is, for each assignment u: X UX' — FM,
w =T if and only if Rs(s,s’) holds, where s: C — FM is defined as s(c) =
w(ze) (and similarly for s').

By definition, every fault-persistent computation of S has a corresponding trace
(of the same length) in T'Sg. Therefore, encoding PGFDSs as transition systems
allows leveraging off-the-shelf algorithms for subset-minimal cut set enumer-
ation, such as those given in [6]. However, this might be inefficient, particu-
larly for TLEs that are triggered by long failure propagations (corresponding
to equally-long traces of the induced transition system). Moreover, as we show
later, enumerating FDS-minimal cut sets is more involved.

216 M. Bozzano et al.

Fault propagation systems used in practice often have the property that no
transition can be disabled by additional faults, i.e., by switching a failure mode
of a component from 1 to f # L. This is also the case for the PGFDS from
Example 1. Such systems are called subset-monotone or monotone for short.
This is formalized by the following definition.

Definition 8 (Subset-monotone PGFDS). A pGrDS S = (C, next) is called
subset-monotone if for all s,8': C — FM, the condition Ve € C. s(c) # L —
s(e) = §'(c) implies Ve € C. next(c)(s) C next(c)(s).

4 From Sequential to Combinational

In this section, we describe a combinational encoding of fault-persistent compu-
tations of a PGFDS, which is guaranteed to be exact for subset-monotone PGFDSs
and provides a useful overapproximation for general PGFDSs. In the rest of the
section, let S = (C, next) be a PGFDS over the FDS D = (FM,<, 1), and TLE
be a top level event. We show how to construct a first-order formula ¢.s over
the theory of linear integer arithmetic whose models correspond to cut sets of §
with respect to TLE. In the next section, we then use this formula to enumerate
all FDs-minimal cut sets of S.

To encode the propagations of S, for each component ¢ € C' and each failure
mode f € FM we introduce two Boolean variables: I. ¢ and F ;. The variable
I. s encodes whether ¢ was in the failure mode f in the initial state of the
propagation. The variable F, ; encodes whether ¢ has been in the failure mode
f at any time during the propagation. We can then encode TLE as a formula
orLE over variables F, ¢.?

Considering now a possible propagation, a component ¢ can be in failure
mode f # 1 at some time during the propagation for two reasons: either it was
already in f in the initial state of the propagation, or it transitions to f because
of its next function. The first case is represented by I. ; being true. The second
case can be encoded as follows (for each c € C and f € FM \ {L}):

\/ N\ Fusa, (1)

s: C—FM dedeps(c
fEneate)s) ‘il

stating that there must exist a row in the truth table of next(c), whose result
includes f and which agrees with the current state on the failure modes of failed
dependencies.®> The above, however, would not work in the presence of cycles.
This can already be seen on the simple cyclic PGFDS from Example 1.

2 A naive encoding would be using the formula \/SeTLE(/\Cec’S<C)#_ Fe sty A
/\cec,s(c):i_ /\fEFM\{J_} —Fe,r), but more compact representations are of course pos-
sible (particularly if TLE is given symbolically).

3 This formula can again be encoded more compactly; particularly if the nezt function
is given symbolically, which is usually the case in practice.

Efficient SMT-Based Analysis of Failure Propagation 217

Ezxample 4. Consider again the PGFDS S from Example 1. The above-described
encoding of the propagations of S' is

(FG,T - (IG,T \ (FE,T A FH7T))) A
(FE,T - (IE,T \ FH,T)) A
(FH,T - (IH,T \ FE,T))~

Although this encoding has a model p such that p = —Io T A —IgT A ~IyT A
Fo 1 A Fo 1 A Fy T, there is no propagation path of S in which both components
E and H are initially in the state L and switch to state T during the propagation.
The problem is that the encoding allows models where a failure of E was caused
by a failure of H, which was in turn caused by the same failure of E. O

In order to solve the problem, we introduce constraints imposing a causal
ordering among the components, stating that the failure of a component can be
caused only by other components that precede it in the causal order. We encode
this by introducing one additional integer variable o. for each component c,
which intuitively corresponds to the time when the component ¢ switched to a
failure mode different from 1, and modifying the formula (1) to take the causal
ordering into account:*

\/ /\ (Fd,s(d) Nog < OC) . (2)

s: C—FM decdeps(c
Fencarons) S

Putting it all together, the encoding for the failure mode changes is given by the
formula @pere below:

Prext = /\ (Fc,f - (IC,f \ (2))) A (ICJ - FC,f)'
ceC
FeFMN(L)

Example 5. For the PGFDS S from Example 1, the correct encoding of the prop-
agations of S is thus the following formula @, eq:

(Fom — (a7 V (Fe, 7 Nog < 0g) A (Fu, 7 Now < 0g))) A
(IG,T — Iy T) A

(Fo,m — (Ie, 7V (Fu1 Aoy <og))) A

(IE,T - FE,T) A

(Fyu1m — (Tu1V (FaT ANog<ow))) A

(IH,T - FH,T)-

Note that the constraints for causal ordering now rule out the spurious self-
supporting propagation in which E fails because of H and H fails because of E.

% We remark that such ordering constraints are needed only if the input PGFDS is
cyclic, and only between components in the same strongly connected component of
the dependency graph.

218 M. Bozzano et al.

This would require that oy < oy and oy < oy are both true, which is clearly
impossible in the theory of linear integer arithmetic (or, more generally, in any
theory in which < is interpreted as a strict ordering relation).

The propagations of S mentioned in Example 3 correspond to the following
assignments:

1. The propagation for the cut set {G — T} corresponds to an assignment p
such that p = Io 1 A =Ig T A —Iy1T A Fom A =Fg1m A =Fy 1 and p(og) =
p(0x) = p(ox) = 0.

2. The propagation for the cut set {E — T} corresponds to an assignment p
such that p = —Is7 A Iy A ~Iy1 A Fom AN Fom A Fy1 and p(og) = 2,
(o) =0, ploy) = 1.

3. The propagation for the cut set {H — T} corresponds to an assignment p
such that p = —Is 7 A ~Igm A Iy7 A For N Fom A Fy1 and p(og) = 2,
(o) =1, ploy) = 0.

These assignments are not unique; there are infinitely many choices for the values
of the ordering variables o.. Also note that there is no global causality ordering
for the system: the causality ordering is different for different propagations. O

Finally, we encode the fault-persistence constraint by stating that no component
can be in two failure modes either in the initial state of the propagation or at
any time during the propagation:

Ponce = /\ (_‘ ¢, f \ _'Ic,f') A (_‘ e, f V- Caf’) :

ceC
fof'eFM\{L}
£

The final formula is then given by .:

Pes = PTLE N Pnext N\ Ponce-

As the following theorem shows, the formula ¢, for general systems encodes
an overapprozimation of the set CS(S, TLE). The reason for this is that the
encoding does not enforce failure mode of dependencies that are working, i.e.,
are in the failure mode L. Note that even an overapproximation of CS(S, TLE)
is useful for safety analysis; it can be used, for example, for computing an upper
bound on the probability of failure of the system. Moreover, if the system S is
subset-monotone, which is often the case in practice, the formula ¢ s is guaran-
teed to encode the set CS(S, TLE) exactly.

To formulate the relationship precisely, we define the function that provides
the correspondence between the models of p and the cut sets of S. Observe
that thanks to @onee, €ach model u of ¢ s corresponds to a unique initial state
modelToState(u) of S as defined below:

fo i {f e FMAA{L} | p(le ;) = true} = {f},

model ToState(j1)(c) = {J_, if {f' € FM\{L} | u(lepr) = true} = 0.

Efficient SMT-Based Analysis of Failure Propagation 219

MCS-enumeration(¢.s, modelToState):
solver := SMT-solver()
res := ()
assert-formula(solver, ;)
for I. s € vars(pes):
add-preferred-var(solver, I, s, false)
while check-sat(solver):
u := get-model(solver)
1 = true
for I. s € vars(yes):
if p(le,5) = true:
Y=Y Aley
res := res U {modelToState(u)}
assert-formula(solver, —))
return res

© 0 N oA W

e e
B WO

Fig. 3. SMT-based MCS enumeration algorithm.

Theorem 1. For an arbitrary PGFDS S and a top level event TLE,
CS(S,TLE) C {modelToState(n) | it = @es}-

Moreover, if S is subset-monotone, these sets are equal.

5 Enumeration of FDS-Minimal Cut Sets

In this section, we show how to efficiently enumerate FDS-minimal cut sets of
subset-monotone systems using the formula ¢.; and an SMT solver. We first
consider a simplified case, in which the underlying FDS D is Boolean. We then
show how to generalize our solution to arbitrary FDSs.

5.1 Algorithm for Boolean FDSs

The pseudo-code of our procedure for the case when the underlying FDS is
Boolean is shown in Fig. 3. Intuitively, the algorithm enumerates all the subset-
minimal models of ¢.s with respect to the set of variables of form I. ;. These
models are enumerated one by one and each enumerated model is, together with
all its supermodels, blocked by the assertion on line 13, until the formula becomes
unsatisfiable. Each model of the formula is converted to a cut set by the function
modelToState.

The algorithm makes use of a DPLL(T)-based SMT solver that provides the
following functionalities:

1. An assert-formula method that allows to add constraints incrementally;
2. A check-sat method to determine the satisfiability of the current set of con-
straints;

220 M. Bozzano et al.

3. A get-model method that returns a model for the current asserted set of
constraints, in case they are satisfiable;

4. An add-preferred-var method that allows to control the branching heuristics
of the internal SAT engine of the solver, such that whenever a SAT decision
needs to be performed, variables in the preferred set are always considered
before the other variables for branching, and are assigned the value specified
in the add-preferred-var call.®

The correctness for our algorithm is formalized by the theorem below.

Theorem 2 (MCS enumeration over Boolean FDS). For a subset-
monotone PGFDS S over the Boolean ¥DS, the vresult of MCS—
enumeration(p.s, modelToState) is the set of all FD