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Preface

It was our privilege to serve as the program chairs for CAV 2021, the 33rd International
Conference on Computer-Aided Verification. CAV 2021 was held as a virtual con-
ference during July 20–23, 2021. The tutorial days were on July 19 and July 24, 2021,
and the pre-conference workshops were held during July 18–19, 2021. Due to the
COVID-19 outbreak, all events took place online.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This puts CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2021 received a very high number of submissions (290). We accepted 16 tool
papers, 3 case studies, and 60 regular papers, which amounts to an acceptance rate of
roughly 27%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, machine learning, and industrially
deployed systems. The program featured keynote talks by Loris D’Antoni
(UW-Madison), Corina Pasareanu (NASA), and Anna Slobodova (Centaur Technol-
ogy, Inc.) as well as invited tutorials by Nate Foster (Cornell University), Zak Kincaid
(Princeton) together with Tom Reps (UW-Madison), and Nadia Polikarpova (UC San
Diego). Furthermore, we continued the tradition of Logic Lounge, a series of discus-
sions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2021 hosted the following workshops:
Formal Approaches to Certifying Compliance (FACC), Formal Methods for
ML-Enabled Autonomous Systems (FoMLAS), Formal Methods for Blockchains
(FMBC), Numerical Software Verification (NSV), Theory and Practice of String
Solving (TPSS), Verifying Probabilistic Programs (VeriProP), Synthesis (SYNT),
Satisfiability Modulo Theories (SMT), and Verification Mentoring Workshop (VMW).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2021 consisted of 79 members — a
committee of this size ensures that each member has to review only a reasonable
number of papers in the allotted time. In all, the committee members wrote over 900
reviews while investing significant effort to maintain and ensure the high quality of the
conference program. We are grateful to the CAV 2021 Program Committee for their
outstanding efforts in evaluating the submissions and making sure that each paper got a
fair chance. Like last year’s CAV, we made the artifact evaluation mandatory for tool
paper submissions and optional, but encouraged, for the rest of the accepted papers.
This year saw an unprecedented number of 66 artifact submissions. The Artifact
Evaluation Committee consisted of 72 members who put in significant effort to eval-
uate each artifact. The goal of this process was to provide constructive feedback to tool



developers and help make the research published in CAV more reproducible. We are
also very grateful to the Artifact Evaluation Committee for their hard work and ded-
ication in evaluating the submitted artifacts.

CAV 2021 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2021 a success. First, we would like to thank Clément Pit-Claudel and Maria Schett for
chairing the Artifact Evaluation Committee and John Cyphert for putting together the
proceedings. We also thank Arie Gurfinkel for chairing the workshop organization,
Bor-Yuh Evan Chang for managing sponsorship, Thomas Wies for arranging student
fellowships, Norine Coenen for handling publicity, Leopold Haller for organising the
Logic Lounge, and Peter Müller for putting together the Ask me Anything program. We
also thank Jean-Baptiste Jeannin and Arjun Radhakrishna for chairing the Mentoring
Committee. Putting together an online conference is a complex task and we are grateful
to the virtualization chair Tiago Ferreira, the student volunteer coordinators Tobias
Kappé and Tao Gu, the local organizers for the Asia timezone, Ichiro Hasuo and
Krishna S, and the team at Slides Live for all their efforts. Last but not least, we would
like to thank the members of the CAV Steering Committee (Kenneth McMillan, Aarti
Gupta, Orna Grumberg, and Daniel Kroening) for helping us with several important
aspects of organizing CAV 2021.

We hope that you will find the proceedings of CAV 2021 scientifically interesting
and thought-provoking!

June 2021 Alexandra Silva
Rustan Leino
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Abstract. We present the first machine learning approach to the ter-
mination analysis of probabilistic programs. Ranking supermartingales
(RSMs) prove that probabilistic programs halt, in expectation, within
a finite number of steps. While previously RSMs were directly synthe-
sised from source code, our method learns them from sampled execution
traces. We introduce the neural ranking supermartingale: we let a neu-
ral network fit an RSM over execution traces and then we verify it over
the source code using satisfiability modulo theories (SMT); if the latter
step produces a counterexample, we generate from it new sample traces
and repeat learning in a counterexample-guided inductive synthesis loop,
until the SMT solver confirms the validity of the RSM. The result is thus
a sound witness of probabilistic termination. Our learning strategy is
agnostic to the source code and its verification counterpart supports the
widest range of probabilistic single-loop programs that any existing tool
can handle to date. We demonstrate the efficacy of our method over a
range of benchmarks that include linear and polynomial programs with
discrete, continuous, state-dependent, multi-variate, hierarchical distri-
butions, and distributions with undefined moments.

1 Introduction

Probabilistic programs are programs whose execution is affected by random vari-
ables [17,19,23,29,36]. Randomness in programs may emerge from numerous
sources, such as uncertain external inputs, hardware random number generators,
or the (probabilistic) abstraction of pseudo-random generators, and is intrinsic
in quantum programs [34]. Notable exemplars are randomised algorithms, cryp-
tographic protocols, simulations of stochastic processes, and Bayesian inference
[7,33]. Verification questions for probabilistic programs require reasoning about
the probabilistic nature of their executions in order to appropriately characterise
properties of interest. For instance, consider the following question, correspond-
ing to the program in Fig. 1: will an ambitious marble collector eventually gather
any arbitrarily large amounts of red and blue marbles? Intuitively, the question
has an affirmative answer regardless of the initially established target amounts,
since there is always a chance of collecting a marble of either color. Notice that,
if the probabilistic choice is replaced with non-determinism, as often happens
in software verification, an adversary may exclusively draw one color of marble

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 3–26, 2021.
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and make the program run forever. The question that matches the original intu-
ition is whether the expected number of steps to termination is finite; this is the
positive almost-sure termination (PAST) question [8,10,13,19,27].

Fig. 1. The ambitious marble collector (the variables red and blue are initialised non-
deterministically).

Probabilistic termination analysis is typically mechanised through the auto-
mated synthesis of ranking supermartingales (RSMs), which are functions of the
program variables whose value (i) decreases in expectation by a discrete amount
across every loop iteration and (ii) is always bounded from below; an RSM
formally witnesses that a program is PAST [10,13]. Early techniques for discov-
ering RSMs reduced the synthesis problem from the source code of the program
into constraint solving [10]. These methods have lent themselves to various gen-
eralisations, including polynomial programs, programs with non-determinism,
lexicographic and modular termination arguments, and persistence properties
[2,14–16,20,25]. Recently, for special classes of probabilistic programs or term
rewriting systems, novel automated proof techniques that leverage computer
algebra systems and satisfiability modulo theories (SMT) have been introduced
[5,6,38,39,41]. All the above methods are sound and, under specific assumptions,
complete; they represent the state of the art for the class of programs they have
been designed for. However, their assumptions are often too restrictive for the
analysis of many simple programs. In particular, to the best of our knowledge,
none can identify an RSM for the program in Fig. 1. For this simple program, it
is easy to argue that the expected output of the neural network depicted in Fig. 2
decreases after every iteration of the loop and that it is always non-negative (see
Ex. 1). As such, this neural network is an appropriate RSM for the program.

Fig. 2. A neural ranking supermartingale for the program in Fig. 1.
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We present a novel method for discovering RSMs using machine learning
together with SMT solving. We introduce the neural ranking supermartingale
(NRSM) model, which lets a neural network mimic a supermartingale over sam-
pled execution traces from a program. We train an NRSM using standard optimi-
sation algorithms over a loss function that makes the neural network decrease—
in average—across sampled iterations. We phrase the certification problem into
that of computing a counterexample for the NRSM. To do so, we encode the
neural network together with the expected value of the program variables; then,
we use an SMT solver for verifying that the expected output of the network
decreases along every execution. If the solver falsifies the NRSM, then it pro-
vides a counterexample that we use to guide a resampling of the execution
traces; with this new data we retrain the neural network and repeat verifica-
tion in a counterexample-guided inductive synthesis (CEGIS) fashion, until the
SMT solver determines that no counterexample exists [4,44]. In the latter case,
the solver has certified the generated NRSM; our method thus produces a sound
PAST proof or runs indefinitely. Our procedure does not return for programs that
are not PAST and may, in general, not return for some PAST instances. How-
ever, we experimentally demonstrate that, in practice, our method succeeds over
a broad range of PAST benchmarks within a few CEGIS iterations. Previously,
machine learning has been applied to the termination analysis of deterministic
programs and to the stability analysis of dynamical systems [1,12,21,24,28,30–
32,42,43,45]; our method is the first machine learning approach for probabilistic
termination analysis.

Our approach builds upon two key observations. First, the average of expres-
sions along execution traces statistically approximates their true expected value.
Thanks to this, we obtain a machine learning model for guessing RSM candidates
that only requires execution traces and is thus agnostic to the source code. Sec-
ond, solving the problem of checking an RSM is simpler than solving the entire
termination analysis problem. Reasoning about source code is entirely delegated
to the checking phase which, as such, supports programs that are out of reach
to the available probabilistic termination analysers.

We experimentally demonstrate that our method is effective over many pro-
grams with linear and polynomial expressions, with both discrete and continuous
distributions. This includes joint distributions, state-dependent distributions,
distributions whose parameters are in turn random (hierarchical models), and
distributions with undefined moments (e.g., the Cauchy distribution). We com-
pare our method with a tool based on Farkas’ lemma and with the tools Amber
and Absynth [2,39,41]; whilst our software prototype is slower than these alter-
natives, it covers the widest range of benchmark single-loop programs.

Summarising, our contribution is fivefold. First, we present the first machine
learning method for the termination analysis of probabilistic programs. Second,
we introduce a loss function for training neural networks to behave as ranking
supermartingales over execution traces. Third, we show an approach to verify
the validity of ranking supermartingales using SMT solving, which applies to
a wide variety of single-loop probabilistic programs. Fourth, we experimentally
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demonstrate over multiple baselines and newly-defined benchmarks the practical
efficacy of our method. Fifth, we built a software prototype for evaluating our
method.

Fig. 3. Syntax of loop-free probabilistic programs.

2 Termination Analysis of Probabilistic Programs

We treat the termination analysis of single-loop probabilistic programs. We con-
sider an imperative language that includes C-like arithmetic and Boolean expres-
sions, and sequential and conditional composition of commands [13,17,19,23].

Syntax. A grammar for this language is shown in Fig. 3. We analyse single-loop
programs of the form

while G do
U

od

where the loop guard G is a Boolean expression and the update statement U is
a command. Variables are real-valued and can be either assigned to arithmetic
expressions using the usual = operator, or sampled from probability distributions
using the ∼ operator. Probability distributions, which can be either discrete or
continuous, take not only parameters that are constant, and thus known at
compile time, but also parameters that depend on other variables, and thus
determined only at run time. In other words, distributions may depend on the
current state of the program, which is a random variable. Also, they may depend
on other random variables; as such, distributions may be multi-variate, resulting
from models with coupled and hierarchically-structured variables.
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Semantics. The operational semantics of a probabilistic program induces a prob-
ability space over runs, together with a stochastic process [13]. A state of the
process is an element of IRn with n = |Vars|, that is, a valuation of the variables
in the program. The space of outcomes Ωrun of a program is the set of runs. A
run is a possibly infinite sequence of variable valuations (taken at the beginning
of every loop iteration). This comes with a σ-algebra F of measurable subsets of
Ωrun. Initial states are chosen non-deterministically and, thereafter, the process
is purely probabilistic. Every initial state x0 ∈ IRn determines a unique prob-
ability measure P

(x0) : F → [0, 1], namely a probability measure conditional on
the state x0. The associated stochastic process is X(x0) = {X

(x0)
t }t∈IN, where

X
(x0)
t is a random vector representing the state at the t-th step, initialised as

X
(x0)
0 = x0. Given an initial condition x0 and a solution process X(x0), the asso-

ciated termination time is a random variable T (x0) denoting the length of an
execution, which takes values in IN ∪ {∞}.

Positive Almost-Sure Termination. Runs are probabilistic and thus also the
notion of termination requires a quantitative semantics. The termination ques-
tion is generalised to the notions of almost-sure and positive almost-sure termina-
tion. Almost-sure termination (AST) indicates whether the joint probability of
all runs that do not terminate is zero; positive almost-sure termination (PAST),
which is stronger, indicates whether the expected number of steps to termination
is finite. Formally, a probabilistic program terminates positively almost-surely
if E[T (x0)] < ∞ for all x0 ∈ IRn. Notably, this implies that the program also
terminates almost-surely, that is, P[T (x0) < ∞] = 1 for all x0 ∈ IRn. We provide
conditions ensuring that probabilistic programs are PAST and, consequently,
that they are AST. Notice that the converse may not be true, that is, there
exist programs that are AST but not PAST. Our method addresses the PAST
question only, by building upon the theory of ranking supermartingales [10].

Ranking Supermartingales. A scalar stochastic process {Mt} is an RSM if, for
some ε > 0 and lower bound K ∈ IR,

E [Mt+1 | Mt = mt, . . . ,M0 = m0] ≤ mt − ε (1)

and Mt ≥ K for all t ≥ 0. In other words, this a process whose values are
bounded from below and whose expected value decreases by a discrete amount
at each step of the program. We prove that a program is PAST by mapping
X(x0) into an RSM. Our goal is finding a function η : IRn → IR such that, for
every initial condition x0, it satisfies the following two properties:

(i) E[η(X(x0)
t+1 ) | X

(x0)
t = x] ≤ η(x) − ε for all x ∈ I and

(ii) η(x) ≥ K for all x ∈ I,

where I ⊆ IRn is some sufficiently strong loop invariant that can be the loop
guard or, possibly, a stronger condition. Function η maps the entire stochastic
process into an RSM. For this reason, we call η an RSM for the program.
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Input: Single-loop probabilistic program (G,U),
Initial state x0 ∈ IRn

Output: Transition samples S ⊂ IRn × P(IRn)
1 S ← ∅;
2 P ′ ← {x0};
3 for i ← 1 to k do // k = path length

4 P ← P ′;
5 P ′ ← ∅;
6 p ← pick arbitrary element from P ;
7 if eval(G,p) = True then
8 for j ← 1 to m do // m = branching factor

9 P ′ ← P ′ ∪ {exec(U ,p)}
10 S ← S ∪ {(p, P ′)};

11 return S
Algorithm 1: Interpreter

Example 1. Consider the ambitious marble collector problem from Fig. 1. An
RSM for this program is a function η mapping variables red and blue to IR.
Rephrasing condition (i) over this program, η is required to satisfy

0.01 · η(red − 1, blue) + 0.99 · η(red, blue − 1) ≤ η(red, blue) − ε, (2)

for all red, blue ∈ ZZ that satisfy red > 0 ∨ blue > 0, that is, the loop guard.
So, for example, function η(red, blue) = red + blue satisfies this condition;
however, it may take any negative value over the arguments red and blue such
that red > 0 ∨ blue > 0, thus violating condition (ii). By contrast, the neural
network in Fig. 2 succeeds at satisfying both conditions. In fact, the network
realises function η(red, blue) = max{red, 0} + max{blue, 0}, which satisfies
Eq. (2) and is bounded from below by zero. 
�

3 Training Neural Ranking Supermartingales

Our framework synthesises RSMs by learning from program execution traces. We
define a loss function, that measures the number of sampled program transitions
that do not satisfy the RSM conditions. Applying gradient-descent optimisa-
tion to the loss function guides the parameters to values at which the candi-
date’s value decreases, on average, across sampled program transitions. Since
the learner does not require the underlying program (only execution traces),
the learner is agnostic to the structure of program expressions, and the cost of
evaluating the loss function does not scale with the size of the program.

A dataset of sampled transitions is produced using an instrumented program
interpreter (Algorithm 1). At a program state p, the interpreter runs the loop
body m times to sample successor states P ′, where m is a branching factor hyper-
parameter, before resuming execution from an arbitrarily chosen successor. The
dataset S consists of the union of pairs (p, P ′) generated by the interpreter.
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Fig. 4. Neural ranking supermartingale architecture.

The loss function is used to optimise the parameters of an NRSM, whose
architecture is shown in Fig. 4. This is a neural network with n inputs, one
output neuron, and one hidden layer. The hidden layer has h neurons, each of
which applies an activation function f to a weighted sum of its inputs. In our
experiments, the activation function f is either f(x) = x2 or f(x) = ReLU(x),
where ReLU(x) = max{x, 0}.

Therefore, we employ either of the two following functional templates, defined
over the learnable parameters wi,j and bi:

– Sum of ReLU (SOR):

η(x1, . . . , xn) =
h∑

i=1

ReLU

⎛

⎝
n∑

j=1

wi,jxj + bi

⎞

⎠ ; (3)

– Sum of Squares (SOS):

η(x1, . . . , xn) =
h∑

i=1

⎛

⎝
n∑

j=1

wi,jxj + bi

⎞

⎠
2

. (4)

These choices of activation mean that our NRSMs are restricted to non-negative
outputs, and therefore satisfy condition (ii) by construction. The learner there-
fore needs to find parameters that satisfy condition (i), which requires η to
decrease in expectation by at least some positive constant ε > 0.

The role of the loss function is to allow the learner parameters to be optimised
such that the NRSM decreases, on average, across sampled transitions. That is,
the loss function evaluates the number of sampled transitions for which the
NRSM does not satisfy the RSM condition (i), and the lower its value, the more
the neural network behaves like an RSM.
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Concretely, the loss associated with a state p and its successors P ′ is:

L(p, P ′) = softplus (Ep′∼P ′ [η(p′)] − η (p) + ε) , (5)

where softplus(x) = ln(1 + ex), and Ep′∼P ′ [η(p′)] is the average of η over the
sampled successor states p′ from P ′.

We then train an NRSM by solving the following optimisation problem:

min
1

|S|
∑

(p,P ′)∈S

L(p, P ′), (6)

which aims to minimise the average loss over all sampled transitions in the
dataset S, over the trainable weights w1,1, . . . , wh,n ∈ IR and biases b1, . . . , bh ∈
IR. This objective is non-convex and non-linear, and we resort to gradient-based
optimisation (see Sect. 6).

The softplus in Eq. (5) forces the parameters to satisfy condition (i) uni-
formly across all sampled transitions in the dataset, rather than decreasing by
a large amount in expectation over some transitions at the expense of failing to
decrease sufficiently quickly for others. Furthermore, for NRSMs of SOR form we
replace the ReLU activation function by softplus, to help gradient descent con-
verge faster. Softplus approximates the ReLU function, and has the same asymp-
totic behaviour, but results in an NRSM that is differentiable w.r.t. the network
parameters at all inputs, unlike ReLU [22, p.193]. However, since softplus is a
transcendental function, we revert back to using a simpler ReLU activation when
verifying an SOR candidate.

Fig. 5. CEGIS architecture for the adversarial training of NRSM.

A CEGIS loop integrates the learner and verifier (Fig. 5). The dataset S
sampled by the interpreter is used to train an NRSM candidate η according to
Eq. (6). The verifier checks whether η satisfies condition (i), concluding either
that the program is PAST, or producing a counterexample program state xcex

for which η does not satisfy (i). The interpreter generates new traces, starting
at xcex, forcing it to explore parts of the state space over which the NRSM fails
to decrease sufficiently in expectation.
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Fig. 6. Verifier architecture.

4 Verifying Ranking Supermartingales by SMT Solving

To verify an NRSM we must check that it decreases in expectation by at least
some constant (condition (i)). Condition (ii) is satisfied by construction because
the network’s output is non-negative for every input, leaving only condition (i)
to verify. The architecture of the verifier is depicted in Fig. 6. First, a program
(G,U) is translated into an equivalent logical formulation denoted by Ḡ and
Ū (‘Encode’ block), which are used to construct a closed-form term E[η̄] for
the NRSM’s expected value at the end of the loop body (‘Marginalise’ block).
Secondly, given an NRSM η, its parameters are rounded and encoded as a logical
term η̄ (‘Round’ block). Then, the satisfiability of the following formula is decided
using SMT solving:

Ḡ(x1 . . . xn) ∧ E[η̄](x1 . . . xn) > η̄(x1 . . . xn) − ε. (7)

This is the dual satisfiability problem for the validity problem associated with
condition (i) on page 5. If Eq. (7) is unsatisfiable, then η̄ is a valid RSM and we
conclude the program is PAST. Otherwise, the solver yields a counterexample
state xcex ∈ IRn.

The rounding strategy (‘Round’ block) provides multiple candidates to the
verifier by adding i.i.d. noise to parameters and rounding them to various preci-
sions. Setting parameters that are numerically very small to zero is useful since
learning that a parameter should be exactly zero could require an unbounded
number of samples; rounding provides a pragmatic way of making this work in
practice. If none of the generated candidates are valid NRSMs, all counterexam-
ples are passed back to the interpreter which generates more transition samples
for the learner (Fig. 5).

Fig. 7. Quantifier-free first-order logic formulae.
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Notice that, if a program’s guard predicate is not strong enough to allow a
valid RSM to be verified as such, the CEGIS loop will run indefinitely. In general,
stronger supporting loop invariants may need to be provided.

4.1 From Programs to Symbolic Store Trees

We now introduce a translation from a loop-free probabilistic program to a
symbolic store tree (Fig. 8), a datastructure representing the distribution over
program states at the end of a loop iteration as a function of the variable val-
uation at its start. Marginalising out the probabilistic choices made in the loop
yields the NRSM expectation E[η̄].

Fig. 8. Symbolic store tree.

This requires a form of symbolic execution. We represent program states
symbolically using symbolic stores, denoted Σ (Fig. 8), which map program vari-
ables to probabilistic terms. A probabilistic term π can be either a first-order
logic term (Fig. 7) representing an arithmetic expression, or a placeholder for a
probability distribution whose parameters are terms (allowing them to be func-
tions of the program state). Finally, symbolic store trees σ (Fig. 8) represent the
set of control-flow paths through the loop body, arising from if-statements; it is
a binary tree with symbolic stores at the leaves, and internal nodes labelled by
logical formulae over program variables.

Fig. 9. Translation from a loop-free command to a symbolic store tree.
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Figure 9 defines a translation from an initial symbolic store tree and command
to a new symbolic store tree characterising the distribution over states after
executing the command. At the top level, we provide the command G (the loop
body) and the initial symbolic store {x′

1 
→ x1, . . . , x
′
n 
→ xn}, where primed

variables represent the variable valuation at the end of the iteration, whereas
unprimed variables represent the variable valuation at the beginning of the loop.

The first four cases of Fig. 9 define the translation of arithmetic expressions
(to terms) and Boolean expressions (to formulae), by replacing program syntax
with the corresponding logical operators.

The next four cases define the translation of commands. skip leaves the
symbolic store unchanged. For deterministic assignments, the right hand side
of the assignment is translated in the current symbolic store and bound to the
variable. Sequential composition involves translating the first command, and
translating the second command in the resulting store tree. A conditional state-
ment creates a new node in the symbolic store tree that selects between the two
recursively-translated branches, based on the formula derived from the guard
predicate. These rules assume the store tree to be a leaf-level symbolic store,
because the next rule handles the case where the initial symbolic store tree
is a node. Finally, if the command is a probabilistic assignment, we translate
the parameters to terms, and bind the resulting probabilistic term to a freshly
generated symbol. This allows variables to be overwritten by multiple proba-
bilistic sampling operations in the body of the loop. The mapping of variables
to distributions in leaf-level stores defines the probability density over particular
probabilistic choices.

Example 2. Figure 10 is the store tree produced for the ambitious marble collec-
tor program (Fig. 1). Each leaf-level store in the program’s store tree corresponds
to a particular control-flow path through the loop body. The interpretation of a
symbolic store tree is that if we fix the outcomes of the probabilistic sampling
operations performed by the loop body, then the state of the variables at the
end of the iteration is determined by the predicates labelling the internal nodes.

Fig. 10. A store tree for the program in Fig. 1.
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4.2 Marginalisation

To construct the closed-form logical term representing the NRSM’s expected
value at the end of an iteration, the probabilistic choices in the symbolic store
tree must be marginalised out. If the program is limited to discrete random
variables with finite support, we automatically marginalise the random choices
by enumeration (for both SOR- and SOS-form NRSMs), as illustrated by Ex. 3.

Example 3. The ambitious marble collector program of Fig. 1, yields the sym-
bolic store tree of Fig. 10. Suppose we want to marginalise the NRSM:

η(red, blue) = ReLU(w1,1 · red + w1,2 · blue + b1)
+ ReLU(w2,1 · red + w2,2 · blue + b2) (8)

with respect to this symbolic store tree. We first apply the encoding of the NRSM
to each leaf-level symbolic store of Fig. 10, and enumerate the possible choices for
the probabilistic choices (which in this example is limited to ν ∈ {0, 1}), using
the bindings of ν to distributions in leaf-level stores to compute the probability
mass of each choice. After resolving the predicates for each choice of ν, this
yields:

0.01 · η(red − 1, blue) + 0.99 · η(red, blue − 1). (9)

The term (9) is then provided as the value of the NRSM’s expectation to the
verifier. 
�

If the program samples from continuous distributions, we marginalise SOS-
form NRSMs (but not SOR-form NRSMs) by substituting symbolic moments
for a set of supported built-in distributions, including Gaussian, Multivari-
ateGaussian, and Exponential, though could include any distribution whose
closed-form symbolic moments are available. Example 4 provides an example.
This strategy is general enough to support a wide variety of programs, includ-
ing those of Sect. 5. If a sampling distribution lacks symbolic moments, the
cumulative distribution function can also be utilised, which is illustrated in the
slicedcauchy case study (Fig. 15).

Example 4. Consider an NRSM η(x) = (wx + b)2 and a symbolic store tree
node(p = 1, σ1, σ2) where σ1 = {x 
→ x + v, v 
→ Exp(λ), p 
→ Bernoulli(3/4)}
and σ2 = {x 
→ x − v, v 
→ Exp(λ), p 
→ Bernoulli(3/4)}. Exp(λ) denotes
the exponential distribution with parameter λ, with pdf denoted pExp(λ)(v).
We apply η to each leaf-level symbolic store, and marginalise the probabilis-
tic choices. We marginalise p first by enumerating over its possible values, and
then marginalise v. There are no dependencies between the distributions in this
example, so the order in which they are marginalised does not matter.

∫ ∞

0

(
3
4
η(x + v) +

1
4
η(x − v)

)
pExp(λ)(v)dv. (10)
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The result of marginalisation is a closed-form expression for Eq. (10). Note that
since

η(x + v) = w2v2 + 2(wx + b)wv + (wx + b)2 (11)

and
∫ ∞
0

vnpExp(λ)(v)dv = n!
λn , we use linearity of integration to perform the

following simplification, by substituting expressions for the moments of v in
terms of the parameter λ:

∫ ∞

0

η(x + v)pExp(λ)(v)dv =
2w2

λ2
+

2(wx + b)w
λ

+ (wx + b)2, (12)

which is used to reduce Eq. (10) to a closed form. This is the method used to
perform marginalisation for several case studies, including crwalk, gaussrw and
expdistrw. 
�

Notably, our verifier requires the expected value of the RSM to be com-
puted (or soundly approximated) in closed form. We automate marginalisation
for discrete distributions of finite support, but require manual intervention for
continuous distributions. Nevertheless, our learning component is automated in
both cases. Characterising the space of programs with continuous distributions
that admit fully automated verification of an RSM is an open question.

5 Case Studies

Existing tools for synthesising RSMs reduce the problem to constraint-solving
[2,10,11,14], which can limit the generality of the synthesis framework. For
instance, methods that convert the RSM constraints into a linear program using
Farkas’ lemma can only handle programs with affine arithmetic, and can only
synthesise linear/affine (lexicographic) RSMs [2,10]. A second restriction of exist-
ing approaches is that they typically require the moments of distributions to be
compile-time constants. This rules out programs whose distributions are deter-
mined at runtime, such as hierarchical and state-dependent distributions. Since
the loss function of Eq. (6) only requires execution traces, our learner is agnostic
to the structure of program expressions, imposing minimal restrictions on the
kinds of expressions that can occur, or the kinds of distributions that can be
sampled from. This allows us to learn RSMs for a wider class of programs com-
pared to existing tools, as we will illustrate in this section using a number of
case studies.

5.1 Non-linear Program Expressions and NRSMs

Many simple programs do not admit linear or polynomial RSMs, such as Fig. 1.
Since the program cannot be encoded as a prob-solvable loop (due to the dis-
junctive guard predicate which cannot be replaced by a polynomial inequality),
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it cannot be handled by another recent tool, Amber [39]. However, this program
admits the following piecewise-linear NRSM:

ReLU(0 · red + 1 · blue + 11) + ReLU(1 · red + 0 · blue + 11), (13)

whose parameters are learnt by our method, within the first CEGIS iteration.

Fig. 11. Probabilistic factorial (probfact).

Similarly, we learn the piecewise-linear NRSM:

ReLU(−1 · i + 0 · s + 12) + ReLU(0 · i + 0 · s + 9) (14)

for the program in Fig. 11, which contains a bilinear assignment (cf. multiplica-
tion of s and i on line 3), so this program is not supported by [2]. The conjunction
in the guard means it is not supported by Amber, either.

Fig. 12. Random walk with correlated variables (crwalk).

5.2 Multivariate and Hierarchical Distributions

Figure 12 is a random walk that samples from a multivariate Gaussian distribu-
tion, with zero mean, unit variances, and correlation sampled uniformly in the
range

[− 1
2 , 1

]
. The MultivariateGaussian of line 4 is an instance of a hierar-

chical distribution, having parameters that are random variables. This program
also contains a non-linear (polynomial) expression that updates the value of x.
For crwalk we learn an SOS-form NRSM:

(0.1 · x − 47.2)2, (15)
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proving this program is PAST. To verify this, the NRSM expectation is com-
puted via the symbolic moments of the multivariate Gaussian distribution, given
its covariance matrix (line 3), and then marginalising w.r.t. rho (again, using
the moments of the uniform distribution over

[− 1
2 , 1

]
). Unfortunately, it is chal-

lenging to translate many simple programs containing hierarchical distributions
into ones that can be handled by existing tools. For instance, although it is
possible to simulate sampling from a bivariate Gaussian of arbitrary correla-
tion by sampling from independent standard Gaussian distributions, this would
involve computing a non-polynomial function of the correlation. Similarly, for
the program in Fig. 14 (further discussed below), if a variable is exponentially
distributed, X ∼ Exponential(1), then X

λ ∼ Exponential(λ), providing a way
of simulating an exponential distribution with arbitrary parameter λ. However,
this again requires a non-polynomial program expression (i.e. the reciprocal of
λ) when λ is part of the program state and not a constant, and therefore out of
scope for methods that restrict program expressions to being linear/polynomial.

5.3 State-Dependent Distributions and Non-Linear Expectations

Fig. 13. Gaussian random walk with time-varying and coupled noise (gaussrw).

Once we allow hierarchical distributions, it is natural to consider state-dependent
distributions, i.e. distributions whose parameters depend on the program state
rather than being sampled from other distributions. As an example, consider the
program in Fig. 13 (a 2-dimensional Gaussian random walk with state-dependent
moments). This is unsupported by existing tools because the mean of the Gaus-
sian is a non-polynomial function of the program state. However, after defining
the function

√
1 + x2 by means of the following polynomial logical inequalities:

mu x2 = 1 + x2 (16)
mu x ≥ 1 (17)
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(similarly for mu y), we express the expected value of an SOS-form NRSM in
terms of symbolic moments mu x, etc. Since these moments are state-dependent,
we cannot marginalise them out as in the hierarchical case. Instead we perform
non-deterministic abstraction, providing inequalities 1

10 ≤ vx, vy ≤ 2 and −1 ≤
rho ≤ 1 as further verifier assumptions.

Fig. 14. State-dependent exponential random walk (expdistrw).

Even if program expressions are linear, the presence of state-dependent dis-
tributions can result in a non-linear verification problem, if the moments are
themselves non-linear functions of the program variables. For instance, the pro-
gram in Fig. 14 represents a 1-dimensional random walk, with steps sampled
from an exponential distribution. Since the nth moment of Exponential(λ) is
n!
λn , the expectation of an SOS-form NRSM is non-polynomial but still express-
ible in the theory of non-linear real arithmetic (see Ex. 4). For expdistrw we
learn

(0.1 · x − 3.3)2, (18)

whereas for gaussrw in Fig. 13 we learn

(0 · x − 1 · y + 11)2 + (0 · x + 0 · y + 8)2. (19)

We translate the program in Fig. 14 for Amber by replacing the update for λ
by instead sampling it uniformly from [1, 10]. Amber correctly identifies the
program is AST, and that (10−x) is a supermartingale expression (note, not an
RSM), though does not report that the program is PAST (answering “maybe”).

5.4 Undefined Moments

The ability to evaluate the cumulative distribution function (CDF) of a sampled
distribution could be useful in marginalisation, even if the moments of the sam-
pled distribution are undefined or not known analytically to infinite precision.
An example is Fig. 15: the program samples from the standard Cauchy distri-
bution, for which all moments are undefined. Since the sampled value is only
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used to determine which branch of a conditional is taken, the RSM expectation
is well defined, and can be expressed in terms of the standard Cauchy CDF.
Namely, the if-branch is taken with probability q = 1− (

1
π arctan(10) + 1

2

)
. This

equation is not expressible using polynomials; so we perform a sound approx-
imation by introducing a new variable that is quantified over a small interval
surrounding a finite precision approximation to q. This allows us to learn and
verify the SOR-form NRSM:

ReLU(1.2 · x + 9.1). (20)

Fig. 15. Sliced Cauchy distribution (slicedcauchy).

For our experimental evaluation (Sect. 6) we create a modified version of each
of the six case studies described in this section, as follows:

– program marbles3 is a generalisation of marbles to three marble types,
instead of two;

– probfact2 uses 5/8 as the Bernoulli parameter, rather than 3/4;
– crwalk2 samples rho from a Beta(1, 3) distribution, instead of a uniform

distribution over
[− 1

2 , 1
]
;

– expdistrw2 samples from an exponential distribution, where parameter
lambda is replaced by lambda*lambda;

– gaussrw2 uses [3 + 1/(1 − x), 3 + 1/(1 − y)]T for its mean vector, instead of
[
√

1 + x2,
√

1 + y2]T ; and
– slicedcauchy2 has a loop guard of x < 10, instead of x > 0, and swaps the

two branches of the conditional.

5.5 Rare Transitions

A limitation of relying on a sampled transition dataset to learn NRSM parame-
ters is we rely on the average Ep′∼P ′ [η(p′)] in Eq. (5) being accurate (see Sect. 3).
This assumption is challenged by programs that have certain control-flow paths
of very low probability, which are unlikely to be sampled by the interpreter. For
example, in the context of the ambitious marble collector (Fig. 1), Fig. 16 shows
that when the probability of obtaining a red marble decreases below 2−7, our
success rate drops. This is because a lower probability makes the corresponding
control-flow path rarer in the dataset, to the point where the expected value of
the NRSM cannot be estimated accurately.
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Fig. 16. Success rate and execution times for the ambitious marble collector program
(Fig. 1), where p is the probability of taking the if-branch. Success rate refers to the
fraction of 10 executions that succeeded in finding an NRSM before a timeout of 300 s.
Execution times show the median time with the error bar ranging between the minimum
and maximum times of the 10 executions.

6 Experimental Results

We built a prototype implementation of our framework (in Python) and present
experimental results for benchmarks adapted from previous work, as well as our
own case studies (from Sect. 5). The case studies illustrate programs for which
our framework synthesises an RSM, yet existing tools cannot prove to be PAST.

The learner is implemented with Jax [9]. To train NRSMs, we use AdaGrad
[18] for gradient-based optimisation, with a learning rate of 10−2. Parameters
are initialised by sampling from Gaussian distributions: weight parameters are
sampled from a zero-mean Gaussian, whereas the bias parameters are sampled
either from a Gaussian with mean 10 (for SOR candidates) or mean 0 (for SOS
candidates). We verify the NRSMs using the SMT solver Z3 [26,40]. The out-
comes are obtained on the following platform: macOS Catalina version 10.15.4,
8 GB RAM, Intel Core i5 CPU 2.4 GHz QuadCore, 64-bit.

As mentioned in Sect. 4, the verifier checks a candidate NRSM over states
satisfying the loop predicate, which characterises the set of reachable states. For
our experiments, we manually provide the NRSM expectation, and augment the
guard predicate with additional invariants where necessary. We generate out-
comes using two different rounding strategies (Sect. 4): an “aggressive” rounding
strategy which generated between 80 and 120 candidates per CEGIS iteration,
and a “weaker” rounding strategy producing between 15 to 25 candidates per
CEGIS iteration. The outcomes in Table 1 used the aggressive rounding strategy.
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Table 1. Experimental results over existing (top section) and newly added bench-
marks (bottom section); (c) indicates the benchmark uses continuous distributions, (d)
indicates it only uses discrete distributions. All reported times are in seconds, oot indi-
cates time-out after 300 s, n/a indicates the tool terminated without definite answer,
and—indicates the benchmark is unsupported. Our method is run 10 times with dif-
ferent seeds; the overall success rate is reported. Runtimes of interpretation, training,
verification phases, and # of CEGIS iterations refer to the run with median total
runtime.

Program Amber

[39]

Farkas’

lemma [2]

Absynth

[41]

Succ.

rate

Inter. Train. Verif. #iter NRSM

Hare & Tortoise (d) 0.04 ≈0 0.09 10/10 0.61 3.86 0.70 0 SOR

exmini/terminate (d) — 0.02 oot 10/10 1.75 29.35 7.67 2 SOR

aaron2 (d) 0.03 0.02 0.02 10/10 0.04 2.27 0.01 0 SOR

catmouse (c) 0.03 0.02 — 9/10 0.39 12.41 3.68 1 SOS

counterex1c (d) — 0.02 0.22 8/10 1.00 6.71 0.02 0 SOR

easy1 (d) 0.12 0.01 0.05 10/10 1.12 5.55 1.27 0 SOR

easy2 (c) 0.04 0.02 — 10/10 1.55 6.79 0.18 0 SOS

ndecr (d) 0.04 0.02 0.03 10/10 1.18 5.63 0.02 0 SOR

random1d (c) 0.05 0.02 — 10/10 1.14 4.86 0.79 0 SOS

rsd (d) error 0.01 oot 10/10 1.14 6.18 2.04 0 SOR

speedFails1 (d) 0.07 0.01 0.04 10/10 0.45 4.09 0.67 0 SOR

speedPldi2 (d) — 0.02 0.40 9/10 1.36 7.85 0.02 0 SOR

speedPldi3 (d) — 0.02 0.36 8/10 2.58 30.70 2.12 1 SOR

speedPldi4 (d) — 0.02 0.17 10/10 0.68 5.07 0.04 0 SOR

speedSingleSingle (c) 0.03 0.02 — 10/10 0.39 2.85 0.51 0 SOS

speedSingleSingle2 (d) — 0.02 0.15 10/10 0.83 7.30 0.04 0 SOR

wcet0 (d) — 0.02 0.10 10/10 1.45 5.64 0.09 0 SOR

wcet1 (d) — 0.02 0.10 10/10 0.85 4.31 0.09 0 SOR

probfact (d) — — n/a 10/10 0.49 6.12 0.16 0 SOR

probfact2 (d) — — n/a 10/10 0.45 5.89 0.23 0 SOR

marbles (d) — — n/a 10/10 0.84 10.83 0.91 0 SOR

marbles3 (d) — — n/a 10/10 0.40 70.14 7.87 2 SOR

crwalk (c) — — — 10/10 0.53 3.06 1.56 1 SOS

crwalk2 (c) — — — 10/10 1.32 3.11 0.75 1 SOS

expdistrw (c) n/a — — 10/10 0.05 1.53 0.01 0 SOS

expdistrw2 (c) n/a — — 10/10 4.92 3.15 1.03 1 SOS

gaussrw (c) — — — 10/10 10.30 3.45 0.75 0 SOS

gaussrw2 (c) — — — 9/10 15.46 4.91 5.33 0 SOS

slicedcauchy (c) — — — 10/10 0.02 3.31 0.01 0 SOR

slicedcauchy2 (c) — — — 10/10 0.01 2.16 0.03 0 SOR

Benchmarks from Previous Work. We run our prototype on single-loop programs
from the WTC benchmark suite [3], augmented with probabilistic branching and
assignments [2]. These correspond to the programs in the first section of Table 1.
We perturb assignment statements by adding noise sampled from a discrete
uniform distribution of support {−2, 2}, or a continuous uniform distribution on
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the interval [−2, 2]. The while loops are also made probabilistic; with probability
1/2 the loop is executed, and with the remaining probability a skip command
is executed.

We compare our framework against three existing tools. The first is Amber
[39]: where possible, we translate instances from the WTC suite into the lan-
guage of Amber, but this is not possible for some programs where the loop pred-
icate is a logical conjunction or disjunction of predicates (indicated by dashes in
Table 1). Second, we compare against a tool for synthesising affine lexicographic
RSMs (referred to as Farkas’ lemma) for affine programs (i.e. containing only lin-
ear expressions), based on reduction to linear programming via Farkas’ lemma
[2]. This is applicable to probabilistic programs with nested-loops, unlike our
method. However, since it is limited to affine programs and affine lexicographic
RSMs, it is not able to analyse all the programs we consider (again, indicated
by dashes in Table 1). The third tool is Absynth [41], for which we are able to
encode all programs that were limited to discrete random variables.

The experimental results (Table 1) show that for all the WTC benchmarks
our approach has a success rate of at least 8/10, and is able to synthesise an RSM
within 2 iterations (for the seed that results in median total execution time). For
15 of the 18 WTC benchmarks no full CEGIS iterations are required. As expected
our approach, particularly the learning component, is much slower than all three
tools. However, our framework has broader applicability, as illustrated with the
next set of experiments.

Newly Defined Case Studies. The examples in the second section of Table 1
(from Sect. 5) are not proven PAST by any of the three tools. Our approach
is able to do so with a success rate of at least 9/10, under the “aggressive”
rounding strategy. Of the new examples, marbles3 (Sect. 5) requires the longest
time, since we use an NRSM with h = 3 ReLU nodes (see Sect. 3), and six of
the nine parameters must be brought sufficiently close to zero to learn a valid
RSM. For gaussrw/gaussrw2, we find it necessary to set an SMT solver time
limit within the CEGIS loop (of 200 ms for gaussrw, and 5 s for gaussrw2),
such that candidates taking longer than this to verify are skipped. The fact that
these examples are harder to verify is unsurprising, given that they give rise
to non-polynomial decision problems, containing equationally defined rational
expressions. In comparing the two rounding strategies, we find that using the
“aggressive” strategy tends to result in fewer CEGIS iterations, reducing the
learner time, while increasing the verifier time: this is to be expected, since a
larger number of candidates needs to be checked in each CEGIS iteration.

7 Conclusion

We have presented the first machine learning method for the termination anal-
ysis of probabilistic programs. We have introduced a loss function for training
neural networks so that they behave as RSMs over sampled execution traces; our
training phase is agnostic to the program and thus easily portable to different
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programming languages. Reasoning about the program code is entirely delegated
to our checking phase which, by SMT solving over a symbolic encoding of pro-
gram and neural network, verifies whether the neural network is a sound RSM.
Upon a positive answer, we have formally certified that the program is PAST;
upon a negative answer, we obtain a counterexample that we use to resample
traces and repeat training in a CEGIS loop. Our procedure runs indefinitely for
programs that are not PAST, as these necessarily lack a ranking supermartin-
gale, and may run indefinitely for some PAST programs. Nevertheless, we have
experimentally demonstrated over several PAST benchmarks that our method
is effective in practice and covers a broad range of programs w.r.t. existing tools.

Our method naturally generalises to deeper networks, but whether these
are necessary in practice remains an open question; notably, neural networks
with one hidden layer were sufficient to solve our examples. We have exclu-
sively tackled the PAST question, and techniques for almost-sure (but not nec-
essarily PAST) termination and non-termination exist [16,37,39]. Our results
pose the basis for future research in machine learning (and CEGIS) for the for-
mal verification of probabilistic programs. Different verification questions will
require different learning models. Our approach lends itself to extensions toward
probabilistic safety, exploiting supermartingale inequalities, and towards the
non-termination question, using repulsing supermartingales [16]. Adapting our
method to termination analysis with infinite expected time is also a matter for
future investigation [37]. Moreover, we have exclusively considered purely proba-
bilistic single-loop programs: generalisations to programs with non-determinism,
arbitrary control-flow, and concurrency are material for future work [15,20,35].
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Abstract. Programs for multiprocessor machines commonly perform
busy waiting for synchronization. We propose the first separation logic
for modularly verifying termination of such programs under fair schedul-
ing. Our logic requires the proof author to associate a ghost signal with
each busy-waiting loop and allows such loops to iterate while their cor-
responding signal s is not set. The proof author further has to define
a well-founded order on signals and to prove that if the looping thread
holds an obligation to set a signal s′, then s′ is ordered above s. By using
conventional shared state invariants to associate the state of ghost signals
with the state of data structures, programs busy-waiting for arbitrary
conditions over arbitrary data structures can be verified.

1 Introduction

Programs for multiprocessor machines commonly perform busy waiting for syn-
chronization [22,23]. In this paper, we propose a separation logic [24,31] to mod-
ularly verify termination of such programs under fair scheduling. Specifically, we
consider programs where some threads busy-wait for a certain condition C over
a shared data structure to hold, e.g., a memory flag being set by other threads.
By modularly, we mean that we reason about each thread and each function in
isolation. That is, we do not reason about thread scheduling or interleavings. We
only consider these issues when proving the soundness of our logic. Assuming
fair scheduling is necessary since busy-waiting for a condition C only termi-
nates if the thread responsible for establishing the condition is sufficiently often
scheduled to establish C.

Busy waiting is an example of blocking behaviour, where a thread’s progress
requires interference from other threads. This is not to be confused with non-
blocking concurrency, where a thread’s progress does not rely on—and may
in fact be impeded by—interference from other threads. Existing proposed
approaches for verifying termination of concurrent programs consider only pro-
grams that only involve non-blocking concurrent objects [32], or primitive block-
ing constructs of the programming language, such as acquiring built-in mutexes,
receiving from built-in channels, joining threads, or waiting for built-in monitor
condition variables [2,5,19], or both [11]. Existing techniques that do support
busy waiting are not Hoare logics; instead, they verify termination-preserving
c© The Author(s) 2021
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contextual refinements between more concrete and more abstract implementa-
tions of busy-waiting concurrent objects [15,21]. In contrast, we here propose
the first conventional program logic for modular verification of termination of
programs involving busy waiting, using Hoare triples as module specifications.

In order to prove that a busy-waiting loop terminates, we have to prove that
it performs only finitely many iterations. To do this we introduce a special form
of ghost resources [13] which we call ghost signals. As ghost resources they only
exist on the verification level and hence do not affect the program’s runtime
behaviour. Signals are initially unset and come with an obligation to set them.
Setting a signal does not by definition correspond to any runtime condition. So,
in order to use a signal s effectively, anyone using our approach has to prove an
invariant stating that s is set if and only if the condition of interest holds. Further,
the proof author must prove that every thread discharges all its obligations by
performing the corresponding actions, e.g., by setting a signal and establishing
the corresponding condition by setting the memory flag.

In our verification approach we tie every busy-waiting loop to a finite set of
ghost signals S that correspond to the set of conditions the loop is waiting for.
Every iteration that does not terminate the loop must be justified by the proof
author proving that some signal s ∈ S has indeed not been set, yet. This way,
we reduce proving termination to proving that no signal is waited for infinitely
often.

Our approach ensures that no thread directly or indirectly waits for itself by
requiring the proof author (i) to choose a well-founded and partially ordered set
of levels Levs and (ii) to assign a level to every signal and by (iii) only allowing
a thread to wait for a signal if the signal’s level is lower than the level of each
held obligation. This guarantees that every signal is waited for only finitely often
and hence that every busy-waiting loop terminates. We use this to prove that
every program that is verified using our approach indeed terminates.

We start by gradually introducing the intuition behind our verification app-
roach and the concepts we use. In Sect. 2.1 and Sect. 2.2 we present the main
aspects of using signals to verify termination. We start by treating them as phys-
ical thread-safe resources and only consider busy waiting for a signal to be set.
Then, we drop thread-safety and explain how to prove data-race- and deadlock-
freedom. In Sect. 2.3 and Sect. 2.4 we generalize our approach to busy waiting
for arbitrary conditions over arbitrary data structures and then lift signals to
the verification level by introducing ghost signals.

In Sect. 3 we sketch the verification of a realistic producer-consumer example
involving a bounded FIFO to demonstrate our approach’s usability and address
fine-grained concurrency in Sect. 4. Further, we describe the available tool sup-
port in Sect. 5 and discuss integrating higher-order features in Sect. 6. We con-
clude by comparing our approach to related work and reflecting on it in Sect. 7
and Sect. 8.

We formally define our logic and prove its soundness in the extended version
of this paper [28]. To keep the presentation in this paper simple, we assume busy-
waiting loops to have a certain syntactical form. In our technical report [29] we
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present a generalised version of our logic and its soundness proof. Further, we
verify the realistic example presented in Sect. 3 in full detail in the extended
version of this paper and in the technical report, using the respective version of
our logic. We used our tool support to verify C versions of the bounded FIFO
example and the CLH lock. The tool we used and the annotated .c files can be
found at [10,26,27].

2 A Guide on Verifying Termination of Busy Waiting

When we try to verify termination of busy-waiting programs, multiple challenges
arise. Throughout this section, we describe these challenges and our approach to
overcome them. In Sect. 2.1 we start by discussing the core ideas of our logic. In
order to simplify the presentation we initially consider a simple language with
built-in thread-safe signals and a corresponding minimal example where one
thread busy-waits for such a signal. Signals are heap cells containing boolean
values that are specially marked as being solely used for busy waiting. Through-
out this section, we generalize our setting as well as our example towards one
that allows to verify programs with busy waiting for arbitrary conditions over
arbitrary shared data structures. In Sect. 2.2 we present the concepts neces-
sary to verify data-race-, deadlock-freedom and termination in the presence of
built-in signals that are not thread safe. In Sect. 2.3 we explain how to use these
non-thread-safe signals to verify programs that wait for arbitrary conditions over
shared data structures. We illustrate this by an example waiting for a shared
heap cell to be set. In Sect. 2.4 we erase the signals from our program and lift
them to the verification level in the form of a concept we call ghost signals.

2.1 Simplest Setting: Thread-Safe Physical Signals

We want to verify programs that busy-wait for arbitrary conditions over arbi-
trary shared data structures. As a first step towards achieving this, we first
consider programs that busy-wait for simple boolean flags, specially marked as
being used for the purpose of busy waiting. We call these flags signals. For now,
we assume that read and write operations on signals are thread-safe. Consider
a simple programming language with built-in signals and with the following
commands: (i) new signal for creating a new unset signal, (ii) set signal(x)
for setting x and (iii) await is set(x) for busy-waiting until x is set. Figure 1
presents a minimal example where two threads communicate via a shared sig-
nal sig. The main thread creates the signal sig and forks a new thread that
busy-waits for sig to be set. Then, the main thread sets the signal. As we assume
signal operations to be thread-safe in this example, we do not have to care about
potential data races. Notice that like all busy-waiting programs, this program is
guaranteed to terminate only under fair thread scheduling: Indeed, it does not
terminate if the main thread is never scheduled after it forks the new thread. In
this paper we verify termination under fair scheduling.
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let sig := new signal in
fork await is set(sig);
set signal(sig)

Fig. 1. Minimal example with two threads communicating via a physical thread-safe
signal.

Augmented Semantics

Obligations. The only construct in our language that can lead to non-termination
are busy-waiting loops of the form await is set(sig). In order to prove that
programs terminate it is therefore sufficient to prove that all created signals are
eventually set. We use so-called obligations [5,6,16,19] to ensure this. These are
ghost resources [13], i.e., resources that do not exist during runtime and can hence
not influence a program’s runtime behaviour. They carry, however, information
relevant to the program’s verification. Generally, holding an obligation requires
a thread to discharge it by performing a certain action. For instance, when
the main thread in our example creates signal sig, it simultaneously creates an
obligation to set it. The only way to discharge this obligation is to set sig.

We denote thread IDs by θ and describe which obligations a thread θ holds
by bundling them into an obligations chunk θ.obs(O), where O is a multiset of
signals. We denote multisets by double braces {[. . .]} and multiset union by �.
Each occurrence of a signal s in O corresponds to an obligation by thread θ to
set s. Consequently, θ.obs(∅) asserts that thread θ does not hold any obligations.

Augmented Semantics. In the real semantics of the programming language we
consider here, ghost resources such as obligations do not exist during runtime.
To prove termination, we consider an augmented version of it that keeps track
of ghost resources during runtime. In this semantics, we maintain the invariant
that every thread holds exactly one obs chunk. That is, for every running thread
θ, our heap contains a unique heap cell θ.obs that stores the thread’s bag of
obligations. Further, we let a thread get stuck if it tries to finish while it still holds
undischarged obligations. Note that we use the term finish to refer to thread-
local behaviour while we write termination to refer to program-global behaviour,
i.e., meaning that every thread finishes. For every augmented execution there
trivially exists a corresponding execution in the real semantics.

Figure 2 presents some of the reduction rules we use to define the augmented
semantics. We use ̂h to refer to augmented heaps, i.e., heaps that can contain
ghost resources. A reduction step has the form h, c

θ�aug h′, c′, T expresses that

thread θ reduces heap ̂h (which is shared by all threads) and command c to heap
̂h′ and command c′. Further, T represents the set of threads forked during this
step. It is either empty or a singleton containing the new thread’s ID and the
command it is going to execute, i.e., {(θf , cf )}. We omit it whenever it is clear
from the context that no thread is forked. Further, we denote disjoint union of
sets by �.
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Our reduction rules comply with the intuition behind obligations we outlined
above. Aug-Red-NewSignal creates a new signal and simultaneously a corre-
sponding obligation. The only way to discharge it is by setting the signal using
Aug-Red-SetSignal.

Aug-Red-NewSignal

id �∈ ids(ĥ) L ∈ Levs

ĥ � {θ.obs(O)},new signal θ�aug ĥ � {θ.obs(O � {[(id, L)]}), signal((id, L))}, id

Aug-Red-SetSignal

ĥ � {θ.obs(O � {[s]})}, set signal(s.id) θ�aug ĥ � {θ.obs(O), signalSet(s)}, tt

Aug-Red-Fork

θf �∈ thIds(ĥ)

ĥ � {θ.obs(O � Of )}, fork c
θ�aug ĥ � {θ.obs(O), θf .obs(Of )}, tt, {(θf , c)}

Aug-Red-Await

θ.obs(O) ∈ ĥ signal(s) ∈ ĥ signalSet(s) �∈ ĥ s.lev ≺L O

ĥ,await is set(s.id) θ�aug ĥ,await is set(s.id)

Fig. 2. Reduction rules for augmented semantics.

Forking. Whenever a thread forks a new thread, it can pass some of its obliga-
tions to the newly forked thread, cf. Aug-Red-Fork. Forking a new thread with
ID θf also allocates a new heap cell θf .obs to store its bag of obligations. Since
this is the only way to allocate a new obs heap cell, we will never run into a heap
̂h � {θ.obs(O)} � {θ.obs′(O′)} that contains multiple obligations chunks belong-
ing to the same thread θ. Remember that threads cannot finish while holding
obligations. This prevents them from dropping obligations via dummy forks.

Levels. In order to prove that a busy-waiting loop await is set(sig) terminates,
we must ensure that the waiting thread does not directly or indirectly wait for
itself. We could just check that it does not hold an obligation for the signal it
is waiting for, but that is not sufficient as the following example demonstrates:
Consider a program with two signals sig1, sig2 and two threads. Let one thread
hold the obligation for sig2 and execute await is set(sig1); set signal(sig2).
Likewise, let the other thread hold the obligation for sig1 and let it execute
await is set(sig2); set signal(sig1).

To prevent such wait cycles modularly, we apply the usual approach [3,4,19].
For every program that we want to execute in our augmented semantics, we
choose a partially ordered set of levels Levs. Further, during every reduction
step in the augmented semantics that creates a signal s, we pick a level L ∈
Levs and associate it with s. Note that much like obligations, levels do not exit
during runtime in the real semantics. Signal chunks in the augmented semantics
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have the form signal((id, L)) where id is the unique signal identifier returned
by new signal. The level assigned to any signal can be chosen freely, cf. Aug-

Red-NewSignal. In practice, determining levels boils down to solving a set of
constraints that reflect the dependencies. In our example, however, the choice
is trivial as it only involves a single signal. We choose Levs = {0} and 0 as
level for sig and thereby get signal((sig, 0)). Generally, we denote signal tuples
by s = (id, L). Now we can rule out cyclic wait dependencies by only allowing a
thread to busy-wait for a signal s if its level s.lev is smaller than the level of each
held obligation, cf. Aug-Red-Await

1. Given a bag of obligations O, we denote
this by s.lev ≺L O.

Proving Termination. As we will explain below, the augmented semantics has
no fair infinite executions. We can use this as follows to prove that a program
c terminates under fair scheduling: For every fair infinite execution of c, show
that we can construct a corresponding augmented execution. (This requires that
each step’s side conditions in the augmented semantics are satisfied. Note that
we thereby prove certain properties for the real execution, like absence of cyclic
wait dependencies.) As there are no fair infinite executions in the augmented
semantics, we get a contradiction. It follows that c has no fair infinite executions
in the real semantics.

Soundness. In order to prove soundness of our approach, we must prove that
there indeed are no fair infinite executions in the augmented semantics. This
boils down to proving that no signal can be waited for infinitely often. Consider
any program and any fair augmented execution of it. Consider the execution’s
program order graph, (i) whose nodes are the execution steps and (ii) which has
an edge from a step to the next step of the same thread and to the first step
of the forked thread, if it is a fork step. Notice that for each obligation created
during the execution, the set of nodes corresponding to a step made by a thread
while that thread holds the obligation constitutes a path that ends when the
obligation is discharged. We say that this path carries the obligation.

It is not possible that a signal is waited for infinitely often. Indeed, suppose
some signals S∞ are. Take smin ∈ S∞ with minimal level. Since smin is never
set, the path in the program order graph that carries the obligation must be
infinite as well. Indeed, suppose it is finite. The final node N of the path cannot
discharge the obligation without setting the signal, so it must pass the obligation
on either to the next step of the same thread or to a newly forked thread. By
fairness of the scheduler, both of these threads will eventually be scheduled. This
contradicts N being the final node of the path.

The path carrying the obligation for smin waits only for signals that are
waited for finitely often. (Remember that Aug-Red-Await requires the signal
waited for to be of a lower level than all held obligations, i.e., a lower level than
that of smin.) It is therefore a finite path. A contradiction.
1 For simplicity, our augmented semantics assumes that the level order and the level

associated with any object remains fixed for the entire execution. However, following
the approach presented in [18], it would be sound to add a step rule that allows a
thread to change the level of an object it has exclusive access to (cf. Sect. 2.2).
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Notice that the above argument relies on the property that every non-empty
set of levels has a minimal element. For this reason, for termination verification
we require that Levs is not just partially ordered, but also well-founded.

Program Logic
Directly using the augmented semantics to prove that our example program
terminates is cumbersome. In the following, we present a separation logic that
simplifies this task.

Safety. We call a program c safe under a (partial) heap ̂h if it provides all
the resources necessary such that both c and any threads it forks can execute
without getting stuck in the augmented semantics. (This depends on the angelic
choices.) We denote this by safe(̂h, c) [33]2.

Consider a program c that is safe under an augmented heap ̂h. Let h be the real
heap that matches ̂h apart from the ghost resources. Then, for every real execution
that starts with h we can construct a corresponding augmented execution.

Specifications. We use Hoare triples {A} c {λr.B(r)} [8] to specify the behaviour
of a program c. Such a triple expresses the following: Consider any evaluation con-
text E, such that for every return value v, running E[v] from a state that satisfies
B(v) is safe. Then, running E[c] from a state that satisfies A is safe.

Proof System. We define a proof relation � which ensures that whenever
we can prove � {A} c{λr.B(r)}, then c complies with the specification
{A} c{λr.B(r)}. Figure 3b presents some of the proof rules we use to define �.
As we evolve our setting throughout this section, we also adapt our proof rules.
Rules that will be changed later are marked with a prime in their name. The
full set of rules is presented in the extended version of this paper [28]. Our proof
rules PR-SetSignal’ and PR-Await’ are similar to the rules for sending and
receiving on a channel presented in [19].

Notice how the proof rules enforce the side-conditions of the augmented
semantics. Hence, all we have to do to prove that a program c terminates is
to prove that every thread eventually discharges all its obligations. That is, we
have to prove � {obs(∅)} c {obs(∅)}. Figure 3a illustrates how we can apply our
rules to verify that our minimal example terminates.

2.2 Non-Thread-Safe Physical Signals

As a step towards supporting waiting for arbitrary conditions over shared data
structures, including non-thread-safe ones, we now move to non-thread-safe sig-
nals. For simplicity, in this paper we consider programs that use mutexes to syn-
chronize concurrent accesses to shared data structures. (Our ideas apply equally
to programs that use other constructs, such as atomic machine instructions.)
Figure 4 presents our updated example.
2 For a formal definition see this paper’s extended version [28] and the technical

report [29].
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{obs(∅)}
let sig := new signal in PR-NewSignal’ with L = 0
{obs({[(sig, 0)]}) ∗ signal((sig, 0))} s := (sig, 0)
fork ({obs(∅) ∗ signal(s)}

await is set(sig) s.lev = 0 ≺L ∅
{obs(∅) ∗ signal(s)});

{obs({[s]})}
set signal(sig)
{obs(∅)}

(a) Proof outline for program from Fig. 1. Applied proof rule marked in purple. Abbre-
viation marked in brown. General hint marked in red.

PR-NewSignal’

L ∈ Levs

	 {obs(O)} new signal {λr. obs(O � {[(r, L)]}) ∗ signal((r, L))}
PR-SetSignal’

	 {obs(O � {[s]})} set signal(s.id) {obs(O)}
PR-Fork’

	 {obs(Of ) ∗ A} c {obs(∅) ∗ B}
	 {obs(Om � Of ) ∗ A} fork c {obs(Om)}

PR-Await’

s.lev ≺L O

	 {obs(O) ∗ signal(s)} await is set(s.id) {obs(O) ∗ signal(s)}
PR-Let

	 {A} c {λr. C(r)} ∀v. 	 {C(v)} c′[v/x] {B}
	 {A} let x := c in c′ {B}

(b) Proof rules. Rules only used in this section marked with ’.

Fig. 3. Verifying termination of minimal example with physical thread-safe signal.
(Color figure online)

let sig := new signal in
let mut := new mutex in
fork with mut await is set(sig);
acquire mut;
set signal(sig);
release mut

(a) Code.

with mut await c := (while acquire mut;
let r := c in
release mut;
¬r

do skip)

(b) Syntactic sugar. r not free in mut.

Fig. 4. Minimal example with two threads communicating via a physical non-thread-
safe signal protected by a mutex.
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As signal sig is no longer thread-safe, the two threads can no longer use it
directly to communicate. Instead, we have to synchronize accesses to avoid data
races. Hence, we protect the signal by a mutex mut created by the main thread.
In each iteration, the forked thread acquires the mutex, checks whether sig has
been set and releases it again. After forking, the main thread acquires the mutex,
sets the signal and releases it again.

Exposing Signal Values. Signals are specially marked heap cells storing boolean
values. We make this explicit by extending our signal chunks from signal(s) to
signal(s, b) where b is the current value of s and by updating our proof rules
accordingly. Upon creation, signals are unset. Hence, creating a signal sig now
spawns an unset signal chunk signal((sig, L),False) for some freely chosen level L
and an obligation for (sig, L), cf. PR-NewSignal”. We present our new proof
rules in Fig. 6 and demonstrate their application in Fig. 5.

{obs(∅)}
let sig := new signal in PR-NewSignal” with L = 1
{obs({[(sig, 1)]}) ∗ signal((sig, 1),False)} PR-ViewShift & VS-SemImp

{obs({[(sig, 1)]}) ∗ ∃b. signal((sig, 1), b)} s := (sig, 1), P := ∃b. signal(s, b)
let mut := new mutex in PR-NewMutex” with L = 0
{obs({[s]}) ∗ mutex(m, P )} PR-ViewShift{
obs({[s]}) ∗ mutex(m, P ) ∗ mutex(m, P )

}
& VS-CloneMut”

fork ({obs(∅) ∗ mutex(m, P )}
with m await m.lev, s.lev ≺L ∅

{obs({[m]}) ∗ P} PR-Exists

∀b. {obs({[m]}) ∗ signal(s, b)}
is set(sig)
{λr. obs({[m]}) ∗ signal(s, b) ∧ r = b} PR-ViewShift & VS-SemImp{

λr. obs({[m]})
∗ if r then P else signal(s,False)

}
{obs(∅) ∗ mutex(m, P )} PR-ViewShift & VS-SemImp

{obs(∅)});
{obs({[s]}) ∗ mutex(m, P )}
acquire mut; m.lev = 0 < 1 = s.lev
{obs({[s, m]}) ∗ locked(m, P ) ∗ ∃b. signal(s, b)} PR-Exists

∀b. {obs({[s, m]}) ∗ locked(m, P ) ∗ signal(s, b)}
set signal(sig);
{obs({[m]}) ∗ locked(m, P ) ∗ signal(s,True)} PR-ViewShift & VS-SemImp

{obs({[m]}) ∗ locked(m, P ) ∗ P}
release mut
{obs(∅) ∗ mutex(m, P )} PR-ViewShift & VS-SemImp

{obs(∅)}

Fig. 5. Proof outline for program Fig. 4, verifying termination with mutexes & non-
thread safe signals. Applied proof and view shift rules marked in purple. Abbreviations
marked in brown. General hints marked in red. (Color figure online)
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PR-NewSignal”

L ∈ Levs

	 {obs(O)} new signal {λid. obs(O � {[(id, L)]}) ∗ signal((id, L),False)}
PR-SetSignal”

	 {obs(O � {[s]}) ∗ signal(s, )} set signal(s.id) {obs(O) ∗ signal(s,True)}
PR-IsSignalSet”

	 {signal(s, b)} is set(s.id) {λr. signal(s, b) ∧ r = b}
PR-Await”

m.lev, s.lev ≺L O signal(s,False) ∗ R � P
	 {obs(O � {[m]}) ∗ P} c {λr. obs(O � {[m]}) ∗ if r then P else signal(s,False) ∗ R}

	 {obs(O) ∗ mutex(m, P )} with m.loc await c {obs(O) ∗ mutex(m, P )}

(a) Signals & busy waiting.

PR-NewMutex”

L ∈ Levs

	 {P} new mutex {λ�.mutex((�, L), P )}
PR-Acquire”

	
{obs(O) ∗ mutex(m, P ) ∧ m.lev ≺L O}
acquire m.loc
{obs(O � {[m]}) ∗ locked(m, P ) ∗ P}

PR-Release”

	
{obs(O � {[m]}) ∗ locked(m, P ) ∗ P}
release m.loc
{obs(O) ∗ mutex(m, P )}

(b) Mutexes.

PR-Frame

	 {A} c {B}
	 {A ∗ F} c {B ∗ F}

PR-Exists

∀a ∈ A. 	 {a} c {B}
	 {∨

A} c {B}
PR-Fork

	 {obs(Of ) ∗ A} c {obs(∅)}
	 {obs(Om � Of ) ∗ A} fork c {obs(Om)}

PR-ViewShift

A � A′ 	 {A′} c {B′} B′ � B

	 {A} c {B}

(c) Standard rules.

VS-SemImp

∀H. consistentlh(H) ∧ H �A A ⇒ H �A B

A � B

VS-Trans

A � C C � B

A � B

VS-CloneMut”

mutex(m, P ) � mutex(m, P ) ∗ mutex(m, P )

(d) View shifts.

Fig. 6. Proof rules and view shift rules for mutexes and non-thread safe signals. Rules
only used in this section marked with ”.
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Data Races. As read and write operations on signals are no longer thread-safe,
our logic has to ensure that two threads never try to access sig at the same time.
Hence, in our logic possession of a signal chunk signal(s, b) expresses (temporary)
exclusive ownership of s. Further, our logic requires threads to own any signal
they are trying to access. Specifically, when a thread wants to set sig, it must hold
a chunk of the form signal((sig, L), b), cf. PR-SetSignal”. The same holds for
reading a signal’s value, cf. PR-IsSignalSet”. Note that signal chunks are not
duplicable and only created upon creation of the signal they refer to. Therefore,
holding a signal chunk for sig indeed guarantees that the holding thread has the
exclusive right to access sig (while holding the signal chunk).

Synchronization and Lock Invariants. After the main thread creates sig, it exclu-
sively owns the signal. The main thread can transfer ownership of this resource
during forking, cf. PR-Fork’, and thereby allow the forked thread to busy-wait
for sig. This would, however, leave the main thread without any permission to
set the signal and thereby discharge its obligation.

We use mutexes to let multiple threads share ownership of a common set of
resources in a synchronized fashion. Every mutex is associated with a lock invari-
ant P , an assertion chosen by the proof author that specifies which resources the
mutex protects. In our example, we want both threads to share sig. To reflect
the fact that the signal’s value changes over time, we choose a lock invariant
that abstracts over its concrete value. We choose P := ∃b. signal((sig, L), b).
Let us ignore the chosen signal level L for now. Creating the mutex mut con-
sumes this lock invariant and binds it to mut by creating a mutex chunk
mutex((mut, . . . ), P ), cf. PR-NewMutex”. Thereby, the main thread loses
access to sig. The only way to regain access is by acquiring mut, cf. PR-

Acquire”. Once the thread releases mut, it again loses access to all resources
protected by the mutex, cf. PR-Release”.

Deadlocks. We have to ensure that any acquired mutex is eventually released,
again. Hence, acquiring a mutex spawns a release obligation for this mutex
and the only way to discharge this obligation is indeed by releasing it, cf. PR-

Acquire” and PR-Release”.
Any attempt to acquire a mutex will block until the mutex becomes available.

In order to prove that our program terminates, we have to prove that it does
not get stuck during an acquisition attempt. To prevent wait cycles involving
mutexes, we require the proof author to associate every mutex as well (just like
signals) with a level L. This level can be freely chosen during the mutex’ creation,
cf. PR-NewMutex”. Mutex chunks therefore have the form mutex((�, L), P )
where � is the heap location the mutex is stored at. Their only purpose is to
record the level and lock invariant a mutex is associated with. Hence, these
chunks can be freely duplicated as we will see later. Generally, we denote mutex
tuples by m = (�, L). We only allow to acquire a mutex if its level is lower than
the level of each held obligation, cf. PR-Acquire”. This also prevents any thread
from attempting to acquire mutexes twice, e.g., acquire mut;acquire mut or
with mut await acquire mut.
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View Shifts. When verifying a program, it can be necessary to reformulate the
proof state and to draw semantic conclusions. To allow this we introduce a so-
called view shift relation � [14]. By applying proof rule PR-ViewShift and VS-

SemImp we can strengthen the precondition and weaken the postcondition. In
our example, we use this to convert the unset signal chunk into the lock invariant
which abstracts over the signal’s value, i.e., signal(s,False) � ∃b. signal(s, b).

The logic we present in this work is an intuitionistic separation logic that
allows us to drop chunks.3 This allows us to simplify the postcondition of our
fork proof rule’s premise from obs(∅) ∗ B to obs(∅), cf. PR-Fork, and drop all
unneeded chunks via a semantic implication obs(∅) ∗ B � obs(∅).

We also allow to clone mutex chunks via view shifts, cf. VS-CloneMut”.
In our example, this is necessary to inform both threads which level and lock
invariant mutex mut is associated with. That is, the main thread clones the
mutex chunk mutex(m,P ) and passes one chunk on when it forks the busy-
waiting thread.

In Sect. 2.4 we extend our view shift relation and revisit our interpretation of
what a view shift expresses. The full set of rules we use to define � is presented
in the extended version of this paper [28].

Busy Waiting. In the approach presented in this paper, for simplicity we only
support busy-waiting loops of the form with mut await c, which is syntactic
sugar for while acquire mut; let r := c in release mut;¬r do skip where r
denotes a fresh variable.4 In each iteration, the loop tries to acquire mut, executes
c, releases mut again and lets the result returned by c determine whether the
loop continues. Such loops can fail to terminate for two reasons: (i) Acquiring
mut can get stuck and (ii) the loop could diverge.

We prevent the loop from getting stuck by requiring mut’s level to be lower
than the level of each held obligation, cf. PR-Await”. Further, we enforce ter-
mination by requiring the loop to wait for a signal. That is, when verifying a
busy-waiting loop using our approach, the proof author must choose a fixed sig-
nal and prove that this signal remains unset at the end of every non-finishing
iteration. This way, we can prove that the loop terminates by proving that every
signal is eventually set, just as in Sect. 2.1. And just as before, our logic requires
the level of the waited-for signal to be lower than the level of each held obligation.

Acquiring the mutex in every iteration makes the lock invariant available
during the verification of the loop body c. This lock invariant has to be restored
at the end of the iteration such that it can be consumed during the mutex’s
release. PR-Await” allows for an additional view shift to restore the invariant.
In our example, we end our busy-waiting loop’s non-finishing iterations with the
assertion signal(s,False). We use a semantic implication view shift to convert the
signal chunk into the mutex invariant ∃b. signal(s, b).
3 This allows a thread to drop its obligations chunk obs(O). Note, however, that by

dropping this chunk the thread does not drop its obligations, but only its ability to
show what its obligations are. In particular the thread would be unable to present
an empty obligations chunk upon termination.

4 As we discuss in Sect. 5, in the technical report accompanying this paper we present
a more general logic that imposes no such syntactic restrictions.
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Choosing Levels. In our example, we have to assign levels to the mutex mut
and to the signal sig. Our proof rules for mutex acquisition and busy wait-
ing impose some restrictions on the levels of the involved mutexes and signals.
By analysing the corresponding rule applications that occur in our proof, we
can derive which constraints our level choice must comply with. Our example’s
verification involves one application of PR-Acquire” and one application of
PR-Await”: (i) Our main thread tries to acquire mut while holding an obliga-
tion to set sig. (ii) The forked thread busy-waits for sig while not holding any
obligations. Our assignment of levels must therefore satisfy the single constraint
m.lev <L s.lev. So, we choose Levs = {0, 1}, m.lev = 0 and s.lev = 1.

2.3 Arbitrary Data Structures

The proof rules we introduced in Sect. 2.2 allow us to verify programs busy-
waiting for arbitrary conditions over arbitrary shared data structures as follows:
For every condition C the program waits for, the proof author inserts a signal
s into the program. They ensure that s is set at the same time the program
establishes C and prove an invariant stating that the signal’s value expresses
whether C holds. Then, the waiting thread can use s to wait for C. We illustrate
this here for the simplest case of setting a single heap cell in Fig. 7a.

let x := cons(0) in
let mut := new mutex in
fork with mut await [x] = 1;
acquire mut;
[x] := 1;
release mut

(a) Example program with busy wait-
ing for heap cell x to be set.

let x := cons(0) in
let sig := new signal in
let mut := new mutex in
fork with mut await [x] = 1;
acquire mut;
[x] := 1;
set signal(sig);
release mut

(b) Example program   with addi-
tional signal sig inserted, marked in
green . sig and x are kept in sync.

[e] = e′ := (let r :=[e] in r = e′)

(c) Syntactic sugar. r free in e′.

7a

Fig. 7. Minimal example illustrating busy waiting for condition over heap cell. (Color
figure online)

The program involves three new non-thread-safe commands: (i) cons(v) for
allocating a new heap cell and initializing it with value v, (ii) [�] := v for assigning
value v to heap location �, (iii) [�] for reading the value stored in heap location �.
We use [�] = v as syntactic sugar for let r :=[e] in r = e′.

In our example, the main thread allocates x, initializes it with the value 0 and
protects it using mutex mut. It forks a new thread busy-waiting for x to be set.
Afterwards, the main thread sets x. As explained above, we verify the program by
inserting a signal sig that reflects whether x has been set, yet. Figure 7b presents
the resulting code. The main thread creates the signal and sets it when it sets x.
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{obs(∅)}
let x := cons(0) in
{obs(∅) ∗ x �→ 0}
let sig := new signal in PR-NewSignal” with L = 1
let mut := new mutex in PR-NewMutex” with L = 0
s := (sig, 1), m := (mut, 0)
P := ∃v. x �→ v ∗ signal(s, v = 1)
{obs({[s]}) ∗ mutex(m, P ) ∗ mutex(m, P )}
fork ({obs(∅) ∗ mutex(m, P )}

with m await m.lev, s.lev ≺L ∅
{obs({[m]}) ∗ P}
∀v. {obs({[m]}) ∗ x �→ v ∗ signal(s, v = 1)}

[x] = 1⎧⎨
⎩

λr. obs({[m]})
∗ if r then P
else x �→ v ∧ v �= 1 ∗ signal(s,False)

⎫⎬
⎭

{obs(∅)});
{obs({[s]}) ∗ mutex(m, P )}
acquire mut; m.lev = 0 < 1 = s.lev
∀v. {obs({[s, m]}) ∗ locked(m, P ) ∗ x �→ v ∗ signal(s, v = 1)}

[x] := 1;
{obs({[s, m]}) ∗ locked(m, P ) ∗ x �→ 1 ∗ signal(s, v = 1)}
set signal(sig);
{obs({[m]}) ∗ locked(m, P ) ∗ x �→ 1 ∗ signal(s,True)}
release mut
{obs(∅)}

(a) Proof outline for program 7b. Applied proof rules marked in purple. Abbreviations
marked in brown. General hints marked in red.

PR-Cons

	 {True} cons(v) {λ�. � �→ v}
PR-AssignToHeap

	 {� �→ } [�] := v {� �→ v}

PR-ReadHeapLoc”’

	 {� �→ v} [�] {λr. r = v ∗ � �→ v}
PR-Exp

[[e]] ∈ Values

	 {True} e {λr. r = [[e]]}
(b) Proof rules. Evaluation function [[·]]. Rules only used in this section marked with ”’.

Fig. 8. Verifying termination of busy waiting for condition over heap cell. (Color figure
online)

Heap Cells. Verifying this example does not conceptually differ from the example
we presented in Sect. 2.2. Figure 8b presents the newproof ruleswe need andFig. 8a
sketches our example’s verification. As with non-thread-safe signals, we have to
prevent multiple threads from trying to access x at the same time in order to pre-
vent data races. For this we use so-called points-to chunks [24,31]. They have the
form � 
→ v and express that heap location � stores the value v. When a thread
holds such a chunk, it exclusively owns the right to access heap location �.

Heap locations are unique and the only way to create a new points-to chunk
is to allocate and initialize a new heap cell via cons(v), cf. PR-Cons. Hence,
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there will never be two points-to chunks involving the same heap location. In
order to read or write a heap cell via [�] or [�] := e, the acting thread must first
acquire possession of the corresponding points-to chunk, cf. PR-AssignToHeap

and PR-ReadHeapLoc”’.

Relating Signals to Conditions. In our example, the forked thread busy-waits for
x to be set while our proof rules require us to justify each iteration by showing
an unset signal. That is, we must prove an invariant stating that the value of x
matches sig. As this invariant must be shared between both threads, we encode
it in the lock invariant: P := ∃v. x 
→ v ∗ signal(s, v = 1). This does not only
allow both threads to share the heap cell and the signal but it also automatically
enforces that they maintain the invariant whenever they acquire and release the
mutex.

2.4 Signal Erasure

In the program from Fig. 7b signal sig is never read and does hence not influence
the waiting thread’s runtime behaviour. Therefore, we can verify the original
program presented in Fig. 7a by erasing the physical signal and treating it as
ghost code.

Ghost Signals. Central aspects of the proof sketch we presented in Fig. 8a are
that (i) the main thread was obliged to set sig and that (ii) the value of sig
reflected whether x was already set. Ghost signals allow us to keep this infor-
mation but at the same to remove the physical signals from the code. Ghost
signals are essentially identical to the physical non-thread-safe signals we used
so far. However, as ghost resources they cannot influence the program’s runtime
behaviour. They merely carry information we can use during the verification
process.

View Shifts Revisited. We implement ghost signals by extending our view shift
relation. In particular, we introduce two new view shift rules: VS-NewSignal

and VS-SetSignal presented in Fig. 9b. The former creates a new unset signal
and simultaneously spawns an obligation to set it. The latter can be used to set
a signal and thereby discharge a corresponding obligation. We say that these
rules change the ghost state and therefore call their application a ghost proof
step. With this extension, a view shift A � B expresses that we can reach
postcondition B from precondition A by (i) drawing semantic conclusions or by
(ii) manipulating the ghost state. In Fig. 9a we use ghost signals to verify the
program from Fig. 7a.

Note that lifting signals to the verification level does not affect the soundness
of our approach. The argument we presented in Sect. 2.1 still holds. We formalize
our logic and provide a formal soundness proof in the extended version of this
paper [28] and in the technical report [29]. The latter contains a more general
version of the presented logic that (i) is not restricted to busy-waiting loops of
the form with mut await c and that (ii) is easier to integrate into existing tools
like VeriFast [12], as explained in Sect. 5.
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{obs(∅)}
let x := cons(0) in
{obs(∅) ∗ x �→ 0}
new ghost signal; VS-NewSignal with L = 1.
{∃sig. obs({[(sig, 1)]}) ∗ x �→ 0 ∗ signal((sig, 1),False)} s := (sig, 1)
∀sig. {obs({[s]}) ∗ x �→ 0 ∗ signal(s,False)} P := ∃v. x �→ v ∗ signal(s, v = 1)

let mut := new mutex in PR-NewMutex” with L = 0{
obs({[s]}) ∗ mutex((mut, 0), P )
∗mutex((mut, 0), P )

}
m := (mut, 0)

fork ({obs(∅) ∗ mutex(m, P )}
with m await m.lev, s.lev ≺L ∅

{obs({[m]}) ∗ P}
∀v. {obs({[m]}) ∗ x �→ v ∗ signal(s, v = 1)}

[x] = 1⎧⎨
⎩

λr. obs({[m]}) ∗
if r then P
else x �→ v ∧ v �= 1 ∗ signal(s,False)

⎫⎬
⎭

{obs(∅)});
{obs({[s]}) ∗ mutex(m, P )}
acquire mut; m.lev = 0 < 1 = s.lev

∀v.

{
obs({[s, m]}) ∗ locked(m, P )
∗ x �→ v ∗ signal(s, v = 1)

}
[x] := 1;
set ghost signal(s);{
obs({[m]}) ∗ locked(m, P )
∗ x �→ 1 ∗ signal(s,True)

}
release mut
{obs(∅)}

(a) Proof outline for the program presented in Fig. 7a. Auxiliary commands hinting at
view shifts and general hints marked in red. Applied proof and view shift rules marked
in purple. Abbreviations marked in brown.

VS-NewSignal

L ∈ Levs

obs(O) � ∃id. obs(O � {[(id, L)]}) ∗ signal((id, L),False)

VS-SetSignal

obs(O � {[s]}) ∗ signal(s, ) � obs(O) ∗ signal(s,True)

(b) Proof rules.

Fig. 9. Verifying termination with ghost signals. (Color figure online)

3 A Realistic Example

To demonstrate the expressiveness of the presented verification approach, we
verified the termination of the program presented in Fig. 10a. It involves two
threads, a consumer and a producer, communicating via a shared bounded FIFO



Ghost Signals 43

with a maximal capacity of 10. The producer enqueues numbers 100, . . . , 1 into
the FIFO and the consumer dequeues those. Whenever the queue is full, the
producer busy-waits for the consumer to dequeue an element. Likewise, whenever
the queue is empty, the consumer busy-waits for the producer to enqueue the
next element. Each thread’s finishing depends on the other thread’s productivity.
This is, however, no cyclic dependency. For instance, in order to prove that the
producer eventually pushes number i into the queue, we only need to rely on the
consumer to pop i + 10. A similar property holds for the consumer.

alloc ghost signal IDs(idi
pop, idi

push) for 1 ≤ i ≤ 100;
Li

pop := 102 − i, Li
push := 101 − i, si

x := (idi
x, Li

x) for 1 ≤ i ≤ 100
init ghost signals(s100pop, s100push);
{obs({[s100pop, s100push]}) ∗ . . .}
let fifo10 := cons(nil) in let mut := new mutex in
let cp := cons(100) in let cc := cons(100) in
fork (while ( cp decreases in each iteration.

with mut await ( Busy-wait for fifo10 not being full.
{obs({[scppush, (mut, 0)]}) ∗ . . .} → Wait for consumer to pop.
let f := [fifo10] in
if size(f) < 10 then ( If fifo10 not full, push next element.

let c := [cp] in [fifo10] := f ·〈c〉; [cp] := c − 1;
set ghost signal(scpush);
if c − 1 �= 0 then init ghost signal(sc−1

push));
size(f) �= 10); if size(f) = 10 then wait for s

cp+10
pop

[cp] �= 0) L
cp+10
pop = 92 − cp < 101 − cp = L

cp
push

do skip);
while ( cc decreases in each iteration.

with mut await ( Busy-wait for fifo10 not being empty.
{obs({[sccpop, (mut, 0)]}) ∗ . . .} → Wait for producer to push.
let f := [fifo10] in
if size(f) > 0 then ( If fifo10 not empty, pop next element.

let c := [cc] in [fifo10] := tail(f); [cc] := c − 1;
set ghost signal(scpop);
if c − 1 �= 0 then init ghost signal(sc−1

pop));
size(f) > 0); if size(f) = 0 then wait for sccpush

[cc] �= 0) Lcc
push = 101 − cc < 102 − cc = Lcc

push

do skip);

(a) Example program with two threads communicating via a shared bounded FIFO
with maximal size 10. Auxiliary commands hinting at view shifts and general hints
marked in red. Abbreviations marked in brown. Hints on proof state marked in blue.

VS-AllocSigID

True � ∃id. uninitSig(id)

VS-SigInit

obs(O) ∗ uninitSig(id)
� obs(O � {[(id, L)]}) ∗ signal((id, L),False)

(b) Fine-grained view shift rules for signal creation.

Fig. 10. Realistic example program. (Color figure online)
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Fine-Tuning Signal Creation. To simplify complex proofs involving many signals
we refine the process of creating a new ghost signal. For simplicity, we combined
the allocation of a new signal ID and its association with a level and a boolean
in one step. For some proofs, such as the one we outline in this section, it
can be helpful to fix the IDs of all signals that will be created throughout the
proof already at the beginning. To realize this, we replace view shift rule VS-

NewSignal by the rules presented in Fig. 10b and adapt our signal chunks
accordingly. With these more fine-grained view shifts, we start by allocating
a signal ID, cf. VS-AllocSigID. Thereby we obtain an uninitialized signal
uninitSig(id) that is not associated with any level or boolean, yet. Also, allocating
a signal ID does not create any obligation because threads can only wait for
initialized (and unset) signals. When we initialize a signal, we bind its already
allocated ID to a level of our choice and associate the signal with False, cf. VS-

SigInit. This creates an obligation to set the signal.

Loops and Signals. In our program, both threads have a local counter initially
set to 100 and run a nested loop. The outer loops are controlled by their thread’s
counter, which is decreased in each iteration until it reaches 0 and the loop stops.
For such loops, we introduce a conventional proof rule for total correctness of
loops, cf. this paper’s extended version [28]. Verifying termination of the inner
loops is a bit more tricky and requires the use of ghost signals.

So far, we had to fix a single signal for the verification of every await loop.
We can relax this restriction to considering a finite set of signals the loop may
wait for, cf. PR-Await presented in [28]. Apart from being a generalisation, this
rule does not differ from PR-Await” introduced in Sect. 2.2.

Initially, we allocate 200 signal IDs id100push, . . . , id
1
push, id

100
pop, . . . , id

1
pop. We are

going to ensure that always at most one push signal and at most one pop signal
are initialized and unset. The producer and consumer are going to hold the
obligation for the push and pop signal, respectively. The producer will hold the
obligation for sipush while i is the next number to be pushed into the FIFO and
it will set sipush when it pushes the number i into the FIFO. Meanwhile, the
consumer will use sipush to wait for the number i to arrive in the queue when it
is empty. Similarly, the consumer will hold the obligation for sipop while number
i is the next number to be popped from the FIFO and will set sipop when it pops
the number i. The producer uses sipop to wait for the consumer to pop i from
the queue when it is full. At any time, we let the mutex mut protect the two
active signals and thereby make them accessible to both threads.

Choosing the Levels. Note that we ignored the levels so far. The producer and the
consumer both acquire the mutex while holding an obligation for a signal. Hence,
we choose Levs = N, m.lev = 0 and s.lev > 0 for every signal s. Both threads will
justify iterations of their respective await loop by using an unset signal at the
end of such an iteration. Our proof rules allow us to ignore the mutex obligation
during this step. Hence, the mutex level does not interfere with the level of the
unset signal. Whenever the queue is full, the producer waits for the consumer
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to pop an element and whenever the queue is empty, the consumer waits for
the producer to push. That is, the producer waits for si+10

pop while holding an
obligation for sipush and the consumer waits for sipush while holding an obligation
for sipop. So, we have to choose the signal levels such that si+10

pop .lev < sipush.lev

and sipush.lev < sipop.lev hold. We solve this by choosing sipop.lev = 102 − i and
sipush.lev = 101 − i.

Verifying Termination. This setup suffices to verify the example program. Via
the lock invariant, each thread has access to both active signals. Whenever the
producer pushes a number i into the queue, it sets sipush which discharges the held
obligation and decreases its counter. Afterwards, if i > 1, it uses the uninitialized
signal chunk uninitSig(idi−1

push) to initialize si−1
push = (idi−1

push, 101 − (i − 1)) and
replaces sipush in the lock invariant by si−1

push before it releases the lock. If i = 1,
the counter reached 0 and the loop ends. In this case, the producer holds no
obligation. The consumer behaves similarly. Since we proved that each thread
discharged all its obligations, we proved that the program terminates. Figure 10a
illustrates the most important proof steps. We present the program’s verification
in full detail in the extended version of this paper [28] and in the technical
report [29]. Furthermore, we encoded [27] the proof in VeriFast [12].

The number of threads in this program is fixed. However, our approach also
supports the verification of programs where the number of threads is not even
statically bounded. In [28] we present and verify such a program. It involves N
producer and N consumer threads that communicate via a shared buffer of size
1, for a random number N > 0 determined during runtime.

4 Specifying Busy-Waiting Concurrent Objects

Our approach can be used to verify busy-waiting concurrent objects with respect
to abstract specifications. For example, we have verified [26] the CLH lock [7]
against a specification that is very similar to our proof rules for built-in mutexes
shown in Fig. 6. The main difference is that it is slightly more abstract: when a
lock is initialized, it is associated with a bounded infinite set of levels rather than
with a single particular level. (To make this possible, an appropriate universe
of levels should be used, such as the set of lists of natural numbers, ordered
lexicographically.) To acquire a lock, the levels of the obligations held by the
thread must be above the elements of the set; the new obligation’s level is an
element of the set.

5 Tool Support

We have extended the VeriFast tool [10] for separation logic-based modular ver-
ification of C and Java programs so that it supports verifying termination of
busy-waiting C or Java programs. When verifying termination, VeriFast con-
sumes a call permission at each recursive call or loop iteration. In the technical
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report [29] we define a generalised version of our logic that instead of providing
a special proof rule for busy-waiting loops, provides wait permissions and a wait
view shift. A call permission of a degree δ can be turned into a wait permission
of a degree δ′ < δ for a given signal s. A wait view shift for an unset signal s for
which a wait permission of degree δ exists produces a call permission of degree
δ, which can be used to fuel a busy-waiting loop. When busy-waiting for some
signal s, we can generate new permissions to justify each iteration as long as
s remains unset.

VeriFast allows threads to freely exchange permissions. This is useful to verify
termination of non-blocking algorithms involving compare-and-swap loops [11].
However, we must be careful to prevent self-fueling busy-waiting loops. Hence,
we restrict where a permission can be consumed based on the thread phase it
was created in. The main thread’s initial phase is ε. When a thread in phase p
forks a new thread, its phase changes to p.Forker and the new thread starts in
phase p.Forkee. We allow a thread in phase p to consume a permission only if it
was produced in an ancestor thread phase p′ � p.

The only change we had to make to VeriFast’s symbolic execution engine
was to enforce the thread phase rule. We encoded the other aspects of the logic
simply as axioms in a trusted header file. We used this tool support to verify
the bounded FIFO (Sect. 3) and the CLH lock (Sect. 4). The bounded FIFO
proof [27] contains 160 lines of proof annotations for 37 lines of code (an anno-
tation overhead of 435%) and takes 0.08 s to verify. The CLH lock proof [26]
contains 343 lines of annotations for 49 lines of code (an overhead of 700%) and
takes 0.1 s to verify.

6 Integrating Higher-Order Features

The logic we presented in this paper does not support higher-order features such
as assertions that quantify over assertions, or storing assertions in the (logical)
heap as the values of ghost cells. While we did not need such features to carry
out our example proofs, they are generally useful to verify higher-order program
modules against abstract specifications. The typical way to support such features
in a program logic is by applying step indexing [1,17], where the domain of logical
heaps is indexed by the number of execution steps left in the (partial) program
trace under consideration. Assertions stored in a logical heap at index n+1 talk
about logical heaps at index n; i.e., they are meaningful only later, after at least
one more execution step has been performed.

It follows that such logics apply directly only to partial correctness prop-
erties. Fortunately, we can reduce a termination property to a safety property
by writing our program in a programming language instrumented with runtime
checks that guarantee termination. Specifically, we can write our program in a
programming language that fulfils the following criteria: It tracks signals, obliga-
tions and permissions at runtime and has constructs for signal creation, waiting
and setting a signal. The fork command takes as an extra operand the list of
obligations to be transferred to the new thread (and the other constructs simi-
larly take sufficient operands to eliminate any need for angelic choice). Threads
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get stuck when these constructs’ preconditions are not satisfied, such as when a
thread waits for a signal while holding the obligation for that signal. We can then
use a step-indexing-based higher-order logic such as Iris [14] to verify that no
thread in our program ever gets stuck. Once we established this, we know none
of the instrumentation has any effect and can be safely erased from the program.

7 Related and Future Work

In recent work [30] we propose a separation logic to verify termination of pro-
grams where threads busy-wait to be abruptly terminated. We generalize this
work to support busy waiting for arbitrary conditions.

In [11] we propose an approach based on call permissions to verify termi-
nation of single- and multithreaded programs that involve loops and recursion.
However, that work does not consider busy-waiting loops. In the technical report,
we present a generalised logic that uses call permissions and allows busy waiting
to be implemented using arbitrary looping and/or recursion. Furthermore, the
use of call permissions allowed us to encode our case studies in our VeriFast tool
which also uses call permissions for termination verification.

Liang and Feng [20,21] propose LiLi, a separation logic to verify liveness of
blocking constructs implemented via busy waiting. In contrast to our verification
approach, theirs is based on the idea of contextual refinement. In their approach,
client code involving calls of blocking methods of the concurrent object is verified
by first applying the contextual refinement result to replace these calls by code
involving primitive blocking operations and then verifying the resulting client
code using some other approach. In contrast, specifications in our approach are
regular Hoare-style triples and proofs are regular Hoare-style proofs.

In [9] we propose a Hoare logic to verify liveness properties of the I/O
behaviour of programs that do not perform busy waiting. By combining that
approach with the one we proposed in this paper, we expect to be able to verify
I/O liveness of realistic concurrent programs involving both I/O and busy wait-
ing, such as a server where one thread receives requests and enqueues them into
a bounded FIFO, and another one dequeues them and responds. To support this
claim, we encoded the combined logic in VeriFast and verified a simple server
application where the receiver and responder thread communicate via a shared
buffer [25].

8 Conclusion

We propose what is to the best of our knowledge the first separation logic for
verifying termination of programs with busy waiting. We offer a soundness proof
of the system of the paper in its extended version [28], and of a more general
system in the technical report [29]. Further, we demonstrated its usability by
verifying a realistic example. We encoded our logic and the realistic example in
VeriFast [27] and used this encoding also to verify the CLH lock [26]. Moreover,
we expect that our approach can be integrated into other existing concurrent
separation logics such as Iris [14].
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Abstract. This paper shows how techniques for linear dynamical sys-
tems can be used to reason about the behavior of general loops. We
present two main results. First, we show that every loop that can be
expressed as a transition formula in linear integer arithmetic has a best
model as a deterministic affine transition system. Second, we show that
for any linear dynamical system f with integer eigenvalues and any inte-
ger arithmetic formula G, there is a linear integer arithmetic formula
that holds exactly for the states of f for which G is eventually invari-
ant. Combining the two, we develop a monotone conditional termination
analysis for general loops.

Keywords: Termination · Conditional termination · Best abstraction ·
Reflective subcategory · Linear dynamical systems · Monotone analysis

1 Introduction

Linear and affine dynamical systems are a model of computation that is easy to
analyze (relative to non-linear systems), making them useful across a broad array
of applications. In the context of program analysis, affine dynamical systems
correspond to loops of the form

while (G(x)) do x := Ax + b (†)
where G is a formula, A is a matrix, x is a vector of program variables, and b is
a constant vector. The termination problem for such loops has been shown to be
decidable for several variations of this model [4,9,12,24,29]. However, few loops
in real programs take this form, and so this work has not yet made an impact on
practical termination analysis tools. This paper bridges the gap between theory
and practice, showing how techniques for linear and affine dynamical systems
can be used to reason about general programs.

Example 1. We illustrate our methodology using the example program in Fig. 1
(left). First, observe that although the body of this loop is not of the form (†), the
value of the sum x + y decreases by z each iteration, and z remains the same.
Thus, we can approximate the loop by the linear dynamical system in Fig. 1
(right), where the nature of the approximation is given by the linear map in the
center of Fig. 1 (i.e., the a coordinate corresponds to x+ y, and the b coordinate
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1 z := 1

2 while (x ≥ 0 ∧ y ≥ 0) do
3 w := 3w + x + 1

4 if ((x - y) % 2 == 0):

5 x := x - z
6 else:
7 y := y - z

[
a
b

]
:=

[
1 −1
0 1

] [
a
b

]
[
a
b

]
=

[
0 1 1 0
0 0 0 1

]
⎡
⎢⎢⎣
w
x
y
z

⎤
⎥⎥⎦

Fig. 1. Over-approximation of a loop by a linear dynamical system.

to z). The linear map is a simulation, in the sense that it transforms the state
space of the program into the state space of the linear dynamical system so that
every step in the loop has a corresponding step in the linear dynamical system.

Next, we compute the image of the guard of the loop (x ≥ 0 ∧ y ≥ 0)
under the simulation, which yields a ≥ 0 (corresponding to the constraint x +
y ≥ 0 over the original program variables). We can compute a closed form for
this constraint holding on the kth iteration of the loop by exponentiating the
dynamics matrix of the linear dynamical system, multiplying on the left by the
row vector corresponding to the constraint, and on the right by the simulation:

[
1 0

]

︸ ︷︷ ︸
Constraint

[
1 −1
0 1

]k

︸ ︷︷ ︸
Dynamics

[
0 1 1 0
0 0 0 1

]

︸ ︷︷ ︸
Simulation

⎡

⎢
⎢
⎣

w
x
y
z

⎤

⎥
⎥
⎦ = (x + y) − kz.

We then analyze the asymptotic behavior of the closed form:

As k → ∞, (x + y) − kz →

⎧
⎪⎨

⎪⎩

−∞ if z > 0
x + y if z = 0
∞ if z < 0

We conclude that z > 0 ∨ (x + y) < 0 is a sufficient condition for the loop to
terminate. ⌟

The paper is organized as follows. To serve as the class of “linear models”
of loops, we introduce deterministic affine transition systems (DATS), a com-
putational model that generalizes affine dynamical systems. Sect. 3 shows that
any loop expressed as a linear integer arithmetic formula has a DATS-reflection,
which is a best representation of the behavior of the loop as a DATS. Moreover,
this holds for a restricted class of DATS with rational eigenvalues. Section 4
shows that for a linear map f with integer eigenvalues and a linear integer arith-
metic formula G, there is a linear integer arithmetic formula that holds exactly
for those states x such that G(fk(x)) holds for all but finitely many k ∈ N.
Section 5 brings the results together, showing that the analysis of a DATS with
rational eigenvalues can be reduced to the analysis of a linear dynamical system
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with integer eigenvalues. The fact that DATS-reflections are best implies mono-
tonicity of the analysis. Finally, in Sect. 6, we demonstrate experimentally that
the analysis can be successfully applied to general programs, using the framework
of algebraic termination analysis [34] to lift our loop analysis to a whole-program
conditional termination analysis. Some proofs are omitted for space, but may be
found in the extended version of this paper [33].

2 Preliminaries

This paper assumes familiarity with linear algebra – see for example [19]. We
recall some basic definitions below.

In the following, a linear space refers to a finite-dimensional linear space
over the field of rational numbers Q. For V a linear space and U ⊆ V , span(U)
is the linear space generated by U ; i.e., the smallest linear subspace of V that
contains U . An affine subspace of a linear space V is the image of a linear
subspace of V under a translation (i.e., a set of the form {v + v0 : v ∈ U} for
some linear subspace U ⊆ V and some v0 ∈ V ). For any scalar a ∈ Q, and any
linear space V , we use a to denote the linear map a : V → V that maps v 	→ av
(in particular, 1 is the identity). A linear functional on a linear space V is a
linear map V → Q; the set of all linear functionals on V forms a linear space
called the dual space of V , denoted V �. A linear map f : V1 → V2 induces a
dual linear map f� : V �

2 → V �
1 where f�(g) � g ◦ f . For any linear space V , V is

naturally isomorphic to V ��, where the isomorphism maps x 	→ λf : V �.f(x).
Let V be a linear space. A linear map f : V → V is associated with a

characteristic polynomial pf (x), which is defined to be the determinant of
(xI − Af ), where Af is a matrix representation of f with respect to some basis
(the choice of which is irrelevant). Define the spectrum (set of eigenvalues)
of f to be the set of (possibly complex) roots of its characteristic polynomial,
spec(f) � {λ ∈ C : pf (λ) = 0}. We say that f has rational spectrum if
spec(f) ⊆ Q; equivalently (by the spectral theorem – see e.g. [19, Ch. 6, Theorem
7]):

– There is a basis {x1, ..., xn} for V consisting of generalized (right) eigenvec-
tors, satisfying (f − λi)ri(xi) = 0 for some λi ∈ spec(f) and some ri ≥ 1 (ri

is called the rank of xi)
– There is a basis {g1, ..., gn} for V � consisting of generalized left eigenvectors,

satisfying gi ◦ (f − λi)ri = 0 for some λi ∈ spec(f) and some ri ≥ 1

It is possible to determine whether a linear map has rational spectrum (and com-
pute the basis of eigenvectors for V and V �) in polynomial time by computing
its characteristic polynomial [15], factoring it [22], and checking whether each
factor is linear.
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The syntax of linear integer arithmetic (LIA) is given as follows:

x ∈ Variable

n ∈ Z

t ∈ Term::= x | n | n · t | t1 + t2

F ∈ Formula::= t1 ≤ t2 | (n | t) | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x.F | ∀x.F

Let X ⊆ Variable be a set of variables. A valuation over X is a map v : X →
Z. If F is a formula whose free variables range over X and v is a valuation over
X, then we say that v satisfies F (written v |= F ) if the formula F is true when
interpreted over the standard model of the integers, using v to interpret the free
variables. We write F |= G if every valuation that satisfies F also satisfies G.

2.1 Transition Systems

A transition system T is a pair T = 〈ST , RT 〉 where ST is a set of states and
RT ⊆ ST × ST is a transition relation. Within this paper, we shall assume that
the state space of any transition system is a finite-dimensional linear space (over
Q). We write x →T x′ to denote that the pair 〈x, x′〉 belongs to RT . We define
the domain of a transition system T , dom(T ) � {x ∈ ST : ∃x′.x →T x′}, to be
the set of states that have a T -successor. We define the ω-domain domω(T ) of
T to be the set of states from which there exist infinite T -computations:

domω(T ) � {x0 ∈ ST : ∃x1, x2, ... such that x0 →T x1 →T x2 →T · · ·} .

A transition formula F (X,X ′) is an LIA formula whose free variables
range over a designated finite set of variables X and a set of “primed copies”
X ′ = {x′ : x ∈ X}. For example, a transition formula that represents the body
of the loop in Fig. 1 is

x ≥ 0 ∧ y ≥ 0 ∧ w′ = 3w + x + 1 ∧ z′ = z

∧
(

((2 | x − y) ∧ x′ = x − z ∧ y′ = y)
∨ (¬(2 | x − y) ∧ y′ = y − z ∧ x′ = x)

)
(1)

We use TF to denote the set of transition formulas. A transition formula
F (X,X ′) defines a transition system where the state space is the set of functions
X → Q, and where v →F v′ if and only if both (1) v and v′ map each x ∈ X
to an integer and (2) [v, v′] |= F , where [v, v′] denotes the valuation that maps
each x ∈ X to v(x) and each x′ ∈ S′ to v′(x). Defining the state space of F to
be X → Q rather than X → Z is a technical convenience (X → Q ∼= Q

|X| is a
linear space), but does not materially affect the results of this paper since only
(integral) valuations are involved in transitions.

Let T = 〈ST , RT 〉 be a transition system. We say that T is:

– linear if RT is a linear subspace of ST × ST ,
– affine if RT is an affine subspace of ST × ST ,
– deterministic if x →T x′

1 and x →T x′
2 implies x′

1 = x′
2
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– total if for all x ∈ ST there exists some x′ ∈ ST with x →T x′

For example, the transition system T with transition relation

RT �

⎧
⎨

⎩

〈[
x
y

]
,

[
x′

y′

]〉
:

⎡

⎣
1 0
0 1
0 0

⎤

⎦
[
x′

y′

]
=

⎡

⎣
2 1
0 1
0 1

⎤

⎦
[
x
y

]
+

⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭

is deterministic and affine, but not linear or total. The transition system U with
transition relation

RU �
{〈[

x
y

]
,

[
x′

y′

]〉
:
[
1 1

]
[
x′

y′

]
=
[
1
2

1
2

]
[
x
y

]}

is total, linear (and affine), but not deterministic. The classical notion of a linear
dynamical system—a transition system where the state evolves according to
a linear map—corresponds to a total, deterministic, linear transition system.
Similarly, an affine dynamical system is a transition system that is total,
deterministic, and affine.

For any map s : X → Y , and any relation R ⊆ X × X, define the image
of R under s to be the relation s[R] = {〈s(x), s(x′)〉 : 〈x, x′〉 ∈ R}. For any
relation R ⊆ Y × Y , define the inverse image of R under s to be the relation
s−1[R] = {〈x, x′〉 : 〈s(x), s(x′)〉 ∈ R}. Let T = 〈ST , RT 〉 and U = 〈SU , RU 〉 be
transition systems. We say that a linear map s : ST → SU is a linear simulation
from T to U , and write s : T → U , if for all x →T x′, we have s(x) →U s(x′).
Observe that the following are equivalent: (1) s is a simulation, (2) s[RT ] ⊆ RU ,
and (3) RT ⊆ s−1[RU ].

An example of a simulation between a transition formula and a linear dynam-
ical system is given in Fig. 1. In fact, there are many linear dynamical systems
that over-approximate this loop; however, the simulation and linear dynamical
system given in Fig. 1 is its best abstraction.

To formalize the meaning of best abstractions, it is convenient to use the
language of category theory [17]. Any class of transition systems defines a cat-
egory, where the objects are transitions systems of that class, and the arrows
are linear simulations between them. We use boldface letters (Linear, Affine,
Deterministic, Total) to denote categories of transition systems (e.g., DATS
denotes the category of Deterministic Affine Transition Systems).

If T is a transition system and C is a category of transition systems, a C-
abstraction of T is a pair 〈U, s〉 consisting of a transition system U belonging to
C and a linear simulation s : T → U . A C-reflection of T is a C-abstraction that
satisfies a universal property among C-abstractions of T : for any C-abstraction
〈V, t〉 of T there exists a unique simulation t : U → V such that t ◦ s = t; i.e.,
the following diagram commutes:

V

T U
s

t
t
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If D is a category of transition systems and C is a subcategory such that
every transition system in D has a C-reflection, we say that C is a reflective
subcategory of D.

Our ultimate goal is to bring techniques from linear dynamical systems to
bear on transition formulas. Fig. 1 gives an example of a program and its linear
dynamical system reflection. Unfortunately, such reflections do not exist for all
transition formulas, which motivates our investigation of alternative models.

Proposition 1. The transition formula x′ = x ∧ x = 0 has no TDATS-
reflection.

Proof. Let F be the 1-dimensional transition formula x′ = x ∧ x = 0. For a
contradiction, suppose that 〈A, s〉 is a TDATS-reflection of F . Since F contains
the origin, then so must the transition relation of A, and so A is linear. Next,
consider that for any λ ∈ Q, we have the simulation id : F → Aλ, where id is
the identity function and Aλ = 〈Q, x 	→ λx〉. Since 〈A, s〉 is a reflection of F , for
any λ, there is some tλ such that tλ : A → Aλ and id = tλ ◦ s. Since tλ is a
simulation, we have λtλ = Aλ ◦ tλ = tλ ◦ A. Since id = tλ ◦ s, we must have tλ
non-zero, and so tλ is a left eigenvector of A with eigenvalue λ. Since this holds
for all λ, A must have infinitely many eigenvalues, a contradiction.

3 Linear Abstractions of Transition Formulas

Proposition 1 shows that not every transition formula has a total deterministic
affine reflection. In the following we show that totality is the only barrier: every
transition formula has a (computable) DATS-reflection. Moreover, we show that
every transition formula has a rational spectrum DATS (Q-DATS)-reflection,
a restricted class of DATS that generalizes affine maps x 	→ Ax + b where A
has rational eigenvalues. The restriction on eigenvalues makes it easier to reason
about the termination behavior of Q-DATS.

In the remainder of this section, we show that every transition formula has
a Q-DATS-reflection by establishing a chain of reflective subcategories:

TF ATS DATS Q-DATS
Lemma 1 Lemma 3 Corollary 1

The fact that Q-DATS is a reflective subcategory of TF then follows from
the fact that a reflective subcategory of a reflective subcategory is reflective.

3.1 Affine Abstractions of Transition Formulas

Let F (X,X ′) be a transition formula. The affine hull of F , denoted aff(F ), is
the smallest affine set aff(F ) ⊆ (X ∪ X ′) → Q ∼= (X → Q) × (X → Q) that
contains all of the models of F . Reps et al. give an algorithm that can be used
to compute aff(F ), by using an SMT solver to sample a set of generators [26].
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Lemma 1. Let F (X,X ′) be a transition formula. The affine hull of F (con-
sidered as a transition system) is the best affine abstraction of F (where the
simulation from F to aff(F ) is the identity).

Example 2. Consider the example program in Fig. 1. Letting F denote the tran-
sition formula corresponding to the program, aff(F ) can be represented as the
solutions to the constraints

⎡

⎣
1 0 0 0
0 1 1 0
0 0 0 1

⎤

⎦

⎡

⎢
⎢
⎣

w′

x′

y′

z′

⎤

⎥
⎥
⎦ =

⎡

⎣
3 1 0 0
0 1 1 −1
0 0 0 1

⎤

⎦

⎡

⎢
⎢
⎣

w
x
y
z

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ (2)

Notice that aff(F ) is 4-dimensional and has a transition relation defined by
3 constraints, and thus is not deterministic. The next step is to find a suitable
projection onto a lower-dimensional space so that the resulting transition system
is deterministic.

3.2 Reflections via the Dual Space

This section presents a key technical tool that will be used in the next two
subsections to prove the existence of reflections. For any transition system T ,
an abstraction 〈U, s〉 of T consisting of a transition system U and a simulation
s : ST → SU induces a subspace of S�

T , which is the range of the dual map s�

(i.e., the set of all linear functionals on ST of the form g ◦ s where g ∈ S�
U ).

The essential idea is we can apply this in reverse: any subspace Λ of S�
T induces

a transition system U and a simulation s : T → U that satisfies a universal
property among all abstractions 〈V, v〉 of T where the range of v� is contained
in Λ. We will now formalize this idea.

Let T be a transition system, and let Λ be a subspace of S�
T . Define αΛ(T )

to be the pair αΛ(T ) � 〈U, s〉 consisting of a transition system U and a linear
simulation s : T → U where

– s : ST → Λ� sends each x ∈ ST to λf : Λ.f(x)
– SU � Λ�, and RU � s[RT ] = {〈s(x), s(x′)〉 : 〈x, x′〉 ∈ RT }
Lemma 2 (Dual space simulation). Let T be a transition system, let Λ be
a subspace of S�

T , and let 〈U, s〉 = αΛ(T ). Suppose that Z is a transition system
and z : T → Z is a simulation such that the range of z� is contained in Λ. Then
there exists a unique simulation z : U → Z such that z ◦ s = z.

Proof. The high-level intuition is that since the range of z� is contained in Λ,
we may consider it to be a map z� : S�

Z → Λ; dualizing again, we get a map
z�� : Λ� → S��

Z , whose domain is SU and codomain is (isomorphic to) SZ .
More formally, let j : SZ → S��

Z be the natural isomorphism between SZ and
S��

Z defined by j(y) � λg : S�
Z .g(y). Define z : Λ� → SZ by

z(h) � j−1(λg : S�
Z .h(g ◦ z)) .
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First we show that z ◦ s = z. Let x ∈ SZ . Then we have

(z ◦ s)(x) = z(s(x))

= j−1(λg : S�
Z .(s(x))(g ◦ z))

= j−1(λg : S�
Z .(λf : Λ.f(x))(g ◦ z))

= j−1(λg : S�
Z .g(z(x)))

= z(x) .

Next we show that z is a simulation. Suppose y →U y′. Since RU = s[RT ], there
is some x, x′ ∈ ST such that x →T x′, s(x) = y, and s(x′) = y′. Since z : T → Z
is a simulation, we have that z(x) →Z z(x), and so z(s(x)) →Z z(s(x′)), and we
may conclude that z(y) →Z z(y′).

Finally, observe that s is surjective, and therefore the solution to the equation
z ◦ s = z is unique.

We conclude this section by illustrating how to compute the function α for
affine transition systems. Suppose that T is an affine transition system of dimen-
sion n. We can represent states in ST by vectors in Q

n, and the transition rela-
tion RT by a finite set of transitions B ⊆ Q

n × Q
n that generates RT (i.e.,

RT = aff(B)). Suppose that Λ is an m-dimensional subspace of S�
T ; elements of

S�
T can be represented by n-dimensional row vectors, and Λ can be represented

by a basis fᵀ
1 , . . . , fᵀ

m. We can compute a representation of 〈U, s〉 = αΛ(T ) as
follows. The elements of SU = Λ� can be represented by m-dimensional vectors
(with respect to the basis g1, . . . , gm such that gi is the linear map that sends
fᵀ
j to 1 if i = j and to 0 otherwise). The simulation s can be represented by the

m × n matrix where the ith row is fᵀ
i . Finally, the transition relation RU can be

represented by a set of generators {〈s(x), s(x′)〉 : 〈x,x′〉 ∈ B}.

3.3 Determinization

In this section, we show that any transition system operating over a finite-
dimensional vector space has a best deterministic abstraction, and give an algo-
rithm for computing the best deterministic affine abstraction (or determiniza-
tion) of an affine transition system.

Towards an application of Lemma 2, we seek to characterize the determiniza-
tion of a transition system by a space of functionals on its state space. For any
linear space V and space of functionals Λ on V , define an equivalence relation
≡Λ on V by x ≡Λ y iff f(x) = f(y) for all f ∈ Λ. If T is a transition system and
Λ,Λ′ are spaces of functionals on ST , we say that T is (Λ,Λ′)-deterministic
if for all x1, x2 x′

1, x
′
2 such that x1 ≡Λ x2, x1 →T x′

1, and x2 →T x′
2, then we

also have x′
1 ≡Λ′ x′

1. Observe that if D is a deterministic transition system and
d : T → D is a simulation, then T must be (Λd, Λd)-deterministic, where Λd is
the range of the dual map d�.

For any T and Λ, define Det(T,Λ) � {f : T is (Λ, {f})-deterministic} to
be the greatest set of functionals such that T is (Λ,Det(T,Λ))-deterministic.
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Observe that Det(T,−) is a monotone operator on the complete lattice of linear
subspaces of S�

T (i.e., if Λ1 ⊆ Λ2 then Det(T,Λ1) ⊆ Det(T,Λ2), since Λ1 induces
a coarser equivalence relation than Λ2). By the Knaster-Tarski fixpoint theorem
[28], Det(T,−) has a greatest fixpoint, which we denote by Det(T ). Then we
have that T is (Det(T ),Det(T ))-deterministic, and Det(T ) contains every space
Λ such that T is (Λ,Λ)-deterministic.

Lemma 3 (Determinization). For any transition system T , αDet(T )(T ) is a
deterministic reflection of T .

Proof. Let 〈D, d〉 � αDet(T )(T ). First, we show that D is deterministic. Suppose
that y →D y′

1 and y →D y′
2; we must show that y′

1 = y′
2. Since RD is defined

to be d[RT ], there must be x1, x2, x′
1, and x′

2 in ST such that x1 →T x′
1,

x2 →T x′
2, d(x1) = d(x2) = y, d(x′

1) = y′
1, and d(x′

2) = y2. Since d(x1) = d(x2),
we have (λf : Det(T ).f(x1)) = (λf : Det(T ).f(x2)), and therefore x1 ≡Det(T ) x2.
We thus have x′

1 ≡Det(T,Det(T )) x′
2, and since Det(T,Det(T )) = Det(T ), we have

y′
1 = d(x′

1) = d(x′
2) = y′

2.
It remains to show that 〈D, d〉 is a deterministic reflection of T . Suppose

that 〈U, u〉 is another deterministic abstraction of T . Define G to be the range
of u�. Since U is deterministic, we must have G ⊆ Det(T,G), and since Det(T )
is the greatest fixpoint of Det(T,−) we have G ⊆ Det(T ). By Lemma 2, there is
a unique linear simulation u : D → U such that u ◦ d = u.

If a transition system T is affine, then its determinization can be computed in
polynomial time. Fixing a basis for the state space ST (of some dimension n), we
can represent the transition relation of T in the form RT = {〈x,x′〉 : Ax′ = Bx+
c} where A,B ∈ Q

m×n and c ∈ Q
m (for some m). We can represent functionals

on ST by n-dimensional vectors, where the vector v ∈ Q
n corresponds to the

functional that maps u 	→ vᵀu. A linear space of functionals Λ can be represented
by a system of linear equations Λ = {x : Mx = 0}. The ith row aᵀ

i v = bᵀ
i u+ ci,

of the system of equations Ax′ = Bx + c can be read as “T is ({bᵀ
i } , {aᵀ

i })-
deterministic.” Thus, the functionals fᵀ such that T is (Λ, {fᵀ})-deterministic
are those that can be written as a linear combination of the rows of A such that
the corresponding linear combination of the rows of B belongs to Λ; i.e.,

Det({〈x,x′〉 : Ax′ = Bx+c}, {f : M f = 0}) = {d : ∃y.MBᵀy = 0 ∧ Aᵀy = d} .

A representation of Det(T,Λ) can be computed in polynomial time using Gaus-
sian elimination. Since the lattice of linear subspaces of S�

T has height n, the
greatest fixpoint of Det(T,−) can be computed in polynomial time.

Example 3. Continuing the example from Fig. 1 and Example 2, we consider the
determinization of the affine transition system in Eq. (2). The rows of the matrix
on the left-hand side correspond to generators for Det(aff(F ), Q4�):

Det(aff(F ), Q4�
) = span({[1 0 0 0

]
,
[
0 1 1 0

]
,
[
0 0 0 1

]})

Det(aff(F ),Det(aff(F ), Q4�
)) = span({[0 1 1 0

]
,
[
0 0 0 1

]})
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which is the greatest fixpoint Det(aff(F )). Intuitively: after one step of aff(F ),
the values of w, x + y, and z are affine functions of the input; after two steps
x+y and z are affine functions of the input but w is not, since the value of w on
the second step depends upon the value of x in the first, and x is not an affine
function of the input.

This yields the deterministic reflection 〈D, d〉 (pictured in Fig. 1) where

RD =
{〈[

a
b

]
,

[
a′

b′

]〉
:
[
a′

b′

]
=
[
1 −1
0 1

] [
a
b

]}
and d =

[
0 1 1 0
0 0 0 1

]

⌟

3.4 Rational-Spectrum Reflections of DATS

In this section, we define rational-spectrum DATS and show that every DATS
has a rational-spectrum-reflection.

In the following, it is convenient to work with transition systems that are
linear rather than affine. We will prove that every deterministic linear transition
system has a best abstraction with rational spectrum. The result extends to the
affine case through the use of homogenization: i.e., we embed a (non-empty) affine
transition system into a linear transition system with one additional dimension,
such that if we fix that dimension to be 1 then we recover the affine transition
system. If the transition relation of a DATS is represented in the form Ax′ =
Bx + c, then its homogenization is simply

[
A 0
0 1

] [
x′

y

]
=
[
B c
0 1

] [
x
y

]
.

For a DATS T , we use homog(T ) to denote the pair 〈L, h〉, consisting the DLTS
L resulting from homogenization and the affine simulation h : T → L that maps

each x ∈ ST to
[
x
1

]
(i.e., the affine simulation h formalizes the idea that if we

fix the extra dimension y to be 1, we recover the original DATS T ).
Let T be a deterministic linear transition system. Since our goal is to analyze

the asymptotic behavior of T , and all long-running behaviors of T reside entirely
within domω(T ), we are interested in the structure of domω(T ) and T ’s behavior
on this set. First, we observe that domω(T ) is a linear subspace of ST and is
computable. For any k, let T k denote the linear transition system whose transi-
tion relation is the k-fold composition of the transition relation of R. Consider
the descending sequence of linear spaces

dom(T ) ⊇ dom(T 2) ⊇ dom(T 3) ⊇ . . .

(i.e., the set of states from which there are T computations of length 1, length
2, length 3, . . . ). Since the space ST is finite dimensional, this sequence must
stabilize at some k. Since the states in dom(T k) have T -computations of any
length and T is deterministic, we have that dom(T k) is precisely domω(T ).

Since T is total on domω(T ) and the successor of a state in domω(T ) must
also belong to domω(T ), T defines a linear map T |ω : domω(T ) → domω(T ). In



Reflections on Termination of Linear Loops 61

this way, we can essentially reduce asymptotic analysis of DATS to asymptotic
analysis of linear dynamical systems. The asymptotic analysis of linear dynam-
ical systems developed in Sects. 4 and 5 requires rational eigenvalues; thus we
are interested in DATS T such that T |ω has rational eigenvalues. With this in
mind, we define spec(T ) = spec(T |ω), and say that T has rational spectrum
if spec(T ) ⊆ Q. Define Q-DLTS to be the subcategory of DLTS with rational
spectrum, and Q-DATS to be the subcategory of DATS whose homogenization
lies in Q-DLTS.

Example 4. Consider the DLTS T with

RT �

⎧
⎪⎪⎨

⎪⎪⎩

〈⎡

⎣
x
y
z

⎤

⎦ ,

⎡

⎣
x′

y′

z′

⎤

⎦

〉

:

⎡

⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤

⎥
⎥
⎦

⎡

⎣
x′

y′

z′

⎤

⎦ =

⎡

⎢
⎢
⎣

2 0 1
0 2 2
0 0 3
1 −1 0

⎤

⎥
⎥
⎦

⎡

⎣
x
y
z

⎤

⎦

⎫
⎪⎪⎬

⎪⎪⎭

The bottom-most equation corresponds to a constraint that only vectors where
the x and y coordinates are equal have successors, so we have:

dom(T ) =
{[

x y z
]ᵀ : x = y

}

Supposing that the x and y coordinates are equal in some pre-state, they are
equal in the post-state exactly when z = 0, so we have

dom(T 2) =
{[

x y z
]ᵀ : x = y ∧ z = 0

}

It is easy to check that dom(T 3) = dom(T 2), and therefore domω(T ) = dom(T 2).
The vector

[
1 1 0

]ᵀ is a basis for domω(T ), and the matrix representation of T |ω
with respect to this basis is

[
2
]

(i.e.,
[
1 1 0

]ᵀ →T

[
2 2 0

]ᵀ). Thus we can see
spec(T ) = {2}, and T is a Q-DLTS. ⌟

Towards an application of Lemma 2, define the generalized rational
eigenspace of a DLTS T to be

EQ(T ) � span
({

f ∈ S�
T : ∃λ ∈ Q,∃r ∈ N

+.f ◦ (T |ω − λ)r = 0
})

.

Lemma 4. Let T be a DLTS, and define 〈Q, q〉 � αEQ(T )(T ). Then for any
Q-DLTS U and any simulation s : T → U , there is a unique simulation s :
Q → U such that s ◦ q = s.

While αEQ(T )(T ) satisfies a universal property for Q-DLTS, it does not neces-
sary belong to Q-DLTS itself because it need not be deterministic. However, by
iterative interleaving of Lemma 4 and determinization as shown in Algorithm 1,
we arrive at a Q-DLTS-reflection. Example 5 demonstrates how we calculate a
Q-DLTS-reflection of a particular DLTS.
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Example 5. Consider the DLTS T with transition relation

RT �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈
⎡

⎢
⎢
⎣

w
x
y
z

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

w′

x′

y′

z′

⎤

⎥
⎥
⎦

〉

:

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

w′

x′

y′

z′

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 1 0 0
0 0 0 1
0 0 −1 0
1 −1 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

w
x
y
z

⎤

⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

We can calculate the ω-domain of T domω(T ) =
{[

w x y z
]ᵀ : w = x

}
, which has

a basis B =
[
1 1 0 0

]ᵀ
,
[
0 0 1 0

]ᵀ
,
[
0 0 0 1

]ᵀ. With respect to B, T |ω corresponds
to the matrix

T |ω =

⎡

⎣
2 0 0
0 0 1
0 −1 0

⎤

⎦

and so we have spec(T ) = {2, i,−i}. We may calculate EQ(T ) by finding (gener-
alized) left eigenvectors with eigenvalue 2, the only rational number in spec(T ):

EQ(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vᵀ : vᵀ

⎡

⎢
⎢
⎣

1 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
B

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎣
2 0 0
0 0 1
0 −1 0

⎤

⎦

︸ ︷︷ ︸
T |ω

−
⎡

⎣
2 0 0
0 2 0
0 0 2

⎤

⎦

︸ ︷︷ ︸
2I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= span(
[
1 1 0 0

]
,
[
1 −1 0 0

]
)

Finally, we have 〈Q, q〉 = αEQ(T )(T ), where

RQ =

⎧
⎨

⎩

〈[
a
b

]
,

[
a′

b′

]〉
:

⎡

⎣
1 0
0 1
0 0

⎤

⎦
[
a′

b′

]
=

⎡

⎣
2 0
0 0
0 1

⎤

⎦
[
a
b

]
⎫
⎬

⎭
q =

[
1 1 0 0
1 −1 0 0

]

Q is deterministic and has rational spectrum, so 〈Q, q〉 is a Q-DLTS-reflection
of T .

Theorem 1. For any deterministic linear transition system, Algorithm 1 com-
putes a Q-DLTS-reflection.

Finally, by homogenization and Theorem 1, we conclude with the desired
result:

Corollary 1. Q-DATS is a reflective subcategory of DATS.

4 Asymptotic Analysis of Linear Dynamical Systems

This section is concerned with analyzing the behavior of loops of the form

while (G(x)) do x := Ax ,
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Input : A DLTS T .
Output : Q-DLTS-reflection of T

1 U ← T ;
2 s ← λx.x ; /* Invariant: s is a simulation from T to U */
3 while spec(U |ω) � Q do
4 〈Q, q〉 ← αEQ(U)(U) ; /* Lemma 4 */

5 〈U, d〉 ← αDet(Q)(Q) ; /* Lemma 3 */
6 s ← d ◦ q ◦ s;

7 return 〈U, s〉
Algorithm 1: Computation of a Q-DLTS-reflection of a DLTS

where the G(x) is an LIA formula and A is a matrix with integer spectrum. Our
goal is to capture the asymptotic behavior of iterating the map A on an initial
state x0 with respect to the formula G. Specifically, we show that

Theorem 2. For any LIA formula G and any matrix A with integer spectrum,
there is a periodic sequence of LIA formulas H0,H1,H2, . . . such that for any
initial state x0 ∈ Q

n, there exists K such that for any k > K, G(Akx0) holds if
and only if Hk(x0) does.

Recall that an infinite sequence H0,H1,H2, . . . is periodic if it is of the form

(H0,H1, . . . , HP )ω � H0,H1, . . . , HP ,H0,H1, . . . , HP , . . .

We call the periodic sequence (H0,H1, . . . , HP )ω the characteristic sequence of
the guard formula G with respect to dynamics matrix A, and denote it by
χ(G,A). Note that G(Akx0) holds for all but finitely many k exactly when∧P

i=0 Hi(x0) holds.
In the remainder of this section, we show how to compute characteristic

sequences. Let G be an LIA formula and let A be a matrix with integer spectrum.
To begin, we compute a quantifier-formula G′ that is equivalent to G (using,
for example, Cooper’s algorithm [7]). We define χ(G′, A) by recursion on the
structure of G′. For the logical connectives ∧, ∨, and ¬, characteristic sequences
are defined pointwise:

χ(¬H,A) � (¬(χ(H,A)0),¬(χ(H,A)1), . . .)

χ(H1 ∧ H2, A) � (χ(H1, A)0 ∧ χ(H2, A)0, χ(H1, A)1 ∧ χ(H2, A)1, . . .)

χ(H1 ∨ H2, A) � (χ(H1, A)0 ∨ χ(H2, A)0, χ(H1, A)1 ∨ χ(H2, A)1, . . .)

It remains to show how χ acts on atomic formulas, which take the form of
inequalities t1 ≤ t2 and divisibility constraints n | t. An important fact that we
employ in both cases is that for any linear term cᵀx over the variables x, we can
compute a closed form for cᵀAk(x) by symbolically exponentiating A. Since (by
assumption) A has integer eigenvalues, this closed form has the form 1

Q (p(x, k))
where Q ∈ N and p is an integer exponential-polynomial term, which takes
the form

λk
1k

d1aᵀ
1x +· · · + λk

mkdmaᵀ
mx (3)
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where λi ∈ spec(A), di ∈ N, and ai ∈ Z
n.1

Characteristic Sequences for Inequalities. Our method for computing
characteristic sequences for inequalities is a variation of Tiwari’s method for
deciding termination of linear loops with real eigenvalues [29].

First, suppose that p(x, k) is an integer exponential-polynomial of the form
in Eq. (3) such that each λi is a positive integer. Further suppose that the
summands are ordered by asymptotic growth, with the dominant term appearing
earliest in the list; i.e., for i < j we have either λi > λj , or λi = λj and di > dj .
If we imagine that the variables x are fixed to some x0 ∈ Z

n, then we see that
p(x0, k) is either identically zero or has finitely many zeros, and therefore its
sign is eventually stable. Furthermore, the sign of p(x0, k) as k tends to ∞ is
simply the sign of its dominant term – that is, the sign of aᵀ

i x0 for the least
i such that aᵀ

i x0 is non-zero. Thus, we may define a function DTA that maps
any exponential-polynomial term p(x, k) (with positive integral λi) to an LIA
formula such that for any x0 ∈ Z

n, x0 |= DTA(p) holds if and only if p(x0, k) is
eventually non-negative (p(x0, k) ≥ 0 for all but finitely many k ∈ N). DTA is
defined as follows:

DTA(0) � true

DTA(λkkdaᵀx + p) � aᵀx ≥ 1 ∨ (aᵀx = 0 ∧ DTA(p))

Finally, we define the characteristic sequence of an inequality atom as follows.
An inequality t1 ≤ t2 over the variables x can be written as cᵀx + d ≥ 0 for
c ∈ Z

n and d ∈ Z. Let 1
Qeven

peven(x, k) and 1
Qodd

podd(x, k) be the closed forms
of cᵀA2k(x) and cᵀA2k+1(x), respectively; by splitting into “even” and “odd”
cases, we ensure that the exponential-polynomial terms peven(x, k) and podd(x, k)
have only positive λi and thus are amenable to the dominant term analysis DTA
described above. Then we define:

χ (cᵀx + d ≥ 0, A) � (DTA(peven(x, k) + dQeven),DTA(podd(x, k) + dQodd))
ω

Example 6. Consider the matrix A and its exponential Ak below:

A

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

x
y
z
a
b

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 −3 0
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

x
y
z
a
b

⎤

⎥
⎥
⎥
⎥
⎦

Ak

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

x
y
z
a
b

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎣

1 k k(k−1)
2 0 0

0 1 k 0 0
0 0 1 0 0
0 0 0 (−3)k 0
0 0 0 0 2k

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

x
y
z
a
b

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1
2 (zk2 + (2y − z)k + 2x)

zk + y
z

(−3)ka
2kb

⎤

⎥
⎥
⎥
⎥
⎦

1 Technically, we have 1
Q

(λk
1kd1aᵀ

1 +· · · + λk
mkdmaᵀ

m) = cᵀAkx for all k greater than
rank of the highest-rank generalized eigenvector of 0, but since we are only interested
in the asymptotic behavior of A we can disregard the first steps of the computation.
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First we compute the characteristic sequence χ(x ≥ 0, A). Applying the domi-
nant term analysis of the closed form of x yields

DTA
(
zk2 + (2y − z) k + x

)
=

⎛

⎝
z > 0

∨ (z = 0 ∧ 2y − z > 0)
∨ (z = 0 ∧ 2y − z = 0 ∧ x ≥ 0)

⎞

⎠ ,

Since the closed form involves only positive exponential terms, we need not split
into an even and odd case, and we simply have:

χ(x ≥ 0, A) = (z > 0 ∨ (z = 0 ∧ 2y − z > 0) ∨ (z = 0 ∧ 2y − z = 0 ∧ x ≥ 0))ω

Next we compute the characteristic sequence χ(a − b ≥ 0, A), which does
require a case split. Applying dominant term analysis of the closed form of
(a − b) yields

DTA(a · (−3)2k − b · 22k) = a > 0 ∨ (a = 0 ∧ −b ≥ 0)

DTA(a · (−3)2k+1 − b · 22k+1) = −a > 0 ∨ (−a = 0 ∧ −b ≥ 0) .

and thus we have

χ(a − b ≥ 0, A) = (a > 0 ∨ (a = 0 ∧ −b ≥ 0),−a > 0 ∨ (−a = 0 ∧ −b ≥ 0))ω .

⌟

Characteristic Sequences for Divisibility Atoms. Last we show how to
define χ for divisibility atoms n | t. Write the term t as cᵀx + d and let the
closed form of cᵀAk(x) be

1
Q

(λk
1k

d1aᵀ
1x +· · · + λk

mkdmaᵀ
mx) .

The formula n | cᵀAk(x)+d is equivalent to Qn | λk
1k

d1aᵀ
1x+· · ·+λk

mkdmaᵀ
mx+

Qd. For any i, the sequence 〈λk
i kdi mod Qn〉∞

k=0 is ultimately periodic, since
(1) 〈k mod Qn〉∞

k=0 = (0, 1, . . . , Qn − 1)ω, (2) 〈λk
i mod Qn〉∞

k=0 is ultimately
periodic (with period and transient length bounded above by Qn)2, and (3)
ultimately periodic sequences are closed under pointwise product. It follows that
for each i, there is a periodic sequence of integers 〈zi,k〉∞

k=0 that agrees with
〈λk

i kdi mod Qn〉∞
k=0 on all but finitely many terms. Finally, we take

χ(n | t, A) � 〈Qn | z1,ka
ᵀ
1x + · · · + zm,kaᵀ

mx + Qd〉∞
k=0 .

Example 7. Consider matrix A and the closed form of its exponents below

A

⎛

⎝

⎡

⎣
x
y
z

⎤

⎦

⎞

⎠ =

⎡

⎣
1 1 0
0 1 0
0 0 5

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ Ak

⎛

⎝

⎡

⎣
x
y
z

⎤

⎦

⎞

⎠ =

⎡

⎣
1 k 0
0 1 0
0 0 5k

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦

2 An infinite sequence s0, s1, s2, . . . is ultimately periodic, if there exists N such that
sN , sN+1, sN+2, . . . is a periodic sequence. We call N the transient length of this
sequence.
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We show the characteristic sequences for some divisibility atoms w.r.t A:

χ(3 | x,A) = (3 | x, 3 | x + y, 3 | x + 2y)ω

χ(3 | x + 2, A) = (3 | x + 2, 3 | x + y + 2, 3 | x + 2y + 2)ω

χ(3 | z,A) = (3 | z, 3 | 2z)ω
⌟

5 A Conditional Termination Analysis for Programs

This section demonstrates how the results from Sects. 3 and 4 can be combined
to yield a conditional termination analysis that applies to general programs.

Integer-Spectrum Restriction for Q-DLTS. Section 3 gives a way to com-
pute a Q-DATS-reflection of any transition formula. Yet the analysis we devel-
oped in Sect. 4 only applies to linear dynamical systems with integer spectrum.
We now show how to bridge the gap. Let V be a Q-DATS. As discussed in
Sect. 3.4, we may homogenize V to obtain a Q-DLTS T . Define Z(T ) to be the
space spanned by the generalized (right) eigenvectors of T |ω that correspond to
integer eigenvalues:

Z(T ) � span({x ∈ domω(T ) : ∃r ∈ N
+, λ ∈ Z.(T |ω − λ)r(x) = 0})

Since Z(T ) is invariant under T |ω and thus T , T defines a linear map T |Z :
Z(T ) → Z(T ), and by construction T |Z has integer spectrum. The following
lemma justifies the restriction of our attention to the subspace Z(T ).

Lemma 5. Let F be a transition formula, let 〈V, s〉 be a Q-DATS-reflection of
F , and let 〈T, h〉 = homog(V ). For any state v ∈ domω(F ), we have h(s(v)) ∈
Z(T ).

Example 8. The following loop computes the number of trailing 0’s in the binary
representation of integer x and its corresponding transition formula:

1 c := 0
2 while (x % 2 == 0) do
3 x = x / 2
4 c = c + 1

F (x, c, x′, c′) =

⎛

⎝
(2 | x)

∧ (x − 1 ≤ 2x′ ∧ 2x′ ≤ x)
∧ (c′ = c + 1)

⎞

⎠

The homogenization of the Q-DATS-reflection of F is the Q-DLTS T ,
where:

RT �

⎧
⎨

⎩

〈⎡

⎣
x
c
h

⎤

⎦ ,

⎡

⎣
x′

c′

h′

⎤

⎦

〉

:

⎡

⎣
x′

c′

h′

⎤

⎦ =

⎡

⎣
1
2 0 0
0 1 1
0 0 1

⎤

⎦

⎡

⎣
x
c
h

⎤

⎦

⎫
⎬

⎭

The ω-domain of T is the whole state space Q
3. Since the eigenvector

[
1 0 0

]ᵀ of
the transition matrix corresponds to a non-integer eigenvalue 1

2 , the x-coordinate
of states in Z(T ) must be 0; i.e., Z(T ) = {(x, c, y) : x = 0}. We conclude that
x �= 0 is a sufficient condition for the loop to terminate.
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Input : A transition formula F (x,x′) ∈ TF in linear integer arithmetic.
Output : A mortal precondition mp(F ) for F .

1 A ← aff(F ) ; /* Affine hull [26]; Lemma 1 */
2 〈D, d〉 ← αDet(A)(A) ; /* Determinize; Lemma 3 */
3 〈V, q〉 ← Q-DATS-reflection of D ; /* Algorithm 1 */
4 v ← q ◦ d ; /* 〈V, v〉 is a Q-DATS-reflection of F */
5 〈T, h〉 ← homog(V ) ; /* Homogenization of V */
6 t ← h ◦ v ; /* t is an affine simulation F → T */
7 p ← (any) linear projection of ST onto Z(T );
8 C ← matrix such that Cw = 0 ⇐⇒ w ∈ Z(T );
9 Let G(w) ← ∃x,x′.F (x,x′) ∧ w = p(t(x)) ∧ Ct(x) = 0;

10 (H0(w), . . . , HP (w))ω ← χ(G(w), T |Z) ; /* Section 4 */
11 return ¬ ((∧

i Hi(p(t(x)))
) ∧ Ct(x) = 0

)

Algorithm 2: Procedure for computing mp(F ).

The Mortal Precondition Operator. Algorithm 2 shows how to compute
a mortal precondition for an LIA transition formula F (x,x′) (i.e., a sufficient
condition for which F terminates). The algorithm operates as follows. First, we
compute a Q-DATS-reflection of F , and homogenize to get a Q-DLTS T and
an affine simulation t : F → T . Let p denote an (arbitrary) projection from ST

onto Z(T ) (so p is a simulation from T to T |Z). We then compute an LIA formula
G which represents the states w of T |Z such that there is some v ∈ dom(F ) such
that t(v) ∈ Z(T ) and p(t(v)) = w. Letting (H0, ...,HP )ω be the characteristic
sequence χ(G,T |Z), we have that for any v ∈ domω(F ), t(v) must belong to
Z(T ) and p(t(v)) satisfies each Hi, so we define

mp(F ) � {v ∈ SF : t(v) /∈ Z(T ) or v �|=
∧

i

Hi(p(t(x))).

Within the context of the algorithm, we suppose that states of F are repre-
sented by n-dimensional vectors, states of T are represented as m-dimensional
vectors, and state of T |Z are represented as q-dimensional vectors. The affine sim-
ulation t is represented in the form x 	→ Ax + b, where A ∈ Z

m×n and b ∈ Z
m,

the projection p as a Z
q×m matrix, and the linear map T |Z as a Q

q×q matrix. The
fact that p and t have all integer (rather than rational) entries is without loss of
generality, since any simulation can be scaled by the least common denominator
of its entries.

Theorem 3 (Soundness). For any transition formula F , for any state s such
that s ∈ mp(F ), we have s /∈ domω(F ).

Proof. Let T , t, p, C, G, and H0, . . . , HP be as in Algorithm 2. We prove the
contrapositive: we assume v ∈ domω(F ) and prove v /∈ mp(F ), or equivalently
v |= Hi(p(t(x))) for each i and t(v) ∈ Z(T ). We have t(v) ∈ Z(T ) by Lemma 5,
so it remains only to show that v |= Hi(p(t(x))) for each i.

Since v ∈ domω(F ), there exists an infinite trajectory of F starting from
v: v →F v1 →F v2 →F . . .. For any j, let wj = T |jZ(p(t(v))). Since p ◦ t
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is an (affine) simulation, we have wj = p(t(vj)) for all j. It follows that for
any j, we have [vj , vj+1] |= F (x,x′) ∧ wj = p(t(xj)) ∧ Ct(xj) = 0, and so
G(wj) = ∃x,x′.F (x,x′)∧wj = p(t(x))∧Ct(x) = 0 holds for all j. By Theorem 2,
Hi(p(t(x))) holds for all Hi.

The proof of soundness requires only that we can compute Q-DATS-
abstractions of transition formulas. The following is the culmination of our devel-
opment of Q-DATS-reflections:

Theorem 4 (Monotonicity). For any transition formulas F1 and F2 such that
F1 |= F2, we have mp(F2) |= mp(F1).

The desire for monotonicity is inspired by the principle that changes to a pro-
gram should have a predictable impact on its analysis [34]. Monotonicity guaran-
tees that more information into the analysis always leads to better results—for
example, if a user annotates a procedure with pre-conditions or adds loop invari-
ants into the program, our termination analysis can only produce weaker (that
is, better) preconditions for termination. Moreover, in the context of this work,
monotonicity also guarantees that if we cannot prove termination using the mp
operator that we defined, then any linear abstraction of the loop has reachable
non-terminating states.

6 Evaluation

Section 5 shows how to compute mortal preconditions for transition formulas.
Using the framework of algebraic termination analysis [34], we can “lift” the
analysis to compute mortal preconditions for whole programs. The essential idea
is to compute summaries for loops and procedures in “bottom-up” fashion, apply
the mortal precondition operator from Sect. 5 to each loop body summary, and
then propagate the mortal preconditions for the loops back to the entry of the
program (see [34] for more details). We can verify that a program terminates by
using an SMT solver to check that its mortal precondition is valid.

We have implemented Algorithm 2 as a mortal precondition operator mpLR
(“mortal precondition via Linear Reflections”) in ComPACT, a tool that imple-
ments the termination analysis framework presented in [34]. We compare the
performance of our analysis against 2LS [5], Ultimate Automizer [10] and
CPAchecker [23], the top three competitors in the termination category of
Competition on Software Verification (SV-COMP) 2020.

Experiments are run on a virtual machine with Ubuntu 18.04, with a single-
core Intel Core i7-9750H @ 2.60 GHz CPU and 8 GB of RAM. All tools were run
with a time limit of 10 min.

Benchmarks. We tested on a suite of 263 programs divided into 4 categories.
The termination and recursive suites contain small programs with challeng-
ing termination arguments, while the polybench suite contains larger real-world
programs that have relatively simple termination arguments. The termination

https://sv-comp.sosy-lab.org/2020
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Table 1. Termination verification benchmarks; time in seconds.

Benchmark #tasks mpLR 2LS UAutomizer CPAChecker

#correct time #correct time #correct time #correct time

Termination 171 98 100.8 115 1966.0 161 4772.2 126 12108.6

Recursive 42 4 51.0 – – 30 1781.7 23 530.6

Polybench 30 30 128.3 0 7602.7 0 16241.6 0 4035.8

Linear 20 20 37.0 6 17.6 8 2841.3 3 3470.7

Total 263 152 317.1 121 9586.3 199 25636.8 152 20145.7

Table 2. Comparing mpLR and ComPACT; time in seconds.

#tasks mpLR ComPACT-mpLR ComPACT+mpLR

#correct time #correct time #correct time

Termination 171 98 100.8 141 118.4 146 114.4

Recursive 42 4 51.0 31 95.4 32 94.6

Polybench 30 30 128.3 30 179.6 30 179.1

Linear 20 20 37.0 15 116.5 20 65.1

Total 263 152 317.1 217 509.9 228 453.3

category consists of the non-recursive, terminating benchmarks from SV-COMP
2020 in the Termination-MainControlFlow suite. The recursive category con-
sists of the recursive, terminating benchmarks from the recursive directory and
Termination-MainControlFlow. Note that 2LS does not handle recursive pro-
grams, so we exclude it from the recursive category. Finally, we created a new
test suite linear consisting of programs with terminating linear abstractions.
This suite is designed to exercise the capabilities of the mpLR, and includes
all examples from Ben-Amram and Genaim’s article [1] on multi-phase ranking
functions, loops with disjunctive and/or modular arithmetic guards, and loops
that model integer division and remainder calculation.

How Does Our Analysis Compare with the State-of-the-Art? The comparison of
ComPACT using the mpLR operator against state-of-the-art termination analy-
sis tools is shown in Table 1. ComPACT with mpLR is competitive with (but not
dominating) leading tools in terms of number of tasks solved across the suite,
and uses substantially less time. The mpLR analysis is least successful on the
termination and recursive suites, which are designed to have difficult termi-
nation arguments. Most competitive tools use a portfolio of different termina-
tion techniques to approach such problems (e.g., Ultimate Automizer synthesizes
linear, nested, multi-phase, lexicographic and piecewise ranking functions); we
investigate the use of mpLR in a portfolio solver in the following.

ComPACT with mpLR solves all tasks in the polybench suite, which con-
tains numerical programs that have simple termination arguments, but which
are larger than the SV-COMP tasks. 2LS, Ultimate Automizer, and CPAChecker
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exhaust time or memory limits on all tasks. Nested loops are a problematic pat-
tern that appears in these programs, e.g.,

for(int i = 0; i < 4096; i += step)
for (int j = 0; j < 4096; j += step)

// no modifications to i, j, or step

For such loops, mpLR is guaranteed to synthesize a conditional termination
argument that is at least as weak as step > 0 (regardless of the contents of the
inner loop) by monotonicity and the fact that the loop body formula entails
i < 4096 ∧ i′ = i + step ∧ step′ = step. Ultimate Automizer, CPAChecker, and
2LS cannot make such theoretical guarantees.

The linear suite demonstrates that mpLR is capable of proving termination
of programs that lie outside the boundaries of the other tools.

Can Our Analysis Improve a Portfolio Solver? We compare mpLR and Com-
PACT in Table 2. The columns correspond to running ComPACT with the fol-
lowing options: excluding the portfolio from [34] (mpLR), including the port-
folio but excluding mpLR (ComPACT-mpLR), and including the portfolio and
mpLR (ComPACT+mpLR). ComPACT+mpLR can solve 11 additional tasks
over ComPACT-mpLR while adding negligible runtime overhead. In fact, adding
mpLR to the portfolio decreases the amount of time it takes for ComPACT to
complete all benchmark suites. Note that the combined tool is successful on the
most termination tasks among all the tools we tested, both overall and for each
individual suite except the termination category.

7 Related Work

Termination Analysis of Linear Loops. The universal termination problem for
linear loops (or total deterministic affine transition systems, in the terminology
of Sect. 4) was posed by Tiwari [29]. The case of linear loops over the reals was
resolved by Tiwari [29], over the rationals by Braverman [4], and finally over
the integers by Hosseini et al. [14]. In principle, we can combine any of these
techniques with our algorithm for computing DATS-reflections of transition
formulas to yield a sound (but incomplete) termination analysis. The significance
of computing a DATS-reflection (rather than just “some” abstraction) is that is
provides an algorithmic completeness result: if it is possible to prove termination
of a loop by exhibiting a terminating linear dynamical system that simulates it,
the algorithm will prove termination.

The method introduced in Sect. 4 to compute characteristic sequences of
inequalities is based on the method that Tiwari used to prove decidability of
the universal termination problem for linear loops with (positive) real spectra
[29]. Tiwari’s condition of having real spectra is strictly more general than the
integer spectra used by our procedure; requiring that the spectrum be integer
allows us express the DTA procedure in linear integer arithmetic rather than
real arithmetic. Similar procedures appear also in [12,18]. We note in particular
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that our results in Sects. 4 and 5 subsume Frohn and Giesl’s decision proce-
dure for universal termination for upper-triangular linear loops [12]; since every
rational upper-triangular linear loop has a rational spectrum (and is therefore a
Q-DATS), the mortal precondition computed for any rational upper-triangular
linear loop is valid iff the loop is universally terminating.

Linear Abstractions. The formulation of “best abstractions” using reflective sub-
categories is based on the framework developed in [17]. A variation of this method
was used in the context of invariant generation, based on computing (weak)
reflections of linear rational arithmetic formulas in the category of rational vec-
tor addition systems [27]. This paper is the first to apply the idea to termination
analysis.

A method for extracting polynomial recurrence (in)equations that are
entailed by a transition formula appears in [16]. The algorithm can also be
applied to compute a TDATS-abstraction of a transition formula. The pro-
cedure does not guarantee that the TDATS-abstraction is a reflection (best
abstraction); Proposition 1 demonstrates that no such procedure exists. In this
paper, we generalize the model to allow non-total transition systems, and show
that best abstractions do exist. The techniques from Sect. 3 can be used for
invariant generation, improving upon the methods of [16].

Kincaid et al. show that the category of linear dynamical systems with peri-
odic rational spectrum is a reflective subcategory of the category of linear dynam-
ical systems [18]. A complex number n is periodic rational if np is rational for
some p ∈ Z

>0. Combining this result with the technique from Sect. 3 yields the
result that the category of DATS with periodic rational spectrum is a reflec-
tive subcategory of TF. The decision procedure from Sect. 4 extends easily to
the periodic rational case, which results in a strictly more powerful decision
procedure.

Termination Analysis. Termination analysis, and in particular conditional ter-
mination analysis, has been widely studied. Work on the subject can be divided
into practical termination analyses that work on real programs (but offer few
theoretical guarantees) [2,6,8,11,13,20,30–32], and work on simplified model
(such as linear, octagonal, and polyhedral loops) with strong guarantees (but
cannot be applied directly to real programs) [1,3,4,14,21,25,29]. This paper
aims to help bridge the gap between the two, by showing how to apply analyses
for linear loops to general programs, while preserving some of their desirable
theoretical properties, in particular monotonicity.
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Abstract. We present a novel decision tree-based synthesis algorithm
of ranking functions for verifying program termination. Our algorithm is
integrated into the workflow of CounterExample Guided Inductive Syn-
thesis (CEGIS). CEGIS is an iterative learning model where, at each
iteration, (1) a synthesizer synthesizes a candidate solution from the
current examples, and (2) a validator accepts the candidate solution if
it is correct, or rejects it providing counterexamples as part of the next
examples. Our main novelty is in the design of a synthesizer: building
on top of a usual decision tree learning algorithm, our algorithm detects
cycles in a set of example transitions and uses them for refining decision
trees. We have implemented the proposed method and obtained promis-
ing experimental results on existing benchmark sets of (non-)termination
verification problems that require synthesis of piecewise-defined lexico-
graphic affine ranking functions.

1 Introduction

Termination Verification by Ranking Functions and CEGIS. Termination verifi-
cation is a fundamental but challenging problem in program analysis. Termina-
tion verification usually involves some well-foundedness arguments. Among them
are those methods which synthesize ranking functions [16]: a ranking function
assigns a natural number (or an ordinal, more generally) to each program state,
in such a way that the assigned values strictly decrease along transition. Exis-
tence of such a ranking function witnesses termination, where well-foundedness
of the set of natural numbers (or ordinals) is crucially used.

We study synthesis of ranking functions by CounterExample Guided Induc-
tive Synthesis (CEGIS) [29]. CEGIS is an iterative learning model in which a
synthesizer and a validator interact to find solutions for given constraints. At
each iteration, (1) a synthesizer tries to find a candidate solution from the cur-
rent examples, and (2) a validator accepts the candidate solution if it is correct,
or rejects it providing counterexamples. These counterexamples are then used
as part of the next examples (Fig. 1).
c© The Author(s) 2021
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Synthesizer:
find a candidate
solution σ that is
consistent with E

Validator:
Is σ a solution for C?

a candidate solution σ

No: a set E of examples
(Validator adds new examples to E) Yes: answer σ

constraints C

No solution

Fig. 1. The CEGIS architecture

CEGIS has been applied not only to program verification tasks (synthesis of
inductive invariants [17,18,25,26], that of ranking functions [19], etc.) but also
to constraint solving (for CHC [12,14,28,36], for pwCSP(T ) [30,31], etc.). The
success of CEGIS is attributed to the degree of freedom that synthesizers enjoy.
In CEGIS, synthesizers receive a set of individual examples that synthesizers
can use in various creative and speculative manners (such as machine learning).
In contrast, in other methods such as [5–8,24,27], synthesizers receive logical
constraints that are much more binding.

Segmented Synthesis in CEGIS-Based Termination Analysis. The choice of a
candidate space for candidate solutions σ is important in CEGIS. A candidate
space should be expressive: by limiting a candidate space, the CEGIS architec-
ture may miss a genuine solution. At the same time, complexity should be low:
a larger candidate space tends to be more expensive for synthesizers to handle.

This tradeoff is also in the choice of the type of examples: using an expressive
example type, a small number of examples can prune a large portion of the can-
didate space; however, finding such expressive examples tends to be expensive.

In this paper, we use piecewise affine functions as our candidate space for
ranking functions. Piecewise affine functions are functions of the form

f(x̃) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ã1 · x̃ + b1 x̃ ∈ L1

...
ãn · x̃ + bn x̃ ∈ Ln

(1)

where {L1, . . . , Ln} is a partition of the domain of f(x̃) such that each Li is a
polyhedron (i.e. a conjunction of linear inequalities). We say segmented synthesis
to emphasize that our synthesis targets are piecewise affine functions with case
distinction. Piecewise affine functions stand on a good balance between expres-
siveness and complexity: the tasks of synthesizers and validators can be reduced
to linear programming (LP); at the same time, case distinction allows them to
model a variety of situations, especially where there are discontinuities in the
function values and/or derivatives.

We use transition examples as our example type (Table 1). Transition exam-
ples are pairs of program states that represent transitions; they are much cheaper
to handle compared to trace examples (finite traces of executions until termi-
nation) used e.g. in [15,33]. The current work is the first to pursue segmented
synthesis of ranking functions with transition examples; see Table 1.
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Table 1. Ranking function synthesis by CEGIS

Candidate space\Example type Trace examples Transition examples

Affine ranking functions [15,33] [19]

Piecewise affine ranking functions [15,33] Our method

e+1

e+2

e+3

e−4 e−5

h1

h2

h1

h2

+
{e+1 , e+2 }

−
{e−4 , e−5 }

+
{e+3 }

(a) For invariants

h1

h2

e1
e2

e3
e4

h1

h2
f1(x̃)
{e1}

f2(x̃)
{e2}

f3(x̃)
{e3}

(b) For ranking functions

Fig. 2. Decision tree learning

Decision Tree Learning for CEGIS-Based Termination Analysis: a Challenge. In
this paper, we represent piecewise affine functions (1) by the data structure of
decision trees. The data structure suits the CEGIS architecture (Fig. 1): iterative
refinement of candidate solutions can be naturally expressed by growing decision
trees. The main challenge of this paper is the design of an effective synthesizer
for decision trees—such a synthesizer learns decision trees from examples.

In fact, decision tree learning in the CEGIS architecture has already been
actively pursued, for the synthesis of invariants as opposed to ranking func-
tions [12,14,18,22,36]. It is therefore a natural idea to adapt the decision tree
learning algorithms used there, from invariants to ranking functions. However,
we find that a naive adaptation of those algorithms for invariants does not suffice:
they are good at handling state examples that appear in CEGIS for invariants;
but they are not good at handling transition examples.

More specifically, when decision tree learning is applied to invariant syn-
thesis (Fig. 2a), examples are given in the form of program states labeled as
positive or negative. Decision trees are then built by iteratively selecting the
best halfspaces—where “best” is in terms of some quality measures—until each
leaf contains examples with the same label. One common quality measure used
here is an information-theoretic notion of information gain.

We extend this from invariant synthesis to ranking function synthesis where
examples are given by transitions instead of states (Fig. 2b). In this case, a
major challenge is to cope with examples that cross a border of the current
segmentation—such as the transition e4 crossing the border h1 in Fig. 2b. Our
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decision tree learning algorithm should handle such crossing examples, taking
into account the constraints imposed on the leaf labels affected by those examples
(the affected leaf labels are f1(x̃) and f3(x̃) in the case of e4).

Our Algorithm: Cycle-Based Decision Tree Learning for Transition Examples.
We use what we call the cycle detection theorem (Theorem 17) as a theoretical
tool to handle such crossing examples. The theorem claims the following: if
there is no piecewise affine ranking function with the current segmentation of
the domain (such as the one in Fig. 2b given by h1 and h2), then this must be
caused by a certain type of cycle of constraints, which we call an implicit cycle.

In our decision tree learning algorithm, when we do not find a piecewise affine
ranking function with the current segmentation, we find an implicit cycle and
refine the segmentation to break the cycle. Once all the implicit cycles are gone,
the cycle detection theorem guarantees the existence of a candidate piecewise
affine ranking function with the segmentation.

We integrate this decision tree learning algorithm in the CEGIS architecture
(Fig. 1) and use it as a synthesizer. Our implementation of this framework gives
promising experimental results on existing benchmark sets.

Contribution. Our contribution is summarized as follows.

– We provide a decision tree-based synthesizer for ranking functions integrated
into the CEGIS architecture. Our synthesizer uses transition examples to find
candidate piecewise affine ranking functions. A major challenge here, namely
handling constraints arising from crossing examples, is coped with by our
theoretical observation of the cycle detection theorem.

– We implement our synthesizer for ranking functions implemented in MuVal

and report the experience of using MuVal for termination and non-
termination analysis. The experiment results show that MuVal’s perfor-
mance is comparable to state-of-the-art termination analyzers [7,10,13,21]
from Termination Competition 2020, and that MuVal can prove (non-)ter-
mination of some benchmarks with which other analyzers struggle.

Organization. Section 2 shows the overview of our method via examples.
Section 3 explains our target class of predicate constraint satisfaction problems
and how to encode (non-)termination problem into such constraints. In Sect. 4,
we review CEGIS architecture, and then explain simplification of examples into
positive/negative examples. Section 5 proposes our main contribution, our deci-
sion tree-based ranking function synthesizer. Section 6 shows our implementation
and experimental results. Related work is discussed in Sect. 7, and we conclude
in Sect. 8.

2 Preview by Examples

We present a preview of our method using concrete examples. We start with an
overview of the general CEGIS architecture, after which we proceed to our main
contribution, namely a decision tree learning algorithm for transition examples.
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2.1 Termination Verification by CEGIS

Our method follows the usual workflow of termination verification by CEGIS.
It works as follows: given a program, we encode the termination problem into
a constraint solving problem, and then use the CEGIS architecture to solve the
constraint solving problem.

Encoding the Termination Problem. The first step of our method is to encode
the termination problem as the set C of constraints.

Example 1. As a running example, consider the following C program.

while(x != 0) { if(x < 0) { x++; } else { x--; } }

The termination problem is encoded as the following constraints.

x < 0 ∧ x′ = x + 1 =⇒ R(x, x′) (2)
¬(x < 0) ∧ x′ = x − 1 =⇒ R(x, x′). (3)

Here, R is a predicate variable representing a well-founded relation, and term
variables x, x′ are universally quantified implicitly.

The set C of constraints claims that the transition relation for the given
program is subsumed by a well-founded relation. So, verifying termination is now
rephrased as the existence of a solution for C. Note that we omitted constraints
for invariants for simplicity in this example (see Sect. 3 for the full encoding).

synthesizer validator
E = ∅

(i)
R(x, x′) = ⊥

(ii)E = {R(1, 0)}
(iii)

R(x, x′) = x > x′ ∧ x ≥ 0
(iv)E = {R(1, 0), R(−2,−1)}

(v)
R(x, x′) = |x| > |x′| ∧ |x| ≥ 0 (vi)

Fig. 3. An example of CEGIS iterations

Constraint solving by CEGIS.
The next step is to solve C by
CEGIS.

In the CEGIS architecture, a
synthesizer and a validator itera-
tively exchange a set E of exam-
ples and a candidate solution
R(x, x′) for C. At the moment, we
present a rough sketch of CEGIS,
leaving the details of our imple-
mentation to Sect. 2.2.

Example 2. Figure 3 shows how the CEGIS architecture solves the set C of
constraints shown in (2) and (3). Figure 3 consists of three pairs of interactions
(i)–(vi) between a synthesizer and a validator.

(i) The synthesizer takes E = ∅ as a set of examples and returns a candidate
solution R(x, x′) = ⊥ synthesized from E . In general, candidate solutions
are required to satisfy all constraints in E , but the requirement is vacuously
true in this case.
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(ii) The validator receives the candidate solution and finds out that the candi-
date solution is not a genuine solution. The validator finds that the assign-
ment x = 1, x′ = 0 is a counterexample for (3), and thus adds R(1, 0) to E
to prevent the same candidate solution in the next iteration.

(iii) The synthesizer receives the updated set E = {R(1, 0)} of examples, finds
a ranking function f(x) = x for E (i.e. for the transition from x = 1 to
x′ = 0), and returns a candidate solution R(x, x′) = x > x′ ∧ x ≥ 0.

(iv) The validator checks the candidate solution, finds a counterexample x =
−2, x′ = −1 for (2), and adds R(−2,−1) to E .

(v) The synthesizer finds a ranking function f(x) = |x| for E and returns
R(x, x′) = |x| > |x′| ∧ |x| ≥ 0 as a candidate solution. Note that the
synthesizer have to synthesize a piecewise affine function here, but details
are deferred to Sect. 2.2.

(vi) The validator accepts the candidate solution because it is a genuine solution
for C.

2.2 Handling Cycles in Decision Tree Learning

y ≥ 0?

x − 1 ≥ 0? f(x, y) = −y

f(x, y) = x − 1 f(x, y) = 1 − x

<≥

≥ <

f(x, y) =
⎧

⎪

⎨

⎪

⎩

x − 1 y ≥ 0 ∧ x − 1 ≥ 0
1 − x y ≥ 0 ∧ x − 1 < 0
−y y < 0

Fig. 4. An example of a decision
tree that represents a piecewise affine
ranking function f(x, y)

We explain the importance of handling
cycles in our decision tree-based synthesizer
of piecewise affine ranking functions.

In what follows, we deal with such deci-
sion trees as shown in Fig. 4: their inter-
nal nodes have affine inequalities (i.e. half-
spaces); their leaves have affine functions;
and overall, such a decision tree expresses
a piecewise affine function (Fig. 4). When
we remove leaf labels from such a decision
tree, then we obtain a template of piecewise
functions where condition guards are given
but function bodies are not. We shall call
the latter a segmentation.

Input and Output of our Synthesizer. The
input of our synthesizer is a set E of
transition examples (e.g. E = {R(1, 0),
R(−2,−1)}) as explained in Sect. 2.1. The
output of our synthesizer is a well-founded
relation R(x̃, x̃′) := f(x̃) > f(x̃′) ∧ f(x̃) ≥ 0 where x̃ is a sequence of variables
and f(x̃) is a piecewise affine function, which is represented by a decision tree
(Fig. 4). Therefore our synthesizer aims at learning a suitable decision tree.

Refining Segmentations and Handling Cycles. Roughly speaking, our synthesizer
learns decision trees in the following steps.
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−2 −1 0 1 2

f(x)

(a) Good (x ≥ 0)

−2 −1 0 1 2

(b) Bad (x ≥ −2)

Fig. 5. Selecting halfspaces. Transition examples are shown by red arrows. Boundaries
of halfspaces are shown by dashed lines.

1. Generate a set H of halfspaces from the given set E of examples. This H
serves as the vocabulary for internal nodes. Set the initial segmentation to be
the one-node tree (i.e. the trivial segmentation).

2. Try to synthesize a piecewise affine ranking function f for E with the current
segmentation—that is, try to find suitable leaf labels. If found, then use this
f in a candidate well-founded relation R(x̃, x̃′) = f(x̃) > f(x̃′) ∧ f(x̃) ≥ 0.

3. Otherwise, refine the current segmentation with some halfspace in H, and go
to Step 2.

The key step of our synthesizer is Step 3. We show a few examples.

Example 3. Suppose we are given E = {R(1, 0), R(−2,−1)} as a set of exam-
ples. Our synthesizer proceeds as follows: (1) Our synthesizer generates the set
H := {x ≥ 1, x ≥ 0, x ≥ −2, x ≥ −1} from the examples in E . (2) Our
synthesizer tries to find a ranking function of the form f(x) = ax + b (with
the trivial segmentation), but there is no such ranking function. (3) Our syn-
thesizer refines the current segmentation with (x ≥ 0) ∈ H because x ≥ 0
“looks good”. (4) Our synthesizer tries to find a ranking function of the form
f(x) = if x ≥ 0 then ax + b else cx + d, using the current segmentation. Our
synthesizer obtains f(x) = if x ≥ 0 then x else − x and use this f(x) for a
candidate solution.

How can we decide which halfspace in H “looks good”? We use quality mea-
sure that is a value representing the quality of each halfspace and select the
halfspace with the maximum quality measure.

Figure 5 shows the comparison of the quality of x ≥ 0 and x ≥ −2 in this
example. Intuitively, x ≥ 0 is better than x ≥ −2 because we can obtain a
simple ranking function if x ≥ 0 then x else − x with x ≥ 0 (Fig. 5a) while we
need further refinement of the segmentation with x ≥ −2 (Fig. 5b). In Sect. 5,
we introduce a quality measure for halfspaces following this intuition.

Our synthesizer iteratively refines segmentations following this quality mea-
sure, until examples contained in each leaf of the decision tree admit an affine
ranking function. This approach is inspired by the use of information gain in the
decision tree learning for invariant synthesis.

Example 3 showed a natural extension of a decision tree learning method for
invariant synthesis. However, this is not enough for transition examples, for the
reasons of explicit and implicit cycles. Here are their examples.
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−2 −1 0 1 2 3

Fig. 6. Two examples R(−1, 1) and R(1, 0) make an implicit cycle between x ≥ 1 and
¬(x ≥ 1).

Example 4. Suppose we are given E = {R(1, 0), R(0, 1)}. In this case, there
is no ranking function because E contains a cycle 1 → 0 → 1 witnessing non-
termination. We call such a cycle an explicit cycle.

Example 5. Let E = {R(−1, 1), R(1, 0), R(−1,−2), R(2, 3)} (Fig. 6). Our syn-
thesizer proceeds as follows. (1) Our synthesizer generates the set H := {x ≥
1, x ≥ 0, . . . } of halfspaces. (2) Our synthesizer tries to find a ranking function
of the form f(x) = ax + b (with the trivial segmentation), but there is no such.
(3) Our synthesizer refines the current segmentation with (x ≥ 1) ∈ H because
x ≥ 1 “looks good” (i.e. is the best with respect to a quality measure).

We have reached the point where the naive extension of decision tree learn-
ing explained in Example 3 no longer works: although all constraints con-
tained in each leaf of the decision tree admit an affine ranking function, there
is no piecewise affine ranking function for E of the form f(x) = if x ≥
1 then ax + b else cx + d.

More specifically, in this example, the leaf representing x ≥ 1 contains
R(2, 3), and the other leaf representing ¬(x ≥ 1) contains R(−1,−2). The exam-
ple R(2, 3) admits an affine ranking function f1(x) = −x + 2, and R(−1,−2)
admits f2(x) = x + 1, respectively. However, the combination f(x) = if x ≥
1 then f1(x) else f2(x) is not a ranking function for E . Moreover, there is no
ranking function for E of the form f(x) = if x ≥ 1 then ax + b else cx + d.

It is clear that this failure is caused by the crossing examples R(−1, 1) and
R(1, 0). It is not that every crossing example is harmful. However, in this case,
the set {R(−1, 1), R(1, 0)} forms a cycle between the leaf for x ≥ 1 and the
leaf for ¬(x ≥ 1) (see Fig. 6). This “cycle” among leaves—in contrast to explicit
cycles such as {R(1, 0), R(0, 1)} in Example 4—is called an implicit cycle.

Once an implicit cycle is found, our synthesizer cuts it by refining the current
segmentation. Our synthesizer continues the above steps (1–3) of decision tree
learning as follows. (4) Our synthesizer selects (x ≥ 0) ∈ H and cuts the implicit
cycle {R(−1, 1), R(1, 0)} by refining segmentations. (5) Using the refined seg-
mentation, our synthesizer obtains f(x) = if x ≥ 1 then − x + 2 else if x ≥
0 then 0 else x + 3 as a ranking function for E .

As explained in Example 4, and 5, handling (explicit and implicit) cycles
is crucial in decision tree learning for transition examples. Moreover, our cycle
detection theorem (Theorem 17) claims that if there is no explicit or implicit
cycle, then one can find a ranking function for E without further refinement of
segmentations.
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3 (Non-)Termination Verification as Constraint Solving

We explain how to encode (non-)termination verification to constraint solving.
Following [31], we formalize our target class pwCSP of predicate constraint

satisfaction problems parametrized by a first-order theory T .

Definition 6. Given a formula φ, let ftv(φ) be the set of free term variables
and fpv(φ) be the set of free predicate variables in φ.

Definition 7. A pwCSP is defined as a pair (C,R) where C is a finite set of
clauses of the form

φ ∨
(

�
∨

i=1

Xi(˜ti)

)

∨
(

m
∨

i=�+1

¬Xi(˜ti)

)

(4)

and R ⊆ fpv(C) is a set of predicate variables that are required to denote well-
founded relations. Here, 0 ≤ � ≤ m. Meta-variables t and φ range over T -terms
and T -formulas, respectively, such that ftv(φ) = ∅. Meta-variables x and X
range over term and predicate variables, respectively.

A pwCSP (C,R) is called CHCs (constrained Horn clauses, [9]) if R = ∅ and
� ≤ 1 for all clauses c ∈ C. The class of CHCs has been widely studied in the
verification community [12,14,28,36].

Definition 8. A predicate substitution σ is a finite map from predicate variables
X to closed predicates of the form λx1, . . . , xar(X).φ. We write dom(σ) for the
domain of σ and σ(C) for the application of σ to C.

Definition 9. A predicate substitution σ is a (genuine) solution for (C,R) if (1)
fpv(C) ⊆ dom(σ); (2) |=

∧

σ(C) holds; and (3) for all X ∈ R, σ(X) represents
a well-founded relation, that is, sort(σ(X)) = (s̃, s̃) → • for some sequence s̃ of
sorts and there is no infinite sequence ṽ1, ṽ2, . . . of sequences ṽi of values of the
sorts s̃ such that |= ρ(X)(ṽi, ṽi+1) for all i ≥ 1.

Encoding Termination. Given a set of initial state ι(x̃) and a transition relation
τ(x̃, x̃′), the termination verification problem is expressed by the pwCSP (C,R)
where R = {R}, and C consists of the following clauses.

ι(x̃) =⇒ I(x̃) τ(x̃, x̃′) ∧ I(x̃) =⇒ I(x̃′) τ(x̃, x̃′) ∧ I(x̃) =⇒ R(x̃, x̃′)

We use φ =⇒ ψ as syntax sugar for ¬φ ∨ ψ, so this is a pwCSP. The well-
founded relation R asserts that τ is terminating. We also consider an invariant
I for τ to avoid synthesizing ranking functions on unreachable program states.
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Encoding Non-termination. We can also encode a problem of non-termination
verification to pwCSP via recurrent sets [20]. For simplicity, we explain the
encoding for the case of only one program variable x. We consider a recurrent
set R satisfying the following conditions.

ι(x) =⇒ R(x) (5)
R(x) =⇒ ∃x′.τ(x, x′) ∧ R(x′) (6)

To remove ∃ from (6), we use the following constraint that is equivalent to (6).

R(x) =⇒ E(x, 0) (7)

E(x, x′) =⇒
(

τ(x, x′) ∧ R(x′)
)

∨
(

S(x′, x′ − 1) ∧ E(x, x′ − 1)
)

∨
(

S(x′, x′ + 1) ∧ E(x, x′ + 1)
)

(8)

The intuition is as follows. Given x in the recurrent set R, the relation E(x, x′)
searches for the value of ∃x′ in (6). The search starts from x′ = 0 in (7), and
x′ is nondeterministically incremented or decremented in (8). The well-founded
relation S asserts that the search finishes within finite steps. As a result, we
obtain a pwCSP for non-termination defined by (C,R) where R = {S} and C is
given by (5), (7), and (the disjunctive normal form of) (8).

Example 10. Consider the following C program.

while(x > 0) { x = -2 * x + 9; }

The non-termination problem is encoded as the pwCSP (C,R) where R = {S},
and C consists of

x > 0 =⇒ R(x) R(x) =⇒ E(x, 0)
E(x, x′) =⇒ x′ = −2x + 9 ∧ R(x′)

∨ (S(x′, x′ − 1) ∧ E(x, x′ − 1)) ∨ (S(x′, x′ + 1) ∧ E(x, x′ + 1)).

The program is non-terminating when x = 3. This is witnessed by a solution σ for
(C,R), which is given by σ(R)(x) := x = 3, σ(E)(x, x′) := x = 3∧0 ≤ x′∧x′ ≤ 3,
and σ(S)(x′, x′′) := x′′ = x′ + 1 ∧ x′′ ≤ 3.

4 CounterExample-Guided Inductive Synthesis (CEGIS)

We explain how CounterExample-Guided Inductive Synthesis [29] (CEGIS for
short) works for a given pwCSP (C,R) following [31]. Then, we add the extraction
of positive/negative examples to the CEGIS architecture, which enables our
decision tree-based synthesizer to use a simplified form of examples.

CEGIS proceeds through the iterative interaction between a synthesizer and
a validator (Fig. 1), in which they exchange examples and candidate solutions.

Definition 11. A formula φ is an example of C if ftv(φ) = ∅ and
∧

C |= φ hold.
Given a set E of examples of C, a predicate substitution σ is a candidate solution
for (C,R) that is consistent with E if σ is a solution for (E ,R).



Decision Tree Learning in CEGIS-Based Termination Analysis 85

Synthesizer. The input for a synthesizer is a set E of examples of C collected from
previous CEGIS iterations. The synthesizer tries to find a candidate solution
σ consistent with E instead of a genuine solution for (C,R). If the candidate
solution σ is found, then σ is passed to the validator. If E is unsatisfiable, then
E witnesses unsatisfiability of (C,R). Details of our synthesizer is described in
Sect. 5.

Validator. A validator checks whether the candidate solution σ from the synthe-
sizer is a genuine solution of (C,R) by using SMT solvers. That is, satisfiability
of |= ¬

∧

σ(C) is checked. If |= ¬
∧

σ(C) is not satisfiable, then σ is a genuine
solution of the original pwCSP (C,R), so the validator accepts this. Otherwise,
the validator adds new examples to the set E of examples. Finally, the synthesizer
is invoked again with the updated set E of examples.

If |= ¬
∧

σ(C) is satisfiable, new examples are constructed as follows. Using
SMT solvers, the validator obtains an assignment θ to term variables such that |=
¬θ(ψ) holds for some ψ ∈ σ(C). By (4), |= ¬θ(ψ) is a clause of the form |= ¬θ(φ)∧
(
∧�

i=1 ¬σ(Xi)(θ(˜ti))
)

∧
(
∧m

i=�+1 σ(Xi)(θ(˜ti))
)

. To prevent this counterexample
from being found in the next CEGIS iteration again, the validator adds the
following example to E .

�
∨

i=1

Xi(θ(˜ti)) ∨
m
∨

i=�+1

¬Xi(θ(˜ti)) (9)

The CEGIS architecture repeats this interaction between the synthesizer and
the validator until a genuine solution for (C,R) is found or E witnesses unsatis-
fiability of (C,R).

Extraction of Positive/Negative Examples. Examples obtained in the above
explanation are a bit complex to handle in our decision tree-based synthesizer:
each example in E is a disjunction (9) of literals, which may contain multiple
predicate variables.

To simplify the form of examples, we extract from E the sets E+
X and E−

X of
positive examples (i.e., examples of the form X(ṽ)) and negative examples (i.e.,
examples of the form ¬X(ṽ)) for each X ∈ fpv(E). This allows us to synthesize a
predicate σ(X) for each predicate variable X ∈ fpv(E) separately. For simplicity,
we write ṽ ∈ E+

X and ṽ ∈ E−
X instead of X(ṽ) ∈ E+

X and ¬X(ṽ) ∈ E−
X .

The extraction is done as follows. We first substitute for each predicate vari-
able application X(ṽ) in E a boolean variable bX(ṽ) to obtain a SAT problem
SAT(E). Then, we use SAT solvers to obtain an assignment η that is a solution
for SAT(E). If a solution η exists, then we construct positive/negative examples
from η; otherwise, E is unsatisfiable.

Definition 12. Let η be a solution for SAT(E). For each predicate variable
X ∈ fpv(E), we define the set E+

X of positive examples and the set E+
X of negative

examples under the assignment η by E+
X := {ṽ | η(bX(ṽ)) = true} and E−

X := {ṽ |
η(bX(ṽ)) = false}.
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Note that some of predicate variable applications X(ṽ) may not be assigned true
nor false because they do not affect the evaluation of SAT(E). Such predicate
variable applications are discarded from {(E+

X , E−
X)}X∈fpv(E).

Our method uses the extraction of positive and negative examples when the
validator passes examples to the synthesizer. If X ∈ fpv(E) ∩ R, then we apply
our ranking function synthesizer to (E+

X , E−
X). If X ∈ fpv(E) \ R, then we apply

an invariant synthesizer.
We say a candidate solution σ is consistent with {(E+

X , E−
X)}X∈fpv(E) if |=

σ(X)(ṽ+) and |= ¬σ(X)(ṽ−) hold for each predicate variable X ∈ fpv(E), ṽ+ ∈
E+

X , and ṽ− ∈ E−
X . If a candidate solution σ is consistent with {(E+

X , E−
X)}X∈fpv(E),

then σ is also consistent with E .
Note that unsatisfiability of {(E+

X , E−
X)}X∈fpv(E) does not immediately implies

unsatisfiability of E nor (C,R) because {(E+
X , E−

X)}X∈fpv(E) depends on the choice
of the assignment η. Therefore, the CEGIS architecture need to be modified: if
synthesizers find unsatisfiability of {(E+

X , E−
X)}X∈fpv(E), then we add the negation

of an unsatisfiability core to E to prevent using the same assignment η again.
Note that some restricted forms of (9) have also been considered in previous

work and are called implication examples in [17] and implication/negation con-
straints in [12]. Our extraction of positive and negative examples is applicable
to the general form of (9).

5 Ranking Function Synthesis

In this section, we describe one of the main contributions, that is, our decision
tree-based synthesizer, which synthesizes a candidate well-founded relation σ(R)
from a finite set E+

R of examples. We assume that only positive examples are given
because well-founded relations occur only positively in pwCSP for termination
analysis (see Sect. 3). The aim of our synthesizer is to find a piecewise affine
lexicographic ranking function ˜f(x̃) for the given set E+

R of examples. Below, we
fix a predicate variable R ∈ R and omit the subscript E+

R = E+.

5.1 Basic Definitions

To represent piecewise affine lexicographic ranking functions, we use decision
trees like the one in Fig. 4. Let x̃ = (x1, . . . , xn) be the program variables where
each xi ranges over Z.

Definition 13. A decision tree D is defined by D := g̃(x̃) | if h(x̃) ≥ 0 then D
else D where g̃(x̃) = (gk(x̃), . . . , g0(x̃)) is a tuple of affine functions and h(x̃)
is an affine function. A segmentation tree S is defined as a decision tree with
undefined leaves ⊥: that is, S := ⊥ | if h(x̃) ≥ 0 then S else S. For each
decision tree D, we can canonically assign a segmentation tree by replacing the
label of each leaf with ⊥. This is denoted by S(D). For each decision tree D, we
denote the corresponding piecewise affine function by ˜fD(x̃) : Zn → Z

k+1.
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Each leaf in a segmentation tree S corresponds to a polyhedron. We often identify
the segmentation tree S with the set of leaves of S and a leaf with the polyhedron
corresponding to the leaf. For example, we say something like “for each L ∈ S,
ṽ ∈ L is a point in the polyhedron L”.

Suppose we are given a segmentation tree S and a set E+ of examples.

Definition 14. For each L1, L2 ∈ S, we denote the set of example transitions
from L1 to L2 by E+

L1,L2
:= {(ṽ, ṽ′) ∈ E+ | ṽ ∈ L1, ṽ

′ ∈ L2}. An example
(ṽ, ṽ′) ∈ E+ is crossing w.r.t. S if (ṽ, ṽ′) ∈ E+

L1,L2
for some L1 �= L2, and non-

crossing if (ṽ, ṽ′) ∈ E+
L,L for some L.

Definition 15. We define the dependency graph G(S, E+) for S and E+ by the
graph (V,E) where vertices V = S are leaves, and edges E = {(L1, L2) | L1 �=
L2,∃(ṽ, ṽ′) ∈ E+

L1,L2
} are crossing examples.

We denote the set of start points ṽ and end points ṽ′ of examples (ṽ, ṽ′) ∈ E+

by E+ := {ṽ | (ṽ, ṽ′) ∈ E+} ∪ {ṽ′ | (ṽ, ṽ′) ∈ E+}.

5.2 Segmentation and (Explicit and Implicit) Cycles:
One-Dimensional Case

For simplicity, we first consider the case where ˜f(x̃) = f(x̃) : Zn → Z is a one-
dimensional ranking function. Our aim is to find a ranking function f(x̃) for E+,
which satisfies ∀(ṽ, ṽ′) ∈ E+. f(ṽ) > f(ṽ′) and ∀(ṽ, ṽ′) ∈ E+. f(ṽ) ≥ 0. If our
ranking function synthesizer finds such a ranking function f(x̃), then a candidate
well-founded relation Rf is constructed as Rf (x̃, x̃′) := f(x̃) ≥ 0 ∧ f(x̃) > f(x̃′).

Our synthesizer builds a decision tree D to find a ranking function fD(x̃) for
E+. The main question in doing so is “when and how should we refine partitions
of decision trees?” To answer this question, we consider the case where there
is no ranking function fD(x̃) for E+ with a fixed segmentation S, and classify
reasons for this into three cases as follows.

Case 1: Explicit Cycles in Examples. We define an explicit cycle in E+ as a
cycle in the graph (Zn, E+). An explicit cycle witnesses that there is no ranking
function for E+ (see e.g., Example 4).

Case 2: Non-crossing Examples are Unsatisfiable. The second case is when there
is a leaf L ∈ S such that no affine (not piecewise affine) ranking function for the
set E+

L,L of non-crossing examples exists. This prohibits the existence of piecewise
affine function fD(x̃) for E+ with segmentation S = S(D) because the restriction
of fD(x̃) to L ∈ S must be an affine ranking function for E+

L,L.

Case 3: Implicit Cycles in the Dependency Graph. We define an implicit cycle
by a cycle in the dependency graph G(S, E+). Case 3 is the case where an
implicit cycle prohibits the existence of piecewise affine ranking functions for E+

with the segmentation S (e.g., Example 5). If Case 1 and Case 2 do not hold
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but no piecewise affine ranking function for E+ with the segmentation S exists,
then there must be an implicit cycle by (the contraposition of) the following
proposition.

Proposition 16. Assume E+ is a set of examples that does not contain explicit
cycles (i.e. Case 1 does not hold). Let S be a segmentation tree and assume
that for each L ∈ S, there exists an affine ranking function fL(x̃) for E+

L,L (i.e.
Case 2 does not hold). If the dependency graph G(S, E+) is acyclic, then there
exists a decision tree D with the segmentation S(D) = S such that fD(x̃) is a
ranking function for E+.

Proof. By induction on the height (i.e. the length of a longest path from a
vertex) of vertices in G(S, E+). We construct a decision tree D as follows. If
the height of L ∈ S is 0, then we assign f ′

L(x̃) := fL(x̃) to the leaf L where
fL(x̃) is a ranking function for E+

L,L. If the height of L ∈ S is n > 0, then we
assign f ′

L(x̃) := fL(x̃) + c to the leaf L where c ∈ Z is a constant that satisfies
∀(ṽ, ṽ′) ∈ E+

L,L′ , fL(ṽ) + c > f ′
L′(ṽ′) for each cell L′ with the height less than n.

��
Note that the converse of Proposition 16 does not hold: the existence of implicit
cycles in G(S, E+) does not necessarily imply that no piecewise affine ranking
function exists with the segmentation S.

5.3 Segmentation and (Explicit and Implicit) Cycles:
Multi-Dimensional Lexicographic Case

We consider a more general case where ˜f(x̃) = (fk(x̃), . . . , f0(x̃)) is a multi-
dimensional lexicographic ranking function and k is a fixed nonnegative integer.

Given a function ˜f(x̃), we consider the well-founded relation R
˜f (x̃, x̃′) defined

inductively as follows.

R()(x̃, x̃′) := ⊥ R(fk,...,f0)(x̃, x̃′) := fk(x̃) ≥ 0 ∧ fk(x̃) > fk(x̃′)
∨fk(x̃) = fk(x̃′) ∧ R(fk−1,...,f0)(x̃, x̃′)

(10)

Our aim here is to find a lexicographic ranking function ˜f(x̃) for E+, i.e. a
function ˜f(x̃) such that R

˜f (ṽ, ṽ′) holds for each (ṽ, ṽ′) ∈ E+. Our synthesizer
does so by building a decision tree. The same argument as the one-dimensional
case holds for lexicographic ranking functions.

Theorem 17 (cycle detection). Assume E+ is a set of examples that does not
contain explicit cycles. Let S be a segmentation tree and assume that for each L ∈
S, there exists an affine function ˜fL(x̃) that satisfies ∀(ṽ, ṽ′) ∈ E+

L,L, R
˜fL

(ṽ, ṽ′).
If the dependency graph G(S, E+) is acyclic, then there exists a decision tree D
with the segmentation S(D) = S such that R

˜fD
(ṽ, ṽ′) holds for each (ṽ, ṽ′) ∈ E+.

Proof. The proof is almost the same as Proposition 16. Here, note that if ˜f ′(x̃) =
˜f(x̃) + c̃ where c̃ is a tuple of nonnegative integer constants, then R

˜f ′(x̃, x̃′)
subsumes R

˜f (x̃, x̃′). ��
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Algorithm 1 Building decision trees.
Input: a set E+ of examples, an integer k ≥ 0
Output: a well-founded relation R such that ∀(x̃, x̃′) ∈ E+, R(x̃, x̃′)
1: if E has a cycle then
2: return unsatisfiable
3: end if
4: D := ResolveCase2(E)
5: while true do
6: C := GetConstraints(D, E)
7: O := SumAbsParams(D)
8: ρ := Minimize(O, C)
9: if ρ is defined then

10: ˜f(x̃) := ˜fρ(D)(x̃)
11: return R

˜f

12: else
13: get an unsat core in C
14: find an implicit cycle (ṽ1, ṽ

′
1), . . . , (ṽl, ṽ

′
l) in the unsat core

15: find a cell C and two distinct points ṽ′
i, ṽi+1 ∈ C in the implicit cycle

16: add a halfspace to separate ṽ′
i and ṽi+1 and update D

17: end if
18: end while

5.4 Our Decision Tree Learning Algorithm

We design a concrete algorithm based on Theorem 17. It is shown in Algorithm 1
and consists of three phases. We shall describe the three phases one by one.

Phase 1. Phase 1 (Line 1–3) detects explicit cycles in E+ to exclude Case 1.
Here, we use a cycle detection algorithm for directed graphs.

Phase 2. Phase 2 (Line 4) detects and resolves Case 2 by using Resolve-

Case2 (Algorithm 2), which is a function that grows a decision tree recur-
sively. ResolveCase2 takes non-crossing examples in a leaf, divides the leaf,
and returns a template tree that is fine enough to avoid Case 2. Here, template
trees are decision trees whose leaves are labeled by affine templates.

Algorithm 2 shows the detail of ResolveCase2. ResolveCase2 builds a
template tree recursively starting from the trivial segmentation S = ⊥ and all
given examples. In each polyhedron, ResolveCase2 checks whether the set C
of constraints imposed by non-crossing examples can be satisfied by an affine
lexicographic ranking function on the polyhedron (Line 2–3). If the set C of
constraints is not satisfiable, then ResolveCase2 chooses a halfspace h(x̃) ≥ 0
(Line 6) and divides the current polyhedron by the halfspace.

There is a certain amount of freedom in the choice of halfspaces. To guaran-
tee termination of the whole algorithm, we require that the chosen halfspace h
separates at least one point in E ′+ := {ṽ | (ṽ, ṽ′) ∈ E ′+} ∪ {ṽ′ | (ṽ, ṽ′) ∈ E ′+}
from the other points in E ′+. That is:
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Algorithm 2 Resolving Case 2.
1: function ResolveCase2(E ′+)

2: ˜f := MakeAffineTemplate(k)

3: C := GetConstraints( ˜f, E ′+)
4: ρ := GetModel(C)
5: if ρ is undefined then
6: h := ChooseQualifier(E ′+)
7: D≥0 := ResolveCase2({(ṽ, ṽ′) ∈ E ′+ | h(ṽ) ≥ 0 ∧ h(ṽ′) ≥ 0})
8: D<0 := ResolveCase2({(ṽ, ṽ′) ∈ E ′+ | h(ṽ) < 0 ∧ h(ṽ′) < 0})
9: return (if h(x̃) ≥ 0 then D≥0 else D<0)

10: else
11: return ˜f
12: end if
13: end function
14: function GetConstraints(D, E+)

15: return {R
˜fD

(ṽ, ṽ′) | (ṽ, ṽ′) ∈ E+} where ˜fD is the tuple of piecewise affine
functions corresponding to D

16: end function

Algorithm 3 A criterion for eager qualifier selection.
1: function QualityMeasure(h, E ′+)
2: E++ := {(ṽ, ṽ′) ∈ E ′+ | h(ṽ) ≥ 0 ∧ h(ṽ) ≥ 0}
3: E+− := {(ṽ, ṽ′) ∈ E ′+ | h(ṽ) ≥ 0 ∧ h(ṽ) < 0}
4: E−+ := {(ṽ, ṽ′) ∈ E ′+ | h(ṽ) < 0 ∧ h(ṽ) ≥ 0}
5: E−− := {(ṽ, ṽ′) ∈ E ′+ | h(ṽ) < 0 ∧ h(ṽ) < 0}
6: ˜f := MakeAffineTemplate(k)

7: C+ := GetConstraints( ˜f, E++) C− := GetConstraints( ˜f, E−−)
8: N+ := MaxSmt(C+) N− := MaxSmt(C−)
9: return N+ + N− + (|E+−| + |E−+|)(1 − entropy(|E+−|, |E−+|))

10: end function

Assumption 18. If halfspace h(x̃) ≥ 0 is chosen in Line 6 of Algorithm 2, then
there exist ṽ, ũ ∈ E ′+ such that h(ṽ) ≥ 0 and h(ũ) < 0.

We explain two strategies (eager and lazy) to choose halfspaces that can be
used to implement ChooseQualifier. Both of them are guaranteed to termi-
nate, and moreover, intended to yield simple decision trees.

Eager Strategy. In the eager strategy, we eagerly generate a finite set H of
halfspaces from the set E+ of all examples beforehand and choose the best one
from H with respect to a certain quality measure. To satisfy Assumption 18,
H are generated so that any two points ũ, ṽ ∈ E+ can be separated by some
halfspace (h(x̃) ≥ 0) ∈ H.

For example, we can use intervals H = {±(xi − ai) ≥ 0 | i = 1, . . . , n ∧
(a1, . . . , an) ∈ E+} and octagons H = {±(xi − ai) ± (xj − aj) ≥ 0 | i �=
j ∧ (a1, . . . , an) ∈ E+} where x̃ = (x1, . . . , xn). For any input E ′+ ⊆ E+ of
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ResolveCase2, intervals and octagons satisfy ∅ �= H ′ := {h(x̃) ≥ 0 | ∃ṽ, ũ ∈
E ′+.h(ṽ) ≥ 0 ∧ h(ũ) < 0}, so Assumption 18 is satisfied by choosing the best
halfspace with respect to the quality measure from H ′.

For each halfspace (h(x̃) ≥ 0) ∈ H ′, we calculate QualityMeasure in
Algorithm 3, and choose one that maximizes QualityMeasure(h, E ′+). Qual-

ityMeasure(h, E ′+) calculates the sum of the maximum number of satisfiable
constraints in each leaf divided by h(x̃) ≥ 0 plus an additional term (|E+−| +
|E−+|)(1 − entropy(|E+−|, |E−+|)) where entropy(x, y) = − x

x+y log2
x

x+y − y
x+y

log2
y

x+y . Therefore, the term (|E+−| + |E−+|)(1 − entropy(|E+−|, |E−+|)) is
close to |E+−| + |E−+| if almost all examples in E+− ∪ E−+ cross h in the same
direction and close to 0 if |E+−| is almost equal to |E−+|.

Lazy Strategy. In the lazy strategy, we lazily generate halfspaces. We divide the
current polyhedron so that non-crossing examples in the cell point to almost the
same direction.

First, we label states that occur in E+
C,C as follows. We find a direction that

most examples in C point to by solving the MAX-SMT a := maxa

∣

∣{(ṽ, ṽ′) ∈
E+

C,C | a · (ṽ − ṽ′) > 0}
∣

∣. For each (ṽ, ṽ′) ∈ E+
C,C , we label two points ṽ, ṽ′ with

+1 if a · (ṽ − ṽ′) > 0 and with −1 otherwise.
Then we apply weighted C-SVM to generate a hyperplane that separates

most of the positive and negative points. To guarantee termination of Algo-
rithm 1, we avoid “useless” hyperplanes that classify all the points by the same
label. If we obtain such a useless hyperplane, then we undersample a majority
class and apply C-SVM again. By undersampling suitably, we eventually get
linearly separable data with at least one positive point and one negative point.

Note that since coefficients of hyperplanes extracted from C-SVM are floating
point numbers, we have to approximate them by hyperplanes with rational coef-
ficients. This is done by truncating continued fraction expansions of coefficients
by a suitable length.

Phase 3. In Line 5–18 of Algorithm 1, we further refine the segmentation S(D)
to resolve Case 3. Once Case 2 is resolved by ResolveCase2, Case 2 never
holds even after refining S(D) further. This enables to separate Phases 2 and 3.

Given a template tree D, we consider the set C of constraints on parameters
in D that claims ˜fD(x̃) is a ranking function for E+ (Line 6).

If C is satisfiable, we use an SMT solver to obtain a solution of C (i.e. an
assignment ρ of integers to parameters) while minimizing the sum of absolute
values of unknown parameters in D at the same time (Line 8). This minimization
is intended to give a simple candidate ranking function. The solution ρ is used
to instantiate the template tree D (Line 11).

If C cannot be satisfied, there must be an implicit cycle in the dependency
graph G(S(D), E+) by Theorem 17. The implicit cycle can be found in an unsat-
isfiable core of C. We refine the segmentation of D to cut the implicit cycle in
Line 16. To guarantee termination, we choose a halfspace satisfying the following
assumption, which is similar to Assumption 18.
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Assumption 19. If halfspace h(x̃) ≥ 0 is chosen in Line 16 of Algorithm 1,
then there exist ṽ, ũ ∈ E+ such that h(ṽ) ≥ 0 and h(ũ) < 0.

We have two strategy (eager and lazy) to refine the segmentation of D.
In eager strategy, we choose a halfspace (h(x̃) ≥ 0) ∈ H that separates two

distinct points ṽ′
i and ṽi+1 in the implicit cycle. In doing so, we want to reduce

the number of implicit cycles in G(S(D), E+), but adding a new halfspace may
introduce new implicit cycles if there exists (ṽ, ṽ′) ∈ E+

C,C that crosses the new
border from the side of ṽ′

i to the side of ṽi+1. Therefore, we choose a hyperplane
that minimizes the number of new crossing examples.

In lazy strategy, we use an SMT solver to find a hyperplane h(x̃) ∈ H that
separates ṽ′

i and ṽi+1 and minimizes the number of new crossing examples.

Termination. Assumption 18 and Assumption 19 guarantees that every leaf
in S(D) contains at least one point in the finite set E+. Because the number
of leaves in S(D) strictly increases after each iteration of Phase 2 and Phase 3,
we eventually get a segmentation S(D) where each L ∈ S(D) contains only one
point in E+ in the worst case. Since we have excluded Case 1 at the beginning,
Theorem 17 guarantees the existence of ranking function with the segmentation
S(D). Therefore, the algorithm terminates within |E+| times of refinement.

Theorem 20. If Assumption 18 and Assumption 19 hold, then Algorithm 1
terminates. If Algorithm 1 returns a piecewise affine lexicographic function ˜f(x̃),
then the function satisfies R

˜f (x̃, x̃′) for each (x̃, x̃′) ∈ E+ where E+ is the input
of the algorithm. ��

5.5 Improvement by Degenerating Negative Values

There is another way to define well-founded relation from the tuple ˜f(x̃) =
(fk(x̃), . . . , f0(x̃)) of functions, that is, the well-founded relation R′

˜f
(x̃, x̃′)

defined inductively by R′
()(x̃, x̃′) := ⊥ and R′

(fk,...,f0)
(x̃, x̃′) := fk(x̃) ≥ 0 ∧

fk(x̃) > fk(x̃′) ∨
(

fk(x̃′) < 0 ∨ fk(x̃) = fk(x̃′)
)

∧ R′
(fk−1,...,f0)

(x̃, x̃′).
In this definition, we loosen the equality fi(x̃) = fi(x̃′) (where i = 1, . . . , k)

of the usual lexicographic ordering (10) to fi(x̃′) < 0 ∨ fi(x̃) = fi(x̃′). This
means that once fi(x̃) becomes negative, fi(x̃) must stay negative but the value
do not have to be the same, which is useful for the synthesizer to avoid complex
candidate lexicographic ranking functions and thus improves the performance.

However, if we use this well-founded relation R′
˜f
(x̃, x̃′) instead of R

˜f (x̃, x̃′)
in (10), then Theorem 17 fails because R′

˜f
(x̃, x̃′) is not necessarily subsumed

by R′
˜f+c̃

where c̃ = (ck, . . . , c0) is a nonnegative constant (see the proof of
Proposition 16 and Theorem 17). As a result, there is a chance that no implicit
cycle can be found in line 14 of Algorithm 1. Therefore, when we use R′

˜f
(x̃, x̃′),

we modify Algorithm 1 so that if no implicit cycle can be found in line 14, then
we fall back on the former definition of R

˜f (x̃, x̃′) and restart Algorithm 1.
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6 Implementation and Evaluation

Implementation. We implemented a constraint solver MuVal that supports
invariant synthesis and ranking function synthesis. For invariant synthesis, we
apply an ordinary decision tree learning (see [12,14,18,22,36] for existing tech-
niques). For ranking function synthesis, we implemented the algorithm in Sect. 5
with both eager and lazy strategies for halfspace selection. Our synthesizer uses
well-founded relation explained in Sect. 5.5. Given a benchmark, we run our
solver for both termination and non-termination verification in parallel, and
when one of the two returns an answer, we stop the other and use the answer.
MuVal is written in OCaml and uses Z3 as an SMT solver backend. We used
clang and llvm2kittel [1] to convert C benchmarks to T2 [3] format files, which
are then translated to pwCSP by MuVal.

Experiments. We evaluated our implementation MuVal on C benchmarks from
Termination Competition 2020 (C Integer) [4]. We compared our tool with
AProVE [10,13], iRankFinder [7], and Ultimate Automizer [21]. Experi-
ments are conducted on StarExec [2] (CentOS 7.7 (1908) on Intel(R) Xeon(R)
CPU E5-2609 0 @ 2.40GHz (2393 MHZ) with 263932744 kB main memory). The
time limit was 300 s.

Table 2. Numbers of solved benchmarks

Yes No TO U

MuVal (eager) 204 89 42 0

MuVal (lazy) 200 84 51 0

AProVE 216 100 16 3

iRankFinder 208 92a 0 34

Ultimate Automizer 180 83 2 70

aWe removed one benchmarks from the

result of iRankFinder because the answer

was wrong.

Results. Results are shown in Table 2.
Yes/No/TO/U means the number of
benchmarks that these tools could
verify termination/could verify non-
termination/could not answer within
300 s and timed out (TimeOut)/gave
up before 300 s (Unknown), respec-
tively. We also show scatter plots of
runtime in Fig. 7.

MuVal was able to solve more benchmarks than Ultimate Automizer.
Compared to iRankFinder, MuVal solved slightly fewer benchmarks, but was
faster in a large number of benchmarks: 265 benchmarks were solved faster by
MuVal, 68 by iRankFinder, and 2 were not solved by both tools within 300 s
(here, we regard U (unknown) as 300 s). Compared to AProVE, MuVal solved
fewer benchmarks. However, there are several benchmarks that MuVal could
solve but AProVE could not. Among them is “TelAviv-Amir-Minimum true-
termination.c”, which does require piecewise affine ranking functions. MuVal

found a ranking function f(x, y) = if x − y ≥ 0 then y else x, while AProVE

timed out.
We also observed that using CEGIS with transition examples itself showed

its strengths even for benchmarks that do not require piecewise affine ranking
functions. Notably, there are three benchmarks that MuVal could solve but the
other tools could not; they are examples that do not require segmentations. Fur-
ther analysis of these benchmarks indicates the following strengths of our frame-
work: (1) the ability to handle nonlinear constraints (to some extent) thanks to
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Fig. 7. Scatter plots of runtime. Ultimate Automizer and AProVE sometimes gave
up before the time limit, and such cases are regarded as 300s.

the example-based synthesis and the recent development of SMT solvers; and
(2) the ability to find a long lasso-shaped non-terminating trace assembled from
multiple transition examples. See [23, Appendix A] for details.

7 Related Work

There are a bunch of works that synthesize ranking functions via constraint solv-
ing. Among them is a counterexample-guided method like CEGIS [29]. CEGIS
is sound but not guaranteed to be complete in general: even if a given constraint
has a solution, CEGIS may fail to find the solution. A complete method for
ranking function synthesis is proposed in [19]. They collect only extremal coun-
terexamples instead of arbitrary transition examples to avoid infinitely many
examples. A limitation of their method is that the search space is limited to
(lexicographic) affine ranking functions.

Another counterexample-guided method is proposed in [33] and implemented
in SeaHorn. This method can synthesize piecewise affine functions, but their
approach is quite different from ours. Given a program, they construct a safety
property that the number of loop iterations does not exceed the value of a
candidate ranking function. The safety property is checked by a verifier. If it
is violated, then a trace is obtained as a counterexample and the candidate
ranking function is updated by the counterexample. The main difference from
our method is that their method uses trace examples while our method uses
transition examples (which is less expensive to handle). FreqTerm [15] also
uses the connection to safety property, but they exploit syntax-guided synthesis
for synthesizing ranking functions.

Aside from counterexample-guided methods, constraint solving is widely
studied for affine ranking functions [27], lexicographic affine ranking func-
tions [5,7,24], and multiphase affine ranking functions [6,8]. Their implemen-
tation includes RankFinder and iRankFinder. Farkas’ lemma or Motzkin’s
transposition theorem are often used as a tool to transform ∃∀-constraints to ∃-
constraints. However, when we apply this technique to piecewise affine ranking
functions, we get nonlinear constraints [24].
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Abstract interpretation is also applied to segmented synthesis of ranking
functions and implemented in FuncTion [32,34,35]. In this series of work, deci-
sion tree representation of ranking functions is used in [35] for better handling
of disjunctions. Compared to their work, we believe that our method is more
easily extensible to other theories than linear integer arithmetic as long as the
theories are supported by SMT solvers (although such extensions are out of the
scope of this paper).

Other state-of-the-art termination verifiers include the following. Ultimate

Automizer [21] is an automata-based method. It repeatedly finds a trace and
computes a termination argument that contains the trace until termination argu-
ments cover the set of all traces. Büchi automata are used to handle such traces.
AProVE [10,13] is based on term rewriting systems.

8 Conclusions and Future Work

In this paper, we proposed a novel decision tree-based synthesizer for ranking
functions, which is integrated into the CEGIS architecture. The key observa-
tion here was that we need to cope with explicit and implicit cycles contained in
given examples. We designed a decision tree learning algorithm using the theoret-
ical observation of the cycle detection theorem. We implemented the framework
and observed that its performance is comparable to state-of-the-art termination
analyzers. In particular, it solved three benchmarks that no other tool solved,
a result that demonstrates the potential of the current combination of CEGIS,
segmented synthesis, and transition examples.

We plan to extend our ranking function synthesizer to a synthesizer of piece-
wise affine ranking supermartingales. Ranking supermartingales [11] are prob-
abilistic version of ranking functions and used for verification of almost-sure
termination of probabilistic programs.

We also plan to implement a mechanism to automatically select a suitable
set of halfspaces with which decision trees are built. In our ranking function
synthesizer, intervals/octagons/octahedron/polyhedra can be used as the set of
halfspaces. However, selecting an overly expressive set of halfspaces may cause
the problem of overfitting [25] and result in poor performance. Therefore, apply-
ing heuristics that adjusts the expressiveness of halfspaces based on the current
examples may improve the performance of our tool.
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Abstract. Being able to argue about the performance of self-adjusting
data structures such as splay trees has been a main objective, when
Sleator and Tarjan introduced the notion of amortised complexity.

Analysing these data structures requires sophisticated potential func-
tions, which typically contain logarithmic expressions. Possibly for these
reasons, and despite the recent progress in automated resource analy-
sis, they have so far eluded automation. In this paper, we report on
the first fully-automated amortised complexity analysis of self-adjusting
data structures. Following earlier work, our analysis is based on potential
function templates with unknown coefficients.

We make the following contributions: 1) We encode the search for
concrete potential function coefficients as an optimisation problem over a
suitable constraint system. Our target function steers the search towards
coefficients that minimise the inferred amortised complexity. 2) Automa-
tion is achieved by using a linear constraint system in conjunction with
suitable lemmata schemes that encapsulate the required non-linear facts
about the logarithm. We discuss our choices that achieve a scalable anal-
ysis. 3) We present our tool ATLAS and report on experimental results
for splay trees, splay heaps and pairing heaps. We completely automati-
cally infer complexity estimates that match previous results (obtained by
sophisticated pen-and-paper proofs), and in some cases even infer better
complexity estimates than previously published.

Keywords: Amortised cost analysis · Functional programming ·
Self-adjusting data structures · Automation · Constraint solving

1 Introduction

Amortised analysis, as introduced by Sleator and Tarjan [47,49], is a method
for the worst-case cost analysis of data structures. The innovation of amortised
analysis lies in considering the cost of a single data structure operation as part of
a sequence of data structure operations. The methodology of amortised analysis
allows one to assign a low (e.g., constant or logarithmic) amortised cost to a
c© The Author(s) 2021
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data structure operation even though the worst-case cost of a single operation
might be high (e.g., linear, polynomial or worse). The setup of amortised analysis
guarantees that for a sequence of data structure operations the worst-case cost
is indeed the number of data structure operations times the amortised cost.
In this way amortised cost analysis provides a methodology for worst-case cost
analysis. Notably, the cost analysis of self-adjusting data structures, such as
splay trees, has been a main objective already in the initial proposal of amortised
analysis [47,49]. Analysing these data structures requires sophisticated potential
functions, which typically contain logarithmic expressions. Possibly for these
reasons, and despite the recent progress in automated complexity analysis, they
have so far eluded automation.

In this paper, we present the first fully-automated amortised cost analysis
of self-adjusting data structures, that is, of splay trees, splay heaps and pairing
heaps, which so far have only (semi-) manually been analysed in the literature.
We implement and extend a recently proposed type-and-effect system for amor-
tised resource analysis [26,27]. This system belongs to a line of work (see [20,22–
25,28] and the references therein), where types are template potential functions
with unknown coefficients and the type-and-effect system extracts constraints
over these coefficients in a syntax directed way from the program under analy-
sis. Our work improves over [26,27] in three regards: 1) The approach of [26,27]
only supports type checking, i.e. verifying that a manually provided type is cor-
rect. In this paper, we add an optimisation layer to the set-up of [26,27] in order
to support type inference, i.e. our approach does not rely on manual annota-
tions. Our target function steers the search towards coefficients that minimise
the inferred amortised complexity. 2) The only case study of [26,27] is partial,
focusing on the zig-zig case of the splay tree function splay, while we report
on the full analysis of the operations of several data structures. 3) [26,27] does
not report on a fully-automated analysis. Besides the requirement that the user
needs to provide the resource annotation, the user also has to apply the struc-
tural rules of the type system manually. Our tool ATLAS is able to analyse our
benchmarks fully automatically. Achieving full automation required substantial
implementation effort as the structural rules need to be applied carefully—as
we learned during our experiments—in order to avoid a size explosion of the
generated constraint system. We evaluate and discuss our design choices that
lead to a scalable implementation.

With our implementation and the obtained experimental results we make
two contributions to the complexity analysis of data structures:

1.) We automatically infer complexity estimates that match previous results
(obtained by sophisticated pen-and-paper proofs), and in some cases even infer bet-
ter complexity estimates than previously published. In Table 1, we state the com-
plexity bounds computed by ATLAS next to results from the literature. We match
or improve the results from [37,41,42]. To the best of our knowledge, the bounds for
splay trees and splay heaps represent the state-of-the-art. In particular, we improve
the bound for the delete function of splay trees and all bounds for the splay heap
functions. For pairing heaps, Iacono [29,30] has proven (using a more involved
potential function) that insert and merge have constant amortised complexity,
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Table 1. Amortised complexity bounds for splay trees (module name SplayTree,
abbrev. ST), splay heaps (SplayHeap, SH) and pairing heaps (PairingHeap, PH).

Function name ATLAS (automated) [42] (manual)a [37] (semi-automated)

ST.splay 3/2 log2(|t|) 3/2 log2(|t|) + 1 3/2 log2(|t|) + 1

ST.splay max 3/2 log2(|t|) 3/2 log2(|t|) + 1

ST.insert 2 log2(|t|) + 3/2 2 log2(|t| + 1) + O(1) 2 log2(|t|) + 3/2

ST.delete 5/2 log2(|t|) + 3 3 log2(|t| + 1) + O(1) 3 log2(|t|) + 2

SH.partition 3/4 log2(|t|)+ 2 log2(|t| + 1) + 1

log2(|t| + 1)

SH.insert 3/4 log2(|t|)+ 3 log2(|t| + 2) + 1

log2(|t| + 1) + 3/2

SH.del min log2(|t|) 2 log2(|t| + 1) + 1

PH.merge pairs 3/2 log2(|h|) 3 log2(|h|) + 4

PH.insert 1/2 log2(|h|) log2(|h| + 1) + 1

PH.merge 1/2 log2(|h1| + |h2|) + 1 1/2 log2(|h1| + |h2|) log2(|h1| + |h2| + 1) + 2

PH.del min log2(|h|) log2(|h|) 3 log2(|h| + 1) + 4
a[42] uses a different cost metric, i.e. the numbers of arithmetic comparisons, whereas we and
[37] count the number of (recursive) function applications. We adapted the results of [42] to
our cost metric to make the results easier to compare, i.e. the coefficients of the logarithmic
terms are by a factor 2 smaller compared to [42].

while the other data structure operations continue to have an amortised complex-
ity of k log2(|t|); while we leave an automated analysis based on Iacono’s potential
function for future work, we note that his coefficients k in the logarithmic terms
are large, and that therefore the small coefficients in Table 1 are still of interest.
We will detail below that we used a simpler potential function than [37,41,42] to
obtain our results. Hence, also the new proofs of the confirmed complexity bounds
can be considered a contribution.

2.) We establish a new approach for the complexity analysis of data structures.
Establishing the prior results in Table 1 required considerable effort. Schoenmak-
ers studied in his PhD thesis [42] the best amortised complexity bounds that can
be obtained using a parameterised potential function φ(t), where t is a binary
tree, defined by φ(leaf) := 0 and φ((l, d, r)) := φ(l)+β logα( l + r ) + φ(r),
for real-valued parameters α, β > 0. Carrying out a sophisticated optimisa-
tion with pen and paper, he concluded that the best bounds are obtained
by setting α = 3

√
4 and β = 1

3 for splay trees, and by setting α =
√

2 and
β = 1

2 for pairing heaps (splay heaps were proposed only some years later
by Okasaki in [38]). Brinkop and Nipkow verify his complexity results for
splay trees in the theorem prover Isabelle [37]. They note that manipulating
the expressions corresponding to β logα(|t|) could only partly be automated1.

1 Nipkow et al. [37] state “The proofs in this subsection require highly nonlinear arith-
metic. Only some of the polynomial inequalities can be automated with Harrison’s
sum-of-squares method [16]”.
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For splay heaps, there is to the best of our knowledge no previous attempt to
optimise the obtained complexity bounds, which might explain why our optimis-
ing analysis was able to improve all bounds. For pairing heaps, Brinkop and Nip-
kow did not use the optimal parameters reported by Schoenmakers—probably
in order to avoid reasoning about polynomial inequalities—, which explains the
worse complexity bounds. In contrast to the discussed approaches, we were able
to verify and improve the previous results fully automatically. Our approach uses
a variation of Schoenmakers’ potential function, where we roughly fix α = 2 and
leave β as a parameter for the optimisation phase (see Sect. 2 for more details).
Despite this choice, our approach was able to derive bounds that match and
improve the previous results, which came as a surprise to us. Looking back at
our experiments and interpreting the obtained results, we recognise that we
might have been in luck with the particular choice of the potential function
(because we can obtain the previous results despite fixing α = 2). However,
we would not have expected that an automated analysis is able to match and
improve all previously reported coefficients, which shows the power of the opti-
misation phase. Thus, we believe that our results suggest a new approach for
the complexity analysis of data structures. So far, self-adjusting data structures
had to be analysed manually. This is possibly due to the use of sophisticated
potential functions, which may contain logarithmic expressions. Both features
are challenging for automated reasoning. Our results suggest that the following
alternative (see Sects. 2 and 4.2 for more details): (i) Fix a parameterised poten-
tial function; (ii) derive a (linear) constraint system over the function parameters
from the AST of the program; (iii) capture the required non-linear reasoning in
lemmata, and use Farkas’ lemma to integrate the application of these lemmata
into the constraint system (in our case two lemmata, one about an arithmetic
property and one about the monotonicity of the logarithm, were sufficient for
all of our benchmarks); and finally (iv) find values for the parameters by an
(optimising) constraint solver. We believe that our approach will carry over to
other data structures: one needs to adapt the potential functions and add suit-
able lemmata, but the overall setup will be the same. We compare the proposed
methodology to program synthesis by sketching [48], where the synthesis engi-
neer communicates her main insights to the synthesis engine (in our case the
potential functions plus suitable lemmata), and a constraint solver then fills in
the details. As conclusion from our benchmarking, we observe that an auto-
mated analysis of sophisticated data structures are possible without the need to
(i) resort to user guidance; (ii) forfeit optimal results; or (iii) be bogged down in
computation times. These results also show how dependencies on properties of
functional correctness of the code can be circumvented.

Related Work. To the best of our knowledge the here presented automated
amortised analysis of self-adjusting data-structures is novel and unparalleled in
the literature. However, there is a vast amount of literature on (automated)
resource analysis. Without hope for a completeness, we briefly mention [1–7,9–
11,14,15,17,18,20,22–25,39,44–46,52] for an overview of the field. Logarithmic
and sublinear bounds are typically not in the focus of the cited approaches, but
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can be inferred by some tools. In the recurrence relations based approach to cost
analysis [1] refinements of linear ranking functions are combined with criteria
for divide-and-conquer patterns; this allows the tool PUBS to recognise logarith-
mic bounds for some problems, but examples such as mergesort or splaying are
beyond the scope of this approach. Logarithmic and exponential terms are inte-
grated into the synthesis of ranking functions in [8], making use of an insightful
adaption of Farkas’ and Handelman’s lemmas. The approach is able to handle
examples such as mergesort, but again not suitable to handle self-balancing data
structures. A type based approach to cost analysis for an ML-like language is
presented in [50], which uses the Master Theorem to handle divide-and-conquer-
like recurrences. Recently, support for the Master Theorem was also integrated
for the analysis of rewriting systems [51], extending [4] on the modular resource
analysis of rewriting to so-called logically constrained rewriting systems [12].
The resulting approach also supports the fully automated analysis of mergesort.

Structure. In Sects. 2 and 3 we review the type system of [26,27]. We sketch
the challenges to automation in Sect. 4 and present our contributions in Sects. 5
and 6. Finally, we conclude in Sect. 7.

2 Step by Step to an Automated Analysis of Splaying

In this and the next section we sketch the theory developed by Hofmann et al.
in [27], in order to be able to present the contributions of this article in Sect. 4
and 5. For brevity, we restrict our exposition to those parts essential in the
analysis of a particular program code. As motivating example consider splay
trees, introduced by Sleator and Tarjan [47,49]. Splaying is the most important
operation on splay trees, which performs rotation. Consider Fig. 1, a depiction
of the zig-zig case of splay , which implements splaying.

The analysis of [27] (see also [26]) is formulated in terms of the physicist’s
method of amortised analysis in the style of Sleator and Tarjan [47,49]. The
central idea of this approach is to assign a potential to the data structures
of interest such that the difference in potential before and after executing a
function is sufficient to pay for the actual cost of the function, i.e. one chooses
potential functions φ, ψ such that φ(v) � cf (v) + ψ(f(v)) holds for all inputs v
to a function f , where cf (v) denotes the worst-case cost of executing function
f on v. This generalises the original formulation, which can be seen by setting
φ(v) := af (v) + ψ(v), where af (v) denotes the amortised cost of f .

In order to be able to analyse self-adjusting data structures such as splay
trees, one needs potential functions that can express logarithmic amortised cost.
Hofmann et al. [26,27] propose to make use of a variant of Schoenmakers’ poten-
tial, rk(t) for a tree t, cf. [37,41,42], defined inductively by

rk(leaf) := 1 rk((l, d, r)) := rk(l) + log2( l ) + log2( r ) + rk(r) ,

where l, r are the left resp. right child of the tree (l, d, r), |t| denotes
the size of a tree (defined as the number of leaves of the tree), and d is some
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1 splay a t = match t with
2 | (cl, c, cr) -> match cl with
3 | (bl, b, br) -> let s = splay a bl in match s with
4 | (al, a’, ar) -> (al, a’, (ar, b, (br, c, cr)))

Fig. 1. Zig-zig case of the splay function.

data element that is ignored by the potential function. Besides Schoenmakers’
potential, further basic potential functions need to be added to the analysis: For
a sequence of m trees t1, . . . , tm and coefficients ai, b ∈ N, the potential function

p(a1,...,am,b)(t1, . . . , tm) := log2(a1 · |t1| + · · · + am · |tm| + b)

denotes the logarithm of a linear combination of the sizes of the tree.
Following [37], we set the cost csplay(t) of splaying a tree t to be the number of

recursive calls to splay . Splaying and all operations that depend on splaying can
be done in O(log2 n) amortised cost. Employing the above introduced potential
functions, the analysis of [27] is able verify the following cost annotation for
splaying (the annotation needs to be provided by the user):

rk(t) + 3 p(1,0)(t) + 1 � csplay(t) + rk(splay a t) . (1)

From this result, one directly reads off 3 · p(1,0)(t) + 1 = 3 · log2(|t|) + 1 as
bound on the amortised cost of splaying.2

Based on earlier work [6,20,22–25,27,28] employs a type-and-effect system
that uses template potential functions, i.e. functions of a fixed shape with inde-
terminate coefficients. The key challenge is to identify templates that are suitable
for logarithmic analysis and that are closed under the basic operations of the
considered programming language. For example, one introduces the coefficients
q∗, q(1,0), q(0,2), q

′
∗, q

′
(1,0), q

′
(0,2) and introduces the potential function templates

Φ(t :T|Q) := q∗ · rk(t) + q(1,0) · p(1,0)(t) + q(0,2) · p(0,2)(t)
Φ(splay a t :T|Q′) := q′

∗ · rk(splay a t) +
+ q′

(1,0) p(1,0)(splay a t) + q′
(0,2) p(0,2)(splay a t) ,

for the input and output of the splay function. The type system then derives
constraints on the template function coefficients, as indicated in the sequel. We
take up further discussion of the constraint system, in particular how to maintain
a scalable analysis, in Sect. 4.

We explain the use of the type system on the motivating example. For brevity,
type judgements and the type rules are presented in a simplified form. In par-
ticular, we restrict our attention to tree types, denoted as T. This omission is
inessential to the actual complexity analysis. For the full set of rules see [27].

2 For ease of presentation, we elide the underlying semantics for now and simply write
“splay a t” for the resulting tree t′, obtained after evaluating splay a t.
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splay:T|Q → T|Q′

bl :T|Q � splay a bl :T|Q′ − 1
(app) Δ|R �cf

splay a bl :T|R′

cr :T, br :T, s :T|Q4 � match x with |(al,a′,ar) -> t′ :T|Q′

cr :T, bl :T, br :T|Q3 � e′
1 :T|Q′ (let : T)

cr :T, bl :T, br :T|Q2 � e′
1 :T|Q′ (w)

cl :T, cr :T|Q1 � match cl with |(bl,b,br) -> e′
1 :T|Q′ (match)

t :T|Q � match t with|(cl,c,cr) -> e1 :T|Q′ (match)

Fig. 2. Partial typing derivation for the motivating example splay.

Let e denote the body of the function definition of splay a t , depicted in
Fig. 1. Our automated analysis infers an annotated type of splaying, by verifying
that the type judgement

t :T|Q � e :T|Q′ , (2)

is derivable. As above, types are decorated with annotations Q :=
[q∗, q(1,0), q(0,2)] and Q′ := [q′

∗, q
′
(1,0), q

′
(0,2)]—employed to express the potential

carried by the arguments to splay and its results.
The soundness theorem of the type system (Theorem 1) expresses that if

the above type judgement is derivable, then the total cost csplay(t) of splay-
ing is bound by the difference between Φ(t :T|Q) and Φ(splay a t :T Q′), i.e.
Φ(t :T Q) � csplay(t) + Φ(splay a t :T Q′). In particular, Eq. 1 can be derived
in this way.

We now provide an intuition on the type-and-effect system, stepping through
the code of Fig. 1. The corresponding type derivation tree is depicted in Fig. 2.
We note that the tree contains further annotations Q1, Q2, Q3, Q4 (besides the
annotations Q and Q′) which again represent the unknown coefficients of poten-
tial function templates. The goal of the type-and-effect system is to provide
constraints for each programming construct that connect the annotations in sub-
sequent derivation steps, e.g. Q2 and Q3. The type-and-effect system operates
syntax-directed and formulates one rule per programming languages construct.
We now discuss some of these rules for the partial derivation for splay .

The outermost command of e is a match statement, for which the following
rule is applied:

cl :T, cr :T|Q1 � e1 :T|Q′

t :T|Q � match t with | (cl,c,cr) -> e1 :T|Q′ (match)
.

Here e1 denotes the subexpression of e, which constitutes the nested pattern
match. Primarily, this is a standard type rule for pattern matching. The novelty
are the constraints on the annotations Q, Q′ and Q1. More precisely, (match)
induces the constraints
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q11 = q12 = q∗ q1(1,1,0) = q(1,0) q1(1,0,0) = q1(0,1,0) = q∗ q1(0,0,2) = q(0,2) ,

which can be directly read-off the definition of rk(t) = rk(cl) + log2(|cl|) +
log2(|cr|)+ rk(cr). Similarly, the nested match command, starting expression e′

1,
is subject to the same rule; the resulting constraints amount to

q21 = q22 = q23 q2(0,0,0,2) = q1(0,0,2) q2(1,1,1,0) = q1(1,1,0)

q2(0,1,1,0) = q1(1,0,0) q2(1,0,0,0) = q1(0,1,0) q2(0,1,0,0) = q2(0,0,1,0) = q11 .

Besides the rules for programming language constructs, the type-and-effect
system contains structural rules, which operate on the type annotations them-
selves. The weakening rule allows a suitable adaptation of the coefficients of the
potential function Φ(Γ |Q2) to obtain a new potential function Φ(Γ |Q3), where
we use the shorthand Γ := cr :T, bl :T, br :T:

Γ |Q3 � e′
1 :T|Q′ Φ(Γ |Q2) � Φ(Γ |Q3)

Γ |Q2 � e′
1 :T|Q′ (w)

The difficulty in applying the weakening rule, consists in discharging the
constraint:

Φ(Γ |Q2) � Φ(Γ |Q3) (3)

Note, that the comparison is to be performed symbolically, that is, abstracted from
the concrete value of the variables. We emphasise that this step can neither be
avoided, nor easily moved to the axioms of the derivation, as in related approaches
in the literature [19,21–23,28,31,35]. We use Farkas’ Lemma in conjunction with
two facts about the logarithm to linearise this symbolic comparison, namely the
monotonicity of the logarithm and the fact that 2+log2(x)+log2(y) � 2 log2(x+
y) for all x, y � 1. For example, for the facts log2(|bl|) ≤ log2(|bl| + |br|) and
2 + log2(|bl|) + log2(|cr| + |br|) ≤ 2 log2(|cr| + |bl| + |br|), we use Farkas’ Lemma
to generate the constraints

q2(0,0,0,2) + 2f � q3(0,0,0,2)

q2(1,0,1,0) + f � q3(1,0,1,0)

q2(1,1,1,0) − 2f � q3(1,1,1,0)

q2(0,1,0,0) + f + g � q3(0,1,0,0)

q2(0,1,1,0) − g � q3(0,1,1,0)

for some coefficients f, g � 0 introduced by Farkas’ Lemma. We note that Farkas’
Lemma can be interpreted as systematically exploring all positive-linear com-
binations of the considered mathematical facts. This can be seen on the above
example: one can combine g times the first fact with f times the second fact.
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Next, we apply the rule for the let expression. This rule is the most involved
typing rule in the system proposed by Hofmann et al. [27].

Δ|Q � e2 :T|Q′ − 1 Δ|R �cf e2 :T|R′ Θ|Q4 � e3 :T|Q′

cr :T, bl :T, br :T|Q3 � let s = e2 in e3 :T|Q′ (let : T)

Ignoring the annotations and in particular the second premise for a moment,
the type rule specifies a standard typing for a let expression. We note that,
as required by the rule, all variables in the type context Γ occur at most once
in the let-expression. Γ can then be split into contexts Δ := bl :T and Θ :=
cr :T, br :T. Here, e2 := splay a bl and e3 denotes the last match statement
in e. The let-rule facilitates a splitting of the potential Q3 for the evaluation
of e2 and e3 according to the type contexts Δ and Θ. Abusing notation, the
distribution of potentials facilitated by the let-rule can be stated very roughly
as two “equalities”, that is, (i) “Q3 = Q+R+P” and (ii) “Q4 = (Q′−1)+R′+P”.
(i) states that the potential Q3 pays for evaluating the splay expression e2 (with
and without costs, requiring the potential Q and R) and leaves the remainder
potential P . (ii) states that the potential Q4 is constituted of the remainder
potential P and of the potentials left after evaluating e2 (with and without
costs, i.e. potentials Q′ −1 and R′). E.g. Q4 is given by the following constraints

q41 = q31 q43 = q′
∗ q4(1,0,0,0) = q3(1,0,0,0) q4(1,1,1,0) = r′

(1,0)

q42 = q33 q4(0,1,0,0) = q3(0,0,1,0) q4(1,1,0,0) = q3(1,0,1,0)

where the coefficients q3 stem from the remainder potential of Q3, the coefficient
q′
∗ from Q′ − 1 and r′

(1,0) from R′.
The most original part of this type rule is the second premise

Δ R cf splay a bl :T R′. Here, �cf denotes the same kind of typing judge-
ment as used in the overall typing derivation, but where all costs are set to zero
(hence, the superscript cost-free). Let us assume R = [r(1,0)], R′ = [r′

(1,0)], and
that ATLAS was able to establish that

Φ(bl :T|R) = log2(|bl|) � log2(|s|) = Φ(s :T|R′) , (4)

establishing the coefficients r(1,0) = 1 and r′
(1,0) = 1. (We note that cost-free

typing derivations as in Eq. (4) constitute a size analysis that relates the sizes
of input and output). Then, ATLAS infers from (4), taking advantage of the
monotonicity of log, that

log2(|cr| + |bl| + |br|) � log2(|cr| + |br| + |s|) .

This inequality expresses that if the summand log2(|cr|+|bl|+|br|) is included in
the potential Φ(Γ |Q3), then the summand log2(|cr|+ |br|+ |s|) may be included
in the potential Φ(cr :T, br :T, s :T|Q4). (The two logarithmic terms correspond
to the coefficients q3(1,1,1,0) and q4(1,1,1,0) marked in red above.) Thus, the cost-free
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derivation allows the potential R to pass from Q3, via R′, to Q4. This is crucial
for being able to pay for the evaluation of e3.

The let-rule has the three premises Δ|Q � e2 :T|Q′ − 1, Δ|R �cf e2 :T|R′

and Θ|Q4 � e3 :T|Q′. We focus here on the first premise and do not state the
derivations for the other two premises (such derivations can be found in [27]). The
judgement Δ Q splay a t :T Q′ 1 can be derived by the rule for function
application, which states a cost of 1 with regard to the type signature of splay ,
represented by decrementing the potential induced by the annotation Q′.

splay : T|Q → T|Q′

t :T|Q � splay a t :T|Q′ − 1
(app)

The rule for function application is an axiom, and closes this branch of the
typing derivation. This concludes the presentation of the partial type inference
given in Fig. 2. Similarly to the above example of splay , estimates for the amor-
tised costs of insertion and deletion on splay trees can be automatically inferred
by our tool ATLAS. Further, our analysis handles similar self-adjusting data
structures like pairing heaps and splay heaps (see Sect. 6.1).

3 Technical Foundation

In this short section, we provide a more detailed account of the formal system
underlying our tool ATLAS. We state the soundness of the system in Theorem 1.

A typing context is a mapping from variables V to types; denoted by upper-
case Greek letters. A program P is a set of typed function definitions of the form
f(x1, . . . , xn) = e, where the xi are variables and e an expression. A substitution
(or an environment) σ is a mapping from variables to values that respects types.
Substitutions are denoted as sets of assignments: σ = {x1 �→ t1, . . . , xn �→ tn}.
We employ a simple cost-sensitive big-step semantics based on eager evaluation,
dressed up with cost assertions. The judgement σ

�
e ⇒ v means that under

environment σ, expression e is evaluated to value v in exactly � steps. Here
only rule applications emit (unit) costs. For brevity, the formal definition of the
semantics is omitted but can be found in [27].

In Sect. 2, we introduced a variant of Schoenmakers’ potential function,
denoted as rk(t), and the additional potential functions p(a1,...,am,b)(t1, . . . , tm) :=
log2(a1 · |t1|+ · · ·+am · |tm|+ b), denoting the log2 of a linear combination of tree
sizes. log2 denotes the logarithm to the base 2; throughout the paper we stipulate
log2(0) := 0 in order to avoid case distinctions. Note that the constant function 1
is representable: 1 = λt. log2(0 · |t| + 2) = p(0,2). We are now ready to state the
resource annotation of a sequence of trees:

Definition 1. A resource annotation or simple annotation of length m is a
sequence Q = [q1, . . . , qm] ∪ [(q(am,...,an,b))ai,b∈N], vanishing almost everywhere.
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Let t1, . . . , tm be a sequence of trees. Then, the potential of t1, . . . , tm wrt. Q is
given by

Φ(t1, . . . , tm|Q) :=
m∑

i=1

qi · rk(ti) +
∑

a1,...,am,b∈N

q(a1,...,am,b) · p(a1,...,am,b)(t1, . . . , tm) .

In case of an annotation of length 1, we sometimes write q∗ instead of q1, as
we already did above.

Example 1. Let t be a tree, then its potential could be defined as follows: rk(t)+
3 · log2(|t|) + 1. Wrt. the above definition this potential becomes representable
by setting q∗ := 1, q(1,0) := 3, q(0,2) := 1. Thus, Φ(t|Q) = rk(t) + 3 · log2(|t|) + 1.


�
Let σ be a substitution, let Γ denote a typing context and let x1 :T, . . . , xm :T

denote all tree types in Γ . A resource annotation for Γ or simply annota-
tion is an annotation for the sequence of trees x1σ, . . . , xmσ. We define the
potential of the annotated context Γ |Q wrt. a substitution σ as Φ(σ;Γ |Q) :=
Φ(x1σ, . . . , xmσ|Q).

Definition 2. An annotated signature F maps functions f to sets of pairs of
the annotation type for the arguments and the annotation type of the result:

F(f) := {α1 × · · · × αn|Q → β|Q′ : Q,Q′ are annotations, Q is of length m}.

We suppose f takes n arguments of which m are trees; m � n by definition.

Instead of α1 × · · · × αn|Q → β|Q′ ∈ F(f), we sometimes succinctly write
f : α1 × · · · × αn|Q → β|Q′. The cost-free signature, denoted as Fcf, is similarly
defined.

Example 2. Consider the function splay from above. Its signature is formally
represented as B × T|Q → T|Q′, where Q := [q∗] ∪ [(q(a,b))a,b∈N] and Q′ :=
[q′

∗] ∪ [(q′
(a,b))a,b∈N]. We leave it to the reader to specify the coefficients in Q, Q′

so that the rule (app) as depicted in Sect. 2 can indeed by employed to type the
recursive call of splay .

Let Q = [q∗] ∪ [(q(a,b))a,b∈N] be an annotation such that q(a,b) > 0. Then
Q′ := Q−1 is defined as follows: Q′ = [q∗]∪[(q′

(a,b))a,b∈N], where q′
(0,2) := q(0,2)−1

and for all (a, b) �= (0, 2) q′
(a,b) := q(a,b). By definition the annotation coefficient

q(0,2) is the coefficient of the basic potential function p(0,2)(t) = log2(0|t|+2) = 1,
so the annotation Q − 1, decrements cost 1 from the potential induced by Q.

Type-and-Effect System. The typing system makes use of a cost-free semantics,
which does not attribute any costs to the calculation. I.e. the rule (app) (Sect. 2)
is changed so that no cost is emitted. The cost-free application rule is denoted
as (app : cf). The cost-free typing judgement is written as Γ |Q �cf e : α|Q′. The
judgement Γ |Q � e : α|Q′ is governed by a plethora of typing rules. We have
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illustrated several typing rules in Sect. 2 (the complete set of typing rules can be
found in [27]).

A program P is called well-typed if for any rule f(x1, . . . , xk) = e ∈ P and any
annotated signature f : α1 × · · · × αk|Q → β|Q′, we have x1 : α1, . . . , xk : αk|Q �
e : β|Q′. A program P is called cost-free well-typed, if the cost-free typing relation
is employed.

Hofmann et al. establish the following soundness result:3

Theorem 1 (Soundness Theorem). Let P be well-typed and let σ be an envi-
ronment. Suppose Γ |Q � e : α|Q′ and σ

�
e ⇒ v. Then Φ(σ;Γ |Q)−Φ(v|Q′) � �.

Further, if Γ |Q �cf e : α|Q′, then Φ(σ;Γ |Q) � Φ(v|Q′).

4 The Road to Automation, Continued

The above sketched type-and-effect system, originally proposed in [27], is only a
first step towards full automation. Several challenges need to be overcome, which
we detail in this section.

4.1 Type Checking

Comparison between logarithmic expressions, constitutes a first major challenge,
as such a comparison cannot be directly encoded as a linear constraint problem.
To achieve such linearisation, [27] makes use of the following: (i) a subtly and
surprisingly effective variant of Schoenmakers potential (see Sect. 2); (ii) math-
ematical facts about the logarithm function—like Lemma 1 below—referred to
as expert knowledge; and finally (iii) Farkas’ Lemma for turning the universally-
quantified premise of the weakening rule into an existentially-quantified state-
ment that can be added to the constraint system—see Lemma 2.

A simple mathematical fact that is employed by Hofmann et al.— following
earlier pen-and-paper proofs in the literature [37,38,41]—states as follows:

Lemma 1. Let x, y � 1. Then 2 + log2(x) + log2(y) � 2 log2(x + y).

We remark that our automated analysis shows that this lemma is not only
crucial in the analysis of splaying, but also for the other data structures we have
investigated. Further, Hofmann et al. state and prove the following variant of
Farkas’ Lemma, which lies at the heart of an effective transformation of com-
parison demands like (3) into a linear constraint problem. Note that 
u and 
f
denote column vectors of suitable length.

Lemma 2 (Farkas’ Lemma). Suppose A
x � 
b, 
x � 0 is solvable. Then the
following assertions are equivalent. (i) ∀
x � 0. A
x � 
b ⇒ 
uT 
x � λ and (ii)
∃
f � 0. 
uT � 
fT A ∧ 
fT
b � λ.

3 Note that soundness assumes a terminating execution σ
�

e ⇒ v of P. We point out
that our analysis does not guarantee the termination of P for all environments σ.
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The lemma allows the assumption of expert knowledge through the assump-
tion A
x � 
b for all 
x � 0. E.g., thus formalised expert knowledge is a clear
point of departure for additional information. E.g. Hofmann et al. [27] propose
the following potential extensions: (i) additional mathematical facts on the log
function; (ii) a dedicated size analysis; (iii) incorporation of basic static analysis
techniques. The incorporation of Farkas’ Lemma with suitable expert knowledge
is already essential for type checking, whenever the symbolic weakening rule (3)
needs to be discharged.

ATLAS incorporates two facts into the expert knowledge: Lemma 2 and the
monotonicity of the logarithm (see Sect. 5). We found these two facts to be
sufficient for handling our benchmarks, i.e. expert knowledge of form (ii) and
(iii) was not needed. (We note though that we have experimented with adding a
dedicated size analysis (ii), which interestingly increased the solver performance,
despite generating a large constraint system).

We indicate how ATLAS may be used to solve the constraints generated
for the example in Sect. 2. We recall the crucial application of the weakening
step between annotations Q2 and Q3. This weakening step can be automatically
discharged using the monotonicity of logs and Lemma 1. (More precisely, ATLAS
employs the mode w{mono l2xy} see, Sect. 5.) For example, ATLAS is able to
verify the validity of the following concrete constants:

Q2 : q21 = q22 = q23 = 1

q2(0,0,0,2) = 1 q2(0,1,1,0) = 1

q2(0,0,1,0) = 1 q2(1,0,0,0) = 1

q2(0,1,0,0) = 1 q2(1,1,1,0) = 3

Q3 : q31 = q32 = q33 = 1

q3(0,0,0,2) = 2 q3(1,0,0,0) = 1

q3(0,0,1,0) = 1 q3(1,0,1,0) = 1

q3(0,1,0,0) = 3 q3(1,1,1,0) = 1

4.2 Type Inference

We extend the type-and-effect system of [27] from type checking to type infer-
ence. Further, we automate the application of structural rules like sharing or
weakening, which have so far required user guidance.

The two central contributions of this paper, as delineated in the introduction,
are based on significant improvement over the state-of-the-art as described above.
Concretely, they came about by a novel (i) optimisation layer ; (ii) a careful
control of the structural rules; (iii) the generalisation of user-defined proof tactics
into an overall strategy of type inference; and (iv) provision of an automated
amortised analysis in the sense of Sleator and Tarjan. In the sequel of the section,
we will discuss these stepping stones towards full automation in more details.

Optimisation Layer. We add an optimisation layer to the set-up, in order to
support type inference. This allows for the inference of (optimal) type annota-
tions based on user-defined type annotations. For example, assume the user-
provided type annotation rk(t)+3 log2( t )+1 rk(splay(t)) can in principle
be checked automatically. Then—instead of checking this annotation—ATLAS
automatically optimises the signature, by minimising the deduced coefficients.
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1 (match (* t *) leaf
2 (match (* cl *) ?
3 (w{l2xy} (let:tree:cf (* s *)
4 app (* splay_eq a bl *)
5 (match leaf
6 (let:tree:cf node (let:tree:cf node (w{mono} node))))))))

Fig. 3. Tactic that matches the zig-zig case of splay as shown in Fig. 1.

(In Sect. 5 we discuss how this optimisation step is performed.) That is, ATLAS
reports the following annotation

splay : 1/2 rk(t) + 3/2 log2( t ) 1/2 rk(splay(t)) ,

which yields the optimal amortised cost of splaying of 3/2 log2(|t|). Optimality
here means that no better bound has been obtained by earlier pen-and-paper
verification methods (compare the discussion in Sect. 1).

Structural Rules. We observed that an unchecked application of the structural
rules, that is of the sharing and the weakening rule, quickly leads to an explosion
of the size of the constraint system and thus to de-facto unsolvable problems. To
wit, an earlier version of our implementation ran continuously for 24/7 without
being able to infer a type for the complete definition of the function splay .4

The type-and-effect system proposed by Hofmann et al. is in principle linear,
that is, variables occur at most once in the function body. For example, this is
employed in the definition of the let-rule, cf. Sect. 2. However, a sharing rule is
admissible, that allows to treat multiple occurrences of variables. Occurrences
of non-linear variables are suitably renamed apart and the carried potential is
shared among the variants. (See [27] for the details.) The number of variables
strongly influences the size of the constraint problem. Hence, eager application
of the sharing rule proved infeasible. Instead, we restricted its application to
individual program traces. For the considered benchmark examples, this removed
the need for sharing altogether.

With respect to weakening, a careful application of the weakening rule proved
necessary for performance reasons: First, we apply weakening only selectively.
Second, when applying weakening, we employ different levels of granularity. We
may only perform a simple coefficient comparison, or we may apply monotonicity
or Lemma 1 or both in conjunction with Farkas’ Lemma. We give the details in
Sect. 5.

Proof Tactics. Hofmann et al. [27] already propose user-defined proof plans,
so-called tactics, to improve the effectivity of type checking. In combination
with our optimisation framework, tactics allow to significantly improve type
annotations. To wit, ATLAS can be invoked with user-defined resource annota-
tions for the function splay , representing its “standard” amortised complexity
(e.g. copied from Okasaki’s book [38]) and an easily definable tactic, cf. Fig. 3.

4 The code ran single-threaded on AMD® Ryzen 7 3800 @ 3.90 GHz.
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Then, ATLAS automatically derives the optimal bound reported above. Still, for
full-automation tactics are clearly not sufficient. In order to obtain type inference
in general, we developed a generalisation of all the tactics that proved useful on
our benchmark and incorporated this proof search strategy into the type infer-
ence algorithm. Using this, the aforementioned (unsuccessful) week-long quest
for a type inference of splaying can now be successfully answered (in an optimal
form) in mere minutes.

We’d like to argue that ATLAS proof search strategy for full automation is
free of bias towards the provided complexity analysis. As detailed in Sect. 5, the
heuristics incorporates common design principles of the data structures analysed.
Thus, we exploit recurring patterns in the input (destructuring of input trees,
handling base/recursive cases, rotations) not in the solution. The situation is
similar to the choice of the potential functions, which we expect to generalise to
other data structures. Similarly, we expect generalisability of the current proof
search strategy.

Automated Amortised Analysis. In Sect. 2, we provided a high-level introduc-
tion into the potential method and remarked that Sleator and Tarjan’s original
formulation is re-obtained, if the corresponding potential functions are defined
such that φ(v) := af (v) + ψ(x), see page 5. We now discuss how we can extract
amortised complexities in the sense of Sleator and Tarjan from our approach.
Suppose, we are interested in an amortised analysis of splay heaps. Then, it suf-
fices to equate the right-hand sides of the annotated signatures of the splay heap
functions. That is, we set del_min: T Q1 T Q′, B T Q2 T Q′insert:

and partition: B T Q3 T Q′ for some unknown resource annotations
Q1, Q2, Q3, Q

′. Note that we use the same annotation Q′ for all signatures. We
can then obtain a potential function from the annotation Q′ in the sense of
Sleator and Tarjan and deduce Qi − Q′ as an upper bound on the amortised
complexity of the respective function. In Sect. 5, we discuss how to automati-
cally optimise Qi − Q′ in order to minimise the amortised complexity bound.
This automated minimisation is the second major contribution of our work. Our
results suggest a new approach for the complexity analysis of data structures.
On the one hand, we obtain novel insights into the automated worst-case run-
time complexity analysis of involved programs. On the other hand, we provide
a proof-of-concept of a computer-aided analysis of amortised complexities of
data-structures that so far have only been analysed manually.

5 Implementation

In this section, we present our tool ATLAS, which implements type inference for
the type system presented in Sects. 2 and 3. ATLAS operates in three phases:

1.) Preprocessing, ATLAS parses and normalises the input program;
2.) Generation of the Constraint System, ATLAS extracts constraints from the

normalised program according to the typing rules (as sketched in Sect. 2);
3.) Solving, the derived constraint system is handed to an optimising constraint

solver and the solver output is converted into a type annotation.
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1 LNF[if a<a’

2 then (l,a,(leaf,a’,r))

3 else ((l,a’,leaf),a,r)]

1 let x1 = a<a’ in if x1

2 then LNF[(l,a,(leaf,a’,r))]
3 else LNF[((l,a’,leaf),a,r)]

1 let x1 = a < a’ in if x1

2 then let x2 = leaf in let x3 = (x2,a’,r) in (l,a,x3)

3 else let x4 = leaf in let x5 = (l,a’,x4) in (x5,a,r)

Fig. 4. Preprocessing: let normal forms.

In terms of overall resource requirements, the bottleneck of the system is phase
three. Preprocessing is both simple and fast. While the code implementing con-
straint generation might be complex, its execution is fast. All of the underlying
complexity is shifted into the third phase. On modern machines with multiple
gibibytes of main memory, ATLAS is constrained by the CPU, and not by the
available memory. In the remainder of this section, we first detail these phases of
ATLAS. We then go into more details of the second phase. Finally, we elaborate
the optimisation function which is the key enabler of type inference.

5.1 The Three Phases of ATLAS

1.) Preprocessing. The parser used in the first phase is generated with ANTLR5

and transformation of the syntax is implemented in Java. The preprocessing
performs two tasks: (i) Transformation of the input program into let-normal-
form, which is the form of program input required by our type system. (ii) The
unsharing conversion creates explicit copies for variables that are used multiple
times. Making multiple uses of a variables explicit is required by the let-rule of
the type system.

In order to satisfy the requirement of the let-rule, it is actually sufficient
to track variable usage on the level of program paths. It turns out that in our
benchmarks variables are only used multiple times in different branches of an
if-statement, for which no unsharing conversion is needed. Hence, we do not
discuss the unsharing conversion further in this paper and refer the interested
reader to [27] for more details.

Let-Normal-Form Conversion. The let-normal-form conversion is performed
recursively and rewrites composed expressions into simple expressions, where
each operator is only applied to a variable or a constant. This conversion is
achieved by introducing additional let-constructs. We exemplify let-normal-form
conversion on a code snippet in Fig. 4.

2.) Generation of the Constraint System. After preprocessing, we apply the typ-
ing rules. Importantly, the application of all typing rules, except for the weaken-
ing rule, which we discuss in further detail below, is syntax-directed : This means
5 See antlr.org.

https://antlr.org
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that each node of the AST of the input program dictates which typing rule is
to be applied. The weakening rule could in principle be applied at each AST
node, giving the constraint solver more freedom to find a solution. This degree
of freedom needs to be controlled by the tool designer. In addition, recall that the
suggested implementation of the weakening rule (see Sect. 4.1) is to be parame-
terised by the expert knowledge, fed into the weakening rule. In our experiments
we noticed that the weakening rule has to be applied sparingly in order to avoid
an explosion of the resulting constraint system.

We summarise the degrees of freedom available to the tool designer, which can
be specified as parameters to ATLAS on source level. 1.) The selected template
potential functions, i.e. the family of indices 
a, b for which coefficients q(�a,b) are
generated (we assume not explicitly generated are set to zero). 2.) The number
of annotated signatures (with costs and without costs) for each function. 3.) The
policy for applying the (parameterised) weakening rule.

We detail our choices for instantiating the above degrees of freedom in
Sect. 5.2.

3.) Solving. For solving the generated constraint system, we rely on the Z3
SMT solver. We employ Z3’s Java bindings, load Z3 as a shared library, and
exchange constraints for solutions. ATLAS forwards user-supplied configuration
to Z3, which allows for flexible tuning of solver parameters. We also record
Z3’s statistics, most importantly memory usage. During the implementation
of ATLAS, Z3’s feature to extract unsatisfiable cores has proven valuable. It
supplied us with many counterexamples, often directly pinpointing bugs in our
implementation. The tool exports constraint systems in SMT-LIB format to the
file system. This way, solutions could be cross-checked by re-computing them
with other SMT solvers that support minimisation, such as OptiMathSAT [43].

5.2 Details on the Generation of the Constraint System

We now discuss our choices for the aforementioned degrees of freedom.

Potential Function Templates. Following [27], we create for each node in the AST
of the considered input program, where n variables of tree-type are currently in
context, the coefficients q1, . . . , qn for the rank functions and the coefficients
q(�a,b) for the logarithmic terms, where 
a ∈ {0, 1}n and b ∈ {0, 2}. This choice
turned out to be sufficient in our experiments.

x(1,1,2)

x(1,0,2)x(0,1,2) x(1,1,0)

x(0,0,2) x(0,1,0) x(1,0,0)

x(0,0,0)

Fig. 5. Monotonicity Lattice for |Q| = 2.

Number of Function Signatures. We fix
the number of annotations for each
function f : α1 × · · · × αn|Q → β|Q′ to
one regular and one cost-free signature.
This was sufficient for our experiments.

Weakening. We need to discharge sym-
bolic comparisons of form Φ(Γ |P ) �
Φ(Γ |Q). As indicated in Sect. 4, we
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employ Farkas’ Lemma to derive constraints for the weakening rule. For con-
text Γ = t1, . . . , tn, we introduce variables x(�a,b) where 
a ∈ {0, 1}n, b ∈ {0, 2},
which represent the potential functions p(�a,b) = log2(a1|t1| + . . . + an|tn| + b).
Next, we explain how the monotonicity of log2 and Lemma 1 can be used to
derive inequalities on the variables x(�a,b), which can then be used to instantiate
matrix A in Farkas’ Lemma as stated in Sect. 4.

Monotonicity. We observe that p(�a,b) = log2(a1|t1| + . . . + an|tn| + b) �
log2(a′

1|t1| + . . . + a′
n|tn| + b′) = p(�a′,b′), if a1 � a′

1, . . . , an � a′
n and b � b′.

This allows us to obtain the lattice shown in Fig. 5. A path from x(�a′,b′) to x(�a,b)

signifies x(�a,b) � x(�a′,b′) resp. x(�a,b) − x(�a′,b′) � 0, represented by a row with
coefficients 1 and −1 in the corresponding columns of matrix A.

Mathematical Facts, Like Lemma 1. For an annotated context of length 2,
Lemma 1 can be stated by the inequality 2x(0,0,2)+x(0,1,0)+x(1,0,0)−2x(1,1,0) � 0;
we add a corresponding row with coefficients 2, 1, 1,−2 to the matrix A. Like-
wise, for contexts of length > 2, we add, for each subset of 2 variables, a row
with coefficients 2, 1, 1,−2, setting the coefficients of all other variables to 0.

Sparse Expert Knowledge Matrix. We observe for both kinds of constraints that
matrix A is sparse. We exploit this in our implementation and only store non-zero
coefficients.

Parametrisation of Weakening. Each applications of the weakening rule is param-
eterised by the matrix A. In our tool, we instantiate A with either the constraints
for (i) monotonicity, shortly referenced as w{mono}; (ii) Lemma 1 (w{l2xy}); (iii)
both (w{mono l2xy}); or (iv) none of the constraints (w).

In the last case, Farkas’ Lemma is not needed because weakening defaults to
point-wise comparison of the coefficients p(�a,b), which can be implemented more
directly. Each time we apply weakening, we need to choose how to instantiate
matrix A. Our experiments demonstrate that we need to apply monotonicity
and Lemma 1 sparingly in order to avoid blowing up the constraint system.

Tactics and Automation. ATLAS supports manually applying the weakening
rule—for this the user has to provide a tactic—and a fully-automated mode.

Naive Automation. Our first attempt to automation applied the weakening rule
everywhere instantiated with the full amount of available expert knowledge. This
approach did not scale.

Manual Mode via Tactics. A tactic is given as a text file that contains a tree of
rule names corresponding to the AST nodes of the input program, into which
the user can insert applications of the weakening rule, parameterised by the
expert knowledge which should be applied. A simple tactic is depicted in Fig. 3.
Tactics are distributed with ATLAS, see [32]. The user can name sub-trees for
reference in the result of the analysis and include ML-style comments in the
tactics text. We provide two special commands that allow the user to directly
deal with a whole branch of the input program: The question mark (?) allows
partial proofs; no constraints will be created for the part of the program thus
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marked. The underscore ( ) switches to the naive automation of ATLAS and
will apply the weakening rule with full expert knowledge everywhere. Both, ?
and , were invaluable when developing and debugging the automated mode. We
note that the manual mode still achieves solving times that are by a magnitude
faster than the automated mode, which may be of interest to a user willing to
hand-optimise solving times.

Automated Mode. For automation, we extracted common patterns from the tac-
tics we developed manually: Weakening with mode w{mono} is applied before
(var) and (leaf), w{mono l2xy} is applied only before (app). (We recall that the
full set of rules employed by our analysis can be found in [27].) Further, for AST
subtrees that construct trees, i.e. which only consist of (node), (var) and (leaf)
rule applications, we apply w{mono} for each inner node, and w{l2xy} for each
outermost node. For all other cases, no weakening is applied. This approach is
sufficient to cover all benchmarks, with further improvements possible.

5.3 Optimisation

Given an annotated function f : α1 × · · · × αn|Q → β|Q′, we want to find val-
ues for the coefficients of the resource annotations Q and Q′ that minimise
Φ(Γ |Q) − Φ(Γ |Q′), since this difference is an upper bound on the amortised
cost of f , cf. Sect. 4.2. However, as with weakening, we cannot directly express
such a minimisation, and again resort to linearisation: We choose an optimisa-
tion function that directly maps from Q and Q′ to Q. Our optimisation function
combines four measures, three of which involve a difference between coefficients
of Q and Q′, and a fourth one that only involves coefficients from Q in order
to minimise the absolute values of the discovered coefficients. We first present
these measures for the special case of |Q| = 1.

The first measure d1(Q,Q′) := q∗ − q′
∗ reflects our goal of preserving the

coefficient for rk; note that for d1(Q,Q′) �= 0, the resulting complexity bound
would be super-logarithmic. The second measure d2(Q,Q′) :=

∑
(a,b)(q(a,b) −

q′
(a,b)) ·w(a, b) reflects the goal of achieving logarithmic bounds that are as small

as possible. Weights are defined to penalise more complex terms, and to exclude
constants. (Recall that 1 is representable as log2(0 + 2).) We set

w(a, b) :=

{
0, for (a, b) = (0, 2),
(a + (b + 1)2)2, otherwise.

The third measure d3(Q,Q′) := q(0,2) − q′
(0,2) reflects the goal of minimising

constant cost. Lastly, we set d4(Q,Q′) :=
∑

(a,b) q(a,b) in order to obtain small
absolute numbers. The last measure does not influence bounds on the amortised
cost, but leads to more beautiful solutions. These measures are then composed to
the linear objective function min

∑4
i=1 di(Q,Q′) · wi. In our implementation, we

set wi = [16127, 997, 97, 2]; these weights are chosen (almost) arbitrary, we only
noticed that w1 must be sufficiently large to guarantee its priority. (We note that
these weights were sufficient for our experiments; we refer to the literature for
more principled ways of choosing the weights of an aggregated cost function [34].)
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Multiple Arguments. For |Q| > 1, we set d1 :=
∑|Q|

i=1 qi − q′
∗ and d2(Q,Q′) :=∑

(a,a,...,b)(q(a,a,...,b) − q′
(a,b)) · w(a, b). The required changes for d3 and d4 are

straight-forward. In our benchmarks, there is only one function ( merge of pairing
heaps) that requires this minimisation function.

6 Evaluation

We first describe the benchmark functions employed to evaluate ATLAS and then
detail this experimental evaluation, already depicted in Table 1.

6.1 Automated Analysis of Splaying et al.

Splay Trees. Introduced by Sleator and Tarjan [47,49], splay trees are self-
adjusting binary search trees with strictly increasing in-order traversal, but with-
out an explicit balancing condition. Based on splaying, searching is performed
by splaying with the sought element and comparing to the root of the result.
Similarly, insertion and deletion are based on splaying. Above we used the zig-zig
case of splaying, depicted in Fig. 1 as motivating code example. While the pen-
and-paper analysis of this case is the most involved, type inference for this case
alone did not directly yield the desired automation of the complete definition.
Rather, full automation required substantial implementation effort, as detailed
in Sect. 5. As already emphasised, it came as a surprise to us that our tool ATLAS
is able match up and partly improve upon the sophisticated optimisations per-
formed by Schoenmakers [41,42]. This seems to be evidence of the versatility
of the employed potential functions. Further, we leverage the sophistication of
our optimisation layer in conjunction with the current power of state-of-the-art
constraint solvers, like Z3 [36].

Splay Heaps. To overcome deficiencies of splay trees when implemented func-
tionally, Okasaki introduced splay heaps. Splay heaps are defined similarly to
splay trees and their (manual) amortised cost analysis follows similar patterns
as the one for splay trees. Due to the similarity in the definitions between splay
heaps and splay trees, extension of our experimental results in this direction
did not pose any problems. Notably, however, ATLAS improves the known com-
plexity bounds on the amortised complexity for the functions studied. We also
remark that typical assumptions made in pen-and-paper proofs are automati-
cally discharged by our approach: Schoenmakers [41,42] as well as Nipkow and
Brinkop [37] make use of the (obvious) fact that the size of the resulting tree t′

or heap h′ equals the size of the input. As discussed, this information is captured
by a cost-free derivation, cf. Sect. 2.

Pairing Heaps. These are another implementation of heaps, which are rep-
resented as binary trees, subject to the invariant that they are either leaf,
or the right child is leaf, respectively. The left child is conceivable as list
of pairing heaps. Schoenmakers and Nipkow et al. provide a (semi-)manual
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Table 2. Experimental results

Function (w)
Proof automated

(naive)
automated
(improved) manual

ST.splay (zig-zig)
Selective n/a 7718 18S 2552 <1S
All 11792 45S 9984 19S 2864 <1S

ST.splay
Selective n/a 42095 8M1S 19111 12S
All 68103 t/o 24H 54377 14M19S 23323 1M27S

SH.partition
Selective n/a 33729 7M9S 15213 6S
All 51995 t/o 24H 43549 15M2S 16829 10S

PH.merge_pairs
Selective n/a 25860 1M3S 6414 <1S
All 43515 t/o 24H 34918 13M41S 6558 <1S

(a) Comparison of the number of constraints generated and time taken for the type
inference of the core operation of each benchmark plus the zig-zig case of splay.

Module automated manual
Assertions Time Memory Assertions Time Memory

ST 54794 24M17S 3204 24677 43S 280
SH 37911 7M35S 1482 17877 12S 237
PH 29493 3M42S 760 7987 1S 29

(b) Number of assertions, solving time and maximum memory usage (in mebibytes)
for the combined analysis of functions per-module.

analysis of pairing heaps, that ATLAS can verify or even improve fully-
automatically. We note that we analyse a single function merge_pairs, whereas
[37] breaks down the analysis and studies two functions pass_1 and pass_2 with
merge_pairs = pass_2 pass_1. All definitions can be found at [33].

6.2 Experimental Results

Our main results have already been stated in Table 1 of Sect. 1. Table 2a com-
pares the differences between the “naive automation” and our actual automation
(“automated mode”), see Sect. 5. Within the latter, we distinguish between a
“selective” and a “full” mode. The “selective” mode is as described on page 18.
The “full” mode employs weakening for the same rule applications as the “selec-
tive” mode, but always with option w{mono l2xy}. The same applies to the
“full” manual mode. The naive automation does not support selection of expert
knowledge. Thus the “selective” option is not available, denoted as “n/a”. Time-
outs are denoted by “t/o”. As depicted in the table, the naive automation does
not terminate within 24 h for the core operations of the three considered data
structures, whereas the improved automated mode produces optimised results
within minutes. In Table 2b, we compare the (improved) automated mode with
the manual mode, and report on the sizes of the resulting constraint system
and on the resources required to produce the same results. Observe that even
though our automated mode achieves reasonable solving times, there is still a
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significant gap between the manually crafted tactics and the automated mode,
which invites future work.

7 Conclusion

In this paper we have for the first time been able to automatically conduct an
amortised analysis for self-adjusting data structures. Our analysis is based on
the “sum of logarithms” potential function and we have been able to automate
reasoning about these potential functions by using Farkas’ Lemma for the linear
part of the calculations and adding necessary facts about the logarithm. Imme-
diate future work is concerned with replacing the “sum of logarithms” potential
function in order to analyse skew heaps and Fibonacci heaps [42]. In particu-
lar, the potential function for skew heaps, which counts “right heavy” nodes, is
interesting, because it is also used as a building block by Iacono in his improved
analysis of pairing heaps [29,30]. Further, we envision to extend our analysis to
related probabilistic settings such as priority queues [13] and skip lists [40].
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Abstract. This paper presents a symbolic method for automatic theo-
rem generation based on deductive inference. Many software verification
and reasoning tasks require proving complex logical properties; coping
with this complexity is generally done by declaring and proving relevant
sub-properties. This gives rise to the challenge of discovering useful sub-
properties that can assist the automated proof process. This is known
as the theory exploration problem, and so far, predominant solutions
that emerged rely on evaluation using concrete values. This limits the
applicability of these theory exploration techniques to complex programs
and properties.

In this work, we introduce a new symbolic technique for theory explo-
ration, capable of (offline) generation of a library of lemmas from a
base set of inductive data types and recursive definitions. Our approach
introduces a new method for using abstraction to overcome the above
limitations, combining it with deductive synthesis to reason about
abstract values. Our implementation has shown to find more lemmas
than prior art, avoiding redundant lemmas (in terms of provability),
while being faster in most cases. This new abstraction-based theory
exploration method is a step toward applying theory exploration to soft-
ware verification and synthesis.

Keywords: Theory exploration · Synthesis · Automatic theorem
proving

1 Introduction

Most forms of software verification and synthesis rely on some form of logical rea-
soning to complete their task. Whether it is checking pre- and post-conditions,
deriving specifications for sub-problems [1,19], or equivalence reduction [39],
these methods rely on assumptions from both the input and relevant background
knowledge. Domain-specific knowledge can reinforce these methods, whether via
the design of a domain-specific language [29,36,45], specialized decision proce-
dures [28], or decomposing specifications [35]. While hand-crafted techniques can
treat whole classes of programs, every library or module contributes a collection
c© The Author(s) 2021
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of new primitives, requiring tweaking or extending these methods. Automatic for-
mation of background knowledge can enable effortless treatment of such libraries
and programs.

In the context of verification tools, such as Dafny [27] and Leon [7], as well
as interactive proof assistants, such as Coq [12] and Isabelle/HOL [33], back-
ground knowledge is typically given as a set of lemmas. Usually, these libraries
of lemmas (i.e. the background knowledge) are created by human engineers and
researchers who are tasked with formulating them and proving their correctness.
When a proof or verification task requires auxiliary lemmas missing from the
existing background knowledge, the user is required to add and prove it, some-
times repeating this process until the proof is trivial or can be found automati-
cally. For example, both Dafny and Leon fail to prove that addition is associative
and commutative from first principles—based on an algebraic construction of
the natural numbers. However, when given knowledge of these properties (i.e.
encoded as lemmas: (x + y) + z = x + (y + z) and x + y = y + x)1, they readily
prove composite facts such as (x + 5) + y = 5 + (x + y).

A possible solution is to eagerly generate valid lemmas, and to do so automat-
ically, offline, as a precursor to any work that would be built on top of the library.
This paradigm is known as theory exploration [8,9], and differs from the com-
mon conjecture generation approach (in theorem provers and SMT solvers [37])
that is guided by a proof goal. As opposed to using proof goal as the basis for
discovering sub-goals, when eagerly generating lemmas there is a vast space of
possible lemmas to consider. Currently, two main approaches exist for filter-
ing candidate conjectures, counterexample-based and observational equivalence-
based [18,22,23,43]. These filtering techniques are all based on testing and there-
fore require automatic creation of concrete examples.

Testing with concrete values allows for fast evaluation and filtering of terms
when the data types involved are simple. However, when scaling to larger data
types and function types it becomes a bottleneck of the theory exploration pro-
cess. Previous research effort has revealed that testing-based discovery is sen-
sitive to the number and size of type definitions occurring in the code base.
For example, QuickSpec, which is based on QuickCheck (as are all the existing
testing-based theory exploration methods), employs a heuristic to restrict the set
of types allowed in terms in order to make the checker’s job easier. Compound
data types such as lists can be nested up to two levels (lists of lists, but not lists
of lists of lists). This presents an obstacle towards scaling the approach to real
software libraries, since “QuickCheck’s size control interacts badly with deeply
nested types [...] will generate extremely large test data.” [38]

Following are two example scenarios that attempt to represent cases from
software systems where structured data types and complicated APIs exist: (i) A
series of tree data-types Ti where each Ti is a tree of height i with i children of
type Ti−1, and the base case is an empty tree. Creating concrete examples for Ti

will be resource expensive, as each tree has O(i!) nodes, and each node requires a

1 In fact, these properties are hard-wired into decision procedures for linear integer
arithmetic in SMT solvers.
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value. (ii) An ADT (Algebraic Data Type) A with multiple fields where each can
contain a large amount of text or other ADTs, and a function over A that only
accesses one of the fields. Even if evaluating the function is fast, fully creating
A is expensive and will impact the theory exploration run-time.

This paper presents a new symbolic theory exploration approach that takes
advantage of the characteristics of induction-based proofs. To overcome the
blowup in the space of possible values, we make use of symbolic values, which con-
tain interpreted symbols, uninterpreted symbols, or a mixture of the two. Con-
ceptually, each symbolic value is an abstraction representing (infinitely) many
possible values. This means that preexisting knowledge on the symbolic value
can be applied without fully creating interpreted values. Still, when necessary,
uninterpreted values can be expanded, creating larger symbolic values, thus refin-
ing the abstraction, and facilitating the necessary computation. We focus on the
formation of equational theories, that is, lemmas that curtail the equivalence of
two terms, with universal quantification over all free variables.

We show that our symbolic method for theory exploration is more applicable
and faster in many different scenarios than state-of-the-art. As an example, given
standard definitions for the list functions: ++ drop take filter our method proves
facts that were not found by current state-of-the-art such as:

(take i xs) ++ (drop i xs) = xs
filter p (xs ++ ys) = (filter p xs) ++ (filter p ys)

Main Contributions. This paper provides the following contributions:

– A system for theory synthesis using symbolic values to take advantage of
value abstraction. Our implementation, TheSy, can discover more lemmas
than were found by testing-based tools, while being faster in most cases.

– A technique to compare universally quantified terms using term rewriting
techniques and a given set of lemmas, called symbolic observational equiva-
lence (SOE). SOE overapproximates term equalities deducible by the given
lemmas (i.e., will find more equalities), thus can be used for equality reduc-
tion in context of uninterpreted values, enabling fully symbolic reasoning over
a large set of terms.

– An evaluation of our theory exploration system on a set of benchmarks for
induction proofs taken from CVC4 [37] and TIP 2015 [11], specifically the
IsaPlanner benchmarks [21]. We compare our implementation with a current
leading theory exploration system, Hipster [18], using a novel metric. This
metric is insensitive to the amount of found lemmas, but rather measures
their usefulness in the context of theorem proving.

2 Overview

Our theory exploration method, named TheSy (Theory Synthesizer, pronounced
Tessy), is based on syntax-guided enumerative synthesis. Similarly to previ-
ous approaches [10,20,38], TheSy generates a comprehensive set of terms from
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Fig. 1. TheSy system overview: breakdown into phases, with feedback loop.

the given vocabulary and looks for pairs that seem equivalent. Notably, TheSy
employs deductive reasoning based on term rewriting systems to propose these
pairs by extrapolating from a set of known equalities, employing a relatively
lightweight (but unsound) reasoning procedure. The proposed pairs are passed
as equality conjectures to a theorem prover capable of reasoning by induction.

The process (as shown in Fig. 1) is separated into four stages. These stages
work in an iterative deepening fashion and are dependent on the results of each
other. A short description is given to help the reader understand their context
later on.

1. Term Generation. Build symbolic terms of increasing depth, based on the
given vocabulary. Use known equalities for pruning via equivalence reduction.

2. Conjecture Inference. Evaluate terms on symbolic inputs, and apply
deductive inference to extract new equalities, thus forming conjectures.

3. Conjecture Screening. Some of the conjectures, even valid ones, are special
cases of known equalities or are trivially implied by them. We deem these con-
jectures redundant. TheSy culls such conjectures before continuing to prove
the rest.

4. Induction Prover. The prover attempts to prove conjectures that passed
screening using a normal induction scheme derived from algebraic data struc-
ture definitions in the given vocabulary. Conjectures that were successfully
proven are then declared lemmas and added to the known equalities.

The phases are run iteratively in a loop, where each iteration deepens the
generated terms and, hence, the discovered lemmas. These lemmas are fed back
to earlier phases; this form of feedback contributes to discovering more lemmas
thanks to several factors:

(i) Conjecture inference is dependent upon known equalities. Additional equal-
ities enable finding new conjectures.

(ii) Accurate screening by merging equivalence classes based on known equali-
ties.

(iii) The prover is based on known equalities with a congruence closure proce-
dure. The more lemmas are known to the system, the more lemmas become
provable by this method.

(iv) Term generation benefits from the equivalence reduction, avoiding duplicate
work for equivalent terms.
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Fig. 2. An example input to TheSy.

Running Example. To illustrate TheSy’s theory exploration procedure, we intro-
duce a simple running example based on a list ADT. The input given to TheSy
is shown in Fig. 2; it consists of a vocabulary V (of which C is a subset of ADT
constructors) and a set of known equalities E . The vocabulary V contains the
canonical list constructors [ ] and ::, and two basic list operations ++ (concate-
nate) and filter. The equalities E consist of the definitions of the latter two.

At a very high level, the following process is about to take place: TheSy
generates symbolic terms representing length-bound lists, e.g., [ ], [v1], [v2, v1].
Then, it will evaluate all combinations of function applications, up to a small
depth, using these symbolic terms as arguments. If these evaluations yield com-
mon values for all possible assignments, the two application terms yielding them
are conjectured to be equal. Since the evaluated expressions contain symbolic
values, their result is a symbolic value. Comparing such symbolic values is done
via congruence closure-based reasoning; we call this process symbolic observa-
tional equivalence, by way of analogy to observational equivalence [2] that is
carried out using concrete values.

Out of the conjectures computed using symbolic observational equivalence,
TheSy selects minimal ones according to a combined metric of compactness and
generality. These are passed to a prover that employs both congruence closure
and induction to verify the correction of the lemmas for all possible list values.

Some lemmas that TheSy can discover this way are:

filter p (filter p l) = filter p l l1 ++ (l2 ++ l3) = (l1 ++ l2)++ l3
filter p l1 ++ filter p l2 = filter p (l1++ l2)

As briefly mentioned, our system design relies on congruence closure-based
reasoning over universally quantified first-order formulas with uninterpreted
functions. Congruence closure is weak but fast and constitutes one of the core
procedures in SMT solvers [31,32]. On top of that, universally-quantified assump-
tions [4] are handled by formulating them as rewrite rules and applying some
depth-bounded term rewriting as described in Subsect. 3.1. Additionally, TheSy
implements a simple case splitting mechanism that enables reasoning on condi-
tional expressions. Notably, this procedure cannot reason about recursive defi-
nitions since such reasoning routinely requires the use of induction. To that end,
TheSy is geared towards discovering lemmas that can be proven by induction;
a lemma is considered useful if it cannot be proven from existing lemmas by
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congruence closure alone, that is, without induction. Discovering such lemmas
and adding them to the background knowledge evidently increases the reason-
ing power of the prover, since at least the fact of their own validity becomes
provable, which it was not before.

3 Preliminaries

This work relies heavily on term rewriting techniques, which is employed across
multiple phases of the exploration. Term rewriting is implemented efficiently
using equality graphs (e-graphs). In this section, we present some minimal back-
ground of both, which will be relevant for the exploration procedure described
later.

3.1 Term Rewriting Systems

Consider a formal language L of terms over some vocabulary of symbols. We
use the notation R = t1

.→ t2 to denote a rewrite rule from t1 to t2. For a
(universally quantified) semantic equality law t1 = t2, we would normally create
both t1

.→ t2 and t2
.→ t1. We refrain from assigning a direction to equalities since

we do not wish to restrict the procedure to strongly normalizing systems, as
is traditionally done in frameworks based on the Knuth-Bendix algorithm [24].
Instead, we define equivalence when a sequence of rewrites can identify the terms
in either direction. A small caveat involves situations where FV(t1) �= FV(t2),
that is, one side of the equality contains variables that do not occur on the
other. We choose to admit only rules ti

.→ tj where FV(ti) ⊇ FV(tj), because
when FV(ti) ⊂ FV(tj), applying the rewrite would have to create new symbols
for the unassigned variables in tj , which results in a large growth in the number
of symbols and typically makes rewrites much slower as a result.

This slight asymmetry is what motivates the following definitions.

Definition 1. Given a rewrite rule R = t1
.→ t2, we define a corresponding

relation R−→ such that s1
R−→ s2 ⇐⇒ s1 = C[t1σ]∧ s2 = C[t2σ] for some context

C and substitution σ for the free variables of t1, t2. (A context is a term with a
single hole, and C[t] denotes the term obtained by filling the hole with t.)

Definition 2. Given a relation R−→ we define its symmetric closure:

t1
R←→ t2 ⇐⇒ t1

R−→ t2 ∨ t2
R−→ t1

Definition 3. Given a set of rewrite rules GR = {Ri}, we define a relation as

union of the relations of the rewrites:
{Ri}←−−→ =̂

⋃

i

Ri←→.

In the sequel, we will mostly use its reflexive transitive closure,
{Ri}←−−→

∗
.
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Fig. 3. An e-graph representing the expression filter p (l1 ++ l2) (dark) and the equiv-
alent expression filter p l1 ++filter p l2 (light).

The relation
{Ri}←−−→

∗
is reflexive, transitive, and symmetric, so it is an equiv-

alence relation over L. Under the assumption that all rewrite rules in {Ri} are

semantics preserving, for any equivalence class [t] ∈ L
/ {Ri}←−−→

∗
, all terms belong-

ing to [t] are definitionally equal. However, since L may be infinite, it is essentially

impossible to compute
{Ri}←−−→

∗
. Any algorithm can only explore a finite subset

T ⊆ L, and in turn, construct a subset of
{Ri}←−−→

∗
.

3.2 Compact Representation Using Equality Graphs

In order to be able to cover a large set of terms T , we need a compact data
structure that can efficiently represent many terms. Normally, terms are rep-
resented by their ASTs (Abstract Syntax Trees), but as there would be many
instances of common subterms among the terms of T , this would be highly
inefficient. Instead, we adopt the concept of equality graphs (e-graphs) from
automated theorem proving [15], which also saw uses in compiler optimizations
and program synthesis [30,34,41], in which context they are known as Program
Expression Graphs (PEGs). An e-graph is essentially a hypergraph where each
vertex represents a set of equivalent terms (programs), and labeled, directed
hyperedges represent function applications. Hyperedges therefore have exactly
one target and zero or more sources, which form an ordered multiset (a vector,
basically). Just to illustrate, the expression filter p (l1 ++ l2) will be represented
by the nodes and edges shown in dark in Fig. 3. The nullary edges represent the
constant symbols (p, l1, l2), and the node u0 represents the entire term. The
expression filter p l1 ++ filter p l2, which is equivalent, is represented by the light
nodes and edges, and the equivalence is captured by sharing of the node u0.

When used in combination with a rewrite system {Ri}, each rewrite rule
is represented as a premise pattern P and a conclusion pattern C. Applying a
rewrite rule is then reduced to searching the e-graph for the search pattern and
obtaining a substitution σ for the free variables of P . The result term is then
obtained by substituting the free variables of C using σ. This term is added to
the same equivalence class as the matched term (i.e. Pσ), meaning they will
both have the same root node. Consequently, a single node can represent a set
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of terms exponentially large in the number of edges, all of which will always be

equivalent modulo
{Ri}←−−→

∗
.

In addition, since hyperedges always represent functions, a situation may
arise in which two vertices represent the same term: This happens if two edges
ū

f−→ v1 and ū
f−→ v2 are introduced by {Ri} for v1 �= v2. In a purely functional

setting, this means that v1 and v2 are equal. Therefore, when such duplication is
found, it is beneficial to merge v1 and v2, eliminating the duplicate hyperedge.
The e-graph data structure therefore supports a vertex merge operation and
a congruence closure-based transformation [44] that finds vertices eligible for
merge to keep the overall graph size small. This procedure can be quite expensive,
so it is only run periodically.

4 Theory Synthesis

In this section, we go into a more detailed description of the phases of theory
synthesis and explain how they are combined within an iterative deepening loop.
To simplify the presentation, we describe all the phases first, then explain how
the output from the last phase is fed back to the next iteration to complete a
feedback loop. We continue with the input from the running example in Sect. 2
(Fig. 2) and dive deeper by showing intermediate states encountered during the
execution of TheSy on this input. Throughout the execution, TheSy maintains
a state, consisting of the following elements:

– V, a sorted vocabulary
– C ⊆ V, a subset of constructors for some or all of the types
– E , a set of equations initially consisting only of the definitions of the (non-

constructor) functions in V
– T , a set of terms, initially containing just atomic terms corresponding to

symbols from V.

4.1 Term Generation

The first step is to generate a set of terms over the vocabulary V. For the
purpose of generating universally-quantified conjectures, we introduce a set of
uninterpreted symbols, which we will call placeholders. Let TY be the set of types
occurring as the type of some argument of a function symbol in V. For each type
τ occurring in V we generate placeholders

τ◦i, two for each type (we will explain
later why two are enough). These placeholders, together with all the symbols in
V, constitute the terms at depth 0.

At every iteration of deepening, TheSy uses the set of terms generated so
far, and the (non-nullary) symbols of V, to form new terms by placing existing
ones in argument positions. For example, with the definitions from Fig. 2, we
will have terms such as these at depths 1 and 2:

1 filter
T→bool◦1

list T◦1
list T◦1 ++

list T◦2
2 [ ] ++ filter

T→bool◦1
list T◦1

list T◦1 ++ (filter
T→bool◦1

list T◦2 )
filter

T→bool◦1 (
list T◦1 ++

list T◦2 ) (filter
T→bool◦1

list T◦1 ) ++ (filter
T→bool◦1

list T◦2 )

(1)



Theory Exploration Powered by Deductive Synthesis 133

It is easy to see that filter
T→bool◦1

list T◦1 and [ ]++ filter
T→bool◦1

list T◦1 are equivalent in
any context; this follows directly from the definition of ++, available as part of E .
It is therefore acceptable to discard one of them without affecting completeness.
TheSy does not discard terms—since they are merged in the e-graph, there is
no need to—rather, it chooses the smaller term as representative when it needs
one. This sort of equivalence reduction is present, in some way or another, in
many automated reasoning and synthesis tools.

To formalize the procedure of generating and comparing the terms, in an
attempt to discover new equality conjectures, we introduce the concept of Syn-
tax Guided Enumeration (SyGuE). SyGuE is similar to Syntax Guided Synthesis
(SyGuS for short [3]) in that they both use a formal definition of a language to
find program terms solving a problem. They differ in the problem definition:
while SyGuS is defined as a search for a correct program over the well-formed
programs in the language, SyGuE is the sub-problem of iterating over all dis-
tinct programs in the language. SyGuS solvers may be improved using a smart
search algorithm, while SyGuE solvers need an efficient way to eliminate dupli-
cate terms, which may depend on the definition of program equivalence. We
implement our variant of SyGuE, over the equivalence relation

{Ri}∗
←−−→ , using

the aforementioned e-graph: by applying and re-applying rewrite rules, provably
equivalent terms are naturally merged into hyper-vertices, representing equiva-
lence classes.

4.2 Conjecture Inference and Screening

Of course, in order to discover new conjectures, we cannot rely solely on term
rewriting based on E . To find more equivalent terms, TheSy carries on to gen-
erate a second set of terms, called symbolic examples, this time using only the
constructors C ⊂ V and uninterpreted symbols for leaves. This set is denoted Sτ ,
where τ is an algebraic datatype participating in V (if several such datatypes are
present, one Sτ per type is constructed). The depth of the symbolic examples
(i.e. depth of applied constructors) is also bounded, but it is independent of the
current term depth and does not increase during execution. For example, using
the constructors of list T with an example depth of 2, we obtain the symbolic
examples S listT = {[ ], v1::[ ], v2::v1::[ ]}, corresponding to lists of length up to 2
having arbitrary element values. Intuitively, if two terms are equivalent for all
possible assignments of symbolic examples to

list T◦i , then we are going hypothe-
size that they are equivalent for all list values. This process is very similar to
observational equivalence as used by program synthesis tools [2,42], but since
it uses the symbolic value terms instead of concrete values, we dub it symbolic
observational equivalence (SOE).

Consider, for example, the simple terms
list T◦1 and

list T◦1 ++ [ ]. In placeholder form,
none of the rewrite rules derived from E applies, so it cannot be determined that
these terms are, in fact, equivalent. However, with the symbolic list examples
above, the following rewrites are enabled:
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[ ]++ [ ]
{Ri}←−−→

∗
[ ] v1::[ ]++ [ ]

{Ri}←−−→
∗
v1::[ ] v2::v1::[ ]++ [ ]

{Ri}←−−→
∗
v2::v1::[ ]

A similar case can be made for the two bottom terms in (1). For symbolic
values l1, l2 ∈ S listT, it can be shown that

filter
T→bool◦1 (l1 ++ l2)

{Ri}←−−→
∗
(filter

T→bool◦1 l1)++ (filter
T→bool◦1 l2)

In fact, it is sufficient to substitute for
list T◦1 , while leaving

list T◦2 alone, uninter-

preted : e.g., filter
T→bool◦1 ([ ]++

list T◦2 )
{Ri}←−−→

∗
(filter

T→bool◦1 [ ])++ (filter
T→bool◦1

list T◦2 ). This
reduces the number of equivalence checks significantly, and is more than a mere
heuristic: since we are going to rely on a prover that proceeds by applying induc-
tion to one of the arguments, it makes perfect sense to only bound that argument.
If computation is blocked on the second argument, we would prefer to first infer
an auxiliary lemma first, then use it to discover the blocked lemma later. See
Example 1 below for an idea of when this situation arises.

The attentive reader may notice that the cases of v1::[ ] and v2::v1::[ ] are a
bit more involved: to proceed with the rewrite of filter, the expressions

T→bool◦1 v1,
T→bool◦1 v2 must be resolved to either true or false. However, the predicate

T→bool◦1 as
well as the arguments v1,2 are uninterpreted. In this case, TheSy is required
to perform a case split in order to enable the rewrites and unify the symbolic
terms separately in each of the resulting four (22) cases. Notice that leaving

T→bool◦1
uninterpreted means that the cases are only split when evaluation is blocked by
one or more rewrite rule applications, potentially saving some branching. The
following steps are then carried out for each case.

TheSy applies all the available rewrite rules to the entire e-graph, containing
all the terms and symbolic examples. For every two terms t1, t2 such that for all
viable substitutions σ of placeholders to symbolic examples of the corresponding
types, t1σ and t2σ were shown equal—that is, ended up in the same equivalence
class of the e-graph—the conjecture t1

?= t2 is emitted. E.g., in the case of the
running example:

filter
T→bool◦1 (

list T◦1 ++
list T◦2 ) ?= (filter

T→bool◦1
list T◦1 ) ++ (filter

T→bool◦1
list T◦2 )

In the presence of multiple cases, the results are intersected, so that a con-
jecture is emitted only if it follows from all the cases.

Screening. Generating all the pairs according to the above criteria potentially
creates many “obvious” equalities, which are valid propositions, but do not con-
tribute to the overall knowledge and just clutter the prover’s state. For example,

filter
T→bool◦1 (

list T◦1 ++
list T◦2 ) ?= filter

T→bool◦1
( list T◦1 ++ ([ ]++

list T◦2 )
)

which follows from the definition of ++ and has nothing to do with filter. The
synthesizer avoids generating such candidates, by choosing at most one term
from every equivalence class of placeholder-form terms induced during the term
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generation phase. If both sides of the equality conjecture belong to the same
equivalence class, the conjecture is dropped altogether.

The conjectures that remain are those equalities t1
?= t2 where t1 and t2

got merged for all the assignments Sτ to some
τ◦1, and, furthermore, t1 and

t2 themselves were not merged in placeholder form, prior to substitution. Such
conjectures, if true, are guaranteed to increase the knowledge represented by E as
(at least) the equality t1 = t2 was not previously provable using term rewriting
and congruence closure.

4.3 Induction Prover

For practical reasons, the prover employs the following induction tactic:

– Structural induction based on the provided constructors (C).
– The first placeholder of the inductive type is selected as the decreasing argu-

ment.
– Exactly one level of induction is attempted for each candidate.

The reasoning behind this design choice is that for every multi-variable
term, e.g.

list T◦1 ++
list T◦2 , the synthesizer also generates the symmetric counterpart

list T◦2 ++
list T◦1 . So electing to perform induction on

list T◦1 does not impede generality.
In addition, if more than one level of induction is needed, the proof can

(almost) always be revised by factoring out the inner induction as an auxiliary
lemma. Since the synthesizer produces all candidate equalities, that inner lemma
will also be discovered and proved with one level of induction. Lemmas so proven
are added to E and are available to the prover, so that multiple passes over the
candidates can gradually grow the set of provable equalities.

When starting a proof, the prover never needs to look at the base case,
as this case has already been checked during conjecture inference. Recall that
placeholders

τ◦1 are instantiated with bounded-depth expressions using the con-
structors of τ , and these include all base cases (non-recursive constructors) by
default. For the example discussed above, the case of filter

T→bool◦1 ([ ]++
list T◦2 ) =

(filter
T→bool◦1 [ ]) ++ (filter

T→bool◦1
list T◦2 ) has been discharged early on, otherwise the

conjecture would not have come to pass. The prover then turns to the induction
step, which is pretty routine but is included in Fig. 4 for completeness of the
presentation.

It is worth noting that the conjecture inference, screening and induction
phases utilize a common reasoning core based on rewriting and congruence clo-
sure. In situations where the definitions include conditions such as match p x
in Fig. 4 (in this case, desugared from if p x), the prover also performs auto-
matic case split and distributes equalities over the branches. Details and specific
optimizations are described in Sect. 5.
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Fig. 4. Example proof by induction based on congruence closure and case splitting.

Speculative Generalization. When the prover receives a conjecture with multiple
occurrences of a placeholder, e.g.

list T◦1 ++ (
list T◦2 ++

list T◦1 ) ?= (
list T◦1 ++

list T◦2 )++
list T◦1 , it is

designed to first speculate a more general form for it by replacing the multiple
occurrences with fresh placeholders. Recall that in Subsect. 4.1 we argued that
two placeholders of each type is going to be sufficient; this is the mechanism that
enables it. There is more than one way to generalize a given conjecture: for this
example, there are two ways (up to alpha-renaming):

list T◦1 ++ (
list T◦2 ++

list T◦3 )
?
= (

list T◦1 ++
list T◦2 )++

list T◦3
list T◦1 ++ (

list T◦2 ++
list T◦3 )

?
= (

list T◦3 ++
list T◦2 )++

list T◦1

The prover must attempt both. Failing that, it would fall back to the origi-
nal conjecture. Formally, given an equality conjecture s = t we can consider an
assignment σ such that r = sσ, q = tσ; where the original conjecture uses an
assignment with only two values per type. The prover thus must iterate through
different assignments σi with more possible values per type, and attempt to
prove a new conjecture rσi = qσi. This incurs more work for the prover but is
well worth its cost compared to a-priori generation of terms with three place-
holders.

4.4 Looping Back

The equations obtained from Subsect. 4.3 are fed back in four different but
interrelated ways. The first, inner feedback loop is from the induction prover to
itself: the system will attempt to prove the smaller lemmas first, so that when
proving the larger ones, these will already be available as part of E . This enables
more proofs to go through. The second feedback loop uses the lemmas obtained
to filter out proofs that are no longer needed. The third, outer loop is more
interesting: as equalities are made into rewrite rules, additional equations may
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now pass the inference phase, since the symbolic evaluation core can equate more
terms based on this additional knowledge. The fourth resonates with the third,
applying the new rewrite rules acts as an equality reduction mechanism, reducing
the number of hyperedges added to the e-graph during term generation.

It is worth noting that while concrete observational equivalence uses a triv-
ially simple equivalence checking mechanism with the trade-off that it may gen-
erate many incorrect equalities, our symbolic observational equivalence is conser-
vative in the sense that a symbolic value may represent infinitely many concrete
inputs, and only if the synthesizer can prove that two terms will evaluate to equal
values on all of them, by way of constructing a small proof, are they marked as
equivalent. This means that some actually-equivalent terms may be “blocked”
by the inference phase, which cannot happen when using concrete values—but
also means that having additional inference rules (E) can improve this equiva-
lence checking, potentially leading to more discovered lemmas. This property of
TheSy is appealing because it allows an explored theory to evolve from basic
lemmas to more complex ones.

Example 1 (Lemma seeding). To understand this last point, consider the stan-
dard definition of list reversal for the list datatype:

rev [ ] = [ ]

rev (x ::xs) = rev xs++ (x :: [ ])

Given the terms t1 = rev (
list T◦1 ++

list T◦2 ) and t2 = rev
list T◦2 ++ rev

list T◦1 , symbolic
observational equivalence with the assignments {list T◦1 �→ S listT } fails to unify
them. This is due to ++ being defined by induction on its first argument, hence,
e.g.—

rev (v2 :: v1 :: [ ]++
list T◦2 ) →∗ (

rev
list T◦2 ++ (v1 :: [ ])

)

++ (v2 :: [ ])
rev

list T◦2 ++ rev v2 :: v1 :: [ ] →∗ rev
list T◦2 ++ (v1 :: v2 :: [ ])

Without the associativity property of ++, it would not be possible to show
that these symbolic values are equivalent, so the conjecture t1

?= t2 will not even
be generated. Luckily, having proven

list T◦1 ++ (
list T◦2 ++

list T◦3 ) ?= (
list T◦1 ++

list T◦2 )++
list T◦3 ,

these rewrites are “unblocked”, so that the equality can be conjectured and
ultimately proven.

One caveat is that whenever E is updated by the addition of a new lemma,
some of the previously emitted conjectures may consequently become redundant.
Moreover, conjectures that were passed to the prover before but failed validation
may now succeed, and new ones may be emitted in the generation phase. To take
these into account, the actual loop performed by TheSy is a bit more involved
than has been described so far. For each term depth, TheSy performs all phases
as described, but each time a lemma is discovered TheSy re-runs the conjecture
generation, screening, and prover phases. Only when no more conjectures are
available does TheSy increase the term depth and generate new terms.



138 E. Singher and S. Itzhaky

5 Evaluation

We implemented TheSy in Rust, using the e-graph manipulation library egg [44].
TheSy accepts definitions in SMTLIB-2.6 format [6], based on the UF theory
(uninterpreted functions), limited to universal quantifications. Type declarations
occurring in the input are collected and comprise V; universal equalities form E
and are translated into rewrite rules (either uni- or bidirectional, as explained
in Subsect. 3.1). Then SyGuE is performed on V, generating candidate conjec-
tures using SOE. SyGuE uses egg for equivalence reduction, and SOE uses it
for comparing symbolic values. Conjectures are then dismissed using TheSy’s
induction-based prover. This is done in an iterative deepening loop.

Case Split. Both SOE and the prover use a case splitting mechanism; This mech-
anism detects when rewriting cannot match due to an opaque value (an unin-
terpreted symbol), and applies case splitting according to the constructors of
relevant ADTs. However, doing so for every rule is too costly and, in most cases,
redundant—TheSy generates a variety of terms, so if one term is blocked due to
an uninterpreted symbol, another one exists with a symbolic example instead.
A situation where this is not the case is when multiple uninterpreted symbols
block the rewrite (recall that TheSy only substitutes one placeholder per term
with symbolic examples). To illustrate, consider the case in Fig. 4 where both
the list x :: xs and p x are used in match expressions, therefore a case split is
needed by p x ∈ {true, false}. Therefore, TheSy only performs case splitting for
rewrite rules that require multiple match patterns but only one is blocked.

The splitting mechanism itself, operates by copying the e-graph and applying
the term rewriting logic separately for each case. Each copy then yields a parti-
tion of the existing equivalence classes. These partitions are intersected between
all cases, and each of the resulting intersections lead to merging of equivalence
classes in the original e-graph. It is worth noting that TheSy never needs to back-
track a case split it has elected to apply. As a consequence, execution time is
not exponential in the total number of case splits performed, only in the nesting
level of such splits (which is bounded by 2 in our experiments).

We compare TheSy to the most recent and closely related theory explo-
ration system, Hipster [23]—which is based on random testing (backed by Quick-
Spec [38]) with proof automations from and frontend in Isabelle/HOL [33]. Hip-
ster represents the culmination of several works on existing theory exploration
(see Sect. 6). Both systems generate a set of proved lemmas as output, each
such set encompassing a conceptual volume of knowledge that was discovered
automatically. We note that the same knowledge can be represented in various
ways, so directly comparing the sets of lemmas is going to be meaningless.

5.1 Evaluating Theory Exploration Quality

We define a comparison method for two theory exploration systems A and B
starting from a common initial theory (defined as a set of closed formulas) T .
As a metric for the quality and efficacy of results obtained from theory explo-
ration, and, therefore, their perceived usefulness, we use the notion of knowledge
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Fig. 5. A scatter plot showing the ratio of lemmas in theories discovered by each tool
that were subsumed by the theory discovered by its counterpart (T = TheSy, H =
Hipster). Each point represents a single test case. The vertical axis shows how many of
the lemmas discovered by Hipster were subsumed by those discovered by TheSy, and
the horizontal axis shows the converse.

(inspired by “knowledge base” in Theorema [8]). A theory T in a given logical
proof system induces a collection of attainable knowledge, KT = {ϕ T � ϕ},
that is, characterized by the set of (true) statements that can be proven based
on T . In practice, a “pure” notion of knowledge based on provability is imprac-
tical, because most interesting logics are undecidable, and automated proving
techniques cannot feasibly find proofs for all true statements. We, therefore,
parameterize knowledge relative to a prover—a procedure that always termi-
nates and can prove a subset of true statements. Termination can be achieved
by restricting the space of proofs by either size or resource bounds. We say that
T �S ϕ when a prover, S, is able to verify the validity of ϕ in a theory T . A
more realistic characterization of knowledge would then be KS

T =
{

ϕ T �S ϕ
}

.
Assuming that the prover S is fixed, a theory T ′ is said to increase knowledge
over T when KS

T ′ ⊃ KS
T .

We utilize the notion of KS
T described above to test the knowledge gained by

A against that of B, and vice versa. We take the set of lemmas TA generated by
A and check whether it is subsumed by TB , generated by B, by checking whether
TA ⊆ KS

T ∪TB
; we then carry out the same comparison with the roles of A and B

reversed. A working assumption is that both A and B include some mechanism
for screening redundant conjectures. That is, a component that receives the
current set of known lemmas Ti and a conjecture ϕ and decides whether the
conjecture is redundant. It is important to choose S such that whenever A (or
B) discards ϕ, due to redundancy, it holds that ϕ ∈ KS

Ti
.

Incorporating the solver into the comparison makes the evaluation resistant
to large amounts of trivial lemmas, as they will be discarded by A or B. It is
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still possible for some lemmas to be “better” than others, so knowledge is not
uniformly distributed; this is hard to quantify, though. A few possible mea-
sures of usefulness come to mind, such as lemma utilization in a task (such as
proof search), proof complexity, or matching to a given context, but given just
the exploration task, there is not sufficient information to apply them. A first
approximation is to consider the discovered lemmas themselves, i.e., TA ∪ TB ,
as representing proof objectives. In doing so, we pit A and B in direct contest
with one another. We choose this avenue because it is straightforward to apply,
admitting that it may be inaccurate in some cases.

To evaluate our approach and its implementation, we run both TheSy
and Hipster on functional definitions collected from the TIP 2015 benchmark
suite [11], specifically the IsaPlanner [21] benchmarks (85 benchmarks in total),
for compatibility between the two systems. TIP benchmarks also contain goal
propositions, but for the purpose of evaluating the exploration technique, these
are redacted. This experiment uses the simple rewrite-driven congruence-closure
decision procedure with a case split mechanism in the role of the solver, S,
occurring in the definition of knowledge K. Hipster uses Isabelle/HOL’s simpli-
fier as a conjecture redundancy filtering mechanism, which is in itself a simple
rewrite-driven decision procedure, therefore S provides a suitable comparison.
We compute the portion of lemmas found by Hipster that were provable (by S)
from TheSy’s results and vice versa. In other words, we check the ratio given by
|TA ∩ KS

T ∪TB
| / |TA|, which we denote TB %TA, in both directions. Figure 5 dis-

plays the ratios, where each point represents a single test case. Points above the
diagonal line represent test cases where TheSy’s ratio was higher and for points
under the line Hipster’s ratio was higher. We conduct this experiment twice:
Once with the case-splitting mechanism of TheSy turned off for its exploration,
and once with it turned on. (Hipster does not have such a switch as it always
generates concrete values.) The reason for this is that case splitting increases
the running time significantly (as we show next), so we want to evaluate its con-
tribution to the discovery of lemmas. Comparing the two charts, while TheSy
performs reasonably well compared to Hipster without case splitting (in 48 out
of the 85 TheSy’s ratio was better and equal in 12), enabling it leads to a clear
advantage (in 65 out of the 85 TheSy’s ratio was better and equal in 6).

Performance. To compare runtime efficiency, we consider the time it took to
fully explore the IsaPlanner test suite. We consider an exploration “full” when
it has finished enumerating all the terms, and associated candidate conjectures,
up to the depth bound (k = 2)2 with TheSy or size bound with Hipster (s = 7),
and check them; or when a timeout of one hour is reached, whichever is sooner.
We then sort the benchmarks from shortest- to longest-running for each of the
tools, and report the accumulated time to explore the first i benchmarks (i =
1..85). The results are shown in the graph in Fig. 6, for Hipster, TheSy with
case split disabled, and TheSy with case split enabled. In both configurations,
2 Our experience shows that choosing larger ks greatly affects the run-time, but does

not lead to many useful lemmas.
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Fig. 6. Time to fully explore the 85 IsaPlanner benchmarks. A full exploration is
considered one where either all terms up to the depth bound have been enumerated
or a timeout of 1 h has been reached. The y axis shows the amount of time needed
to complete the first x benchmarks, when they are sorted from shortest- to longest-
running. (Time scale is logarithmic; lower is better.)

TheSy is very fast for the lower percentiles, but begins to slow down, due to case
splitting, towards the end of the line. To illustrate, in the 25th percentile TheSy
was ∼380 times faster (0.48 s vs. 182.47 s); in the 50th percentile, ∼57 times faster
(5.28 s vs. 305.37 s); and in the 75th percentile, ∼6 times faster (141.24 to 883.8).
Overall TheSy took 51.6K seconds and Hipster 47.1K, meaning Hipster was ∼1.1
times faster. It is evident from the chart that case splitting is largely responsible
for the longer execution times. Without case splitting, TheSy is much faster, and
completes all 85 benchmarks in less time than it takes Hipster. Of course, in that
mode of operation, TheSy finds fewer lemmas (as shown in Fig. 5), but is still
superior to Hipster. Future work needs to focus on improving the case-splitting
mechanism, similar to their treatment in SAT and SMT, allowing TheSy to deal
with such theories more efficiently.

5.2 Efficacy to Automated Proving

While the mission statement of TheSy is solely to provide lemmas based on core
theories, we wish to claim that such discovered theories are beneficial toward
proving theorems in general, based on the same core theory. We used a collec-
tion of benchmarks for induction proofs used by CVC4 [37], and conducted the
following experiment: First, the proof goals are skipped and only the symbol dec-
larations and provided axioms are used to construct an input to TheSy. Then,
whenever a new lemma is discovered and passes through the prover, we also
attempt to prove the goal—utilizing the same mechanism used for vetting con-
jectures. As soon as the latter goes through, the exploration process is aborted,
and all lemmas collected are discarded. The experiments are thus independent
across the individual benchmarks.
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Table 1. Results of the CVC4 benchmark suite (number of successful proofs in each
category).

Total Z3 CVC4 CVC4+ig TheSy

clam 136 25 20 108 102

hipspec 42 6 7 33 29

isaplanner 87 35 34 79 47

leon 46 9 9 40 9

Total 311 75 70 260 187
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Fig. 7. Accumulated time-to-solve for each of the benchmark suites from the CVC4 col-
lection. The y axis shows the amount of time needed to complete the first x (successful)
proofs, when benchmarks are sorted from shortest- to longest-running.

Even though this setting is unfavorable to TheSy—because it does not take
advantage of the fact that theory exploration can be done offline, then its results
re-used for proofs over the same core theory—we report considerable success in
solving these benchmarks. Out of the 311 benchmarks, our theory exploration
+ simple-minded induction was able to prove 187 (with a 5-min timeout, same
as in the original CVC4 experiments). For comparison, Z3 and CVC4 (with-
out conjecture generation) were able to prove 75 and 70 of them, respectively.
This shows that the majority of instances were not solvable without the use of
induction. CVC4 with its conjecture generation enabled was able to solve 260
of them. Table 1 shows the number of successful proofs achieved for each of the
four suites. Figure 7 shows the accumulated time required for the benchmarks;
the vast majority of the success cases occur early on, because in some cases a
rather small auxiliary lemma is all that is needed to make the proof go through.
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6 Related Work

Equality Graphs. Originally brought into use for automated theorem proving [15],
e-graphs were popularized as a mechanism for implementing low-level compiler
optimizations [41], under the name PEGs. These e-graphs can be used to repre-
sent a large program space compactly by packing together equivalent programs.
In that sense they are similar to Version Space Algebras [26], but their prime
objective is entirely different. While VSAs focus on efficient intersections, e-
graphs are used to saturate a space of expressions with all equality relations
that can be inferred. They have found use in optimizing expressions for more
than just speed, for example to increase numerical stability of floating-point pro-
grams in Herbie [34]. There are two key differences in the way e-graphs are used
in this work compared to prior: (i) equality laws are not hard-coded nor fixed,
they are fertilized as the system proves more lemmas automatically; (ii) satu-
ration cannot be guaranteed or even obtained in all cases, which we overcome
by a bound on rewrite-rule application depth. (The latter point is an indirect
consequence of the former.)

Automated Theorem Provers. Many systems rely on known theorems or are
designed to support users in semi-automated proving. Congruence closure is also
a proven method for tautology checking in automated theorem provers, such as
Vampire [25], and is used as a decision procedure for reasoning about equality
in leading SMT solvers Z3 [14] and CVC4 [5]. There, it is limited mostly to
first-order reasoning, but can essentially be applied unchanged to higher-level
scenarios such as ours.

Related to theory exploration, but using separate techniques, are Zipperpo-
sition [13], and the conjecture generation mechanism implemented as part of
the induction prover in CVC4 [37]. It should be noted, that these are directed
toward a specific proof goal, as opposed to theory exploration, which is presumed
to be an offline phase. As such, the above two techniques incorporate genera-
tion of inductive hypotheses into the saturation proof search/SMT procedure,
respectively.

Theory Exploration. IsaCoSy [22] pioneered the use of synthesis techniques for
bottom-up lemma discovery. IsaCoSy combines equivalence reduction with coun-
terexample-guided inductive synthesis (CEGIS [40]) for filtering candidate lem-
mas. This requires a solver capable of generating counterexamples to equiva-
lence. Subsequent development was based on random generation of test values,
as implemented in QuickSpec [38] for reasoning about Haskell programs, later
combined with automated provers for checking the generated conjectures [10,20].
We have mentioned the deficiencies of using concrete values (as opposed to sym-
bolic ones) and random testing in Sect. 1 and make an empirical comparison
with Hipster, a descendent of IsaCoSy and QuickSpec, in Sect. 5.

Inductive Synthesis. In the area of SyGuS [3], tractable bottom-up enumeration
is commonly achieved by some form of equivalence reduction [39]. When dealing
with concrete input-output examples, observational equivalence [2,42] is very
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effective. The use of symbolic examples in synthesis has been suggested [17], but
to the best of our knowledge, ours is the only setting where symbolic observa-
tional equivalence has been applied. Inductive synthesis, in combination with
abduction [16], has also been used to infer specifications [1], although not as an
exploration method but as a supporting mechanism for verification.

7 Conclusion

We described a new method for theory exploration, which differentiates itself
from existing work by basing the reasoning on a novel engine based on term
rewriting. The new approach differs from previous work, specifically those based
on testing techniques, in that:

1. This lightweight reasoning is purely symbolic, supporting value abstraction
and performs better then prior art.

2. Functions are naturally treated as first-class objects, without specific support
implementation.

3. The only needed input is the code defining the functions involved, and no
support code such as a specific theory solver or random value generators.

4. TheSy has a unique feedback loop between the prover and the synthesizer,
allowing more conjectures to be found and proofs to succeed.

By creating a feedback loop between the four different phases, term genera-
tion, conjecture inference, conjecture screening and induction prover, this system
manages to efficiently explore many theories. This goes beyond similar feedback
loops in existing tools, aiming to reduce false and duplicate conjectures. As
explained in Subsect. 4.2, this form is also present in TheSy, but TheSy utilizes
this feedback in more phases of the computation.

Theory exploration carries practical significance to many automated reason-
ing tasks, especially in formal methods, verification and optimization. Complex
properties lead to an ever-growing number of definitions and associated lemmas,
which constitute an integral part of proof construction. These lemmas can be
used for SMT solving, automated and interactive theorem proving, and as a
basis for equivalence reduction in enumerative synthesis. The term rewriting-
based method that we presented in this paper is simple, highly flexible, and has
already shown results surpassing existing exploration methods. The generated
lemmas allow even this simple method to prove conjectures that normally require
sophisticated SMT extensions. Our main conclusion is that deductive techniques
and symbolic evaluation can greatly contribute to theory exploration, in addition
to their existing applications in invariant and auxiliary conjecture inference.
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Abstract. We present a certified SMT QFBV solver CoqQFBV built
from a verified bit blasting algorithm, Kissat, and the verified SAT cer-
tificate checker GratChk in this paper. Our verified bit blasting algo-
rithm supports the full QFBV logic of SMT-LIB; it is specified and for-
mally verified in the proof assistant Coq. We compare CoqQFBV with
CVC4, Bitwuzla, and Boolector on benchmarks from the QFBV

division of the single query track in the 2020 SMT Competition, and real-
world cryptographic program verification problems. CoqQFBV surpris-
ingly solves more program verification problems with certification than
the 2020 SMT QFBV division winner Bitwuzla without certification.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers for the Quantifier-Free Bit-Vector
(QFBV) logic have been used to verify programs with bit-level accuracy [9,
10]. In such applications, a program verification problem is reformulated as an
SMT QFBV query. An SMT QFBV solver is then invoked to compute a query
result. The query result in turn decides the answer to the program verification
problem. For cryptographic assembly programs, a missing carry or borrow flag
will result in incorrect computation. Bit-accurate verification is thus necessary
for cryptographic programs. SMT QFBV solvers in fact have been employed to
verify such programs [8,25]. These solvers nonetheless are very complex programs
with possibly unknown bugs [7,18]. Since bugs in SMT QFBV solvers may
induce incorrect query results, program verification cannot be taken without a
grain of salt when SMT QFBV solvers are employed.

In order to check SMT QFBV query results independently, SMT QFBV

solvers can generate certificates to validate their answers. In the LFSC certifi-
cates [14,23], for instance, an SMTQFBV query result is certified by correct bit
blasting and Boolean Satisfiability (SAT) solving. Such certificates demonstrate
that the SMT QFBV query is reduced to a Boolean SAT query correctly and
the corresponding SAT query is solved correctly. Although one can certify SAT

query results with certificates from SAT solvers [24], it is not always easy to cer-
tify correct bit blasting due to complex arithmetic operations in SMT QFBV
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queries. Developing correct and efficient checkers for SMT QFBV certificates
can be very challenging. Indeed, an LFSC certificate checker based on the proof
assistant Coq has been developed to improve confidence [12]. Yet the Coq-based
certificate checker does not fully support arithmetic operations and thus cannot
certify results of SMT QFBV queries with complicated arithmetic operations.
Consequently, the correctness of cryptographic programs still relies on the cor-
rectness of SMT QFBV solvers or their unverified certificate checkers.

In this paper, we take a more direct approach to ensure the correctness of
SMT QFBV query results. Instead of certifying correct bit blasting for every
SMT QFBV query, we specify a bit blasting algorithm and prove its correct-
ness in the proof assistant Coq. In order to formalize the correctness of our bit
blasting algorithm, we develop a formal bit-vector theory in Coq. Naturally,
the formal theory has to support all arithmetic functions (addition, subtraction,
multiplication, division, and remainder) for both signed and unsigned represen-
tations as needed in SMT-LIB [3]. Based on our new bit-vector theory, we give
a formal semantics for SMT QFBV queries in Coq. Our semantics follows the
SMT-LIB semantics carefully. Particularly, division and remainder are total
arithmetic operations even when the divisor is zero. Using our Coq bit-vector
theory and semantics, we prove that our bit blasting algorithm always returns a
corresponding Boolean formula correctly on any SMT QFBV query. Since our
algorithm has been formally verified, bit blasting is always correct and need not
be certified. Through the OCaml program extracted from our verified bit blast-
ing algorithm, a corresponding SAT query is obtained for each SMTQFBV

query and sent to a SAT solver. A SAT certificate checker suffices to validate
SAT query results and hence the correctness of answers to SMTQFBV queries.
Since neither complicated SMT QFBV solvers nor their certificate checkers are
trusted, our work can improve the confidence of SMT QFBV query results.

To our knowledge, our bit-vector theory is the first Coq formalization
designed for bit blasting queries from the QFBV logic of SMT-LIB. Our seman-
tics is the first Coq formalization for full SMTQFBV queries. We are not aware
of any verified bit blasting algorithm or program for full SMT QFBV queries
of SMT-LIB at the time of writing. Even the correctness of its results could be
ensured, our certified SMT QFBV solver CoqQFBV would not be very useful
if it were extremely inefficient. In order to evaluate its performance, we run Coq-

QFBV on benchmarks from the QFBV division of the single query track in the
2020 SMT Competition. With the same memory and time limits in the competi-
tion, our solver successfully finishes 88.72% of the 6861 queries with certification.
In comparison, CVC4 with its certificate checker solves 55.97% with certifi-
cation, and the division winner Bitwuzla solves 98.22% of the benchmarks
without certification. Our certified solver outperforms CVC4 with certification
significantly. Generating and checking certificates make our certified solver finish
about 10% of the queries less than the division winner. The price of accuracy
perhaps is not unacceptable for the benchmarks in the competition. To fur-
ther evaluate CoqQFBV, the certified solver is used to verify linear arithmetic
assembly programs from various cryptography libraries such as OpenSSL [30].



CoqQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 151

CoqQFBV gives certified answers to 96.88% out of the 96 SMT QFBV queries
from real-world cryptographic program verification. CVC4 with its certificate
checker certifies 19.79%. Compared with efficient SMT QFBV solvers without
certification, Boolector is able to solve 100% and Bitwuzla solves 91.67% of
the queries. Intriguingly, our certified SMT QFBV solver outperforms the 2020
division winner Bitwuzla in queries from real-world verification problems. Our
certified solver is probably useful for real-world verification problems.

Related Work. As mentioned, SMT certificate generating and checking are chal-
lenging. There are few efforts developing SMT QFBV certificate checkers, let
alone verified ones. CVC4 is able to produce unsatisfiability certificates for
QFBV queries, and also equipped with an (unverified) certificate checker [14].
SMTCoq [12] is proposed to check certificates from SMT solvers veriT and
CVC4. It supports fragments of several logics including the QFBV logic. More-
over, its correctness is formally proved in Coq. However, the QFBV logic is
not fully supported by SMTCoq. Z3 also supports certificate generation for the
QFBV logic [19]. The proofs can be reconstructed, thus checked, within proof
assistants HOL4 and Isabelle [6]. But the lack of details in Z3’s generated
certificates makes proof reconstruction particularly challenging.

With a similar approach in this paper, GL is a framework for bit blasting
finitely bounded ACL2 theorems into SAT queries [28]. Its bit blasting algorithm
is formally verified in ACL2. Though it is not designed for SMT-LIB, most of
the operations defined in the QFBV logic are supported, except division and
concatenation for instance. A bit blasting algorithm is defined and verified in
HOL4 as well [13]. Neither [28] nor [13] aims to develop a scalable SMT QFBV

solver. CoqQFBV accepts SMT-LIB inputs with fully supported QFBV logic
while adopting performance optimizations such as caches.

In Isabelle and HOL4, one can use the bit-vector libraries to conform
SMT-LIB operations, see [17] for example. Under the frame of Coq, coq-bits
is a formalization of logical and arithmetic operations on bit-vectors [15]. The
library provides the mapping between bit-vector operations and abstract number
operations. Different from our theory, it does not support division/remainder or
signed operations. Why3 [11] provides a bit-vector theory which is formalized
in Coq too. It defines the division by zero in a different way from SMT-LIB.
Moreover, the operations are defined based on integer operations. Our new bit-
vector theory instead defines bit-vector operations through bit manipulation. It
is more suitable for the correctness proof of bit blasting algorithms.

We have the following organization. After the introduction, an overview is
given in Sect. 2. Section 3 reviews preliminaries. Our formal bit-vector theory
is presented in Sect. 4. It is followed by the formal semantics of SMT QFBV

queries (Sect. 5). The correctness of our bit blasting algorithm is established in
Sect. 6. Section 7 outlines the construction of our certified SMTQFBV solver.
Experiments are presented in Sect. 8. Section 9 concludes our presentation.
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2 Methodology Overview

Given an SMT QFBV query, a bit blasting algorithm computes a Boolean
formula such that the SMT QFBV query is satisfiable if and only if the
Boolean formula is satisfiable. The QFBV logic contains arithmetic operations
for bit-vectors. Computing an equi-satisfiable Boolean formula for an arbitrary
SMT QFBV query can be very complicated and susceptible to errors. Our goal
is to construct a correct bit blasting program for every SMT QFBV query. The
correctness of the program moreover is verified by the proof assistant Coq to
minimize gaps or even errors in hand-written proofs.

Our construction is based on a new formal bit-vector theory coq-nbits
(Sect. 4). In coq-nbits, we define bit-vectors and their functions on top of the
Coq data type for Boolean sequences. In order to support the QFBV logic
of SMT-LIB fully, five arithmetic bit-vector functions (addition, subtraction,
multiplication, division, and remainder) are defined in our formal theory. To
establish the correctness of our definitions, formal proofs are provided to relate
bit-vector functions with their arithmetic counterparts. For instance, we show the
number represented by the output of the bit-vector negation function is indeed
the arithmetic negation of the number represented by the input bit-vector.

Using our coq-nbits theory, we then give a formal semantics for
SMTQFBV queries as defined in SMT-LIB (Sect. 5). In our formalization,
a QFBV predicate denotes a Boolean value; and a QFBV expression denotes
a bit-vector. An SMT QFBV query is formalized as a Boolean combination of
QFBV predicates on QFBV expressions over QFBV variables and bit-vector
constants. In order to demonstrate the correctness of our formal semantics for
SMTQFBV queries, formal proofs are provided to show that our formal seman-
tics coincides with those defined in SMT-LIB.

Our bit blasting algorithm is given in Coq (Sect. 6). It extends Tseitin
transformation for Boolean formulae to SMT QFBV queries. More precisely, a
QFBV predicate is transformed to a literal with a Boolean formula; a QFBV

expression is transformed to a literal sequence with a Boolean formula. Using
our formalization of SMT QFBV queries, the correctness of bit blasting algo-
rithm is established in Coq by mutual induction. To improve efficiency, our bit
blasting algorithm is further optimized with more economic transformations and
a cache. The optimized bit blasting algorithm is also verified with formal Coq

proofs.
Our formally verified bit blasting algorithm is written in the Coq specifica-

tion language. It is not yet a program compilable into executable binary codes.
Using the code extraction mechanism in Coq, an OCaml program is extracted
from our verified bit blasting algorithm. The OCaml program takes expressions
in our formal SMT QFBV query syntax as inputs and returns expressions in
our formal syntax for Boolean formulae as outputs. SAT solvers can be employed
to decide satisfiability of output Boolean formulae. Their certificates can be val-
idated by SAT certificate checkers independently (Sect. 7).
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3 Preliminaries

Let v be a Boolean variable with values ff and tt . A literal is of the form v or ¬v.
A clause is a disjunction l0∨l1∨· · ·∨lk of literals l0, l1, . . . , lk. A Boolean formula
in the conjunctive normal form (CNF) is a conjunction c0∧c1∧· · ·∧cm of clauses
c0, c1, . . . , cm. A SAT query is a Boolean CNF formula. An environment maps
Boolean variables to their values. Given a SAT query, the Boolean satisfiability
problem is to decide if the query evaluates to tt on some environments.

A bit-vector of width w is written as #bbw−1bw−2 · · · b0 with bi ∈ {0, 1} for 0 ≤
i < w. In the unsigned representation, the bit-vector #bbw−1bw−2 · · · b0 denotes
the natural number (non-negative integer)

∑
0≤i<w bi2i; in two’s complement

(signed) representation, it denotes the integer
∑

0≤i<w−1 bi2i − 2w−1bw−1. For
instance, #b1010 denotes 10 and −6 in the unsigned and two’s complement
representations respectively. We use bv2nat(bv) for the natural number denoted
by the bit-vector bv in the unsigned representation; and nat2bv(w, i) stands for
the bit-vector of width w representing the natural number i modulo 2w.

Let bv = #bbw−1bw−2 · · · b0 and cv = #bcu−1cu−2 · · · c0 be bit-vectors of
widths w and u respectively. The following QFBV operations are defined in the
QFBV logic of SMT-LIB: concat bv cv � #bbw−1bw−2 · · · b0cu−1cu−2 · · · c0
is the concatenation of bv and cv ; extract i j bv � #bbibi−1 · · · bj extracts
bits from bv where 0 ≤ j ≤ i < w; bvnot bv , bvand bv cv , and bvor bv cv
are the bitwise complement, and, or operations respectively. Additionally,
bvneg bv � nat2bv(w, 2w − bv2nat(bv)) is the arithmetic negation operation;
bvadd bv cv � nat2bv(w, bv2nat(bv) + bv2nat(cv)) is the arithmetic addition
operation; and bvmul bv cv � nat2bv(w, bv2nat(bv) × bv2nat(cv)) is the arith-
metic multiplication operation. The arithmetic division and remainder opera-
tions are

bvudiv bv cv �
{ nat2bv(w, 2w − 1) if bv2nat(cv) = 0

nat2bv(w, bv2nat(bv) ÷ bv2nat(cv)) otherwise

bvurem bv cv �
{ bv if bv2nat(cv) = 0

nat2bv(w, bv2nat(bv) mod bv2nat(cv)) otherwise.

Note that the arithmetic division and remainder operations are defined
even when the divisor represents the number zero. Finally, the operations
bvshl bv cv � nat2bv(w, bv2nat(bv) × 2bv2nat(cv)) shifts the bit-vector bv to
the left by bv2nat(cv) bits; bvlshr bv cv � nat2bv(w, bv2nat(bv) ÷ 2bv2nat(cv))
shifts the bit-vector bv to the right by bv2nat(cv) bits. In addition to bit-vector
operations, the QFBV logic of SMT-LIB defines QFBV predicates on bit-
vectors. The predicate bveq bv cv is true when the bit-vectors bv and cv are
equal; bvult bv cv is true if bv2nat(bv) < bv2nat(cv). In the QFBV logic of
SMT-LIB, both operands of binary operations and predicates must have the
same width. Overall, seventeen bit-vector operations and predicates are defined
in the QFBV logic of SMT-LIB. Particularly, arithmetic division and remain-
der operations with operands in both unsigned and two’s complement signed
representations are defined in SMT-LIB.
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A QFBV variable denotes a bit-vector. A QFBV expression is constructed
from QFBV operations over QFBV variables and bit-vectors. An SMTQFBV

query is a Boolean combination of QFBV predicates on QFBV expressions. Let
stores be mappings from QFBV variables to bit-vectors. Given an SMTQFBV

query, the satisfiability modulo QFBV theory problem is to decide if the query
evaluates to tt on some stores.

4 Bit-Vector Theory

We present our formal Coq bit-vector theory coq-nbits in this section. The
coq-nbits theory supports bit-vectors in both unsigned and two’s complement
signed representations. In coq-nbits, a bit-vector is represented by a Boolean
sequence of the data type bits in the least significant bit-first order.

Definition bits : Set := seq bool.

In the definition, bool and seq are the data types for Boolean values (false and
true) and sequences in Coq respectively. For instance, the bit-vector #b100 is
represented by [:: false; false; true] in coq-nbits.

Coq functions defined for sequences are applicable to bit-vectors. Particu-
larly, size bv computes the width of the bit-vector bv and bv ++ cv is the concate-
nation of the bit-vectors bv and cv . It is also straightforward to define auxiliary
bit-vector functions. For example, zeros n returns the bit-vector of n false’s;
ones n returns the bit-vector of n true’s; extract i j bv returns the sub-sequence
of the bit-vector bv with indices from j to i where 0 ≤ j ≤ i < size bv . Let
a � [:: false; false; true]. Then size a = 3 and extract 2 1 a = [:: false; true].

Bitwise functions are defined as easily. For instance, the bitwise inverse func-
tion maps each Boolean value to its complement:

Definition invB bv : bits := map (fun b => ~~b) bv .

Other bitwise functions are defined similarly. Specifically, bitwise and andB,
bitwise or orB, logical left shift shlB, logical right shift shrB are all defined
in coq-nbits. Let b � [:: false; true; true]. We have invB b = [:: true;
false; false], andB a b = [:: false; false; true], and shlB 1 b = [:: false;
false; true].

Arithmetic bit-vector functions are slightly more complicated. To prove
properties about arithmetic functions, coq-nbits provides conversion functions
between bit-vectors and natural numbers.

Definition to N (bv : bits) : N :=

foldr (fun b res => N_of_bool b + res * 2) 0 bv .

In the definition, to N bv converts the bit-vector bv to a natural number where
N of bool false = 0 and N of bool true = 1. The to N function multiplies the
previous result by two and adds the least significant bit b. For instance, to N a
= to N [:: false; false; true] = 4. The function from N w n, on the other hand,
converts any natural number n to a bit-vector of width w.
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Fixpoint from N (w : nat) (n : N) : bits :=

match w with

| O => [::]

| S w′ => (N.odd n)::(from N w′ (N.div n 2))

end.

The function first checks the width w. If the width is zero, it returns the empty
bit-vector. Otherwise, the function returns the bit-vector with the least signif-
icant bit N.odd n and the remaining w − 1 bits representing n divided by two.
Observe that two Coq formalizations of natural numbers are used. The nat
theory uses the unary representation suitable for inductive proofs; N uses the
succinct binary representation. The following lemma is proved in Coq:

Lemma 1. The following properties hold:

1. ∀bv , from N (size bv) (to N bv) = bv.
2. ∀w n, n < 2w =⇒ to N (from N w n) = n.

The first property shows that bit-vectors can be converted to natural numbers
and back to themselves. The second property shows that natural numbers can
be converted to bit-vectors with sufficient widths and back to themselves. To see
how they are used to prove properties about bit-vector functions in coq-nbits,
consider the definition of the successor bit-vector function.

Fixpoint succB (bv : bits) : bits :=

match bv with

| [::] => [::]

| hd ::tl => if hd then false ::(succB tl) else true::tl
end.

If the input is the empty bit-vector, the function returns the empty bit-vector.
Otherwise, succB checks the least significant bit of the input bit-vector. If the bit
is true, the function computes the successor of the remaining bits and appends
false as the least significant bit. If the least significant bit of the input is
false, the function simply changes the least significant bit to true and copies
the remaining bits. Using the conversion functions, the bit-vector successor is
related to the arithmetic successor in the following lemma:

Lemma 2. ∀bv , succB bv = from N (size bv) ((to N bv) + 1).

Lemma 2 says that succB bv does compute the bit-vector representing the arith-
metic successor of the natural number represented by the bit-vector bv . Observe
that the successor bit-vector function is correct when the input bit-vector is
empty. It is also correct when there is overflow. Indeed, both sides are zeros of
width size bv when overflow occurs.

Other arithmetic bit-vector functions are defined and proved in coq-nbits
similarly. Specifically, the arithmetic negation negB, addition addB, subtrac-
tion subB, unsigned multiplication mulB, unsigned division divB, and unsigned
remainder remB functions are supported by coq-nbits. We give properties to
relate the arithmetic functions for bit-vectors and natural numbers.
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Lemma 3. The following properties hold:

1. ∀bv cv , size bv = size cv =⇒ to N (addB bv cv) = (to N bv + to N cv) mod
2size bv .

2. ∀bv cv , to N (mulB bv cv) = (to N bv × to N cv) mod 2size bv .
3. ∀bv n, divB bv (zeros n) = ones (size bv).
4. ∀bv bv , size bv = size cv =⇒ cv �= zeros (size cv) =⇒ to N (divB bv cv) =

(to N bv) div (to N cv).
5. ∀bv n, remB bv (zeros n) = bv.
6. ∀bv cv , size bv = size cv =⇒ cv �= zeros (size cv) =⇒ to N (remB bv cv) =

(to N bv) mod (to N cv).
7. ∀bv n, to N (shlB n bv) = ((to N bv) × 2n) mod 2size bv

8. ∀bv n, to N (shrB n bv) = (to N bv) div 2n.

Let bv , cv be bit-vectors of width w. Lemma 3 shows that the natural number
represented by the bit-vector addB bv cv is equal to the modular sum of the natu-
ral numbers represented by bv and cv . Similarly, the natural number represented
by mulB bv cv is equal to the modular product of the natural numbers repre-
sented by bv and cv . The division and remainder functions in coq-nbits follow
the SMT-LIB semantics. Specifically, the quotient of any bit-vector divided by
zero is equal to the bit-vector of all true’s; the remainder of a bit-vector divided
by zero is the bit-vector itself. For non-zero divisors, the division and remainder
functions behave as expected. The natural number represented by the bit-vector
divB bv cv is the quotient of the number represented by bv divided by the number
represented by cv ; and the bit-vector remB bv cv represents the remainder of the
number represented by bv divided by the number represented by cv . Last but not
least, the logical left (shlB) and right (shrB) shifts correspond to multiplication
and division by powers of two respectively.

coq-nbits also provides comparison predicates. In addition to the equality
predicate == inherited from Boolean sequences, ltB bv cv and leB bv cv compare
the natural numbers represented by the bit-vectors bv and cv . Properties about
comparison predicates have also been proved in Coq.

Lemma 4. The following properties hold:

1. ∀bv cv , size bv = size cv =⇒ ltB bv cv = (to N bv < to N cv).
2. ∀bv cv , size bv = size cv =⇒ leB bv cv = (to N bv ≤ to N cv).

In addition to arithmetic functions and predicates in the unsigned represen-
tation, our formal bit-vector theory moreover defines arithmetic functions and
predicates for bit-vectors in two’s complement representation. For the signed
representation, bit-vectors are converted to integers by the to Z function. Arith-
metic bit-vector functions and predicates in the signed representation are related
to arithmetic integer functions and predicates as follows.

Lemma 5. The following properties hold:

1. ∀bv ,¬(msb bv ∧ dropmsb bv = zeros (size bv − 1)) =⇒ to Z (negB bv) =
−to Z bv.
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2. ∀bv n, 1 < size bv =⇒ to Z (sarB n bv) = (to Z bv) quot 2n.
3. ∀bv cv , size bv = size cv =⇒ to Z (mulB (sext (size cv) bv) (sext (size bv)

cv)) = to Z bv × to Z cv.
4. ∀bv cv, 1 < size bv =⇒ size bv = size cv =⇒ [¬(msb bv∧dropmsb bv = zeros

(size bv −1))∨ cv �= ones (size cv)] =⇒ to Z (sdivB bv cv) = (to Z bv) quot
(to Z cv).

5. ∀bv cv , 1 < size bv =⇒ size bv = size cv =⇒ to Z (sremB bv cv) =
(to Z bv) rem (to Z cv).

6. ∀bv cv , size bv = size cv =⇒ sltB bv cv = (to Z bv < to Z cv).
7. ∀bv cv , size bv = size cv =⇒ sleB bv cv = (to Z bv ≤ to Z cv).

In the lemma, sext n bv extends the bit-vector bv by n bits with the sign
bit of bv , msb bv returns the sign bit of bv , and dropmsb bv drops the sign bit
of bv . quot and rem are the quotient and remainder functions for Coq integers.
Consider, for instance, the signed division function sdivB bv cv in coq-nbits
(Lemma 5(4)). If the dividend bv is of width > 1, the widths of bv and the
divisor cv are equal, and bv is not of the form #b100 · · · 0 or cv is not of the
form #b11 · · · 1, then the bit-vector sdivB bv cv represents the quotient of the
integers represented by bv and cv . The condition may appear counter-intuitive.
To see why it is necessary, consider bv = #b100 · · · 0 and cv = #b11 · · · 1 both of
width w. bv and cv thus represent the integers −2w−1 and −1 respectively. Their
quotient 2w−1 however cannot be represented by bit-vectors of width w in two’s
complement representation. The corner input case is hence excluded. The corner
case is also excluded from the arithmetic negation function (Lemma 5(1)).

The coq-nbits theory has several important differences from the prior Coq

formalization in [15]. Our formal bit-vector theory supports both unsigned and
two’s complement signed representations. It also provides the arithmetic division
and remainder functions. Since these features are needed in the QFBV logic of
SMT-LIB, they are essential to the formalization of SMT QFBV queries. Such
important features unfortunately are lacking in the prior formalization. Another
noted difference is the numeric representations used in theory developments.
Since integers are needed for the QFBV logic, coq-nbits naturally uses binary
representations for integers and natural numbers in Coq. The prior formalization
on the other hand is mainly based on the unary natural number representation
but provides conversion to positive integers in the binary representation.

5 Theory for SMT QFBV Queries

Using coq-nbits, we formalize SMT QFBV queries. Our formalization con-
sists of two parts: a syntactic representation for SMT QFBV queries in Coq

inductive types and a formal semantics in our bit-vector theory coq-nbits.

5.1 Syntax of SMT QFBV Queries

An SMT QFBV query is a Coq term of the data type bexp. It can be constants
Bfalse or Btrue, a unary predicate Bnot, or binary predicates Band or Bor for
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Boolean connectives. Additionally, Bbveq and Bbvult with two arguments of the
data type exp are binary QFBV predicates.

Inductive bexp : Type := Bfalse : bexp | Btrue : bexp

| Bnot : bexp -> bexp

| Band : bexp -> bexp -> bexp | Bor : bexp -> bexp -> bexp

| Bbveq : exp -> exp -> bexp | Bbvult : exp -> exp -> bexp

(* other QF_BV predicates *)

end with exp : Type :=

| Evar : var -> exp | Econst : bits -> exp

| Ebvnot : exp -> exp

| Ebvand : exp -> exp -> exp | Ebvor : exp -> exp -> exp

| Ebvshl : exp -> exp -> exp | Ebvlshr : exp -> exp -> exp

| Ebvneg : exp -> exp

| Ebvadd : exp -> exp -> exp | Ebvmul : exp -> exp -> exp

| Ebvudiv : exp -> exp -> exp | Ebvurem : exp -> exp -> exp

| Eextract : nat -> nat -> exp -> exp

| Econcat : exp -> exp -> exp

(* other QF_BV operations *)

| Ebvsub : exp -> exp -> exp

end.

A Coq term of the data type exp represents a QFBV expression. It can be
a QFBV variable Evar vid with a variable identifier vid : var, a bit-vector con-
stant Econst bv with bv : bits, a bitwise-not operation Ebvnot e0, a bitwise-and
operation Ebvand e0 e1, a bitwise-or operation Ebvor e0 e1, a logical left-shift
operation Ebvshl e0 e1, or a logical right-shift operation Ebvlshr e0 e1. For
arithmetic operations, there are Ebvneg e0 for negation, Ebvadd e0 e1 for addi-
tion, Ebvmul e0 e1 for multiplication, Ebvudiv e0 e1 for unsigned division, and
Ebvurem e0 e1 for unsigned remainder with e0, e1 : exp. Finally, the extraction
Eextract i j e0 and the concatenation Econcat e0 e1 operations have the data
type exp with i, j : nat and e0, e1 : exp.

5.2 Semantics of SMT QFBV Queries

In our Coq formalization, an SMT QFBV query is interpreted on stores. A
store is a mapping from QFBV variables to bits. Let σ be a store. The inter-
pretation of be : bexp on σ is a Boolean value; the interpretation of e : exp on σ
is a bit-vector. Semantic functions eval bexp and eval exp are as follows.

Fixpoint eval bexp (be : bexp) (σ : store) : bool :=

match be with

| Bfalse => false

| Btrue => true

| Bnot be0 => ~~ (eval bexp be0 σ)
| Band be0 be1 => (eval bexp be0 σ) && (eval bexp be1 σ)
| Bor be0 be1 => (eval bexp be0 σ) || (eval bexp be1 σ)
| Bbveq e0 e1 => (eval exp e0 σ) == (eval exp e1 σ)
| Bbvult e0 e1 => ltB (eval exp e0 σ) (eval exp e1 σ)



CoqQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 159

(* other QF_BV predicates *)

end with eval exp (e : exp) (σ : store) : bits :=

match e with

| Evar v => Store.acc v σ
| Econst bv => bv
| Ebvnot e0 => invB (eval exp e0 σ)
| Ebvand e0 e1 => andB (eval exp e0 σ) (eval exp e1 σ)
| Ebvor e0 e1 => orB (eval exp e0 σ) (eval exp e1 σ)
| Ebvshl e0 e1 => shlB (to nat (eval exp e1 σ)) (eval exp e0 σ)
| Ebvlshr e0 e1 => shrB (to nat (eval exp e1 σ)) (eval exp e0 σ)
| Ebvneg e0 => negB (eval exp e0 σ)
| Ebvadd e0 e1 => addB (eval exp e0 σ) (eval exp e1 σ)
| Ebvmul e0 e1 => mulB (eval exp e0 σ) (eval exp e1 σ)
| Ebvudiv e0 e1 => divB (eval exp e0 σ) (eval exp e1 σ)
| Ebvurem e0 e1 => remB (eval exp e0 σ) (eval exp e1 σ)
| Eextract i j e0 => extract i j (eval exp e0 σ)
| Econcat e0 e1 => (eval exp e1 σ) ++ (eval exp e0 σ)
(* other QF_BV operations *)

| Ebvsub e0 e1 => subB (eval exp e0 σ) (eval exp e1 σ)
end.

An SMT QFBV query denotes a value in the Coq data type bool. Bfalse
and Btrue denote false and true respectively. Boolean negation, conjunction,
and disjunction correspond to ~~, &&, and || in bool respectively. For QFBV

predicates, the bit-vector equality Bbveq is interpreted by the equality == for
Boolean sequences. The coq-nbits function ltB is used to interpret Bbvult.

A QFBV expression denotes a bit-vector. For basic cases, QFBV variables
are interpreted by corresponding bit-vectors in the store σ through the store
access function Store.acc; bit-vector constants are interpreted by themselves.
Bitwise logical operations Ebvnot, Ebvand, and Ebvor are interpreted by cor-
responding coq-nbits functions invB, andB, and orB respectively. For logical
shift operations, the offset e1 is first converted to a natural number through
to nat (eval exp e1 σ) and then passed to the corresponding logical shift func-
tions shlB or shrB in coq-nbits. QFBV arithmetic operations are interpreted by
corresponding coq-nbits arithmetic functions as expected. Finally, the extrac-
tion Eextract and concatenation Econcat operations are interpreted by extract
and ++ in coq-nbits respectively.

In an SMT QFBV query, a QFBV variable designates a bit-vector of a
certain width. An SMT QFBV query is hence associated with a signature Σ
mapping QFBV variables to their respective widths. A store σ conforms to a
signature Σ if the interpretation of each QFBV variable on σ has the same width
as specified in Σ. Given an SMT QFBV query be : bexp with its signature Σ,
be is satisfiable if there is a store σ conforming to Σ and eval bexp be σ = true.

5.3 Derived QFBV Operations and Predicates

In the QFBV logic of SMT-LIB, a number of QFBV operations and predi-
cates are derived from a small set of core operations and predicates. Consider
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the signed comparison predicate bvslt bv cv in SMT-LIB:

bvslt bv cv � (or (and (= (extract (w − 1) (w − 1) bv) #b1)
(= (extract (w − 1) (w − 1) cv) #b0))

(and (= (extract (w − 1) (w − 1) bv)
(extract (w − 1) (w − 1) cv))

(bvult bv cv))).

To compare two bit-vectors of width w in two’s complement representation,
the sign bits are checked. If bv is negative but cv is positive, bvslt bv cv is true.
Otherwise, the signed predicate checks that both operands have the same sign
and compares the operands using the unsigned comparison predicate. Interest-
ingly, the arithmetic subtraction operation is actually a derived operation in
SMT-LIB: bvsub bv cv � bvadd bv (bvneg cv). The arithmetic operation is
defined to be the bit-vector sum of minuend and the negation of subtrahend.
It is not, for instance, defined as nat2bv(w, bv2nat(bv) − bv2nat(cv)) because
bv2nat(bv) − bv2nat(cv) may not be a natural number.

For derived operations and predicates, there is a subtle yet important dif-
ference between our formal semantics and those defined in SMT-LIB. In our
formal bit-vector theory coq-nbits, most functions and predicates are defined
directly. Particularly, the arithmetic subtraction function subB is defined by one-
bit subtractors in coq-nbits. Our formal semantics for the QFBV arithmetic
operation bvsub therefore is defined by the corresponding bit-vector function
subB. Since our formal semantics did not define bvsub by bvadd and bvneg , it
could be different from those in SMT-LIB. In order to build a certified solver
for the QFBV logic of SMT-LIB, it is necessary to establish semantic equiva-
lences between both semantic definitions for all derived QFBV operations and
predicates.

To justify our formal semantics, we show the semantics of our definitions and
those of SMT-LIB indeed denote the same bit-vector functions or predicates.
Consider again the subtraction operation. Recall the semantics of the arithmetic
operations bvadd and bvneg are defined by the bit-vector functions addB and
negB respectively. The next lemma is useful to show the semantic equivalence:

Lemma 6. ∀bv cv , size bv = size cv =⇒ subB bv cv = addB bv (negB cv).

For all derived QFBV operations and predicates, we give Coq proofs for the
equivalence between our formal semantics and those of SMT-LIB. Particularly,
semantics of all QFBV arithmetic operations and predicates over two’s comple-
ment representation are equivalent to those in SMT-LIB. Our formal semantics
for QFBV queries is thus certified to be equivalent to SMT-LIB.

6 Certified Bit Blasting

Recall that a SAT query is a Boolean CNF formula. Given an SMT QFBV

query, a bit blasting algorithm computes a SAT query that is satisfiable if and
only if the given SMT QFBV query is satisfiable. Although it is the standard
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technique for solving SMT QFBV queries, bit blasting can be very complex
due to arithmetic operations and various optimizations. Bit blasting algorithms
therefore can be tedious to construct and thus prone to errors. We verify a bit
blasting algorithm for SMT QFBV queries using our Coq formalization.

Let us start with a simple formalization of Boolean CNF formulae. In our
formalization, a clause is represented by a sequence of literals; a CNF formula
in turn is represented by a sequence of clauses. Let bvar be the data type for
Boolean variables. We have the following data types in Coq:

Inductive lit : Set := Pos of bvar | Neg of bvar.

Definition clause : Set := seq lit.

Definition CNF : Set := seq clause.

Define an environment ε to be a mapping from bvar to bool. Given a literal
�, a CNF formula f , and an environment ε, it is straightforward to define the
semantic functions eval lit � ε : bool and eval cnf f ε : bool. A SAT query
f is satisfiable if there is an environment ε such that eval cnf f ε = true.

To illustrate how our Coq proof works, consider Tseitin transformation for
the logical negation operation:

Definition bit blast Bnot � : lit * CNF :=

let r := a fresh literal in

(r, [:: [:: r; �]; [:: !r; !�] ]).

Given a literal �, bit blast Bnot � returns a new literal r and the CNF
formula (r ∨ �)∧ (¬r ∨¬�). Tseitin transformation ensures the interpretations of
� and r are complementary on any environment ε evaluating the CNF formula
to true. We give a formal proof using our formalization in Coq:

Lemma 7. ∀r cnf � ε, (r, cnf ) = bit blast Bnot � =⇒ eval cnf cnf ε =
true =⇒ eval lit r ε = ~~ (eval lit � ε).

The idea is generalized to QFBV operations naturally. For each QFBV

operation, we construct a literal sequence �r and a Boolean CNF formula cnf .
If cnf evaluates to true on an environment ε, the interpretation of �r on ε needs
to reflect the semantics of the QFBV operation. For instance, a Coq proof is
given for the QFBV addition operation:

Lemma 8. ∀�r cnf ��0 ��1 ε, (�r, cnf ) = bit blast Ebvadd ��0 ��1 =⇒ eval

cnf cnf ε = true =⇒ eval lits �r ε = addB (eval lits ��0 ε) (eval lits ��1 ε).

Given two literal sequences ��0 and ��1, bit blast Ebvadd ��0 ��1 returns a literal
sequence �r and a CNF formula cnf . If cnf evaluates to true on an environment ε,
then the interpretation of the literal sequence �r on ε is indeed the bit-vector sum
of the interpretations of ��0 and ��1 on ε. Bit blasting algorithms for other QFBV

operations are given and shown to reflect the semantics of corresponding func-
tions defined in the bit-vector theory coq-nbits. Particularly, our bit blasting
algorithms for arithmetic division and remainder correctly reflect corresponding
arithmetic bit-vector functions in coq-nbits.
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Recall that the semantics for SMT QFBV queries is defined over stores for
QFBV variables. In order to prove the correctness of bit blasting algorithms,
one has to relate stores for QFBV variables with environments for Boolean
variables. The relation is explicated through literal correspondences. A literal
correspondence π is a mapping from QFBV variables to sequences of literals.
For each QFBV variable v, the literal sequence π(v) is meant to interpret v on
environments for Boolean variables. More formally, let eval lits �� ε : bits be
the bit-vector for the literal sequence �� interpreted on the environment ε. The
bit-vector eval lits π(v) ε is hence the interpretation of the QFBV variable v
on the environment ε. Let σ be a store and π a literal correspondence. An envi-
ronment ε is consistent with σ through π if the bit-vectors eval lits π(v) ε and
Store.acc v σ are equal for every QFBV variable v in σ. Thus, an environment
is consistent with a store if their interpretations of variables coincide.

It is now straightforward to give our bit blasting algorithm for SMT QFBV

queries. For each QFBV expression, our algorithm first computes literals and
CNF formulae for operands recursively. It then invokes an auxiliary bit blasting
algorithm to construct result literals and a CNF formula for the QFBV oper-
ation. The literal correspondence is also updated when literals are allocated for
QFBV variables. Finally, the result literals and the updated literal correspon-
dence are returned along with the concatenation of all CNF formulae.

Definition bit blast bexp Σ π b : lit * correspondence * CNF :=

match be with

| Bnot be0 =>

let (r0, π′, cnf 0) := bit blast bexp Σ π be0 in

let (r, cnf ) := bit blast Bnot r0 in

(r, π′, cnf ++ cnf 0)

(* other QF_BV predicates *)

end with bit blast exp Σ π e : seq lit * correspondence * CNF :=

match e with

| Evar v =>

if π(v) is defined then (π(v), π, [::])

else let �r := fresh literals for v according to Σ in

let π′ := update π with v �→ �r in

(�r, π′, [::])

| Ebvadd e0 e1 =>

let (�r0, π′, cnf 0) := bit blast exp Σ π e0 in

let (�r1, π′′, cnf 1) := bit blast exp Σ π′ e1 in

let (�r, cnf ) := bit blast Ebvadd �r0 �r1 in

(�r, π′′, cnf ++ cnf 0 ++ cnf 1)

(* other QF_BV operations *)

end.

The following Coq theorem establishes the connection between the output
literals and the input SMT QFBV query or expression of the algorithm.

Theorem 1. Let be : bexp be an SMT QFBV query with the signature Σbe ,
e : exp a QFBV expression with the signature Σe, and π0 the empty literal
correspondence.
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1. ∀r π cnf σ ε, (r, π, cnf ) = bit blast bexp Σbe π0 be =⇒ σ conforms to Σbe

=⇒ ε is consistent withσ through π =⇒ eval cnf cnf ε = true =⇒
eval lit r ε = eval bexp be σ.

2. ∀�r π cnf σ ε, (�r, π, cnf ) = bit blast exp Σe π0 e =⇒ σ conforms to Σe

=⇒ ε is consistent with σ through π =⇒ eval cnf cnf ε = true =⇒
eval lits �r ε = eval exp e σ.

Let be be an SMT QFBV query with the signature Σbe , r and cnf the
literal and CNF formula returned by bit blast bexp respectively. Consider any
store conforming to Σbe and any environment consistent with the store. If the
environment evaluates the formula cnf to true, Theorem 1 says that the literal r
and the SMT QFBV query be evaluate to the same Boolean value on the envi-
ronment and store respectively. In other words, the algorithm bit blast bexp
is a generalized Tseitin transformation for SMT QFBV queries. Particularly,
all QFBV arithmetic operations (addition, subtraction, multiplication, divi-
sion, and remainder in the unsigned and two’s complement representations) are
transformed to CNF formulae with formal proofs of correctness in Coq.

A useful corollary to Theorem 1 is the reduction of the satisfiability of
SMT QFBV queries to the satisfiability of SAT queries.

Corollary 1. Let be : bexp be an SMT QFBV query with the signature Σbe

and π0 the empty literal correspondence. Then

∀r π cnf , (r, π, cnf ) = bit blast bexp Σbe π0 be =⇒
[(∃σ, σ conforms to Σbe ∧ eval bexp be σ = true) ⇐⇒
(∃ε, eval cnf ([:: [:: r]] ++ cnf ) ε = true)].

Corollary 1 gives the formal proof of correctness for our bit blasting algorithm
bit blast bexp. Let be be an arbitrary SMTQFBV query, r and cnf the literal
and the CNF formula returned by the algorithm. The corollary shows that the
query be is satisfiable if and only of the SAT query r ∧ cnf is satisfiable. An
equi-satisfiable SAT query is indeed obtained from the bit blasting algorithm
on every input SMT QFBV query with a formal proof of correctness.

Recall that several QFBV operations and predicates are derived from a
small number of operations and predicates in SMT-LIB. A näıve bit blasting
algorithm could expand derived operations or predicates, and then perform bit
blasting on a small set of operations and predicates. Such an algorithm would
have a simpler proof of correctness but generate more intermediate literals and
clauses. For instance, the näıve algorithm for bvsub would perform bit blasting on
bvneg followed by bvadd with intermediate literals and clauses. Our bit blasting
algorithm for bvsub on the other hand reflects our semantics defined by the bit-
vector function subB. Intermediate literals or clauses are not needed. Our bit
blasting algorithm hence transforms bvsub more economically than the näıve
algorithm.

To improve our bit blasting algorithm further, a cache for QFBV expressions
and predicates is added. In large queries, QFBV expressions and predicates can
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occur a number of times. If a QFBV expression has several occurrences, our
basic bit blasting algorithm will generate result literals and CNF formulae for
each occurrence. Consider the SMTQFBV query

(and (bvslt #b1000 (bvadd x y)) (bvslt (bvadd x y) #b0111)).

The query checks whether the sum of the QFBV variables x and y can be in
a proper range. Since the Boolean predicate and has two operands, our basic
algorithm invokes the auxiliary bit blasting algorithm for the two comparison
predicates. It in turn blasts the same expression bvadd x y twice. Repeated bit
blasting on the same expression or predicate is redundant. A hash function can
detect repeated QFBV expressions and predicates easily. When an expression
or a predicate recurs, the previously computed literals with the empty CNF
formula are returned from a cache as the result. More importantly, we give a
formal Coq proof of Corollary 1 for the bit blasting algorithm with a cache.

7 A Certified SMT QFBV Solver

We have so far built a formally verified bit blasting algorithm for SMT QFBV

queries. Using the code extraction mechanism in Coq, an OCaml program
corresponding to the verified bit blasting algorithm is obtained. Using a SAT

solver and a SAT certificate checker, a certified SMTQFBV solver can be
constructed. Figure 1 gives the flow of our certified solver.

OCaml

program
SAT

solver

SAT

UNSAT certificate
checker

SAT

UNSAT

be : bexp cnf : CNF

Fig. 1. Certified SMT QFBV Solver

In the figure, the extracted OCaml program takes an OCaml expression be
of the type bexp as an input (Sect. 5). The verified program performs bit blasting
on the SMT QFBV query and returns an OCaml expression cnf of the type
lit list list representing a SAT query (Sect. 6). Precisely, an OCaml term
of the type lit represents a literal. The OCaml type lit list corresponds
to the data type for clauses; and the type lit list list corresponds to the
data type for CNF formulae. The expression cnf is sent to a SAT solver to
check satisfiability. If the SAT solver reports SAT, the SMT QFBV query
represented by be is satisfiable. Otherwise, the SAT solver reports UNSAT with
a certificate. The certificate is sent to a SAT certificate checker for validation.
If it is validated, the SMT QFBV query be is unsatisfiable with certification.
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8 Experiments

In order to evaluate the performance of our verified OCaml bit blasting pro-
gram, we instantiate our SMT QFBV solver CoqQFBV based on Fig. 1 as
follows. We write an OCaml parser to translate a text file in the SMT-LIB

format to an SMT QFBV query in our formal syntax. The query is sent to
the verified OCaml program for bit blasting. We then add an OCaml pro-
gram to transform the output SAT query to a text file in the DIMACS format.
The 2020 SAT Competition winner Kissat [5] is used to check the satisfiabil-
ity of the SAT query. If the SAT solver reports UNSAT with a certificate in
the DRAT format [31], the certificate is sent to the verified certificate checker
GratChk [16] for validation. Certificate checkers for SAT solvers use much sim-
pler algorithms than certificate checkers for SMT solvers. They are hence easier
to build and prove correct. The correctness of GratChk is in fact verified by the
proof assistant Isabelle [22]. We need not trust the certificate checker either.

We ran two experiments to evaluate our certified SMT QFBV solver. The
first experiment is the QFBV division of the single query track in the 2020
SMT Competition [2]. The second experiment consists of verification problems
from various assembly implementations for linear field arithmetic in cryptog-
raphy libraries such as OpenSSL [30], RELIC [1], and BLST [29]. We compare
CoqQFBV against three SMT QFBV solvers: CVC4 [4] with an LFSC certifi-
cate checker [27], the 2020 SMTQFBV division winner Bitwuzla [20], and the
2019 SMT QFBV division winner Boolector [21]. Bitwuzla and Boolec-

tor are designed for efficiency without certification. CVC4 provides an LFSC
certificate checker implemented in C [26]. The certificate checker can validate
certificates from different theories but is itself not verified. All experiments were
run on a Linux machine with a 3.20 GHz CPU and 1 TB memory.1

8.1 SMT QFBV Competition

The first experiment is running our certified solver CoqQFBV on tasks from
the QFBV division of the 2020 SMT Competition. We set 60 GB memory limit
and 20 min timeout for each task as in the competition. A task solves a single
SMT-LIB file sequentially. The SMT QFBV division contains 6861 files in the
SMT-LIB format. All files are marked with unsat, sat, or unknown indicating
expected query results. To save running time, we ran 10 tasks concurrently. The
experimental results are summarized in Table 1.

In the table, the column NSC indicates the number of solved tasks with
certification. OSC is the number of timeouts. ESC shows the number of unsolved
tasks due to tool errors. TSC is the average time for solved tasks. CoqQFBV

solves 6087 (88.72%) and CVC4 with its certificate checker solves 3840 (55.97%)
with certification. We observe three stack overflow errors during bit blasting in
CoqQFBV. These errors are induced by deep recursion. Among 328 errors from
CVC4, 249 are segmentation faults raised by the LFSC certificate checker.

1
CoqQFBV is available at https://github.com/fmlab-iis/coq-qfbv.git.

https://github.com/fmlab-iis/coq-qfbv.git
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Table 1. Experimental results on the 2020 SMT QFBV division

Tool NSC OSC ESC TSC NS OS ES TS

CoqQFBV 6087 (88.72%) 771 3 119.69 6169 (89.91%) 689 3 81.74

CVC4 3840 (55.97%) 2693 328 74.63 4255 (62.02%) 2544 62 56.87

Bitwuzla – – – – – 6739 (98.22%) 122 0 16.09

Boolector – – – – – 6719 (97.93%) 142 0 15.44

Table 2. Experimental results on the 2020 SMT QFBV division by categories

Tool NSC TSC PSU NS TS

4238 unsat tasks

CoqQFBV 3838 (90.56%) 146.72 291.35 MB 3920 (92.50%) 86.51

CVC4 1762 (41.58%) 86.68 266.61 MB 2177 (51.37%) 49.68

Bitwuzla – – – – 4188 (98.82%) 12.75

Boolector – – – – 4180 (98.63%) 11.72

2553 sat tasks

CoqQFBV – – – – 2242 (87.82%) 73.26

CVC4 – – – – 2078 (81.39%) 64.41

Bitwuzla – – – – 2524 (98.86%) 21.08

Boolector – – – – 2516 (98.55%) 21.31

70 unknown tasks

CoqQFBV 5 (7.14%) 173.17 203.52 MB 7 (10.00%) 128.26

CVC4 – – – – 0 (0.00%) –

Bitwuzla – – – – 27 (38.57%) 66.36

Boolector – – – – 23 (32.86%) 48.58

The same table also compares against efficient but uncertified solvers. To
evaluate the overhead from certificate checking, the two certified solvers Coq-

QFBV and CVC4 still generate certificates but do not validate them. The
column NS gives the number of solved tasks without certification. OS is the
number of timeouts. ES indicates the number of errors, and TS is the average
time for solved tasks. Our certified solver CoqQFBV finishes 6169 (89.91%)
tasks. The CVC4 solver finishes 4255 (62.02%) tasks. CoqQFBV and CVC4

solve 82(= 6169 − 6087) and 415(= 4255 − 3840) more tasks without certifi-
cation respectively. Since our bit blasting algorithm is verified for all inputs,
CoqQFBV does not certify bit blasting on each query and hence induces less
overhead. The 2020 and 2019 SMT QFBV division winners Bitwuzla and
Boolector finish 6739 (98.22%) and 6719 (97.93%) tasks without certification
respectively. CoqQFBV solves about 10% less tasks with certification than the
2020 track winner Bitwuzla without certification. It also performs significantly
better than CVC4 with a general SMT certificate checker.
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Table 2 compares the four solvers by tasks from the three expected query
results. Among the 4238 unsat tasks, CoqQFBV and CVC4 give certified
answers to 3838 (90.56%) and 1762 (41.58%) of them respectively. The col-
umn PSU gives the average size of certificates. Efficient solvers Bitwuzla and
Boolector give 4188 (98.82%) and 4180 (98.63%) uncertified answers respec-
tively.

Among the 2553 sat tasks, Bitwuzla and Boolector finish 2524 (98.86%)
and 2516 (98.55%) of them respectively. CoqQFBV and CVC4 solve only 2242
(87.82%) and 2078 (81.39%) sat tasks respectively. For the 70 tasks marked
unknown, Bitwuzla and Boolector respectively answer 27 (38.57%) and
23 (32.86%) of them without certification. Our certified SMT QFBV solver
finds two sat and five unsat tasks. Answers to the five unsat tasks are all cer-
tified. CVC4 with its certificate checker fails to solve any unknown task. For
the benchmarks from the 2020 SMT QFBV division, our certified solver Coq-

QFBV appears to be more scalable than CVC4 with its general SMT certificate
checker.

Table 3. Average time for CoqQFBV components

Task TBB TSAT TCert

unsat 41.84 49.92 73.51

sat 37.08 62.09 –

unknown 32.34 121.99 62.86

Table 3 further decomposes the time spent on different components in Coq-

QFBV. The column TBB gives the average time for our verified OCaml bit
blasting program; TSAT gives the average time used by the SAT solver Kissat;
and TCert contains the average time for the certificate checker GratChk. For
the tasks in the QFBV division, the time for SAT solving and certificate check-
ing are comparable. In comparison, the OCaml bit blasting program seems to
take an unexpectedly large amount of time and hence can still be improved.

8.2 Linear Field Arithmetic in Cryptography

In this section, we evaluate our certified SMTQFBV solver on benchmarks from
real-world assembly implementations in various cryptography libraries such as
OpenSSL [30], RELIC [1], and BLST [29]. In elliptic curve cryptography, arith-
metic operations over large finite fields are needed. A field element is typically
represented by hundreds of bits. A field arithmetic operation takes two field ele-
ments and returns a field element as the result. In the signature scheme Ed25519
used in OpenSSH, for instance, a field element belongs to the residue system
modulo the prime number 2255 − 19. Field sum of two field elements is obtained
by the arithmetic sum modulo 2255 − 19. Commodity processors however do not
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Table 4. Experimental results on cryptographic assembly program verification

Tool NSC TSC PSU NS TS

CoqQFBV 93 (96.88%) 121.42 168.45 MB 93 (96.88%) 68.96

CVC4 19 (19.79%) 6.66 267.92 MB 46 (47.92%) 40.16

Bitwuzla – – – – 88 (91.67%) 16.07

Boolector – – – – 96 (100.00%) 18.25

support arithmetic instructions with operands in hundreds of bits natively. Field
arithmetic has to be implemented by 32- or 64-bit instructions. The functional
specification of the field addition used in Ed25519 may look as follows.

{∑3
i=0 ai × 264×i < 2255 − 19 ∧ ∑3

i=0 bi × 264×i < 2255 − 19}
x25519 fe64 add(r0, r1, r2, r3, a0, a1, a2, a3, b0, b1, b2, b3)⎧

⎨

⎩

∑3
i=0 ri × 264×i ≡ ∑3

i=0 ai × 264×i +
∑3

i=0 bi × 264×i(mod 2255 − 19)
∧

∑3
i=0 ri × 264×i < 2255 − 19

⎫
⎬

⎭

Let ai, bi, ci be 64-bit variables (registers) for 0 ≤ i ≤ 3. The specification
says that the output field element represented by ri’s computed by the program
x25519 fe64 add is the field arithmetic sum of the input elements represented
by ai’s and bi’s. In finite field arithmetic programs, over- or under-flow in assem-
bly instructions lead to incorrect results, and bit-accurate program verification is
required. We obtain 46 implementations and generate 96 SMT QFBV queries
from verification conditions in order to evaluate our certified solver in this exper-
iment.

Table 4 shows the verification results with the same memory and time limits
in the 2020 SMT Competition. All SMT QFBV queries are expected to be
unsatisfiable. Boolector successfully solves all queries (100%) without certifi-
cation. The 2020 QFBV track winner Bitwuzla finishes 88 queries (91.67%)
without certification. Surprisingly, CoqQFBV gives certified answers to 93
queries (96.88%). The verified SAT certificate checker GratChk used in Coq-

QFBV successfully validates all certificates for the real-world cryptographic pro-
gram verification problems. In comparison, CVC4 solves 46 queries (47.92%)
but certifies only 19 (19.79%). The CVC4 certificate checker raises segmenta-
tion faults on the 27 (= 46−19) solved but uncertified queries. These certificates
are perhaps too complicated to be validated by the unverified LFSC certificate
checker. For the SMTQFBV queries from real-world program verification prob-
lems, our certified solver CoqQFBV seems to perform slightly better than the
efficient but uncertified SMT QFBV solver Bitwuzla. Our certified solver is
probably scalable enough for certain bit-accurate program verification problems.



CoqQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 169

9 Conclusion

We combine algorithm design with interactive theorem proving to build a scal-
able certified SMT QFBV solver CoqQFBV in this work. Our certified solver
employs a verified OCaml bit blasting program and the verified certificate
checker GratChk to improve the confidence in SMT QFBV query results.
Experiments on the QFBV division of the 2020 SMT Competition and real-
world cryptographic program verification suggest that CoqQFBV is useful.

For future work, we plan to specify and verify more heuristics to further opti-
mize CoqQFBV. Particularly, cryptographic program verification requires more
sophisticated range checks. More verified bit blasting algorithms for such checks
will undoubtedly improve the confidence of bit-accurate program verification.

Acknowledgements. We thank all the anonymous reviewers for their insightful com-
ments and suggestions. We thank the authors of SSReflect for its powerful language
and libraries. We would like to give special thanks to Prof. Moshe Vardi for his encour-
agement. The work is supported by National Natural Science Foundation of China
under the Grant Numbers 62002228, 61802259 and 61836005; the Guangdong Science
and Technology Department under the Grant Number 2018B010107004; Ministry of
Science and Technology of Taiwan under the Grant Numbers MOST108-2221-E-001-
010-MY3 and MOST108-2221-E-001-009-MY2; Academia Sinica for Sinica Investigator
Award AS-IA-109-M01; the Data Safety and Talent Cultivation Project AS-KPQ-109-
DSTCP.

References
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Abstract. We introduce the notion of porous invariants for multipath
(or branching/nondeterministic) affine loops over the integers; these
invariants are not necessarily convex, and can in fact contain infinitely
many ‘holes’. Nevertheless, we show that in many cases such invariants
can be automatically synthesised, and moreover can be used to settle
(non-)reachability questions for various interesting classes of affine loops
and target sets.
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1 Introduction

We consider the reachability problem for multipath (or branching) affine loops
over the integers, or equivalently for nondeterministic integer linear dynamical
systems. A (deterministic) integer linear dynamical system consists of an update
matrix M ∈ Z

d×d together with an initial point x(0) ∈ Z
d. We associate to such

a system its infinite orbit (x(i)) consisting of the sequence of reachable points
defined by the rule x(i+1) = Mx(i). The reachability question then asks, given
a target set Y , whether the orbit ever meets Y , i.e., whether there exists some
time i such that x(i) ∈ Y . The nondeterministic reachability question allows the
linear update map to be chosen at each step from a fixed finite collection of
matrices.

When the orbit does eventually hit the target, one can easily substantiate this
by exhibiting the relevant finite prefix. However, establishing non-reachability is
intrinsically more difficult, since the orbit consists of an infinite sequence of
points. One requires some sort of finitary certificate, which must be a relatively
simple object that can be inspected and which provides a proof that the set
Y is indeed unreachable. Typically, such a certificate will consist of an over-
approximation I of the set R of reachable points, in such a manner that one can
check both that Y ∩ I = ∅ and R ⊆ I; such a set I is called an invariant.

Formally we study the following problem for inductive invariants:
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Meta Problem 1. Consider a system with update functions f1, . . . , fn. A set I
is an inductive invariant if fi(I) ⊆ I for all i. Given a reachability query (x, Y )
we search for a separating inductive invariant I such that x ∈ I and Y ∩ I = ∅.

Meta Problem 1 is parametrised by the type of invariants and targets that
are considered; that is, what are the classes of allowable invariant sets I and
target sets Y , or equivalently how are such sets allowed to be expressed.

Fixing a particular invariant and target domain, a reachability query has
three possible scenarios: (1) the instance is reachable, (2) the instance is unreach-
able and a separating invariant from the domain exists, or (3) the instance is
unreachable but no separating invariant exists. Ideally, one would wish to pro-
vide a sufficiently expressive invariant domain so that the latter case does not
occur, whilst keeping the resulting invariants as simple as possible and com-
putable. For some classes of systems, it is known that distinguishing reachability
(1) from unreachability (2, 3) is undecidable; it can also happen that determin-
ing whether a separating invariant exists (i.e., distinguishing (2) from (3)) is
undecidable.

We note that the existence of strongest inductive invariants1 is a desirable
property for an invariant domain—when strongest invariants exist (and can be
computed), separating (2) from (1, 3) is easy: compute the strongest invariant,
and check whether it excludes the target state or not; if so, then you are done,
and if not, no other invariant (from that class) can possibly do the trick either.
However, unless (3) is excluded, computing the strongest invariant does not nec-
essarily imply that reachability is decidable. Unfortunately, strongest invariants
are not always guaranteed to exist for a particular invariant domain, although
some separating inductive invariant may still exist for every target (or indeed
may not).

In prior work from the literature, typical classes of invariants are usually
convex, or finite unions of convex sets. In this paper we consider certain classes of
invariants that can have infinitely many ‘holes’ (albeit in a structured and regular
way); we call such sets porous invariants. These invariants can be represented via
Presburger arithmetic2. We shall work instead with the equivalent formulation
of semi-linear sets, generalising ultimately periodic sets to higher dimensions,
as finite unions of linear sets of the form {b + p1N + · · · + pmN} (by which we
mean {b + a1p1 + · · · + ampm | a1, . . . , am ∈ N}, see Definition 2).

Let us first consider a motivating example:

Example 1 (Hofstadter’s MU Puzzle [7]). Consider the following term-rewriting
puzzle over alphabet {M,U, I}. Start with the word MI, and by applying the
following grammar rules (where y and z stand for arbitrary words over our
alphabet), we ask whether the word MU can ever be reached.

yI → yIU | My → Myy | yIIIz → yUz | yUUz → yz

1 Given two invariants I and I ′, we say that I is stronger than I ′ iff I ⊆ I ′; thus
strongest invariants correspond to smallest invariant sets.

2 Presburger arithmetic is a decidable theory over the natural numbers, comprising
Boolean operations, first-order quantification, and addition (but not multiplication).



174 E. Lefaucheux et al.

The answer is no. One way to establish this is to keep track of the number
of occurrences of the letter ‘I’ in the words that can be produced, and observe
that this number (call it x) will always be congruent to either 1 or 2 modulo 3.
In other words, it is not possible to reach the set {x | x ≡ 0 mod 3}. Indeed,
Rules 2 and 3 are the only rules that affect the number of I’s, and can be
described by the system dynamics x �→ 2x and x �→ x−3. Hence the MU Puzzle
can be viewed as a one-dimensional system with two affine updates,3 or a two-
dimensional system with two linear updates.4 The set {1 + 3Z} ∪ {2 + 3Z} is
an inductive invariant, and we wish to synthesise this. (The stability of this set
under our two affine functions is easily checked: both components are invariant
under x �→ x − 3, and {1 + 3Z} �→ {2 + 6Z} ⊆ {2 + 3Z} under x �→ 2x, and
similarly {2 + 3Z} �→ {4 + 6Z} ⊆ {1 + 3Z}.)

The problem can be rephrased as a safety property of the following multipath
loop, verifying that the ‘bad’ state x = 0 is never reached, or equivalently that
the above loop can never halt, regardless of the nondeterministic choices made.

x = 1
while x 
= 0

x = 2 x || x = x−3 (where || represents nondeterministic branching)

The MU Puzzle was presented as a challenge for algorithmic verification in [4];
the tools considered in that paper (and elsewhere, to the best of our knowledge)
rely upon the manual provision of an abstract invariant template. Our approach
is to find the invariant fully automatically (although one must still abstract from
the MU Puzzle the correct formulation as the program x �→ 2x || x �→ x − 3).

Main Contributions. Our focus is on the automatic generation of porous
invariants for multipath affine loops over the integers, or equivalently nondeter-
ministic integer linear dynamical systems.

– We first consider targets consisting of a single vector (or ‘point targets’), and
present the classes of invariants and systems for which invariants can and
cannot be automatically computed for the reachability question. A summary
of the results for linear and semi-linear invariants for these targets is given in
Table 1. For completeness we also consider R, R+-(semi)-linear sets, where we
complete the picture from prior work by showing that strongest R-semi-linear
invariants are computable.

• We establish the existence of strongest Z-linear invariants, and show that
they can be found algorithmically (Theorem 2). These invariants may or
may not separate the target under consideration.

• If a Z-linear invariant is not separating, we may instead look for an N-
semi-linear invariant (which generalises both Z-semi-linear and N-linear
invariants), and we show that such an invariant can always be found

3 One-dimensional affine updates are functions of the form f(x) = ax + b.

4

(
a b
0 1

) (
x
1

)
=

(
ax + b

1

)
models affine functions using a matrix representation, hold-

ing one of the entries fixed to 1.
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Table 1. Results for integer linear dynamical systems for a point target. Det/Non refers
to deterministic or nondeterministic LDS. “Subsumed by . . . ” means that sufficient
invariants can be generated, but of a more general type.

Dom D/N Linear Semi-linear (SL)

Z Det Strongest computable (Theorem 2) No strongest (Sect. 4.1); subsumed by N-SL

Z Non Strongest computable (Theorem 2) No strongest (Sect. 4.1)

N Det No strongest (Sect. 4.1); subsumed by N-SL No strongest (Sect. 4.1), but sufficient computable (Theorem 4)

N Non No strongest (Sect. 4.1) 1d-affine decidable (Theorem 6); undec. in general (Theorem 5)

R Det Strongest: affine relations by Karr [17] Strongest: affine closure on Zariski closure (Theorem 1)

R Non Strongest: affine relations by Karr [17] Strongest: affine closure on Zariski closure (Theorem 1)

R+ Det No strongest (Sect. 4.1); subsumed by R+-SL No strongest, but sufficient computable [8]

R+ Non No strongest (Sect. 4.1) Undecidable [8]

for any unreachable point target when dealing with deterministic integer
linear dynamical systems (Theorem 4).

• However, for nondeterministic integer linear dynamical systems, comput-
ing an N-semi-linear invariants is an undecidable problem in arbitrary
dimension (Theorem 5). Nevertheless we show how such invariants can be
constructed in a low-dimensional setting, in particular for affine updates
in one dimension (Theorem 6). As an immediate consequence, this estab-
lishes that the multipath loop associated with the MU Puzzle belongs to a
class of programs for which we can automatically synthesise N-semi-linear
invariants.

– For full-dimensional5 Z-linear targets we show that reachability is decidable,
and, in the case of unreachability that a Z-semi-linear invariant can always
be exhibited as a certificate (Theorem 3). If the target is not full-dimensional
then the reachability problem is Skolem-hard and undecidable for determin-
istic and nondeterministic systems respectively.

– In Sect. 6 we present our tool porous which handles one-dimensional affine
systems for both point and Z-linear targets, solving both the reachability
problem and producing invariants. Inter alia, this allows one to handle the
multipath loop derived from the MU Puzzle in fully automated manner.

1.1 Related Work

The reachability problem (in arbitrary dimension) for loops with a single affine
update, or equivalently for deterministic linear dynamical systems, is decidable
in polynomial time for point targets (that is Y = {y}), as shown by Kannan and
Lipton [16]. However for nondeterministic systems (where the update matrix is
chosen nondeterministically from a finite set at each time step), reachability is
undecidable, by reduction from the matrix semigroup membership problem [22].

In particular this entails that for unreachable nondeterministic instances we
cannot hope always to be able to compute a separating invariant. In some cases

5 The affine span covers the entire space.
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we may compute the strongest invariant (which may suffice if this invariant
happens to be separating for the given reachability query), or we may compute
an invariant in sub-cases for which reachability is decidable (for example in low
dimensions). For some classes of invariants, it is also undecidable whether an
invariant exists (e.g., polyhedral invariants [8]).

Various types of invariants have been studied for linear dynamical systems,
including polyhedra [8,23], algebraic [15], and o-minimal [1] invariants. For cer-
tain classes of invariants (e.g., algebraic [15]), it is decidable whether a separating
invariant exists, notwithstanding the reachability problem being undecidable.
Other works (e.g., [5]) use heuristic approaches to generate invariants, without
aiming for any sort of completeness.

Kincaid, Breck, Cyphert and Reps [18] study loops with linear updates,
studying the closed forms for the variables to prove safety and termination prop-
erties. Such closed forms, when expressible in certain arithmetic theories, can be
interpreted as another type of invariant and can be used to over-approximate the
reachable sets. The work is restricted to a single update function (deterministic
loops) and places additional constraints on the updates to bring the closed forms
into appropriate theories.

Bozga, Iosif and Konecný’s FLATA tool [2] considers affine functions in arbi-
trary dimension. However, it is restricted to affine functions with finite monoids;
in our one-dimensional case this would correspond to limiting oneself to counter-
like functions of the form f(x) = x + b.

Finkel, Göller and Haase [9], extending Fremont [10], show that reachability
in a single dimension is PSPACE-complete for polynomial update functions
(and allowing states can be used to control the sequences of updates which can
be applied). The affine functions (and single-state restriction) we consider are a
special case, but we focus on producing invariants to disprove reachability.

Other tools, e.g., AProVE [11] and Büchi Automizer [14] may (dis-)prove
termination/reachability on all branches, but may not be able to prove termi-
nation/reachability on some branch.

Inductive invariants specified in Presburger arithmetic have been used to
disprove reachability in vector addition systems [20]. A generalisation, ‘almost
semi-linear sets’ [21] are also non-convex and can capture exactly the reachable
points of vector addition systems. Our nondeterministic linear dynamical sys-
tems can be seen as vector addition systems over Z extended with affine updates
(rather than only additive updates).

2 Preliminaries

We denote by Z the integers and N the non-negative integers. We say that
x, y ∈ Z are congruent modulo d ∈ N, denoted x ≡ y mod d, if d divides
x − y. Given an integer x and natural d we write (x mod d) for the number in
{0, . . . , d − 1} such that (x mod d) ≡ x mod d.
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Definition 1 (Integer Linear Dynamical Systems). A d-dimensional inte-
ger linear dynamical system (LDS) (x(0), {M1, . . . ,Mk}) is defined by an initial
point x(0) ∈ Z

d and a set of integer matrices M1, . . . ,Mk ⊆ Z
d×d. An LDS is

deterministic if it comprises a single matrix (k = 1) and is otherwise nondeter-
ministic.

A point y is reachable if there exists m ∈ N and B1, . . . , Bm such that
B1 · · · Bmx(0) = y and Bi ∈ {M1, . . . ,Mk} for all 1 ≤ i ≤ m.

The reachability set O ⊆ Z
d of an LDS is the set of reachable points.

Definition 2 (K-(semi)-linear sets). A linear set L is defined by a base vector
b ∈ Z

d and period vectors p1, . . . , pd ∈ Z
d such that

L = {b + a1p1 + · · · + adpd | a1, . . . , ad ∈ K} .

For convenience we often write {b + p1K + · · · + pdK} for L. A set is semi-linear
if it is the finite union of linear sets.

N-semi-linear sets are precisely those definable in Presburger arithmetic
(FO(Z,+,≤)) [12]. However, we can also consider Z-semi-linear sets (correspond-
ing to FO(Z,+) without order), and the real counterparts (R and R+). Note that
even if K = N we still allow pi ∈ Z

d.

Definition 3. Given an integer linear dynamical system (x(0), {M1, . . . ,Mk}),
a set I is an inductive invariant if

– x(0) ∈ I, and
– {Mix | x ∈ I} ⊆ I for all i ∈ {1, . . . , k}.

Note in particular that every inductive invariant contains the reachability set
(O ⊆ I). We are interested in the following problem:

Definition 4 (Invariant Synthesis Problem). Given an invariant domain
D, an integer linear dynamical system (x(0), {M1, . . . ,Mk}), and a target Y , does
there exist an inductive invariant I in D disjoint from Y ?

In our setting, we are interested in classes D of invariants that are linear, or
semi-linear. When a separating inductive invariant I exists, we also wish to
compute it. Since (semi)-linear invariants are enumerable, the decision problem
is, in theory, sufficient—although all of our proofs are constructive.

3 R Invariants: R-linear and R-semi-linear

Before delving into porous invariants, let us consider invariants over the real
numbers, i.e., described as R-(semi)-linear sets.

Strongest R-linear invariants are given precisely by the affine hull of the
reachability set, and can be computed using Karr’s algorithm [17]. Moreover, we
will show that strongest R-semi-linear invariants also exist and can be computed
by combining techniques for algebraic invariants [15] and R-linear invariants.
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R-linear. Recall that a set L is R-linear if L = {v0 + v1R + · · · + vtR} for some
v0, . . . , vt ∈ Z

d that can be assumed to be linearly-independent6 without loss of
generality (and thus t ≤ d). Given two distinct points of L, every point on the
infinite line connecting them must also be in L. Generalising this idea to higher
dimensions, given a set S ⊆ R

d, let the affine hull be

S
a

=

{
k∑

i=1

λixi | k ∈ N, xi ∈ S, λi ∈ R,

k∑
i=1

λi = 1

}
.

Fix an LDS (x(0), {M1, . . . ,Mk}) and consider its reachability set O ={
Mim · · · Mi1x

(0) | m ∈ N, i1, . . . , im ∈ {1, . . . , k}}
. Then Oa

is precisely the
strongest R-linear invariant. Karr’s algorithm [17,26] can be used to compute
this strongest invariant in polynomial time. The next lemma follows from The-
orem 3.1 of [26].

Lemma 1. Given an LDS (x(0), {M1, . . . ,Mk}) of dimension d, we can compute
in time polynomial in d, k, and log μ (where μ > 0 is an upper bound on the
absolute values of the integers appearing in x(0) and M1, . . . ,Mk), a Q-affinely
independent set of integer vectors R0 ⊆ O such that:

1. x(0) ∈ R0,
2. the affine span of R0 and the affine span of O are the same (R0

a
= Oa

),
3. the entries of the vectors in R0 have absolute value at most μ0 := (dμ)d.

Let R0 =
{
x(0), r1, . . . , rd′

}
be obtained as per Lemma 1, with d′ ≤ d. The

R-linear invariant of the LDS is the affine span R0
a
, which can be written as the

R-linear set L0 =
{
x(0) + (r1 − x(0))R + · · · + (rd′ − x(0))R

}
.

R-semi-linear. Let us now generalise this approach to R-semi-linear sets. The
collection of R-semi-linear sets, {⋃m

i=1 Li | m ∈ N, L1, . . . , Lm are R-linear sets},
is closed under finite unions and arbitrary intersections7. Thus for any given set
X, the smallest R-semi-linear set containing X is simply the intersection of all
R-semi-linear sets containing X. Let us denote by X

R
this smallest R-semi-linear

set. We are interested in OR
.

Theorem 1. The strongest R-semi-linear invariant OR
of O is computable.

Algebraic sets are those that are definable by finite unions and intersections
of zeros of polynomials. For example, {(x, y) | xy = 0} describes the lines x = 0
and y = 0. The (real) Zariski closure X

z
of a set X is the smallest algebraic

subset of R
d containing the set X. The Zariski closure of the set of reachable

points, Oz
, can be computed algorithmically [15].

6 v0, . . . , vm are linearly independent if there does not exist a0, . . . , am ∈ R, not all 0,
such that a0v0 + · · · + amvm = 0.

7 When intersecting a linear set with a semi-linear set, either the latter does not
change, or one obtains a finite union of elements of smaller dimension. Thus, in an
infinite intersection, only a finite number of intersections affects the original set.
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An algebraic set A is irreducible if whenever A ⊆ B ∪ C, where B and C
are algebraic sets, then we have A ⊆ B or A ⊆ C. Any algebraic set (and
in particular a Zariski closure) can be written effectively as a finite union of
irreducible sets [3].

Proposition 1. Let X
z

= A1 ∪ · · · ∪ Ak, with Ai’s irreducible. Then X
R

=

X
zR

= A1
R ∪ · · · ∪ Ak

R
= A1

a ∪ · · · ∪ Ak
a
.

Proof. Since Ai ⊆ X
R

= ∪jLj , and Ai is irreducible, we have Ai ⊆ Lj for some
j (as the Lj ’s are algebraic sets). Since Lj is R-linear, and Ai

a
is the smallest

R-linear set covering Ai, we have Ai
a ⊆ Lj . Taking X

R
= A1

a ∪· · ·∪Ak
a

is thus
optimal. �


Thus OR
can be obtained by computing Ai

a
for each irreducible Ai, where

Oz
= A1 ∪ · · · ∪ Ak. To complete the proof of Theorem 1 it remains to confirm

that affine hulls of algebraic sets can be computed algorithmically. Let us fix
an algebraic set A, and let W denote a set variable. Proceed as follows. Start
with W ← {x} for some point x ∈ A, and repeatedly let W ← W ∪ {y}a, where
y ∈ A \ W . Such a point y can always be found using quantifier elimination in
the theory of the reals. Each step necessarily increases the dimension, which can
occur at most d times, ensuring termination, at which point one has A

a
= W .

4 Strongest Z-linear Invariants

Recall that a Z-linear set {q + p1Z + · · · + pnZ} is defined by a base vector
q ∈ Z

d and period vectors p1, . . . , pn ∈ Z
d. Equivalently, a Z-linear set describes

a lattice, i.e., {p1Z + · · · + pnZ}, in d-dimensional space, translated to start from
q rather than 0.

Theorem 2. Given a d-dimensional dynamical system (x(0), {M1, . . . ,Mk}),
the strongest Z-linear inductive invariant containing the reachability set O exists
and can be computed algorithmically.

The image of a Z-linear set L = {q + p1Z + · · · + pnZ} by a matrix M is the
Z-linear set: M(L) = {Mq + (Mp1)Z + · · · + (Mpn)Z}. The following lemma
asserts that when two points are in a Z-linear set, the direction between these
two points can be applied from any reachable point, and hence this direction
can be included as a period without altering the set.

Proposition 2. Let L = {q + a1p1 + · · · + anpn | a1, . . . , an ∈ Z} be a Z-linear
set. If x, y ∈ L then for all z ∈ L and all a′ ∈ Z we have z + (y − x)a′ ∈ L. In
particular, we have L = {q + a1p1 + · · · + anpn + a′(y − x) | a1, . . . , an, a′ ∈ Z}.
Proof. If x = q + a1p1 + · · · + anpn and y = q + b1p1 + · · · + bnpn then y − x =
q + b1p1 + · · · + bnpn − (q + a1p1 + · · · + anpn) = (b1 − a1)p1 + · · · + (bn − an)pn.

Then for any z = q + c1p1 + · · · + cnpn, we have z + a′(y − x) = q + c1p1 +
· · · + cnpn + a′((b1 − a1)p1 + · · · + (bn − an)pn) = q + (c1 + a′(b1 − a1))p1 + · · · +
(cn + a′(bn − an))pn) where (ci + a′(bi − ai)) ∈ Z, so z + a′(y − x) ∈ L. �
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Proposition 3. Given two Z-linear sets L1 = {q + p1Z + · · · + pnZ} and L2 =
{s + t1Z + · · · + tmZ}, there exists a smallest Z-linear set L containing L1 ∪L2:
the set L = {q + (s − q)Z + p1Z + · · · + pnZ + t1Z + · · · + tmZ}.
Proof. First we show L1 ∪ L2 ⊆ L:

– If x = q + a1p1 + · · · + anpn ∈ L1, then x = q + (s− q)0+ a1p1 + · · · + anpn +
0t1 + · · · + 0tm ∈ L.

– If x = s + b1t1 + · · · + bmtm ∈ L2, then x = q + (s − q)1 + 0p1 + · · · + 0pn +
b1t1 + · · · + bmtm ∈ L.

Next we show minimality as a straightforward consequence of Proposition 2.
Clearly the vectors p1, . . . , pn can be added by Proposition 2 because any

two points of L1 differing by pi guarantees that adding pi does not alter the
resulting set. Similarly, t1, . . . , tm can also be included. Finally, by Proposition 2,
the vector s − q can be included because q and s both belong to L1 ∪ L2. �


A d-dimensional lattice can always be defined by at most d vectors; and thus
if d is the dimension of the matrices, no more than d period vectors are needed
in total. However, Proposition 3 induces a representation which may over-specify
the lattice by producing more than d vectors to define the lattice.

Example 2. Consider the lattice {(2, 2)Z + (0, 6)Z + (2, 6)Z}, specified with
three vectors, which is equivalent to the lattice {(2, 0)Z + (0, 2)Z}. Note that one
may not simply pick an independent subset of the periods, as none of the fol-
lowing sets are equal: {(2, 2)Z + (0, 6)Z}, {(2, 2)Z + (2, 6)Z}, {(0, 6)Z + (2, 6)Z},
and {(2, 2)Z + (0, 6)Z + (2, 6)Z}.

The Hermite normal form can be used to obtain a basis of the vectors that
define the lattice. Consider a lattice Li = {p1Z + · · · + pdZ}. The lattice remains
the same if pi is swapped with pj , if pi is replaced by −pi, or if pi is replaced by
pi + αpj where α is any fixed integer8.

These are the unimodular operations. The Hermite normal form of a matrix
M is a matrix H such that M = UH, where U is a unimodular matrix (formed
by unimodular column operations) and H is lower triangular, non-negative and
each row has a unique maximum entry which is on the main diagonal. Such
a form always exists, and the columns of H form a basis of the same lattice
as the columns of M , because they differ up to unimodular (lattice-preserving)
operations. There are many texts on the subject; we refer the reader to the
lecture notes of Shmonin [25] for more detailed explanations.

The columns of a matrix in Hermite normal form constitute a unique basis for
the lattice (up to additional redundant zero columns). Hence a basis of minimal
dimension can be obtained by computing the Hermite normal form of the matrix
formed by placing the period vectors into columns.

8 The last replacement is valid, since if x = y+βpi ∈ L then x = y+β(pi+αpj)−βαpj

is in the new lattice.
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We now prove the main theorem:

Proof (Proof of Theorem 2). We claim that Algorithm 1 returns the strongest
Z-linear invariant I.

Algorithm 1 proceeds in two phases:

– First find a necessary subset L0 ⊆ I of the invariant having already the same
dimension as I.

– Then compute a growing sequence L0 � L1 � · · · � Lm−1 = Lm = I, where
at each step the algorithm merely increases the density of the attendant sets
in order to ‘fill in’ missing points of the invariant.

Recall the set R0 =
{
x(0), r1, . . . , rd′

} ⊆ O, with d′ ≤ d, from Lemma 1. The
resulting Z-linear set L0 =

{
x(0) + (r1 − x(0))Z + · · · + (rd′ − x(0))Z

}
is then a

d′-dimensional porous subset of the d′-dimensional affine hull of the orbit (L0 ⊆
Oa

). Applying M1, . . . ,Mk can only increase the density, but not the dimension.
As each ri and x(0) are in O, by Proposition 2 we can assume that each of the
directions (ri − x(0)) must be represented in any Z-linear set containing O, and
we therefore have that L0 ⊆ I.

In the second phase, we ‘fill in’ the lattice as required to cover the whole of
O. To do this we repeatedly apply the covering procedure of Proposition 3. That
is, Li+1 is the smallest Z-linear set covering Li ∪M1(Li)∪ · · · ∪Mk(Li). To keep
the number of vectors small, we keep the period vectors of the Z-linear set in
Hermite normal form.

The vectors p1 = (r1 − x(0)), . . . , pd′ = (rd′ − x(0)) form a parallelepiped
(hyper-parallelogram) that repeats regularly. There are a finite number of inte-
gral points inside this parallelepiped. If new points are added in some step, they
are added to every parallelepiped. Thus we can add new points finitely many
times before saturating or becoming fixed. The volume of the parallelepiped is
bounded above by |p1| · · · |pd′ |.

At each step, the volume of the parallelepiped must at least halve, thus the
volume at step t is volt ≤ |p1| · · · |pd′ |/2t. The procedure must saturate at or
before the volume becomes 1, which occurs after at most log(|p1| · · · |pd′ |) =∑

i log(|pi|) steps. At each step, for efficiency considerations, we convert the
Z-linear set into Hermite normal form to retain exactly d′ period vectors.

Claim (I is the strongest invariant). For every invariant J , we have I ⊆ J .

By induction, let us prove that every invariant J must contain Li. Clearly this
is the case for L0 because all points of R0 ⊆ O must be in J and every period
vectors in L0 can be present, without loss of generality, thanks to Proposition
2. Assume Li ⊆ J . Then it must be the case that J contains every Mj(Li), as
otherwise it would not be an invariant. It therefore follows that J must contain
Li+1, since the latter is the minimal Z-linear set containing Li and Mj(Li) for
all j ≤ k. Finally, since I is itself one of the Li’s, we have I ⊆ J as required. �

Remark 1. Note that a Z-linear set is not sufficient for the MU puzzle: both 1
and 2 are in the reachability set, thus {1 + 1Z} = Z is the strongest Z-linear
invariant.
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Algorithm 1: Strongest Z-linear invariant for LDS (x(0),M1, . . . ,Mk)

Input: x(0),M1, . . . , Mk

Compute R0 =
{

x(0), r1, . . . , rd′
}

⊆ O
Compute pi = ri − x(0) for i ∈ {1, . . . , d′}
L0 =

{
x(0) + p1Z + · · · + pd′Z

}
while True do

Li = Covering(Li−1 ∪ M1(Li−1) ∪ · · · ∪ Mk(Li−1))
Hi = HermiteNormalForm(Li)

Li =
{

x(0) + h1Z + · · · + hd′Z | hj column of Hi

}
if Li = Li−1 then

return Li

end

end

4.1 Extensions of Z-linear Sets Without Strongest Invariants

In this section we show that several generalisations of Z-linear domains fail to
admit strongest invariants.

Z-semi-linear sets are unions of Z-linear sets, and therefore can include sin-
gletons. Consider the deterministic dynamical system starting from point 1 and
doubling at each step M = (1, (x �→ 2x)). This system has reachability set
O =

{
2k | k ∈ N

}
, which is not even N-semi-linear (our most general class). For

this LDS we can construct the invariant
{
2, 4, 8, ..., 2k

} ∪ {
2k+1p1 | p1 ∈ Z

}
for

each k. For any proposed strongest Z-semi-linear invariant, one can find a k for
which the corresponding invariant is an improvement.

N-linear sets generalise Z-linear sets (observe that Z-linear sets are a proper
subclass, since {x + piZ} can be expressed as {x + (−pi)N + piN}, but {x + piN}
is clearly not Z-linear). Consider the LDS ((x1, x2), ( 0 1

1 0 )), with a reachability
set consisting of just two points x = (x1, x2) and y = (x2, x1). There are two
incomparable candidates for the minimal N-linear invariant: {x + (y − x)N} and
{y + (x − y)N}. Similarly for R+-linear invariants, the sets {y + (x − y)R+} and
{x + (y − x)R+} are incomparable half-lines.

4.2 Z-linear Targets

We have so far only considered invariants for point targets. We now turn to
lattice-like targets, in particular targets specified as full-dimensional Z-linear
sets.

Theorem 3. It is decidable whether a given LDS (x(0), {M1, . . . ,Mk}) reaches
a full-dimensional Z-linear target Y = {x + p1Z + · · · + pdZ}, with x, pi ∈ Z

d.
Furthermore, for unreachable instances, a Z-semi-linear inductive invariant

can be provided.
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Theorem 3 requires the targets to be full-dimensional. For nondeterministic
systems reachability is undecidable for non-full-dimensional targets (in particu-
lar point targets) [22]. However, even for deterministic systems, when Z-linear
targets fail to be full-dimensional the reachability problem becomes as hard as
the Skolem problem (see, e.g. [24]), for example by choosing as target the set
{(0, x2, . . . , xd) | x2, . . . , xd ∈ Z} = {0 + e2Z + · · · + edZ}, where ei ∈ {0, 1}d is
the standard basis vector, with (ei)i = 1 and (ei)j = 0 for i 
= j.

Towards proving Theorem 3, we first show that full-dimensional linear sets
can be expressed as ‘square’ hybrid-linear sets. Hybrid-linear sets are semi-linear
sets in which all the components share the same period vectors, and thus differ
only in starting position (whereas semi-linear sets allow each component to have
distinct period vectors). By square, we mean that all period vectors are the same
multiple of standard basis vectors.

Lemma 2. Let Y = {x + p1Z + · · · + pdZ} be a full-dimensional Z-linear set.
Then there exists m ∈ N and a finite set B ⊆ [0,m − 1]d such that Y =⋃

b∈B {b + me1Z + · · · + medZ}.

Proof. Suppose p1, . . . , pd span a d-dimensional vector space. Let P =

( p1

...
pd

)

be the matrix with rows p1, . . . , pd. Since P is full row rank it is invertible,
hence there exists a rational matrix P−1 such that ei = P−1

i,1 p1 + · · · + P−1
i,d pd.

In particular let mi be such that P−1
i,j mi is integral for all j. Then there is an

integral combination of p1, . . . , pd such that miei is an admissible direction in Y .
Let m = lcm {m1, . . . ,md}. Then mei is an admissible direction in Y . Hence

by Proposition 2, Y is equivalent to
{
x + p1Z + · · · + pdZ + me1Z + · · · +

medZ
}
. By the presence of me1Z + · · · + medZ we have that x ∈ Y if and

only x′ ∈ Y where x′
i = (xi mod m).

And therefore Y can be written as
⋃

b∈B {b + me1Z + · · · + medZ}, where
B = [0,m − 1]d ∩ Y . �


We now prove Theorem 3.

Proof (Proof of Theorem 3). Choose m and B as in Lemma 2, so that Y is of
the form

⋃
b∈B {b + me1Z + · · · + medZ}. We build an invariant I of the form⋃

b∈B′ {b + me1Z + · · · + medZ} for some B′ ⊆ [0,m − 1]d.
We initialise the set I0 = {x + me1Z + · · · + medZ}, where x ∈ [0,m − 1]d

such that xj = (x(0)
j mod m). We then build the set I1 by adding to I0 the sets

{y + me1Z + · · · + medZ} where for each choice of Mi, y ∈ [0,m − 1]d is formed
by yj = ((Mix)j mod m) for some x ∈ I0. We iterate this construction until it
stabilises in an inductive invariant I. Termination follows from the finiteness of
[0,m−1]d (noting in particular that if termination occurs with B′ = [0,m−1]d,
then I = Z

d which is indeed an inductive invariant).
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If there exists y ∈ B ∩ I then return Reachable. This is because the same
sequence of matrices applied to x(0) to produce y ∈ I would, thanks to the
modulo step, wind up inside the set {y + me1Z + · · · + medZ}, which is a part
of the target.

Otherwise, return Unreachable and I as invariant. By construction, I is
indeed an inductive invariant disjoint from the target set. �

Remark 2. By the same argument, Theorem 3 extends to a restricted class of
Z-semi-linear targets: the finite union of full-dimensional Z-linear sets.

5 N-Semi-linear Invariants

We now consider N-semi-linear invariants, our most general class. N-semi-linear
invariants gain expressivity thanks to the ‘directions’ provided by the period
vectors. For example, the only possible Z-semi-linear invariant for the LDS
(0, (x �→ x + 1)) is Z, yet the reachability set, N, is captured exactly by an N-
linear invariant. We show that a separating N-semi-linear invariant can always
be found for unreachable instances of deterministic integer LDS, although the
computed invariant will depend on the target. However, finding invariants is
undecidable for nondeterministic systems, at least in high dimension. Neverthe-
less, we show decidability for the low-dimensional setting of the MU Puzzle—one
dimension with affine updates.

5.1 Existence of Sufficient (but Non-minimal) N-semi-linear
Invariants for Point Reachability in Deterministic LDS

Kannan and Lipton showed decidability of reachability of a point target for
deterministic LDS [16]. In this subsection, we establish the following result to
provide a separating invariant in unreachability instances.

Theorem 4. Given a deterministic LDS (x(0),M) together with a point target
y, if the target is unreachable then a separating N-semi-linear inductive invariant
can be provided.

To do so, we will invoke the results from [8] to compute an R+-semi-linear
inductive invariant, and then extract from it an N-semi-linear inductive invari-
ant. More precisely, the authors of [8] show how to build polytopic inductive
invariants for certain deterministic LDS. Such polytopes are either bounded or
are R+-semi-linear sets. In the first case, the polytope contains only finitely
many integral points, which can directly be represented via an N-semi-linear set.
In the second case, we build an N-semi-linear set containing exactly the set of
integral points included in the R+-semi-linear invariant, thanks to the following
lemma.

Lemma 3. Given an R+-linear set S = {x +
∑

i piR+}, where the vectors pi
have rational coefficients and x is an integer vector, one can build an N-semi-
linear set N comprising precisely all of the integral points of S.
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Proof (Proof of Theorem 4). We note that every invariant produced in [8] has
rational period vectors, as the vectors are given by the difference of successive
point in the orbit of the system, and thus Lemma 3 can be applied. The authors
of [8] build an inductive invariant in all cases except those for which every eigen-
value of the matrix governing the evolution of the LDS is either 0 or of modulus
1 and at least one of the latter is not a root of unity. This situation however
cannot occur in our setting. Indeed, the eigenvalues of an integer matrix are alge-
braic integers, and an old result of Kronecker [19] asserts that unless all of the
eigenvalues are roots of unity, one of them must have modulus strictly greater
than 1 (the case in which all eigenvalues are 0 being of course trivial).

This concludes the proof of Theorem 4. �


5.2 Undecidability of N-semi-linear Invariants for Nondeterministic
LDS

If the enhanced expressivity of N-semi-linear sets allows us always to find an
invariant for deterministic LDS, it contributes in turn to making the invariant-
synthesis problem undecidable when the LDS is not deterministic. We establish
this through a reduction from the infinite Post correspondence problem (ω-PCP)
that can be defined in the following way: given m pairs of non-empty words
{(u1, v1), . . . , (um, vm)} over alphabet {0, 2}, does there exist an infinite word
w = w1w2 . . . over alphabet {1, . . . , m} such that uw1uw2 . . . = vw1vw2 . . .. This
problem is known to be undecidable when m is at least 8 [6,13].

Theorem 5. The invariant synthesis problem for N-semi-linear sets and linear
dynamical systems with at least two matrices of size 91 is undecidable.

Proof (Sketch). We first establish the result in the case of several matrices in
low dimension; this can then be transformed in a standard way to two larger
matrices (of size 91).

The proof is by reduction from the infinite Post correspondence problem.
Given an instance of this problem the pair of words corresponding to each
sequence of tiles has an integer representation, using base-4 encoding. An impor-
tant property of our encoding is that the operation of appending a new tile to
an existing pair of words can be encoded by matrix multiplication.

Recall that if the instance of ω-PCP is negative, then every generated pair
of words will differ at some point. Our encoding is such that this difference of
letters creates a difference in their numerical encodings that can be identified
with an N-semi-linear invariant. On the other hand, when there is a positive
answer to the ω-PCP instance, there can be no N-semi-linear invariant. �


5.3 Nondeterministic One-Dimensional Affine Updates

The previous section shows that point reachability for nondeterministic LDS
is undecidable once there sufficiently many dimensions, motivating an analysis
at lower dimensions. The MU Puzzle requires a single dimension with affine



186 E. Lefaucheux et al.

updates (or equivalently two dimensions in matrix representation, with the
coordinate along the second dimension kept constant). We consider this one-
dimensional affine-update case, and therefore, rather than taking matrices as
input, we directly work with affine functions of the form fi(x) = aix + bi.

Theorem 6. Given x(0), y ∈ Z, along with a finite set of functions {f1, . . . , fk}
where fi(x) = aix + bi, ai, bi ∈ Z for 1 ≤ i ≤ k, it is decidable whether y is
reachable from x(0).

Moreover, when y is unreachable, an N-semi-linear separating inductive
invariant can be algorithmically computed.

We note that decidability of reachability is already known [9,10]. We refine
this result by exhibiting an invariant which can be used to disprove reachability.
In fact our procedure will produce an N-semi-linear set which can be used to
decide reachability, and which, in instances of non-reachability, will be a sep-
arating inductive invariant. We have implemented this algorithm into our tool
porous, enabling us to efficiently tackle the MU Puzzle as well as its generali-
sation to arbitrary collections of one-dimensional affine functions. We report on
our experiments in Sect. 6.

We build a case distinction depending on the type of functions that appear:

Definition 5. A function f(x) = ax + b...

– ... is redundant if f(x) = b, (including possibly b = 0), or if f(x) = x.
– ... is counter-like if f(x) = x + b, b 
= 0. Two counter-like functions, f(x) =

x + b and g(x) = x + c are opposing if b > 0 and c < 0 (or vice-versa).
– ... is growing if f(x) = ax + b and |a| ≥ 2. We say a growing function is

inverting if a ≤ −2.
– ... is pure inverting if f(x) = −x + b.

Simplifying Assumptions

Lemma 4. Without loss of generality, redundant functions are redundant; more
precisely, we can reduce the computation of an invariant for a system having
redundant functions to finitely many invariant computations for systems devoid
of such functions.

Proof. Clearly the identity function has no impact on the reachability set, and
so can be removed outright. For any other redundant function, its impact on
the reachability set does not depend on when the function is used, and we may
therefore assume that it was used in the first step, or equivalently, using an alter-
native starting point. Hence the invariant-computation problem can be reduced
to finitely many instances of the problem over different starting points, with
redundant functions removed. Finally, taking the union of the resulting invari-
ants yields an invariant for the original system. �

Lemma 5. Without loss of generality, x(0) ≥ 0.
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Proof. We construct a new system, where each transition f(x) = ax + b is
replaced by f(x) = ax− b. Then x(0) reaches y in the original system if and only
if −x(0) reaches −y in the new system. To see this, observe that if f(x) = ax+b,
then f(−x) = −ax − b = −f(x). �

Lemma 6. Suppose there are at least two distinct pure inverting functions (and
possibly other types of functions). Then without loss of generality there are two
opposing counters.

Proof. Consider f(x) = −x + b, and g(x) = −x + c. Then f(g(x)) = −(−x +
c)+ b = x+ b− c and g(f(x)) = −(−x+ b)+ c = x+ c− b. Since b− c = −(c− b)
and b 
= c (as f 
= g) these two functions are opposing. �

Two Opposing Counters. Let us first observe that when there are two oppos-
ing counters, we essentially move in either direction by some fixed amount. This
will entail that only Z-(semi)-linear invariants can be produced, rather than
proper N-(semi)-linear invariants.

Lemma 7. Suppose there are two opposing counters, f(x) = x + b, and g(x) =
x − c. Then for any reachable x we have {x + dZ} ⊆ I for d = gcd(b, c).

Therefore, starting with
{
x(0) + dZ

} ∈ I we can ‘saturate’ the invariant
under construction using the following lemma:

Lemma 8. Let h(x) = x + d be chosen as a reference counter amongst the
counters. If {x + dZ} ∈ I, then {f(x) + dZ} ∈ I for every function f .

Proof (Proof of Lemma 8). Consider the function f(x) = ax+b. If x = y+dk ∈ I,
then f(x) = ax + b = ay + adk + b = f(y) + adk ∈ I.

Now thanks to the presence of counter h(x) = x + d, by choosing the initial
k ∈ Z appropriately and applying h(x) sufficiently many times (say m ∈ N

times), one can reach f(x) + adk + dm = f(x) + dn for any desired n ∈ Z. �

Without loss of generality if {x + dZ} is in the invariant, then 0 ≤ x < d.

We then repeatedly use Lemma 8 to find the required elements of the invariant.
Since there are only finitely many residue classes (modulo d), every reachable
residue class {c1, . . . , cn} can be found by saturation (in at most d steps), yielding
invariant {c1 + dZ} ∪ · · · ∪ {cn + dZ}.

Thanks to Lemma 6, in all remaining cases there is without loss of generality
at most one pure inverter.

Only Pure Inverters. If there is exactly one pure inverter f(x) = −x+ b (and
no other types of functions), then f(x(0)) = −x(0)+b and f(−x(0)+b) = x(0)−b+
b = x(0), thus the reachability set is finite, with exact invariant

{
x(0),−x(0) + b

}
.
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No Counters. If we are not in the preceding case and there are no counters, then
there must be growing functions and by Lemma 6, without loss of generality at
most one pure inverter. We show that all growing functions increase the modulus
outside of some bounded region.

Lemma 9. For every M ≥ 0 and every growing function f(x) = ax+b, |a| ≥ 2,
there exists CM

f ≥ 0 such that if |x| ≥ CM
f then |f(x)| ≥ |x| + M .

Proof. By the triangle inequality we have: |f(x)| = |ax + b| ≥ |a||x| − |b|. Thus
|x| ≥ |b|+|M |

|a|−1 =⇒ |a||x| − |b| ≥ |x| + |M | =⇒ |f(x)| ≥ |x| + M . �


This is the only situation in which the invariant is not exactly the reachability
set, and requires us to take an overapproximation.

Let C = max
{

C0
f1

, . . . , C0
fk

, |y| + 1
}

, for f1, . . . , fk growing functions. If
there are no pure inverters then {−C − N} ∪ {C + N} is invariant (although
may not yet contain the whole of O). However, we can return the inductive
invariant {−C − N} ∪ {C + N} ∪ (O ∩ (−C,C)). The set O ∩ (−C,C) is finite
and can elicited by exhaustive search, noting that once an element of the orbit
reaches absolute value at least C, the remainder of the corresponding trajectory
remains forever outside of (−C,C).

If there is one pure inverter g(x) = −x + d then observe that −C is mapped
to C + d and C + d is mapped to −C. Thus intuitively we want to use the
interval (−C,C + d). However two problems may occur: (a) since d could be
less than 0 then C + d may no longer be growing (under the application of the
growing functions), and (b) an inverting growing function only ensures that −C is
mapped to a value greater than or equal to C, rather than C+d. Hence, we choose
C ′ to ensure that C ′ ± d is still growing by at least |d| (under the application
of our growing functions). Let C ′ = max

{
C

|d|
f1

, . . . , C
|d|
fk

, |y| + 1
}

+ |d|. Then the
invariant is {−C ′ − N} ∪ {C ′ + d + N} ∪ (O ∩ (−C ′, C ′ + d)).

Non-opposing Counters. The only remaining possibility (if there do not exist
two opposing counters, and not all functions are growing or pure inverters),
is that there are counter-like functions, but they are all counting in the same
direction. There may also be a single pure inverter, and possibly some growing
functions.

Pick a counter h(x) = x+d to be the reference counter; the choice is arbitrary,
but it is convenient to pick a counter with minimal |d|. As a starting point, we
have

{
x(0) + dN

} ⊆ I.

Lemma 10. If there is an inverter g(x) = −ax + b, with a > 0, b ∈ Z, and we
have {x + dN} ⊆ I then {g(x) + dZ} ⊆ I.

The crucial difference with Lemma 8 is the observation that now an N-linear set
has induced a Z-linear set.
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Proof. Let r = g(x) + dm for m ∈ Z. We show r ∈ I. Consider x + dn for
n ∈ N, then g(x + dn) = −a(x + dn) + b = −ax + b − adn = g(x) − adn. Hence
g(x) − adn + dk, n, k ∈ N, is reachable by applying k times the function h(x).
Hence for any m ∈ Z there exists k, n ∈ N such that k − na = m, so that r is
indeed reachable. �


Similarly to the situation with two opposing counters, whenever the invariant
contains some Z-linear set, Lemma 8 allows us to saturate amongst the finitely
many reachable residue classes.

However, the invariant may contain subsets that are not Z-linear. Consider
{x + dN} ⊆ I, which is not yet invariant. We repeatedly apply non-inverting
functions to {x + dN} to obtain new N-linear sets (not Z-linear sets). When
the function applied ‘moves’ in the direction of the counters this will ultimately
saturate (in particular when applying other counter functions). However, in the
opposite direction, we may generate infinitely many such classes.

Example 3. Consider the reference counter h(x) = x+4, with initial point 5. This
yields an initial set {5 + 4N} ⊆ O, where 5 is the initial point and 4N is derived
from the counter increment. Now when applying x �→ 2x + 6 to {5 + 4N} we
obtain {10 + 6 + 8N + 4N} = {16 + 4N}, then {38 + 4N}, and then {82 + 4N}.
However {82 + 4N} ⊆ {38 + 4N} and we can therefore stop with the invariant
{5 + 4N} ∪ {16 + 4N} ∪ {38 + 4N}.

However, if the initial sequence is not moving in the direction of the reference
counter, this saturation does not occur. Consider {5 + 4N} with the function
x �→ 2x − 6. Then {5 + 4N} maps to {10 − 6 + 8N + 4N} = {4 + 4N}, which
maps to {2 + 4N}, {−2 + 4N}, {−10 + 4N}, {−26 + 4N}, and so on. However
−2 and −10 are both 2 modulo 4 (and so is −26 as well). This means in the
negative direction we can obtain arbitrarily large negative values congruent to
2 modulo 4 and then use the reference counter h(x) = x + 4 to obtain any value
of {2 + 4Z}. �


Clearly we can examine all reachable residue classes defined by our reference
counter. Any residue class reachable after an inverting function induces a Z-linear
set. So it remains to consider those N-linear sets reachable without inverting
functions. The remaining case to handle occurs when we repeatedly induce N-
linear sets until they repeat a residue class in the direction opposite to that of
the reference counter.

We consider the case for h(x) = x+d with d ≥ 0. The case with h(x) = x−d
is symmetric. It remains to detect when a set {x + dN} leads to {y + dN} by
a sequence of non-inverting functions with x ≡ y mod d. Then by repeated
application of these functions one can reach sets {z + dN} with z arbitrarily
small, hence we can replace {x + dN} by {x + dZ}. We give further details in
the full version.

Reachability. The above procedure is sufficient to decide reachability. In all
cases apart from that in which there are no counters, the invariants produced
coincide precisely with the reachability sets. A reachability query therefore
reduces to asking whether the target belongs to the invariant.
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In the remaining case, the invariant obtained is parametrised by the target via
the bound C ′. The target lies within the region (−C ′, C ′+d), within which we can
compute all reachable points. Thus once again, the target is reachable precisely
if it belongs to the invariant. However, for a new target of larger modulus, a
different invariant would need to be built.

Complexity

Lemma 11. Assume that all functions, starting point, and target point are given
in unary. Then the invariant can be computed in polynomial time.

Without the unary assumption, the invariant could have exponential size,
and hence require at least exponential time to compute. That is because the
invariant we construct could include every value in an interval, for example,
(−C,C), where C is of size polynomial in the largest value.

As shown in [10], the reachability problem is at least NP-hard in binary,
because one can encode the integer Knapsack problem (which allows an object to
be picked multiple times rather at most once). Moreover the Knapsack problem
is efficiently solvable in pseudo-polynomial time via dynamic programming; that
is, polynomial time assuming the input is in unary, matching the complexity of
our procedure.

6 The POROUS Tool

Our invariant-synthesis tool porous
9 computes N-semi-linear invariants for

point and Z-linear targets on systems defined by one-dimensional affine func-
tions. porous includes implementations of the procedures of Theorem 3
(restricted to one-dimensional affine systems) and Theorem 6. porous is built
in Python and can be used by command-line file input, a web interface, or by
directly invoking the Python packages.

porous takes as input an instance (a start point, a target, and a collection of
functions) and returns the generated invariant. Additionally it provides a proof
that this set is indeed an inductive invariant: the invariant is a union of N-linear
sets, so for each linear set and each function, porous illustrates the application
of that function to the linear set and shows for which other linear set in the
invariant this is a subset. Using this invariant, porous can decide reachability; if
the specific target is reachable the invariant is not in itself a proof of reachability
(since the invariant will often be an overapproximation of the global reachability
set). Rather, equipped with the guarantee of reachability, porous searches for
a direct proof of reachability: a sequence of functions from start to target (a
process which would not otherwise be guaranteed to terminate).

9 Tool: invariants.davidpurser.net Code: github.com/davidjpurser/porous-tool.

http://invariants.davidpurser.net
https://github.com/davidjpurser/porous-tool
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Table 2. Results varying by size parameter (last row includes all instances tested).
Times are given in seconds, with the average and maximum shown (except reachability
proof time, which are all approximately 30 s due to instances that terminate just before
the timeout).

Size Invariant
build time

Unreachable
instances

Invariant
proof time

Reachable
instances

Reachable
with proofs

Reachability
proof time

Avg Max Avg Max Within ≈30s Avg

8 0.001 0.009 100 (9.84%) 0.005 0.261 916 (90.2%) 911 (99.5%) 0.033

16 0.001 0.020 122 (12.0%) 0.010 0.788 894 (88.0%) 885 (99.0%) 0.053

32 0.003 0.068 134 (13.2%) 0.020 0.911 882 (86.8%) 843 (95.6%) 0.203

64 0.008 0.261 150 (14.8%) 0.052 2.969 866 (85.2%) 766 (88.5%) 0.294

128 0.021 0.557 153 (15.1%) 0.096 2.426 863 (84.9%) 719 (83.3%) 0.464

256 0.088 2.838 166 (16.3%) 0.316 43.587 850 (83.7%) 620 (72.9%) 0.998

512 0.428 9.312 162 (15.9%) 0.899 21.127 854 (84.1%) 570 (66.7%) 1.120

1024 1.121 20.252 173 (17.0%) 3.275 65.397 843 (83.0%) 514 (61.0%) 1.646

All 0.209 20.252 1160 (14.3%) 0.584 65.397 6968 (85.7%) 5828 (83.6%) 0.499

Experimentation. porous was tested on all 27 − 1 possible combinations of
the following function types, with a ≥ 2, b ≥ 1: positive counters (x �→ x + b),
negative counters (x �→ x − b), growing (x �→ ax ± b), inverting and growing
(x �→ −ax ± b), inverters with positive counters (x �→ −x + b), inverters with
negative counters (x �→ −x − b) and the pure inverter (x �→ −x). For each such
combination a random instance was generated, with a size parameter to control
the maximum modulus of a and b, ranging between 8 and 1024. The starting
point was between 1 and the size parameter and the target was between 1 and 4
times the size parameter. Ten instances were tested for each size parameter and
each of the 27 − 1 combinations, with between 1 and 9 functions of each type
(with a bias for one of each function type).

Our analysis, summarised in Table 2, illustrates the effect of the size param-
eter. The time to produce the proof of invariant is separated from the process of
building the invariant, since producing the proof of invariant can become slower
as |I| becomes larger; it requires finding Lk ∈ I such that fi(Lj) ⊆ Lk for every
linear set Lj ∈ I and every affine function fi. In every case porous successfully
built the invariant, and hence decided reachability very quickly (on average well
below 1 s) and also produced the proof of invariance in around half a second on
average. To demonstrate correctness in instances for which the target is reachable
porous also attempts to produce a proof of reachability (a sequence of functions
from start to target). Since our paper is focused on invariants as certificates of
non-reachability, our proof-of-reachability procedure was implemented crudely
as a simple breadth-first search without any heuristics, and hence a timeout of
30 s was used for this part of the experiment only.
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Our experimental methodology was partially limited due to the high preva-
lence of reachable instances. A random instance will likely exhibit a large (often
universal) reachability set. When two random counters are included, the chance
that gcd(b1, b2) = 1 (whence the whole space is covered) is around 60.8% and
higher if more counters are chosen.

Overall around 86% of instances were reachable (of which 84% produced a
proof within 30 s). Of the 14% of unreachable instances, all produced a proof,
with the invariant taking around 0.2 s to build and 0.6 s to produce the proof. The
30-s timeout when demonstrating reachability directly is several orders of mag-
nitudes longer than answering the reachability query via our invariant-building
method.

A typical academic/consumer laptop was used to conduct the timing and
analysis (a four-year-old, four-core MacBook Pro).

7 Conclusions and Open Directions

We introduced the notion of porous invariants, which are not necessarily convex
and can in fact exhibit infinitely many ‘holes’, and studied these in the context
of multipath (or branching/nondeterministic) affine loops over the integers, or
equivalently nondeterministic integer linear dynamical systems. We have in par-
ticular focused on reachability questions. Clearly, the potential applicability of
porous invariants to larger classes of systems (such as programs involving nested
loops) or more complex specifications remains largely unexplored.

Our focus is on the boundary between decidability and undecidability, leav-
ing precise complexity questions open. Indeed, the complexity of synthesising
invariants could conceivably be quite high, except where we have highlighted
polynomial-time results. On the other hand, the invariants produced should be
easy to understand and manipulate, from both a human and machine perspective.

On a more technical level, in our setting the most general class of invariants
that we consider are N-semi-linear. There remains at present a large gap between
decidability for one-dimensional affine functions, and undecidability for linear
updates in dimension 91 and above. It would be interesting to investigate whether
decidability can be extended further, for example to dimensions 2 and 3.
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JavaSMT 3: Interacting with SMT Solvers in Java

Daniel Baier , Dirk Beyer , and Karlheinz Friedberger

LMU Munich, Munich, Germany

Abstract. Satisfiability Modulo Theories (SMT) is an enabling technology
with many applications, especially in computer-aided verification. Due to
advances in research and strong demand for solvers, there are many SMT
solvers available. Since different implementations have different strengths,
it is often desirable to be able to substitute one solver by another. Un-
fortunately, the solvers have vastly different APIs and it is not easy to
switch to a different solver (lock-in effect). To tackle this problem, we
developed JavaSMT, which is a solver-independent framework that unifies
the API for using a set of SMT solvers. This paper describes version 3
of JavaSMT, which now supports eight SMT solvers and offers a simpler
build and update process. Our feature comparisons and experiments show
that different SMT solvers significantly differ in terms of feature support
and performance characteristics. A unifying Java API for SMT solvers is
important to make the SMT technology accessible for software developers.
Similar APIs exist for other programming languages.

Keywords: Satisfiability Modulo Theories · SMT Solver · Java · API

1 Introduction

SMT solvers [6, 21] are used in a multitude of applications, e.g., in formal software
analysis, where automated test-case generation [7, 16, 29, 30], SMT-based algo-
rithms for software verification [10, 34], and interactive theorem proving [27, 44]
are used. Applications and users rely on efficiency and expressiveness (sup-
ported SMT theories) to compute reasonable results in time. For application
developers, the usability and API of the solver are also important aspects, and
some features needed in applications, such as interpolation or optimization,
are not available in some solvers.

Using the solver’s own API directly makes it difficult to switch to another
solver without rewriting extensive parts of the application, as there is no stan-
dardized binary API for SMT solvers. The SMT-LIB2 standard [4] improves
this issue by defining a common language to interact with SMT solvers. How-
ever, this communication channel does not define a solver interface for special
features like optimization or interpolation.1 Additionally, the application has to
parse the data provided by the SMT solver on its own, and this of course
slightly changes from solver to solver.
1 A proposal for adding interpolation queries exists since 2012, see https://ultimate.
informatik.uni-freiburg.de/smtinterpol/proposal.pdf .
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JavaSMT [37] provides a common API layer across multiple back-end solvers
to address these problems. Our Java-based approach creates only minimal over-
head, while giving access to most solver features. JavaSMT is available under
the Apache 2.0 License on GitHub.2

Contribution. Our contribution consists of three parts:

• We integrated more SMT solvers into the API framework JavaSMT (new:
Boolector [43], CVC4 [5], and Yices2 [25]).

• We simplified the steps to get started using JavaSMT, by including support
for more operating systems (new: MacOS and Windows) and more build
techniques (new: Ant and Maven).

• We evaluated the performance of several algorithms for software verification
to show that different SMT solvers have different strengths.

Outline. This paper first provides a brief overview of JavaSMT in Sect. 2, ex-
plaining the inner structure and features. Sect. 3 discusses the development since
the previous publication [37]: more integrated SMT solvers and extended support
for operating systems and build processes. Sect. 4 describes a case study, based
on SMT-based algorithms [10] in a common verification framework.

Related Work. SMT-LIB2 [4] is the established standard format for exchanging
SMT queries. It provides simple usage, is easy to debug, and widely known in
the community. However, it requires extra effort to parse and transform formulas
in the user application. Features like optimization, interpolation, and receiving
nested parts of formulas are not defined by the standard, such that some SMT
solvers provide their own individual solution for that. Alternatively, several SMT
solvers already come with their special bindings for some programming languages.
Most SMT solvers are written in C/C++, so interacting with them in these
low-level languages is the easiest way. However, the support for higher-level
languages is sparse. The most prominent language binding for several SMT
solvers is Python, as it directly allows the access to C code and avoids automated
memory management operations like asynchronous garbage collection. Bindings
for Java are available for some SMT solvers, such as MathSAT5 and Z3, but
missing, unsupported, or unmaintained for others, such as Boolector and CVC4.

In the following, we discuss libraries, similar to JavaSMT, that provide access
to several underlying SMT solvers via a common user interface in different popular
languages, and their binding mechanism, i.e., whether the solver interaction is
based on a native interface or text-based on SMT-LIB2. With SMT-LIB2, an ar-
bitrary SMT solver can be queried, but the interaction happens through communi-
cating processes and the solver is mostly limited to features defined in the standard.
Accessing a native interface directly allows to support more features of the under-
lying solver, e.g., using callbacks, simplifying formulas, or eliminating quantifiers.

Table 1 provides an overview of the libraries for interacting with SMT solvers.
We enumerate several special features that are not available in some libraries,

2 https://github.com/sosy-lab/java-smt
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Table 1: Comparison of different interface libraries for SMT solvers
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JavaSMT [37] Java 3 7 3 3 3 3 22 90 2021
PySMT [28] Python 3 3 3 3 3 7 99 363 2021
SMT Kit C/C++ 3 7 3 7 7 7 4 36 2014
Smt-Switch [38] C/C++ 3 7 3 3 7 3 15 40 2021

jSMTLIB [20] Java 7 3 3 7 7 7 15 21 2020
metaSMT [45] C/C++ 7 3 7 7 3 3 19 43 2016
rsmt2 Rust 7 3 3 7 7 7 10 24 2021
SBV Haskell 7 3 3 7 3 7 17 134 2021
Scala SMT-LIB Scala 7 3 3 7 7 3 18 44 2021
ScalaSMT [17] Scala 7 3 7 7 7 3 1 4 2019
what4 Haskell 7 3 3 7 7 7 5 97 2021

such as unsat cores, interpolation, or optimization queries. Those features depend
on the support by the underlying SMT solver, but can be provided in general
by an API on top of them. Most libraries use their own formula representation
and not just wrap the objects provided by the SMT solver. This potentially
allows for easier formula decomposition and inspection, e.g., by using the visitor
pattern. JavaSMT directly provides formula decomposition if available in the
SMT solver. The provided numbers of forks and stars of the project repositories
on GitHub or Bitbucket can be seen as a measurement of popularity.

PySMT [28] is a Python-based project and aims at rapid prototyping of
algorithms using the native API of the installed SMT solvers. It has the ability to
perform formula manipulation without a back-end SMT solver and additionally
supports the conversion of boolean formulas to plain SAT problems and then
apply a SAT solver or a BDD library. This approach comes with the drawback
of a noticeable memory overhead and performance of an interpreted language.
metaSMT [45], SMT Kit, and Smt-Switch [38] provide solver-agnostic APIs for
interacting with various SMT solvers in C/C++ to focus on the application instead
of the solver integration. jSMTLIB [20], Scala SMT-LIB, and ScalaSMT [17] are
solver-independent libraries written in Java or Scala and interact via SMT-LIB2
with SMT solvers. Scala SMT-LIB and ScalaSMT allow to use an additional
domain-specific language to interact with SMT solvers and rewrite Scala syntax
into valid SMT-LIB2 and back. Both partially extend the SMT-LIB2 standard,
e.g., by offering the ability to overload operators or receive interpolants. SBV
and what4 are generic Haskell libraries based on process interaction via SMT-
LIB2 and support several SAT and SMT solvers. rsmt2 offers a generic Rust
library that currently supports three SMT solvers.
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2 JavaSMT’s Architecture and Solver Integration

In the following, we describe the architecture of JavaSMT and its main con-
cepts. Afterwards, we give an overview of the integrated SMT solvers and their
features. The architecture did not significantly change, but we added a few
new SMT solvers, as shown in Fig. 1.

Architecture. JavaSMT provides a common API for various SMT solvers. The
architecture, shown in Fig. 1, consists of several components: As common context,
we use a SolverContext that loads the underlying SMT solver and defines the
scope and lifetime of all created objects. As long as the context is available,
we track memory regions of native SMT-solver libraries. When the context is
closed, the corresponding memory is freed and garbage collection wipes all unused
objects. Within a given context, JavaSMT provides FormulaManagers for creating
formulas in various theories and ProverEnvironments for solving SMT queries.

A FormulaManager allows to create symbols and formulas in the correspond-
ing theories and provides a type-safe way to combine symbols and formulas
in order to encode a more complex SMT query. We support the structural
analysis (like splitting a formula into its components or counting all function
applications in a formula) and transformations (like substituting symbols or
applying equisatisfiable simplifications) of formulas.

Each ProverEnvironment represents a solver stack and allows to push/pop
boolean formulas and check them for satisfiability (the hard part). This follows
the idea of incremental solving (if the underlying SMT solver supports it). After a
satisfiability check, the ProverEnvironment provides methods to receive a model,
interpolants, or an unsatisfiable core for the given formula.

JavaSMT guarantees that formulas built with a single FormulaManager
can be used in several ProverEnvironments, e.g., the same formula can be
pushed onto and solved within several distinct ProverEnvironments. The in-
teraction with independent ProverEnvironments works from multiple threads.
However, some SMT solvers require synchronization (e.g., locking for an in-
terleaved usage) and other solvers do not require external synchronization
(this allows concurrent usage).

SMT-Solver Integration and Bindings. Of the eight SMT solvers that are available
in JavaSMT, only Princess [46] and SMTInterpol [18] were ‘easy’ to integrate,
as they are written in Scala and Java, respectively. Those solvers also use
the available memory management and garbage collection of the Java Virtual
Machine (JVM). All other solvers are written in C/C++ and need a Java Native
Interface (JNI) wrapper to interface with JavaSMT. Z3 [40] and CVC4 [5]
provide their own Java wrappers, while the bindings used for MathSAT5 [19],
Boolector [42], and Yices2 [25] are maintained by us. Those bindings are
self-written or partially based on a version of the solver developers, extended
with exception handling, and usable for debugging in JavaSMT. By providing
language bindings for solvers in our library, we relieve the solver developers
from this burden, and the implementation of exception handling and memory
management is done in an efficient and common manner across several solvers.
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Fig. 1: Overview of JavaSMT

Table 2: Size (LOC) of the Java-based solver wrappers and native solver bindings
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Java-based Wrapper 1644 1918 3229 3229 2042 2117 2728 2674
JNI Bindings 3136 1388 1508 1598

Table 2 lists the size (lines of code) of the wrappers to integrate each solver
in JavaSMT, in order to get a rough impression of the required effort to get a
solver and its bindings usable in JavaSMT. The size information consists of two
parts, namely the JNI bindings that are written in C/C++ and the Java code
that implements the necessary interfaces of JavaSMT. An expressive solver API
(like MathSAT5 or OptiMathSAT [47]) needs more code for their binding, with
only a small increment in complexity compared to other solver bindings.

Note that the evolution of JavaSMT depends on the evolution of the underlying
SMT solvers. Z3 is well-known, has a large user group, and an active develop-
ment team. Yet, interpolation support for Z3 was dropped with release 4.8.1.3
Bitwuzla [41] is the successor of the SMT solver Boolector, for which the
developers still provide small fixes. Bitwuzla can be supported in JavaSMT in
the future. CVC4 has been developed further to CVC5. However, the maintainers
3 https://github.com/Z3Prover/z3/releases/tag/z3-4.8.1
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dropped the existing Java API, partially because of issues with the Java garbage
collection, and plan to replace it.4 Yices2 is also actively maintained and adds
new features regularly. For example, the developers added support for third-party
SAT solvers such as CaDiCaL and CryptoMiniSat [48].

3 New Contributions in JavaSMT 3

This section describes the improvements over the JavaSMT version from five
years ago [37], split into two parts. First, we describe newly integrated solvers
and theory features. Second, we provide information about the build process.

Support for Additional SMT Solvers. JavaSMT3 provides access to eight SMT
solvers. Besides the solvers that were already integrated before, MathSAT5,
OptiMathSAT, Z3, Princess, and SMTInterpol, the user can now additionaly
use Boolector, CVC4, and Yices2. Table 3 lists available theories and impor-
tant features supported by each individual solver. Boolector is specialized in
Bitvector-based theories, but does not support the Integer theory. It is shipped
with several back-end SAT solvers, from which the user can choose a favorite:
CaDiCaL, CryptoMiniSat [48], Lingeling, MiniSat [26], and PicoSAT [13]. All
solvers support the input of plain SMT-LIB2 formulas. However, the feature
most requested by JavaSMT users is the input and output of SMT queries via
the API, i.e., parsing and printing boolean formulas for a given context. This
feature is required for (de-)serializing formulas to disk, for network transfer, and
to translate formulas from one solver to another one. This feature is unfortu-
nately missing for the newly integrated solvers, even though each solver internally
already contains code for parsing and printing SMT-LIB2 formulas.

For formula manipulation, JavaSMT accesses the components of a formula,
e.g., operators and operands. We do not require full access to the internal data
structures of the SMT solvers, but only limited access to the most basic parts.
Only Boolector does not provide the necessary API.

Build Simplification. JavaSMT3 also supports more operating systems than
before. Besides the existing support for Linux, we started to provide pre-compiled
binaries for MacOS and Windows for more than half of the available solvers.
This simplifies the initial steps for new users, which previously were required to
compile and link the solvers on their own. This was an involving task, because
of the diversity of build systems and dependencies of each solver.

In addition to this, we now offer direct support for two popular build sys-
tems for Java applications, namely Ant and Maven. JavaSMT comes with
several examples and documentation, such that the mentioned build systems
can be used to set up JavaSMT in a ready-to-go state on most systems. This
eliminates the need for complex manual set up of dependencies and eases the
use of JavaSMT and the SMT solvers.

4 https://github.com/cvc5/cvc5/issues/5018
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Table 3: SMT theories and features supported by SMT solvers in JavaSMT3
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Integer 7 3 3 3 3 3 3 3

Rational 7 3 3 3 3 3 3 3

Array 3 3 3 3 3 3 7 3

Bitvector 3 3 3 3 3 7 3 3

Float 7 3 3 3 7 7 7 3

UF 3 3 3 3 3 3 3 3

Quantifier 3 3 7 7 3 7 3 3

Fe
at
ur
es

Incremental Solving 3 3 3 3 3 3 3 3

Model 3 3 3 3 3 3 3 3

Assumption Solving 3 7 3 3 7 7 3 3

Interpolation 7 7 3 3 3 3 7 7

Optimization 7 7 7 3 7 7 7 3

UnsatCore 7 3 3 3 3 3 3 3

UnsatCore with Assumptions 7 7 3 3 7 3 3 3

SMT-LIB2 (plain text input) 3 3 3 3 3 3 3 3

SMT-LIB2 (via API) 7 7 3 3 3 3 7 3

Quantifier Elimination 7 3 7 7 3 7 7 3

Formula Decomposition 7 3 3 3 3 3 3 3

4 Evaluation

Frameworks that provide a unified API to SMT solvers (such as JavaSMT,
PySMT, and ScalaSMT) are necessary because the characteristics of the SMT
solvers vary a lot. In the evaluation we provide support for this argument.

We inlined a discussion of the features already in the previous section. Table 3
provides the overview of supported theories and shows that certain theories are
available only for a subset of SMT solvers. The table also shows that there are
several features that restrict the choice of SMT solvers for certain applications.

In terms of performance, we evaluate JavaSMT3 as a component of
CPAchecker [11], which is an open-source software-verification framework 5

that provides a range of different SMT-based algorithms for program analysis [10]
and encoding techniques for program control flow [8, 12]. We compare three
well-known and successful SMT-based algorithms for software model checking
and show that — when using the same algorithm and identical problem encoding
— the performance result of an analysis depends on the used SMT solver. Some

5 https://cpachecker.sosy-lab.org
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algorithms depend on special features of the SMT solver, e.g., to provide a certain
type of formula (such as interpolants) and operation on a formula (such as access
to subformulas). There are SMT solvers that can not be used for some algorithms.

We aim to show that depending on the feature set of the SMT solvers, it is
important to support a common API, and additionally, that using the text-based
interaction via SMT-LIB2 is not an efficient solution, when it comes to formula
analysis like adding additional information into a formula.

Benchmark Programs. We evaluate the usage of JavaSMT on a large subset
of the SV-benchmark suite 6 containing over 1 000 verification tasks. To have
a broad variation of benchmark tasks, we include reachability problems from
the categories BitVectors, ControlFlow, Heap, and Loops.

BitVectors depends on bit-precise reasoning and thus, the SMT solver needs
to support Bitvector logic. Heap depends on modeling heap memory access, e.g.,
which is either encoded in the theory of Arrays or as Uninterpreted Functions.
The category Loops contains tasks where the state space is potentially quite large.

Experimental Setup. We run all our experiments on computers with Intel Xeon
E3-1230 v5 CPUs with 3.40GHz, and limit the CPU time to 15min and the
memory to 15GB. We use CPAchecker revision r36714, which internally uses
JavaSMT 3.7.0-73. The time needed for transforming the input program into
SMT queries is rather small compared to the analysis time. Additionally, the
progress of an algorithm depends on the result (e.g., model values or interpolants)
returned from an SMT solver, thus we do not explicitly extract the run time
required by the SMT solver itself for answering the satisfiability problem, but we
measure the complete CPU time of CPAchecker for the verification run.

Analysis Configuration. We use three different SMT-based algorithms for software
verification [10]. The first approach is bounded model checking (BMC) [14, 15],
which is applied in software and hardware model checking since many years. In this
approach, a verification problem is encoded as single large SMT query and given
to the SMT solver. No further interaction with the SMT solver is required. In our
evaluation, we use a loop bound k = 10, which limits the size of the SMT query.

The second approach is k -induction [9, 24], which extends BMC, and which
uses auxiliary invariants to strengthen the induction hypothesis. In this approach,
the algorithm generates several SMT queries (base case, inductive-step case, each
with increasing loop bound) and uses an invariant generator that provides the
auxiliary invariants. We use an interval-based invariant generator that provides
not only the invariants, but also information about pointers and aliases, which
must be inserted into the SMT formula using the formula visitor.

The third approach is predicate abstraction [3, 12, 31, 35], which uses Craig
interpolation [22, 32, 39] to compute predicate abstractions of the program. This
approach does not only query the SMT solver multiple times, but also uses
(sequential) interpolation, which is currently supported only by MathSAT5,
Princess, and SMTInterpol.

6 https://github.com/sosy-lab/sv-benchmarks

202 D. Baier, D. Beyer, and K. Friedberger

https://github.com/sosy-lab/sv-benchmarks


0 250 500

10

100

1 000

n-th fastest result

C
P
U

ti
m
e
(s
) Boolector CVC4

MathSAT5 Princess
Yices2 Z3

Fig. 2: Quantile plot for the runtime of k -induction with several SMT solvers

All approaches are executed in two configurations, depending on the used
encoding of program statements: First, we apply a bitvector-based encoding that
precisely models bit-precise arithmetics and overflows of the program. Second,
an encoding based on linear integer arithmetic is used, which approximates the
concrete program execution and is sufficient for some programs.

Solver Configuration. Overall, we aim to show that each solver provides a unique
fingerprint of features and results. We aim for a precise program analysis and
thus configure the SMT solvers to be as precise as possible, but with a rea-
sonable configuration for each solver (i.e., without using a feature combination
that is unsupported by the SMT solver).

SMTInterpol does not support efficient solving of SMT queries in Bitvector
logic, thus, it is configured to use only Integer logic. Boolector misses Integer
logic, thus, it is applied only to the bit-precise configurations. Additionally, this
SMT solver does not support formula inspection and decomposition, which is
required by several components in k -induction, e.g., to encode proper pointer
aliasing for the program analysis. While the code for formula inspection is called
quite often, its influence on the results for the selected benchmark tasks is small.
In order to be comparable as far as possible, we deactivate pointer aliasing when
using Boolector. Yices2 misses proper support for Array logic, thus, we use a
UF-based encoding of heap memory as alternative for this solver, which results
in a slightly unsound analysis, but a comparable formula size and run time.

Results and Discussion. Figure 2 provides the quantile plot for the results of
k -induction configurations with bit-precise encoding using several SMT solvers.
The plot shows the CPU time for valid analysis results, i.e., proofs or counterex-
amples found, for both expected results true and false. We aim for providing all
result that are useful for a user and do not show results where the tool (or SMT
solver) crashes or runs out of resources. We do not subtract the run time required
for the framework CPAchecker itself (which starts a Java virtual machine), as
we assume it to be comparable per program task; we are only interested in the
asymptotics in this evaluation. The overall performance of SMT solvers is similar
for simple verification tasks, i.e., those with a small run time in the analysis. For
difficult tasks with harder SMT queries, the differences of the SMT solvers emerge.
When applying k -induction, the analysis inserts additional constraints into the
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Table 4: Run time for using different SMT solvers for bounded model checking
(‘BMC’), k-induction (‘KI’), and predicate abstraction (‘PA’) with the theories
of Bitvectors (‘BV’) and Integers (‘Int’); CPU time given in seconds with two
significant digits, ‘ TO’ indicates timeouts (900 s), ‘ ERR’ indicates errors, and
empty cells indicate that the theory or interpolation was not supported
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Algorithm BMC BMC KI KI KI KI PA PA PA PA
Encoding Int BV Int Int BV BV Int Int BV BV

Boolector 5.8 ERR ERR

CVC4 340 6.4 TO TO 110 TO

MathSAT5 17 7.8 200 53 60 54 TO 11 16 7.1

Princess TO TO 530 TO 260 TO 38 160 TO ERR

SMTInterpol 50 TO 140 TO 13

Yices2 14 7.7 340 23 34 28

Z3 15 6.7 130 66 43 21

SMT formula and requires the SMT solver to allow access to components of
existing formulas. As Boolector misses this specific feature, k -induction cannot
be very effective here. Other SMT solvers are the preferred choice.

Table 4 contains some example tasks from all used algorithms and encodings,
where the difference between distinct SMT solvers is noteworthy. Choosing the
optimal SMT solvers for an arbitrary problem task is not obvious.

5 Conclusion

We contribute JavaSMT3, the third generation of the unifying Java API for
SMT solvers. The package now contains more SMT solvers, an improved build
process, and support for MacOS and Windows. The project has over 20 con-
tributors, 2 500 commits, and overall about 41 000 lines of code.7 JavaSMT is
used in Java applications (e.g., [23, 33, 36]) as a solution to combine convenience
and performance for the interaction with SMT solvers, or to switch between
different solvers and compare them [11, 49]. The most prominent application using
JavaSMT is the verification framework CPAchecker (a widely-used software

7 https://www.openhub.net/p/java-smt
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project 8 with 73 forks on GitHub alone), for which JavaSMT was originally
developed. In the future, we plan to support more SMT solvers, operating sys-
tems, and hardware architectures, while keeping the user interface stable. We
hope that even more researchers and developers of Java applications can benefit
from SMT solving via a convenient and powerful API.

Data Availability Statement. All benchmark tasks for evaluation, configuration
files, a ready-to-run version of our implementation, and tables with detailed
results are available in our reproduction package on Zenodo as virtual machine [1]
and as ZIP archive [2]. The source code of the open-source library JavaSMT [37]
is available in the project repository; see https://github.com/sosy-lab/java-smt.

Funding. This project was supported by the Deutsche Forschungsgemeinschaft
(DFG) – 378803395 (ConVeY).
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Abstract. The process of developing civil aircraft and their related sys-
tems includes multiple phases of Preliminary Safety Assessment (PSA).
An objective of PSA is to link the classification of failure conditions and
effects (produced in the functional hazard analysis phases) to appro-
priate safety requirements for elements in the aircraft architecture. A
complete and correct preliminary safety assessment phase avoids poten-
tially costly revisions to the design late in the design process. Hence,
automated ways to support PSA are an important challenge in modern
aircraft design. A modern approach to conducting PSAs is via the use of
abstract propagation models, that are basically hyper-graphs where arcs
model the dependency among components, e.g. how the degradation of
one component may lead to the degraded or failed operation of another.
Such models are used for computing failure propagations: the fault of a
component may have multiple ramifications within the system, causing
the malfunction of several interconnected components. A central aspect
of this problem is that of identifying the minimal fault combinations,
also referred to as minimal cut sets, that cause overall failures.

In this paper we propose an expressive framework to model failure
propagation, catering for multiple levels of degradation as well as cyclic
and nondeterministic dependencies. We define a formal sequential seman-
tics, and present an efficient SMT-based method for the analysis of failure
propagation, able to enumerate cut sets that are minimal with respect to
the order between levels of degradation. In contrast with the state of the
art, the proposed approach is provably more expressive, and dramatically
outperforms other systems when a comparison is possible.

1 Introduction

The process of developing civil aircraft and their related systems is guided by
documents ARP4754A [17] and ARP4761 [16] produced by the engineering and
standards organization SAE International. These documents describe a struc-
tured process for the safety assessment of these classes of platforms. An impor-
tant stage is that of the Preliminary Aircraft Safety Assessment (PASA) and
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Preliminary System Safety Assessment (PSSA). The PASA is followed by mul-
tiple PSSA, carried out at the level of the systems composing the aircraft. One
important goal of these process stages is to link the classification of failure con-
ditions and effects (produced in the aircraft functional hazard analysis phase) to
appropriate safety requirements for elements in the aircraft architecture. These
safety requirements drive, among other things, assignment of target Develop-
ment Assurance Levels (DAL) for items within the architecture. A complete and
correct preliminary safety assessment phase avoids potentially costly revisions
to the design late in the design process. Hence, automated ways to support PSA
are an important challenge in modern aircraft design [18].

An important goal of PSAs is to fully understand how faults of simple func-
tions (e.g. providing electrical power, on-ground braking) interact and propagate
to affect the overall behaviours (e.g. landing, take-off, taxiing). A modern app-
roach to conducting such safety assessments is via propagation models [1,14,19],
that model the dependency among components, e.g. how the degradation of one
component may lead to the degraded or failed operation of another. Such mod-
els are used for computing failure propagations: the fault of a component may
have multiple ramifications within the system, causing the malfunction of several
interconnected components. A central problem is identifying the minimal fault
combinations, also referred to as minimal cut sets, that cause overall failures [12].

Given that PSAs occur in the early stages of the development process when
limited information regarding the design is available, reasoning is carried out at
a very high level of abstraction. Therefore, instead of using behavioural models
(e.g., infinite-state transition systems) adopted in formal verification, the system
is more naturally modeled by a simpler formalism of propagation graphs. This
does not make PSA any easier. There are in fact several aspects that must be
taken into account. The first problem is the sheer size of propagation graphs,
both in terms of nodes and hyper-paths to be explored, which make enumerative
techniques completely inadequate.

fs fd

fu

w

Fig. 1. Hasse dia-
gram of the fds

W3F [14].

Second, the propagation is non-Boolean [19]. That is,
the degradation levels of the system functions are not
binary (working vs not working) but the functions may be
subject to different levels of degradation (e.g. fully oper-
ational, partly failed, completely failed), and fail in dif-
ferent ways (e.g. detected vs undetected, stuck open vs
stuck closed), and different failures may be associated to
different probabilities [19]. For example, the state of a com-
ponent can be abstractly modeled into working (w), failed
safe (fs), failed detected (fd), or failed undetected (fu), with
degrees of degradation partially ordered as shown in Fig. 1.

In this setting, the notion of minimality needs to take into account the order
among the levels of degradation, and can not be simply considered in terms of
minimality with respect to set-inclusion. Third, various forms of failure propaga-
tion may be possible, e.g., nondeterministic, temporally-constrained, cyclic. For
example, the failure of a power generator may lead, within a certain amount of
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time, to a depleted battery and then to the loss of an engine. In turn, the loss of
an engine may compromise the ability to generate power, which clearly requires
the ability to deal with cyclic propagation graphs. Additionally, a failure of the
control system might cause a pressure valve to become either stuck open or stuck
closed; this requires the ability to deal with nondeterministic propagations.

In this paper we tackle the problem of analyzing failure propagation in the full
generality required by real-world applications. We start from Finite Degradation
Structures (fds) [14], a recently-proposed modeling framework, which unifies
various combinational models traditionally used in safety analysis (such as fault
trees and minimal cut sets) and generalizes them to deal with different levels of
degradation. We propose a framework, referred to as pgfds (Propagation Graphs
over fds), that allows to model non-deterministic and cyclic propagation graphs.
The framework is general and can be used in other safety-critical domains.

In order to deal with cyclic behaviours, pgfds require a sequential semantics,
expressed via symbolic transition systems. The computation of minimal cut sets
over pgfds can be carried out by means of techniques based on model checking,
developed for the general case of behavioural models [6].

Then, we prove that it is possible to carry out the same analysis within a
combinational setting, leveraging two widely adopted assumptions: that faults
are persistent and that the fault propagation is monotone. These assumptions
allow us to devise an efficient algorithm that can analyze fault propagations of
realistic industrial benchmarks that are currently out of reach of state-of-the-art
methods. The analysis of pgfds is reduced to model enumeration for an SMT
formula that does not require the explicit unrolling of the transition system.
We tackle two key difficulties. The first one is to ensure causality and rule out
self-supporting fault configurations in the combinational encoding. This is done
by imposing cycle-breaking constraints requiring the existence of a partial order
that is then constructed by the SMT solver during the analysis. The second one
is to devise efficient enumeration techniques of models that are fds-minimal,
i.e., minimal with respect to the severity of the degradation given by the fds.
To this end, we propose an SMT-based enumerator of fds-minimal models.

We have experimentally evaluated our approach on a comprehensive set of
realistic benchmarks, also generating random systems that have a similar struc-
ture as our proprietary systems1. The results demonstrate substantial advances
with respect to the state of the art. Our approach is clearly superior to the app-
roach proposed in [14], that is limited to the case of acyclic deterministic pgfds.
For the cyclic pgfdss, we contrast our approach against the sequential approach
based on model-checking and show that our approach is able to scale to large
pgfds, dramatically outperforming the sequential approach.

This paper is structured as follows. In Sect. 2 we present the mathematical
notation and background on fds. In Sect. 3 we describe Propagation Graphs over
fds (pgfds). In Sect. 4 we present the combinational encoding of pgfds into
SMT. In Sect. 5 we describe how to use the SMT encoding for the enumeration
of fds-minimal cut sets. In Sect. 6 we discuss some related work, and in Sect. 7

1 Unfortunately the proprietary systems cannot be disclosed.
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we present the experimental evaluation. In Sect. 8 we draw some conclusions and
outline directions for future work.

2 Preliminaries

In the section, we explain the basic mathematical conventions that are used
in the paper. We assume that the reader is familiar with the basic ideas of
Satisfiability Modulo Theories (SMT) and in particular with the theory of linear
integer arithmetic and the DPLL(T) procedure, as presented, e.g., in [2].

If convenient, we define unary functions with small domains in-place exten-
sionally, e.g., {1 �→ 2, 2 �→ 3} is a function with domain {1, 2} that maps 1 to 2
and 2 to 3. We say that the n-ary function f(x1, x2, . . . , xn) depends on its for-
mal argument xi if there are some values v1, v2, . . . , vn, v′

i in the corresponding
domains such that f(v1, v2, . . . , vi, . . . vn) �= f(v1, v2, . . . , v′

i, . . . vn). Given sets A
and B, we denote as BA the set of all functions from A to B. Given a partially
ordered set (A,≤), its subset B ⊆ A is called an upper (resp. lower) set if for
all b ∈ B, a ∈ A, the condition a ≥ b (resp. a ≤ b) implies a ∈ B.

A Finite Degradation Structure (fds) [14] is a triple (FM ,≤,⊥), where FM
is a finite set of failure modes and ≤ is a partial order on FM with the least
element ⊥. For any set A and an fds B = (FMB ,≤B ,⊥B), the fds BA for
the set of functions from A to FMB is defined as ((FMB)A,≤BA ,⊥BA), where
⊥BA(a) = ⊥B for all a ∈ A, and f ≤BA f ′ if and only if f(a) ≤B f ′(a) for all
a ∈ A. We assume that each fds contains at least two elements. We say that
an fds is Boolean if it is isomorphic to the structure ({⊥,
},⊥ ≤ 
,⊥). In the
following, for an fds D = (FM ,≤,⊥), we denote elements of the set FMwith
f, f ′ and call them failure modes.

Given a first-order formula ϕ over the language of the theory of linear integer
arithmetic, an assignment μ that assigns a value μ(b) ∈ {false, true} to each
free Boolean variable b of ϕ and a value μ(n) ∈ Z to each free integer variable n
of ϕ is called a model of ϕ (denoted μ |= ϕ) if μ makes ϕ true. If B is a subset
of free Boolean variables of ϕ, the model μ |= ϕ is called subset-minimal with
respect to B if there is no model μ′ |= ϕ such that {b ∈ B | μ′(b) = true} � {b ∈
B | μ(b) = true}.

A transition system TS is a tuple (X, I, T ) where X is a set of (state) vari-
ables, I(X) is a formula representing the initial states, and T (X,X ′) is a formula
representing the transitions. A state of TS is an assignment to the variables X.
A trace of M is a (possibly infinite) sequence s0, s1, . . . of states such that s0 |= I
and, for all i ≥ 0, si, s

′
i+1 |= T .

3 Propagation Graphs over FDSs

In this section, we introduce our model for fault propagation, which we call
Propagation Graphs over fdss (pgfds), and provide a sequential semantics for
it which can be used to encode pgfdss into transition systems.
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Intuitively, a Propagation Graph over fds (pgfds) consists of a set of com-
ponents of the system and of the next function. In each step of the failure
propagation, each component is in some failure mode from the underlying fds.
In the next step of the failure propagation, each component can either 1) stay in
its previous failure mode or 2) switch to an arbitrary failure mode from the set
of possible next failure modes. The set of possible next failure modes for each
component is given by the function next , based on the current failure modes of
all components in the system.

Definition 1 (Propagation Graph over FDS (PGFDS)). Given a finite
degradation structure D = (FM ,≤,⊥), a propagation graph over D is a pair
S = (C,next), where

– C is a finite set of system components, and
– next : C → (FMC → 2FM ) is a mapping that assigns to each component

c ∈ C a next failure mode function next(c), which maps failure modes of all
components in C to a set of possible next failure modes of c.

A state of S is a mapping s : C → FM that assigns a failure mode f ∈ FM to
each system component c ∈ C.

Example 1. Consider a system with three components, h (hydraulic), e (elec-
tric), and g (control on ground), over the Boolean fds ({⊥,
},⊥ ≤ 
,⊥).
Each of the components is either working correctly (represented by the failure
mode ⊥) or incorrectly (
). Component g depends on the correct functionality
of either e or h. Component e depends on h to function correctly and, symmet-
rically, h depends on e. The failure propagation of this system can be described
by a pgfds S = ({g,e,h},next), where

– next(g)(s) = {
} if s(e) = s(h) = 
 and next(g)(s) = ∅ otherwise;
– next(e)(s) = {
} if s(h) = 
 and next(e)(s) = ∅ otherwise;
– next(h)(s) = {
} if s(e) = 
 and next(h)(s) = ∅ otherwise.

Note that next(c)(s) = ∅ means that if the system is in the state s, the component
c cannot change its current failure mode.

The structure is intuitively associated with the hypergraph depicted in Fig. 2.
The dashed rectangles represent the fact that each component can fail on its own
(locally); the hyper-arc from e and h to g is conjunctive, while the arcs incoming
into a node are disjunctive. �


The important assumption of our approach is that we consider only fault-
persistent propagations, i.e., fault propagations where each component can fail
only once and after it does, it stays in the same failure mode forever. Note that
this is a realistic assumption that is also used in other techniques for reliability
analysis [5]. It is also implicitly used in other modeling techniques that are purely
combinational (e.g., [19]) because they model the system only in a single time
step, without considering any change in time whatsoever. Single propagation step
of such computations can be described by a fault-persistent transition relation;
the whole such computation as fault-persistent failure propagation.
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g

h e

g-local

h-local e-local

Fig. 2. The hypergraph view of a simple pgfds.

Definition 2 (Fault-persistent transition relation). Let S = (C,next) be
a pgfds over an fds with the least element ⊥. The fault-persistent transition
relation of S, denoted as Rs, is the binary relation between states of S such that
for all states s, s′, the relation Rs(s, s′) holds if and only if for each c ∈ C

– s′(c) = s(c) or
– s(c) = ⊥ and s′(c) ∈ next(c)(s).

Definition 3 (Fault-persistent failure propagation). Given a pgfds S =
(C,next), its fault-persistent transition relation Rs, and k ∈ N, the sequence
(si)0≤i≤k of states of S is called a fault-persistent failure propagation if the
relation Rs(si, si+1) holds for all 0 ≤ i < k.

Because we deal only with fault-persistent failure propagations in this paper,
we from now on refer to the fault-persistent transition relation and the fault-
persistent failure propagation only as transition relation and failure propagation,
respectively.

Definition 4 (Cyclic PGFDS). Let S = (C,next) be a pgfds. A component
c ∈ C depends on a component d ∈ C iff next(c)(s) �= next(c)(s′) for some
s, s′ : C → FM such that s(d) �= s′(d) and s(c′) = s′(c′) for all c′ �= d. Let
deps(c) := {d ∈ C | c depends on d}, D ⊆ C × C be such that D(c, c′) if and
only if c′ ∈ deps(c), and let D+ be the transitive closure of D. Then we say that
S is cyclic if and only if there exists c ∈ C such that D+(c, c) holds.

Example 2. In the pgfds S from Example 1, the component g depends on com-
ponents e and h, the component e depends on h, and the component h depends
on e. The pgfds S is therefore cyclic because e (and also h) transitively depends
on itself. �


To analyze reliability of the modeled system, it is important to identify the
failures of its components (i.e., assignment of failure modes to the components)
which cause the system to reach a given set of dangerous states, usually called top
level event (TLE). Such assignments are called cut sets. Since the number of all
cut sets can be prohibitively large, it is often enough to identify the least severe
failures in terms of the underlying fds that are sufficient to cause the TLE.
Such cut sets are called fds-minimal, or minimal for short. These concepts are
formalized in the following definitions.
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Definition 5 (Top Level Event). Given a pgfds S, a Top Level Event
(TLE) is an arbitrary set of states of S.

Definition 6 ((FDS-Minimal) Cut Set). Given a pgfds S = (C,next), and
a top level event TLE, a cut set is any state s for which there is a fault-persistent
failure propagation that starts in s and ends in some sk ∈ TLE. A cut set is
called fds-minimal (or minimal for short) if it is minimal with respect to the
pointwise ordering ≤ of the underlying fds.

Given a system S and a top level event TLE , we denote the set of all correspond-
ing cut sets as CS (S,TLE ) and the set of all minimal cut sets as MCS (S,TLE ).
As a convention, when talking about cut sets, we will explicitly mention only
the components to which the cut set assigns a failure mode different from ⊥.

Example 3. Consider again the pgfds S from Example 1 and the top level event
TLE = {s : {g,e,h} → {
,⊥} | s(g) = 
}, which corresponds to the compo-
nent g not working correctly. The minimal cut sets for the pgfds S and the
given top level event are

1. {g �→ 
}, witnessed by a failure propagation ({g �→ 
,e �→ ⊥,h �→ ⊥}) of
length 1.

2. {e �→ 
}, witnessed by a failure propagation ({g �→ ⊥,e �→ 
,h �→ ⊥}, {g �→
⊥,e �→ 
,h �→ 
}, {g �→ 
,e �→ 
,h �→ 
}) of length 3.

3. {h �→ 
}, witnessed by a failure propagation ({g �→ ⊥,e �→ ⊥,h �→ 
}, {g �→
⊥,e �→ 
,h �→ 
}, {g �→ 
,e �→ 
,h �→ 
}) of length 3.

Note that besides these three minimal cut sets, there are other cut sets that are
not minimal, such as {e �→ 
,h �→ 
}. �


Fault-persistent computations of a pgfds can be easily represented as traces
of a (symbolic) transition system.

Definition 7 (Fault-persistent transition system). Given a pgfds S =
(C,next) and an fds D = (FM ,≤,⊥), the corresponding fault-persistent (sym-
bolic) transition system is given by TSS = (X, true, T ), where:

– X = {xc | c ∈ C} is the set of state variables, with domain FM ;
– T (X,X ′) is a symbolic encoding of the fault-persistent transition relation of

S as given in Definition 2. That is, for each assignment μ : X ∪ X ′ → FM ,
μ |= T if and only if Rs(s, s′) holds, where s : C → FM is defined as s(c) =
μ(xc) (and similarly for s′).

By definition, every fault-persistent computation of S has a corresponding trace
(of the same length) in TSS . Therefore, encoding pgfdss as transition systems
allows leveraging off-the-shelf algorithms for subset-minimal cut set enumer-
ation, such as those given in [6]. However, this might be inefficient, particu-
larly for TLEs that are triggered by long failure propagations (corresponding
to equally-long traces of the induced transition system). Moreover, as we show
later, enumerating fds-minimal cut sets is more involved.
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Fault propagation systems used in practice often have the property that no
transition can be disabled by additional faults, i.e., by switching a failure mode
of a component from ⊥ to f �= ⊥. This is also the case for the pgfds from
Example 1. Such systems are called subset-monotone or monotone for short.
This is formalized by the following definition.

Definition 8 (Subset-monotone PGFDS). A pgfds S = (C,next) is called
subset-monotone if for all s, s′ : C → FM , the condition ∀c ∈ C. s(c) �= ⊥ →
s(c) = s′(c) implies ∀c ∈ C. next(c)(s) ⊆ next(c)(s′).

4 From Sequential to Combinational

In this section, we describe a combinational encoding of fault-persistent compu-
tations of a pgfds, which is guaranteed to be exact for subset-monotone pgfdss
and provides a useful overapproximation for general pgfdss. In the rest of the
section, let S = (C,next) be a pgfds over the fds D = (FM ,≤,⊥), and TLE
be a top level event. We show how to construct a first-order formula ϕcs over
the theory of linear integer arithmetic whose models correspond to cut sets of S
with respect to TLE . In the next section, we then use this formula to enumerate
all fds-minimal cut sets of S.

To encode the propagations of S, for each component c ∈ C and each failure
mode f ∈ FM we introduce two Boolean variables: Ic,f and Fc,f . The variable
Ic,f encodes whether c was in the failure mode f in the initial state of the
propagation. The variable Fc,f encodes whether c has been in the failure mode
f at any time during the propagation. We can then encode TLE as a formula
ϕTLE over variables Fc,f .2

Considering now a possible propagation, a component c can be in failure
mode f �= ⊥ at some time during the propagation for two reasons: either it was
already in f in the initial state of the propagation, or it transitions to f because
of its next function. The first case is represented by Ic,f being true. The second
case can be encoded as follows (for each c ∈ C and f ∈ FM \ {⊥}):

∨

s : C→FM
f∈next(c)(s)

∧

d∈deps(c)
s(d) �=⊥

Fd,s(d), (1)

stating that there must exist a row in the truth table of next(c), whose result
includes f and which agrees with the current state on the failure modes of failed
dependencies.3 The above, however, would not work in the presence of cycles.
This can already be seen on the simple cyclic pgfds from Example 1.

2 A naive encoding would be using the formula
∨

s∈TLE (
∧

c∈C,s(c) �=⊥ Fc,s(c) ∧
∧

c∈C,s(c)=⊥
∧

f∈FM\{⊥} ¬Fc,f ), but more compact representations are of course pos-

sible (particularly if TLE is given symbolically).
3 This formula can again be encoded more compactly; particularly if the next function

is given symbolically, which is usually the case in practice.
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Example 4. Consider again the pgfds S from Example 1. The above-described
encoding of the propagations of S is

(Fg,	 → (Ig,	 ∨ (Fe,	 ∧ Fh,	))) ∧
(Fe,	 → (Ie,	 ∨ Fh,	)) ∧
(Fh,	 → (Ih,	 ∨ Fe,	)).

Although this encoding has a model μ such that μ |= ¬Ig,	 ∧ ¬Ie,	 ∧ ¬Ih,	 ∧
Fg,	 ∧ Fe,	 ∧ Fh,	, there is no propagation path of S in which both components
e and h are initially in the state ⊥ and switch to state 
 during the propagation.
The problem is that the encoding allows models where a failure of e was caused
by a failure of h, which was in turn caused by the same failure of e. �


In order to solve the problem, we introduce constraints imposing a causal
ordering among the components, stating that the failure of a component can be
caused only by other components that precede it in the causal order. We encode
this by introducing one additional integer variable oc for each component c,
which intuitively corresponds to the time when the component c switched to a
failure mode different from ⊥, and modifying the formula (1) to take the causal
ordering into account:4

∨

s : C→FM
f∈next(c)(s)

∧

d∈deps(c)
s(d) �=⊥

(
Fd,s(d) ∧ od < oc

)
. (2)

Putting it all together, the encoding for the failure mode changes is given by the
formula ϕnext below:

ϕnext =
∧

c∈C
f∈FM\{⊥}

(Fc,f → (Ic,f ∨ (2))) ∧ (Ic,f → Fc,f ).

Example 5. For the pgfds S from Example 1, the correct encoding of the prop-
agations of S is thus the following formula ϕnext :

(Fg,	 → (Ig,	 ∨ ((Fe,	 ∧ oe < og) ∧ (Fh,	 ∧ oh < og))) ∧
(Ig,	 → Fg,	) ∧
(Fe,	 → (Ie,	 ∨ (Fh,	 ∧ oh < oe))) ∧
(Ie,	 → Fe,	) ∧
(Fh,	 → (Ih,	 ∨ (Fe,	 ∧ oe < oh))) ∧
(Ih,	 → Fh,	).

Note that the constraints for causal ordering now rule out the spurious self-
supporting propagation in which e fails because of h and h fails because of e.
4 We remark that such ordering constraints are needed only if the input pgfds is

cyclic, and only between components in the same strongly connected component of
the dependency graph.
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This would require that oh < oe and oe < oh are both true, which is clearly
impossible in the theory of linear integer arithmetic (or, more generally, in any
theory in which < is interpreted as a strict ordering relation).

The propagations of S mentioned in Example 3 correspond to the following
assignments:

1. The propagation for the cut set {g �→ 
} corresponds to an assignment μ
such that μ |= Ig,	 ∧ ¬Ie,	 ∧ ¬Ih,	 ∧ Fg,	 ∧ ¬Fe,	 ∧ ¬Fh,	 and μ(og) =
μ(oe) = μ(oh) = 0.

2. The propagation for the cut set {e �→ 
} corresponds to an assignment μ
such that μ |= ¬Ig,	 ∧ Ie,	 ∧ ¬Ih,	 ∧ Fg,	 ∧ Fe,	 ∧ Fh,	 and μ(og) = 2,
μ(oe) = 0, μ(oh) = 1.

3. The propagation for the cut set {h �→ 
} corresponds to an assignment μ
such that μ |= ¬Ig,	 ∧ ¬Ie,	 ∧ Ih,	 ∧ Fg,	 ∧ Fe,	 ∧ Fh,	 and μ(og) = 2,
μ(oe) = 1, μ(oh) = 0.

These assignments are not unique; there are infinitely many choices for the values
of the ordering variables oc. Also note that there is no global causality ordering
for the system: the causality ordering is different for different propagations. �

Finally, we encode the fault-persistence constraint by stating that no component
can be in two failure modes either in the initial state of the propagation or at
any time during the propagation:

ϕonce =
∧

c∈C
f,f ′∈FM\{⊥}

f �=f ′

(¬Ic,f ∨ ¬Ic,f ′) ∧ (¬Fc,f ∨ ¬Fc,f ′) .

The final formula is then given by ϕcs :

ϕcs = ϕTLE ∧ ϕnext ∧ ϕonce.

As the following theorem shows, the formula ϕcs for general systems encodes
an overapproximation of the set CS (S,TLE ). The reason for this is that the
encoding does not enforce failure mode of dependencies that are working, i.e.,
are in the failure mode ⊥. Note that even an overapproximation of CS (S,TLE )
is useful for safety analysis; it can be used, for example, for computing an upper
bound on the probability of failure of the system. Moreover, if the system S is
subset-monotone, which is often the case in practice, the formula ϕcs is guaran-
teed to encode the set CS (S,TLE ) exactly.

To formulate the relationship precisely, we define the function that provides
the correspondence between the models of μ and the cut sets of S. Observe
that thanks to ϕonce , each model μ of ϕcs corresponds to a unique initial state
modelToState(μ) of S as defined below:

modelToState(μ)(c) =

{
f, if {f ′ ∈ FM \ {⊥} | μ(Ic,f ′) = true} = {f},

⊥, if {f ′ ∈ FM \ {⊥} | μ(Ic,f ′) = true} = ∅.
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MCS-enumeration(ϕcs , modelToState):
1. solver := SMT-solver()
2. res := ∅
3. assert-formula(solver, ϕcs)
4. for Ic,f ∈ vars(ϕcs):
5. add-preferred-var(solver, Ic,f , false)
6. while check-sat(solver):
7. μ := get-model(solver)
8. ψ := true
9. for Ic,f ∈ vars(ϕcs):
10. if μ(Ic,f ) = true:
11. ψ := ψ ∧ Ic,f
12. res := res ∪ {modelToState(μ)}
13. assert-formula(solver, ¬ψ)
14. return res

Fig. 3. SMT-based MCS enumeration algorithm.

Theorem 1. For an arbitrary pgfds S and a top level event TLE,

CS (S,TLE ) ⊆ {modelToState(μ) | μ |= ϕcs}.

Moreover, if S is subset-monotone, these sets are equal.

5 Enumeration of FDS-Minimal Cut Sets

In this section, we show how to efficiently enumerate fds-minimal cut sets of
subset-monotone systems using the formula ϕcs and an SMT solver. We first
consider a simplified case, in which the underlying fds D is Boolean. We then
show how to generalize our solution to arbitrary fdss.

5.1 Algorithm for Boolean FDSs

The pseudo-code of our procedure for the case when the underlying fds is
Boolean is shown in Fig. 3. Intuitively, the algorithm enumerates all the subset-
minimal models of ϕcs with respect to the set of variables of form Ic,f . These
models are enumerated one by one and each enumerated model is, together with
all its supermodels, blocked by the assertion on line 13, until the formula becomes
unsatisfiable. Each model of the formula is converted to a cut set by the function
modelToState.

The algorithm makes use of a DPLL(T)-based SMT solver that provides the
following functionalities:

1. An assert-formula method that allows to add constraints incrementally;
2. A check-sat method to determine the satisfiability of the current set of con-

straints;
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3. A get-model method that returns a model for the current asserted set of
constraints, in case they are satisfiable;

4. An add-preferred-var method that allows to control the branching heuristics
of the internal SAT engine of the solver, such that whenever a SAT decision
needs to be performed, variables in the preferred set are always considered
before the other variables for branching, and are assigned the value specified
in the add-preferred-var call.5

The correctness for our algorithm is formalized by the theorem below.

Theorem 2 (MCS enumeration over Boolean FDS). For a subset-
monotone pgfds S over the Boolean fds, the result of MCS−
enumeration(ϕcs ,modelToState) is the set of all fds-minimal cut sets of S.

Proof. Let S = (C,next) be a subset-monotone pgfds. It was proven by Di
Rosa et al. [15] that if branching heuristics of a CDCL-based SAT solver are
modified to assign false to a subset V of variables before branching on other
variables (lines 4–5 of our pseudocode), the produced model is subset-minimal
with respect to the set of variables V . This claim straightforwardly extends to
DPLL(T)-based SMT solvers. In every iteration, the algorithm thus finds one
subset-minimal model μ of ϕcs with respect to the set of variables Ic,f and
adds a constraint that prevents enumerating any model μ′ such that {Ic,f ∈
vars(ϕcs) | μ(Ic,f ) = true} ⊆ {Ic,f ∈ vars(ϕcs) | μ′(Ic,f ) = true} in the
following iterations. Therefore, the described algorithm enumerates, for each
model μ of the formula ∃{Fc,f | c ∈ C, f ∈ FM } ∃{oc | c ∈ C} (ϕcs) that is
subset-minimal with respect to the set of variables Ic,f , exactly one model μ of
ϕcs that agrees with μ on all variables Ic,f .

Note that vars(ϕcs) does not contain the variable Ic,⊥ for any c ∈ C. For a
Boolean fds and models μ, μ′ |= ϕcs , we thus have {Ic,f ∈ vars(ϕcs) | μ(Ic,f ) =
true} ⊆ {Ic,f ∈ vars(ϕcs) | μ′(Ic,f ) = true} if and only if modelToState(μ) ≤
modelToState(μ′). Therefore, Theorem 1 implies that for subset-monotone S,
subset-minimal models of ϕcs with respect to the set of variables of form Ic,f
precisely correspond to fds-minimal cut sets of S and the correspondence is
given by the function modelToState. �


5.2 Extension to Arbitrary FDSs

The algorithm of Fig. 3 does not work in general for arbitrary fdss, but only for
the fdss in which all the failure modes different from ⊥ are incomparable. The
problem is that the assumption that a cut set is fds-minimal iff the correspond-
ing model of ϕcs is subset-minimal with respect to the set of variables Ic,f with
f �= ⊥ does not hold in general with the encoding of Sect. 4, as can be seen on
the following simple example.

5 For example, calling add-preferred-var(solver, v, true) means that if the solver has
to perform a case split, v will be assigned before all non-preferred variables, and it
will always be assigned to true by the branching heuristic.



Efficient SMT-Based Analysis of Failure Propagation 221

{w , fs} ≡ w ∧ fs ∧ ¬fd ∧ ¬fu {w , fd} ≡ w ∧ ¬fs ∧ fd ∧ ¬fu

{w , fd , fu} ≡ w ∧ ¬fs ∧ fd ∧ fu

{w} ≡ w ∧ ¬fs ∧ ¬fd ∧ ¬fu

Fig. 4. Hasse diagram of the ordered set (W3F ↓,⊆) together with the encoding of the
elements as formulas.

Example 6. Consider the fds D = ({⊥,m,
},⊥ ≤ m ≤ 
,⊥) and the pgfds

S = ({c},next) with next(c)(s) = ∅ for all c and s. Intuitively, S contains
one component that cannot change its failure mode during the computation.
Consider further the top-level event TLE = {{c �→ m}, {c �→ 
}}.

Both {c �→ 
} and {c �→ m} are cut sets, but only the latter is fds-minimal.
However, the algorithm of Fig. 3 will return both, since they both correspond to
subset-minimal models with respect to the set of variables Ic,f . �


We can adapt the procedure of Fig. 3 to arbitrary fdss by using an encoding
in which the ordering of assignments to the Ic,f variables corresponds to the
severity ordering ≤ of the underlying fds D. In order to do this, we exploit the
isomorphism between D = (FM ,≤,⊥) and the poset D ↓ of its lower subsets
generated by single elements defined as D ↓= {{f ′ ∈ FM | f ′ ≤ f} | f ∈
FM } with partial order ⊆ and the least element {⊥}. For example, the poset
(W3F ↓,⊆) for the fds W3F of Fig. 1 is shown in Fig. 4, together with an
encoding of the elements as formulas.

With this isomorphism in mind, we define for each c ∈ C and f ∈ FM the
formula ψc=f that represents the failure mode f of component c by assigning
the subset of variables {Ic,f̂ | f̂ ≤ f} to true:

ψc=f =
∧

f̂∈FM ,f̂≤f

Ic,f̂ ∧
∧

f̂∈FM ,f̂ �≤f

¬Ic,f̂ .

The important property of this definition is that for all c ∈ C, f, f ′ ∈ FM
and assignments μ |= ψc=f and μ′ |= ψc=f ′ , we have f ≤ f ′ if and only if
{Ic,f̂ | μ(Ic,f̂ ) = true} ⊆ {Ic,f̂ | μ′(Ic,f̂ ) = true}.

We then modify the encoding ϕcs of Sect. 4 as follows:

1. First, we modify ϕnext to encode the initial state by using ψc=f instead of
Ic,f . This ensures that the ordering of assignments to the initial variables
reflects the ordering given by the underlying fds. We also remove the mutual
exclusion constraints on the variables Ic,f from ϕonce, because the mutual
exclusion of initial failure modes is now guaranteed by the definition of ψc=f :
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ϕnext =
∧

c∈C
f∈FM\{⊥}

(Fc,f → (ψc=f ∨ (2))) ∧ (ψc=f → Fc,f ),

ϕonce =
∧

c∈C
f,f ′∈FM\{⊥}

f �=f ′

(¬Fc,f ∨ ¬Fc,f ′) .

2. Then, we add domain constraints that ensure that the resulting formula rep-
resents only models with assignments to Ic,f that correspond to elements of
D↓:

ϕD↓ =
∧

c∈C

∨

f∈FM

ψc=f .

The new encoding is then given by ϕFM
cs :

ϕFM
cs = ϕTLE ∧ ϕnext ∧ ϕonce ∧ ϕD↓.

The modified encoding ϕFM
cs represents the cut sets in a different way: instead

of representing the failure modes directly by Ic,f as in ϕcs , they are now repre-
sented by the subformulas ψc=f . Therefore, to prove correctness of the modified
encoding, the function modelToState that maps models to cut sets also has to
be changed. We define the initial state modelToStateFM (μ) corresponding to the
model μ by modelToStateFM (μ)(c) = max{f ∈ FM | μ(Ic,f ) = true}. Note that
the maximum is guaranteed to exist because of the ϕD↓ constraint.

Theorem 3. For an arbitrary pgfds S and a top level event TLE,

CS (S,TLE ) ⊆ {modelToStateFM (μ) | μ |= ϕFM
cs }.

Moreover, if S is subset-monotone, these sets are equal.

Therefore, the algorithm MCS-enumeration from Fig. 3 can be used to enu-
merate fds-minimal cut sets of a subset-monotone pgfds, given as the inputs
the modified encoding ϕFM

cs and the modified function modelToStateFM . This is
formalized by the following theorem:

Theorem 4 (MCS enumeration for general FDS). For a subset-monotone
pgfds S over an fds D, the result of MCS-enumeration(ϕFM

cs ,modelToStateFM )
is the set of all fds-minimal cut sets of S.

Note that our encoding of fds-minimality is general and does not depend on
the algorithm for enumeration of subset-minimal models. Indeed, thanks to our
encoding, any off-the-shelf minimal-model enumerator can be used to enumerate
fds-minimal models. Therefore, any improvements to minimal model enumera-
tion directly translate to improved performance of our method for fds-minimal
cut set enumeration. From the opposite point of view, our encoding can in prin-
ciple be employed by other tools to reduce fds-minimal cut set enumeration to
subset-minimal cut set enumeration.
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6 Related Work

Finite Degradation Models (fdms) [14] are an algebraic framework accommo-
dating the concept of fault degradation, where faults may have different values
organized into a semi-lattice. Using fdms (probabilistic) safety analysis (fault
trees and minimal cut sets) can be generalized from Boolean models to multi-
state systems. Compared to fdms, fault-persistent pgfdss differ in two signifi-
cant aspects: first, since the function next returns a set of possible next failure
modes, pgfdss allow non-determinism in the failure propagation, i.e., the failure
of a component is not uniquely determined by the failure modes of its depen-
dencies. Second, and more importantly, pgfdss allow cyclic dependencies and
give them well-defined and expected semantics. Since the work on fdms is the
closest to ours, we shall discuss it in detail below.

In [8] the authors present a framework for failure propagation which enables
modeling sets of failure modes using a domain specific language. It is less expres-
sive than fdms, in that sets of failure modes cannot be related by degradation
orders, which significantly simplifies the enumeration of MCSs. Finally, classical
formalisms for failure propagation, but less expressive than fds, include fptn [9]
and Hip-HOps [11].

tfpgs (Timed Failure Propagation Graphs) [1] extend fault propagation
model by enabling the specification of time bounds and mode constraints on
the propagation links. However, tfpgs do not consider degradation, and they
do not support cyclic dependencies. Conversely, the pgfds formalism can be
easily extended to support time bounds, failure probabilities, mode constraints,
and constraints on propagation delays similar to those available in tfpgs (e.g.,
following [5]). Moreover, once the minimal cut sets of a pgfds are computed,
the existing approach to computing probability of overall failure [5] can be used
almost unchanged.

Finally, xSAP [3] is a safety analysis platform that supports library-based
fault models and the generation of safety artifacts for fully general behavioral
models, e.g., it can generate fault trees and minimal cut sets for arbitrary transi-
tion systems [6]. Currently, xSAP does not support fds and degradation models.

6.1 Detailed Comparison with Finite Degradation Models

As outlined above, the formalism Finite Degradation Models (fdms), introduced
in [14], is closely related to our pgfds. Here, we describe fdm in further detail
and show that pgfds are a strict generalization of fds, obtained by (i) consid-
ering non-determinism in the propagation of failures, and (ii) by allowing cyclic
dependencies among the components.

Each fdm has state variables, which correspond to the sources of failures in
the system, and flow variables, which correspond to the propagated consequences
of these failures. Each flow variable has an associated equation, which prescribes
the failure mode of the corresponding flow variable based on the failure modes
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of state variables and other flow variables. We assume that the failure modes of
all state and flow variables are modeled by the fds D = (FM ,≤,⊥).6

Definition 9 (Finite Degradation Model [14]). Given an arbitrary fds D =
(FM ,≤,⊥), a Finite Degradation Model (fdm) is a pair M = (V = S � F , E),
where

– S = {V1, . . . , Vm} is a finite set of state variables,
– F = {Wm+1, . . . ,Wm+n} is a finite set of flow variables,
– E = {Wm+1 := φm+1, . . . Wm+n := φm+n} is a finite set of equations, where

each φm+i for 1 ≤ i ≤ n is a function of type FM V → FM .

We say that a flow variable Wm+i depends on a variable v if the function φm+i

depends on v. An fdm is called acyclic if there are no cyclic dependencies among
its flow variables, i.e., no flow variable transitively depends on itself. We stress
out that in contrast to our definitions of pgfds, the original paper [14] only deals
with acyclic fdms and does not provide semantics and necessary definitions for
cyclic fdms. We thus assume in the rest of the section that all fdms are acyclic.

An assignment σ : V → FM is called admissible if the failure modes assigned
to the flow variables satisfy all the corresponding equations, i.e., σ(Wm+i) =
φm+i(σ) for each 1 ≤ i ≤ n. The assumption of acyclicity of fdms, together with
the fact that all equations are deterministic functions and not general relations,
guarantees that in each admissible assignment, failure modes of the flow variables
are uniquely determined by the failure modes of the state variables. This defines
a function [[M ]](σ) = σM , which maps each state variable assignment σ to its
unique admissible extension σM that assigns values to all variables. This is a
stark contrast to pgfds, where a single initial state can give rise to multiple
different propagation paths.

A corresponding notion to our notion of top level event for fdm is the notion
of observer. An observer is a pair (R,U), where R is a flow variable and U ⊆ FM
is a set of failure modes. Intuitively, the observer represents a set of dangerous
failure modes of the given flow variable. A cut set is any assignment σ : S → FM
of failure modes to state variables such that σ(R) ∈ U .

A notion related to our notion of monotonicity for fdm is coherence. The
observer is coherent if for all assignments σ, σ′ : S → FM such that σ is a cut
set and σ ≤ σ′, the assignment σ′ is also a cut set.

Each fdm M can be translated to a pgfds SM such that the cut sets of
M correspond to the cut sets of SM . Moreover, if the fdm M is coherent, the
resulting pgfds SM is guaranteed to be subset-monotone. This enables efficient
analysis of coherent fdms by our SMT-based technique. Intuitively, the pgfds

SM has one component for each state variable of M and an additional component
R for the observer flow variable R. The next function is defined in a way that the
failure modes of all the components that correspond to state variables cannot

6 Both fdms and our pgfds can be defined over multiple different fdss for different
variables. Such generalization is straightforward, but it complicates the notation and
the exposition significantly.
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Table 1. Classes of pgfds and their traces that each of the compared tools can handle
precisely.

Tool fds Cycles Nondeterministic Not fault-persistent

Emmy Arbitrary No No No

xSAP Boolean Yes Yes Yes

SMT-PGFPS Arbitrary Yes Yes No

change and that the component R can switch to a predefined set of failure modes
if σ(R) ∈ U . This is achieved by composing all equations for the flow variables.
If local variables are used in the symbolic encoding7, the size of the result is
guaranteed to be polynomial.

7 Experimental Evaluation

To evaluate the performance and scalability of our approach, we have imple-
mented the proposed algorithm MCS-enumeration in a simple Python tool that
uses the solver MathSAT [7], which supports all the required functionalities that
are described in Sect. 5.1. In this section, we refer to the tool as SMT-PGFPS.

As a comparison, we have used Emmy [13], a tool based on decision diagrams
for the enumeration of fds-minimal cut sets of fdms, and xSAP [3], a tool
for safety assessment for arbitrary transition systems. Each of these tools only
supports a subset of the capabilities of our approach, as summarized in Table 1.

Emmy supports minimal cut set enumeration with respect to an arbitrary order-
ing of failure modes given by an fds, but only for acyclic and deterministic
fdms;

xSAP supports analysis of arbitrary transition systems with cycles, given that it
internally relies on the nuXmv model checker. However, it cannot enumerate
fds-minimal cut sets, but only subset-minimal ones. Note that for compu-
tation of subset-minimal cut sets, xSAP is more general than our approach,
as it supports general transition systems and arbitrary temporal properties.
However, we use xSAP as a baseline to compare performance and scalability
of our approach for cyclic pgfds because it is a subcase of general tran-
sition systems that is important in practice. In the evaluation, we use the
IC3-based engine described in [6] (denoted as xSAP-IC3). Note that this
algorithm assumes that the verified property is monotone and leverages this
assumption for efficiency.

7 For example, let-expressions of form (let ((var definition) ...) body) in SMT-
LIB.
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For the comparison, we have created three sets of benchmarks:

Scalable acyclic benchmarks consisting of linear structures extended by a
triple modular redundancy scheme. The basic architecture of these structures
is parameterized by its size n and the system contains 6n components: 3n
modules and 3n voters. These benchmarks use the fds W2F, which is a
restriction of the fds W3F of Fig. 1 to failure modes {w, fd , fu}, with the
ordering w < fd < fu.
Note that fds-minimal cut sets of these benchmarks cannot be enumerated
by xSAP, as the benchmarks use a non-Boolean fds.

Randomly generated systems with cycles over Boolean FDS which share
some structural properties with real-world systems. In particular, we gen-
erated random systems that have a similar distribution of in-degrees and
out-degrees of the components as our proprietary systems, which we cannot
disclose. We have generated 950 such systems of sizes ranging between 50 and
1000 components. We have used the Boolean fds for these benchmarks, so
that they can be precisely analyzed also by xSAP.
Note that these benchmarks cannot be solved by Emmy, as they contain cyclic
dependencies among the components.

Randomly generated systems over W2F which are created from the above-
mentioned randomly generated systems by using the fds W2F instead of
the Boolean one. Although this does not change the overall structure of the
system, it makes the transition relation more complicated and significantly
increases number of minimal cut sets.
In the evaluation, we only used systems of size at most 400, as both the
compared approaches timed out on the vast majority of larger systems.
Note that these benchmarks cannot be solved by Emmy, as they contain cyclic
dependencies among the components. They can be solved by xSAP, but the
generated cut sets are only subset-minimal with respect to fault variables,
and not (in general) fds-minimal.

For the scalable benchmarks, we have generated encodings in the SMT for-
mat described in this paper and in the fds-ml format used by Emmy. For
the randomly generated cyclic benchmarks, we have generated encodings in the
SMT format and in the SMV format used by xSAP. The SMV encodings also
include the assumption of fault-persistence. All the used benchmarks are subset-
monotone, and therefore our SMT-based approach can be used to compute the
set of minimal cut sets correctly.

We have used wall time limit of 30 min for each solver-benchmark pair. All
experiments were performed on a Linux laptop with Intel Core i7-8665U cpu

and 32 GiB of ram.
A comparison of SMT-PGFPS and Emmy on the scalable acyclic benchmarks

can be seen in Table 2. It shows that Emmy times out already on systems of size
5, i.e., on systems with 30 components. On the other hand, our approach is able
to scale to systems with three thousand components.

A comparison against the sequential approach of xSAP on cyclic benchmarks
can be seen in Fig. 5. Figures 5a and 5b show that on random systems over
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Table 2. Numbers of minimal cut sets (#MCS) and solving times for top level events
failed detected (fd) and failed undetected (fu) on linear systems extended with triple-
modular redundancy scheme. Note that the system with size n consists of 6n compo-
nents (column #Comp).

Failed detected Failed undetected

Size #Comp #MCS Emmy (s) SMT (s) #MCS Emmy (s) SMT (s)

1 6 4 0.051 0.001 7 0.071 0.001

2 12 16 0.137 0.002 31 0.172 0.003

3 18 28 3.052 0.004 55 3.141 0.007

4 24 40 160.493 0.006 79 163.556 0.013

5 30 52 >1800 0.009 103 >1800 0.017

10 60 112 >1800 0.032 223 >1800 0.063

100 600 1192 >1800 3.456 2383 >1800 6.748

500 3000 5992 >1800 171.042 11983 >1800 328.737

Boolean fdss, our approach significantly outperforms the sequential approach
of xSAP. As the size of the system grows, the difference can be up to several
orders of magnitude. Both xSAP and SMT-PGFPS compute exactly the same
minimal cut sets. Hence, the dramatic difference in performance can be justi-
fied by the reduction to the combinational case, which prevents the unrolling
of the transition relation by implicitly encoding the propagations in the total
ordering(s) found by the SMT solver.

The performance difference on the systems over the fds W2F, shown in
Figures 5c and 5d, is even more pronounced. This can be caused by two additional
factors. First, the systems over the fds W2F have more complicated transition
relation, more minimal cut sets, and are in general harder. Thus, the unrolling
performed by xSAP is even more costly. Second, xSAP has to enumerate more
cut sets, because it is enumerating all subset-minimal cut sets and not only
fds-minimal cut sets. However, this cannot be the main source of the observed
performance gap: on 35 from the 113 benchmarks on which both xSAP and
SMT-PGFPS finished before timeout, the number of cut sets are the same;
on the remaining 78 benchmarks, xSAP enumerates on average 6% more cut
sets and at most 62% more cut sets. In order to obtain fds-minimal cut sets
from xSAP, the produced subset-minimal cut sets would have to be filtered
or explicitly minimized, which would add yet another performance penalty for
xSAP.

Overall, the SMT-based techniques presented in this paper yield a fundamen-
tal advancement with respect to the state of the art, both in terms of expres-
siveness as well as in terms of performance.



228 M. Bozzano et al.

0.01

0.1

1

10

100

1000
T/O

0.
01 0.

1 1 10 10
0

10
00 T/
O

Time SMT−PGFPS (s)

Ti
m

e 
xS

A
P
−I

C
3 

(s
)

(a) Scatter plot of solving times
over Boolean fds.

0.01

0.1

1

10

100

1000
T/O

250 500 750 1000
Number of components

Ti
m

e 
(s

)

Solving method
SMT−PGFPS
xSAP−IC3

(b) Dependence of solving time on the num-
ber of components over Boolean fds.

0.01

0.1

1

10

100

1000
T/O

0.
01 0.

1 1 10 10
0

10
00 T/
O

Time SMT−PGFPS (s)

Ti
m

e 
xS

A
P
−I

C
3 

(s
)

(c) Scatter plot of solving times
over fds W2F.

0.01

0.1

1

10

100

1000
T/O

100 200 300 400
Number of components

Ti
m

e 
(s

)

Solving method
SMT−PGFPS
xSAP−IC3

(d) Dependence of solving time on the num-
ber of components over fds W2F.

Fig. 5. Comparison of SMT-PGFPS and xSAP-IC3 on random cyclic systems.

8 Conclusions and Further Work

We tackled the problem of supporting the Preliminary Safety Assessment phase
of aircraft design. Specifically, we defined an expressive framework for modeling
failure propagation over components with multiple levels of degradation, with
nondeterminism and cyclic dependencies. We presented a sequential semantics
and proved that the problem can be tackled by means of minimal models enu-
meration in SMT. The framework is more expressive than the state of the art,
and the proposed method outperforms the BDD-based techniques from [14] on
acyclic benchmarks over generic fdss, and the model checking techniques of [6]
on cyclic benchmarks.

In the future, we are going to introduce timing constraints and analyze redun-
dancy architectures. We also investigate ways to relax the monotonicity and
fault-persistence assumptions to explore recovery mechanisms and to further
extend the reach of our approach. We are also working on encoding the causal-
ity constraints in the frameworks of SAT modulo acyclicity [10] and ASP modulo
acyclicity [4], which could improve the performance of our approach even further.
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E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 137–151. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 10

11. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and
propagation studies. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 139–152. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48249-0 13

12. Rauzy, A.: Mathematical foundations of minimal cutsets. IEEE Trans. Reliab.
50(4), 389–396 (2001)

13. Rauzy, A., Yang, L.: Decision diagram algorithms to extract minimal cutsets of
finite degradation models. Information 10(12), 368 (2019)

14. Rauzy, A., Yang, L.: Finite degradation structures. FLAP 6(6), 1447–1474 (2019)
15. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with

preferences. Constraints Int. J. 15(4), 485–515 (2010). https://doi.org/10.1007/
s10601-010-9095-y

16. SAE: ARP4761 Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment, December 1996

17. SAE: ARP4754A Guidelines for Development of Civil Aircraft and Systems,
December 2010

https://doi.org/10.1007/978-3-662-49674-9_31
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-11558-0_10
https://doi.org/10.1007/3-540-48249-0_13
https://doi.org/10.1007/3-540-48249-0_13
https://doi.org/10.1007/s10601-010-9095-y
https://doi.org/10.1007/s10601-010-9095-y


230 M. Bozzano et al.

18. Wang, P.: Civil Aircraft Electrical Power System Safety Assessment: Issues and
Practices. Butterworth-Heinemann, Oxford (2017)

19. Yang, L., Rauzy, A., Haskins, C.: Finite degradation structures: a formal frame-
work to support the interface between MBSE and MBSA. In: IEEE International
Systems Engineering Symposium (ISSE), Rome, Italy, pp. 1–6 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


ddSMT 2.0: Better Delta Debugging
for the SMT-LIBv2 Language and Friends

Gereon Kremer , Aina Niemetz(B) , and Mathias Preiner

Stanford University, Stanford, USA
{gkremer,niemetz,preiner}@cs.stanford.edu

Abstract. Erroneous behavior of verification back ends such as SMT
solvers require effective and efficient techniques to identify, locate and
fix failures of any kind. Manual analysis of large real-world inputs usu-
ally becomes infeasible due to the complex nature of these tools. Delta
Debugging has emerged as a valuable technique to automatically reduce
failure-inducing inputs while preserving the original erroneous behav-
ior. We present ddSMT 2.0, the successor of the delta debugger ddSMT.
ddSMT is the current de-facto standard delta debugger for the SMT-
LIBv2 language. Our tool improves and extends core concepts of ddSMT
and extends input language support to the entire family of SMT-LIBv2
language dialects. In addition to its ddmin-based main minimization
strategy, it implements an alternative, orthogonal strategy based on hier-
archical input minimization. We combine both strategies into a hybrid
strategy and show that ddSMT 2.0 significantly improves over ddSMT
and other delta debugging tools for SMT-LIBv2 on real-world examples.

1 Introduction

In recent years, a growing number of formal methods applications (e.g., [6,8])
rely on Satisfiability Modulo Theories (SMT) solvers as the back end. Current
state-of-the-art SMT solvers are typically complex pieces of software, and debug-
ging erroneous behavior requires effective and efficient techniques to analyze
failure-inducing input with the purpose of identifying and locating the cause
of the failure. Manual analysis of real-world problems that trigger a particular
unwanted behavior is very often infeasible for large inputs, mainly due to the
complex nature of these tools.

Erroneous behavior is never only triggered by a single unique input, but
by a class of inputs that share a common trait. Extracting a minimal working
example, i.e., an input that is as small as possible but still triggers the original
faulty behavior, from such a class of inputs usually significantly decreases the
time to identify and locate the cause of the failure. While ideally, the notion of
size of an input directly correlates to the effort required to determine the failure
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cause, in practice this is hard to quantify. We instead use metrics such as file
size, number of language constructs, and solver runtime until the failure occurs.

Finding such minimal working examples, however, is a problem of its own.
Manual minimization is typically infeasible in practice, simply due to the large
number of possible simplifications that may even depend on each other. Delta
debugging techniques, on the other hand, provide automated means to minimize
failure-inducing inputs. This typically entails to first read some input, apply a
set of rules to simplify the input, and then check that the modified input still
triggers the original behavior. Delta debugging in its simplest form [24] extracts
a minimal working example by omitting parts of the input that are irrelevant
for triggering the original faulty behavior. More input language specific tools
perform additional simplifications to further minimize the input. All of these
simplifications are typically performed until a fixed point is reached.

For the design of a delta debugger, this process raises a number of ques-
tions: How does the debugging tool check for “same behavior” of a tool on some
input? Which simplification rules should be employed and how should they be
combined? To what (syntactic and semantic) degree should the delta debugger
itself understand the input language? In this paper, we address these questions in
the context of delta debugging for the SMT-LIBv2 language and its dialects with
our delta debugger ddSMT 2.0, the successor of ddSMT [18]. In the following,
we will refer to ddSMT 2.0 as ddSMTv2, and to its predecessor as ddSMTv1.

Related Work. Generic delta debugging tools that are agnostic to the input lan-
guage can be surprisingly efficient for some use cases. For minimizing SMT-LIB
input, however, their usefulness is usually rather modest. One such generic tool is
linedd [4], which solely performs line-based simplifications. The first delta debug-
ging tool specific to the SMT-LIB language was presented in [7] as deltaSMT
and targeted SMT-LIBv1 [22]. Three years later, the SMT community adopted
a new input language SMT-LIBv2. In 2013, an updated version of deltaSMT [10]
extended the tool syntactically for SMT-LIBv2 compliance, but limited to the
feature set of the SMT-LIBv1 language and without full SMT-LIBv2 support.
Note that this updated version is not available anymore. In the same year,
ddsexpr [5], a generic hierarchical delta debugger for S-expressions (and thus
applicable to the SMT-LIB language family), and ddSMTv1 [18], a delta debug-
ger specific to the SMT-LIBv2 language, were presented. The latter implements a
variant of Zeller’s ddmin algorithm [24] and is considered as the current de-facto
standard delta debugger in the SMT community. The only other delta debugging
tool specific to the SMT-LIBv2 language we are aware of is delta [15], a hierar-
chical delta debugger shipped together with the SMT solver SMT-RAT [9]. A
reimplementation of delta in Python is available as pyDelta at [14].

Contributions. In this paper, we present ddSMTv2, a delta debugging tool for
the SMT-LIBv2 [2] language and its dialects. It supports the entirety of the
SMT-LIBv2 standard as well as non-standardized extensions and derived for-
mats such as the SyGuS input language [21]. Our tool is agnostic to future
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extensions of the standard in the sense that it does not require any modifica-
tions for basic support. It is easy to extend, and extensions will only be required
for simplifications that are specific to new language features or a certain dialect
of the SMT-LIBv2 language. In this sense it will also immediately support the
SMT-LIBv3 [1] language, which is currently under development.

ddSMTv2 is the successor of the delta debugger ddSMTv1 [18] and incorpo-
rates, improves and extends its core concepts. It also implements an improved
variant of the hierarchical approach of pyDelta as an alternative, orthogo-
nal strategy, and allows to combine these two strategies in a hybrid manner.
ddSMTv2 is intended to overcome major weaknesses of ddSMTv1, which is lim-
ited to the SMT-LIBv2 language and does not support the full set of standardized
background theories or language extensions to the point where it is even unable
to parse the input file. ddSMTv2 further extends the set of theory-specific sim-
plifications over both ddSMTv1 and pyDelta, which allows to exploit even more
minimization opportunities.

ddSMTv2 is implemented in Python and can be installed via pip3 install
ddsmt. Its documentation is available at [11], and its source code is available
under version 3 of the GNU General Public License (GPLv3) at [13].

2 Detecting Failure-Inducing Inputs

An SMT solver is a fully automated tool to determine the satisfiability of a
first order logic formula modulo some background theories and their combina-
tions. For satisfiable inputs, SMT solvers optionally allow to query a model,
whereas for unsatisfiable inputs, some optionally generate a proof of unsatis-
fiability. Additionally, SMT solvers usually provide a plethora of configuration
options.

Within the SMT community, the notion of failure is generally defined as any-
thing from abnormal termination or crashes (including segmentation faults and
assertion failures), to performance regressions (one solver performs significantly
worse on an input than a reference solver), unsoundness (answering sat instead
of unsat and vice versa), incorrect models or incorrect proofs of unsatisfiabil-
ity. In the following, we define a failure-inducing input to an SMT solver as an
SMT-LIB input that triggers a failure. In particular, we do not consider options
configured via command line as part of the input.

Strategies to determine if a minimized input still triggers the original faulty
behavior typically differ depending on the kind of the failure. For abnormal
termination or crashes, it is usually sufficient to compare the exit code of the
solver call, optionally with additional comparisons of output on the standard
output and error channels. For failures that generate error messages that include
memory addresses, it is often useful to not compare the full output, but to only
match against a specific phrase that occurs in the original error output.

By default, ddSMTv2 does exactly that: it determines if a simplified input
has the same erroneous behavior as the original input by comparing the exit
code and the output on the standard output and error channels for equality.
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Standard output and error output can optionally be ignored or matched against
user-defined strings via command line options.

Performance Regressions are more tricky and typically involve helper scripts
that call two solver configurations with some time limit and return a specific
exit code in case the performance regression is triggered. The delta debugger will
then minimize the input based on this exit code. Inputs that trigger unsoundness
failures can be dealt with in a similar way. For inputs that reveal performance
regressions and unsound answers, ddSMTv2 provides easy-to-use wrapper scripts
that can also be adapted to more specific use cases.

Incorrect models and incorrect proofs are more involved since they typically
require some checking mechanism to determine if a generated model or proof
is incorrect. Most SMT solvers implement such mechanisms and will throw an
assertion failure in debug mode when such a failure is detected. For cases that
are not detected by the solver itself, external checking tools are required. Imple-
menting such checks is considered out of scope for a debugging tool due to their
complex nature.

3 Simplification Rules and Staged Simplification

Historically, the set of simplification rules for delta debugging has been in general
rather small and mainly limited to removing or reordering parts of the input.
Adding structural and semantic simplifications on top of these basic transfor-
mations has proved successful for the SMT-LIB language, and greatly improves
performance over language agnostic minimization techniques. The delta debug-
gers deltaSMT, delta and ddSMTv1 all support structural and semantic sim-
plifications, albeit to a varying degree. Of these three, ddSMTv1 implements
the largest set of language-specific simplifications. The SMT-LIB-agnostic delta
debugger ddsexpr, on the other hand, performs structural simplifications only.

Additionally, it is beneficial to devise a strategy for when to apply which kind
of simplification rules to which part of the input in order to avoid generating
useless test cases. An example for a useless test case is when the declaration of a
constant is removed before removing all occurrences of this constant. Such a test
case is useless because it is almost guaranteed to fail due to a parse error in the
solver instead of triggering the original faulty behavior. It is further beneficial
to perform simplifications that promise larger overall reduction (e.g., removal of
commands) early on, in order to reduce the burden of more local, theory-specific
simplifications (e.g., replacing terms with default values of the same sort).

We require that applying a simplification rule indeed simplifies the input
and that it is not possible to cycle between applications of simplification rules in
order to ensure termination of the minimization procedure. Generally, we define
simplification in terms of measuring the input size in bytes or in the number of S-
expressions. We supplement this with specific syntactic and semantic properties,
e.g., the number of variable binders in a quantified formula, or the degree of
“sortedness” of children of an S-expression. Intuitively, we say that given an
input A, a simplification rule yields a simpler input B if the constructs in B are
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simpler according to some metric specific to the rule, or if B is smaller than A in
terms of size. As an example for such a metric, consider a simplification rule that
replaces a value with another value. Such a transformation is only interpreted as
simpler if the value to be replaced does not already fall into the class of simpler
values, e.g., for integer values we define the set of simpler values as {0, 1}. Thus,
replacing value 1234 with 0 is a simplification, but replacing 1 with 0 is not.

In ddSMTv2, possible input simplifications are generated by so-called muta-
tors, which implement simplification rules. They either perform small local
changes to a given S-expression, or introduce global modifications on the input
based on that S-expression. Each mutator implements a filter method, which
checks if the mutator is applicable to the given S-expression. If this is the case,
the mutator can be queried to suggest (a list of) possible local and global simplifi-
cations. Mutators are not required to be equivalence or satisfiability preserving.
They may extract semantic information from the input when needed, e.g., to
infer the sort of a term, to query the set of declared or defined symbols, to
extract indices of indexed operators, and more. ddSMTv2 applies a considerably
larger set of simplifications than ddSMTv1 and currently implements 48 muta-
tors, which range from generic simplifications on S-expressions that require no
understanding of SMT-LIB, to more theory-specific mutators that make full
use of SMT-LIB semantics. Each of these mutators is enabled by default and
can optionally be disabled. Extending ddSMTv2 with a new simplification boils
down to implementing a filter method and methods to query local and/or global
mutations in a new mutator class, and registering this class as an active mutator.

4 Parsing and Input Representation

While the question about the syntactic and semantic degree of understanding
of the input language may seem silly at first glance, it is indeed warranted and
actually crucial for the overall design of the delta debugger. The two extreme
cases are aiming at full understanding of the language, and no understanding,
i.e., treating the input as a sequence of bytes. The trade-off at hand is mainly
between the ability to easily devise language compliant simplifications, and the
burden of infrastructure required for parsing and representing the input, which
is an additional burden on maintenance in case the input language changes.

Both deltaSMT and ddSMTv1 aim at full understanding, while most of the
others try for some intermediate level of abstraction, i.e., a level that does not
require full understanding of the input language but allows for smarter sim-
plifications than just manipulating bytes. The line-based delta debugger linedd
minimizes input by removing lines, whereas ddsexpr is syntax-aware in the sense
that it understands S-expressions, but without any SMT-LIBv2 specific seman-
tics. Both delta and pyDelta extend understanding of S-expressions with some
semantic properties, however, in the case of delta only to a very basic degree
(it is, e.g., not even aware of sorts). Outside of the context of the SMT-LIBv2
language, applying an intermediate abstraction approach was successful for the
original ddmin algorithm [24], which considers change sets (e.g., commits or indi-
vidual hunks of a commit), and in [23], where the authors use local semantics
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of certain C++ constructs. Another example is presented in [16], which exploits
the hierarchical structure of an input, independent of the concrete semantics.

Our main target language is SMT-LIBv2, which is a hierarchically structured
language where, to cite the SMT-LIBv2 standard [2], “every expression [. . . ] is
a legal S-expression of Common Lisp”. In contrast to ddSMTv1, in ddSMTv2 we
aim for an intermediate level of abstraction to ease the burden on infrastructure
and maintenance and choose to use S-expressions as the main representation of
the input, just like ddsexpr does. However, additionally, we extract a comprehen-
sive set of semantic properties to allow for SMT-LIBv2 specific and compliant
simplifications. Language compliant transformations are a requirement for the
specific use case of minimizing SMT-LIBv2 input to debug erroneous behavior
of SMT solvers. This is mainly to avoid generating nonsensical test cases, i.e.,
test cases that an SMT solver will refuse to parse. Even when such test cases
are refused immediately, if the overwhelming majority of generated test cases is
nonsensical it can significantly impact the efficiency of our debugging tool. Note
that we explicitly do not disallow delta debugging non-compliant input.

ddSMTv2 features a simple S-expression parser and represents S-expressions
as a lightweight wrapper around built-in Python tuples and strings. Seman-
tic information is recovered in an ad-hoc manner after parsing. This allows for
minimal infrastructure and maintenance overhead for input parsing and repre-
sentation. The parser component of ddSMTv2 has less than 100 LOC, and the
ad-hoc semantic analysis accounts for less than 400 LOC. Adding support for
new versions, dialects or non-standardized extensions of the SMT-LIB language
does not require any changes to the parser.

This is in stark contrast to deltaSMT and ddSMTv1, which both aim to get
a full understanding of the input, with all its negative consequences: deltaSMT
dedicates about 50% (more than 2000 LOC) of its Java code base and ddSMTv1
even over 80% (3000 LOC) of its Python code base to parsing and input repre-
sentation. Note that the former targets SMT-LIBv1, whereas the latter provides
full SMT-LIBv2 support for most of the standardized theories. In both tools,
parsing is a disproportionate part of the code base and extending the tools to
support new theories or language constructs usually requires extensive modifica-
tions to their input parsers. These modifications have significantly complicated
or even inhibited the development of these tools in the past: adding support
for the theory of floating-point arithmetic in ddSMTv1 required touching more
than 1000 LOC; deltaSMT, on the other hand, has never seen full support of
SMT-LIBv2 and fails to parse almost all inputs from our test set.

5 Delta Debugging Strategies

Our delta debugger ddSMTv2 implements two minimization strategies which we
call ddmin and hierarchical. These two can be combined into a third strategy
called hybrid, which aims to utilize the best of both worlds. All three strategies
use the same input representation and have access to the same pool of available
mutators. However, they differ in how they apply mutators to simplify the input.
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Algorithm 1: Main loop of ddmin strategy.
Input: S-Expression input

1 do // run to fixed point

2 simplified := False
3 for M ∈ mutators do
4 sexprs := {e | e ∈ input ∧ filterM (e)}, size := |sexprs|
5 while size > 0 do
6 for subset ∈ partition(sexprs, size) do
7 candidate := applyM (input, subset)
8 if check result(candidate) then
9 input := candidate, simplified := True

10 sexprs := {e | e ∈ input ∧ filterM (e)}, size := size/2

11 while simplified
12 return input

Strategy ddmin. Our ddmin strategy implements a variant of the minimiza-
tion strategy of ddSMTv1 and tries to perform simplifications on multiple S-
expressions in the input in parallel. Algorithm 1 shows the main loop of this
strategy. For each active mutator M , the algorithm first collects all S-expressions
in the input that can be simplified by M (Line 4). Simplifications are applied
and checked in a fashion similar to Zeller’s original ddmin algorithm [24]: the set
of S-expressions sexprs is partitioned into subsets of size size; each S-expression
e ∈ subset is substituted in input (Line 7) with a simplification suggested by M ;
the resulting simplified input candidate is then checked if it still triggers the
original behavior (Line 8). Once all subsets of a given size are checked, sexprs
is updated based on the current input and partitioned into smaller subsets. As
soon as all subsets of size 1 were checked, the algorithm repeats these steps with
the next available mutator. The main loop of strategy ddmin is run until a fixed
point is reached, i.e., the input cannot be further simplified. Strategy ddmin
applies mutators in two stages. The first stage targets top-level S-expressions
(e.g., specific kinds of SMT-LIB commands) until a fixed point to aggressively
simplify the input before applying more expensive mutators in the second stage.

Strategy hierarchical . The main loop of the hierarchical strategy performs a simple
breadth-first traversal of the S-expressions in the input, and applies all enabled
mutators to every S-expression, as shown in Algorithm 2. Once a simplification
is found (Line 7), all pending checks for the current S-expression are aborted and
the breadth-first traversal continues with the simplified S-expression sexpr (Line
9). This process is repeated until a fixed point is reached, i.e., until no further
simplifications are found for any S-expression. The main simplification loop (Line
3) is applied multiple times, with varying sets of mutators. In the initial stages,
strategy hierarchical aims for aggressive minimization using only a small set of
selected mutators, in the next-to-last stage it employs all but a few mutators that
usually only have cosmetic impact, and in the last stage it includes all mutators.
We observed that breadth-first traversal yields significantly better results than
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Algorithm 2: Core simplification loop of hierarchical strategy
Input: S-Expression input

1 do // run to fixed point

2 simplified := False
3 for sexpr ∈ input do // BFS traversal

4 for M ∈ mutators do
5 if ¬filterM (sexpr) then continue
6 for candidate ∈ applyM (input, sexpr) do
7 if check result(candidate) then
8 input := candidate, simplified := True
9 continue with simplified sexpr in Line 3

10 while simplified
11 return input

a depth-first traversal, most probably since it tends to favor simplifications on
larger subtrees of the input.

Strategy hybrid . This strategy combines strategies ddmin and hierarchical in a
sequential portfolio manner. It first applies ddmin until a fixed point is reached,
and then calls strategy hierarchical on the simplified input. We chose this order
of strategies after observing in our experiments that ddmin is usually faster in
simplifying input, while hierarchical often yields smaller inputs.

6 Experimental Evaluation

We compare the different strategies implemented in ddSMTv2 against the exist-
ing delta debuggers ddsexpr, ddSMTv1, delta, linedd, and pyDelta. For this pur-
pose, we compiled a set of SMT-LIB and SyGuS test cases from different sources.
Every test case consists of an input file, a solver binary and command line con-
figuration options for that binary. Our set of test cases includes those used in [18]
and instances reported in bug reports of the SMT solvers Bitwuzla [19], CVC4 [3],
Yices [12], and Z3 [17]. The test cases from [18] include issues encountered with
development versions of the SMT solvers Boolector [20] and CVC4. Note that
we excluded 9 test cases from this set because they did not trigger any faulty
behavior on our experimental setup. In total, we collected 244 test cases consist-
ing of inputs that trigger assertion failures, unexpected behavior or wrong solver
answers. We performed all experiments on a cluster with Intel Xeon E5-2620v4
CPUs with 2.1 GHz and 128 GB memory and used a 1 h wall-clock time limit
and 8 GB of memory for each delta debugger/test case pair. Table 1 summarizes
the results on all 244 test cases.

A first immediate observation is the value of a simpler and more generic
parser: ddSMTv1 fails to parse more than 20% of the inputs, mostly due to the
lack of support for newer standard and non-standard SMT-LIBv2 constructs.
Examples include the check-sat-assuming command, algebraic datatypes,
some operators of the theory of strings, the SyGuS language extension, and
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Table 1. Results summarized over all 244 test cases.

ddsexpr ddSMTv1 delta linedd pyDelta ddmin hier. hybrid

Parse Errors 0 54 1 0 0 0 0 0

Incorrect Output 0 0 1 1 1 0 0 0

Timeouts 155 81 128 3 126 6 122 6

Any Simplification 219 175 114 209 119 242 242 242

Smallest Output 2 10 0 3 58 89 59 168

Avg. Reduction (%) -40 -63 +288 -26 -4 -75 +571 -77

Avg. Reduction w/o ERR (%) -40 -80 +291 -26 -4 -75 +571 -77

Avg. Reduction w/o TO/ERR (%) -32 -73 +617 -26 -57 -76 -59 -79

the non-standardized extension to encode problems of separation logic. We also
observe that each strategy of ddSMTv2 simplifies significantly more inputs than
any other tool. The only inputs that could not be simplified by ddSMTv2 were
already very small (83 and 98 bytes). Strategy hybrid achieves the smallest out-
put on 168 test cases (more than two thirds) and an average reduction in file
size by 77% (79% not counting timeouts), while only timing out on 6 test cases.

Some debuggers increase the input size (in bytes), indicated by positive reduc-
tions. Eliminating let binders or inlining function definitions frequently increase
the size of the input. A positive reduction occurs if the debugger times out
while performing such simplifications, or if it is unable to find viable simplifica-
tions after the input size increased. In rare individual cases, incorrect outputs
were produced that did not trigger the issue under investigation. This happened
because of the unchecked removal of unused variables (delta), incorrect handling
of timeouts (linedd) and defective handling of quoted symbols (pyDelta).

The hybrid strategy performs significantly better than ddSMTv1, even on the
set of instances that both can reduce without any timeout or error. On these
commonly reduced instances (107), the results from hybrid are smaller in most
cases (99), and on average smaller by about a third.

On inputs that both ddmin and hybrid reduce without timeout or error (238),
the hybrid strategy produces smaller outputs on 125 cases and never generates
larger results. On average, over all 238 inputs the outputs are about 5% smaller.
This may seem marginal, but can make a big difference for users in practice.

Figures 1–2 show the direct comparison of ddmin, hierarchical, hybrid and
ddSMTv1 in terms of output size and overall runtime as scatter plots, where a dot
represents a test case and dots on the “T” lines correspond to timeouts. While
strategy hierarchical tends to produce smaller output files, it is considerably
slower than ddmin and runs into the time limit on 116 more test cases. As a
result of this observation, we combined both strategies into the hybrid strategy,
which first uses ddmin to quickly reduce the input before applying hierarchical to
achieve maximum reduction. Comparing hybrid to the best of strategies ddmin
and hierarchical, we see that hybrid usually achieves the smallest output and is
only slower on test cases that are comparably fast to minimize. If the runtime
of ddSMTv2 exceeds a few minutes, there is no discernible performance penalty.
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Fig. 1. Output size (in % of original size).
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Fig. 2. Overall runtime (in seconds).

In comparison to ddSMTv1, strategy hybrid obtains significantly smaller out-
put files on almost all inputs while having a similar runtime on inputs where
ddSMTv1 terminates within the given time limit.

All strategies allow to use multiple worker processes to perform checks asyn-
chronously. Though there is potential for significant runtime improvements, the
current impact is rather limited. With 8 worker processes, hierarchical achieves on
average a 2x speedup, and up to 6x speedup on a few instances. Both ddmin and
hybrid, on the other hand, slow down on average (by 25% and 9%, respectively).

7 Conclusion

We have presented ddSMTv2, a delta debugger for the SMT-LIBv2 language
and its dialects. Our tool improves substantially over its predecessor ddSMTv1,
which is the current de-facto standard in the SMT community for delta debug-
ging SMT-LIB input. We have shown how a more generic parser approach not
only lowers the maintenance overhead of the tool itself, but also makes the
delta debugger more robust and easier to extend for future SMT-LIB extensions.
Our experimental evaluation has shown that ddSMTv2 significantly outperforms
existing delta debugging tools on a variety of real-world test cases from dif-
ferent SMT solvers. Further, our experiments suggest that combining different
minimization strategies is beneficial in practice to quickly obtain small output
files.
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Abstract. We study the problem of learning a finite union of inte-
ger (axis-aligned) hypercubes over the d-dimensional integer lattice, i.e.,
whose edges are parallel to the coordinate axes. This is a natural gen-
eralization of the classic problem in the computational learning theory
of learning rectangles. We provide a learning algorithm with access to
a minimally adequate teacher (i.e. membership and equivalence oracles)
that solves this problem in polynomial-time, for any fixed dimension d.
Over a non-fixed dimension, the problem subsumes the problem of learn-
ing DNF boolean formulas, a central open problem in the field. We have
also provided extensions to handle infinite hypercubes in the union, as
well as showing how subset queries could improve the performance of
the learning algorithm in practice. Our problem has a natural applica-
tion to the problem of monadic decomposition of quantifier-free integer
linear arithmetic formulas, which has been actively studied in recent
years. In particular, a finite union of integer hypercubes correspond to
a finite disjunction of monadic predicates over integer linear arithmetic
(without modulo constraints). Our experiments suggest that our learning
algorithms substantially outperform the existing algorithms.

1 Introduction

Suppose that we are interested in finding a formula ϕ(x̄) over some theory T
(e.g. integer linear arithmetic) to “capture” a certain phenomenon, which in
verification could be, for instance, an invariant that a program satisfies some
safety property. The process of discovering ϕ can be captured by the notion
of a learning algorithm by allowing certain types of queries as an interface to
some teacher [3]. Most standard learning frameworks can be captured in this
way. Here are some examples. Valiant’s well-known notion of PAC-learning can
be captured by an oracle that returns a new random sample from an unknown
distribution. Angluin’s well-known notion of exact learning [2,3] can be cap-
tured by an interaction with the so-called minimally adequate teachers, which
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can answer membership and equivalence queries. This has many applications in
verification, e.g., verification of parameterized systems [10,20,23] and composi-
tional verification [9]. Another learning framework that has become very popular
in verification is CEGIS (Counterexample Guided Inductive Synthesis) [21,27],
wherein a learning algorithm can ask equivalence queries, but expect various
types of “constraint-like” counterexamples (e.g. implication counterexamples)
to be returned by the teacher. This is of course in contrast to Angluin’s exact
learning setting, wherein the teacher may return only a positive/negative coun-
terexample (a point in the symmetric difference of the target concept and the
hypothesis).

In this paper, we study the problem of learning sets of points over the d-
dimensional integer lattice that can be expressed as a finite union of integer
(axis-aligned, a.k.a. rectilinear) hypercubes, i.e., whose edges are parallel to the
coordinate axes. Such a concept class of course forms a strict subclass of sets
of points that are definable by a formula ϕ(x1, . . . , xd) in the integer linear
arithmetic (a.k.a. semilinear sets), which have been addressed in several papers
including [1,17,28], whose PAC-learnability is as hard as PAC-learning boolean
formulas in DNF [16]—a long-standing open problem in learning theory—when
binary representations are permitted (even over dimension one [1]). That said,
finite unions of integer hypercubes are a concept class that naturally arises in
computer science. Below we mention a few examples.

The problem of learning rectangles (2-cube) and generalization to d-dimension
are a classic example in computational learning theory, e.g., see [16,22]. Maass
and Turán [22] showed for example that the d-dimensional rectilinear cubes can be
learned in polynomial-time with O(log n) queries, where the corners of the cubes
are represented in binary. The authors posed as an open problem if one can learn
a union of two (possibly overlapping) rectangles with only O(log n) equivalence
queries. Chen [11] showed that this can be learned with 2 equivalence queries and
O(d. log n) membership queries. Later Chen and Ameur [12] showed that there is
a polynomial-time algorithm using at most O(log2 n) queries. The same paper left
as an open problem if there is a polynomial-time exact learning algorithm that
learns finite unions of rectilinear cubes over a fixed dimension d. In this paper, we
answer this in the positive, and further show that this can be extended to allow infi-
nite rectilinear hypercubes, which in turn allow interesting applications in formal
verification, as we discuss below.

Finite unions of rectilinear cubes arise naturally in program analysis and ver-
ification. Here we mention two examples. First, solving games over a large game
graph has benefited from constraint-based approaches, where winning regions
can be succinctly represented and checked efficiently [6]. For example, the dis-
cretization of the Cinderella-Stepmother problem [6] admits winning regions
that may be represented by a union of a small number of cubes. Secondly, ver-
ification algorithms benefit from optimization techniques like monadic decom-
position [29], where the aim is the rewriting of a given quantifier-free SMT
formula ϕ(x1, . . . , xn) into an equivalent boolean combination of monadic pred-
icates ψ(xi) in some special form, i.e., typically in DNF [5,7,15,19], or by an
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if-then-else formula [29], which could sometimes be exponentially smaller than
the DNF equivalent representation. Veanes et al. [29] provided a generic semi-
decision procedure for performing this monadic decomposition as an if-then-else
formula, which works regardless of the base theory. The restriction of the prob-
lem to the quantifier-free theory of integer linear arithmetic (with and without
extra modulo constraints) was studied in [15], wherein the problem was shown to
be coNP-complete and a monadic decomposition could be exponentially large in
general. For the subcase without modulo constraints, a monadic decomposition
in DNF corresponds precisely to a finite union of (possibly infinite) rectilinear
hypercubes, which is the subject of this paper. We describe below how oracles
for memberships and equivalence (as well as more powerful queries like sub-
sets) admit a fast implementation via an SMT-solver, which enable our learning
algorithms to be applied to compute such a monadic decomposition.

Contributions. We study the problem of learning finite unions of rectilinear
hypercubes (over Z

d) in Angluin’s exact learning framework with membership
and equivalence queries [2,3]. Our result is a polynomial-time exact learning
algorithm for learning finite unions of rectilinear hypercubes over Z

d for fixed
d. This answers an open problem of [12]. As observed in [12], over non-fixed d,
this problem generalizes DNF since each term can be seen as a hypercube over
{0, 1}d. That is, without fixing d, the problem is as hard as learning unrestricted
DNF, which is well-known to be a major open problem in computational learning
theory [4].

In view of applying our learning algorithm to the monadic decomposition
problem [15,29] for quantifier-free integer linear arithmetic formulas, we con-
sider two extensions. Firstly, we allow infinite hypercubes. For example, over
1-dimension, these would include infinite intervals like [7,∞), which would cor-
respond to the formula x ≥ 7. Secondly, we observe that the subset query (i.e.
checking if the target concept includes a given finite union H of hypercubes)
is not an expensive query for performing monadic decomposition, i.e., it would
correspond to a single satisfiability check of a quantifier-free integer linear arith-
metic formula, which can be handled easily by an SMT-solver. Subset queries
belong to one of the standard types of queries in Angluin’s active learning frame-
work, e.g., see [3]. For this reason, we provide an optimization of our learning
algorithm by means of subset queries.

We implemented these learning algorithms (vanilla and various optimization
including subset queries and “unary/binary acceleration”), using Z3 [26] as the
backend for answering equivalence and subset queries (each a satisfiability check
of a quantifier-free formula). We have performed a micro-benchmarking to stress-
test our algorithms against the generic monadic decomposition procedure of
[29], which also use Z3 as the backend, using various geometric objects over
Z
d as benchmarks. Our experiments suggest that our algorithms substantially

outperform the generic procedure.

Organization. Preliminaries are in Sect. 2. We present the overshooting algorithm
that witnesses polynomial learnability of finite unions of rectilinear cubes over
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a fixed dimension d with membership and equivalence in Sect. 3. In Sect. 4, we
provide two extensions: (1) how subset queries could help speed up the over-
shooting algorithm, (2) how the algorithm could be extended to handle infinite
cubes. Applications to monadic decomposition and experiments are presented in
Sect. 5. We conclude in Sect. 6.

We refer the reader to the technical report [25] when proofs are omitted and
to the artifact [24] for implementation and benchmark details.

2 Preliminaries

We introduce below some common mathematical notations: N and Z are the
sets of natural numbers and integers, respectively. For a, b ∈ Z, we write [a, b] =
{i | a ≤ i ≤ b}; For any set X, we denote its power-set P(X) and its cardinal
|X| ∈ N�{∞}; Given two sets A,B, the symmetric difference is written AΔB =
A\B ∪ B\A;

When analyzing complexity of the presented algorithms, we assume binary
encoding for any number n ∈ Z, which is part of the input of the considered
algorithms, namely, size(n) = 1+�log(|n|+1)	, where log is the base 2 logarithm.

Hypercubes. For a fixed dimension d ∈ N, we consider the discrete lattice Z
d. A

point v ∈ Z
d can be described by its coordinates v[k] for k ∈ [1, d]. Let v[k/α]

denote the vector v where the i-th coordinate has been replaced by α ∈ Z. The
notation 0d = (0, . . . , 0) ∈ Z

d denotes the origin, or simply 0 when the dimension
is clear from context. We use standard notation for component-wise additions
and scalar multiplication. In particular, for α ∈ Z, v + α · v′ denotes the vector
v′′ ∈ Z

d such that for all i, v′′[i] = v[i] + α · v′[i]. For 1 ≤ i ≤ d, we write ei for
the i-th elementary vector, ei = 0[i/1]. We shall be mostly using the standard
component-wise order ≤ over vectors in Z

d: v ≤ v′ iff for all i, v[i] ≤ v′[i].
We finally denote the size of a vector as the sum of the sizes of its components:
size(v) =

∑d
i=1 size(v[i]), for any v ∈ Z

d.
Our main study focuses on rectilinear hypercubes (cubes for short), i.e., any

set of points of the form C = {v | v ≤ v ≤ v} for some v ≤ v ∈ Z
d. The

size of C is uniquely defined as size(C) = size(v) + size(v). On the contrary, an
arbitrary finite set X has no unique representation as a finite union of cubes,
therefore we define its size as the size of its best representation:

size(X) = min

{
n∑

i=1

size(vi) + size(vi)

∣
∣
∣
∣
∣

∃n,v1 . . .vn : X =
n⋃

i=1

Cube(vi,vi)

}

We adopt here a worst-case analysis approach, where our later reasoning and
complexity analysis are valid for any representation, they are in particular valid
for its best representation.
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Learning Model. We first recall some standard definition from computational
learning theory; for more, see [16]. Fix a countable base set D =

⋃n
i=1 Di, where

the sets Di’s are pairwise disjoint. The problem of learning boolean formulas in
DNF uses Di = {0, 1}i, i.e., the set of all binary sequences of length i, which can
be thought of as a set of all assignments to a boolean function over x1, . . . , xi.
The learning problem in this paper uses Di = Z

i. A concept X is simply a
subset of Di, for some i ∈ Z>0. For example, when Di = {0, 1}i, a concept is
simply a boolean function over x1, . . . , xi. When we speak of a learning problem,
we always have a fixed set of representations in mind. For example, when we
speak of learning boolean formulas in DNF (Disjunctive Normal Form), the
representation ϕX of a boolean function X has to be a formula over x1, . . . , xi in
DNF. For example, X could be a boolean function, whereas ϕX a DNF formula
representing X. Note that a concept could admit many possible representations.
A concept class C =

⋃∞
i=1 Ci is a set of concepts, where Ci ⊆ P(Di). For example,

Ci could be the set of boolean functions over variables x1, . . . , xi. When the set of
representations for C is fixed (e.g. DNF for representing boolean functions), we
could define size(X) of the concept X to be the size of the smallest representation
of X. In this paper, we are dealing with the concept class Cd ⊆ P(Zd) of sets of
integer points that can be represented as a finite union of rectilinear hypercubes
over Zd. Earlier in this section we have defined this concept, as well as the size of
the representation. To avoid notational clutter, we will often denote the concept
class Cd by C because our algorithm typically assumes that d is fixed.

In Angluin’s active learning framework [2,3], the learner has access to oracles
(a.k.a. teachers) that could provide hints about the target concept X to the
learner. A minimally adequate teacher must be able to answer membership and
equivalence queries.

Definition 1 (M+EQ Oracles). Consider some target concept X ∈ Cd for
some concept class C =

⋃∞
d=1 Cd and let ⊥,
 /∈ D be two fresh symbols.

– A membership oracle (M) for X is a function ΦX : Dd → {
,⊥}, which
outputs 
 iff v ∈ X.

– An equivalence oracle (EQ) for X is a function ΨX : Cd → Dd � {
} such
that for all hypothesis H ∈ C, ΨX(H) ∈ (HΔX) � {
} and ΨX(H) = 

implies H = X.

Intuitively, an equivalence oracle tells, for any hypothesis H ∈ C, whether H =
X. If yes, 
 is returned; if not, it provides a counterexample, namely a point in
the symmetric difference. Angluin has considered other types of queries as well
in her framework including subset/superset queries and difference queries (e.g.
see her excellent survey [3]). We will use the subset queries in Sect. 4.

A learning algorithm A is said to learn the concept class C =
⋃∞

d=1 Cd if, given
d as input and any unknown target concept X, it terminates and outputs a rep-
resentation of X after a finite amount of interaction with the oracles. Assuming
that the oracle always returns the shortest counterexamples, its running time
is defined to be number of steps (measured in d and size(X)) that A takes to
output a representation of X. The complexity comp(d, size(X)) of A measures



248 O. Markgraf et al.

the number of steps taken in the worst case for all d and size(X). It runs in poly-
nomial time if comp is a polynomial function. It remains a long-standing open
problem in computational learning theory if there is a learning algorithm for
boolean formulas represented in DNF, which is true for almost all major models
including exact learning and PAC (see [4]). Over geometric concepts including
hypercubes and semilinear sets, the dimension d is sometimes considered a fixed
parameter, e.g., see [1,12,17,22].

3 Minimally Adequate Teacher

We restrict first our attention to the minimally adequate teacher setting where
only a membership and equivalence oracle are provided, and provide construc-
tions for intermediate procedures that can be interpreted as oracles.

3.1 Corner Oracle

At the heart of our learning algorithm is the concept of corners:

Definition 2. Given a set of points X ⊆ Z
d, a maximal corner (resp min-

imal corner) of X is a point v ∈ X maximal (resp minimal) with respect
to component-wise ordering ≤. We write Corners(X) and Corners(X) for the
sets of maximal and minimal corners, respectively, and write Corners(X) =
Corners(X) ∪ Corners(X).

Given a membership oracle for some X ∈ C containing 0, Algorithm 1 returns
some maximal corner of a given finite subset. Intuitively, for each coordinate i,
a binary search is made until a border of X is eventually found. More precisely,
we provide the following complexity analysis.

Algorithm 1. Binary search for a maximal corner, assuming 0 ∈ X

Ensure: Returned value is a maximal corner of X
Require: 0 ∈ X; ΦX a membership oracle for X

function findMaxCorner(ΦX)
i ← 0; v = 0
while i < d do

i ← i + 1; k ← 1; l ← 1;
if ΦX(v + ei) then

while ΦX(v + k · ei) do
l ← k; k ← 2k

while k − l > 1 do
if ΦX(v + �(k + l)/2� · ei) then

l ← �(k + l)/2�
else

k ← �(k + l)/2�
v ← v + l · ei; i ← 0

return v
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Proposition 1. Let ΦX be a membership oracle for X = ∪n
i=1Cube(vi,vi)

and assume 0 ∈ X. Then findMaxCorner(ΦX) terminates after
O

(∑n
j=1 size(vj)

)
queries and returns some v ∈ Corners(X).

This algorithm provides a partial implementation of the following oracle:

Definition 3. Given X ∈ C, a corner oracle for X is any function ΘX : X →
Corners(X) × Corners(X).

A complete implementation of this oracle is provided by noticing that mem-
bership oracles can easily be composed:

Remark 1. Assume ΦA and ΦB are two given membership oracles, respectively
for two arbitrary sets A and B, and f : Zd → Z

d. One can build membership
oracles for A ∪ B, A ∩ B, AΔB, A\B and f(A). In particular:

– By instantiating f : v �→ −v, the previous procedure applied on Φf(A) returns
some v ∈ Corners(−A), so −v ∈ Corners(A).

– For any v0 ∈ A and f : v �→ v − v0, Φf(A) is a membership oracle for
A−v0 = {v | v+v0 ∈ A} containing 0, so findMaxCorner(Φf(A)) returns
some v ∈ Corners(A − v0) so v + v0 ∈ Corners(A).

In both cases, notice that size(f(A)) ≤ size(A) + size(v0) ≤ 2size(A).

In the sequel we write ΦC for the membership oracle of any set C obtained by
composing sets whose oracles are provided. We also assume having constructed
the two procedures findMaxCorner(v, ΦX) and findMinCorner(v, ΦX).

3.2 Overshooting Algorithm

Algorithm 2 Overshooting algorithms
Require: ΦX membership oracle for X, ΨX equivalence oracle for X

function LearnCubes(ΦX ,ΨX)
H ← ∅
repeat

v ← ΨX(H)
H ← Refine(H,v, ΦX)

until v = �
function RefineSym(H,v, ΦX)

v ← findMinCorner(v, ΦXΔH)
v ← findMaxCorner(v, ΦXΔH)
return HΔCube(v,v)

function RefineAddRemove(H,v, ΦX)
if ΦX(v) then

v ← findMinCorner(v, ΦX\H)
v ← findMaxCorner(v, ΦX\H)
return H ∪ Cube(v,v)

else
v ← findMinCorner(v, ΦH\X)
v ← findMaxCorner(v, ΦH\X)
return H\Cube(v,v)

The core loop of the learning algorithm is presented in the LearnCubes func-
tion of Algorithm 2. The hypothesis is initially empty, and is later refined, as
long as a counterexample is returned. How to refine the hypothesis given a coun-
terexample? Two implementations of Refine are provided namely RefineSym
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and RefineAddRemove, giving rise to two variants of the algorithm. In both
cases, the refinement takes a counterexample as an input and uses the corner
oracle to build a cube C. In the former variant, a symmetric difference between
the current hypothesis and C is made, while in the latter, C is either added or
removed from the hypothesis.

(a) Step 1: add (b) Step 2: remove (c) Step 3: remove
counterexample v minimal corner v maximal corner v

search space hypothesis learned cube to add learned cube to remove

Fig. 1. Possible run of the overshooting algorithm on two cubes in 2 dimensions

An example run of the RefineAddRemove variant is depicted in Fig. 1.
While the above diagrams represent the search space used by the corner oracles,
the below diagrams depict the resulting hypothesis after refinement. Initially,
the hypothesis is empty (not represented) so the search space coincides with the
target set X, which can be represented as a union of two overlapping cubes.
A counterexample v ∈ X\H is therefore returned by the equivalence oracle.
As v ∈ X, the refinement procedure adds some cube by searching the state
space X\H = X around v. A too large cube is then added to the hypothesis,
and a negative counterexample v ∈ H\X is then returned. The search space
is now H\X and the algorithm aims at removing some smaller cube from the
hypothesis. After two removals, the final hypothesis coincides with the target.

Hypothesis Representation. Both variants are operating on the hypothesis by
applying boolean operations. One can naturally wonder if hypothesis represented
by union, symmetric differences and differences of cubes can be handled by
oracles operating on the concept class of finite cubes. As a matter of fact, we
will observe that HΔX, H\X and X\H can all be represented in C:

Lemma 1 (Cube intersection and subtraction). Let C1 = Cube(v1,v1)
and C2 = Cube(v2,v2) two cubes.

Then C1 ∩C2 is a cube and C2\C1 can be written as the disjoint union of 2d
cubes. Moreover, these computations are effective in 2d operations.

Intuitively, one can think of a cube subtracted by a smaller cube results in a
family of cubes, one for each face of the larger cube. There are 2d faces for a
cube in dimension d.
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3.3 Repetition-Free Complexity

In order to analyze the complexity of both variants of the algorithm, we fix a
finite target set X ∈ Cd and one of its representation as a union of cubes:

X =
n⋃

i=1

Cube(vi,vi)

We prove by induction on the iteration step that H can be expressed as a
union of cubes, whose corners are aligned on a particular set of points:

Definition 4 (Abstract grid). For 1 ≤ k ≤ d, we define the sets:

Bk = {vi[k] + 1 | 1 ≤ i ≤ C} ∪ {vi[k] | 1 ≤ i ≤ C}
Bk = {vi[k] | 1 ≤ i ≤ C} ∪ {vi[k] − 1 | 1 ≤ i ≤ C}

For any A ⊆ Z
d, we write A ∈ B whenever is a finite union of cubes of the form

Cube(v,v′) such that for all k, v[k] ∈ Bk and v′[k] ∈ Bk.

Intuitively, Bk (resp Bk) describes all the possible k-coordinate for minimal
corners (resp maximal). A coordinate for a max corner, i.e. a constraint of the
form xk ≤ α, can become a coordinate for a minimal corner, i.e. a constraint of
the form xk ≥ α+1, when taking the complement during a difference operation,
and vice versa.

We observe that B is stable by union, intersection and difference. In particu-
lar, the overshooting algorithms maintain H ∈ B, namely the hypothesis always
has minimal (resp maximal) corners that align with Bk (resp Bk) on the k-th
coordinate. Figure 2 provides an example of such points for a target made of the
union of two cubes.

Fig. 2. Possible minimal and maximal corners for cubes appearing in the hypothesis,
for a given target space

Since the sets Bk and Bk are of size at most 2n for every k, there are at
most (2n)2d possible cubes, polynomial for a fixed d. Assuming H ∈ B, we can
ensure that Lemma 1 maintains a polynomial representation of the hypothesis
throughout the algorithm until termination.

Although B is of polynomial size, proving H ∈ B is not sufficient to prove
termination of the algorithm in polynomial time, especially if some cubes in B
are added and removed several times. Consider for example Fig. 3 which depicts a
possible run of the algorithm on three aligned cubes by its successive hypotheses:
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A

B

C

∅

Fig. 3. Possible run on three cubes where cube B is added twice to the hypothesis.

cube B is added during the first step, but is later covered when the algorithm tries
to learn A but overshoots. Another overshooting happens when trying to remove
the space between A and B, which ends up removing all space between A and
C. The cube C has then to be learned a second time, terminating the algorithm.

To circumvent this issue, we propose an optimization that prevents visit-
ing twice the same minimal corner v. We base our reasoning on the following
observations:

– If v ∈ X, then v ∈ X, so v should not be later removed.
– If v /∈ X, then v /∈ X, so v should not be later added back to H.

Algorithm 3 introduces an optimized refinement procedure to keep track of
the already added maximal corners. Although an analogous optimization can
be done on the symmetric difference variant, we only discuss here RefineAd-
dRemove2.

Once a minimal corner v for a candidate cube has been found, we continue
the search of a maximal corner v by avoiding points that will result in the
removal (resp addition) of already added (resp removed) minimal corners.

Algorithm 3. Optimized refinement avoiding visited minimal corners
Let V ← ∅
function RefineAddRemove2(H,ve, ΦX)

if ΦX(ve) then
Let v = findMinCorner(ve, ΦX\H)
Let v = findMaxCorner(v, ΦX\H\{v | ∃v′∈V :v≤v′≤v})
V ← V 	 {v}
return H ∪ Cube(v,v)

else
Let v = findMinCorner(ve, ΦH\X)
Let v = findMaxCorner(v, ΦH\X\{v | ∃v′∈V :v≤v′≤v})
V ← V 	 {v}
return H\Cube(v,v)

Notice how only the maximal corner search benefits from the optimization,
by tracking down minimal corners only. As a matter of fact, one could store
the whole visited cubes in set V . However, when a search for maximal corner is
carried, the resulting cube will intersect a previously visited cube as soon as the
max corner crosses the minimal corner of the visited cube.
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We exploit again Remark 1 to build an oracle for every mentioned member-
ship oracle. Since V is a finite set, one can indeed build a membership oracle
for the set {v | ∃v′ ∈ V \X : v ≤ v′ ≤ v}. Due to this exclusion region, a finer
analysis has to be conducted to prove H ∈ B.

Lemma 2. The two optimized variants maintain the following invariants:

1. V ∩ X ⊆ H;
2. (V \X) ∩ H = ∅;
3. for all v ∈ V , and any k, v[k] ∈ Bk;
4. H ∈ B.

Properties 1 and 2 ensure that every v added to V is never added twice.
These also ensures correctness of the algorithm: remark that the search for a
maximal corner is not started from the initial counterexample ve but from v,
which is indeed is in the search space since v /∈ {v | ∃v′ ∈ V : v ≤ v′ ≤ v} (no
point added twice to V ). Finally, property 3 ensures that only elements of (Bk)k
are added to V , hence a maximal number of (2n)d additions.

Proof. At the beginning of the algorithm, V = H = ∅, satisfying all given
properties. We prove the result by induction on the iteration step:

1. By definition of corner oracles, namely FindMaxCorner, if v ∈ X has been
added to V during some previous iteration, it was added in the first branch
(the oracle returns some point in the search region, which excludes X in
the second branch). Therefore, it was also added to H during this iteration.
Consider some later iteration removing elements from H, namely an iteration
executing the second branch. Some cube C = Cube(v′,v′) has been computed
by the corner oracles in this branch such that v′ ∈ H\X\{v | ∃v′ ∈ V : v′ ≤
v′ ≤ v} In particular, since v ∈ V , we do not have v′ ≤ v ≤ v′ hence v /∈ C
and v is not removed.

2. Similar to (1) (symmetric case).
3. For every v added to V , it was produced by a (max) corner query made

on X\H or H\X. Both of these sets are in B since H ∈ B by induction
hypothesis.

4. Let us prove that the cube C = Cube(v,v) currently added or removed
satisfies C ∈ B (hence H ∪ C,H\C ∈ B which will conclude the induction).
We already have proven that v ∈ (Bk)k. We prove now that v ∈ (Bk)k which
is searched over the restricted state space B = A\{v | ∃v′ ∈ V : v ≤ v′ ≤ v}
for A = X\H ∈ B or A = H\XB.
For any k ∈ [1, d], v + ek /∈ B so either:

– v + ek /∈ A ∈ B so v[k] ∈ Bk;
– or v + ek ∈ {v | ∃v′ ∈ V : v ≤ v′ ≤ v} but since v is not in the set,

there exists v′ ∈ V such that v[k] + 1 = v′[k]. Since v′[k] ∈ Bk, we have
v[k] ∈ Bk.

This concludes the proof.

By combining Proposition 1 and Lemma 2, we summarize the complexity of
our overshooting algorithms for a particular target X = ∪n

i=1Cube(vi,vi) ∈ Cd.
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Theorem 1 (M+EQ). Both variants of LearnCubes terminates in at most
(2n)d iterations, where an iteration requires:

1. One equivalence query;
2. One corner query, or equivalently, a linear number O(size(X)) of membership

queries.

This algorithm terminates in polynomial time, for fixed d, in any represen-
tation of target X. In particular, the result holds in the worst-case where the
representation of X as a finite union of cubes is minimal. As a matter of fact
the presented exponential bound in d is tight: there exists a target X ∈ C and
a pair of corner and equivalence oracles such that both algorithms terminate in
exponential time.

(a) Overshooting (b) Remove plane x1 = 2 (c) remove plane x2 = 2

(d) Remove cube (e) Remove cube

Fig. 4. exponential blow-up, case d = 2

Example 1. Consider X = {0,
∑d

i=1 2ei} composed of two cubes, then by learn-
ing Cube(0,

∑d
i=1 2ei), then removing every middle plane of equation xk = 1 for

every k ∈ [1, d], the resulting hypothesis is composed of 2d − 2 cubes to remove.
An example with d = 2 is depicted in Fig. 4.

Whether finite unions of cubes can be learned in polynomial time in the dimen-
sion is left as an open problem, that we relate to DNF formula learning over
d variables where each term can be interpreted as a cube over {0, 1}d.

4 Extensions

In this section we introduce extensions to the overshooting algorithm from
Sect. 3.2. While membership and equivalence queries are sufficient for learning
finite sets, one natural extension of the minimal learner setting is to introduce
a subset oracle [3]:

Definition 5 (Subset Oracle). Consider some target concept X ∈ Cd for some
concept class C =

⋃∞
d=1 Cd and let ⊥,
 /∈ D be two fresh symbols.

A subset oracle (SUB) for X is a function ρX : Cd → {
,⊥}, which outputs

 iff H ⊆ X.
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The definition is similar to the membership oracle from Definition 1 except the
oracle takes a set instead of a single point as input.

4.1 Maximal Cube Oracle

As opposed to the overshooting algorithm, using a subset oracle avoids the over-
shooting issue, that is to say, we can now search for cubes included in the tar-
get X. In order to increase the convergence speed, we nonetheless introduce a
maximality criterion on the suitable cubes:

Definition 6 (Maximal Cubes). A cube Cube(v,v) is maximal w.r.t. X if

1. Cube(v,v) ⊆ X
2. For all i, Cube(v,v + ei) �⊆ X
3. For all i, Cube(v − ei,v) �⊆ X

Figure 5 provides examples of possible maximal cubes in dimension d = 2.

(a) 4 maximal cubes when n = 2

. . .

(b) n(n+ 1)/2 maximal cubes

Fig. 5. Example of maximal cubes w.r.t. to a union of n cubes

Next, we modify the corner oracle from Sect. 3.1 to use subset queries. Again,
we only define the algorithm to find a max corner, the min corner algorithm can
be implemented analogously. The algorithm first computes a lower and upper
bound for the subsequent binary search. The computation is shown in the func-
tion computeMaxBounds. Given a cube defined by its minimal and a maximal
corner, the value of coordinate i is increased as long as the resulting cube is still
a subset of the target set X. The upper bound v is the first negative reply by
the oracle and the lower bound v the last positive response. A binary search is
made on v and v in the findMaxIncCorner function.

4.2 Maximal Cube Algorithm

Algorithm 5 presents a procedure that iteratively refines the hypothesis: for any
point, the algorithm searches for a maximal cube contained by this point w.r.t.
the target and adds it to the hypothesis. One can check that both procedure
calls are valid, as H ⊆ X is an invariant. At every iteration the counterexample
v satisfies v ∈ X \ H. The use of the subset oracle ensures that the function
FindMaxIncCorner always returns a point v such that Cube(v,v) ⊆ X.
Similarly, the function FindMinIncCorner always returns a corner v such that
Cube(v,v) ⊆ X. The resulting cube is then added to the hypothesis, ensuring
point v is never visited again as a counterexample. This entails the termination
of the algorithm, in at most |X| iteration of the main loop. A better bound will
be explored in Sect. 4.4.
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Algorithm 4. Maximal corner of a maximal cube, in O(size(X)) subset queries
Ensure: Returned value is a maximal corner of X

function findMaxIncCorner(v,v, ρX)
for i ∈ [1, d] do

(b, b) = computeMaxBounds(v,v, i, ρX)
while b 
= b do

m ← (b + b) ÷ 2
if ρX(Cube(v,v[i/m])) then

b ← m
else

b ← m
v[i] ← b

return v
function computeMaxBounds(v,v, i, ρX)

δ ← 1
while ρX(Cube(v,v + δ · ei)) do

δ ← 2 · δ
return (v[i] + δ/2,v[i] + δ)

Algorithm 5. The maximal cube algorithm
function LearnMaxCube(ρX , ΨX)

Let H ← ∅
while (v ← ΨX(H)) 
= � do

Let v ← findMaxIncCorner(v,v, ρX)
Let v ← findMinIncCorner(v,v, ρX)
H ← H ∪ Cube(v,v)

4.3 Extension to the Infinite Case

We discuss now one possible extension to the infinite case, namely when cubes
are possibly unbounded and may contain infinitely many points.

We adapt our learning formalism to deal with infinite bounds: for the remain-
der of the section we extend the discrete lattice Z

d to (Z � {+∞,−∞})d

and extend trivially ≤ over the newly introduced points. For v,v ∈ (Z �
{+∞,−∞})d, the definition of C = Cube(v,v) remains unchanged, in particu-
lar C ⊆ Z

d but may be infinite. The concept class C, hence the domain of oracle
functions, is augmented with all finite unions of cubes with (possibly) infinite
bounds.

A possible approach to tackle this problem in the minimally adequate teacher
(M+EQ) formalism consists in running the overshooting algorithm of Sect. 3 on
the state space restricted to some cube of width 2k centered in 0 and gradually
increase k if counterexamples outside this restriction are found. This method is
discussed in the extended version of the present article [25] but we focus here on
a LearnMaxCube adaptation exploiting subset queries (SUB+EQ).

While Algorithm 5 remains unchanged, we need however to adjust the func-
tions FindMaxIncCorner and FindMinIncCorner as those are not able
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to accelerate the search to infinity. Algorithm 6 achieves this goal by simply
overriding the ComputeMaxBounds and ComputeMinBounds subroutines
in order to check for possible +∞ and −∞ bounds. Whenever such bound is
returned, no further binary search occurs for this coordinate (constant time).

Algorithm 6. Maximal bound overriding, checking for +∞.
function computeMaxBounds(v,v, i, ρX)

if ρX(Cube(v,v[i/ + ∞])) then
return (+∞, +∞)

else � We refer to original ComputeMaxBounds of Algorithm 4
return Super.ComputeMaxBounds(v,v, i, ρX)

4.4 Complexity

Termination of LearnMaxCube was proved using cardinality arguments
in Sect. 4.1. These arguments obviously don’t apply in the case where the target
set is infinite. Moreover, we are interested in finer complexity analysis.

As in Sect. 3.3, we fix a target representation X = ∪n
i=1Cube(vi,vi) and

study the algorithm complexity with respect to
∑n

i=1 size(vi) + size(vi) ∈ Cd.
As some of the vectors v may contain infinite coordinates, we carefully specify
size(+∞) = size(−∞) = 1 and keep the usual definition of size(v).

Theorem 2 (SUB+EQ). LearnMaxCube terminates in at most n2d iter-
ations, where an iteration requires:

1. One equivalence query;
2. One maximal cube query, or equivalently, a linear number O(size(X)) of sub-

set queries.

Proof. At every iteration, one equivalence query is performed then FindMax-
IncCorner and FindMinIncCorner perform a binary search, resulting in a
linear number of subset similar (proof similar to Proposition 1).

In order to analyze the number of iterations of the main loop, let us first
remark that each added maximal cube is added only once: if we write vk the
k-th counterexample and Ck the learned maximal cube, then vk+1 ∈ X\∪k

i=1 Ci

and vk+1 ∈ Ck+1 so Ck+1 �= Ci for every i ∈ [1, k].
The number of iterations is therefore bounded by the number of max-

imal cubes. We proceed now to bound the number of maximal cubes: Let
C = Cube(v,v) be a maximal cube w.r.t. X. For any k ∈ [1, d] there exist
i, j ∈ [1, n] such that v[k] = vi[k] and v[k] = vj [k], hence at most n2 possibili-
ties for coordinate k.

As in Theorem 1 the number of iterations is polynomial in the number of
cubes n but exponential in the dimension d. As opposed to the LearnCubes
algorithm, the bound is not tight as the example Fig. 5b provides only a quadratic
number of maximal number of cubes. As the maximal cube concept can be
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related to the notion of prime implicant, examples of DNF formula with an
exponential of prime implicants (see for example [8]) can be translated into
union of cubes with an exponential number of maximal 0–1 cubes.

From a practical perspective, one can nonetheless argue that LearnMax-
Cube is likely to perform well in practice, by avoiding the overshooting problem
mentioned in Example 1 as H ⊆ X is an invariant. In fact, one can easily check
that if there are no adjacent1 cubes, the number of iterations becomes linear.

5 Applications and Experiments

In this section, we describe an immediate application of our learning algorithms
to monadic decomposition of quantifier-free Presburger formulas [15,29]. We
then report on experimental comparisons between our algorithms and existing
methods for the problem.

5.1 Application to Monadic Decomposition

Here we consider quantifier-free linear integer arithmetic formulas without mod-
ulo arithmetic:

ϕ ::=α1 ∼ α2 | ϕ ∧ ϕ | ϕ ∨ ϕ,

where ∼ ∈ {≤,≥,=}, and α1, α2 are integer linear combinations of the variables
x1, . . . , xn, i.e., αi is of the form c0+

∑n
j=1 cj .xj , where each ci ∈ Z. The formula

ϕ(x̄) is said to be satisfiable (written 〈Z; +〉 |= ϕ) if there exists an assignment
σ of x̄ to Z such that the formula becomes true. Of course, this is just a simple
fragment of the first-order theory of integer linear arithmetic and the notion
of 〈Z; +〉 |= ϕ can be defined in the same way even with quantifiers [14,18].
A formula ϕ is said to be monadic if it has only one variable. Every monadic
formula ϕ(x) in this fragment can be easily transformed into a union integer
intervals of the form: (1) l ≤ x ∧ x ≤ u where l, u ∈ Z, (2) l ≤ x where l ∈ Z, (3)
x ≤ u where u ∈ Z, or (4) 
 or ⊥.

A monadic decomposition [29] of a formula ϕ(x̄) is a boolean combination
ψ(x̄) of monadic formulas that is equivalent to ϕ over the theory, i.e., 〈Z; +〉 |=
∀x̄(ϕ ↔ ψ). Of course, not all formulas admit a monadic decomposition (e.g., x =
y). It was shown in [15] that deciding if a formula in the theory be monadically
decomposable is coNP-complete2. Veanes et al. [29] provides a generic semi-
decision procedure for computing a monadic decomposition of a quantifier-free
formula as an if-then-else formula that is applicable to pretty much all theories
considered in SMT. Despite its genericity, the procedure runs rather well, e.g.,
as the authors showed on their benchmarking in [29].

1 Two cubes C1 and C2 are adjacent if min
{∑

i |v1[i] − v2[i]
∣
∣ | v1 ∈ C1,v2 ∈ C2

} ≤ 1.
2 The proof in [15] uses modulo constraints to show that monadic decomposition of a

two-variable formula ϕ(x, y) is coNP-complete. Modulo constraints could be easily
removed by allowing more integer variables.
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The application of our learning algorithms to computing monadic decom-
position arises from the following observation. Since each monadic decompo-
sition can be transformed into DNF, a monadic decomposition of a formula
ϕ(x̄) over 〈Z; +〉 can be constructed as a finite union of (possibly infinite)
hypercubes, where an infinite hypercube arises when a variable is either not
bounded from above or not bounded from below (or both). Conversely, a finite
union H of possibly infinite hypercubes can also be easily transformed into
a boolean combination of monadic formulas ϕH . For example, the formula
(0 ≤ x ≤ 5 ∧ 3 ≤ y ≤ 10) ∨ (8 ≤ x) corresponds to the union of hypercubes
Cube((0, 3), (5, 10))∪ Cube((8,−∞), (+∞,+∞)). Furthermore, all relevant ora-
cles admit a straightforward implementation:
– A membership query v̄ requires checking 〈Z; +〉 |= ϕ(v̄), which can be checked

in polynomial-time because ϕ is quantifier-free.
– An equivalence query H can be reduced to checking

〈Z; +〉 |= (ϕH ∧ ¬ϕ) ∨ (ϕ ∧ ¬ϕH).

This is a single satisfiability check of quantifier-free integer-linear arithmetic
formula, for which highly-optimized solvers exist (e.g., Z3 [26]).

– A subset query H can similarly be reduced to checking

〈Z; +〉 |= (ϕH ∧ ¬ϕ).

This is also a single satisfiability check over 〈Z; +〉.
This allows us to apply both of our learning algorithms to the problem.

Monadic decomposition has numerous applications including quantifier elimi-
nation [29], string solving [15], and symbolic finite automata/transducers [13,29],
among others. In the following example we illustrate how our learning algo-
rithm(s) could be applied to improving quantifier elimination for the theory of
linear integer arithmetic.
Example 2. Consider a formula of the form ∀x̄∃y ϕ(x̄, ȳ), where ϕ is a formula in
linear integer arithmetic without modulo constraints. Suppose that ϕ is monad-
ically decomposable, and is equivalent to the formula

∨n
i=1 Di(x̄, ȳ), where each

Di is a disjunction of monadic predicates over the variables x̄∪ ȳ. We assume
w.l.o.g. that each Di is satisfiable. Then, this formula is equisatisfiable (over
linear integer arithmetic) to ψ := ∀x̄ (

∨n
i=1 Di(x̄, c̄i)) , where ȳ in Di are replaced

by fresh constants c̄i (i.e. two distinct Di,D
′
i use different constants). This can

be proven by a simple application of skolemization, and observing that each
occurrence of f(x̄) in any disjunct is of the form a < f(x̄) < b, where a ∈
{−∞} ∪ Z and b ∈ Z ∪ {∞}, implying that f(x̄) can be replaced by a single
constant, which does not depend on x̄. Finally, let D′

i be the conjuncts in Di only
involving variables in x̄. Checking that ψ is true reduces to checking satisfiability
of

∧n
i=1 ¬D′

i.
To make this example concrete, we consider the formula ∀x∃y(x ≥ 0 →

x + y ≥ 5 ∧ y ≥ 0). A monadic decomposition of the quantifier-free part is
x < 0 ∨ ∨5

i=0(x ≥ i ∧ y ≥ 5 − i). Therefore, checking the above formula can be
reduced to satisfiability of x ≥ 0 ∧ ∧5

i=0 x < i which is not satisfiable.
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5.2 Experiments

In order to assess the performance of the algorithms FindMaxCorner and
FindMinCorner respectively introduced in Sect. 3 and Sect. 4, we consider
prototype implementations. The following prototypes and experiments can be
found in [24].

Variants. Although the methods were presented with binary search strategies
in mind, we also implemented a more naive unary search procedure to obtain
the corners. As later noticed in the experiments, unary search may be preferred
for very small cubes and performs especially well for cubes which are based 0–
1 integer programs, while binary search achieves better performance for larger
cubes. Consequently, we refer to a third variation of the algorithm called “opti-
mized”, combining unary search for small instances and binary search for large
values. More precisely two variants of the overshooting algorithm from Sect. 3
and three variants of the max cubes algorithm from Sect. 4 are presented, called
respectively overshoot unary and overshoot binary and max unary, max binary
and max optimized.

Tool Comparison. Evaluation is performed against a generic monadic decom-
position procedure mondec1 from [29] by Veanes et al., which works over an
arbitrary base theory and outputs an if-then-else formula, which could be expo-
nentially more succinct than a formula in DNF. The algorithm, which exploits
the python-Z3 framework [26], uses a kind of a decision tree search heuristics to
split the input into monadic predicates.

Implementation. Similarly to mondec1, our prototype is implemented in python
using the python-Z3 framework, but is specialized in handling linear integer
arithmetic formula, and that outputted formulas will be in DNF, unlike mondec1.
For monadic decomposition applications, oracles queries are converted to appro-
priate Z3 satisfaction queries since a (possibly non-monadic) representation of
the target set is already known.

(a) 50 overlapping cubes and the diagonal
x+ y = 50.

(b) 100 big Cubes.

Fig. 6. Benchmarks for Z
2.
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5.3 Benchmark Suite

Our benchmark suite is restricted to the problem of monadic decomposition of
linear integer arithmetic, and its purpose is to stress-test our learning algorithms
and mondec1 against various kinds of “extreme conditions”. The suite consists
of six classes of monadically decomposable example formulas, which were con-
structed to test five features (see below). Note that the given formulas themselves
might contain non-monadic predicates.

Table 1. Features of conducted benchmarks. A “+”
(resp. “-”) indicates a high (resp. low) presence of a
feature.

Overlap # Cubes |Cube| Dimension Unbounded

(a) + + − − −
(b) + − − + −
(c) + + − − −
(d) + + + − −
(e) − + − − −
(f) + + + − +

The five features (left to
right in Table 1) represent the
presence of (1) a large amount
of cube overlaps, (2) a large
number of cubes, (3) a large
cube, (4) large dimension, and
(5) an unbounded cube. We
hypothesized that these five
features play important roles
in how fast the algorithms
perform, which are indeed
validated in our experimental
results. The six classes of formulas are elaborated below.

(a) K Diagonal Restricted consists of K overlapping cubes of length and width
2 and one diagonal as shown in Fig. 6a. The cubes overlap with at most two
other cubes and stack up diagonally. The algorithms need to return all the
cubes left of the diagonal.

(b) 10 cubes in Z
d consists of K = 10 overlapping cubes of size 2d stacking up

diagonally similar to the benchmark K Diagonal Restricted without diagonal
restriction.

(c) K Diagonal Unrestricted is a variation of Fig. 6a where the algorithms need
to return all the cubes and all the points on the diagonal.

(d) K Big Overlapping Cube is a benchmark testing large cubes as depicted
in Fig. 6b. It consists of K overlapping cubes of length and width 100 and
are overlapping and stacking up diagonally like the benchmark K Diagonal
Restricted.

(e) K Diagonal is built as the set of points along the diagonal x = y ≤ K.
(f) Example 2 is generalized to any K ∈ N by x ≥ 0 → x + y ≥ K ∧ y ≥ 0. Its

unbounded nature makes it tractable by max optimized and mondec1 only.

5.4 Results

Experiments were conducted on an AMD Ryzen 5 1600 Six-Core CPU with
16 GB of RAM running on Windows 10. The results are summarized in Fig. 7
where each graph represents one benchmark comparing the run times of each
algorithm.
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(a) Benchmark on K Diagonal Re-
stricted in Z

2.
The x-axis encodes the amount of
cubes K.
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(b) Benchmark on 10 cubes in Z
d.

The x-axis encodes the dimension d.
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(c) Benchmark on K Diagonal Unre-
stricted in Z

2.
The x-axis encodes the amount of
cubes K.
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(d) Benchmark on K Big Cubes in Z
2.

The x-axis encodes the amount of
cubes K.

50 100150200250300350400450500
0

200

(e) Benchmark on K Diagonal in Z
2.

The x-axis encodes the maximal value
for x and y.

50 100150200250300350400450500
0

200

(f) Benchmark on Example 2 in Z
2.

The x-axis encodes parameter K.

overshooting unary overshooting binary maxcube unary
maxcube binary maxcube optimized mondec1

Fig. 7. Benchmark results. The y-axis encodes the time in seconds. The timeout is set
to1800 s.
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The overshooting phenomenon can be observed in Fig. 7c and Fig. 7e with
its quadratic shape, as d = 2. In Fig. 7b, the running time quickly diverges as d
increases, as anticipated by Example 1.

When the considered cubes are small, as in Fig. 7a and Fig. 7c, the unary
search algorithms outperform their binary counterparts, meaning the few addi-
tional queries made by the binary search are more costly than a direct enumer-
ation. The optimized variant is therefore a good compromise in all cases.

Figure 7d depicts a benchmark with many large cubes for a fixed dimension.
While the impact of the overshooting phenomenon remains contained, the max-
cube unary search variant is particularly slow. This can be explained by the
size of the cubes making unary search inefficient, combined with the already
expensive cost of every single inclusion query.

The mondec1 algorithm is comparable to the overshooting algorithms in
Fig. 7e. It also performs particularly well in Fig. 7f, which we conjecture is due
to the conciseness of the solution in if-then-else form used by mondec1.

Overall, the maxcube algorithm in its optimized form is the most stable
algorithm for this benchmark set and should be preferred when an inclusion
oracle is available. The extra cost of these queries are here taken into account
and remain affordable when implemented with Z3 queries.

6 Conclusion and Future Work

We have presented a polynomial-time algorithm in Angluin’s exact learning
framework using membership and equivalence for learning a finite union of rec-
tilinear cubes over Z

d over any fixed dimension d. By considering an additional
subset oracle, learning possibly infinite cubes can be achieved with the same com-
plexity, but a simpler and faster learning algorithm in practice. The technique
enables the introduction of auxiliary oracles, namely the corner (resp. maximal
cube) oracle when a membership (resp. subset) oracle is provided. While ora-
cles for subset queries tend to be difficult to implement, this turns out not to
be the case for our proposed application of computing monadic decompositions
of quantifier-free integer linear arithmetic formulas without modulo constraints,
which is successfully solved by our algorithm.

We mention three future research directions. First, extensions to modulo
operations could be explored, by encoding periodicity on d additional coordi-
nates and providing adequate oracles on the encoded target. A second direc-
tion consists in applying these learning techniques to the verification of systems
by learning invariants which are monadically decomposable in a small num-
ber of cubes. Lastly, one promising direction to further improve our algorithms
is to investigate how to leverage if-then-else formula representations as used in
mondec1 [29], which could be exponentially more succinct than formulas in DNF.

Acknowledgements. The authors would like to thank the reviewers and program
chairs for their thoughtful comments and suggestions to improve the presentation, as
well as the Simons Institute for the Theory of Computing and Christoph Haase for
fruitful discussions.
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Interpolation and Model Checking
for Nonlinear Arithmetic
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Abstract. We present a new model-based interpolation procedure for
satisfiability modulo theories (SMT). The procedure uses a new mode of
interaction with the SMT solver that we call solving modulo a model . This
either extends a given partial model into a full model for a set of assertions
or returns an explanation (a model interpolant) when no solution exists.
This mode of interaction fits well into the model-constructing satisfiability
(MCSAT) framework of SMT. We use it to develop an interpolation pro-
cedure for any MCSAT-supported theory. In particular, this method leads
to an effective interpolation procedure for nonlinear real arithmetic. We
evaluate the new procedure by integrating it into a model checker and com-
paring it with state-of-art model-checking tools for nonlinear arithmetic.

Keywords: Satisfiability modulo theories · Craig interpolation ·
Nonlinear arithmetic

1 Introduction

Craig interpolation is one of the central reasoning tools in modern verification
algorithms. Verification techniques such as model checking rely on Craig inter-
polation [11,39] as a symbolic learning oracle that drives abstraction refinement
and invariant inference. Interpolation has been studied for many fragments of
first-order logic that are useful in practice, such as linear arithmetic [23], unin-
terpreted functions [9,37], arrays [25,38], and sets [32]. In these fragments, a
typical interpolation procedure constructs interpolants by traversing the clausal
proof of unsatisfiability provided by an SMT solver [26,34,41] while performing
interpolation locally at proof nodes. A major missing piece in the class of frag-
ments supported by interpolating SMT solvers is nonlinear arithmetic,1 as the

1 By nonlinear arithmetic we mean Boolean combination of arithmetic constraints over
arbitrary-degree polynomials.

This material is based upon work supported by the Defense Advanced Research Project
Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific)
under Contract No. N66001-18-C-4011, and the National Science Foundation (NSF)
grant 1816936. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of
DARPA, SSC Pacific, or the NSF.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 266–288, 2021.
https://doi.org/10.1007/978-3-030-81688-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_13


Interpolation and Model Checking for Nonlinear Arithmetic 267

complex reasoning required for nonlinear arithmetic makes fine-grained symbolic
proof generation extremely difficult.

We present an approach to interpolation that is driven by models rather
than proofs. Given a pair of formulas A and B such that A ∧ B is unsatisfiable,
an interpolant is a formula I that is implied by A and inconsistent with B.
Recent model-based decision procedures, specifically the ones developed within
the MCSAT [13,28] framework for SMT, are internally naturally interpolating.
But, rather than interpolating two formulas, they provide a way to interpolate a
set of constraints against a partial model. We capitalize on this internal ability,
and extend it so that a formula A can be checked and interpolated against
a partial model (model interpolation). This is closely related to the ability of
modern SAT solvers to perform solving modulo assumptions [17], a technique
that can also been used to provide interpolation capabilities in finite-state model
checking [3].

We take advantage of model interpolation to build a formula-interpolation
procedure through a simple idea: we can compute an interpolant of formulas
A and B by iteratively interpolating (and refuting) all models of B with model
interpolants from A. We develop the interpolation procedure within the MCSAT
framework. This immediately allows us to generate interpolants for any theory
supported by the framework. As MCSAT provides efficient complete solvers for
nonlinear real arithmetic [27,29], we develop the first complete interpolation
procedure for real nonlinear arithmetic.

To show that this new interpolation procedure is an effective tool that can
be used on real-world problems, we integrate it into a model checker that uses
interpolation for inferring k-inductive invariants. We evaluate this model checker
on a set of industrial benchmarks. Our evaluation shows that the new procedure
is highly effective, both in terms of speed, and the ability to support the model
checker in its quest for counter-examples and invariants.

Outline. Section 2 gives background on SMT, interpolation, and nonlinear arith-
metic. Section 3 presents solving modulo a model and model interpolation, and
develops the general interpolation procedure. In Sect. 4, we discuss the particu-
lar needs of nonlinear arithmetic. In Sect. 5 we evaluate our implementation on
nonlinear model-checking problems. We conclude in Sect. 6 and provide future
research directions.

2 Background

We assume that the reader is familiar with the usual notions and terminology
of first-order logic and model theory (for an introduction see, e.g., [1]).

Nonlinear Arithmetic. As usual, we denote the ring of integers with Z and the
field of real numbers with R. Given a vector of variables x we denote the set
of polynomials with integer coefficients and variables x as Z[x]. A polynomial
f ∈ Z[y, x] is of the form
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f(y, x) = am · xdm + am−1 · xdm−1 + · · · + a1 · xd1 + a0,

where 0 < d1 < · · · < dm, and the coefficients ai are polynomials in Z[y] with
am �= 0. We call x the top variable and the highest power dm is the degree of
the polynomial f . As usual, we denote with f (k) the k-th derivative of f in its
top variable. A number α ∈ R is a root of the polynomial f ∈ Z[x] if f(α) = 0.

A polynomial constraint C is a constraint of the form f � 0 where f is a poly-
nomial and � ∈ {<,≤,=,≥, >}. If the polynomial f = f(x) is univariate then
we also say that C is univariate. An atom is either a polynomial constraint or a
Boolean variable, and formulas are defined inductively with the usual Boolean
connectives (∧, ∨, ¬). The symbols � and ⊥ denote true and false, respectively.
In addition to the basic polynomial constraints, we will also be working with
extended polynomial constraints. An extended polynomial constraint F is of the
form x �r root(f, k, x) where f ∈ Z[y, x] and �r ∈ {<r,≤r,=r,≥r, >r}. The
semantics of this predicate is the following: Given an assignment that gives real
values v to the variables y, then the roots of f(a, x) can be ordered over R. If
the polynomial f(a, x) has at least k real roots and αk is the k-th smallest root2

then the constraint is equivalent to x � αk. Otherwise, the constraint evaluates
to ⊥. For example, the constraint x < root(x2 − 2, 2, x) represents x <

√
2.

Given a formula F (x) we say that a type-consistent variable assignment
M = {x �→ a} satisfies F if the formula F evaluates to � in the standard
semantics of Booleans and reals. We call M a model of F and denote this with
M � F . If there is such a variable assignment, we say that F is satisfiable,
otherwise it is unsatisfiable. If two models M1 and M2 agree on the values of
their common variables, we denote the model that combines M1 and M2 with
M1 ∪ M2.

Definition 1 (Craig interpolant). Given two formulas A(x,y) and B(y,z)
such that A ∧ B is unsatisfiable, a Craig interpolant is a formula I(y) such that
A ⇒ I and I ⇒ ¬B. We call the pair (A,B) an interpolation problem.

Model Checking. A state-transition system is a pair S = 〈I, T 〉, where I(x) is a
state formula describing the initial states and T (x,x′) is a state-transition for-
mula describing the system’s evolution. Given a state formula P (the property),
we want to determine whether all reachable states of S satisfy P . If this is the
case, P is an invariant of S. If P is not invariant, there is a concrete trace of
the system, called a counter-example, that reaches ¬P .

The direct way to prove that a property P is an invariant of S is to show
that it is inductive. This requires showing that P holds in the initial states:
I ⇒ P , and that it is preserved by transitions: P (x) ∧ T (x,x′) ⇒ P (x′). As
most invariants are not inductive, a key problem in model checking is to find am
inductive strengthening of P , that is, a property P ′ such that P ′ ⇒ P and P ′ is
inductive.

2 For example, x2 −2 has two roots. The first root −√
2 is the smallest of the two and

the second root is
√

2.
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Example 1 (Cauchy–Schwarz inequality). We can frame the Cauchy–Schwarz
inequality as a model-checking problem in nonlinear arithmetic. The inequality
is the following

(
n∑

i=1

xiyi)2 ≤ (
n∑

i=1

x2
i )(

n∑

i=1

y2
i ). (1)

As shown in [21], many inequalities that involve a discrete parameter (such as
n above) can be converted to model-checking problems. For inequality (1), we
construct the transition system Scs = 〈I, T 〉 where

I ≡ (S1 = 0) ∧ (S2 = 0) ∧ (S3 = 0),

T ≡ (S′
1 = S1 + xy) ∧ (S′

2 = S2 + x2) ∧ (S′
3 = S3 + y2).

The variables S1, S2, S3 correspond to the sums in (1) in order. The two variables
x and y of Scs model the variables xi and yi from (1) in each iteration of Scs.
Proving the inequality amounts to showing that property Pcs ≡ (S2

1 ≤ S2S3)
is an invariant of Scs. Property Pcs is not inductive on its own, but property
P ′
cs ≡ Pcs ∧ (S2 ≥ 0) ∧ (S3 ≥ 0) is an inductive strengthening of Pcs.

Many modern model-checking techniques, specifically those based on SMT
solving, use interpolation as a tool to automatically infer inductive invariants. In
this context, an interpolant can be used to over-approximate a transition in the
context of a spurious counter-example. In addition to interpolation, the recent
class of techniques broadly termed property-directed reachability (PDR) (e.g.,
[24,30,33]), relies on model generalization, which converts a concrete counter-
example state into a set of counter-examples.

Definition 2 (Generalization). Given a formula F (x,y) such that F is true
in a model M , we call a formula G(x) a generalization of M if G(x) is true in
M and G(x) ⇒ ∃y . F (x,y).

A PDR model-checking procedure for nonlinear arithmetic requires both an
interpolation and a generalization procedure.

3 SMT Modulo Models and Interpolation

SMT solvers typically provide an API to assert formulas and to check the sat-
isfiability of asserted formulas. We denote with solver::assert(F ) the solver
method that adds the formula F to the set of assertions to be checked by the
solver. We denote with solver::check() the solver method for checking satis-
fiability, with the following contract.

solver::check(): Check satisfiability of asserted formulas A and

1. if there is a model M such that M � A, return 〈sat,M〉;
2. otherwise return 〈unsat, ∅〉.
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In this contract, the solver does not return any form of inconsistency cer-
tificate when the assertions are unsatisfiable.3 We generalize the standard SMT
satisfiability checking to SMT modulo models as follows.

solver::check(M0): Check satisfiability of asserted formulas A and

1. if there is a model M ⊇ M0 such that M � A, return 〈sat,M,�〉;
2. otherwise return 〈unsat, ∅, I〉 where A ⇒ I and M0 � ¬I.

SMT modulo models allows one to check that a formula is satisfiable modulo
a partial model M0, by seeking a solution that extends M0. If there is no such
solution, the formula I returned as the certificate of unsatisfiability is a model
interpolant : it is implied by the assertions and inconsistent with M0 (i.e., I
evaluates to ⊥ in the model M0). If we restrict ourselves to Boolean formulas,
SMT modulo models reduces exactly to solving modulo assumptions [17] used
in the SAT community. Although this idea is not completely new, it is the first
time that it is used for interpolation in SMT, as far as we know.

3.1 Interpolation

Before diving into an approach that can support the above mode of satisfiability
checking, we first show how model interpolation can be used to devise a general
interpolation method.

Algorithm 1: interpolate(A, B)

1 SA.assert(A) ;
2 SB .assert(B) ;
3 I ← � ;
4 while true do
5 〈rB ,MB〉 ← SB .check() ;
6 if rB = unsat then
7 return 〈unsat, I〉
8 〈rA,MA, IA〉 ← SA.check(MB) ;
9 if rA = sat then

10 return 〈sat,MA ∪ MB〉
11 I ← I ∧ IA ;
12 SB .assert(IA)

Algorithm 1 shows the pseudocode of a procedure that checks satisfiability
and interpolates two formulas A and B. The basic idea is simple: we enumerate

3 Some solvers support proof generation. While proofs are fundamentally important,
we are interested in certificates that can always be computed and are useful in
supporting further analysis. For example, proof generation for nonlinear arithmetic
is still a hard open problem.
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models Mk of the formula B, and refute each model Mk with a model interpolant
Ik from A. If the process converges and returns unsat, we collect the model
interpolants and construct the final interpolant I =

∧
Ik. Each interpolant Ik is

implied by A because it is a model interpolant, so A ⇒ I. Each model of B is
refuted by some model interpolant Ik, and so I ⇒ ¬B. On the other hand, if the
process returns sat, the procedure has found a common model for A and B. The
procedure above is model-driven and modular, in that it checks the formulas
A and B independently while only communicating models (from B to A) and
model interpolants (from A to B).

Lemma 1 (Correctness). If interpolate(A,B)returns〈unsat, I〉thenA∧B
is unsatisfiable and I is an interpolant for (A,B). If interpolate(A, B) returns
〈sat,M〉 then A ∧ B is satisfiable and M is a model of both A and B.

Note that Lemma 1 does not claim termination of the procedure. Termination
depends on the ability of model interpolation to produce a finite number of
model interpolants that can eliminate a potentially infinite number of models.

A naive approach to check a formula A(x,y) for satisfiability modulo a model
M0 = {y �→ v} is to use an interpolating SMT solver. First, encode the model
into a formula FM ≡ ∧

(yi = vi). If the formula A ∧ FM is satisfiable in a model
M , so is A and M ⊇ M0. Otherwise, we compute the interpolant I of A and FM .
This naive approach satisfies the requirements of solver::check(M0), but it
is limited for the following reasons. First, theories such as nonlinear arithmetic
have complex models and the formula FM can be hard to express. As an example,
x �→ √

2 can only be expressed by extending the constraint language to support
algebraic numbers, or by using additional assertions such as (x2 = 2) ∧ (x > 0).
More important, traditional interpolation provides no guarantees in terms of
convergence of a sequence of interpolation problems. For example, as already
noted in [42], ¬FM would be a valid interpolant for A and FM . But such an
interpolant only eliminates a single model and could, in general, lead to non-
termination of interpolate(A, B). To tackle this issue, we require that the
procedure solver::check() produces interpolants general enough to disallow
such infinite sequences of model interpolants. We do this by adopting the con-
vergence approach and terminology of [42] to model interpolation as follows.

Definition 3 (Model Interpolation Sequence). Given a formula A(x,y),
a sequence of models (Mk) of y, and a sequences of formulas (Ik) over y, we
call (Ik) a model interpolation sequence for A and (Mk) if for all k it holds that

1. Mk is consistent with
∧

i<k Ii;
2. Mk is inconsistent with A;
3. Ik is a model interpolant between A and Mk.

Definition 4 (Finite Convergence). We say that solver::check() has the
finite convergence property if it does not allow infinite model interpolation
sequences.

Lemma 2 (Termination). If solver::check() has the finite convergence
property, then interpolate(A, B) always terminates.
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3.2 SMT Modulo Models with MCSAT

We build a procedure for solving SMT modulo models by modifying the satis-
fiability checking procedure of MCSAT. The MCSAT method for SMT solving
was introduced in [13,28] and further extended in [27]. We give a brief overview
of the MCSAT terminology and mechanics, and we describe the satisfiability
procedure. We emphasize modifications to the original MCSAT procedure that
are needed for solving SMT modulo models.

The architecture of an MCSAT solver consists of a core solver, an assignment
trail, and reasoning plugins. The core solver drives the overall solving process,
and is responsible for dispatching notifications and handling requests from the
plugins. The solver trail is a chronological record that tracks assignments of
terms to values. It is shared by the core solver and the reasoning plugins. The
reasoning plugins are modules dedicated to handling specific theory terms and
constraints (e.g., clauses for Booleans, polynomial constraints for arithmetic). A
plugin reasons about the content of the solver trail with respect to the set of
currently relevant terms. In the context of nonlinear arithmetic problems, the
reasoning plugins are the arithmetic plugin and the Boolean plugin. The most
important role of the core solver is to perform conflict analysis when one of the
reasoning plugins detects a conflicting state.

When formulas F1, . . . , Fn are asserted, by calling solver::assert(Fi), the
core solver notifies all plugins of the asserted formulas. The plugins analyze the
formulas and report all relevant terms back to the core. The relevant terms
are the variables and subterms of the formulas Fis that need to be consistently
assigned to ensure a satisfying assignment. In nonlinear arithmetic, relevant
terms are all variables, arithmetic constraints, and non-negated Boolean terms
that appear in the input formula (or are part of a learnt clause). Once the
relevant terms are collected, the core solver adds the assertions to the trail. The
initial trail contains then the partial assignment Fi � � and the search for a
full satisfying assignment starts from this trail.

Solver Trail and Evaluation. The assignment trail is the central data structure
in the MCSAT framework. It is a generalization of the Boolean assignment trail
used in modern CDCL SAT solvers. The trail records a partial (and potentially
inconsistent) model that assigns values to relevant terms. If the satisfiability
algorithm terminates with a sat answer, the full satisfying assignment can be
read off the trail. At any point during the search, the trail can be used to evaluate
any relevant compound term based on the values of its sub-terms. A term t (and
¬t, if Boolean) can be evaluated in the trail M if t itself is assigned in M , or if all
closest relevant sub-terms of t are assigned in M (and its value can therefore be
computed). As the search progresses, it is possible for some terms to be evaluated
in two different ways, which can result in a conflict (i.e., a term assigned different
values). In order to account for this ambiguity, we define an evaluation predicate
evaluates[M ](t, v) that returns true if the term t can evaluate to the value v in
trail M .
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Algorithm 2: mcsat::check(x �→ v)

Data: solver trail M , relevant variables/terms to assign in queue
1 while true do
2 unitPropagate() ;
3 if a plugin detected a conflict and the conflict clause is C then
4 〈C, final〉 ← analyzeConflict(M , C, x) ;
5 if final then
6 I ← analyzeFinal(M , C) ;
7 return 〈unsat, I〉
8 else backtrackWith(M , C) ;

9 else
10 if exists xi ∈ x unassigned in M then
11 ownerOf(xi).decideValue(xi, vi)
12 else
13 if queue.empty() then return 〈sat,M〉 ;
14 x ← queue.pop() ;
15 if x is unassigned then ownerOf(x).decideValue(x) ;

Conflicts and Conflict Clauses. One of the main responsibilities of reasoning
plugins is to ensure that the trail is consistent at any point in the search. A
trail is evaluation consistent if no relevant term can evaluate to two different
values, as described above. A trail is unit consistent if every relevant term can
be given a value without making the trail evaluation inconsistent. If the trail is
not evaluation consistent or unit consistent, the trail is in conflict.

Trail consistency is a generalization of the consistency that CDCL SAT
solvers enforce during their search. By unit propagation, a SAT solver ensures
that, if no conflict has been detected, no clause can be falsified by assigning a
single variable (i.e., no clause evaluates to both � and ⊥). In the MCSAT frame-
work, the plugins do the same: they keep track of unit constraints and reason
about the consistency of the trail. It is the responsibility of the plugin to report
conflicts. Each conflict must be accompanied with a valid conflict clause that
explains the inconsistency.4 A clause C ≡ (L1 ∨ . . . ∨ Ln) is a conflict clause in
a trail M , if each literal Li can evaluate to ⊥ in M , i.e. if evaluates[M ](Li,⊥).

Example 2. Consider the constraint C ≡ (x2 + y2 < 1) with the set of relevant
terms {C, x, y}, and the following solver trails

M1 = � C �→ �, x �→ 0 �, M2 = � C �→ �, x �→ 0, y �→ 0 �,

M3 = � C �→ �, x �→ 1 �, M4 = � C �→ �, x �→ 1, y �→ 0 �.

The trails M1 and M2 are consistent, the trail M3 is unit inconsistent (no consis-
tent assignment for y exists), and M4 is evaluation inconsistent (C evaluates to
both � and ⊥). A valid explanations for the inconsistency of M3 is the conflict
4 By valid here we mean that the clause is a universally true statement on its own.



274 D. Jovanović and B. Dutertre

clause C3 ≡ ¬C ∨ (x < 1), while a valid explanation for the inconsistency of M4

is the conflict clause C4 ≡ ¬C∨C. Although C4 is a tautology, it is an acceptable
conflict clause since both literals can evaluate to ⊥ (because evaluates[M4](C,�)
and evaluates[M4](C,⊥)).

Main Procedure. The implementation of the satisfiability checking procedure
solver::check() is a generalization of the search-and-resolve loop of modern
SAT solvers (see, e.g. [16,17]). The procedure is shown in Algorithm 2, where
we emphasize the extensions needed for SMT modulo models in red. The overall
procedure performs a direct search for a satisfying assignment and terminates
either by finding an assignment that extends the given partial model, or deduces
that the problem is unsatisfiable as certified by an appropriate model interpolant.

The main elements of the procedure are unit propagation and decisions,
used for constructing the assignment, and conflict analysis for repairing the
trail when it becomes inconsistent. The unitPropagate() procedure invokes
the propagation procedures provided by the plugins. Propagation allows each
plugin to add new assignments to the top of the trail. If, during propagation, a
plugin detects an inconsistency, it reports the conflict to the core solver along
with a valid conflict clause. The decideValue(x) procedure assigns a value of
the given unassigned term x. Decisions are performed only after propagation
has fully saturated with no reported conflicts, which means that the trail is unit
consistent. In such a trail, an assignment for x is guaranteed to exist, but the
choice of a particular value is delegated to the plugin responsible for x (e.g., the
arithmetic plugin for real-typed terms).

Modification 1 (Decisions). To support SMT modulo a model x �→ v,
variables xi ∈ x of the input model are decided before any other term, and
are assigned the provided value vi. The procedure that performs this decision
is denoted with decideValue(xi, vi). If a decision introduces an evaluation
inconsistency, the plugin reports the conflict with a conflict clause.

Detecting and explaining decision conflicts is straightforward: there must exist a
single constraint C that can evaluate to both � and ⊥ in the trail. Such conflicts
can always be explained with a clause of the form (¬C ∨ C).

If a conflict is reported, either during propagation or in a decision, the pro-
cedure invokes the conflict analysis procedure analyzeConflict(). This proce-
dure takes the reported conflict clause C and finds the root cause of the conflict.
The analysis backtracks the trail, element by element, so long as C is a conflict
clause, while resolving any trail propagations from C. Once done, the analysis
returns the clause along with the flag that indicates whether this conflict clause
C is empty (indicating the final conflict). If the conflict is not final, the proce-
dure calls backtrackWith() to backtrack the trail further, if possible, and add
a new assignment to the trail, ensuring progress and fixing the conflict. The
main invariant of the conflict resolution procedure is that the conflict clause C
is always implied by asserted formulas.
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Modification 2 (Conflict Analysis). To support SMT modulo a model
x �→ v, the analysis procedure analyzeConflict(M , C, x) stops as soon
as it encounters a variable xi ∈ x to resolve, and returns 〈C, true〉.

This modification is based on the fact that the variables xi have a fixed value
given by the model. Assume that conflict analysis attempts to undo a variable xi

that is part of the provided model x �→ v. This can only happen when the trail
consists of only variables from x and implications of asserted formulas. In other
words, this particular conflict cannot be resolved unless we modify either the
assertions themselves or the input model. The clause resulting from the analysis
marked as final is our starting point for producing the model interpolant.

Modification 3 (Final Analysis). To support SMT modulo a model x �→
v, the procedure analyzeFinal(M , C) resolves any remaining trail propa-
gations in M from the clause C and returns the resulting clause I.

The resolution of propagations in this final analysis is done in the same manner
as in regular conflict analysis. This means that the resulting clause I is implied
by the asserted formulas. In addition, resolving all propagations from the conflict
clause ensures that all literals of I evaluate to false only because of the assignment
x �→ v, making I an appropriate model interpolant.

Example 3. Consider two formulas F1 ≡ b and F2 ≡ ¬b ∨ (x2 + y2 < 2).
When asserting these two formulas to the MCSAT solver, the Boolean and
arithmetic plugins will identify the set of terms relevant for satisfiability as
R = {b, x, y, (x2 + y2 < 2)}. Additionally, the assertions will be added to the
trail and propagated5, resulting in the following initial trail

M0 = � b � �, F2 � �, (x2 + y2 < 2) F2� � �.

We now apply our procedure to solve F1 and F2 modulo the partial model
{x �→ 2}.

In the first iteration, no term in R is unit (with only one variable unassigned),
and propagation does not infer any new facts or conflicts. The procedure thus per-
form a decision on the unassigned variable x of the model, resulting in the trail

M1 = � b � �, F2 � �, (x2 + y2 < 2) F2� �, x �→ 2 �.

In the second iteration, as (x2+y2 < 2) is unit in the trail M1, the arithmetic
plugin examines the constraint and deduces that there is no potential solution
for y. This constitutes a unit inconsistency that the plugin reports, along with
the conflict clause6

C0 ≡ ¬(x2 + y2 < 2) ∨ ¬(x >
√

2).

5 Notation t
F� v denotes that t is assigned to v due to propagation, and F is the

reason of the propagation.
6 We use (x >

√
2) as a shorthand for the extended constraint x >r root(x2 − 2, 2, x).



276 D. Jovanović and B. Dutertre

Conflict analysis takes clause C0 and starts the resolution process. As the
top variable x on the trail M1 is part of the input model, the analysis stops and
reports that the clause C0 is the final explanation. This clause is valid, but not
yet a model interpolant as it contains a literal with variable y. We then proceed
with the final analysis to remove such literals. First, we resolve (x2 + y2 < 2)
from C0 using its reason clause F1, which gives the clause C1 ≡ ¬b∨¬(x >

√
2).

Then, we resolve b from C1 with an empty reason (b is an assertion), resulting
in the final clause and model interpolant I = ¬(x >

√
2).

4 Nonlinear Arithmetic

The general approach to interpolation presented so far is not specific to nonlinear
arithmetic. We now tackle two practical issues that arise in nonlinear arithmetic
and we discuss the properties of our interpolation procedure in the context of
nonlinear arithmetic. First, on nonlinear problems, as seen in Example 3, the
interpolation procedure can return model interpolants that include extended
polynomial constraints. This is an artifact of the underlying decision procedure
(such as NLSAT [29]) that might use extended polynomial constraints to suc-
cinctly represent conflict explanations. While such constraints make decision
procedures more effective, they are undesirable for interpolation: interpolants
should be described in the language of the input formulas, if possible. Second,
to use the interpolant procedure in the context of model checking, we also need
to devise a generalization procedure for polynomial constraints.

This section uses concepts from cylindrical algebraic decomposition (CAD).
We keep the presentation example-driven and focused on our particular needs,
and refer the reader to the existing literature for further information [2,5,7].
Cylindrical algebraic decomposition is a general approach for reasoning about
polynomials based on the following result due to Collins [10]. For any set of
polynomials f1, . . . , fk ∈ Z[x1, . . . , xn] one can algorithmically decompose R

n

into connected regions (called cells) such that all the polynomials fj are sign-
invariant in every cell Ci. This means that the cells also maintain the truth value
of any polynomial constraints over the polynomials fi, which is crucial in many
reasoning techniques for polynomial constraints.

The theory and practice of CAD is heavily dependent on the ordering of
variables involved. For this paper we always assume the CAD order to be the
same as the order of the defined polynomials (e.g., x1 < x2 < . . . < xn). Every
CAD cell is cylindrical in nature, and can be described by constraints where
every dimension of the cell (called a level) can be completely defined by relying
only on the previous dimensions. We illustrate this through an example.

Example 4. Consider the polynomial f = x2 + y2 − 2 ∈ Z[x, y]. A CAD of f is
depicted in Fig. 1 (left). The cell C1 is defined by two constraints:

Cy
1 ≡ y >r root(x2 + y2 − 2, 2, y),

Cx
1 ≡ x >r root(x2 − 2, 1, x) ∧ x <r root(x2 − 2, 2, x).
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Fig. 1. CAD of the polynomial f = x2 + y2 − 2 from Example 4 (left). Computed cell
capturing the model (1, 2) of Example 5 (right).

Constraint Cx
1 is at the first level (it’s a constraint on x only), while constraint

Cy
1 is at the second level and relates variables x and y. The full cell description

is then C1 ≡ Cx
1 ∧ Cy

1 . The green cell C2 can be described by Cy
2 ≡ � and

Cx
2 ≡ x >r root(x2 − 2, 2, x), with the full description C2 ≡ Cy

2 ∧ Cx
2 .

Model-based decision procedures such as NLSAT rely on CAD construction
but do not construct the complete CAD decomposition. Instead, given a point
in R

n they can construct a single cell of a CAD in a model-driven fashion. For
more information about this approach, we refer the reader to [4,27]. For our
purposes we abstract the cell construction, and denote with describeCell(F,M)
the function that, given a set of polynomials F , returns a description of a CAD
cell of F that contains the model M .

Following the terminology used in CAD, we say that a non-empty connected
subset of Rk is a region. A set of polynomials {f1, . . . fs} ⊂ Z[y, x], with y =
〈y1, . . . , yn〉, is said to be delineable in a region S ⊆ R

n if for every fi (and fj)
from the set, the following properties are invariant for any α ∈ S:

1. the total number of complex roots of fi(α, x);
2. the number of distinct complex roots of fi(α, x);
3. the number of common complex roots of fi(α, x) and fj(α, x).

Delineability has important consequences on the number and arrangement of
real roots of polynomials fi. As explained by the following theorem, if a set of
polynomials F is delineable on a region S, then the number of real roots of the
polynomials does not change on S. Moreover, these roots maintain their relative
order on the whole of S.
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Theorem 1 (Corollary 8.6.5 of [40]). Let F be a set of polynomials in
Z[y, x], delineable in a region S ⊂ R

n. Then, the real roots of F vary con-
tinuously over S, while maintaining their order.

For a polynomial f ∈ Z[x] and model M = {x �→ v}, we denote with
sgncstr(f,M) the polynomial constraint that matches the sign of f in M , i.e.

sgncstr(f,M) =

⎧
⎪⎨

⎪⎩

f < 0 if sgn(f(v)) < 0
f > 0 if sgn(f(v)) > 0
f = 0 if sgn(f(v)) = 0

As described above, a CAD cell can be succinctly described by relying on
extended polynomial constraints. We now show that the description of the cell
can be reduced to basic polynomial constraints.

Lemma 3. Let fi ∈ Z[y1, . . . , yn, x] be two polynomials of degrees mi, and Fi ≡
x �r root(fi, ki, x) be extended polynomial constraints of a cell description. Let
S be a region of Rn where {f1, f2} are delineable and let M = {y �→ v, x �→ α}
be a model such that v ∈ S. Then, for all y ∈ S it holds that

m1−1∧

i=0

sgncstr(f (i)
1 ,M) ∧

m2−1∧

i=0

sgncstr(f (i)
2 ,M) ⇒ F1 ∧ F2.

The proof of this lemma is relatively straightforward. The CAD cell descrip-
tion for level x represents an entry in the sign table of f1 and f2 (with no roots
in between). A part of this sign table entry that contains M can be described
with the signs of all the derivatives of f1 and f2 as long as we can guarantee that
neither the arrangement nor the number of roots f1 and f2 change. But, this is
guaranteed by f1 and f2 being delineable on S, so the lemma holds.

As a corollary to this lemma, in the context of CAD cell construction around
a model M , we can replace any extended constraints describing a cell C with
basic constraints stating that the signs of the polynomial derivatives are the same
as in M . This results in a valid CAD subcell C ′ ⊆ C for the same polynomials,
that still contains the model M . We denote the function that constructs a basic
CAD cell description of a set of polynomials F capturing the model M with
describeCellBasic(F,M).

Example 5. Based on Example 4, we can construct a cell around the model M =
{x �→ 1, y �→ 2}. Function describeCellBasic(F,M) will return the constraints

Cy
3 ≡ (x2 + y2 > 2) ∧ (y > 0),

Cx
3 ≡ (x2 < 2) ∧ (x > 0).

The full cell description is then C3 ≡ Cx
3 ∧Cy

3 . Note that this cell is smaller than
the cell C1 from Example 4. This reduction in size is generally undesirable, but
it is a price to pay for having the description in a simpler language.
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Interpolation Without Extended Constraints. We now show how the cell con-
struction described above can be used to remove extended polynomial constraints
from a model interpolant. Assume a clausal model interpolant

I = (L1 ∨ . . . ∨ Li ∨ . . . ∨ LN )

that is implied by formula A and refutes a model M = {x �→ v}, i.e., all literals
of I evaluate to ⊥ in M . Assume also that some literal Li contains an extended
polynomial constraint xn �r root(f, k, xn), with f ∈ Z[x]. We aim to replace the
extended literal Li with literals over basic polynomial constraints. To do so, we
need to find literals L1

i , . . . , L
m
i such that Li ⇒ (L1

i ∨ . . . ∨ Lm
i ) and all literals

Lj
i evaluate to ⊥ in M . Then, the clause

I ′ = (L1 ∨ . . . ∨ L1
i ∨ . . . Lm

i ∨ . . . ∨ LN )

will also be a model interpolant implied by A that refutes the model M .
We can construct the literals Lj

i using single cell construction as follows. We
create a description of the CAD cell of the polynomial f from Li that captures
the model M . Let describeCellBasic({f},M) = D1∧ . . .∧Dm be this description.
Since the cell fully captures the behavior of f around M , we know that D1 ∧
. . . ∧ Dm ⇒ ¬Li and all literals Dj evaluate to �. Therefore, we can use the cell
description to eliminate the extended literal Li, obtaining the clause

I ′ = (L1 ∨ . . . ∨ ¬Di ∨ . . . ¬Dm ∨ . . . ∨ Ln)

By continuing this process, we can replace all extended literals from a model
interpolant, to obtain a model interpolant in the basic language of polynomial
constraints.

Example 6. Consider the model interpolant I = ¬(x >r root(x2 − 2, 2, x) from
Example 3 that refutes the model M = {x �→ 2}. To express I in terms of basic
polynomials constraints we first construct a regular CAD cell of f = x2 − 2
around M . In this case this cell is simply x >r root(x2 − 2, 2, x). Then, we use
Lemma 3 to construct a basic CAD cell description as (x2 > 2)∧(x > 0). Finally,
the simplified interpolant is I ′ = ¬(x2 > 2) ∨ ¬(x > 0).

Termination. With the description of the interpolation procedure complete, we
discuss the termination of the procedure. To do so, we fix the formula A(x,y)
of Definition 3 and we assume a fixed order of variables that ensures yi < xi.
Since the MCSAT decision procedure on which we rely is based on CAD, we can
put a bound on the set of literals that can ever appear in a model interpolant
from the formula A to an arbitrary model M . Let PA be the set of polynomials
appearing in A, and let P = P(PA) denote the closure of the set PA under the
CAD projection operator used by the decision procedure. Finally, let P ′ be the
closure of P under derivatives. The set of polynomial constraints that can appear
in the interpolant I is limited to basic polynomial constraints over polynomials
in P ′. This means that the procedure mcsat::check() can only generate a finite
number of model interpolants and therefore has the finite convergence property.
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Lemma 4. Assuming a fixed variable order, the mcsat::check() procedure has
the finite convergence property for nonlinear arithmetic formulas.

Together with Lemma 2, this lemma implies that our interpolation procedure
for the theory of nonlinear arithmetic terminates.

Model Generalization. We now proceed to show how the CAD cell construction
can be used in a natural way to provide model-driven generalization. As in
Definition 2, assume a formula F (x,y) such that F is true in a model M . Our aim
is to construct a formula G(x) that generalizes the model M and still guarantees
a solution to F .

Following the approach of [15], we do this in two steps. First, we construct
an implicant B of F based on the model M . Then, we eliminate the variables
y from B, again relying on the model M . The implicant B is a conjunction
of literals that implies F and such that B is true in M. The implicant can be
computed by a top-down traversal of the formula F while using the model M
to evaluate the formula nodes (see, e.g., [15] for a detailed description). To find
a formula G such that G ⇒ ∃y . B, we use CAD cell construction as follows.
Let P ⊆ Z[x,y] be the set of all polynomials appearing in B, and let the cell
description of P around M be

describeCellBasic(P,M) = Dx ∧ Dy .

Here, Dx denotes the description of cell levels of variables x, while Dy denotes
the description of cell levels of variables y. Because of the cylindrical nature of
CAD cells, and the order on variables yi and xi, we are guaranteed that every
solution of Dx can be extended to a solution of Dy . Therefore we set the final
generalization G(x) ≡ Dx .

Example 7 (Generalization). Consider the formula F ≡ (x2 + y2 < 2) and the
model M = {x �→ 1, y �→ 2} that satisfies F , and let us compute a generalization
G(x) of M . First, we compute a CAD cell of f = x2 + y2 − 2 as shown in
Example 5. Then we drop the description of cell level y, to obtain the model
generalization G(x) ≡ (x2 < 2) ∧ (x > 0).

5 Evaluation

To the best of our knowledge, there is no clear metric for evaluating how good
an interpolant is, or for comparing different interpolants. In this section, we first
show two examples to illustrate the procedure and its applications. Then, we
evaluate the effectiveness of our interpolation procedure on practical problems
that arise from model-checking applications. To this end, we integrate the pro-
cedure into a model checker and evaluate whether the procedure is efficient, and
can produce abstractions that help the model checker synthesize invariants and
discover counter-examples.



Interpolation and Model Checking for Nonlinear Arithmetic 281

We have implemented the reasoning procedures (solving modulo partial mod-
els and interpolation procedure) by extending the existing mcsat implementa-
tion of the yices2 SMT solver [14]. We used the libpoly library [31] for comput-
ing the model generalization and simplification of algebraic cells. Since yices2

is integrated into the sally model checker [30], we rely on the pdkind method
[30] as the model checking engine (the user of interpolation) in our evaluation.

Fig. 2. Illustration of interpolants from Example 8. In blue and orange are the feasible
space of the formulas A and B (projected on x and y). In green is the feasible space
of the interpolant produced by our method (on the left) and the interpolant produced
by [19] (on the right). (Color figure online)

Example 8. We compare the style of interpolants generated by our new proce-
dure with the ones generated by numerical approaches such as [19]. Example 4
from [19] considers two formulas of the form

A(x, y, a1, a2, b1, b2) ≡ (f1 ≥ 0 ∧ f2 ≥ 0) ∨ (f3 ≥ 0 ∧ f4 ≥ 0),
B(x, y, c1, c2, d1, d2) ≡ (g1 ≥ 0 ∧ g2 ≥ 0) ∨ (g3 ≥ 0 ∧ g4 ≥ 0).

The polynomials fi and gi involved in A and B are of degree 2. The right-hand
side of Fig. 2 shows the interpolant I1 found by the approach in [19]. This inter-
polant is of the form h(x, y) > 0, where h is a polynomial degree two computed
using semidefinite programming. Our approach, on the other hand, produces the
interpolant I2 shown on the left-hand side of Fig. 2. This interpolant consists of
12 clauses, each containing 6–8 polynomial constraints over 16 different polyno-
mials (8 linear, 8 of degree 2). The interpolant I2 is ultimately produced from
fragments of a CAD so its edges touch upon the critical points of the shape they
were produce from (formula A). Interpolant I1, on the other hand, has a simple
form dictated by the method [19]. Which form is ultimately more useful depends
on a particular application.
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Fig. 3. Evaluation Results. For each tool, we report the number of solved problems,
how many of the solved problems were valid and invalid, and the total time used to
solve them. The rows correspond to different problem classes, and the bottom row
reports the overall results for all 114 benchmarks.

Example 9 (Cauchy-Schwartz). As described in Example 1, we can model the
computation of Cauchy-Schwarz inequality as a transition system Scs. Then we
can prove the inequality correct if we can prove that the property Pcs is valid in
Scs. The pdkind model checking engine with the new interpolation procedure
proves the property valid in 1 s.

Benchmarks. We run the evaluation on an existing set of nonlinear model-
checking problems used by Cimatti, et al. [8]. This set consists of 114 bench-
marks from various sources: handcrafted benchmarks, hybrid system verification,
nuxmv benchmarks, C floating-point verification, and verification of Simulink
models. The benchmark problems all contain transition systems with nonlinear
behavior. For each problem, the goal is to prove or disprove a single invariant.
We refer the reader to [8] for a more detailed description.

Evaluation. Cimatti, et al. [8] present an abstraction approach based on incre-
mentally more precise linear approximations of nonlinear polynomials. They
show that this approach, implemented in the ic3-nra tool, is superior to other
tools (such as, isat3 [36] and nuxmv [6] with upfront linear abstraction). Since
our goal is to show the effectiveness of our interpolation procedure, rather than
compare to many model checking engines, we keep the evaluation simple and
only compare to ic3-nra. In addition, we include the k-induction engine kind

of sally in the comparison to illustrate the importance of invariant inference
and counter-example generation.7

We ran the tools on the benchmark set with a 1 h CPU timeout per problem.
The results are shown in Fig. 3 and on the cactus plot in Fig. 4. A scatter plot
comparison of pdkind against ic3-nra and kind is shown in Fig. 5.

7
kind performs k-induction checks for increasing values of k and stops if either the
property is shown k-inductive, or a counter-example is found.
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Fig. 4. Cactus Plots Comparing the Performance of ic3-nra, kind, and pdkind. The
x axis is the number of problems solved (valid on the left, invalid on the right) and the
y axis is the time needed to solve the problem (log scale).

Fig. 5. Scatter Plots Comparing the Performance of ic3-nra and kind with pdkind.
Green squares represent problems that are valid. Red dots represent problems that are
invalid. Each axis represents the time it took the tool to solve the problem (log scale).
(Color figure online)

As can be seen from Fig. 3, the results are positive. The pdkind engine with
the new interpolation method can prove more properties and find more counter-
examples than the state-of-the-art ic3-nra.

Out of 59 properties that pdkind shows correct, 36 cannot be proved by
kind. This means that these properties are likely not k-inductive and that the
interpolants produced by our procedure are valuable abstractions in invariant
inference. Similarly, ic3-nra proves 37 properties that are not k-inductive. As
can be seen from the scatter plot in Fig. 5, there are properties that pdkind can
prove than ic3-nra cannot, and vice versa (11 and 10, respectively). This is to
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be expected from a difficult domain, but it also means that the interpolation and
the abstraction approach (or other methods) can be used to complement each
other.

As for the invalid properties, since our interpolation method (and thus
pdkind) is based on complete and precise reasoning, while ic3-nra relies on
abstraction, it is to be expected that pdkind can prove more properties invalid.
Furthermore, the comparison with kind in Fig. 5 shows that pdkind finds all but
one counter-examples that kind does in a similar amount of time. We see this as
a confirmation that the interpolation and generalization methods are effective,
i.e., they do not impede the search for counter-examples.

5.1 Related Work

There is ample literature on interpolation for different fragments of nonlin-
ear arithmetic. Existing methods can roughly be classified into two categories:
approaches based on interval reasoning, and approaches based on semidefi-
nite programming. Interval reasoning techniques (e.g., [20,35,36]) construct a
proof of unsatisfiability through interval slicing and propagation. From such
a proof, interpolants can be built using proof-based interpolation techniques.
While incomplete, interval-based techniques can be very effective on problems
that are hard for complete techniques. Moreover they can support more polyno-
mial functions (e.g., elementary functions, ODEs). Our procedure is complete,
but it is limited to the theories supported by MCSAT. The approaches based on
semidefinite programming [12,18,19] generally approach the interpolation prob-
lem by restricting both the fragment of arithmetic (e.g., bounded constraints,
same set of variables, quadratic constraints) and the shape of the interpolant (a
single polynomial constraint) so that the interpolant itself can be represented
as a semidefinite optimization problem. When they apply, these procedures are
also very effective but they suffer from numerical imprecision, requiring special
care to account for these errors and making them difficult to use in formal ver-
ification. In contrast, out procedure applies to nonlinear arithmetic as a whole.
It relies on symbolic techniques, which are not subject to numerical errors. It is
precise and complete, and it produces clausal interpolants.

The core ideas beyond our model-based interpolation approach were pre-
sented at the Boolean level as SAT solving with assumptions [17]. Closest to
our work is the work of Schindler and Jovanović [42] where a similar model-
based approach to interpolation is applied to conjunctions of linear arithmetic
constraints based on conflict resolution. Our work is more general as it applies
to formulas other than conjunctions, and it is applicable to a wider range of
theories.

6 Conclusion and Future Work

We have presented a general approach for interpolation in SMT. This novel app-
roach relies on a mode of interaction with the SMT solver that can check a
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formula for satisfiability modulo a partial model and, if the formula is unsat-
isfiable, can return a model interpolant that refutes the model. This allows us
to develop a first complete interpolation procedure for nonlinear arithmetic. We
have implemented the new procedure in the yices2 SMT solver and evaluated
the interpolation procedure on model-checking problems. The new procedure
seems to be effective in practice and opens new possibilities in the verification
of systems that contain nonlinear behavior. Additionally, we show interesting
examples of how the procedure can be used in automating induction proofs in
mathematics.

The interpolation procedure that we presented can support other theories
available in MCSAT (e.g., uninterpreted functions [28], bit-vectors [22], nonlinear
integer arithmetic [27]). We plan to explore interpolation in these theories in
more detail, and in the contexts where interpolation can be beneficial (e.g.,
model checking, quantified reasoning, termination, and proof generation).
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Abstract. We present a novel length-aware solving algorithm for the
quantifier-free first-order theory over regex membership predicate and lin-
ear arithmetic over string length. We implement and evaluate this algo-
rithm and related heuristics in the Z3 theorem prover. A crucial insight
that underpins our algorithm is that real-world regex and string formu-
las contain a wealth of information about upper and lower bounds on
lengths of strings, and such information can be used very effectively to
simplify operations on automata representing regular expressions. Addi-
tionally, we present a number of novel general heuristics, such as the pre-
fix/suffix method, that can be used to make a variety of regex solving
algorithms more efficient in practice. We showcase the power of our algo-
rithm and heuristics via an extensive empirical evaluation over a large
and diverse benchmark of 57256 regex-heavy instances, almost 75% of
which are derived from industrial applications or contributed by other
solver developers. Our solver outperforms five other state-of-the-art string
solvers, namely, CVC4, OSTRICH, Z3seq, Z3str3, and Z3-Trau, over this
benchmark, in particular achieving a speedup of 2.4× over CVC4, 4.4×
over Z3seq, 6.4× over Z3-Trau, 9.1× over Z3str3, and 13× over OSTRICH.

Keywords: String solvers · SMT solvers · Regular expressions

1 Introduction

Satisfiability Modulo Theories (SMT) solvers that support theories over regular
expression (regex) membership predicate and linear arithmetic over length of
strings, such as CVC4 [25], Z3str3 [8], Norn [3], S3P [39], and HAMPI [22], have
enabled many important applications in the context of analysis of string-intensive
programs. Examples include symbolic execution and path analysis [11,32], as well
as security analyzers that make use of string and regex constraints for input san-
itization and validation [5,33,35]. Regular expression libraries in programming
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 289–312, 2021.
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languages provide very intuitive and popular ways for developers to express
input validation, sanitization, or pattern matching constraints. Common to all
these program analysis applications is the requirement for a rich quantifier-free
(QF) first-order theory over strings, regexes, and integer arithmetic over string
length. Unfortunately, the QF first-order theory of strings containing regex con-
straints, linear integer arithmetic over string length, string-number conversion,
and string concatenation (but no string equations1) is undecidable [7,9]. In a
previous paper [19] we showed that a related QF first-order theory over word
equations, linear integer arithmetic over string length, and string-number con-
version predicate, but without regular expressions is also undecidable. It can also
be shown that many non-trivial fragments of this theory are hard to decide (e.g.,
they have exponential-space lower bounds or are PSPACE-complete). Therefore,
the task of creating efficient solvers to handle practical string constraints that
belong to fragments of this theory remains a very difficult challenge.

Many modern solvers typically handle regex constraints via an automata-
based approach [4]. Automata-based methods are powerful and intuitive, but
solvers must handle two key practical challenges in this setting. The first chal-
lenge is that many automata operations, such as intersection, are computa-
tionally expensive, yet handling these operations is required in order to solve
constraints that are relevant to real-world applications. The second challenge
relates to the integration of length information with regex constraints. Length
constraints derived from automata may imply a disjunction of linear constraints,
which is often more challenging for solvers to handle than a conjunction.

As we demonstrate in this paper, the challenges of using automata-based
methods can be addressed via prudent use of lazy extraction of implied length
constraints and lazy regex heuristics in order to avoid performing expensive
automata operations when possible. Inspired by this observation, we introduce
a length-aware automata-based algorithm, Z3str3RE (and its implementation
as part of the Z3 theorem prover [18]), for solving regex constraints and linear
integer arithmetic over length of string terms. Z3str3RE takes advantage of the
compactness of automata in representing regular expressions, while at the same
time mitigating the effects of expensive automata operations such as intersection
by leveraging length information and lazy heuristics.
Contributions: We make the following contributions in this paper.
Z3str3RE: An SMT Solver for Regular Expressions and Linear Integer
Arithmetic over String Length. In Sect. 3, we present a novel decision pro-
cedure for the QF first-order theory over regex membership predicate and lin-
ear integer arithmetic over string length. We also describe its implementation,
Z3str3RE, as part of the Z3 theorem prover [8,18]. The basic idea of our algorithm
is that formulas obtained from practical applications have many implicit and
explicit length constraints that can be used to reason efficiently about automata
representing regexes. In Sect. 4 we present four heuristics that aid in solving reg-
ular expression constraints and that can be leveraged in general settings. Specif-
ically, we present a heuristic to derive explicit length information directly from
1 We use the terms “word” and “string” interchangeably in this paper.
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regexes, a heuristic to perform expensive automata operations lazily, a heuristic
to refine lower and upper bounds on lengths of string terms with respect to regex
constraints, and a prefix/suffix over-approximation heuristic to find empty inter-
sections without constructing automata. All heuristics are designed to guide the
search and avoid expensive automata operations whenever possible. Our solver,
Z3str3RE, handles the above theory as well as extensions (e.g. word equations and
substring function) via the existing support in Z3str3. We focus on the core algo-
rithm as it is the centerpiece of our regex solver. We also carefully distinguish the
novelty of our method from previous work.

Empirical Evaluation and Comparison of Z3str3RE2 Against CVC4,
OSTRICH, Z3seq, Z3str3, and Z3-Trau: To validate the practical efficacy
of our algorithm, we present a thorough and extensive evaluation of Z3str3RE in
Sect. 5, where we compare it against CVC4 [24], OSTRICH [15], Z3’s sequence
solver [18], Z3str3 [42], and Z3-Trau [1] on 57256 instances across four regex-
heavy benchmarks with connections to industrial security applications, includ-
ing instances from Amazon Web Services and AutomatArk [16]. Z3str3RE sig-
nificantly outperforms other state-of-the-art tools on the benchmarks consid-
ered, having more correctly solved instances in total, lower running time, and
fewer combined timeouts/unknowns than other tools, and no soundness errors
or crashes. We note that almost 75% of the benchmarks were obtained from
industrial applications or other solver developers. Over all the benchmarks, we
demonstrate a speedup of 2.4× over CVC4, 4.4× over Z3seq, 6.4× over Z3-Trau,
9.1× over Z3str3, and 13× over OSTRICH.

2 Preliminaries

This section contains some basic definitions as well as a brief overview of the
theoretical results which shape the landscape in which we state our contribution.

2.1 Basic Definitions

We first describe the syntax and semantics of the input language supported by
our solver Z3str3RE (Algorithm 1).

Syntax: The core algorithm we present in Sect. 3 accepts formulas of the
quantifier-free many-sorted first-order theory of regex membership predicates
over strings and linear integer arithmetic over string length function. The syn-
tax of this theory is shown in Fig. 1.

We denote the set of all string variables and all integer variables as Varstr and
Varint respectively, and the set of all string constants and all integer constants
as Constr and Conint respectively. String constants are any sequence of zero or
more characters over a finite alphabet (e.g., ASCII).

Atomic formulas are regular expression membership constraints and linear
integer (in)equalities. Regex terms are denoted recursively over regex concate-
nation, union, Kleene star, and complement, and for a string constant w, the
2 A reproduction package is available at https://figshare.com/s/5ae73a6f3c55f5c5e4c1.

https://figshare.com/s/5ae73a6f3c55f5c5e4c1
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F ::= Atom | F ∧ F | F ∨ F | ¬F
Atom ::= tstr ∈ RE | Aint

Aint ::= tint = tint | tint < tint

RE ::= “w” | RE · RE | RE ∪ RE | RE∗ | RE, with w ∈ Constr

tint ::= m | v | len(tstr) | tint + tint | m · tint,with m ∈ Conint, v ∈ V arint

tstr ::= s, with s ∈ Varstr ∪ Constr

Fig. 1. Syntax of the input language accepted by Algorithm 1. Z3str3RE accepts an
extension of this syntax supporting word equations and other string terms.

regex term “w” represents the regular language containing w only. All regex
terms must be grounded (i.e. cannot contain variables). Linear integer arith-
metic terms include integer constants and variables, addition, and string length.
Multiplication by a constant is expanded to repeated addition. String terms are
either string variables or string constants. The length of a string S is denoted
by len(S), the number of characters in S. The empty string has length 0.

Our implementation Z3str3RE supports the theory in Fig. 1 extended with
more expressive functions and predicates, including word equations (equality
between arbitrary string terms) and functions such as indexof and substr that
are needed for program analysis. Z3str3RE handles these terms via existing
support in Z3str3. We focus on the above input language in the presentation of
our algorithm in this paper and theoretical content.
Semantics: We refer the reader to [42] for a detailed description of the semantics
of standard terms in this theory. We focus here on the semantics of terms which
are less commonly known. The regex membership predicate S ∈ R, where S is a
string term and R is a regex term, is defined by structural recursion as follows:

S ∈ “w” iff S = w (where w is a string constant)
S ∈ R1 · R2 iff there exist strings S1, S2 with S = S1 · S2, S1 ∈ R1, S2 ∈ R2

S ∈ R1 ∪ R2 iff either S ∈ R1 or S ∈ R2

S ∈ R∗ iff either S = ε or there exists a positive integer n such that
S = S1 · S2 · . . . · Sn and Si ∈ R for each i = 1 . . . n

S ∈ R iff S �∈ R (that is,S ∈ R is false)

2.2 Theoretical Landscape

To put our contributions in context, we briefly discuss a series of (un)decidability
and complexity results developed around the fragments and extensions of the
theory supported by Z3str3RE.

In particular, we consider extensions which may have a string-number con-
version predicate numstr3 and/or string concatenation. Both extensions are

3 We introduce numstr, which is not part of the SMT-LIB standard, in order to sim-
plify presentation of the theoretical results. The predicate is no more expressive than
the standard operators str.to int/str.from int, except that those terms handle
decimal inputs. The results easily extend to other (finite) alphabets including deci-
mal/hexadecimal digits with appropriate case analysis.
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important to real-world program analysis. The predicate numstr has the syntax
numstr(tint, tstr) and the following semantics: numstr(n, s) is true for a given
integer n and string s iff s is a valid binary representation of the number n (pos-
sibly with leading zeros) and n is a non-negative integer. That is, s only contains
the characters 0 and 1, and

∑len(s)−1
i=0 s′[i]2len(s)−i−1 = n, where s′[i] is 0 if the

ith character in s is ‘0’ and 1 if that character is ‘1’. String concatenation has
the syntax tstr ::= tstr · tstr and the usual semantics defined by SMT-LIB [10].

In the following, TLRE,n,c is the quantifier-free many-sorted first-order theory
of linear integer arithmetic over string length function (L), regex (RE) mem-
bership predicates, string-number conversion (n), and string concatenation (c) 4.
The following quantifier-free fragments of TLRE,n,c are of interest: TLRE,c, TLRE ,
TRE,n,c, TRE,n, and TRE . The fragment TLRE,c (respectively, TLRE) has all func-
tions and predicates of TLRE,n,c except the string-number conversion predicate
(and, respectively, except the string concatenation function). The theory TRE,n,c

(respectively, TRE,n and TRE) has all functions and predicates of TLRE,n,c except
the length function (and, respectively, the string concatenation function, and,
in the case of TRE , the string-number conversion predicate). Note that while
all these theories allow equalities between terms of sort Int, they do not allow
equalities between terms of sort Str and cannot express general word equations.

The theoretical landscape is laid out as follows. Firstly, following the results
and techniques introduced in [3], we obtain that TLRE,c and, in particular, TLRE

is decidable. A procedure deciding a formula from TLRE,c would first construct
for each variable (string or integer), based on the regular expression constraints
and length constraints which involve it, a finite automaton, then reduce the
problem of checking the satisfiability of the formula to checking whether the
constructed automata accept at least one string. A similar approach shows that
TRE,n is decidable. We observe that the presence of complements in regular
expressions is an inherent source of complexity for these procedures. Indeed, we
can easily encode the universality problem for regular expressions as a formula
in the theory TRE . Moreover, given a regex R of length n over an alphabet Σ,
deciding whether L(R) = Σ∗ is equivalent to deciding the satisfiability of the
formula ϕ of TRE consisting of the atoms x ∈ R and x ∈ Σ∗. Accordingly, by
the results from [37], if the choice for R is restricted to regular expressions with
at least k stacked complements, then there exists a positive rational number c

such that the considered problems are not contained in NSPACE

⎛

⎝ 222···2
︸ ︷︷ ︸

k−1times

cn

⎞

⎠.

In other words, the depth of the stack of complements of the formula trans-
lates to the height of the tower of exponents in the complexity of deciding that
formula ϕ. On the other hand, if we only consider regular expressions without
stacked complements, then the decision problems for the considered theories are
PSPACE-complete. Indeed, the automata-based approach described above can
be implemented to work in nondeterministic polynomial space; strongly related
complexity results are obtained in [26,27].

4 Note that the fragments considered here do not include word equations.
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Algorithm 1: Z3str3RE’s length-aware algorithm for the theory TLRE of
regex and integer constraints

Input : Conjunction φ of constraints of the form S ∈ RE, and conjunction ψ of linear
integer arithmetic constraints over string lengths

Output : SAT or UNSAT
1 forall constraints S ∈ RE in φ do
2 LS ← ComputeLengthAbstraction(S) ;
3 LRE ← ComputeLengthAbstraction(RE) ;
4 if ψ ∪ LS ∪ LRE inconsistent then
5 return UNSAT

6 end
7 refine LS as tightly as possible with respect to LRE ;

8 end
9 forall strings Si occurring in φ do

10 let R be the set of all regexes RE in all terms Si ∈ RE ;
11 Automaton I ← intersection of all automata corresponding to regexes in R ;
12 if I is empty then
13 return UNSAT
14 else
15 LI ← ComputeLengthAbstraction(I) ;
16 end

17 end
18 LS ← the union of all length abstractions LS ;
19 LRE ← the union of all length abstractions LRE ;
20 LI ← the union of all length abstractions LI ;
21 if ψ ∪ LS ∪ LRE ∪ LI has any solution M then
22 forall strings S occurring in φ do
23 obtain len(S) from M ;
24 let A be the set of all automata for all regexes RE in all terms S ∈ RE ;
25 Automaton J ← intersection of all terms in A ;
26 S ← any string of length len(S) in J ;

27 end
28 return SAT

29 else
30 return UNSAT
31 end

At the opposite end of the spectrum is the theory TLRE,n,c, which is undecid-
able. Indeed, one can show that the more specific theory TRE,n,c (i.e. disallowing
arithmetic over length) has equivalent expressive power to the theory of word
equations with regular constraints, a predicate allowing the comparison of the
length of string terms, and the numstr predicate. Therefore, using the techniques
from [17], one can show that the theory TLRE,n,c, in which we additionally allow
arithmetic over length, is undecidable [7].

3 Length-Aware Regular Expression Algorithm

This section outlines the high-level algorithm used by Z3str3RE to solve the sat-
isfiability problem for TLRE , and its extension based on length-aware heuristics.

3.1 High-Level Algorithm

The pseudocode presented in Algorithm 1 captures the essence of Z3str3RE
regex solver. Implementation-specific details are omitted for clarity. Z3str3RE
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incorporates a version of this algorithm as part of a DPLL(T)-style interaction
with a core solver for Boolean combinations of atoms and other theory solvers
able to handle arithmetic constraints and other terms. The tool handles string
concatenation, string equality, and other string terms and predicates besides
regex membership and string length via existing support in Z3str3, and leverages
Z3’s integer arithmetic solver for arithmetic reasoning and model construction.
This high-level presentation is expanded in Sect. 4, where we describe several
heuristics used in our implementation as part of the Z3str3RE tool.

The algorithm takes as input a conjunction φ of regex membership constraints
and a conjunction ψ of linear integer arithmetic constraints over the lengths of
string variables appearing in φ. Without loss of generality, it is assumed that
all constraints in φ are positive; negative constraints S �∈ RE can be replaced
with the positive complement S ∈ RE. The algorithm returns SAT iff there
is a satisfying assignment to all string variables consistent with the regex con-
straints φ and length constraints ψ. It is assumed that the algorithm has access
to a decision procedure for checking the consistency of linear integer arithmetic
constraints and for obtaining satisfying assignments to these constraints (in our
implementation, this is fulfilled by Z3’s arithmetic solver).

Lines 1–8 check whether the length information implied by φ is consistent
with ψ. The function ComputeLengthAbstraction takes as input either a string
term S or a regex RE and computes a system of length constraints corresponding
to derived length information from string constraints or possible lengths of words
accepted by the regex RE. This abstraction is exact, not an over-approximation.
For example, given the regex (abc)∗ as input, ComputeLengthAbstraction would
construct the length abstraction S ∈ (abc)∗ → len(S) = 3n, n ≥ 0 for a fresh
integer variable n. If the length abstractions are inconsistent with the given
length constraints, there can be no solution which satisfies both the length and
regex constraints, and hence the algorithm returns UNSAT. Otherwise, line 7
refines the length abstraction LS with respect to the regex RE. This improves
the efficiency of finding solutions to the augmented system of length constraints
later in the algorithm. In our implementation, the lower and upper bounds of the
length of S are checked against the lengths of accepting paths in the automaton
for RE. For instance, if LS implies that len(S) ≥ 5, but the shortest accepting
path in the automaton has length 7, the lower bound is refined to len(S) ≥ 7.

Lines 9–17 check that the intersection of all automata constraining each string
variable is non-empty. Although intersecting automata is relatively expensive (as
it runs in quadratic time w.r.t. the size of the intersected automata), it is still
more efficient to do this before enumerating length assignments, and taking the
intersection here is necessary to maintain soundness. (The heuristics in Sect. 4
illustrate some methods by which this computation can be made more efficient
or even avoided.) If the length information is consistent, the algorithm adds a
length abstraction constraint LI encoding the lengths of all possible solutions to
the intersection I.

By construction of ψ ∪ LS ∪ LRE ∪ LI , the input formula is satisfiable iff
this system of integer constraints has a solution. If such a solution M exists,
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lines 22–28 construct an assignment for each string variable with respect to its
length assignment. A solution must exist as the lengths of strings considered are
limited to those lengths for which the intersection of the corresponding automata
is non-empty; the solution is consistent by construction with both the input
length constraints and string constraints. If a solution M does not exist, then the
constraints φ ∧ ψ are not jointly satisfiable, and the algorithm returns UNSAT.

We demonstrate soundness, completeness, and termination of Algorithm 1 as
follows. On line 4 we check whether ψ ∪LS ∪LRE is satisfiable. If not, we return
UNSAT on line 5. Lines 9–17 check whether the intersection of regex constraints
for each string variable is empty. If so, we return UNSAT; otherwise, we add
an additional constraint encoding the lengths of all strings in this intersection.
Therefore, ψ ∪ LS ∪ LRE ∪ LI has a solution iff there exists an assignment to
each string variable that is consistent with the arithmetic constraints ψ and that
corresponds to the length of a solution in the intersection of its regex constraints
LI . Lines 22–28 construct this solution if it exists. Therefore, Algorithm 1 is
a decision procedure for the QF first-order theory of regex constraints, string
length, and linear integer arithmetic.

As previously mentioned, Z3str3RE supports other high-level operations that
are not part of this theory via existing support in Z3str3. An extension to this
algorithm provides support for including these operations, which may render the
theory undecidable. These terms are not in Algorithm 1 because their inclusion
would make the algorithm incomplete (see Sect. 2.2). Algorithm 1 describes the
part of the implementation which is novel and complete.

4 Length-Aware and Prefix/Suffix Heuristics in Z3str3RE

In this section, we describe the length-aware heuristics that are used in Z3str3RE
to improve the efficiency of regular expression reasoning. We present an empirical
evaluation of the power of these heuristics in Sect. 5.6.

4.1 Computing Length Information from Regexes

The first length-aware heuristic is used when constructing the length abstrac-
tion on line 3. If the regex can be easily converted to a system of equa-
tions describing the lengths of all possible solutions (for instance, in the
case when it does not contain any complements or intersections), this sys-
tem can be returned as the abstraction without constructing the automaton
for RE yet. As previously illustrated, for example, given the regex (abc)∗

as input, ComputeLengthAbstraction would construct the length abstraction
S ∈ (abc)∗ → len(S) = 3n, n ≥ 0 for a fresh integer variable n. Note that this
can be done from the syntax of the regex without converting it to an automaton.
Deriving length information from the automaton would be simple by, for exam-
ple, constructing a corresponding unary automaton and converting to Chrobak
normal form. However, performing automata construction lazily means we can-
not rely on having an automaton in all cases; this technique also provides length
information even when constructing an automaton would be expensive.
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In cases where we cannot directly infer the length abstraction, the heuristic
will fix a lower bound on the length of words in RE, and possibly an upper
bound if it exists. Reasoning about the length abstraction early in the proce-
dure gives our algorithm the opportunity to detect inconsistencies before expen-
sive automaton operations are performed. This gives the arithmetic solver more
opportunities to propagate facts discovered by refinement and potentially more
chances to find inconsistencies or learn further derived facts.

4.2 Optimizing Automata Operations via Length Information

Similarly, computing the intersection I in line 11 is done lazily in the imple-
mentation of Z3str3RE and over several iterations of the algorithm. The most
expensive intersection operations can be performed at the end of the search, after
as much other information as possible has been learned. We use the following
heuristics recursively to estimate the “cost” of each operation without actually
constructing any automata:

– For a string constant, the estimated cost is the length of the string.
– For a concatenation or a union of two regex terms X and Y , the estimated

cost is the sum of the estimates for X and Y .
– For a regex term X∗, the estimated cost is twice the estimate for X.
– For a regex term X under complement, the estimated cost is the product of

the estimates obtained from subterms of X.

In essence, the constructions which “blow up” the least are expected to be the
least expensive and are performed first. In the best-case scenario, this could mean
avoiding the most expensive operations completely if an intersection of smaller
automata ends up being empty. In the worst case, all intersections are computed
eventually, as this is necessary to maintain the soundness of our approach.

4.3 Leveraging Length Information to Optimize Search

Our implementation communicates integer assignments and lower/upper bounds
with the external arithmetic solver in order to prune the search space. Check-
ing for length assignments is done in practice as an abstraction-refinement loop
involving Z3’s arithmetic solver. The arithmetic solver proposes a single candi-
date model for the system of arithmetic constraints; the regex algorithm checks
whether that model has a corresponding solution over the regex constraints. If it
does not, it asserts a conflict clause blocking that combination of length assign-
ments and regex constraints from being considered again. This is necessary in
a DPLL(T)-style solver such as Z3 in order to handle Boolean structure in the
input formula.
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4.4 Prefix/Suffix Over-Approximation Heuristic

As previously mentioned, computing automata intersections is expensive, but
in many cases it is necessary in order to prove that a set of intersecting regex
constraints has no solution. In some cases, this can be done “by inspection” from
the syntax of the regex terms without constructing or intersecting any automata.
From the structure of a regular expression, it is easy to determine the first
letter of all possible accepted strings that it matches. If several regexes would be
intersected over the same string term, this is used to check whether these regexes
have a prefix of length one in common. If they do not, their intersection cannot
contain any strings other than the empty string (and we can also check whether
the empty string could be accepted by a similar syntactic approach). A similar
construction for suffixes of length 1 is also used. In this way, the heuristic can
infer that the intersection of several regex constraints is either empty, resulting in
a conflict clause, or can only contain the empty string, resulting in a new fact and
a simplification of the formula – without actually constructing the intersection
or, in fact, constructing any automata for these regexes.

For example, consider the following regex constraints on a variable X:

X ∈ (abc)∗

X ∈ a+ | b+

In the first constraint, the pattern abc is matched zero or more times, and could
be empty; therefore, either X is empty or it must start with a and end with c.
In the second constraint, each pattern is matched at least once, and cannot be
empty; therefore X must start with a or b, end with a or b, and cannot be the
empty string. Observe that according to the prefix heuristic, these constraints
are consistent, since a is a valid prefix of both regexes; however, according to
the suffix heuristic, they are inconsistent, as the possible suffixes a and b of the
second regex do not include c, and the empty string is not a solution to both
constraints. Hence these constraints are not jointly satisfiable.

As demonstrated, all of these facts are derived from the syntax of the reg-
ular expression without constructing any automata. By constructing an over-
approximation of the possible solutions of X allowed by regex constraints, the
heuristic can determine that their intersection is empty (or can only contain the
empty string) without computing it precisely using expensive automata-based
reasoning. We limit this heuristic to the first letter as each additional letter
requires exponentially more space.

5 Empirical Results

In this section, we describe the empirical evaluation of Z3str3RE, our implemen-
tation of the length-aware regular expression algorithm presented in Sect. 3, to
validate the effectiveness of the techniques presented. We evaluate the correct-
ness and efficiency of our tool against other solvers, as well as against different
configurations of the tool in order to demonstrate the efficacy of our heuristics.
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Fig. 2. Cactus plot summarizing performance on all benchmarks. Z3str3RE has the
best overall performance.

Table 1. Combined results of string solvers on all benchmarks. Z3str3RE has the
best overall performance on all benchmarks compared to CVC4, OSTRICH, Z3seq,
Z3str3, and Z3-trau and the biggest lead with a score of 1.02.

CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str3RE

Sat 33310 31550 22499 24133 27563 33820

Unsat 21897 21411 19281 21038 18566 22339

Unknown 0 0 10901 6504 1164 291

Timeout 2049 4295 4575 5581 9963 806

Soundness error 0 0 28 5325 13 0

Program crashes 0 0 0 2477 2 0

Total correct 55207 52961 41752 39846 46116 56159

Contribution score 95.99 19.87 – – – 145.07

Time (s) 57625.499 103487.844 305243.413 150288.386 213698.954 23339.266

Time w/o timeouts (s) 16645.499 17587.844 213743.413 38668.386 14438.954 7219.266

5.1 Empirical Setup and Solvers Used

We compare Z3str3RE against five other leading string solvers available today.
CVC4 [24] is a general-purpose SMTsolverwhich reasons about strings and regular
expressions algebraically. Z3str3 [8] is the latest solver in the Z3-str family, and uses
a reduction to word equations to reason about regular expressions. Z3str3RE is
based on Z3str3 except for the length-aware algorithm and heuristics described in
Sects. 3 and 4. Z3seq [36] is the Z3 sequence solver, implemented by Nikolaj Bjørner
and others at Microsoft Research, as part of the Z3 theorem prover. Z3seq uses a
new theory of derivatives for solving extended regular expressions. Z3-Trau [1] is
also based on Z3 and uses an automata-based approach known as “flat automata”
with both under- and over-approximations. OSTRICH [15] uses a reduction from
string functions (including word equations) to a model-checking problem that is
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Fig. 3. Cactus plot summarizing detailed performance on Automatark benchmark.

solved using the SLOTH tool and an implementation of IC3. We used CVC4’s
binary version 1.8, commit 59e9c87 of Z3str3, the sequence solver included in Z3’s
binary version 4.8.9, Z3-Trau commit 1628747, and OSTRICH version 1.0.1. All
of these tools support the full SMT-LIB standard for strings. We did not compare
against the Z3str2 [42] or Norn [3] solvers as neither tool supports the str.to int
or str.from int terms which represent string-number conversion, which are used
in some sanitizer benchmarks. Additionally, Norn does not support many of the
other high-level string terms such as indexof or substr which are used in the
benchmarks. The ABC [4] solver handles string and length constraints by conver-
sion to automata. However, their method over-approximates the solution set of
the input formula which may be unsound. Thus, we excluded ABC from our eval-
uation. We also were unable to evaluate against Trau [2] as the provided source
code did not compile. All evaluations were performed on a server running Ubuntu
18.04.4 LTS with two AMD EPYC 7742 processors and 2TB of memory using the
ZaligVinder [23] benchmarking framework. A 20 s timeout was used. We cross-
verified the models generated by each solver for satisfiable instances against all
competing solvers.

5.2 Benchmarks

The comparison was performed on four suites of regex-based benchmarks with a
total of 57256 instances. In total, almost 75% of the instances in our evaluation
came from previously published industrial benchmarks or other solver devel-
opers. Under 10% contain extended regular expressions (having either comple-
ment or intersection, or both) and 53% contain only regex predicates. Only 201
instances fall into the undecidable theory TLRE,n,c. More details can be found in
[7] where we analyse the benchmarks in greater detail. We briefly describe each
benchmark’s origin and composition.
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Table 2. Detailed results for the Automatark benchmark. Z3str3RE has the biggest
lead with a score of 1.01.

CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str3RE

Sat 14376 14204 11461 8157 9151 14437

Unsat 5304 5290 5381 3817 4385 5422

Unknown 1 0 15 5045 406 0

Timeout 298 485 3122 2960 6037 120

Soundness error 0 0 0 1300 0 0

Program crashes 0 0 0 1063 2 0

Total correct 19680 19494 16842 10674 13536 19859

Contribution score 1.0 1.0 2.0 – 0.0 0.5

Time (s) 8789.425 18718.425 158910.126 80021.352 126825.967 3925.150

Time w/o timeouts (s) 2829.425 9018.425 96470.126 20821.352 6085.967 1525.150

AutomatArk is a set of 19979 benchmarks based on a collection of real-world
regex queries collected by Loris D’Antoni from the University of Wisconsin,
Madison, USA. We translated the provided regexes [16] into SMT-LIB syntax
resulting in two sets of instances: a “simple” set with a single regex membership
predicate per instance, and a “complex” set with 2–5 regex membership predi-
cates (possibly negated) over a single variable per instance. The instances in this
benchmark are evenly divided between simple and complex problems.
RegEx-Collected is a set of 22425 instances taken from existing benchmarks
with the purpose of evaluating the performance of solvers against real-world
regex instances. This benchmark includes all instances from the AppScan [41],
BanditFuzz,5 JOACO [38], Kaluza [33], Norn [3], Sloth [21], Stranger [40], and
Z3str3-regression [8] benchmarks in which at least one regex membership con-
straint appears.6 No additional restrictions are placed on which instances were
chosen besides the presence of at least one regex membership predicate. This
benchmark tests solvers against challenging instances from widely distributed
benchmark suites. Additionally, these instances may contain regex terms in any
context and with any other supported string operators. As a result, the bench-
mark is also exemplary of how string solvers perform in the presence of operations
and predicates that are relevant to program analysis.
StringFuzz-regex-generated is a set of 4170 problems generated by the
StringFuzz string instance fuzzing tool [12]. These instances only contain regular
expression and linear arithmetic constraints. This benchmark isolates the regex
performance of a string solver in the context of mixed regex and arithmetic con-
straints. Tools with better regex and arithmetic solvers should perform better.
Fuzz testing, as performed in the StringFuzz-regex-generated benchmark,
has been shown to be extremely productive in discovering bugs and performance

5 The BanditFuzz benchmark is an unpublished suite obtained via private communi-
cation with the authors.

6 Other benchmark suites available to us, including the PyEx, PISA, and Kausler
benchmarks, did not include any regex membership constraints.
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Fig. 4. Cactus plot showing detailed results for the StringFuzz-regex-generated bench-
mark.

Table 3. Detailed results for the StringFuzz-regex-generated benchmark. Z3str3RE
has the biggest lead with a score of 1.25.

CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str3RE

Sat 2316 2001 2005 1590 3227 3231

Unsat 442 697 819 824 32 830

Unknown 0 0 1 192 0 0

Timeout 1412 1472 1345 1564 911 109

Soundness error 0 0 0 8 0 0

Program crashes 0 0 0 192 0 0

Total correct 2758 2698 2824 2406 3259 4061

Contribution score 0.0 3.17 2.0 – 0.0 0.17

Time (s) 31236.207 35409.000 51571.800 37323.550 22031.636 5116.456

Time w/o timeouts (s) 2996.207 5969.000 24671.800 6043.550 3811.636 2936.456

issues in SMT solvers. We included these instances because they exercise the per-
formance of the solver on regex-heavy constraints in a way that the industrial
benchmarks or instances obtained from other solver developers cannot.
StringFuzz-regex-transformed is a set of 10682 instances which were pro-
duced by transforming existing industrial instances with StringFuzz. We applied
StringFuzz’s transformers to instances supplied by Amazon Web Services related
to security policy validation, handcrafted instances inspired by real-world input
validation vulnerabilities, and the regex test cases in Z3str3’s regression test
suite. The instances contain regex constraints, arithmetic and length constraints,
string-number conversion (numstr), string concatenation, word equations, and
other high-level string operations such as charAt, indexof, and substr. As is
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Fig. 5. Cactus plot showing detailed results for the StringFuzz-regex-transformed
benchmark.

Table 4. Detailed results for the StringFuzz-regex-transformed benchmark. Z3str3RE
has the biggest lead with a score of 1.0.

CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str3RE

Sat 4541 4633 3899 3672 4417 4599

Unsat 6016 5976 4549 6282 4817 6037

Unknown 0 0 2233 721 0 6

Timeout 125 73 1 7 1448 40

Soundness error 0 0 5 1241 0 0

Program crashes 0 0 0 718 0 0

Total correct 10557 10609 8443 8713 9234 10636

Contribution score 0.5 0.0 – – 0.0 4.83

Time (s) 2969.643 2066.935 23094.737 722.545 29788.245 1095.209

Time w/o timeouts (s) 469.643 606.935 23074.737 582.545 828.245 295.209

typical for fuzzing in software testing, the goal is to create a suite of tests from a
given input that are similar in structure but that explore interesting behaviour
not captured by a “typical” industrial instance. These transformed instances are
often harder than the original industrial ones.

5.3 Comparison and Scoring Methods

We compare solvers directly against the total number of correctly solved cases,
total time with and without timeouts, and total number of soundness errors and
program crashes. We also computed the biggest lead winner and largest contri-
bution ranking following the scoring system used by the SMT Competition [6].
Briefly, the biggest lead measures the proportion of correct answers of the lead-
ing tool to correct answers of the next ranking tool, and the contribution score
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measures what proportion of instances were solved the fastest by that solver.
In accordance with the SMT Competition guidelines, a solver receives no con-
tribution score (denoted as –) if it produces any incorrect answers on a given
benchmark. In both cases, higher scores are better.

5.4 Analysis of Empirical Results

The cactus plot in Fig. 2 shows the cumulative time taken by each solver on all
cases in increasing order of runtime. Solvers that are further to the right and
closer to the bottom of the plot have better performance.

Overall Z3str3RE solves more instances and performs better than all com-
peting solvers. Across all benchmarks, Z3str3RE is over 2.4× faster than CVC4,
4.4× faster than Z3seq, 6.4× faster than Z3-Trau, 9.1× faster than Z3str3, and
13× faster than OSTRICH (including timeouts). Additionally, Z3str3RE has
fewer combined timeouts and unknowns than other tools considered, and no
soundness errors or crashes. We summarize these results in Table 1. Notably,
both Z3-Trau [1] and OSTRICH [15] had significant runtime issues in our exper-
iments. Z3-Trau produced 5325 soundness errors and 2477 crashes on our bench-
marks (13% of all instances), which is significantly higher than other tools used.
OSTRICH produced 10901 “unknown” responses on the benchmarks (19% of all
instances), due to both unsupported features and crashes, and also produced 28
soundness errors. Over all benchmarks, Z3str3RE produced 291 unknowns. There
are several potential reasons for this; the solver may have encountered a resource
limit and returned UNKNOWN, or it may have detected non-termination and
returned UNKNOWN instead of looping forever. According to SMT Competition
scoring, Z3str3RE won the division across all benchmarks with a lead of 1.02,
and had the largest contribution to the division with a score of 145.07. CVC4
had a contribution score of 95.99, and Z3seq had a score of 19.87. OSTRICH, Z3-
Trau, and Z3str3 received no contribution score as they each returned at least
one incorrect answer. The presented results are typical of the performance of
the evaluated tools over multiple runs. Results were cross-validated within runs
and between multiple runs. For a random single instance, the sample variance
in execution time for 100 runs is 0.001 (0.07% of average execution time). Over
57256 instances, this is negligible.

The empirical results make clear the efficacy of length-aware automata-based
techniques for regular expression constraints when accompanied with length con-
straints (which is typical for industrial instances). The effectiveness of our tech-
nique is demonstrated particularly by comparing Z3str3RE with Z3str3, as the
only differences between these tools are the length-aware regex algorithm and
heuristics implemented in Z3str3RE and bug fixes. By improving the regex algo-
rithm and applying our heuristics, we achieved a speedup of over 9x and solved
over 10000 more cases than Z3str3.
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Fig. 6. Cactus plot showing detailed performance for the RegEx-Collected benchmark.

Table 5. Detailed results for the RegEx-Collected benchmark. CVC4 has the biggest
lead with a score of 1.03.

CVC4 Z3Seq OSTRICH Z3-Trau Z3str3 Z3str3RE

Sat 12077 10712 5134 10714 10768 11553

Unsat 10135 9448 8532 10115 9332 10050

Unknown 0 0 8652 546 758 285

Timeout 213 2265 107 1050 1567 537

Soundness error 0 0 23 2776 13 0

Program crashes 0 0 0 504 0 0

Total correct 22212 20160 13643 18053 20087 21603

Contribution score 91.06 3.51 – – – 14.54

Time (s) 14610.224 47293.484 71666.750 32220.939 35053.106 13202.451

Time w/o timeouts (s) 10350.224 1993.484 69526.750 11220.939 3713.106 2462.451

5.5 Detailed Experimental Results

Figure 3 and Table 2 show the detailed results for the AutomatArk benchmark.
In this benchmark, Z3str3RE solves more instances than all other solvers, has the
fewest timeouts/unknowns, and has the fastest overall running time. Including
timeouts, Z3str3RE is 2.2× faster than CVC4, 4.7× faster than Z3seq, 40.4×
faster than OSTRICH, 20.4× faster than Z3-Trau, and 32.3× faster than Z3str3.

Figure 4 and Table 3 show the detailed results for the StringFuzz-regex-
generated benchmark. Z3str3RE solves more instances than all other solvers,
has over 90% fewer timeouts than other solvers, no unknowns, and has the fastest
overall running time. Including timeouts, Z3str3RE is 6.1× faster than CVC4,
6.9× faster than Z3seq, 10× faster than OSTRICH, 7.3× faster than Z3-Trau,
and 4.3× faster than Z3str3.
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Figure 5 and Table 4 show the detailed results for the StringFuzz-regex-
transformed benchmark. Z3str3RE solves more instances in total than all other
solvers and has the lowest total running time without timeouts. Including time-
outs, Z3str3RE is 2.7× faster than CVC4, 1.9× faster than Z3seq, 21× faster
than OSTRICH, and 27× faster than Z3str3. Although Z3-Trau is 1.5× faster
than Z3str3RE on this benchmark, including timeouts, Z3-Trau also produces
1241 answers with soundness errors and crashes on 718 other cases. Z3str3RE
produces no wrong answers or soundness errors on the benchmark. Z3-Trau also
solves 1923 fewer cases correctly in total than Z3str3RE.

Figure 6 and Table 5 show the detailed results for the RegEx-Collected
benchmark. Z3str3RE outperforms Z3seq, Z3str3, OSTRICH, and Z3-Trau on
this benchmark and is competitive with CVC4 both in terms of total number
of instances correctly solved and total running time. CVC4 solves 609 more
instances than Z3str3RE on this benchmark, but Z3str3RE is 1.1× faster over-
all (including timeouts). Z3str3RE is 3.6× faster than Z3seq, 5.4× faster than
OSTRICH, 2.4× faster than Z3-Trau, and 2.6× faster than Z3str3.

5.6 Analysis of Individual Heuristics and Results

To demonstrate the effectiveness of individual heuristics described in Sect. 4 and
implemented in Z3str3RE, we evaluated different configurations of the tool in
which one or more heuristics were disabled. Figure 7 and Table 6 show the results.
The plot line “Z3str3RE” shows the performance of the tool with all heuristics
enabled. The plot line “All heuristics off” shows the performance with all heuris-
tics disabled. Each of the other plot lines shows the performance with the named
heuristic disabled and all others kept enabled. From the plots and table, it is
clear that Z3str3RE performs best with all heuristics enabled. Z3str3RE is 4.4×
faster using all our heuristics than using none. Every other configuration of the
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Table 6. Comparison of different heuristics in Z3str3RE on all benchmarks.

All off Lazy Prefix/suffix Automata Arith. Z3str3RE

intersection off length solver

off info off integ. off

Sat 31046 31486 33817 33816 33804 33820

Unsat 22090 22085 21880 22264 22131 22339

Unknown 313 323 287 285 283 291

Timeout 3807 3362 1272 891 1038 806

Soundness error 0 0 0 0 0 0

Program crashes 42 39 0 1 0 0

Total correct 53136 53571 55697 56080 55935 56159

Time (s) 102102.388 101799.263 40068.501 27178.746 30006.857 23339.266

Time w/o timeouts (s) 25962.388 34559.263 1462.8501 9358.746 9246.857 7219.266

tool performs significantly worse relative to the one with all heuristics enabled.
Also, the length-aware and prefix/suffix heuristics provide significant boost over
lazy intersections and the baseline. These results demonstrate empirically that
each heuristic we introduce provides significant benefit in both total number of
solved instances and total solver runtime, and that all of the heuristics can be
used simultaneously for maximum efficacy.

6 Related Work

Comparison with Z3str3: Z3str3 [8] supports regex constraints via (incom-
plete) reduction to word equations. We have replaced this word-based technique
with our automata-based approach introduced in this paper. As demonstrated
by our evaluation, the length-aware automata-based approach used in Z3str3RE
is more efficient at solving these constraints, and is sound and complete for the
QF theory TLRE .

Comparison with Z3’s Sequence Solver: Z3’s sequence solver [18] supports
a more general theory of “sequences” over arbitrary datatypes, which allows
it to be used as a string solver. Z3seq uses regular expression derivatives to
reduce regex constraints without constructing automata. The experiments show
Z3str3RE performs better than Z3seq overall.

Comparison with CVC4: The CVC4 solver [24] uses an algebraic approach
to solving regex constraints. As shown in the experiments, Z3str3RE performs
better than CVC4, widely considered as one of the best SMT solvers for strings
as well as many other theories.

Comparison with Z3-Trau: The Z3-Trau [1] solver builds on Trau [2], re-
implemented in Z3, and enriched with new ideas e.g. a more efficient handling
of string-number conversion. The evaluation of Z3-Trau exposed 5325 soundness
errors and 2477 crashes on our benchmarks.
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Comparison with OSTRICH: The OSTRICH solver [15] implements a reduc-
tion from straight-line and acyclic fragments of an input formula to the emptiness
problem of alternating finite automata. OSTRICH produced 10901 “unknown”
responses and 4575 timeouts on our benchmarks, as well as 28 soundness errors.

Related Algorithms and Theoretical Results: The theory of word equa-
tions and various extensions have been studied extensively for many decades.
In 1977, Makanin proved that satisfiability for the QF theory of word equations
is decidable [28]; in 1999, Plandowski showed that this is in PSPACE [30,31].
Schulz [34] extended Makanin’s algorithm to word equations with regex con-
straints. The satisfiability problem for the theory of word equations with length
constraints still remains open [20,28,29,31], although the status of many other
extensions of this theory was clarified [17]. Automata-based approaches were
used to reason about string constraints enhanced with a ReplaceAll function
[14] or transducers [21].

Liang et al. [25] present a formal calculus for a theory that extends TLRE

with string concatenation (but not word equations). However, in that paper the
authors do not present experimental results regarding implementation of the
string calculus proposed. We have implemented an algorithm based on funda-
mentals of the theory and standard automata-based constructions, and presented
a thorough experimental evaluation of our implementation.

Abdulla et al. [3] present an automata-based solver called Norn built upon
results involving construction of length constraints from regex constraints. This
approach differs significantly from our method. In particular, Norn only uses
automata in inferring length constraints implied by regular expressions, then uses
an algebraic approach to solve the remainder of the formula. By contrast, our tool
uses a hybrid approach that includes both algebraic solving and automata-based
reasoning in a symbiotic loop. In addition, we present several novel heuristics
using length information to guide the search and, in some cases, avoid construct-
ing automata or computing intersections.

The prefix/suffix over-approximation heuristic is inspired partly by the work
of Brzozowski on regex derivatives [13]. The heuristic we introduce is conceptu-
ally different as we examine possible prefixes (and suffixes) of strings that could
be accepted by a regex in order to demonstrate unsatisfiability, rather than
examining the set of all possible suffixes given a fixed prefix in order to demon-
strate satisfiability. Our heuristic computes suffixes as well, whereas Brzozowski
derivatives are traditionally computed with respect to prefixes of a string. Newer
versions of Z3seq, including the one we evaluated, use a regex algorithm based
on symbolic derivatives [36].

7 Conclusions and Future Work

In this paper, we empirically showcase the power of length-aware and pre-
fix/suffix reasoning for regex constraints with our algorithm and its implementa-
tion in Z3str3RE via an extensive empirical comparison against five other state-
of-the-art solvers (namely, CVC4, Z3seq, Z3str3, Z3-Trau, and OSTRICH) over
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a large and diverse benchmark of 57256 instances. Over this entire benchmark
suite, we show that Z3str3RE has a speedup of 2.4× over CVC4, 4.4× over Z3seq,
6.4× over Z3-Trau, 9.1× over Z3str3, and 13× over OSTRICH. Our length-aware
method is very general and has wide applicability in the broad context of string
solving. In the future, we plan to explore further length-aware heuristics which
include more expressive functions and predicates, including indexof, substr,
and string-number conversion.

Acknowledgments. The work of Federico Mora is supported by NSF grants CNS-
1739816 and CCF-1837132, by the DARPA LOGiCS project under contract FA8750-
20-C-0156, by the iCyPhycenter, and by gifts from Intel, Amazon, and Microsoft. The
work of Florin Manea is supported by the DFG grant 389613931.

References

1. Abdulla, P.A., et al.: Efficient handling of string-number conversion. In: Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 943–957 (2020)

2. Abdulla, P.A., et al.: Flatten and conquer: a framework for efficient analysis of
string constraints. In: Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, pp. 602–617 (2017)

3. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 10

4. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
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Abstract. Given an unsatisfiable Boolean formula F in CNF, an unsat-
isfiable subset of clauses U of F is called Minimal Unsatisfiable Subset
(MUS) if every proper subset of U is satisfiable. Since MUSes serve as
explanations for the unsatisfiability of F , MUSes find applications in a
wide variety of domains. The availability of efficient SAT solvers has
aided the development of scalable techniques for finding and enumerat-
ing MUSes in the past two decades. Building on the recent developments
in the design of scalable model counting techniques for SAT, Bend́ık and
Meel initiated the study of MUS counting techniques. They succeeded
in designing the first approximate MUS counter, AMUSIC, that does not
rely on exhaustive MUS enumeration. AMUSIC, however, suffers from
two shortcomings: the lack of exact estimates and limited scalability due
to its reliance on 3-QBF solvers.

In this work, we address the two shortcomings of AMUSIC by design-
ing the first exact MUS counter, CountMUST, that does not rely on
exhaustive enumeration. CountMUST circumvents the need for 3-QBF
solvers by reducing the problem of MUS counting to projected model
counting. While projected model counting is #NP-hard, the past few
years have witnessed the development of scalable projected model coun-
ters. An extensive empirical evaluation demonstrates that CountMUST
successfully returns MUS count for 1500 instances while AMUSIC and
enumeration-based techniques could only handle up to 833 instances.

1 Introduction

Boolean formulas serve as a primary representation language to model the
behaviour of systems and properties. Given an unsatisfiable Boolean formula
F in Conjunctive Normal Form (CNF), i.e. a set of clauses F = {f1, f2, . . . , fn},
a subset U ⊆ F is called Minimal Unsatisfiable Subset (MUS) of F iff U is
unsatisfiable and for every f ∈ U , U \ {f} is satisfiable.

MUSes serve as explanations or reasons for unsatisfiability of F , and have,
consequently, found applications in a wide variety of domains such as diagno-
sis [24,56], constrained sampling and counting [28], equivalence checking [20],
and the like [1,2,25,30,47,64]. While the early applications relied on identify-
ing a single [3,6,7,51,53] or enumerating multiple [4,10,12,39,41,52] MUSes,
the rapid adoption of MUSes lead researchers to investigate problem formula-
tions and their corresponding applications that do not rely on explicit MUS
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identification. These include, e.g., computing the union of all MUSes [45], decid-
ing whether a given clause belongs to an MUS [31], or counting the number
of MUSes. Especially, the counting of MUSes found many applications in the
domain of diagnosis where the MUS count can be used to compute various incon-
sistency metrics [25,29,48–50,65] for general propositional knowledge bases.

A straightforward, and for many years the only available, approach for count-
ing MUSes is to simply enumerate them. However, there can be up to exponen-
tially many MUSes w.r.t. |F | and hence the complete enumeration is often practi-
cally intractable [9,10,39,69]. Inspired by the development of model counting tech-
niques in the context of SAT, which in its nascent stages also depended on complete
model enumeration while contemporary techniques often need to explicitly iden-
tify just a fraction of models, Bend́ık and Meel [13] recently initiated an investiga-
tion of counting MUSes without their explicit enumeration. In this context, they
succeeded by developing a hashing-based approximate counter,AMUSIC [13], that
provides the so-called PAC guarantees, also known as (ε, δ)-guarantees, wherein
the computed answer is within the (1+ε)-factor of the exact count with confidence
at least 1 − δ. AMUSIC reduces the problem of MUS counting to logarithmically
many calls to a ΣP

3 oracle (3-QBF solver, in practice) wherein every ΣP
3 query is

constructed over a CNF formula conjuncted with XORs.
While AMUSIC achieved its stated goal of avoiding explicit enumeration,

its scalability is significantly hampered by its reliance on a 3-QBF solver that
can efficiently handle formulas conjuncted with XOR constraints. It is worth
highlighting that the scalability of model counting techniques [17,60] in the
context of SAT crucially relies on the availability of CryptoMiniSAT [61], a
SAT solver with native support for CNF-XOR constraints. Despite significant
advances in QBF solving over the years, the scalability remains a formidable
challenge for 3-QBF solvers, and even more when XOR constraints are involved.
As such, AMUSIC could scale to formulas involving few hundreds of variables
and clauses.

In this work, we focus on addressing the scalability of MUS counting tech-
niques. We begin our investigation by focusing on the observation of Bend́ık and
Meel that their technique relied on a ΣP

3 oracle even though the problem of find-
ing an MUS is in FPNP [19,44]. Therefore, a natural direction is to investigate
the design of an algorithmic framework that can circumvent reliance on oracles
with high complexity. In this context, we rely on the observation of Durand, Her-
mann, and Koliatis [21] that the complexity of counting problems whose search
problems have FPNP complexity tend to be #NP (which contains #P class).
Such an observation is timely given the recent surge of interest in designing effi-
cient techniques for projected model counting, which is #NP-hard. Therefore,
one wonders: whether it is possible to design a MUS counting technique that can
take advantage of projected model counters?

The primary contribution of this paper is an affirmative answer to the above
question. We design a new algorithmic framework, CountMUST, that reduces
the problem of MUS counting to two projected model counting queries. In par-
ticular, CountMUST constructs a wrapper W and its remainder R such that the
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number of MUSes of F is |W| − |R|, i.e., the wrapper W over-approximates the
set of MUSes while the remainder contains the spurious, non-MUS, subsets of
F that emerge due to the over-approximation. We encode the wrapper W and
the remainder R with Boolean formulas W and R such that the projected model
counts for W and R (for a suitable projection set) equal to |W| and |R|, respec-
tively. An interesting (and perhaps surprising) aspect of our CountMUST is that
we do not enumerate a single MUS in our process, which is in stark contrast
to the design of AMUSIC that relies on the enumeration of a small number of
MUSes.

We discuss several strategies to construct wrappers (and their corresponding
remainders) that are efficient to compute and are tight over-approximations of
the set of MUSes. We conduct a detailed empirical analysis over 2553 instances
and observe that CountMUST successfully returns MUS count for 1500 instances
while AMUSIC and enumeration-based techniques could only handle up to 833
instances. We observe interesting complementary nature of the exact and approx-
imate MUS counting approaches: the scalability of AMUSIC is often impacted by
the number of clauses and appears to be less impacted by the number of MUSes
while, on the other hand, the scalability of CountMUST is less impacted by the
number of clauses and appears to depend on the number of MUSes.

Finally, our empirical analysis showcases that our wrappers W approximate
the set of MUSes very tightly. Motivated by the tightness of our wrappers, we dis-
cuss several interesting applications of our framework: approximate MUS count-
ing [13], MUS enumeration [5,40], MUS Sampling, estimation of minimum and
maximum MUS cardinality [27,38], and MUS membership testing [31].

The rest of the paper is organized as follows. We introduce preliminaries in
Sect. 2 and discuss related work in Sect. 3. We then present the primary technical
contribution of our work in Sect. 4. We present the empirical evaluation in Sect. 5
and then discuss the implications of the tightness of our wrappers in Sect. 6. We
finally conclude in Sect. 7.

2 Preliminaries and Problem Definition

A Boolean formula F is built over Boolean values {1, 0} and over a set Vars(F )
of Boolean variables connected via standard logical operators: ∧, ∨, →, ↔, ¬. A
literal is either a variable x ∈ Vars(F ) or its negation ¬x; Lits(F ) denotes the
set of all literals used in F . Given a set A of variables, a valuation π : A → {1, 0}
assigns to each variable its Boolean value. F [π] denotes the formula that emerges
from F by substituting every variable x of F that is in the domain of π by π(x);
furthermore, trivial simplifications, e.g., G ∨ 0 = G, G ∧ 0 = 0, ¬1 = 0, ¬0 = 1,
are applied. Note that if A ⊇ Vars(F ), then F [π] is simplified either to 1 or to 0.
In the case when A ⊇ Vars(F ) and F [π] = 1, we call π a model of F and write
π |= F ; otherwise, when F [π] = 0, we write π 	|= F . A formula F is satisfiable if
it has a model; otherwise, F is unsatisfiable. We write MF to denote the set of all
models of F . Moreover, given a set A ⊆ Vars(F ) of variables, we write MF↓A to
denote the projection of MF on A, and for every π ∈ MF , we write π↓A to denote
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the projection of π on A. Finally, given two variable sets, A = {a1, . . . , ak} and
B = {b1, . . . , bk}, such that A ⊆ Vars(F ), we write F[A/B] to denote the formula
that originates from F by substituting each variable ai ∈ A by bi ∈ B.

A formula in conjunctive normal form, shortly a CNF formula, is a conjunc-
tion of clauses where a clause is a disjunction of literals. When suitable, a CNF
formula can also be viewed as a multiset of clauses where a clause is a set of
literals; we use the two representations interchangeably based on the context.
Throughout the whole text, let us by F = {f1, . . . , fn} denote the input CNF
formula of interest. Furthermore, capital letters, e.g., S,K,N , or blackboard
bold letters, e.g., W, R, are used to denote other formulas, small letters, e.g.,
f, f1, fi, are used to denote clauses, and small letters, e.g., x, x′, y, are used to
denote variables. Finally, given a set X, P(X) denotes the power-set of X, and
|X| denotes the cardinality of X.

Definition 1 (MUS). A subset N of F is a minimal unsatisfiable subset
(MUS) of F iff N is unsatisfiable and for every f ∈ N it holds that N \ {f} is
satisfiable.

Definition 2 (MSS). A subset N of F is a maximal satisfiable subset (MSS)
of F iff N is satisfiable and for every f ∈ F \ N it holds that N ∪ {f} is
unsatisfiable.

Definition 3 (MCS). A subset N of F is a minimal correction subset (MCS)
of F iff F \ N is satisfiable and for every f ∈ N it holds that F \ (N \ {f}) is
unsatisfiable. Equivalently, N is an MCS iff F \ N is an MSS.

Note that the Boolean satisfiability is monotone w.r.t. the (clause) subset
inclusion, i.e., all subsets of a satisfiable set of clauses are satisfiable. Con-
sequently, all proper subsets of an MUS are in fact satisfiable, and, dually,
all proper supersets of an MSS are unsatisfiable. Also, note that the mini-
mality/maximality concept used here is a set minimality/maximality and not
a minimum/maximum cardinality. Consequently, there can be up to

( |F |
|F |/2

)

MUSes/MCSes/MSSes of F (intuitively, this is the number of pair-wise incom-
parable subsets of F ; see the Sperner’s theorem [62]). We write maximum and
minimum MUS to denote an MUS with the maximum and the minimum cardi-
nality, respectively. Note that there can also be exponentially many maximum
and minimum MUSes. We write MUSF to denote the set of all MUSes of F , and
SSF to denote the set of all satisfiable subsets of F .

Example 1. Let us demonstrate the concepts of MUSes, MSSes and MCses on
an example. Assume that F = {f1 = {x1}, f2 = {¬x1}, f3 = {x2}, f4 =
{¬x1,¬x2}}. There are 2 MUSes: MUSF = {{f1, f3, f4}, {f1, f2}}, 3 MSSes:
{{f2, f3, f4}, {f1, f4}, {f1, f3}}, and thus also 3 MCSes: {{f1}, {f2, f3}, {f2, f4}}.
For illustration, see Fig. 1.

In this paper, we are concerned with the following two problems.
Name: #MUS
Input: A CNF formula F .
Output: The number |MUSF | of MUSes of F .
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Fig. 1. Illustration of P(F ) from the Example 1. Individual subsets are represented
as bit-vectors, e.g., {f1, f2} is written as 1100. The subsets with a dashed border are
the unsatisfiable subsets, and the others are satisfiable subsets. MUSes and MSSes are
filled with a background colour.

Name: proj-#SAT
Input: A formula G and a set of variables S ⊆ Vars(G).
Output: The number |MG↓S | of models of G projected on S.

Our goal is to solve the #MUS problem, and to do that, we propose a strong
subtractive reduction to the proj-#SAT problem.

Definition 4 (Strong Subtractive Reductions). [21] Let Σ be an alphabet
and let Q1 and Q2 be two binary relations over Σ. Let #·Q1 and #·Q2 represent
the corresponding counting problems. Then, # ·Q1 reduces to # ·Q2 via a strong
subtractive reduction, if there exist polynomial-time computable functions f and
g such that for every string z ∈ Σ∗:

1. Q2(f(z)) ⊆ Q2(g(z))
2. |Q1(z)| = |Q2(g(z))| − |Q2(f(z))|.

3 Related Work

MUS Counting. A straight-forward approach to count the MUSes is to simply
enumerate them via an MUS enumeration algorithm, e.g. [4,5,8,10,12,39,41,52].
However, since there can be up to exponentially many MUSes w.r.t. |F |, the
complete enumeration is often practically intractable. An alternative approach
to identify the MUS count is based on a so-called minimal hitting set duality
between MUSes and MCSes that states that every MUS is a minimal hitting set
of the set of all MCSes [32,56]. Consequently, one can determine the MUS count
by first identifying all MCSes and then counting their minimal hitting sets [40].
However, there can be in general up to exponentially many MCSes, which makes
this approach also often practically intractable [11,52].

The study of MUS counting without relying on exhaustive enumeration
was initiated just recently by Bend́ık and Meel [13], who proposed an (ε, δ)-
approximation scheme called AMUSIC. AMUSIC extends a prior hashing-based
model counting framework [15,18,63] to MUS counting. Briefly, AMUSIC divides
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the power-set P(F ) into nCells small cells, then pick one of the cells and count
the number inCell of MUSes in the cell, and estimate the overall MUS count
as nCells × inCell . The approach requires to perform logarithmically many calls
to a ΣP

3 oracle (3-QBF solver) wherein each query consists of a CNF formula
conjuncted with XOR constraints. The lack of solvers with native support for
such constraints presents the major hindrance to the scalability of AMUSIC.

It is worth remarking on a recent work by Bend́ık and Meel [14] that focuses
on exact counting of maximal satisfiable subsets (MSSes). While MUSes and
MSSes are closely related concepts, to the best of our knowledge, there does not
exist any efficient reduction from MUS counting to MSS counting, or vice versa.
Note that the best known upper-bound on the problem of finding an MUS is
FPNP [19], whereas for findind an MSS a tighter upper-bound FPNP[wit, log]
is known [44], which suggests that counting MUSes is practically harder than
counting MSSes. It would be an interesting question for future work if the counter
developed in this work can be employed to perform MSS counting.

Model Counting. The complexity-theoretic study of model counting was initiated
by Valiant [67] who showed that proj-#SAT is #P-complete when S = Vars(G).
Subsequently, Durand, Hermann, and Koliatis [21] showed that the general prob-
lem of proj-#SAT is #NP-hard. A significant conceptual contribution of Durand
et al. was to show the importance of subtractive reductions for problems in #NP;
this idea has been applied for reductions to projecting counting [14].

Our work relies on the recent progress in the development of efficient pro-
jected model counters; in particular, we employ GANAK [59], a state-of-the-art
search-based exact model counter; the entry based on GANAK won the projected
model counting track in 2020 Model Counting Competition [23]. Search-based
model counters build on three core ideas: (1) for a formula G and x ∈ S, we
have |MG↓S | = |MG(x�→0)↓S |+ |MG(x�→1)↓S |, (2) if G can be partitioned into sub-
set of clauses {C1, C2, . . . Ck} such that ∀i, j.Vars(Ci) ∩ Vars(Cj) = ∅, then we
have |MG↓S | =

∏k
i=1 |MCi↓S |, and (3) finally, component caching is employed to

cache the components. Consequently, the model count can be often determined
by explicitly identifying just a fraction of all models. GANAK is built on top of
earlier search-based model counters, sharpSAT [66] and Cachet [57,58].

4 MUS Counting via a Projected Model Counter

We now gradually introduce several subtractive reductions of the MUS counting
problem to the projected model counting, starting with the base idea in Sect. 4.1,
and following with the particular reductions in Sects. 4.2–4.11.

4.1 Basic MUS Counting Idea

Definition 5 (wrapper and remainder). A set W of subsets of F is a
wrapper iff MUSF ⊆ W ⊆ MUSF ∪ SSF . Furthermore, the remainder of W is the
set R = W ∩ SSF .
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Proposition 1. Let W be a wrapper and R its corresponding remainder. Then
|MUSF | = |W| − |R|.
Proof. Since R = W ∩ SSF , then MUSF ∩ R = ∅, and hence |W| = |MUSF | + |R|.

Our approach to determine the MUS count |MUSF | consists of the following
steps. First, we define a wrapper W and its corresponding remainder R. Subse-
quently, we encode the wrapper W with a Boolean formula W such that each
projected model of W (for a suitable projection set) corresponds to an element
of W. Similarly, we construct a Boolean formula R such that each projected
model of R corresponds to an element of the remainder R. Finally, we employ a
projected model counter to determine the projected model counts of W and R,
i.e., |W| and |R|, and hence we obtain the MUS count |MUSF | = |W| − |R|.

In the following, we first describe in Sect. 4.2 how to build a simple wrapper
W1 and its remainder R1 and how to encode them via Boolean formulas W1 and
R1, respectively. Subsequently, in Sects. 4.3–4.11, we propose several additional
wrappers (and their remainders) that improve upon the base wrapper W1 by
exploiting various observations about MUSes. Finally, in Sect. 4.12, we show
how to combine the individual wrappers.

4.2 W1 - the Base Wrapper and Its Reminder

Our base wrapper, W1, is simply the set of all satisfiable subsets and all MUSes
of F , i.e., W1 = SSF ∪ MUSF . The corresponding remainder R1 is thus the set
SSF of all satisfiable subsets of F . In the following, we describe how to encode
the wrapper W1 and the remainder R1 via Boolean formulas W1 and R1 whose
projected models correspond to elements of W1 and R1, respectively.

Let us start with encoding the remainder R1 = SSF . Given the unsatisfiable
formula F = {f1, . . . , fn}, we introduce a set A = {a1, . . . , an} of activation
variables. Note that every valuation π of A one-to-one maps to an activated
subset πA,F of F defined as πA,F = {fi ∈ F |π(ai) = 1}. Using the activation
variables, we build the formula R1 as follows:

R1 =
∧

fi∈F

ai → fi (1)

Intuitively, if we set ai to 0 then the formula ai → fi is trivially satisfied,
and if we set ai to 1 then fi has to be satisfied to satisfy ai → fi. Hence, the
models of R1 projected on A map to satisfiable subsets of F ; formally:

Proposition 2. For every valuation π of A, π ∈ MR1↓A iff πA,F ∈ R1 = SSF .
Consequently, |MR1↓A| = |R1|.

Let us note that the concept of activation variables (or alternatively relax-
ation variables) and the idea behind the formula R1 is not novel and it appeared
also in several MUS/MSS/MCS related studies such as [14,31,42]. However, we
are the first who apply it in the context of MUS counting.
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To build a formula W1 that represents the wrapper W1 = SSF ∪ MUSF , we
will proceed similarly, i.e., we build W1 using the activation variables A in such
a way that a valuation π of A is a projected model of W1 iff πA,F ∈ W1. A
straightforward approach to encode W1 is to directly express that we are inter-
ested either in satisfiable subsets or MUSes of F . Such an encoding might look as
R1(A)∨ isMUS(A) where R1(A) is the formula from Eq. 1 encoding that πA,F is
satisfiable and isMUS(A) is a formula encoding that πA,F is an MUS. However,
encoding that a set S is an MUS is quite expensive since one has to express
that all subsets of S are satisfiable and that S is unsatisfiable (Definition 1).
Especially, encoding that a set S is unsatisfiable requires to assume all the expo-
nentially many valuations of Vars(S). Several MUS related studies used various
QBF encodings for the property of being an MUS, e.g., [13,31]. In particular, to
express that a set S is an MUS, one can use the following, intuitively described,
∀∃-QBF encoding: ”for every valuation τ of Vars(S) the valuation τ models ¬S
(i.e., S is unsatisfiable) and for every subset S′ of S there exists a valuation
τ ′ of Vars(S′) that satisfies S′”. One could convert the ∀∃-QBF encoding into
a plain Boolean formula by explicitly enumerating all the possible valuations of
Vars(S) and all the subsets of S, however, this yields an exponentially large,
and thus intractable, formula. Hence, instead of directly expressing that every
element of the wrapper W1 is either a satisfiable subset or an MUS of F , we
propose another approach based on a novel concept of an evidence.

Definition 6 (evidence). Let A be a subset of F = {f1, . . . , fn}. An evidence
for A is a tuple (ρ1, . . . , ρn) such that for every 1 ≤ i ≤ n it holds that:

1. ρi : Vars(F ) → {1, 0} is truth assignment, and
2. ρi |= A \ {fi}.

Crucially, we observe the following:

Proposition 3. For every subset A of F it holds that A ∈ SSF ∪MUSF = W1 iff
there exists an evidence for A.

Our formula W1 (Eq. 2) that encodes the wrapper W1 captures every set
A ⊆ F for which there exists an evidence (ρ1, . . . , ρn). To represent the set
A, we use the activation variables A = {a1, . . . , an}. To represent the truth
assignments ρ1, . . . , ρn, we introduce variable sets I1, . . . , In where Ii is a fresh
copy of Vars(F ) for every i ∈ {1, . . . , n}.

W1 =
∧

ai∈A

ai → ( ∧

j∈{1,...,n}\{i}
(aj → fj[Vars(F )/Ii])

)
(2)

Intuitively, let π′ be a valuation of Vars(W1) and π′
A,F = {fi ∈ F |π′(ai) =

1} the subset of F activated by A. For every activated clause fi ∈ π′
A,F , the

formula expresses that π′
↓Ii

is a model of π′
A,F \ {fi} where the variable set

Vars(F ) is substituted by Ii.

Proposition 4. For every valuation π of A, π ∈ MW1↓A iff πA,F ∈ W1 =
SSF ∪ MUSF . Consequently, |MW1↓A| = |W1|.



Counting Minimal Unsatisfiable Subsets 321

Based on Propositions 2 and 4, we can now employ a projected model counter
to obtain the model counts |MW1↓A| and |MR1↓A|, which yields |W1| and |R1|,
and hence also |MUSF | (Proposition 1). However, the concern here is the tractabil-
ity of obtaining the model counts. There are mainly two criteria that affect the
practical tractability of projected model counting. One criterion is the number
of projected models, i.e. the cardinality of the wrapper (and the remainder), and
the other criterion is the cardinality of the projection set, i.e., |A|. The wrapper
W1 is not very efficient w.r.t. these two criteria. Especially, W1 contains all sat-
isfiable subsets of F , and there are often exponentially many satisfiable subsets
of F w.r.t. |F |. Therefore, in the following, we will present nine additional wrap-
pers, W2, . . . ,W10, and their corresponding remainders. Each of the wrappers
captures a property of MUSes that allows us to provide a better description of
MUSes, and hence reduce the cardinality of the wrapper and/or the cardinality
of the projection set. Similarly as in the case of W1, we will use the activation
variables A to represent the elements of the wrappers/remainders. Moreover,
every of the following wrappers Wi will be encoded by a Boolean formula Wi

such that for every valuation π of A, π ∈ MWi↓A iff πA,F ∈ Wi (and similarly
for the remainders).

4.3 W2 - the Intersection of MUSes

Our second wrapper W2 is based on a simple observation: every MUS of F has to
contain the intersection IMUSF of all MUSes of F . Hence, we define the wrapper
as W2 = {N ∈ W1 |N ⊇ IMUSF } and encode it via W2 as follows:

W2 = W1 ∧
∧

fi∈IMUSF

ai (3)

Proposition 5. For every valuation π of A, π ∈ MW2↓A iff πA,F ∈ W2. Con-
sequently, |MW2↓A| = |W2|.

The remainder R2 of W2 is by Definition 5 the set W2 ∩ SSF . To build the
formula R2 that encodes R2, observe that we already have an encoding for the
set W2 (Eq. 3), and we also have an encoding for the set SSF since SSF = R1.
Hence, we can build R2 as a conjunction of the two encodings: R2 = W2 ∧ R1.
Note that this construction of the remainder and the formula that encodes it is
purely mechanical and does not involve any specific property of the particular
wrapper. Therefore, for every wrapper Wi and its encoding Wi that are presented
in the following sections, we define the reminder as Ri = Wi ∩ R1 and encode it
as Ri = Wi ∧ R1. Proposition 6 witnesses the soundness of this construction:

Proposition 6. For every valuation π of A, π ∈ MRi↓A iff πA,F ∈ Ri. Conse-
quently, |MRi↓A| = |Ri|.

This section’s final question is how to compute the intersection IMUSF . It is
well-known that a clause f ∈ F belongs to IMUSF iff F \ {f} is satisfiable (see,
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e.g., [32,40,56]). Hence, a straightforward way would be to perform such satisfia-
bility check for each f ∈ F , however, that might be very expensive. Fortunately,
there has been recently proposed [13] a quite efficient algorithm to compute
IMUSF which usually requires only few satisfiability checks, so we implemented
that algorithm and use it while building the wrapper.

4.4 W3 - The Union of MUSes

Our next wrapper, W3, is very similar to the previous wrapper. Observe that
every MUS of F is necessarily a subset of the union UMUSF of all MUSes of
F . Consequently, also a weaker observation holds: every MUS of F is a subset
of every over-approximation of UMUSF . We define the wrapper as W3 = {N ∈
W1 |N ⊆ U} where U is either the exact union UMUSF or its over-approximation
(U ⊇ UMUSF ). Details on obtaining U are provided below. The encoding W3 of
W3 is analogical to W2:

W3 = W1 ∧
∧

fi 	∈U

¬ai (4)

Proposition 7. For every valuation π of A, π ∈ MW3↓A iff πA,F ∈ W3. Con-
sequently, |MW3↓A| = |W3|.

The computation of the union UMUSF has been examined in two recent stud-
ies [13,45] that provided two different approaches for that task. Unfortunately,
due to the problem’s hardness, both the studies showed that the proposed
approaches can usually handle only relatively small input formulas. Namely,
the approach from [13] requires O(|F |) calls of a ΣP

2 oracle. Fortunately, it is
often possible to cheaply compute a good over-approximation of UMUSF via the
concepts of autark variables and a lean kernel. Briefly, a subset V of Vars(F )
is an autark [46] of F iff there exists a valuation χ of V such that for every
clause f ∈ F that contains a variable from V it holds that χ |= f . Since a union
of two autark sets is also an autark set, there exists a unique maximum autark
set [33,34]. The lean kernel K of F is the set of clauses that do not use any
variable from the maximum autark set. It has been shown (e.g. [33,34]), that
the lean kernel is an over-approximation of UMUSF . Hence, when building the
wrapper W3, we use the lean kernel K as the over-approximation U of UMUSF ,
i.e., W3 = {N ∈ W1 |N ⊆ K}. There have been proposed several algorithms
to compute the lean kernel, e.g. [36,43]; we have implemented the algorithm by
Marques-Silva et al. [43] using a MaxSAT solver UWrMaxSat [54] as a back-end.

Few words are in order to the effect of the two wrappers, W2 and W3, on the
tractability of the projected model counting. Observe that in both cases (W2 and
W3), we fix values of some variables from the projection set A. Hence, before
passing the formulas to the projected model counter, we first propagate the fixed
values of A to simplify the formulas. By doing so, we effectively reduce the size
of the projection set A by |IMUSF | and |U | = |K|, respectively.



Counting Minimal Unsatisfiable Subsets 323

Finally, let us note that the fact that an MUS has to be a subset of the
union of all MUSes and a superset of the intersection of all MUSes is well-known
and it has been already exploited in various ways in several MUS related stud-
ies (see, e.g., [10,11,45]). Especially, the approximate MUS counting algorithm
AMUSIC [13] utilizes UMUSF in its preprocessing phase, and IMUSF to simplify
3-QBF queries while searching for MUSes.

4.5 W4 - Minimum MUS Cardinality

Assume we can somehow compute the cardinality of a minimum MUS or at least
its lower-bound minMUS. Knowing this number, we define our next wrapper as
W4 = {N ∈ W1 | |N | ≥ minMUS}. To encode this wrapper via a formula W4, we
employ a Boolean cardinality constraint atLeast(A, minMUS) expressing that at
least minMUS variables from A are set to 1:

W4 = W1 ∧ atLeast(A, minMUS) (5)

Proposition 8. For every valuation π of A, π ∈ MW4↓A iff πA,F ∈ W4. Con-
sequently, |MW4↓A| = |W4|.

There have been proposed several algorithms for computing an MUS with
the minimum cardinality, e.g. [26,27,38]. However, since the task of comput-
ing a minimum MUS is in FPΣP

2 [27,37], computing exactly a minimum MUS
is too expensive for our scenario (empirically experienced). Instead, we pro-
pose an approach for cheaply computing a lower-bound on the minimum MUS
cardinality.

Our method is based on a well-known relationship between MUSes and
MCSes called minimal hitting set duality [32,56]. Given a collection C of sets, a
set X is a hitting set of C iff C ∩ X 	= ∅ for every C ∈ C. Furthermore, a hitting
set X of C is minimal if none of its proper subsets is a hitting set. The duality
relation states that a set N is an MUS of F iff N is a minimal hitting set of the
set MCSF of all MCSes of F . Dually, a set M is an MCS of F iff M is a minimal
hitting set of the set MUSF . Consequently, one can identify all the MCSes and
then compute their minimum minimal hitting set to get an MUS with the mini-
mum cardinality. However, there can be up to exponentially many MCSes of F ,
and thus their complete enumeration is often practically intractable. Our app-
roach to obtain a lower-bound on the minimum MUS cardinality is the following.
First, we employ a recent MCS enumeration algorithm RIME [11] to generate a
subset M of MCSF . Subsequently, we compute a minimum minimal hitting set
of M and use it as the lower-bound minMUS on the minimum MUS cardinality
while building the wrapper W4. Note that since M ⊆ MCSF , it holds that every
hitting set of MCSF is also a hitting set of M, and hence minMUS is indeed a
sound lower-bound on the cardinality of a minimum hitting set of MCSF .

Let us also briefly describe an algorithm for computing the minimum MUS
by Ignatiev et al. [27], since it works on a similar principle as our approach.
Their algorithm iteratively maintains a set kMCSes of known MCSes; initially
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kMCes = ∅. In each iteration, the algorithm computes a minimum minimal
hitting set X of kMCSes and checks X for satisfiability. If X is unsatisfiable,
then it is guaranteed to be a minimum MUS. Otherwise, X is enlarged to an
MSS using a single MSS extraction subroutine, the complement of the MSS (i.e.,
an MCS) is added to kMCSes, and the algorithm proceeds with a next iteration.
Observe that one can also terminate their approach after a given time limit and
use the last computed X as a lower-bound on the minimum MUS cardinality. The
main difference between our and their approach is that we employ a dedicated
MCS enumerator in the first step and then compute just a single minimum
minimal hitting set, whereas they alternate single MCS extraction with minimum
minimal hitting set computation.

4.6 W5 - Maximum MUS Cardinality

Assuming that we can somehow compute an upper-bound maxMUS on the max-
imum cardinality of an MUS of F , we define our next wrapper as W5 = {N ∈
W1 | |N | ≤ maxMUS}. Similarly as in the case of W4, to build the formula W5 that
encodes W5, we introduce a Boolean cardinality constraint atMost(A, maxMUS)
expressing that at most maxMUS variables from A are set to 1:

W5 = W1 ∧ atMost(A, maxMUS) (6)

Proposition 9. For every valuation π of A, π ∈ MW5↓A iff πA,F ∈ W5. Con-
sequently, |MW5↓A| = |W5|.

We are not aware of any prior work on computing the cardinality of the
maximum MUS nor of a reasonable approach for computing at least its upper-
bound. Hence, we propose a custom approach to compute such an upper-bound
maxMUS. The base idea is to exploit our concept of wrappers:

Proposition 10. Let W be a wrapper, i.e. W ⊆ MUSF ∪ SSF , A the set of
activation variables, and W a formula such that for every valuation π of A, π ∈
MW↓A iff πA,F ∈ W. Furthermore, let maxOnes = max({ones(π) |π ∈ MW↓A})
where ones(π) = |{ai ∈ A |π(ai) = 1}|. Then maxOnes is an upper-bound on the
maximum MUS cardinality.

We use maxOnes as the value maxMUS while constructing wrapper W5. Any
of the wrappers and its encoding presented in this paper can be used as W and
W, respectively. To determine the value maxOnes, we define a partial MaxSAT
problem using the formula W ∧ ∧

ai∈A ai, where W are the hard clauses and∧
ai∈A ai are the soft clauses. To solve the problem, we employ the MaxSAT

solver UWrMaxSat [54].

4.7 W6 - Component Partitioning

It is often the case that the clauses of F can be partitioned into several compo-
nents, i.e. disjoint subsets of clauses, such that every MUS of F consists only of
clauses from a single component. In particular:
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Definition 7 (components). Given a clause fi ∈ F , the component C(fi) of
fi is the minimal subset of F satisfying:

1. fi ∈ C(f), and
2. for every l ∈ fi and every fj ∈ F with ¬l ∈ fj, C(fi) = C(fj).

Example 2. Assume that F ={{x1}, {¬x1}, {x2}, {¬x1,¬x2}, {x3}, {¬x3}, {x4},
{x4, x5}}. There are four components: C1 = {{x1}, {¬x1}, {x2}, {¬x1,¬x2}},
C2 = {{x3}, {¬x3}}, C3 = {{x4}}, and C4 = {{x4, x5}}. C1 has two MUSes:
{{x1}, {¬x1}} and {{x1}, {x2}, {¬x1,¬x2}}, C2 has one MUS: {{x3}, {¬x3}},
and C3 and C4 have no MUSes.

Proposition 11. Let N be an MUS. Then for every two clauses fi, fj ∈ N , it
holds that C(fi) = C(fj).

The wrapper W6 captures the partition of MUSes into components, and it is
defined as W6 = {N ∈ W1 | ∀fi,fj∈N . C(fi) = C(fj)} and encoded via W6:

W6 = W1 ∧
∧

ai∈A
(ai →

∧

fj∈F\C(fi)

¬aj) (7)

Proposition 12. For every valuation π of A, π ∈ MW6↓A iff πA,F ∈ W6. Con-
sequently, |MW6↓A| = |W6|.

To partition the input formula F into individual components, we construct
an undirected graph whose vertices are the clauses of F and every two vertices,
fi and fj , are connected via an edge iff there exists l ∈ fi such that ¬l ∈ fj . The
components of F then correspond to connected components of the graph (which
can be identified in linear time w.r.t. the size of F by traversing the graph). Note
that a similar flip graph has been used in a study [68] on model rotation and its
usage during single MUS extraction.

4.8 W7 - Minimal Hitting Set Duality

We again exploit the minimal hitting set duality between MUSes and MCSes
(Sect. 4.5). Recall that if a set M is an MCS of F then M ∩ N 	= ∅ for every
N ∈ MUSF . We define the wrapper W7 as {N ∈ W1 | ∀M∈MM ∩ N 	= ∅} where
M is a set of MCSes. To obtain M, we run an MCS enumeration algorithm
RIME [11] constrained by a user-defined time limit. The encoding W7 of W7 is:

W7 = W1 ∧
∧

M∈M

∨

fi∈M

ai (8)

Proposition 13. For every valuation π of A, π ∈ MW7↓A iff πA,F ∈ W7. Con-
sequently, |MW7↓A| = |W7|.
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4.9 W8 - Literal Negation Cover

Our next wrapper captures the following observation about MUSes.

Proposition 14. Let N be an MUS of F , fi ∈ N a clause of N , and l ∈ fi a
literal of fi. Then there exists a clause fj ∈ N such that ¬l ∈ fj.

Based on the above proposition, we define the wrapper W8 as W8 = {N ∈
W1 | ∀fi∈N .∀l∈fi

.∃fj∈N .¬l ∈ fj}, and encode it as follows:

W8 = W1 ∧
∧

ai∈A
ai → (

∧

l∈fi

(
∨

fj∈{fj∈F | ¬l∈fj}
aj)) (9)

Proposition 15. For every valuation π of A, π ∈ MW8↓A iff πA,F ∈ W8. Con-
sequently, |MW8↓A| = |W8|.

4.10 W9 - Non-extendable Evidence Models

Assume that N is an MUS and (ρ1, . . . , ρn) is its evidence. By Definition 6, it
holds that ρi |= N \ {fi} for every 1 ≤ i ≤ n. Observe that since N is unsatisfi-
able, then it is also necessarily the case that ρi |= ¬fi for every 1 ≤ i ≤ n. Hence,
we define our next wrapper, W9, as W9 = {N ∈ W1 | ∃ρ1, . . . , ρn.∀1≤i≤n. ρi |=
N \ {fi} and ρi |= ¬fi}. Note that the above-stated property applies universally
to every evidence of an MUS, and yet we require in the definition of the wrap-
per only an existence of one such evidence. The reason is that there can be
up to exponentially many evidences for an MUS w.r.t. |Vars(F )| and hence it is
intractable to reason about all of them in the Boolean encoding of the wrapper.

W9 = W1 ∧
∧

ai∈A
ai → ¬fi[Vars(F )/Ii] (10)

Proposition 16. For every valuation π of A, π ∈ MW9↓A iff πA,F ∈ W9. Con-
sequently, |MW9↓A| = |W9|.

4.11 W10 - Enforced Evidence Models

Our final wrapper, W10, again builds on the variable valuations ρ1, . . . , ρn that
form an evidence of an MUS N of F . In the previous wrapper, W9, we have
exploited that none of the variable valuations can be a model of N . Here, we
express that none of the valuations can be easily modified to be a model of N .
In particular, if fi ∈ N , then by the definition of an evidence, ρi |= N \ {fi}.
Assume that we pick a literal l ∈ fi and turn ρi into a valuation ρ′

i by flipping
the assignment to l so that ρ′

i |= fi. Since N is an MUS (i.e., unsatisfiable), there
necessarily exists a clause fj ∈ N such that ρ′

i 	|= fj , i.e., fj forces ρi to satisfy
¬l and hence prevents from flipping ρi to a model ρ′

i of the whole N . Formally:
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Proposition 17. Let N be an MUS, fi ∈ N a clause of N , and ρi a model of
N \ {fi}. Then for every literal l ∈ fi, there exists a clause fj ∈ N such that
¬l ∈ fj and ρi 	|= fj \ {¬l}.

Similarly as in the case of W9, observe that Proposition 17 applies univer-
sally to every evidence of an MUS, however, since there can be exponentially
many such evidences, it is expensive to reason about all of them. Hence, in
the wrapper, we capture just an existence of such an evidence: W10 = {N ∈
W1 | ∃ρ1, . . . , ρn.∀1≤i≤n. ρi |= N \ {fi} and if fi ∈ N then ∀l∈fi

.∃fj∈N .¬l ∈ fj

and ρi 	|= fj \ {¬l}}. Equation 11 shows the corresponding encoding via W10:

W10 = W1 ∧
∧

ai∈A
ai →

∧

l∈fi

(
∨

fj∈{fj∈F | ¬l∈fj}
aj ∧ ¬(fj \ {¬l})[Vars(F )/Ii]) (11)

Proposition 18. For every valuation π of A, π ∈ MW10↓A iff πA,F ∈ W10.
Consequently, |MW10↓A| = |W10|.

4.12 Combining Wrappers and Their Remainders

In the previous sections, we have presented multiple wrappers, each of which
captures a different property of MUSes. In this section, we show that the indi-
vidual wrappers can be easily combined and, hence, form wrappers that provide
a more accurate description of the set MUSF .

Proposition 19. Let A be the set of activation variables, Wk and W l wrappers,
and Rk and Rl the remainders of Wk and W l. Furthermore, for every m ∈
{k, l}, let Wm and R

m be formulas such that:

– for every valuation π of A, π ∈ MWm↓A iff πA,F ∈ Wm, and
– for every valuation π of A, π ∈ MRm↓A iff πA,F ∈ Rm.

Then all the following hold:

1. Wk ∩ W l is a wrapper and Rk ∩ Rl is its reminder.
2. For every valuation π of A, π ∈ M(Wk∧Wl)↓A iff πA,F ∈ Wk ∩ W l. Conse-

quently, |M(Wk∧Wl)↓A| = |Wk ∩ W l|.
3. For every valuation π of A, π ∈ M(Rk∧Rl)↓A iff πA,F ∈ Rk∩Rl. Consequently,

|M(Rk∧Rl)↓A| = |Rk ∩ Rl|.
Note that although Proposition 19 discusses only a combination of two wrap-

pers, it can be applied repeatedly on already combined wrappers. Hence, we can
combine any subset of the wrappers W1, . . . ,W10 we proposed. Also, note that
all the formulas W2, . . . ,W10 subsume the formula W1, and hence if we com-
bine multiple wrappers, we duplicate some clauses. In our implementation, we
first remove all the duplicates and apply other straightforward model preserving
simplifications before we pass the encoding to a projected model counter.
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5 Experimental Evaluation

We have implemented our approach for counting MUSes in a python-based tool1,
using the projected model counter GANAK [59] to count the models of wrappers
and remainders, and also using several auxiliary tools as described above.

We presented 10 base wrappers W1, . . . ,W10 and shown how to combine
them. Since W1 is subsumed by all the wrappers W2, . . . ,W10, there are 29

combined wrappers. Due to the large number of the combinations, we were able
to evaluate only some of them. In particular, we evaluated the combination
W1∩· · ·∩W10, denoted as Wall, of all wrappers since it provides the most precise
description of MUSes. We also evaluated 6 wrappers that emerge from Wall by
excluding individual base wrappers or combinations of similar base wrappers,
and also the most basic wrapper W1. The table below shows the names and
definitions of the evaluated combinations:

name definition name definition
W1 W1 Wno6

⋂
i∈{2,3,4,5,7,8,9,10} Wi

Wno23
⋂

i∈{4,5,6,7,8,9,10} Wi Wn o7
⋂

i∈{2,3,4,5,6,8,9,10} Wi

Wno4
⋂

i∈{2,3,5,6,7,8,9,10} Wi Wno8910
⋂

i∈{2,3,4,5,6,7} Wi

Wno5
⋂

i∈{2,3,4,6,7,8,9,10} Wi Wall
⋂

i∈{2,...,10} Wi

We also evaluated two contemporary MUS enumerators, MARCO2 [39] and
UNIMUS3 [10]. Moreover, we evaluated the approximate MUS counter AMU-
SIC4 [13] using its default guarantees, i.e., the provided MUS count estimates
are within 1.8 multiplicative factor of the true count with 80% confidence.

Our benchmark suite consists of the 2553 instances previously employed in
the prior MUS and MSS literature, including those released by authors of AMU-
SIC [13]. The formulas contain from 78 to 1000 clauses and from 40 to 996
variables. The MUS count varies from 1 to 1.7 × 109 MUSes.

We focus on three comparison criteria: 1) the number of benchmarks solved
by the evaluated tools (i.e. benchmarks where the tools provided the MUS
count), 2) the scalability of the tools w.r.t. the number of MUSes in the bench-
marks, and 3) we examine the accuracy of our wrappers.

All experiments were run using a time limit of 3600 s per benchmark on a
Linux machine with AMD 16-Core Processor and 20 GB memory limit. When
using wrappers W4 and W7, we used a combined limit of 300 s (included in
the 3600 s) and 100000 MCSes for the MCS enumeration while building the
wrappers; if both wrappers were used, we run the MCS enumeration just once.
Finally, while constructing a combined wrapper of the form W∗ ∩ W5, we used
W∗ to compute the value maxMUS for creating W5.
1 https://github.com/jar-ben/exactMUSCounter.
2 https://sun.iwu.edu/∼mliffito/marco/.
3 https://github.com/jar-ben/unimus.
4 https://github.com/jar-ben/amusic.

https://github.com/jar-ben/exactMUSCounter
https://sun.iwu.edu/~mliffito/marco/
https://github.com/jar-ben/unimus
https://github.com/jar-ben/amusic
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Table 1. Number of solved benchmarks by individual tools.

Our Wrapper-Remainder Based Tools

AMUSIC UNIMUS MARCO W1 Wno23 Wno4 Wno6 Wno7 Wno8910 Wall Wno5

623 833 799 403 1475 1498 1486 1445 1058 1486 1500
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Fig. 2. The number of solved benchmarks in time.

5.1 Solved Benchmarks

In Table 1, we show the number of benchmarks that were solved by the individ-
ual evaluated tools. The worst performance was achieved by the basic wrapper
W1 (W1), which is not surprising since it does not provide a good descrip-
tion of MUSes. AMUSIC solved 623 benchmarks, whereas UNIMUS and MARCO
solved 833 and 799 benchmarks, respectively. Except for Wno8910 (and W1),
which solved only 1058 benchmarks, all the remaining combined wrappers solved
around 1450–1500 benchmarks and hence significantly dominated both AMUSIC
and the two MUS enumerators. Maybe surprisingly, Wall that combines all the
base wrappers ended up at the third position; the highest number (1500) of
solved benchmarks was achieved by Wno5, and the second-highest (1498) by
Wno4. Note that Wno5 and Wno4 exclude encoding of the minimum and max-
imum MUS cardinality via Boolean cardinality constraints. In general, solving
Boolean cardinality constraints is often quite hard, and hence even though a
presence of the two wrappers might provide a better description of MUSes, the
constraints increase the hardness of the generated instances.

Figure 2 compares the time needed to solve the benchmarks by a subset (for
a better clarity) of the evaluated tools. A point with coordinates [x, y] means
that x benchmarks were solved (by the corresponding tool) within the first y
seconds.

5.2 Scalability W.r.t the MUS Count

In Fig. 3, we compare the scalability of the evaluated tools w.r.t. the number of
MUSes in the benchmarks. In particular, a point with coordinates [x, y] denotes
that the corresponding tool solved y benchmarks that contained at most x
MUSes. For a better clarity, we compare only our best wrapper, Wno5, with
AMUSIC, MARCO, and UNIMUS. Note that whereas AMUSIC scales to instances
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Fig. 3. The number of solved w.r.t. the MUS count.

with 108 MUSes, the remaining three tools scale only to instances with at most
a million of MUSes. In fact, note that even though AMUSIC solved in overall just
623 benchmarks, there are 319 benchmarks that were solved only by AMUSIC.
Based on a closer examination of the results, we identified that AMUSIC scales
much better than the other tools w.r.t. the MUS count, however, it does not
scale so well w.r.t. the number of clauses in the input formula F . This is not
surprising since AMUSIC is just an approximate counter and as such, it needs
to explicitly identify only logarithmically many MUSes w.r.t. |F | even though
there can be up to O(2|F |) many MUSes. On the other hand, AMUSIC relies on
repeated calls to a 3-QBF solver whose efficiency highly depends on |F |.

5.3 Accuracy of Wrappers

Recall that a wrapper W over-approximates the set MUSF of all MUSes of F , i.e.,
W ⊇ MUSF (Definition 5), and hence we are interested in measuring the accuracy
of the over-approximations. In particular, given a wrapper W and its remainder
R constructed over a formula F , we measure the ratio |R|

|W| . The range of the
ratio is [0, 1); the closer to 0 the more accurate the wrapper is, and especially
when |R|

|W| = 0, the wrapper exactly captures the set MUSF (i.e., W = MUSF ).

We illustrate the ratio |R|
|W| achieved by individual wrappers in Fig. 4. A point

with coordinates [x, y] expresses that for x percent of benchmarks completed by
the corresponding tool, the ratio |R|

|W| was at most y. As expected, the ratio
achieved by the most basic wrapper W1 (W1) is very high for all the bench-
marks, i.e., the wrapper captures MUSF very inaccurately. On the other hand,
the other wrappers achieved for a vast majority of benchmarks a very low ratio,
i.e., they over-approximate MUSF very tightly. In fact, for 87% of benchmarks,
the wrappers Wno23, Wno4, Wno5, Wno6, and Wall, achieved the ratio 0, i.e.,
the wrappers exactly captured the set MUSF . In contrast, the wrappers Wno7
and Wno8910 achieved the ratio 0 for only 68 and 80% of benchmarks, which
suggest that the use of the corresponding wrappers, W7, W8, W9, and W10, is
vital for an accurate description of MUSF . Moreover, note that the accuracy of
the wrappers highly correlate with the number of solved benchmarks (Table 1),
since Wno7 and Wno8910 (and W1) were the least efficient wrappers.
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6 Future Possible Applications of Wrappers
and Remainders

Recall that a wrapper W over-approximates the set MUSF of all MUSes of F , i.e.,
W ⊇ MUSF (Definition 5). Moreover, in Sect. 5, we empirically witnessed that
the best of our wrappers usually over-approximate MUSF very tightly or they
even capture it exactly. Consequently, the propositional encodings W and R of
a wrapper W and its remainder R, respectively, can very precisely capture the
set MUSF . We strongly believe that such an accurate propositional description of
MUSF paves the way (and will be thoroughly examined in our future work) to
efficiently solve many other MUS related problems including, e.g., the following:

Approximate MUS Counting. Recall that |MUSF | = |W| − |R|. Assuming
that |R| is much smaller than |W| and observing that R ⊆ W, computing
|MR↓A| = |R| should be much faster than computing |MW↓A| = |W|. Hence, one
could first relatively quickly exactly compute the value |MR↓A|, and then use an
approximate model counter to find an estimate w′ of |MW↓A|. The MUS count
|MUSF | can be then approximated as w′ − |R|. The accuracy of the approxima-
tion depends on the approximation guarantees of the model counter (e.g. using
ApproxMC4 [18,60], we get the (ε, δ)-guarantees provided by AMUSIC).

MUS Enumeration. Assume a valuation π of the activation variables A and
the corresponding activated subset πA,F = {fi ∈ F |π(ai) = 1} of F . As shown in
Sect. 4, πA,F is an MUS iff π ∈ MW↓A and π 	∈ MR↓A. Hence, one can enumerate
MUSes by enumerating projected models of W and discarding those that are
also projected models of R.

MUS Sampling. To sample an MUS of F , one can iteratively sample an element
π of MW↓A until it identifies π such that π 	∈ MR↓A, i.e., πA,F is an MUS. Note
that while the past decade has witnessed significant progress in the development
of projected model sampling approaches [16,22,55] (with various distribution
guarantees), we are not aware of any existing MUS sampling technique (with
reasonable distribution guarantees).

Minimum and Maximum MUS Cardinality. As discussed in Sect. 4.6 (W5),
one can over-approximate the maximum MUS cardinality by finding a model
π ∈ MW↓A that maximizes the number of variables assigned 1. Similarly, one can
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under-approximate the minimum MUS cardinality by finding a model π ∈ MW↓A
that minimizes the number of variables assigned 1. Intuitively, the smaller |R|
is, the more precise approximations can be expected. Moreover, by checking if
π ∈ MR↓A, one can actually verify if πA,F is an MUS.

MUS Membership. The MUS membership problem is to decide if a clause
fi ∈ F belongs to an MUS of F and it is known to be ΣP

2 -complete [31,35,37].
Contemporary techniques for deciding the problem are mainly based on solving
2-QBF or 3-QBF encodings [13,31]. Our wrapper-based framework allows for an
alternative approach: to decide if a clause fi belongs to an MUS of F , one can
check if there exists a valuation π of A such that π(ai) = 1, π ∈ MW↓A, and
π 	∈ MR↓A. Note that when |R| = 0 or when |R| can be bounded by a constant,
this check boils down to a single call of a SAT solver.

7 Conclusion and Future Work

In this paper, we focused on the problem of MUS counting and proposed the first
exact MUS counter, called CountMUST, that does not rely on explicit MUS enu-
meration. The base idea is to reduce the problem of MUS counting to (two queries
of) projected model counting via the framework of wrappers and remainders. The
availability of scalable projected model counter, GANAK, allowed CountMUST
to scale much better and solve significantly more instances than other exist-
ing approaches. Moreover, as discussed in Sect. 6, the tightness of wrappers and
remainders opens up new potential applications ranging from approximating
counting, enumeration, membership, and the like.

We also revisit the complementary nature of CountMUST and AMUSIC with
respect to the size of instances and the MUS count. The complementary perfor-
mance opens up opportunities for a portfolio approach that can achieve the best
of both of the worlds. Finally, let us note that we are fighting here the chicken
and egg nature of the existence of practical applications and scalable algorith-
mic techniques for problems in automated reasoning. Often the lack of scalable
techniques leads to a lack of incentives for end-users to design reductions to
practical applications, and vice versa. Even though MUS counting has already
many applications in the diagnosis domain [25,29,48–50,65], we hope that the
availability of CountMUST will break this chicken and egg loop in other areas
and enable further investigations into MUS counting applications.
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Abstract. First-Order Linear Temporal Logic (FOLTL) is particularly
convenient to specify distributed systems, in particular because of the
unbounded aspect of their state space. We have recently exhibited novel
decidable fragments of FOLTL which pave the way for tractable verifi-
cation. However, these fragments are not expressive enough for realistic
specifications. In this paper, we propose three transformations to trans-
late a typical FOLTL specification into two of its decidable fragments.
All three transformations are proved sound (the associated propositions
are proved in Coq) and have a high degree of automation. To put these
techniques into practice, we propose a specification language relying on
FOLTL, as well as a prototype which performs the verification, relying
on existing model checkers. This approach allows us to successfully ver-
ify safety and liveness properties for various specifications of distributed
systems from the literature.

1 Introduction

Verifying properties of distributed protocols is a demanding endeavor. Several
approaches have been proposed, ranging from verification frameworks, like Iron-
Fleet [12] or Verdi [27] to tool-supported languages like TLA` [17], Event-B [1]
or Ivy [20,21]. However, when systems of arbitrary size are considered, verifying
properties usually requires some remarkable effort: inductive invariants must be
sought and exhibited (possibly with tool support), and some manual proof effort
may still be necessary. Worse, when liveness properties are checked, this effort
becomes very substantial and tool support is still quite limited.

A natural setting for specification, in particular for safety and liveness prop-
erties of infinite-state systems, is (mono- and many-sorted) first-order linear
temporal logic (FOLTL). However, it is highly undecidable [13,14]. In recent
work [23,24], some of the present authors devised the “Geneva” fragments of
FOLTL, which were shown to be decidable. More precisely, these fragments
c© The Author(s) 2021
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enjoy a “bounded domain property” (BDP), a form of computable finite model
property over the first-order domains. Decidability is obtained by expanding
first-order quantifiers over the domains (using the computed bounds) and then
relying on (decidable) propositional-LTL satisfiability checking.

The Geneva fragments are rather expressive but still have limitations that
thwart their use for the specification of systems. In particular, most forms of
fairness assumptions, as well as frame conditions (which specify what does not
change when a transition happens in a system), do not fit in the fragments.
Furthermore, topological properties of systems (such as ring topologies) are hard
or even impossible to specify.

In this article, we mitigate this deficiency by exhibiting three transformations
that allow to map an undecidable, expressive fragment of FOLTL∗“ (FOLTL with
equality and reflexive-transitive closure, to characterize topological properties)
into decidable fragments (akin to the Geneva ones), thus allowing the automatic
verification of safety and liveness properties of infinite-state systems. Then we
apply these techniques to the verification of properties of various protocols.

Notice that none of the proposed transformations is complete. It is actually
impossible to devise complete transformations, even assuming a procedure that
would be fed additional user input. This is because FOLTL is not even semi-
decidable.1

In more detail, we make the following contributions (cf. Fig. 1):

– we define an undecidable, expressive specification language, called Cervino,
the semantics of which is expressed in terms of FOLTL∗“;

– we exhibit two fragments of many-sorted FOLTL that enjoy the BDP;
– we devise three abstraction transformations that map (the semantics of)

Cervino into one of the said two fragments:
• the first of these transformations (called TEA) is fully automatic while

the other two (TTC and TFC) must be passed additional data (in the
shape of peculiar formulas);

• these three transformations, as well as other minor ones, are implemented
as tactics in a prototype tool [22];

• the associated theorems and lemmas are also formalized and proved cor-
rect, using Coq [22];

– we demonstrate our approach on several case studies that are often used as
benchmarks in the literature.

This article is organized as follows: in Sect. 2, we illustrate our approach using
an example (a leader election protocol). Section 3 introduces definitions as well
as the two fragments used in the rest of the paper. In Sect. 4, we present basic
techniques, which are used in some of our transformations. Then, in Sect. 5, we
formalize the automatic TEA transformation. Section 6 and 7 present, respec-
tively, the TFC and TTC transformations. In Sect. 8, we evaluate our approach
on various protocols. Finally, we compare our results with related work in Sect. 9.

1 Indeed, having such a transformation would give a procedure for semi-decidability
by testing all possible inputs on this transformation.
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Fig. 1. Summary of the contributions of this article

2 The Cervino Language

In this section, we present the Cervino modeling language informally. Its seman-
tics, given in terms of many-sorted FOLTL∗

“ (FOLTL with equality and reflexive-
transitive closure), is formally introduced in Sect. 3.3. This language is suitable
for specifying infinite-state systems. It is undecidable but we enforce some syntac-
tic constraints anyway, in order to ease the further application of transformations
mapping into decidable fragments of logic.

Cervino is illustrated in Fig. 2 using the example of a leader election proto-
col [6] in a ring of unbounded size. Nodes sit in a directed ring and each node
has a unique ID. There is a total order on IDs. The goal of the protocol is to
elect a leader (in practice, the one with the greatest ID). A node can send to its
successor in the ring the IDs it knows about, the receiver keeping those that are
greater than its own ID. A node is elected if it receives its own ID.

2.1 Sorts, Relations and Axioms

A Cervino specification may define sorts, (first-order) sorted relations and sorted
constants. An interpretation structure for such a specification is a set of infinite
traces of states. Classically, a state maps a sort to a non-empty set, a constant
to an element of such a set and a relation to a set of tuples, all respecting the
obvious sorting and arity constraints. The interpretation of sets and constants
is rigid while that of relations is flexible.

In the example, nodes and their IDs are conflated into a single sort Node; and:
an elected relation represents the set of elected nodes; a succ relation represents
if two nodes are successive in the ring topology; a toSend relation represents the
mailbox for each node; an lte relation defines a total ordering on nodes; an lmax
constant represents the highest maximal identifier among nodes.

States can be constrained by axioms, i.e. sets of formulas. The latter belong to
FOLTL∗

“, that is they can mix first-order logic (with equality) with the “always”
(G), “eventually” (F) and “next” (written as a prime symbol and only applied to
atoms), as well as a reflexive-transitive closure connective (written ∗). However,
we enforce a syntactic constraint on axioms: after converting them to negation
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Fig. 2. Specification of the leader election protocol (prettified syntax)

normal form (NNF), an existential quantifier cannot appear in the scope of a
universal quantifier or of a G connective (no @ . . . D . . ., no G . . . D . . .).

A binary relation r can by “tagged” (written using btw) to force r to be a
function2 and enable a special ternary relation btw[r]. Then, btw[r](x,y,z) means
that there is an acyclic path between x and z passing through y. The semantics
of btw[r] is given through axioms (see Definition 14) and is related to r∗ through
the following equivalence: r∗(x, y) ⇔ btw[r](x,y,y).

2.2 Events

Events specify how the system may evolve from one state to another. Events
(more precisely: event schemas) are declared with a name and a list of argu-
ments that are the only variables that can appear free in the body of the event.
2 @ x,y,z : s · r(x,y) ∧ r(x,z) ⇒ y “ z.
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The declaration of an event also features a modifies section describing which
tuples of which relations may be modified by the event. Other relations or parts
of relations are necessarily left unchanged. The body of an event is specified
in primed FO (FO augmented with primed relation symbols representing the
value of these relations in the next state) with the additional constraint that no
existential quantifier may appear positively in the body.

The semantics for events is standard and comparable to the one used in
TLA` or Electrum: in every state, at least one event is fired. In other words,
there is a valuation for arguments of at least one event such that the body of the
said event evaluates to true. More formally (and ignoring sorting constraints for
the sake of readability), given event bodies φ1, . . . , φn and arguments y1, . . . , ymi

appearing as free variables in φi, the semantics of event is given by the formula:

G(
n∨

i“1

Dy1, . . . ymi
· φi). We insist that this formula is only implicit: it cannot

be input by the specifier as it is the purpose of transformations to massage it.
Finally, if needed, fairness constraints must be added by the specifier .

In the example, the send event represents the fact that a node updates
its successor’s mailbox by adding all IDs that are larger than the successor’s
ID. This way, the largest ID is passed along the ring. Notice we use univer-
sal quantification: we could have defined dst and id as parameters of send, but
the implicit existential quantification, although theoretically acceptable, can be
costly performance-wise (as succ is a function, this is significant for the id argu-
ment only). We also specify that the event modifies the toSend relation for
specific pairs of a node and an identifier, only if these satisfy a condition saying
that the ID is in the sender’s mailbox (or corresponds to the sender’s ID) and if
the node is the sender’s successor (the body of the event says what happens in
that case).

2.3 Commands

A check declares a command to verify whether a property holds. To do so, a
command uses a certain tactic (TEA, TFC, TTC), as well as additional parameters
in the case of TFC and TTC (these are presented in Sect. 5 and 6, respectively).
The purpose of this article is precisely to present these transformations. We
notice that a command may also be associated with additional, specific axioms
in an assuming section (in the example, this section contains a fairness property,
necessary to prove the liveness property).

3 Background on FOLTL

3.1 Syntax and Semantics of FOLTL

The basic vocabulary of MSFOLTL (that we simply call FOLTL in the following)
is defined out of a signature Σ “ (S,Const ,R) where S is a set of sorts, Const
is the set of (sorted) constant symbols and R “ (R�s)�sPS‹) is a family of sets of
relation symbols, with R�s the set of relation symbols over tuples of sort �s.
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Definition 1 (Formulas). Given a signature Σ “ (S,Const ,R) and a set of
variables V, FOLTL“ formulas over Σ and V are defined inductively by the
following grammar:

ψ:: “ r(t1, . . . , tn) | t1 “ t2 | �ψ | ψ _ ψ | Xψ | Fψ | @x : s · ψ | Dx : s · ψ

where x P Vs, r P Rs1,...sn
and ti P Vsi

Y Constsi
for each i, with Vs (resp.

Consts) the set of variables (resp. constants) of sort s.

X and F stand for the “next” and “eventually” connectives. Usually FOLTL
includes the U connectives, however it is not required in this paper. We also
define “always” as Gψ “ �F(�ψ). Similarly, classical propositional connectives
∧, ⇒ and ⇔ are defined in the natural way. Additionally:

– We write ψ[x] for a formula ψ having x as a free variable.
– We write FV(φ) for the set of free variables of a formula, defined in the

obvious way. A formula φ is said to be closed if FV(φ) “ ∅.
– Classically, a formula is in negation normal form (NNF) if negations only

appear in front of relation symbols.
– If C is a subset of {X,F,G} then we denote by FOLTL“(C) (resp.
FOLTL(C)) the set of FOLTL“ formulas (resp. FOLTL formulas without
equality) in NNF containing only temporal operators from C.

– A formula l is called literal if l “ r(t1, . . . , tn) or l “ �r(t1, . . . , tn) where
x P V, r P Rn and ti P Const Y V for each i.

We now introduce the semantics of FOLTL“. In the interpretation struc-
tures defined below, the interpretation of relations varies over time while that
of function symbols does not.

Definition 2 (Interpretation Structure). Given a signature Σ “
(S,Const ,R), an (interpretation) structure M (over Σ) is a triple
((Ds)sPS , σ, ρ) where:

– D “ (Ds)sPS is a family of pairwise-disjoint nonempty sets and each Ds is
the domain of the sort s.

– σ maps each constant c P Consts to an domain element σ(c) P Ds.
– ρ maps any pair (i, r) P NˆRs1...sn

of instant and relation to the set ρ(i, r) ⊆
Ds1 ˆ . . . ˆ Dsn

of tuples satisfying r at instant i.

Definition 3 (Assignment). An assignment C in domains (Ds)sPS for vari-
ables in V is a map V → D. We write C[x �→ d] the assignment defined as
C[x �→ d](x) “ d and C[x �→ d](y) “ C(y) if y �“ x. The extension of C to terms,
also written C, is defined in the obvious way.

Definition 4 (Satisfaction). Given a structure M “ (D,σ, ρ) and an assign-
ment C, the satisfaction relation � is defined by induction on formulas, for
any i P N, as follows:

– M, i, C � t1 “ t2 iff C(t1) “ C(t2);
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– M, i, C � r(t1, . . . , tn) iff (C(t1), . . . , C(tn)) P ρi(r);
– M, i, C � �φ iff M, i, C � φ;
– M, i, C � φ1 _ φ2 iff M, i, C � φ1 or M, i, C � φ2;
– M, i, C � Xφ iff M, i ` 1, C � φ;
– M, i, C � Fφ iff there exists k P N s.t. M, i ` k, C � φ;
– M, i, C � Dy : s · φ iff there exists d P Ds s.t. M, i, C[y �→ d] � φ;
– M, i, C � @x : s · φ iff for every d P Ds, we have M, i, C[x �→ d] � φ.

Given a closed formula φ, we write M, k � φ if M, k, [] � φ, where [] is the empty
assignment. Then Mod(φ) denotes the set of structures M such that M, 0 � φ.

Definition 5 (Reflexive-Transitive Closure3). We write FOLTL∗
“ for the

enrichment of FOLTL“ with a reflexive-transitive closure connective. Then for
any sort s P S and any binary relation symbol r P Rs,s, the language of FOLTL∗

“
is augmented with a fresh binary relation symbol : r∗ P Rs,s, and we have:

M, i, C � r∗(t1, t2) iff M, i, C � t1 “ t2 or there exists n P N s.t. M, i, C �
Dx0, . . . , xn · t1 “ x0 ^ t2 “ xn ^ (

∧

0�i�n´1

r(xi, xi`1)).

Let φ, φ′ be two FOLTL∗
“ formulas. If for any structure M and any assign-

ment C, we have M, 0, C � φ iff M, 0, C � φ′ then we say that φ and φ′ are
logically equivalent, written φ ” φ′.

3.2 Bounded Domain Property

In this section we introduce the Bounded Domain Property (BDP) and present
two fragments of FOLTL that enjoy the BDP. These fragments play an important
role in the verification procedures presented in this article.

Definition 6 (Bounded Domain Property). A fragment Frag of FOLTL
enjoys the bounded domain property (BDP) if given φ P Frag, φ is not satis-
fiable, or there is a domain-finite structure M s.t. M, 0 � φ whose the domain
size is computable from φ. Additionally, BDP implies decidability.

We now present the two fragments that are used in this paper. Both fragments
are included in a larger fragment for which the BDP is established in [24].

Definition 7 (LTR fragment). A formula φ of FOLTL“ is said to belong to
the (multisorted) Linear-Temporal Reasoning (LTR) fragment if φ is in NNF and
existential quantifiers only appear in the head of φ.

Theorem 1 ([16,24]). Any formula φ P LTR (even with equality) enjoys the
BDP. The bound of verification for each sort is the sum of the numbers of exis-
tential quantifiers and constant symbols over this sort.

3 It is possible to fully axiomatize the transitive closure in pure FOLTL, however since
it does not fit into the scope of this paper such an axiomatization is not presented
here and we simply extends FOLTL with the classical definition of transitive closure.
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Definition 8. An FOLTL formula ψ is in FOLTL(D↑, @↓) if ψ “ Dy1 : s1 . . . yn :
sn ·θ[y1, . . . , yn], where θ has the following syntax: θ:: “ 	 | α | θ _θ | θ ^θ | Xθ |
Gθ | Fθ, where α is an FO formula in NNF without any existential quantifier
and 	 is a literal.

Definition 9. FOLTL(X,F, @↓) is defined by the following grammar: φ:: “ 	 |
α | φ _ φ | φ ^ φ | Xφ | Fφ | Dy : s · φ, with α an FO formula in NNF without
any existential quantifier, 	 a literal and y P V.

Definition 10 (Geneva fragment). The Geneva fragment of FOLTL consists
of formulas ψ ^ G(φ) s.t. φ is a closed formula of FOLTL(X,F, @↓) and ψ is a
closed formula of FOLTL(D↑, @↓).
Definition 11. Given a formula φ P FOLTL(X,F) in NNF, we define its stride
Kφ as the maximal number of nested X connectives. Formally :

K� “ KFφ “ 0 (if 	 is a literal) KXφ “ Kφ ` 1
K@x·φ “ KDx·φ “ Kφ Kφ1^φ2 “ Kφ1_φ2 “ max(Kφ1 ,Kφ2)

Theorem 2 ([24]). The Geneva fragment enjoys the FDP. If ψ ^ G(φ) is a
satisfiable formula in this fragment, for each sort s the (exact) bound on the
domain size is: |Consts| ` (Kφ ` 1) ˆ |Vs|.

3.3 Semantics of Cervino

In this section, we define the semantics of a Cervino machine as an FOLTL∗
“

formula. Notice first that, in Cervino, the next instant is referred using the prime
symbol, applied to relations only: this translates to an FOLTL sub-formula using
the X connective, after application of the semantics.

Now, a frame condition is defined as a formula that specifies that a certain
relation will not change (between the instant before and after the event occuring)
for tuples satisfying some constraints.

Definition 12 (Frame condition). We define a frame condition as a formula
expressing that, under some hypotheses, a certain relation does not change along
a transition. Given the the tuple (r, �x, ψ) where r P R�s , �x P V |�s| , ψ is a Boolean
formula, where variables in �x may appear free, we define the frame condition
unchanged[r, �x, ψ] as the formula @�x : �s · ψ ⇒ (r(�x) ⇔ Xr(�x)).

Definition 13 (Semantics of an event). Let ev be an event of a Cervino
machine declared as follows: event ev[�y : �s] modif {τ}, with modif = modifies
q1 at {(�x1) · ψ1}, . . . , qj at {(�xj) · ψj}, where the free variables in each ψk are
included in �xk, �y. Its semantics is defined as [[ev]] “ D�y : �s · (τ ^ [[modif]]), where

[[modif]] “ (
∧

rPR\{q1,...,qj}
unchanged[r, �x, J]) ^ (

∧

1≤k≤j

unchanged[qk, �xk,¬ψk])

where each list �x of variables have sorts corresponding to the profile of r.
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For any binary relation r that enables btw [r], the ternary relation btw [r]
stating that there exists an acyclic path between two elements passing through
a third element is axiomatized in FO following [18].

Definition 14 (Semantics of between). Given a binary relation symbol r,
the semantics of btw[r] is given by adding axioms of transitivity, antisymmetry,
partial totality, partial reflexivity, cycle maximality, transitivity of reachability,
path consistency, taken from [18] in addition to the following axiom:

@x, y : s ·
[
r(x, y) ⇔

(
btw[r](x, y, y) ^ (@z : s · btw[r](x, z, z) ⇒ btw[r](x, y, z))

)]
(S)

The property (TC) relating btw[r] and r∗ can be deduced from the axioms pro-
vided that the domain of s is finite.

@x, y : s · [
btw[r](x, y, y) ⇔ r∗(x, y)

]
(TC)

Then, calling btw the conjunction of all between axioms, [[btw[r]]] “ Gbtw.

Definition 15 (Semantics of Cervino). Let Mch be a Cervino machine with
axioms ψ1, . . . , ψn, events ev1, . . . , evm and such that the relations enabling btw
are r1, . . . , rl. Then its semantics is given by the following FOLTL∗ formula:

[[Mch]] “ φ0 ^ (Gφtr) ^ φbtw

where φ0 “
n∧

i“1

ψi, φtr “
m∨

i“1

[[evi]] and φbtw “ ∧

1�i�l

[[btw[ri]]]

The semantics of a Cervino machine is then an FOLTL∗
“ formula describing

the set of its traces. But, since we aim at verifying systems, we are not only
interested in the set of traces but also in the set of counterexamples of a property.
This set is also described by an FOLTL∗

“ formula which is the conjunction of
the semantics of the machine and the negation of the property we aim to check.

Definition 16 (Counterexamples). If Mch is a Cervino machine and φ is
an FOLTL∗

“ formula. Then we define [[Mch]]φ “ [[Mch]] ^ [[�φ]]

4 Basic Transformations

In this section, we present basic transformations used to build the more complex
TFC and TTC tactics (respectively presented in Sect. 6 and 7). These transfor-
mations are used to map (the semantics of) a system specification into a more
general Geneva formula.

4.1 Transforming Equality

Equality is replaced4 by a dynamic congruence relation ”s, for every sort s. The
signature is therefore extended with these fresh ”s relations.
4 In practice, we ensure that the semantics of the modifies section, which uses equality,

is also affected by this transformation.



346 Q. Peyras et al.

Definition 17 (Equality transformation). Given a fresh binary relation ”s

for every sort s of a formula, the transformation of equality is defined recursively:

– Abs“(t1 “ t2) “ t1 ”s t2 if the sort of t1 (and necessarily of t2) is s
– Abs“(	) “ 	
– (the rest is just a recursive walk on formulas)

Furthermore, the following set Eq” of axioms is added to the whole specification:

– for any sort s: G@x : s · x ”s x
– for any sort s: G@x : s, y : s · x ”s y ⇒ y ”s x
– for any sort s: G@x : s, y : s, z : s · x ”s y ^ y ”s z ⇒ x ”s z
– for any relation r and adequate sorts �s conforming to the profile of r:

G@�x : �s, �y : �s · (x1 ”s1 y1 ^ . . . ^ xn ”sn
yn) ⇒ (r(�x) ⇔ r(�y))

Lemma 1. Given an FOLTL“ formula φ, if φ is satisfiable then Abs“(φ) is
satisfiable (and does contain “ anymore).

Proof. Proof validated in Coq. It is easy to see that equality is a particular case
of the equivalence relation introduced by this transformation. ��

4.2 Restricted Skolemization

The following transformation corresponds to a form of Skolemization meant to
create only new constants symbols. Its main purpose is to introduce constants
that can then be used by instantiation (Sect. 4.3). Existentially-quantified vari-
ables can be substituted by fresh constants, except when under a G connective.

Definition 18 (Skolemization). Skolemization is defined by the following
operation (all fresh constant symbols are added to the signature):

– AbsD(t1 “ t2) “ t1 “ t2 and AbsD(	) “ 	
– AbsD(Gφ) “ Gφ
– AbsD(@x : s · φ) “ @x : s · φ
– AbsD(Dy : s · φ) “ AbsD(φ[y �→ c]) where c is a fresh constant symbol
– (the rest is just a recursive walk on formulas)

Lemma 2. Given an FOLTL“ formula φ, then AbsD(φ) and φ are equisatisfi-
able.

Proof. Proof validated in Coq. Corresponds to a usual Skolemization
procedure. ��

4.3 Instantiation

One of the main limitations of the Geneva fragment is the prohibition of temporal
operators under universal quantifiers. The solution we propose to this problem
is to finitely instantiate such universal quantifiers. The following transformation
formalizes this idea: all universal quantifiers over temporal formulas are replaced
by a conjunction over the set of constants and existentially-bound variables.
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Definition 19 (Forall instantiation). Given a set I of constant and variable
symbols, we define the transformation of universal quantifiers as follows:

– Abs@,I(t1 “ t2) “ t1 “ t2 and Abs@,I(	) “ 	
– Abs@,I(Dy : s · φ) “ Dy : s · Abs@,IY{y}(φ)
– if φ P FO (φ does not contain temporal connectives) then Abs@,I(@x : s · φ) “

@x : s · φ, otherwise Abs@,I(@x : s · φ) “ ∧

cPIs

Abs@,I(φ[x �→ c]) (where Is is the

set of terms in I of sort s)
– (the rest is just a recursive walk on formulas)

Remark 1. There is no need to transform a universal quantifier if all temporal
operators in its scope permute with it, for instance: @x · GP is equivalent to
G(@x · P ) and @x · (XP ) ⇒ (XQ) is equivalent to X(@x · P ⇒ Q).

Lemma 3. Given an FOLTL“ formula φ, if φ is satisfiable and I ⊆ Const then
Abs@,I(φ) is satisfiable.

Proof. Proof validated in Coq. This operation consists in instantiating universal
operators, thus preserving satisfiability. ��

4.4 Addressing Transitive Closure and the Between Relation

Since we target fragments of FOLTL (without transitive closure), we define the
transformation Abs∗(), which leaves a formula unchanged except it uninterprets
the operator ∗, i.e., Abs∗(φ) returns φ where every occurrence of r∗ is considered
as a new relation symbol, unrelated with r.

Besides, the between relation axioms does not fit into Geneva or LTR, so we
define their abstract semantics as follows.

Definition 20 (Transformation of between axioms). Given a binary rela-
tion symbol r, we define �btw[r]� “ Gbtw where btw is the conjunction of the
axioms from Definition 14, except that

– the axiom S is replaced by the axiom (AS) (in order to prevent existential
quantifier in the scope of a universal one)

– and the property (TC) relating r∗ and btw[r] is now considered as an axiom
(since r∗ has no semantics in the targeted FOLTL fragments)

@x, y : s ·
[
r(x, y) ⇒

(
btw[r](x, y, y) ^ (@z : s · btw[r](x, z, z) ⇒ btw[r](x, y, z))

)]
(AS)

@x, y : s · [
btw[r](x, y, y) ⇔ r∗(x, y)

]
(TC)

4.5 Geneva Transformation

The basic transformations introduced above are mainly used together, in a spe-
cific order.
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Definition 21 (Geneva Transformation). We define:

AbsGen(φ) “ Abs∗(Abs@,Const(AbsD(Eq” ^ Abs“(φ))))

Theorem 3. Given ψ P FOLTL�y1(@) and φ P FOLTL�y1Y�y2(X,F, @) then
AbsGen(D�y1 : �s1 · (ψ ^ G(D�y2 : �s2 · φ))) belongs to the Geneva fragment.

Proof. Recall the conditions to belong to Geneva: (1) no G operator in the
scope of an existential quantifier that is itself under an G connective; (2) no
existential quantifier in the scope of a universal quantifier; (3) no equality;
(4) no temporal quantifier in the scope of universal quantifiers; and (5) no
transitive closure. Given ψ, φ satisfying the given hypotheses, let us write
α “ D�y1 : �s1 · (ψ ^ G(D�y2 : �s2 · φ)). Then, in α, existential quantifiers appear
either at the head of the formula or under an G operator over the φ formula.
Since φ contains no other temporal connectives than X and F, condition (1) is
met. Condition (2) is met as all existential quantifiers appear before universal
quantifiers. Abs“(.) ensures that equality is not used in the final formula, thus
ensuring condition (3). Abs@,Const(.) instantiates all universal quantifiers that
contain temporal connectives in their scope (we assume that if such operator
could have been swapped with an universal quantifier, it has been done before-
hand), which ensures condition (4). Finally Abs∗(.) erases the reflexive transitive
closure, ensuring condition (5). Since it is obvious that none of the transforma-
tions can introduce formulas breaking any of the conditions, we conclude that
AbsGen(α) belongs to Geneva. ��

5 TEA: Transforming Existential Quantifiers

We now present the fully-automatic TEA transformation. It starts with the
observation that the formula specifying events (see Definition 13) is of the shape
GD�x · ∨i evi(�x), that is, in every state, at least an event is fired. The gist of the
TEA transformation is then twofold: (1) we replace these existential quantifiers
by universal ones; (2) for every such existential quantifier, we add a fresh relation
E, which holds only for the constant semantically associated to this quantifier.

The whole resulting abstract specification lies in the LTR fragment, which
enjoys the BDP (Theorem 1). The formula specifying events is however more
general than the original one, because it allows more transitions to happen. The
abstract system may thus violate a property holding on the original specification.
But it is now decidable to check whether the property holds in the abstract
system and, if so, this entails that it also holds in the original system.

Before presenting the transformation, notice that, in the following, we con-
sider event formulas, that is primed FO“ formulas of the shape φ “ Dy1 :
sy1 , . . . , yn : syn

· @x1 : sx1 , . . . , xm : sxm
· ψ, where ψ is in NNF and does not

contain any first-order quantifiers. These formulas naturally arise when putting
the semantics of events in prenex normal form. We also suppose we have a supply
of fresh relation symbols, written Ei (one for every yi, 1 � i � n).
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To devise the transformation and prove its soundness, we first introduce a
formula specifying that the E relations are functional. This schema appears in
the final abstract specification.

Definition 22 (Functional E relations). Given an event formula φ “ Dy1 :
sy1 , . . . , yn : syn

· @x1 : sx1 , . . . , xm : sxm
· ψ, we define the functional formula

based on φ as: AxE(φ) “ G
( n∧

i“1

@z1, z2 : syi
· (Ei(z1) ^ Ei(z2)) ⇒ z1 “ z2

)

where E1, . . . , En are fresh unary relation symbols.

As we introduce these E relations, we also define an enrichment of the event
formula accounting for the extended signature. This new formula appears as a
link between the two lemmas entailing soundness.

Definition 23 (Enriched event formula). Given an event formula φ “ Dy1 :
sy1 , . . . , yn : syn

·@x1 : sx1 , . . . , xm : sxm
·ψ, we define the enriched event formula

based on φ as:

φ “ AxE(φ) ^
[
Dy1 : sy1 , . . . , yn : syn

·
( n∧

i“1

Ei(yi) ^ @x1 : sx1 , . . . , xm : sxm
· ψ

)]

where E1, . . . , En are fresh unary relation symbols.

We now present the essential part of the transformation, transforming an
event formula φ into a purely universal one U�φ�, more general than φ. In other
words, U�φ� allows more transitions than φ if we ignore the specification of
E1, . . . En. To do that, for any variable y whose corresponding fresh relation is
E, we proceed with the following steps. First: equality between y and another
variable is replaced with the relation E applied to the latter; and any other literal
	 containing y is replaced by E(y) ⇒ 	. Once these transformation are done, it is
possible to replace existential quantification over y by a universal quantification.

Definition 24 (Transformation). Given an event formula φ of shape Dy1 :
sy1 , . . . , yn : syn

·@x1 : sx1 , . . . , xm : sxm
·ψ, we define the (TEA) transformation

function on φ as:

U�φ� “ @y1 : sy1 , . . . , yn : syn
· U�y�@x1 : sx1 , . . . , xm : sxm

· ψ�

where �y “ {y1, . . . , yn} and where E1, . . . , En are fresh relation symbols (one for
every y P �y); with U�y�ψ� defined recursively as follows:

– U�y�yi “ yj� “ (Ei(yi) ⇒ Ej(yi)) ^ (Ej(yj) ⇒ Ei(yj)) “ (�Ei(yi) _ Ej(yi)) ^
(�Ej(yj) _ Ei(yj))

– U�y�yi �“ yj� “ (Ei(yi) ⇒ �Ej(yi)) ^ (Ej(yj) ⇒ �Ei(yj)) “ (�Ei(yi) _
�Ej(yi)) ^ (�Ej(yj) _ �Ei(yj))

– U�y�yi “ d� “ U�y�d “ yi� “ Ei(d) where d �P �y (d is either a constant or a
variable in �x)

– U�y�yi �“ d� “ U�y�d �“ yi� “ �Ei(d) where d �P �y (d is either a constant or a
variable in �x)
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– U�y�	� “ (
i∧

k“1

Eak
(yak

)) ⇒ 	 “ (
i∨

k“1

�Eak
(yak

)) _ 	 where 	 is a (possibly

primed) literal and {ya1 , . . . yai
} “ FV(	) X �y

– (the rest is just a recursive walk on formulas)

Example 1. Consider the following event formula, stating that there is an event
making R true in the next state for a variable y (other variables remain
unchanged w.r.t. R): φ “ Dy : A · R′(y) ^ (@x : A · x �“ y ⇒ (R(x) ⇔ R′(x)))
that is, in prenex form: Dy : A · @x : A · R′(y) ^ (x “ y _ (�R(x) ∧ �R′(x)) _
(R(x) ∧ R′(x))). Then there is only one fresh E relation, and U�φ� is:

@y, x : A · (�E(y) ∨ R′(y)) ∧ (
E(x) ∨ (�R(x) ∧ �R′(x)) _ (R(x) ∧ R′(x))

)

Now, the following lemma states that every model of the enriched event
formula is also a model for the transformed event formula.

Lemma 4. Given an event formula φ “ Dy1 : sy1 , . . . , yn : syn
· @x1 :

sx1 , . . . , xm : sxm
· ψ, we have φ � U�y�φ�.

Proof. Proof validated in Coq.

Lemma 5 applies to a formula representing a whole specification: if such a
specification is satisfiable, then a certain transformed version of it is satisfiable
too.

Lemma 5. Let θ be an FOLTL“ formula, and φ be an event formula on the
same signature. Then if θ ^ Gφ is satisfiable, θ ^ G(U�y�φ�) ^ AxE(φ) is also
satisfiable.

Proof. Proof validated in Coq.

Definition 25 (Abstract semantics). Given a Cervino machine Mch such
that the relations enabling btw are r1, . . . , rl, we define U�Mch� “ φ0 ^
GU�φtr� ^ φbtw, where φ0 and φtr are defined as in Definition 15 and
φbtw “ ∧

1�i�l

�btw[rl]�. Also, given an FOLTL“ formula φ, we define Uφ�Mch� “
Abs∗(U�Mch� ∧ �φ).

Theorem 4 (Soundness). If [[Mch]]φ is satisfiable, then Uφ�Mch� is also sat-
isfiable.

Proof. This is a direct application of Lemma 5.

Theorem 5. Given a Cervino machine Mch such that φ0 and φtr are defined
as in Definition 15, if φ0, φ P LTR then Uφ�Mch� P LTR.

Proof. Directly follows from the definition of U�.�.
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6 TFC: Transforming Frame Conditions

The TEA transformation has the advantage of being fully automatic but it
can be inconclusive in a number of cases. For instance, the verification of a
distributed system involving strong interactions between its components, which
induces events with two or more parameters, is likely to be inconclusive using
TEA. This is because the universal quantifiers that are introduced by TEA are
abstracting these interactions (which are naturally expressed with existential
quantifiers) in a too drastic way.

In this section, we present another transformation, called TFC, which over-
comes these limitations but requires some intervention from the specifier.

Instead of targeting the LTR fragment, we now target the Geneva one, which
allows for existential quantifiers in the scope of G, but forbids temporal formulas
in the scope of a universal quantifier. As a consequence, frame conditions, which
are typically of shape @x : s · ϕcond ⇒ (r(x) ⇔ Xr(x)), are not expressible in
Geneva. In order to fit into it, such universal quantifiers are instantiated over
constants (see Abs@,Const(·) defined in Sect. 4.3). But then a large part of the
information included in the frame conditions is lost. Therefore, we associate
some particular kind of invariant properties, called stability axioms, with each
event, as a finer transformation of frame conditions. Intuitively, a stability axiom
is a pure FO formula that is preserved by an event. Since it is expressed in pure
FO, the preservation of a stability axiom is then expressible in Geneva.

Definition 26 (Stability Axiom). Given a set of frame conditions C, an FO
formula φ is a stability axiom for C if C � φ ⇒ Xφ.

StC denotes the set of stability axioms for C.

The specification of stability axioms is a creative step, but it can be eased with
the help of a syntactic condition, which is sufficient to be a stability axiom. The
idea is that a formula of the following shape is necessarily a stability axiom:
ϕhyp ⇒ ϕ, were ϕhyp corresponds to the guard of a frame condition that leaves
a relation r unchanged, and ϕ only refers to the relation r.

Example 2. In order to illustrate the use of stability axioms, let us consider the
leader election distributed system, introduced in Sect. 2. Since TEA does not
succeed in proving the safety property, we can try TFC with the following sta-
bility axiom for event send:

@ x,y : Node · !succ(src,x) ⇒ (!toSend(x, y) ∨ (x �“ lmax ∧ btw[succ](x, lmax, y)))

This axiom expresses that if a node x different from the successor of src has
an ID y in its mailbox, then the node with the greatest ID is located between x
and y (recall that a node and its ID are conflated). This means that outside the
scope of the event, an ID cannot jump over the node with the greatest identifier.

Exhibiting this stability axiom requires some work. It would also be possible
to proceed using an inductive invariant but, since the property to check is not
inductive, doing so would also require some effort.
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Example 3. In order to illustrate the difference between stability axioms and
inductive invariants, we take a toy token protocol as an example. For the sake
of simplicity, we consider a property to check that is already inductive. The
protocol features one token passing from nodes to nodes with only one send event
send(x,y), with body: token(x) ∧ !token’(x) ∧ token’(y) ∧ frame, where frame :=
@ z · (z �“ x ∧ z �“ y) ⇒ (token(z) ⇔ token’(z)).

The (inductive) property to check is that there is always at most one node
holding the token. To prove this property without relying on its inductiveness, we
can use the following stability axiom: stab := @ z · (z �“ x ∧ z �“ y) ⇒ !token(z).
Contrary to the inductive invariant, the stability axiom has free variables match-
ing the parameters of the event (which are implicitly quantified existentially).
Also the preservation of the stability axiom follows from the frame condition as
frame � stab ⇒ Xstab, while the preservation of the inductive invariant follows
from the whole transition.

Remark 2. Notice that this property is also true for the nodes that are in the
scope of the event, i.e., src and its successor. So in this case, the stability axiom
is very close to an invariant property. But this is not the case in general. A
distinguishing aspect is that TFC with this stability axiom succeeds in proving
the safety property, whereas it would not be possible to deduce it from the
“invariant” version of this stability axiom.

The TFC transformation is performed in two phases:

1. Stability axioms, which are provided by the specifier, are added to the body
of each event. At this step, the semantics of Cervino is strengthened by the
transformation. The obtained formula is not in the Geneva fragment, in par-
ticular because of the frame conditions.

2. The Geneva transformation, which is presented in Sect. 4, is applied. In par-
ticular, the frame conditions are abstracted by equality transformation and
instantiation, but the stability axioms are left unchanged.

Definition 27 (Event enrichment with a stability axiom). Let ev be an
event of a Cervino machine declared as: event ev[�y : �s] modif{τ} and C be the
frame condition of ev, C “ [[modif]]. Given a stability axiom I for C, we define
the enrichment ρ�ev, I� of ev with I as: ρ�ev, I� “ D�y : �s · τ ^ C ^ (I ⇒ XI).
Definition 28 (Cervino machine enrichment with stability axioms).
Let Mch be a Cervino machine with axioms ψ1, . . . , ψn, events ev1, . . . , evm

declared as event evi [�y1 : �s1 ] modif {τi} for each i P 1..m and such that the
relations enabling btw are r1, . . . , rl. Let sta be a function mapping each event
to a stability axiom for the according frame condition. Using the same notation
as Definition 27, we define the stability axiom enrichment ρ�Mch, sta� of Mch as
ρ�Mch, sta� “ φ0 ^ Gφtr ^ φbtw

where φ0 “
n∧

i“1

ψi, φtr “
m∨

i“1

ρ�evi, sta(evi)� and φbtw “ ∧

1�i�l

�btw[rl]�.
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Definition 29 (Abstract semantics). Given a Cervino machine Mch and a
function sta, mapping each event to a stability axiom, we define the stability
axiom semantics as F�Mch�φ “ AbsGen(ρ�Mch, sta� ^ �φ)

Theorem 6 (Soundness). If [[Mch]]φ is satisfiable then F�Mch�φ is satisfiable.

Proof. Follows from Lemmas 1, 2 and 3.

Theorem 7. If �φ P LTR then F�Mch�φ P Geneva.

Proof. Follows from Theorem 3.

7 TTC: Transforming Reflexive-Transitive Closure

We now present a simple, effective transformation technique to approximate
reflexive-transitive closure (which is present in Cervino and its FOLTL∗

“ seman-
tics). This technique has shown to be useful to prove some liveness properties.

As is well known, transitive closure cannot be fully specified in pure FO. On
the other hand, it can be specified in pure FOLTL, but the axiomatization we
are aware of does not fit in the fragments considered here. However, it is possible
to define an interesting approximation that does fit in the Geneva fragment.

Informally, the crux of our technique relies on the following observation:
any property propagating along a binary relation will eventually propagate to
the reflexive-transitive closure thereof. This is proved (see Theorem 8 below) by
following the definitions of the transitive closure and of the eventually connective.

Definition 30 (Propagation schema). Given binary relations r and t on a
sort s, given a formula P with k ` 1 free variables (k � 0), the first of which
(of sort s) is distinguished in the following. Given k variables �x of appropriate
typing, we define the propagation and closure schemas as follows:

Propagates[r, P, �x] “ @u, v : s · r(u, v) ⇒ G (P [u, �x] ⇒ FP [v, �x])
Closure[r, t, P, �x] “ Propagates[r, P, �x] ⇒ Propagates[t, P, �x] .

Theorem 8 (Propagation). Given a binary relations r on a sort s, the follow-
ing property over its reflexive-transitive r‹ closure is valid: Closure[r, r‹, P, �x].

Proof. Proof validated in Coq.
The proof sketch is the following : we consider the set of element to which the

property eventually propagates. Then we use the hypothesis that the property
propagates along a binary relation r to show that this set is closed under the
relation r. Then as the transitive closure from some element is the smallest set
closed under the relation r, we know that the property propagates to any element
in the transitive closure.

We prove that under the Propagates[r, P, �x] hypothesis, for any u, the set
of v’s satisfying G (P [u, �x] ⇒ FP [v, �x]) is included in the set of v’s that are
reachable from u along r. Let M be a structure and C an assignment s.t. M, C �
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Propagates[r, P, �x]. We assume that there is an instant i such that P [u, �x] holds
(otherwise the satisfaction of the axiom is trivial). Then M, i, C � FP [u, �x]. Also,
given v s.t. M, i, C � FP [v, �x], there exists k � i s.t. M, k, C � P [v, �x]. For any
v′ s.t. M, 0, C � r(v, v′) Propagates[r, P, �x] implies M, k, C � FP [v′, �x]. Thus
M, i, C � P [v′, �x]. Then M, 0, C � r‹(u, v) implies M, i, C � FP [v, �x]. Hence
Closure[r, r‹, P, �x] is valid. ��

Given this theorem, the technique we propose consists in replacing the reflexi-
ve-transitive closure of a relation (which fits in Cervino and FOLTL∗

“) by an unin-
terpreted relation satisfying the closure schema shown above, for some property
P that depends on the sort of the considered binary relation as well as, possibly,
other arguments. Remark that finding such a property P requires creativity: the
specifier must come up with a relevant propagating property.

Example 4. In the case of the leader election example, we use TTC to check that
a leader will be elected at some point. The property we use is propagation along
succ of having a given ID in one’s mailbox (Propagates[succ, toSend , id ]).

Definition 31 (Abstract semantics). Let Mch be a Cervino machine, such
that rj1 , . . . , rjl are binary relations enabling btw, and rk1 , . . . , rkm

are binary
relations whose reflexive-transitive closure is used in Mch. Now, given formulas
P1, . . . , P�, where for every 1 � i � m, FV(Pi) “ {x, x1, . . . , xni

} (with x the
distinguished free variable), we define the transitive closure transformation as:

T�Mch� “ φ0^Gφtr ^ φbtw

∧ (
∧

1�i�m

∧

(c1,...cni
)PConstni

Closure[rki
, r∗

ki
, Pi, (c1, . . . cni

)])

where φ0 and φtr are defined as in Definition 15 and φbtw “ ∧

1�i�l

�btw[rji ]�.

We also define T�Mch�φ “ AbsGen(T�Mch� ^ �φ) (notice that, due to the
application of the Geneva transformation, the r∗

i relations become uninterpreted).

Theorem 9 (Soundness). If [[Mch]]φ is satisfiable then T�Mch�φ is satisfiable.

Proof. Follows directly from Theorem 8 and Lemmas 1, 2 and 3.

Theorem 10. If �φ P LTR then T�Mch�φ P Geneva.

Proof. Follows from Theorem 3.

8 Evaluation

To evaluate the relevance of our three tactics, we applied them to several mod-
els of distributed protocols. Our research questions were (1) to check that our
methods were applicable to real models; (2) to check whether our approach was
efficient enough; and (3) to assess the effort for the specifier to come up with
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Fig. 3. All verifications take less than 20 s (“effort”: estimation of user effort with the
number of atoms (literals and equality tests) used in the TTC or TFC parameters).

parameters for TFC and TTC. Our strategy was always first to apply the TEA
tactic. If TEA failed, then in the case of safety properties, we devised stability
axioms in order to apply TFC. Otherwise, for liveness properties and for systems
relying on transitive closure, we relied on TTC.

The Cervino prototype takes a Cervino specification as input and gener-
ates Electrum models which are then fed to the Electrum Analyzer [4], which
itself calls a complete procedure in nuXmv [5]. On a general note, efficiency
can be compromised in the case of the TTC and TFC tactics due to larger
inferred bounds than for TEA. Furthermore, the size of LTL formulas generated
by Electrum for nuXmv grows quickly as the tool merely unfolds quantifiers
into conjunction and disjunctions, depending on the bounds. For this reason,
we leveraged some properties of the Geneva fragment to end up with smaller
models: (1) the size of each domain is an exact bound rather than just an upper
one; (2) all constants are distinct; (3) existential quantifiers can be unfolded on
a limited part of the domain. This is the case because the proof of the BDP for
the Geneva fragment [24] shows that, if there is a model of a Geneva formula,
there is a model satisfying these properties. The specifications we evaluated are
of moderate complexity but are not just toy models:

TLB shootdown The TLB Shootdown algorithm [3] is part of the Mach operat-
ing system. Processors keep a cache of page tables in a Translation Look-aside
Buffer (TLB). The safety property we prove is that whenever the protocol
ensures that the page table is updated, the corresponding update will be
flushed by either the initiator or the responder.

Dining philosophers This classic protocol features an unbounded number of
philosophers sharing forks. We prove a mutual exclusion property, that is that
a fork cannot be simultaneously held by two different philosophers.
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Lock server We present a simple lock server protocol studied in Verdi [27] and
Ivy [21]. The protocol features a single server and an unbounded number
of clients willing to hold a lock. The safety property we verify is that two
different clients cannot simultaneously hold the lock.

Gset and 2Pset Conflict-free Replicated Data Types (CRDTs) are a family
of concurrent protocols where a data structure is replicated in a network
and where the replicas can be independently and concurrently updated. We
model the Grow-only Set (G-Set) [26] and the 2-Phase Set [26] CRDTs. In
both cases, we prove that any update is eventually delivered to all replicas.

Leader election The leader election protocol, presented in Sect. 2, is inspired
by [6]. We notice however that a node sends all the contents of its mailbox at
once, which is a strong simplification.

Token ring Token Ring is a classic protocol where a token is passed through
nodes with mailboxes in a ring. We prove a safety and a liveness property.
In the first case, we use the TFC tactic with 2 stability axioms, one for
each event, which basically state that if there is no token apart from the one
transferred, then no token can appear on unmodified nodes during the event.
The TTC parameter says that the property of holding the token is the one
that should propagate, under strong fairness.

FIFO This protocol is a simple mutual exclusion protocol based on a FIFO
strategy. We prove a liveness property using TTC, stating that for any integer
i, being in the i-th position of the list is a propagating property.

Our conclusion to these case studies is the following (Fig. 3). First the
TEA tactic is only efficient for models involving few interactions, which can be
attributed to the loss of precision when using universal quantifiers. Regarding
TFC, the effort required to find stability axioms seems to be similar to finding
an inductive invariant. For TTC, all propagating properties were very simple.
Finally, we noticed that, for more complex systems, TTC and TFC can lead to
problems that are too large for the model-checker to answer in time (e.g. 1 h.)

9 Related Work

The usual way to check a safety property is to exhibit an inductive invariant for
the system. The TEA tactic is completely automatic and can handle safety prop-
erties but remains quite limited. In our experiments, the TFC tactic showed to be
as flexible as an invariant to prove safety properties. Finding stability axioms or
an inductive invariant appear similar in difficulty. However, once found, checking
an inductive invariant is quicker in computation time than checking the abstract
system obtained with stability axioms. On the other hand, stability axioms allow
to check complex temporal properties.

Regarding liveness properties, important approaches are based on exhibiting
a variant or using the Liveness-to-Safety reduction method proposed in [19]. For
the simple examples done with TEA, such methods would allow to prove the
properties with little efforts, if done right, but are not fully automatic contrary
to the TEA tactic. In both case the computation time is really low.
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With the TTC approach, we do not need to exhibit any sort of invariant
and the propagating property to exhibit has always been straightforward. To
our knowledge there is no easiest method to prove some of the examples we
presented. For example, the liveness property of the leader election protocol
requires to exhibit a variant and an invariant and both are harder to exhibit
than the propagating property. The Liveness-to-Safety reduction method also
applies here, but it requires to find an invariant on the system obtained by
reduction, as well as finding an axiomatization of the reflexive-transitive closure
preserving the Liveness property (while this axiomatization is embedded in TTC
tactic). However, despite being more immediate in our examples, the TTC tactic
is less flexible than these two alternatives since it applies for liveness properties
based on the reflexive-transitive closure.

Our approach can also be compared with the specification of parameterized
systems. Cubicle [7–10] is an SMT-based model-checker for the verification of
safety properties on parameterized systems. Cubicle is efficient for challenging
systems but, contrary to our techniques, it enforces strict syntactic constraints on
guards and on the checked property. Others techniques based on labelled proof
systems have also been proposed [2]. In [15], the safety of the TLB Shootdown
algorithm is proved using such a technique. The user must exhibit the correct
invariant for the proof system to conclude; while the TEA tactic is automatic.
Also, some methods, such as invisible invariants [25], rely on finding automat-
ically a candidate for being an inductive invariant and then checking if this is
the case without needing any input from the user. Such an approach is auto-
matic and efficient but only applies to Bounded-Data Parameterized Systems
while our methods applies to a wider context. While most work on parameter-
ized systems focuses on safety properties, [11] addresses liveness properties, but
remains essentially theoretical. We remark that the techniques mainly used for
parameterized systems are mostly orthogonal to those presented in this paper,
and a combination of both could be fruitful.

10 Conclusion

We devised three original, sound (but incomplete) transformations, that allow to
check that a state machine specification, expressed in a rather expressive frag-
ment of FOLTL∗

“, enjoys a temporal property, expressed in the same setting,
whatever the bounds on domains (associated with sorts) are. The transforma-
tions were proved correct in Coq. We evaluated our approach on several case
studies and found that the transformations were effective and, for the semi-
automatic ones, demanded an effort comparable to other approaches. A draw-
back is that the computed bounds can sometimes grow too much for model-
checking to be feasible with the back-end tools we used. Notice that our approach
is orthogonal to the main other approaches (for instance, inference of invariants)
and could certainly be combined with some of them. Once a universally quan-
tified inductive invariant Inv is found, such a combination would be possible by
adding an axiom of the form G Inv to our abtract specification. This refines the
abstraction while fitting in both LTR and Geneva. This is left for future work.
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Abstract. We present a formal framework to certify k-induction-based
model checking results. The key idea is the notion of a k-witness circuit
which simulates the given circuit and has a simple inductive invariant
serving as proof certificate. Our approach allows to check proofs with an
independent proof checker by reducing the certification problem to pure
SAT checks and checking a simple QBF with one quantifier alternation.
We also present Certifaiger, the resulting certification toolkit, and
evaluate it on instances from the hardware model checking competition.
Our experiments show the practical use of our certification method.

1 Introduction

In many verification applications, k-induction [34] (also known as temporal
induction) is used as a powerful technique that reduces model checking to a series
of SAT problems. It has been extensively investigated as an effective approach
for unbounded model checking [18,22]. As a generalisation of simple induction,
for a given safety property, the k-induction method concerns a base case and an
inductive case: the base case is a bounded model checking problem with a depth
of k; the inductive case assumes the property holds for k consecutive steps, then
checks it also holds for k + 1 steps. The safety property is said to be k-inductive if
both conditions are satisfied. The nature of the k-induction algorithm allows it to
be integrated with modern SAT/SMT solvers. For example, reduction techniques
such as preprocessing have been investigated with k-induction in an incremental
setting [17]. The present state-of-the-art also concerns combining k-induction
with existing SAT-based model checking (SMC) techniques including interpo-
lation and property directed reachability [23,27]. Furthermore, k-induction has
also been extended to the context of infinite-state systems [13,19,26,32], as well
as software verification [16]. Another variant of this line of research is the use of
k-induction in sequential equivalence checking [31].

Model checking has been an effective technique for the verification of safety-
critical systems. In particular, applications deployed in industrial settings such
as nuclear facilities, increasingly utilise model checking to gain trust in the cor-
rectness of their designs [20,30,36]. In such ultra safety-critical applications the
certification that the model checking results are in fact correct is crucial. We
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argue that in model checking generic machine checkable certification is still in
its infancy in contrast to related fields. For instance in SAT competitions [2,24],
certifiable proofs are mandatory. This has helped to improve the trust we have
in SAT solving results as well as the quality of SAT solvers tremendously.

Even though counterexample validation is commonly used in model check-
ing to certify negative verification results through simulation, producing a
generic machine checkable proof on success is less straight-forward. To miti-
gate this problem, certification of model checking has been suggested earlier
in [14,21,23,29,33,36,37], but the methods presented in these works are either
not directly applicable to k-induction (in its vanilla form), produce k-induction
specific certificates (fail to provide an inductive invariant), or are considered to
have exponential certificates. This apparently made it hard to, e.g., require all
model checkers to produce proofs in the hardware model checking competitions.

As symbolic model checking of bit-level properties for hardware circuits is
PSPACE-complete, we introduce in this paper a novel certification framework
for k-induction-based model checking. Our proposed approach generates a fixed
number of SAT problems together with a one-alternation only QBF, which
are verified by an independent certifier, thereby enabling the certification of k-
induction proofs at lower complexity. Our method efficiently extends the given
model checking problem to finding a simple inductive invariant of a larger circuit
as a proof of k-induction of the original circuit. In particular, the certificate size
(as a circuit) is shown to be linear in size of the given model, and the inductive
depth. We present Certifaiger, which works as a complete tool suite for certi-
fication, independent of any model checker. Experimental results show that our
technique works efficiently and can be adapted for practical use.

The rest of the paper is organised as follows: In Sect. 2 we introduce the
notion of combinational simulation in the context of circuits. In Sect. 3, we study
the formal property of combinational simulation and define k-induction-based
model checking with an example. In Sect. 4, we present our proposed certification
approach followed by theoretical results in terms of k-induction. We describe the
implementation of our tool suite in Sect. 5, and report on experimental results
in Sect. 6. Finally, we conclude in Sect. 7.

2 Circuits

In this section, we present a slightly non-standard notation to formalize sys-
tems. It allows us to represent systems and particularly circuits symbolically in
a compact way and is crucial to reduce notational clutter in the following.

Let B(V ) be the set of Boolean expressions (propositional formulas) over
the Boolean variables V . We also write B(I, L) to denote the set of Boolean
expressions over I ∪ L, where I and L are two sets of Boolean variables. Given
two Boolean expressions f(V ), g(V ) ∈ B(V ) we call them equivalent, written
f(V ) ≡ g(V ), if they have the same models. This notation is also applied to
Boolean expressions over different sets of variables by simply interpreting them
over the union of their variables. We use “�” for syntactic equivalence [15],
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“→” for syntactic implication, and “⇒” for semantic implication. To define
semantical concepts or abbreviations we stick to equality “=”.

In the context of this paper, models are expressed in the form of finite logical
circuits, where states can be seen as truth assignments to latches and inputs.
Initial states are defined by the reset values of latches, in our case, represented by
their reset functions. For each latch l in L, there is a reset function rl(L) which
is a formula (Boolean expression) over a set of latches L, thus allowing cyclic
definitions. Note that a cyclic definition can lead to unsatisfiable reset formulas,
in which case there are simply no initial states. Additionally, for some L′′ ⊆ L, we
define R(L′′) =

∧

l∈L′′
l � rl(L) to allow us to analyse reset functions of individual

subsets of latches. The transition relation is expressed as a “next state” formula
associated with each latch, whereas non-determinism comes from inputs (which
act as the environment). The successor value of each latch is defined by applying
its transition function on the current values of latches and inputs. Intuitively, a
safety property specifies that the system must not violate certain behaviours, i.e.,
only “good states” are reachable. In this paper we focus on such simple safety
properties and leave liveness properties (see e.g., [29]) etc. for future work.

Definition 1 (Circuit). A circuit C = (I, L,R, F, P ) is defined as follows:

1. I: the set of Boolean input variables.
2. L: the set of Boolean latch variables.
3. R = {rl(L) | l ∈ L} is a set of reset function formulas.
4. F = {fl(I, L) | l ∈ L} is a set of transition function formulas, such that for

every latch l ∈ L, there is a transition function formula fl(I, L) ∈ B(I, L).
5. P (I, L) ∈ B(I, L) is a formula encoding the (good states) property.

The reset functions characterise the initialisation of the circuit. Such defini-
tion of reset abstracts the way how circuits are reset. As a short-hand we use
L′ � F (I, L) to denote a conjunction of the corresponding equivalences, i.e., it is
interpreted as

∧

l∈L′
l′ � fl(I, L). For clarity, we use subscripts as in Li to denote

a copy of the latch variables L in the temporal direction at some timestamp i,
where L0 is the set of latches at timestamp 0 when the circuit is supposed to
be initialised. Note that, using such transition functions to describe transition
relations implies that there will always be a successor state. The temporal evo-
lution of a system is expressed using the notion of unrolling, which has a specific
length and follows the transition relation at each step.

Definition 2 (Unrolling). For an unrolling depth m ∈ N, the unrolling of a
circuit C of length m is defined as the formula Um =

∧

i∈[0,m)

(Li+1 � F (Ii, Li)).

Note that in this definition, we use Ii and Li as sets of variables, whereas Um is
a formula. For m = 0, the conjunction is empty thus the formula is trivial.

Definition 3 (Initialised unrolling). An initialised unrolling of a circuit C,
with C = (I, L,R, F, P ), is defined as Um ∧ R(L0), where Um is an unrolling.
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We say an unrolling is safe if and only if the property holds at every time-
stamp along the whole length of the unrolling.

Definition 4 (Safe unrolling). Unrolling Um of a circuit C = (I, L,R, F, P )
is said to be safe if

Um ⇒
∧

i∈[0,m]

P (Ii, Li).

Definition 5 (Safe initialised unrolling). An initialised unrolling Um ∧
R(L0) of a circuit C = (I, L,R, F, P ) is said to be safe if

Um ∧ R(L0) ⇒
∧

i∈[0,m]

P (Ii, Li).

We are now ready to introduce the notion of a combinational extension
between two circuits. It is purely syntactic based on sharing inputs and latches.

Definition 6 (Combinational extension). Given circuits C = (I, L,R, F, P )
and C ′ = (I ′, L′, R′, F ′, P ′), C ′ combinationally extends C if I = I ′ and L ⊆ L′.

As noticed above, this definition allows us to interpret the inputs and latches
of a circuit as being part of another circuit. In practice for instance we simply
assume that the first |L| latches of the circuit C ′ are mapped to those of C
assuming some ordering of the latches, as it is for instance the case in the AIGER
format [7] used in the Hardware Model Checking Competition (HWMCC) [5].

To tackle the problem of generating a proof certificate for k-induction of the
safety of a circuit C, as is the main goal of this paper, we extend it to a larger
circuit C ′ with additional “book-keeping” behaviours [1] for which we can show
the same property by using standard induction. To ensure that the resulting
extended circuit C ′ preserves the original property, we provide a formalization
through a combinational simulation relation between two circuits, which needs to
be formally verified by a certifier. One important aspect of our design principles
is to keep the complexity of the required certification procedure low, in other
words, to be done via pure SAT solver checks or by solving a QBF with at most
one quantifier alternation. This leads to a more complicated non-standard design
of the certification approach, the details of which will be described in Sect. 4.

From a practical perspective, under combinational simulation defined below
in Definition 7, we require that the transition functions on the “common” parts
of the two circuits are equivalent. For the new latches, the transition functions
are always satisfiable (as they are functions), and thus we need no constraints
on them. As second condition we require that if the safety property P ′ holds in
the extended circuit, then the property P holds in the original circuit. The last
condition we need to check is that all the new latches of the extended circuit can
be initialised with some values whenever the original circuit can be initialised
and using the same values for initialising the common latches. In other words,
for all initialisations of the original circuit there is at least one initialisation of
the extended circuit with the same values for common latches.
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Under these conditions Theorem 1 in Sect. 3 shows that if the extended cir-
cuit (in this sense) combinationally simulates the original one and the extended
circuit is safe then the original circuit is safe as well.

With some abuse of notation, we use ∃L in a Quantified Boolean Formula
(QBF) to denote existential quantification over variables in L. As usual, free
variables are (implicitly) assumed to be quantified universally.

Definition 7 (Combinational simulation). Given circuits C = (I, L,R, F,
P ) and C ′ = (I ′, L′, R′, F ′, P ′) where C ′ combinationally extends C, we say that
C ′ combinationally simulates C, if the following holds:

1. fl(I, L) ≡ f ′
l (I, L′) for l ∈ L, “transition”

2. P ′(I, L′) ⇒ P (I, L), and “property”
3. R(L) ⇒ ∃(L′\L)R′(L′). “reset”

In later context when verifying the combinational simulation relation between
two circuits, we refer to Definition 7.1 as the transition check, Definition 7.2 as
the property check, and Definition 7.3 as the reset check.

3 Model Checking

In this section, we consider model checking via k-induction. The model checking
problem for safety properties concerns determining whether, given a circuit with
a property P , it is the case that P holds in all reachable states, i.e., the initialised
unrolling of a circuit of any arbitrary length is safe.

Definition 8 (Safe circuit). Let Um be the unrolling of circuit C, C is safe
iff Um ∧ R(L0) ⇒ ∧

i∈[0,m]

P (Ii, Li) holds for all m ∈ N.

Based on the above definition, we say the property P “holds” in C if the
circuit is safe with respect to P .

Theorem 1. Assume that the circuit C ′ combinationally simulates the cir-
cuit C. If C ′ is safe, then C is safe.

Proof. We do a proof by contradiction. Let m ∈ N be a bound for which the
claim does not hold. Thus the unrolling of length m of C ′ is safe w.r.t. P , and
therefore U ′

m ∧ R′(L′
0) ⇒ ∧

i∈[0,m]

P ′(I ′
i, L

′
i) holds. To obtain the contradiction we

assume there is a satisfying assignment s of Um∧R(L0)∧¬ ∧

i∈[0,m]

P (Ii, Li), which

would make C not to be safe. Thus R(L0) needs to be satisfiable. Now the reset
check of Definition 7.3 implies that R′(L′

0) ∧ R(L0) is guaranteed to be satisfi-
able with L0 being a subset of L′

0. Moreover, by Definition 7.1, the unrolling U ′
m

of C ′ is also satisfiable with the transition function F applied on the projected
(“common”) component on both circuits. Also for the new latches the fact that
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we use a transition function for them, they are also satisfiable (transition func-
tions guarantee that there is always a successor state for all states). Therefore
the initialised unrolling R′(L′

0) ∧ U ′
m is satisfiable. Furthermore, by our assump-

tion,
∧

i∈[0,m]

P ′(I ′
i, L

′
i) holds. By Definition 7.1 and Definition 7.3, the projected

latches of C ′ stay the same as Li for all i ∈ [0,m], and thus by Definition 7.2 we
have that

∧

i∈[0,m]

P (Ii, Li) holds. ��

As usual, we call a formula φ to be an inductive invariant φ of a circuit C if φ
satisfies the following conditions: (1) R(L) ⇒ φ(I, L), (2) φ(I, L) ⇒ P (I, L), and
(3) U1 ∧ φ(I0, L0) ⇒ φ(I1, L1). As a generalisation, k-induction looks at k steps
of evolution rather than 1 step by assuming the property holds in k consecutive
timestamps at the induction step.

Definition 9 (k-inductive). Given a circuit C with a property P , define the
formula Sk =

∧

i∈[0,k)

P (Ii, Li). Then P is called k-inductive in C if and only if

the following two conditions hold:

1. Uk−1 ∧ R(L0) ⇒ Sk, and “initiation”
2. Uk ∧ Sk ⇒ P (Ik, Lk). “consecution”

The first condition Definition 9.1 in this definition is called initiation check,
also bounded model checking check or simply BMC check on the initialised
unrolling of length k−1, whereas the second condition Definition 9.2 is referred to
as the consecution check for the unrolling of k. Note that a 1-inductive invariant
is equivalent to an inductive invariant when φ(I, L) ≡ P (I, L).

Fig. 1. The SMV code for the Counter example.

Example 1. We consider a simple example of an N -bit counter, where the counter
counts up to a modulo bound m, then it resets to zero. There is also a reset signal
which works as an enabler, such that when the signal is set to 1, the counter
is forced to reset. The property checks whether the counter value reaches b.
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Fig. 2. The transition diagram of the Counter example. The initial state is “000”
(colored yellow). In the (gray) “bad” State “110” the property does not hold. (Color
figure online)

Here the exact modulo check makes the model checking problem k-inductive
(k = b − m + 1). More precisely, for N = 3, the formal description of a 3-bit
counter is given in the SMV language in Fig. 1, where m = 5, b = 6. (Note that
our example can be easily extended to integers too.) The state diagram of this
system is shown in Fig. 2. The input values are specified with the transition
relations. This model is 2-inductive.

4 Certification

In our suggested approach, certifying model checking results concerns finding and
checking an inductive invariant which implies the original specification, which
in our case, is the safety property P . To tackle the problem of certifying k-
induction-based model checking for any given circuit, in this section, we redirect
the problem to generating a simple inductive invariant from a k-witness circuit,
in which the original circuit is combinationally simulated.

We start by defining the formalism of a k-witness circuit. The main idea is
to record the previous k − 1 states and inputs of the circuit observed during the
execution, “flattening” the k-induction procedure back to normal induction of
a larger circuit. As a result, the size of the circuit increases by a factor of k,
where k is the constant used in the k-induction scheme. The k-witness circuit
has k local components of inputs and latches. Each component can be seen as
representing a state in the original circuit. Whenever a new state is saved, the
oldest one is discarded.

One of the key technical challenges is the proper initialisation of the k-witness
circuit. We use an additional k initialisation bits for indicating which components
of the circuit have been initialised. This helps accomplishing the combinational
simulation relation later. We say a component is initialised if its initialisation
bit is 
. At initialisation, the k-witness circuit can be either fully or partially
initialised. Figure 3 displays three ways of initialising the components. In the case
of full initialisation, the circuit pre-computes k steps of the original circuit as
the initial state of the k-witness circuit. Thus intuitively in the full initialisation
case the initial state of the k-witness circuit encodes the states reachable in the
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k-step initialised BMC unrolling of the original circuit. In partial initialisation
scenarios the circuit instead pre-computes an initialised BMC unrolling for fewer
steps, where some components are left uninitialised. In the final case where there
are no pre-computed steps, the circuit simply runs from an original initial state,
leaving all the other components fully uninitialised.

In the definitions below, we use the superscript of i in Li to denote a copy
of latches L in the spacial direction, such that we introduce a set of new latch
variables for every Li, where li ∈ Li is the corresponding copy of l ∈ L, and
similarly for inputs. We refer to li as some latch in Li, where i is the index
of a latch set Li. The formal definition of k-witness circuit is given below. We
continue to use subscripts for the temporal direction.

Definition 10 (k-witness circuit). Given a circuit C = (I, L,R, F, P ), and
k ∈ N

+, the k-witness circuit C’=(I’, L’, R’, F’, P’) of C is defined as follows:

1. I’ = I. For simplicity we also refer to I ′ as Xk−1.
2. L’ = X0 ∪ · · · ∪ Xk−2 ∪ L0 ∪ · · · ∪ Lk−1 ∪ B, such that,

(a) Xi is a copy of the original inputs, for all i ∈ [0, k − 2].
(b) Li is a copy of the original latches, for all i ∈ [0, k − 1].
(c) B = {b0, . . . , bk−1} is the set of initialisation bits.

3. The reset function R’ = {r′
l(L

′) | l ∈ L′} is defined as follows:
(a) For x ∈ X0 ∪ · · · ∪ Xk−2, r′

x = x.
(b) For i ∈ [1, k − 1), ui = R(Li) ∨ ui+1, and uk−1 = R(Lk−1).
(c) For l ∈ L0, r′

l = ite(u1, l, rl(L0)).
(d) For i ∈ [1, k), r′

li = ite(ui, li, fli(Xi−1, Li−1)).
(e) r′

bk−1 = 
.
(f) r′

b0 = ¬u1.
(g) For i ∈ [1, k − 1), r′

bi = bi−1 ∨ (R(Li) ∧ ¬ui+1).
4. F’ = {f ′

l (I
′, L′) | l ∈ L′} is defined as follows:

(a) For i ∈ [0, k − 1), f ′
xi(I ′, L′) = xi+1.

(b) For l ∈ Lk−1, f ′
l (I

′, L′) = fl(Xk−1, Lk−1).
(c) For i ∈ [0, k − 1), f ′

li(I
′, L′) = li+1.

(d) For i ∈ [0, k − 1), f ′
bi(I

′, L′) = bi+1, and f ′
bk−1(I ′, L′) = bk−1.

5. The property P’ is defined as P ′(I ′, L′) =
∧

i∈[0,4]

pi(I ′, L′) such that:

(a) For i ∈ [0, k − 1), hi = (Li+1 � F (Xi, Li)).
(b) p0(I ′, L′) =

∧

i∈[0,k−1)

(bi → bi+1).

(c) p1(I ′, L′) =
∧

i∈[0,k−1)

(bi → hi).

(d) p2(I ′, L′) =
∧

i∈[0,k)

(bi → P (Xi, Li)).

(e) p3(I ′, L′) =
∧

i∈[1,k)

((¬bi−1 ∧ bi) → R(Li)).

(f) p4(I ′, L′) = bk−1.
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In Definition 10 we list five parts of the k-witness circuit. For clarity, we
explain each part in more details in the following text:

1. The set of inputs is identical to that of the original circuit.
2. The set of latches consists of the original latches, k initialisation bits, and

an additional k − 1 copies of inputs and latches which are introduced to save
observations of previous states.

3. The reset function is defined to allow non-deterministic initialisation (see
Fig. 3), where we use helper variables ui for a more compact encoding. The
formula ui is satisfied whenever a component younger than the ith has the
same reset value as the original circuit. The reset functions of the Xi latches
(for i < k − 1) ensure they are initialised in a non-deterministic fashion. As
for the initialisation bits B, their reset values are deterministic, depending
on the initialisation status of the components.

4. The transition function of the (k − 1)th copy of latches is identical to the
original transition function, while every older component simply saves the
value of its one timestep younger component.

5. Finally, the property is composed of five sub-properties, where hi is satisfied
whenever the two adjacent components follow the original transition relation.

Figure 4 illustrates a comparison of variable structures of the original circuit
and its k-witness (this also suggests their combinational extension relation). The
area marked yellow (left box and top right box on the right) consists of the same
set of variables. We consider each pair (Xi, Li) as a component in the circuit
and refer to (Xk−1, Lk−1) as the most recent component (youngest copy), and
(X0, L0) as the oldest component (copy). Additionally we also refer to the inputs
I ′ as Xk−1 for convenience.

The property P ′ is comprised of five sub-properties. The monotonicity prop-
erty p0 expresses the monotonic nature of the initialisation bits. Intuitively, if
a component is initialised, all components younger than it should also be ini-
tialised. The transition property p1 expresses the property that every initialised
component has to follow the transition relation in the original circuit. Of partic-
ular interest is the k-safety property p2, which says the original property P needs
to be satisfied in every initialised component. The reset property p3 expresses
the property that in the case of partial initialisation, the oldest initialised com-
ponent needs to satisfy the original reset function. Finally, p4 expresses that at
least the youngest component should have the initialisation bit set.

We now show the combinational simulation relation between the original
circuit and its k-witness circuit.

Theorem 2. The circuit C is combinationally simulated by its k-witness circuit.

Proof. By the construction in Definition 10, the inputs stay the same in the
k-witness circuit C ′, and the new latches are a superset of the original ones (the
youngest component in C ′). Thus by Definition 6, C ′ combinationally extends C.
Based on Definition 10.4, the transition function of Lk−1 is identical to the orig-
inal one, which satisfies Definition 7.1. In the new property, p4 and p2 together
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s0C : . . . si . . . sk−1

C′ : −1. . . . − s0

0 . . . 0 1

−2. . . . − s0 . . . si

0 . . . 0 1 . . . 1

s03. . . . sk−1

1 . . . 1

F F F F

Fig. 3. The diagram shows three possible initial states of C′. Here (1) illustrates 1-
initialisation, (2) is i-initialisation, and (3) full initialisation. The grey area are the
uninitialised components (the “don’t care”s).

I, LC : X0, L0C′ : ... Xk−1, Lk−1

b0 ... bk−1 } B

Fig. 4. The structure of input and latch variables in C and C′. (Color figure online)

imply P (Xk−1, Lk−1). In other words, the original property holds in the most
recent component. This then satisfies Definition 7.2. By Definition 10, for every
satisfiable assignment of R(L), the same assignment satisfies R′(L) on the com-
mon latches (the youngest component). For all the new latches we observe the
following. Because the reset of the newest component is satisfiable with the same
assignment as in the original circuit, we can see that uk−1 is true in the k-witness
circuit and therefore all other ui are also true. Therefore all the ite-statements
of the reset definition become trivially satisfiable. To complete the argument,
by Definition 10.3, all the initialisation bits can be now set to ⊥ except bk−1

which can be set to 
. A satisfying assignment of R′(L′) can thus be directly
constructed (deterministically in polynomial time) from any satisfying assign-
ment of R(L). This implies the reset condition of Definition 7.3 holds. (Sidenote:
This implies that the QBF check needed in the combinational simulation rela-
tion could potentially be solved easily in practice for these k-witness circuits.)
Therefore C ′ combinationally simulates C. ��

In the following, we present the main result of this paper on the relationship
between a circuit C and its k-witness circuit C ′ in terms of k-induction.

Theorem 3. Given a circuit C, a fixed k ∈ N
+, and its k-witness circuit C ′, P

is k-inductive in C iff P ′ is 1-inductive in C ′.
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Proof. We consider the two k-inductive checks in Definition 9 for both directions.
In Theorem 4 we show that the BMC check (of the initialised unrolling of length
k − 1) in C passes, if and only if the same check (of the initialised unrolling of
length 0) in C ′ also passes. In Theorem 5 we prove that if the consecution check
of C ′ passes, then the consecution check also passes in C. Lastly, Theorem 6
shows that if P is k-inductive in C, then the consecution check of P ′ using the
unrolling of length 1 passes in C ′. By combining them together, we conclude P
is k-inductive in C iff P ′ is 1-inductive in C ′. ��

For the BMC check in the two circuits, we need to analyse three separate cases
as shown inFig. 3,which correspond toLemmas 2, 3, and 4, respectively. But before
this we need a technical Lemma 1 on the initialisation bits. In the following context,
we consider a given circuit C, and its k-witness circuit C ′ with a fixed k.

Lemma 1. For the initialised unrolling of length 0 of the k-witness circuit C ′,
the reset values of the initialisation bits B0 are deterministic and depend only
on the component with the largest index i ∈ [0, k) for which R(Li

0) is satisfied.

Proof. Firstly, we define S = {i | R(Li
0)}, based on which we consider two cases.

(1). By Definition 10.3(c), if ¬u1
0, then 0 ∈ S. In this case, b00 = 
 by

Definition 10.3(f), and by Definition 10.3(e)(g), b10, ..., b
k−1
0 are all set to 
.

(2). Otherwise we consider u1
0, where S contains at least some i ∈ [1, k).

Let m be the maximum index in S, and m �= 0. Since R(Lm
0 ), um

0 is satisfied,
so are um−1

0 , ..., u1
0, while um+1

0 , ..., uk−1
0 are not. In Definition 10.3(g), for all

i ∈ S, R(Li
0) ∧ ¬ui+1 is only satisfied when i = m, thus bm0 = 
. Therefore

bi0 = 
 for all i ∈ [m + 1, k). By Definition 10.3(f), b00 = ⊥, therefore for all
i ∈ [1,m), bi0 = ⊥. ��

Initialisation bits are indicators for the initialisation status of the k-witness
circuit. We observe that the sub-properties p0, ..., p3 of the k-witness circuit
trivially hold for uninitialised components (i.e., those for which the initialisation
bit is 0), while p4 solely depends on bk−1.

Lemma 2. If the initialised unrolling of length k −1 of the original circuit C is
safe, the initialised unrolling of length 0 of the k-witness circuit C ′ is also safe,
in the case of 1-initialisation.

Proof. Assume Uk−1∧R(L0) ⇒ ∧

i∈[0,k)

P (Ii, Li) such that the initialised unrolling

of C is safe. In the case of 1-initialisation, we consider R′(L′
0) ∧ R(Lk−1

0 ) as the
initialised unrolling of C ′, as U ′

0 is trivial. By Lemma 1 and Definition 10.3, for
the initialisation bits, only bk−1

0 is set to 
 and the rest remain ⊥. The values of
B0 then satisfy p0(I ′

0, L
′
0), p1(I

′
0, L

′
0), p4(I

′
0, L

′
0) trivially. Every satisfying assign-

ment of R′(L′
0)∧R(Lk−1

0 ) satisfies R(L0) with L0 = Lk−1
0 , I0 = Xk−1

0 . Similar to
our argument in Theorem 1, Uk−1∧R(L0) is then also satisfiable. By our assump-
tion, P (Xk−1

0 , Lk−1
0 ) is thus satisfied. The premise of p2(I ′

0, L
′
0) is only satisfied

for bk−1
0 , and with the same assignment satisfying P (Xk−1

0 , Lk−1
0 ), p2(I ′

0, L
′
0) is

also satisfied. Lastly, the premise of p3(I ′
0, L

′
0) is only satisfied for ¬bk−2

0 ∧ bk−1
0 ,

and since R(Lk−1
0 ), p3(I ′

0, L
′
0) is satisfied. Therefore we have P ′(I ′

0, L
′
0). ��
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Lemma 3. If the initialised unrolling of length k −1 of the original circuit C is
safe, the initialised unrolling of length 0 of the k-witness circuit C ′ is also safe,
in the case of i-initialisation.

Proof. Firstly, we assume Uk−1 ∧ R(L) ⇒ ∧

i∈[0,k)

P (Ii, Li). In the case of i-

initialisation, we consider R′(L′
0) ∧ R(Lm

0 ) ∧ ¬um−1 as the initialised unrolling
of C ′, where m ∈ [1, k − 1) is the largest index for which R(Lm

0 ) is satis-
fied. As we showed in Lemma 1, bm0 , ..., bk−1

0 are set to 
 while b00, ...b
m−1
0 are

⊥. Following Definition 10.3, Li
0 � F (Xi−1

0 , Li−1
0 ) for all i ∈ (m, k), while

all components older than m are uninitialised. Every satisfying assignment of
R′(L′

0) ∧ R(Lm
0 ) ∧ ¬um−1 also satisfies

∧

i∈[0,k−m−1)

(Li+1 � F (Ii, Li)) ∧ R(L0)

with Ii−m = Xi
0, Li−m = Li

0 for all i ∈ [m, k). In the rest of the proof, we fix
the assignment satisfying R′(L′

0) ∧ R(Lm
0 ) ∧ ¬um−1. Similar to our argument

in Theorem 1, Uk−1 ∧ R(L0) is satisfiable with our fixed assignment. By our
assumption,

∧

i∈[m,k)

P (Xi
0, L

i
0) is then satisfied. We now consider P ′(I ′

0, L
′
0). As

the premise of p2(I ′
0, L

′
0) is only satisfied for bm0 , ..., bk−1

0 , p2(I ′
0, L

′
0) is satisfied.

Similarly for the transition property, with Li
0 � F (Xi−1

0 , Li−1
0 ) for all i ∈ (m, k),

p1(I ′
0, L

′
0) is satisfied. Given the values of B0, the monotonicity property is sat-

isfied. In addition, p4(I ′
0, L

′
0) is also satisfied as bk−1

0 = 
. Finally, the premise
of p3(I ′

0, L
′
0) is only satisfied for ¬bm−1

0 ∧ bm0 , and as we already have R(Lm
0 ), p3

is satisfied. ��
Lemma 4. If the initialised unrolling of length k −1 of the original circuit C is
safe, the initialised unrolling of length 0 of the k-witness circuit C ′ is also safe,
in the case of full initialisation.

Proof. We assume Uk−1 ∧ R(L) ⇒ ∧

i∈[0,k)

P (Ii, Li) for the original circuit. Since

we consider full initialisation, R′(L′
0) ∧ R(L0

0) ∧ ¬u1
0 is the initialised unrolling

of C ′. Following Definition 10.3, Li
0 � F (Xi−1

0 , Li−1
0 ) for all i ∈ [1, k). Every

satisfying assignment of R′(L′
0) ∧ R(L0

0) ∧ ¬u1
0 satisfies Uk−1 ∧ R(L0) with

Ii = Xi
0, Li = Li

0 for all i ∈ [0, k). The rest of the proof follows the same logic
as in Lemma 3. ��
Lemma 5. If the BMC check for the unrolling of length k − 1 of the original
circuit C passes, then the BMC check for the unrolling of length 0 of the k-witness
circuit C ′ also passes.

Proof. Based on Definition 10.3, we consider the BMC check for all possible
initial states. Lemma 2, 3 and 4 cover the case-split over all initial states of C ′

based on whether each component satisfies the original reset function R(Li
0) or

not. We show that the BMC check of C ′ passes under the same assumption for
three initialisation cases respectively. In particular, our construction in Defini-
tion 10.3 does not allow all components to be uninitialised, in which case R′(L′

0)
becomes unsatisfiable (more specifically, R′(L0

0) is unsatisfiable). We conclude
the BMC check of the initialised unrolling of length 0 passes in C ′. ��
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We proceed to prove the opposite direction of the BMC check for C and C ′

by considering the reset status in the k-witness circuit.

Lemma 6. If the BMC check for the unrolling of length 0 of the k-witness circuit
C ′ passes, then the BMC check for the unrolling of length k − 1 of the original
circuit C also passes.

Proof. We assume the BMC check passes in the k-witness circuit, R′(L′
0) ⇒

P ′(I ′
0, L

′
0). We do a proof by contradiction by assuming the BMC check of length

k − 1 fails for the original circuit. Thus there exists a satisfying assignment s
of Uk−1 ∧ R(L0) ∧ ¬ ∧

i∈0,k)

P (Ii, Li). We can construct a satisfying assignment of

R′(L′
0) as follows. Let a ∈ [0, k) be some index for which ¬P (Ia, La) is satisfied.

Let m ∈ [0, a] be the index for which R(Lm) ∧ ¬ ∨

i∈(m,a]

R(Li) is satisfied. Let

Xk−1−i
0 = Ia−i, L

k−1−i
0 = La−i, b

k−1−i
0 = 
 for all i ∈ [0, a − m]. The rest of

initialisation bits of B0 are set to ⊥. By Definition 2, we have Li+1 � F (Ii, Li)
for all i ∈ [m,a), which satisfies Definition 10.3(d). As our construction satisfies
R′(L′

0), by our assumption, P ′(I ′
0, L

′
0) is satisfied. By Theorem 2, P (Ia, La) is

satisfied. Since we assume s satisfies ¬P (Ia, La), we have reached a contradiction.
��

As an immediate consequence of Lemma 5 and 6, the BMC check of C passes
iff the same check passes in C ′. We record the result in the following Theorem.

Theorem 4. The BMC check for the unrolling of length 0 of the k-witness cir-
cuit C ′ passes, if and only if the BMC check for the unrolling of length k − 1 of
the original circuit C passes.

. . .C : si . . . si+k−1 si+k . . .

C′ :
si . . . si+k−1

1 . . . 1
. . .

si+1 . . . si+k−1 si+k

1 . . . 1 1
. . .

F F F F F

F ′

Fig. 5. The diagram shows the consecution check in C and C′.

We show in Fig. 5 an illustration of the consecution check in both circuits.

Theorem 5. If the consecution check for the unrolling of length 1 of the k-
witness circuit C ′ passes, then the consecution check for the unrolling of length
k of the original circuit C passes too.
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Proof. We assume U ′
1 ∧ P (I ′

0, L
′
0) ⇒ P (I ′

1, L
′
1) holds. We then do a proof by

contradiction by assuming that the consecution check for the original circuit fails.
Thus there is a satisfying assignment s of the formula Uk ∧ ∧

i∈[0,k)

P (Ii, Li) ∧
¬P (Ik, Lk). Based on s, we have a satisfying assignment for U ′

1 ∧ P ′(I ′
0, L

′
0)

as follows. Let Xi
0 = Ii, L

i
0 = Li, and bi0 = 
 for all i ∈ [0, k). Let Xi−1

1 =
Ii, L

i−1
1 = Li, b

i−1
1 = 
 for all i ∈ [1, k]. We now show this satisfies L′

1 �
F ′(I ′

0, L
′
0). Since Xi−1

1 = Ii = Xi
0 and Li−1

1 = Li = Li
0 for all i ∈ [1, k),

Definition 10.4(a) and Definition 10.4(c) are satisfied. Since s satisfies Uk, by
Definition 2, it satisfies Lk � F (Ik−1, Lk−1). With Xk−1

0 = Ik−1, L
k−1
0 = Lk−1,

and Lk−1
1 = Lk, we have Lk−1

1 � F (Xk−1
0 , Lk−1

0 ), and thus Definition 10.4(b).
As for the initialisation bits, since all of them are set to 
 in both B0 and B1,
Definition 10.4(d) is satisfied. As a result, U ′

1 is satisfied, and we continue to
show the same assignment satisfies P ′(I ′

0, L
′
0). Similar to our proof in Lemma 3,

the values of B0 satisfy p0(I ′
0, L

′
0) and p4(I ′

0, L
′
0) immediately. As the premiss

of p3(I ′
0, L

′
0) is unsatisfiable, p3(I ′

0, L
′
0) trivially holds. Since Uk is satisfied, by

Definition 2, we have Li+1 � F (Ii, Li) which satisfies hi
0 for all i ∈ [0, k−1), thus

also p1(I ′
0, L

′
0). Lastly, since P (Ii, Li) is satisfied for all i ∈ [0, k), the original

property is satisfied in every component P (Xi
0, L

i
0), resulting in the satisfaction

of p2(I ′
0, L

′
0). By our initial assumption, P ′(I ′

1, I
′
1) is satisfied. By Theorem 2,

we have P (Xk−1
1 , Lk−1

1 ), thus P (Ik, Lk). We reach a contradiction here. We can
therefore conclude the consecution check of the original circuit passes. ��
Lemma 7. If the safety property P is k-inductive in the original circuit C, the
consecution check of the unrolling of length 1 passes in the k-witness circuit C ′,
given that L′

0 is partially initialised.

Proof. Assume P is k-inductive in C. Let U ′
1 be the unrolling of C ′, and

m ∈ [1, k) is some index such that b00, ..., b
m−1
0 are set to ⊥, while bm0 , ..., bk−1

0

are set to 
 (as we consider partial initialisation here). We do a proof by con-
tradiction, and assume there is a satisfying assignment s of the negation of
the consecution check formula U ′

1 ∧ P ′(I ′
0, L

′
0) ∧ ¬P ′(I ′

1, L
′
1). Since we assume

P ′(I ′
0, L

′
0), it implies R(Lm

0 ), based on p3(I ′
0, L

′
0). We also have Li+1

0 � F (Xi
0, L

i
0)

for i ∈ [m, k − 1), based on p1(I ′
0, L

′
0). Furthermore, U ′

1 implies L′
1 � F ′(I ′

0, L
′
0),

and by Definition 10.4, Lk−1
1 � F (Xk−1

0 , Lk−1
0 ). Therefore the same assignment

satisfies Uk−1 ∧ R(L0) where Ii−m = Xi
0, Li−m = Li

0 for all i ∈ [m, k), and
Ik−m = I ′

1, Lk−m = Lk−1
1 . By our assumption that the BMC check passes in C,

we have P (Xi
0, L

i
0) for all i ∈ [m, k) and P (I ′

1, L
k−1
1 ).

We can then proceed to prove P ′(I ′
1, L

′
1) is indeed satisfied. Similar to our

proof in Theorem 5, based on Definition 10.4, bi1 = 
 for all i ∈ [m, k) while
bi1 = ⊥ for all i ∈ [0,m). Additionally, Xi

1 = Xi+1
0 , Li

1 = Li+1
0 for i ∈ [0,m − 1).

The rest of the proof follows the same logic as Theorem 5 for showing P ′(I ′
1, L

′
1) is

satisfied. We then reach a contradiction here, and thus conclude the consecution
check for C ′ passes in this case. ��
Lemma 8. If the consecution check for the unrolling of length k passes in the
original circuit C, the consecution check for the unrolling of length 1 passes in
the k-witness circuit C ′, given that L′

0 is fully initialised.
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Proof. Let U ′
1 be the unrolling of C ′ with b00, ..., b

k−1
0 all set to 
. Similar

to Lemma 7, we do a proof by contradiction, and assume there is a satis-
fying assignment s of U ′

1 ∧ P ′(I ′
0, L

′
0) ∧ ¬P ′(I ′

1, L
′
1). By the transition prop-

erty p1(I ′
0, L

′
0), the components follow the transition function F , such that

Li+1
1 � F (Xi

0, L
i
0) for all i ∈ [0, k − 1). Similar to our argument in Lemma 7, U ′

1

implies Lk−1
1 � F (I ′

0, L
k−1
0 ). We also have

∧

i∈[0,k)

P (Xi
0, L

i
0) based on p2(I ′

0, L
′
0)

and the values of B0. The same assignment thus satisfies Uk ∧ ∧

i∈[0,k)

P (Li, Li)

where Li = Li
0 ∧ Ii = Xi

0 for all i ∈ [0, k) and Ik = I ′
1, Lk = Lk−1

1 . Based on our
assumption that the consecution of C passes, we have P (I ′

1, L
k−1
1 ). Following

the same reasoning in Lemma 7, after one transition, bi1 = 
 for all i ∈ [0, k),
and Xi

1 = Xi+1
0 , Li

1 = Li+1
0 for i ∈ [0, k − 1).

We can now show P ′(I ′
1, L

′
1) is satisfied. The k-safety property p2(I ′

1, L
′
1) is

satisfied as we have proved p(Xi
1, L

i
1) for all i ∈ [0, k). The transition property

p1(I ′
0, L

′
0) is preserved, as Uk is satisfied which implies Li+1

1 � F (Xi
1, L

i
1). Based

on the values of B1, p0(I ′
1, L

′
1), p3(I

′
1, L

′
1), p4(I

′
1, L

′
1) are satisfied immediately.

We conclude the P ′(I ′
1, L

′
1) is satisfied thus we reach a contradiction. Therefore

the consecution check for C ′ passes in this case. ��
Theorem 6. If both k-induction checks pass in the original circuit C, then the
consecution check of the unrolling of length 1 in the k-witness circuit C ′ passes.

Proof. First of all, we assume both checks pass in C. We then do a proof by con-
tradiction by assuming there is a satisfying assignment s for the negation of the
consecution check U ′

1 ∧P ′(I ′
0, L

′
0)∧¬P ′(I ′

1, L
′
1). Since s satisfies U ′

1 ∧P ′(I ′
0, L

′
0),

we consider two separate cases where the property P ′(I ′
0, L

′
0) is satisfied: full

initialisation or partial initialisation. Note when all b00, ..., b
k−1
0 are set to ⊥,

P ′(I ′
0, L

′
0) is not satisfied. Therefore applying Lemma 8 and Lemma 7 together,

we conclude if both k-induction checks pass in C, the consecution check of the
unrolling of length 1 in the k-witness circuit also passes. ��

We briefly discuss why the k-witness circuit is linear in the size of the original
circuit, and the value k. If we consider the circuit size in terms of gate numbers,
the number of latches and inputs increase by a factor of approximately k. The
transition functions are copied k − 1 times, i.e., k − 2 times for reset in Defini-
tion 10.3(d), and once more in 10.4(b), while the k − 2 copies in the property
part 10.5(a) have the same arguments and can be shared. For the reset predi-
cates, defining R(Li) is linear in the number of the latches, while ui is linear in
k. We apply the same logic when defining the property, therefore we conclude
our construction is linear in the size of the circuit and k.

5 Implementation

Based on our new construction we implemented Certifaiger [12], which works
as a tool suite comprised of multiple components as shown in Fig. 6. The tool
takes as inputs a circuit which contains a safety property given in AIGER for-
mat [7] and a value k provided by a k-induction-based model checker which
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outputs a positive model checking result. Upon invocation, internally the inputs
are passed on to the k-witness generator that parses the AIGER file and gener-
ates a k-witness circuit as defined in Definition 10. The new safety property is a
simple inductive invariant (to be verified) for the k-witness circuit. We extended
the reset logic definition of the existing AIGER format defined by the authors
of [7] to enable reset functions, whereas all previous AIGER versions only allow
reset values to be 0, 1, or uninitialised. The k-witness circuit from the k-witness
generator is given in this extended AIGER format.

k

C

k-witness
generator C′

combinational
simulation
checker

inductive
invariant
checker

ϕpropϕreset ϕtrans ϕconsecϕconsist ϕinit

SAT
solver

QBF
solver

SAT
solver

SAT
solver

SAT
solver

SAT
solver

T/F S/U S/U S/U S/US/U

Certifaiger

Fig. 6. The architecture of Certifaiger. C is the input circuit in AIGER format and
k is the value given by a k-induction-based model checker. The final outputs of the
SAT solvers are given in the form of S/U , for satisfiable or unsatisfiable. The QBF
solver outputs true or false (T/F ) as the result.

To verify the inductive invariant φ(I, L), as discussed in Sect. 3, our certifier
generates three conditions. (Note that here we are only looking at extended
circuits, therefore we use L instead of L′.)

Condition Formula The inductive invariant . . .

“initiation” R(L) ⇒ φ(I, L) . . . must hold at all initial states

“consistency” φ(I, L) ⇒ P (I, L) . . . must hold at all good states

“consecution” U1 ∧ φ(I0, L0) ⇒ φ(I1, L1) . . . is preserved during the transition

In our implementation, the latch variables used in the inductive invariant
are updated with their next state literals after each transition. The consistency
condition is rather trivial here, as the inductive invariant is exactly the property
in the k-witness circuit, although this is only specific to our case.
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Our certifier generates for each of the three conditions a (combinational)
AIGER circuit which is then checked by a SAT solver. In our implementation,
we used the SAT solver Kissat [6] for checking validity of the formulas after they
have been converted to CNF by invoking aigtocnf from the AIGER library.

Furthermore, we implemented the combinational simulation checker for veri-
fying the combinational simulation relation described in Definition 7. The checker
takes as inputs the original circuit and the k-witness circuit. It generates two
AIGER files for the transition check and the property check, as well as a
QAIGER file for the reset check, as defined in Definition 7. Similar to the induc-
tive invariant checker, the AIGER files are then converted to CNFs and verified
by Kissat. QAIGER is a standard format used in QBF Competitions. In our
experiments the formula is verified with the QBF solver QuAbS [35].

The tool Certifaiger returns “success” as a result if all six formulas hold,
meaning that the circuit C ′ combinationally simulates C and C ′ is safe by the
1-induction proof. Thus by Theorem 1 the original circuit C is also safe. Note
that this result holds regardless of how C ′ is constructed.

Given a scenario where we would want to place trust on the correctness
of the extended circuit mapping inside the k-witness generator (to trust that
the k-witness circuit construction of Definition 10 is correct and the program
implementing it is also provably correct), all three combinational simulation
checks (one QBF and two SAT checks) could be skipped in the certification
procedure.

Intuitively, given a faulty generation of the k-witness circuit C ′, the error
would either be caught by the combinational simulation check (due to an erro-
neous under-approximation of the set of reachable states) or the inductive invari-
ant check (due to an erroneous over-approximation of the set of reachable states).
Furthermore, we have also done a sanity check of certification on failure, where
the model checking results are falsified by Certifaiger. An incorrect value of k
is detected by a negative result of ϕconsec, whereas ϕinit does not hold in cases
where an initial state is a bad state.

6 Experiments

As described in previous sections, the complexity of extending the original cir-
cuit into k-witness is linear in the size of the circuit, and the inductive depth.
To evaluate the practicality of our tool, we now report the experimental results
obtained by evaluating Certifaiger against a number of widely used bench-
marks. The benchmarks were first run on the open source k-induction-based
model checker McAiger [3], which was modified to give the values of k explicitly.
All experiments were carried out on an Intel R© Coretm i9-9900 CPU 3.60 GHz
computer with 32 GB RAM running Manjaro with kernel version 5.4.72-1.

We start with the TIP suite benchmarks which were originally used in [18].
The benchmarks were converted from .smv to AIGER by invoking smvtoaig
from the AIGER library. Table 1 reports the certification results obtained, where
the file names are associated by the origin of the problems explained in [18]. The
table displays the following information in each column:
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(a) (b)

Fig. 7. The time (a) and file size (b) comparison results for the TIP suite. The bench-
mark names are shown on the x-axis. Average values are shown as the blue horizontal
line in each plot. The y-axis of (a) displays the time ratio of total certification time
and model checking time. The y-axis of (b) shows the expansion factor indicating the
comparison of circuit sizes (k-witness circuit v.s the original). (Color figure online)

1. the name of the AIGER file,
2. the verification time on McAiger,
3. the size of the original circuit, in terms of the number of gates (thousands),
4. the k-inductive value k given by the model checker,
5. the size of the k-witness circuit,
6. the time taken on the k-witness generator, and
7. the size and solving time (seconds) of each condition.

Note here we selected benchmarks that gave a positive model checking result,
only in which case the original property is k-inductive. Moreover, three instances
that require simple paths constraints (also called loopFree constraints in [34])
were ruled out. Handling these constraints is an interesting area for future study.
We retrieved the inductive depths k from the model checker McAiger, and com-
pared with the results in [18] to ensure the values are identical. As shown in
Table 1, the values of k vary between 4 and 96. The SAT solver was able to
handle the proof checking without experiencing time-outs. We observe that the
k-witness circuit generation time is rather small, compared with the model check-
ing time as well as the proof checking time. In the proof checking stage, Table 1
suggests that the SAT-solving time for ϕconsec is much higher than the rest of
the formulas. This is as expected, as the formula ϕconsec is in general more com-
plicated than the rest, and appears to be the most difficult formula to solve. In
addition, QBF solving times are also worth-noting: in a few cases QBF solving
time is longer than for other formulas, however, in most cases, it is rather small.
To compare certification time with model checking time, we plotted the results
in Fig. 7a, where the y-axis shows the ratio of certification and model checking.
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Table 1. Experimental results for the TIP suite.

Here certification time is the sum of time taken on each component, assum-
ing the six conditions are computed in parallel. As shown in the diagram, the
average time ratio is around 8, which is quite promising. Furthermore, Fig. 7b
shows a comparison of circuit sizes, where the expansion factor ε is computed
by #C′

#C×k (alternatively, #C ′ = ε · #C · k). The average value observed here is
around 1.5. This is consistent with Definition 10, as we expected the size of the
k-witness circuit to grow linearly with respect to the original circuit and the
value of k.

Fig. 8. Certification time vs. model checking time obtained by running HWMCC’10
benchmarks.

We also used benchmarks from the Hardware Model Checking Competition
(HWMCC) 2010 [4]. The benchmarks were pre-filtered by running on McAiger
with a time-out of 15 min. A total of 513 instances were solved by McAiger,
from which we selected from the 216 unsat instances with a meaningful k (i.e.,
k ≥ 2). We also observed only 7 out of the 216 instances require simple path
constraints. The results in Fig. 8 are sorted by the benchmark names, which
enables us to compare individual benchmarks from the same family. In most
cases, similar to our previous observation from the TIP suite, the SAT solving
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Fig. 9. The k-witness circuit size vs. the original circuit size.

time of ϕconsec takes much longer than the rest, while in very few cases it is less
than the QBF solving time for ϕreset. The average time ratio is 30, where we
excluded 4 outliers in the plot coming from the pj20 family, that give a worse
result (total certification time ≥15 min). We observe that this was due to the
high format conversion time from QAIGER to QCIR [25] before the QBF solving
handled by QuAbS, while the actual QBF solving time was significantly smaller
and more feasible. We believe this can be overcome by generating an alternative
format directly in practice. Finally, similar to our previous TIP results, Fig. 9
shows the values of the expansion factor with an average of 1.5.

In the final experiments, to further inspect the expansion factor, we generalise
the Counter example in Example 1, where we scale the number of bits to 500
with a modulo value 32. To clarify the complexity of our construction for the
k-witness circuit, we ran experiments with different values of k. The results are
shown in Fig. 10, where the x-axis shows the values of b up to 431, meaning the
value of k was scaled up to 400. The expansion factor gradually converges to a
constant as we increase the value of b, as we expected.

Fig. 10. The experimental results of the Counter example. The values of b are shown
on the x-axis.
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As noticed above, overall our approach works efficiently in the certification
stage, in particular, in our implementation we adopted the linear construction
of k-witness circuit in Definition 10, thus the size of the resulting AIGER circuit
is linear in the size of the original circuit, and the value of k. Each component in
the tool suite works independently from each other when performing verification,
which increases trust in the verification results.

7 Conclusion

We propose an approach to certify k-induction-based model checking results,
by extending the model to produce an inductive invariant. The resulting tool,
Certifaiger, was evaluated experimentally on multiple sets of widely used
benchmarks. The analysis showed our approach can be adapted to use in practice.

Our certificates are linear in size of the original problem and k. Validation
requires several SAT checks and solving a simple QBF. In related work [8,23]
the worst case is considered to be exponential. It is an interesting open question
whether our notion of combinational simulation requiring a QBF check for the
reset condition can be changed to use only SAT checks.

Further, we only considered k-induction without simple paths constraints,
even though such constraints on executions of the original model can in princi-
ple be handled by adding unique state constraints to our k-witness circuit. For
simplicity we stick to models without such constraints, a restriction also made
for instance in the hardware model checking competition. Thus certifying k-
induction with simple path constraints is left to future work as well as handling
different types of properties such as liveness properties.

We also want to extend our approach to common preprocessing techniques
including temporal decomposition [11] or retiming [28] with the goal to obtain a
single certificate (witness circuit). This goal is particularly challenging for com-
plex multi-engine model checkers [9,10]. Furthermore, we believe our approach
can be extended to infinite-state systems, where k-induction is commonly used.

Acknowledgement. This work is supported by the Austrian Science Fund (FWF)
under the project W1255-N23, the LIT AI Lab funded by the State of Upper Austria,
and Academy of Finland under the project 336092.
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Abstract. The problem of model checking procedural programs has fos-
tered much research towards the definition of temporal logics for rea-
soning on context-free structures. The most notable of such results are
temporal logics on Nested Words, such as CaRet and NWTL. Recently,
the logic OPTL was introduced, based on the class of Operator Prece-
dence Languages (OPL), more powerful than Nested Words. We define
the new OPL-based logic POTL, and provide a model checking proce-
dure for it. POTL improves on NWTL by enabling the formulation of
requirements involving pre/post-conditions, stack inspection, and others
in the presence of exception-like constructs. It improves on OPTL by
being FO-complete, and by expressing more easily stack inspection and
function-local properties. We developed a model checking tool for POTL,
which we experimentally evaluate on some interesting use-cases.

Keywords: Linear temporal logic · Operator precedence languages ·
Model Checking · Visibly pushdown languages · Input-driven languages

1 Introduction

Model checking is one of the most successful techniques for the verification of soft-
ware programs. It consists in the exhaustive verification of themathematicalmodel
of a program against a specification of its desired behavior. The kind of proper-
ties that can be proved in this way depends both on the formalism employed to
model the program, and on the one used to express the specification. The initial
and most classical frameworks consist in the use of operational formalisms, such
as Transition Systems and Finite State Automata (generally Büchi automata)
for the model, and temporal logics such as Linear-time Temporal Logic (LTL),
Computation-Tree Logic (CTL) and CTL* for the specification [24]. The success
of such logics is due to their ease in reasoning about linear or branching sequences
of events over time, by expressing liveness and safety properties, their conciseness
with respect to automata, and the complexity of their model checking.

In this paper we consider linear-time temporal domains. LTL limits its set
of expressible properties to the First-Order Logic (FOL) definable fragment
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of regular languages. This is quite restrictive when compared with the most
popular abstract models of procedural programs, such as Pushdown Systems,
Boolean Programs [10], and Recursive State Machines [3]. All such stack-based
formalisms show behaviors that are expressible by means of Context-Free Lan-
guages (CFL), rather than regular ones. State and configuration reachability,
fair computation problems, and model checking of regular specifications have
been thoroughly studied for such formalisms [3,4,13,17,28,30,32,40,51,55]. To
expand the expressive power of specification languages too, [12,14] augmented
LTL with Presburger arithmetic constraints on the occurrences of states, obtain-
ing a logic capable of even some context-sensitive specifications, but with only
restricted decidable fragments. [41] introduced model checking of pushdown tree
automata specifications on regular systems, and Dynamic Logic was extended
to some limited classes of CFL [34]. Decision procedures for different kinds of
regular constraints on stack contents have been given in [18,29,37].

A coherent approach came with the introduction of temporal logics based
on Visibly Pushdown Languages (VPL) [7], a.k.a. Input-Driven Languages [47].
Such logics, namely CaRet [6] and its FO-complete successor NWTL [2], model
the execution trace of a procedural program as a Nested Word [8], consisting
in a linear ordering augmented with a one-to-one matching relation between
function calls and returns. They are the first ones featuring temporal modalities
that explicitly refer to the nesting structure of CFL [4]. This enables require-
ment specifications to include Hoare-style pre/post-conditions, stack-inspection
properties, and more. A μ-calculus based on VPL extends model checking to
branching-time semantics in [5], while [16] introduces a temporal logic capturing
the whole class of VPL. Timed extensions of CaRet are given in [15].

VPL too have their limitations. They are more general than Parenthesis Lan-
guages [46], but their matching relation is essentially constrained to be one-to-
one [43]. This hinders their suitability to model processes in which a single event
must be put in relation with multiple ones. Unfortunately, computer programs
often present such behaviors: exceptions and continuations are single events that
cause the termination (or re-instantiation) of multiple functions on the stack.

To reason about such behaviors, temporal logics based on Operator Precedence
Languages (OPL) have been proposed [22]. OPL were initially introduced with the
purpose of efficient parsing [31], a field in which they continue to offer useful appli-
cations [11]. They are capable of capturing the syntax of arithmetic expressions,
and other constructs whose context-free structure is not immediately visible. The
generality of the structure of their syntax trees is much greater than that of VPL,
which are strictly included in OPL [25]. Nevertheless, they retain the same closure
properties that make regular languages and VPL suitable for automata-theoretic
model checking: OPL are closed under Boolean operations, concatenation, Kleene
*, and language emptiness and inclusion are decidable [42]. They have been char-
acterized by means of push-down automata, Monadic Second-Order Logic and,
recently, by an extension of Regular Expressions [42,44].

OPTL [22] is the first linear-time temporal logic for which a model checking
procedure has been given on both finite and ω-words of OPL. It enables reasoning
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on procedural programs with exceptions, expressing properties about whether a
function can be terminated by an exception, or throw one, and also pre/post-
conditions. NWTL can be translated into OPTL in linear time, thus the latter is
capable of expressing all properties that can be formalized in CaRet and NWTL,
and many more. [22] does not explore OPTL’s expressiveness further, and does
not investigate the practical applicability of their model checking construction.

In this article, we introduce Precedence Oriented Temporal Logic (POTL),
which redefines the syntax and semantics of OPTL to be much closer to the
context-free structure of words. With POTL, it is much easier to navigate a
word’s syntax tree, expressing requirements that are aware of its structure. From
a more theoretical point of view, POTL is FO-complete whereas OPTL is not, so
that CaRet, NWTL, OPTL and POTL constitute a strict hierarchy in terms of
expressive power. Such a theoretical elaboration, however, is technically involved;
thus, for length reasons, it is documented in a technical report [23].

In this paper, instead, we focus on the model-checking application of POTL.
We provide a tableaux-construction procedure for model checking POTL, which
yields nondeterministic automata of size at most singly exponential in the for-
mula’s length, and is thus not asymptotically greater than that of LTL, NWTL
and OPTL. We implemented such a procedure in a tool called POMC, which we
evaluate on several interesting case studies. POMC’s performance is promising:
almost all case studies are verified in seconds and with a reasonable memory
consumption, with very few outliers. Such outliers are inevitable, due to the
exponential complexity of the task.

The related work on tools is not as rich as the theoretical one. Tools and
libraries such as VPAlib [48], VPAchecker [54], OpenNWA [27] and Symboli-
cAutomata [26] only implement operations such as union, intersection, universal-
ity/inclusion/emptiness check for Visibly Pushdown or Nested Word Automata,
but have no model checking capabilities. PAL [19] uses nested-word based moni-
tors to express program specifications, and a tool based on blast [36] implements
its runtime monitoring and model checking. PAL follows the paradigm of pro-
gram monitors, and is not—strictly speaking—a temporal logic. PTCaRet [52]
is a past version of CaRet, and its runtime monitoring has been implemented
in JavaMOP [20]. [49,50] describe a tool for model checking programs against
CaRet specifications. Since its purpose is malware detection, it targets program
binaries directly by modeling them as Pushdown Systems. Unfortunately, this
tool does not seem to be available online. To the best of our knowledge, POMC
is the only publicly-available1 tool for model-checking temporal logics capable
of expressing context-free properties.

The paper is organized as follows: we give some background on OPL in
Sect. 2, we introduce POTL in Sect. 3 and its model checking in Sect. 4, and we
evaluate our prototype model checker in Sect. 5. Due to space constraints, we
leave all formal proofs to a technical report [21].

1 https://github.com/michiari/POMC.

https://github.com/michiari/POMC
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2 Operator Precedence Languages

We assume some familiarity with classical formal language theory concepts
such as context-free grammar, parsing, shift-reduce algorithm, syntax tree (ST)
[33,35]. Operator Precedence Languages (OPL) are usually defined through their
generating grammars [31]; in this paper, however, we characterize them through
their accepting automata [42] which are the natural way for stating equiva-
lence properties with logic characterization, and for model checking. Readers
not familiar with OPL may refer to [43] for more explanations on the following
basic concepts; an explanatory example is also given at the end of this section.

Let Σ be a finite alphabet, and ε the empty string. We use a special symbol
# �∈ Σ to mark the beginning and the end of any string. An operator precedence
matrix (OPM) M over Σ is a partial function (Σ ∪ {#})2 → {�,

.=, �}, that,
for each ordered pair (a, b), defines the precedence relation (PR) M(a, b) holding
between a and b. If the function is total we say that M is complete. We call the
pair (Σ,M) an operator precedence alphabet. Relations �,

.=, �, are respectively
named yields precedence, equal in precedence, and takes precedence. By conven-
tion, the initial # yields precedence, and other symbols take precedence on the
ending #. If M(a, b) = π, where π ∈ {�,

.=, �}, we write a π b. For u, v ∈ Σ+ we
write u π v if u = xa and v = by with a π b. The role of PR is to give structure
to words: they can be seen as special and more concise parentheses, where e.g.
one “closing” � can match more than one “opening” �. Despite their graphical
appearance, PR are not ordering relations.

Definition 1. An operator precedence automaton (OPA) is a tuple A =
(Σ,M,Q, I, F, δ) where: (Σ,M) is an operator precedence alphabet, Q is a finite
set of states (disjoint from Σ), I ⊆ Q is the set of initial states, F ⊆ Q is the
set of final states, δ ⊆ Q × (Σ ∪ Q) × Q is the transition relation, which is the
union of the three disjoint relations δshift ⊆ Q×Σ ×Q, δpush ⊆ Q×Σ ×Q, and
δpop ⊆ Q × Q × Q. An OPA is deterministic iff I is a singleton, and all three
components of δ are—possibly partial—functions.

To define the semantics of OPA, we need some new notations. Letters
p, q, pi, qi, . . . denote states in Q. We use q0

a−→ q1 for (q0, a, q1) ∈ δpush, q0
a��� q1

for (q0, a, q1) ∈ δshift, q0
q2=⇒ q1 for (q0, q2, q1) ∈ δpop, and q0

w� q1, if the automa-
ton can read w ∈ Σ∗ going from q0 to q1. Let Γ = Σ × Q and Γ ′ = Γ ∪ {⊥} be
the stack alphabet ; we denote symbols in Γ ′ as [a, q] or ⊥. We set smb([a, q]) = a,
smb(⊥) = #, and st([a, q]) = q. For a stack content γ = γn . . . γ1⊥, with γi ∈ Γ ,
n ≥ 0, we set smb(γ) = smb(γn) if n ≥ 1, smb(γ) = # if n = 0.

A configuration of an OPA is a triple c = 〈w, q, γ〉, where w ∈ Σ∗#, q ∈ Q,
and γ ∈ Γ ∗⊥. A computation or run is a finite sequence c0 � c1 � . . . � cn of
moves or transitions ci � ci+1. There are three kinds of moves, depending on
the PR between the symbol on top of the stack and the next input symbol:
Push move: if smb(γ) � a then 〈ax, p, γ〉 � 〈x, q, [a, p]γ〉, with (p, a, q) ∈
δpush;
Shift move: if a

.= b then 〈bx, q, [a, p]γ〉 � 〈x, r, [b, p]γ〉, with (q, b, r) ∈ δshift;
Pop move: if a � b then 〈bx, q, [a, p]γ〉 � 〈bx, r, γ〉, with (q, p, r) ∈ δpop.



Model-Checking Structured Context-Free Languages 391

call ret han exc

call �
.= � �

ret � � � �

han � � �
.=

exc � � � �

#[call[[[han[call[call[call]]]exc]call ret]call ret]ret]#

Fig. 1. OPM Mcall (left) and a string with chains shown by brackets (right).

Shift and pop moves are not performed when the stack contains only ⊥. Push
moves put a new element on top of the stack consisting of the input symbol
together with the current state of the OPA. Shift moves update the top element
of the stack by changing its input symbol only. Pop moves remove the element
on top of the stack, and update the state of the OPA according to δpop on the
basis of the current state of the OPA and the state of the removed stack symbol.
They do not consume the input symbol, which is used only to establish the �

relation, remaining available for the next move. The OPA accepts the language
L(A) = {x ∈ Σ∗ | 〈x#, qI , ⊥〉 �∗ 〈#, qF , ⊥〉, qI ∈ I, qF ∈ F} .

We now introduce the concept of chain, which makes the connection between
OP relations and context-free structure explicit, through brackets.

Definition 2. A simple chain c0 [c1c2 . . . c�]c�+1 is a string c0c1c2 . . . c�c�+1, such
that: c0, c�+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . 	 (	 ≥ 1), and c0 � c1

.=
c2 . . . c�−1

.= c��c�+1. A composed chain is a string c0s0c1s1c2 . . . c�s�c�+1, where
c0 [c1c2 . . . c�]c�+1 is a simple chain, and si ∈ Σ∗ is the empty string or is such
that ci [si]ci+1 is a chain (simple or composed), for every i = 0, 1, . . . , 	 (	 ≥ 1).
Such a composed chain will be written as c0 [s0c1s1c2 . . . c�s�]c�+1 . c0 (resp. c�+1)
is called its left (resp. right) context; all symbols between them form its body.

A finite word w over Σ is compatible with an OPM M iff for each pair of
letters c, d, consecutive in w, M(c, d) is defined and, for each substring x of #w#
that is a chain of the form a[y]b, M(a, b) is defined.

Chains can be identified through the traditional operator prece-
dence parsing algorithm. We apply it to the sample word wex =
call han call call exc call ret ret, which is compatible with Mcall (for a more
complete treatment, cf. [33,43]). First, write all precedence relations between
consecutive characters, according to Mcall. Then, recognize all innermost pat-
terns of the form a � c

.= . . .
.= c � b as simple chains, and remove their bodies.

Then, write the precedence relations between the left and right contexts of the
removed body, a and b, and iterate this process until only ## remains. This
procedure is applied to wex as follows:

1 # � call � han � call � call � exc � call .= ret � ret � #
2 # � call � han � call � exc � call .= ret � ret � #
3 # � call � han .= exc � call .= ret � ret � #
4 # � call � call .= ret � ret � #
5 # � call .= ret � #
6 # .= #
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The chain body removed in each step is underlined. In step 1, call[call]exc is
a simple chain, so its body call is removed. Then, in step 2 we recognize the
simple chain han[call]exc, which means han[call[call]]exc, where [call] is the
chain body removed in step 1, is a composed chain. This way, we recognize,
e.g., han[call]exc, call[hanexc]call as simple chains, and han[call[call]]exc and
call[han[call[call]]exc]call as composed chains (with inner chain bodies enclosed
in brackets). Figure 1 shows the structure of a longer version of wex, which is an
isomorphic representation of its ST as depicted in Fig. 4. Each chain corresponds
to an internal node, and the fringe of the subtree rooted at it is the chain’s body.

Let A be an OPA. We call a support for the simple chain c0 [c1c2 . . . c�]c�+1

any path in A of the form q0
c1−→ q1 ��� . . . ��� q�−1

c���� q�
q0=⇒ q�+1. The

label of the last (and only) pop is exactly q0, i.e. the first state of the path; this
pop is executed because of relation c� � c�+1. We call a support for the composed
chain c0 [s0c1s1c2 . . . c�s�]c�+1 any path in A of the form q0

s0� q′
0

c1−→ q1
s1� q′

1

c2���
. . .

c���� q�
s�� q′

�

q′
0=⇒ q�+1 where, for every i = 0, 1, . . . , 	: if si �= ε, then qi

si� q′
i

is a support for the chain ci [si]ci+1 , else q′
i = qi.

Chains fully determine the parsing structure of any OPA over (Σ,M). If
the OPA performs the computation 〈sb, qi, [a, qj ]γ〉 �∗ 〈b, qk, γ〉, then a[s]b is
necessarily a chain over (Σ,M), and there exists a support like the one above
with s = s0c1 . . . c�s� and q�+1 = qk. This corresponds to the parsing of the
string s0c1 . . . c�s� within the contexts a,b, which contains all information needed
to build the subtree whose frontier is that string.

Consider the OPA A(Σ,M) = (Σ,M, {q}, {q}, {q}, δmax) where δmax(q, q) =
q, and δmax(q, c) = q, ∀c ∈ Σ. We call it the OP Max-Automaton over Σ,M . For
a max-automaton, each chain has a support. Since there is a chain #[s]# for any
string s compatible with M , a string is accepted by A(Σ,M) iff it is compatible
with M . If M is complete, each string is accepted by A(Σ,M), which defines the
universal language Σ∗ by assigning to any string the (unique) structure compat-
ible with the OPM. With Mcall of Fig. 1, if we take e.g. the string ret call han,
it is accepted by the max-automaton with structure #[[ret]call[han]]#.

In conclusion, given an OP alphabet, the OPM M assigns a unique structure
to any compatible string in Σ∗; unlike VPL, such a structure is not visible in the
string, and must be built by means of a non-trivial parsing algorithm. An OPA
defined on the OP alphabet selects an appropriate subset within the “universe”
of strings compatible with M . For a more complete description of the OPL family
and of its relations with other CFL we refer the reader to [43].

2.1 Operator Precedence ω-Languages

All definitions regarding OPL are extended to infinite words in the usual way,
but with a few distinctions. Given an OP alphabet (Σ,M), an ω-word w ∈ Σω

is compatible with M if every prefix of w is compatible with M . OP ω-words
are not terminated by the delimiter #. An ω-word may contain never-ending
chains of the form c0 � c1

.= c2
.= · · · , where the � relation between c0 and c1

is never closed by a corresponding �. Such chains are called open chains and
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may be simple or composed. A composed open chain may contain both open
and closed subchains. Of course, a closed chain cannot contain an open one. A
terminal symbol a ∈ Σ is pending if it is part of the body of an open chain and
of no closed chains.

OPA classes accepting the whole class of ωOPL can be defined by augmenting
Definition 1 with Büchi or Muller acceptance conditions [42]. In this paper, we
only consider the former. The semantics of configurations, moves and infinite
runs are defined as for finite OPA. For the acceptance condition, let ρ be a run
on an ω-word w. Define

Inf(ρ) = {q ∈ Q | there exist infinitely many positions i s.t. 〈βi, q, xi〉 ∈ ρ}

as the set of states that occur infinitely often in ρ. ρ is successful iff there exists
a state qf ∈ F such that qf ∈ Inf(ρ). An ωOPBA A accepts w ∈ Σω iff there is a
successful run of A on w. The ω-language recognized by A is L(A) = {w ∈ Σω |
A accepts w}. Unlike OPA, ωOPBA do not require the stack to be empty for
word acceptance: when reading an open chain, the stack symbol pushed when
the first character of the body of its underlying simple chain is read remains into
the stack forever; it is at most updated by shift moves.

The most important closure properties of OPL are preserved by ωOPL,
which form a Boolean algebra and are closed under concatenation of an OPL
with an ωOPL [42]. The equivalence between deterministic and nondeterministic
automata is lost in the infinite case, which is unsurprising, since it also happens
for regular ω-languages and ωVPL.

2.2 Modeling Programs with OPA

For readers not familiar with OPL, we show how OPA can naturally model pro-
gramming languages such as Java and C++. Given a set AP of atomic proposi-
tions describing events and states of the program, we use (P(AP ),MAP ) as the
OP alphabet. For convenience, we consider a partitioning of AP into a set of
standard propositional labels (in round font), and structural labels (SL, in bold).
SL define the OP structure of the word: MAP is only defined for subsets of AP
containing exactly one SL, so that given two SL l1, l2, for any a, a′, b, b′ ∈ P(AP )
s.t. l1 ∈ a, a′ and l2 ∈ b, b′ we have MAP (a, b) = MAP (a′, b′). Hence, we define
an OPM on the entire P(AP ) by only giving the relations between SL, as we did
for Mcall. Figure 2 shows how to model a procedural program with an OPA. The
OPA simulates the program’s behavior with respect to the stack, by expressing
its execution traces with four event kinds: call (resp. ret) marks a procedure call
(resp. return), han the installation of an exception handler by a try statement,
and exc an exception being raised. OPM Mcall defines the context-free structure
of the word, which is strictly linked with the programming language semantics:
the � PR causes nesting (e.g., calls can be nested into other calls), and the .=
PR implies a one-to-one relation, e.g. between a call and the ret of the same
function, and a han and the exc it catches. Each OPA state represents a line
in the source code. First, procedure pA is called by the program loader (M0),
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pA() {
A0: try {
A1: pB();
A2: } catch {
A3: pErr();
A4: pErr();

}
Ar: }

pB() {
B0: pC();
Br: }

pC() {
C0: if (*) {
C1: throw;
C2: } else {
C3: pC();

}
Cr: }

M0 A0 A1 B0 C0

A2A3ErArAr’Mr

A4

call
pA

han

try

call
pB

call
pC

callpC

A1, B0, C0
exc

A0call
pErr

retpErr

A3call
pErr

A4ret
pA

M0

Fig. 2. Example procedural program (top) and the derived OPA (bottom). ‘*’ implies
a non-deterministic choice. Push, shift, pop moves are shown by, resp., solid, dashed
and double arrows.

and [{call,pA},M0] is pushed onto the stack, to track the program state before
the call. Then, the try statement at line A0 of pA installs a handler. All subse-
quent calls to pB and pC push new stack symbols on top of the one pushed with
han. pC may only call itself recursively, or throw an exception, but never return
normally. This is reflected by exc being the only transition leading from state
C0 to the accepting state Mr, and pB and pC having no way to a normal ret.
The OPA has a look-ahead of one input symbol, so when it encounters exc, it
must pop all symbols in the stack, corresponding to active function frames, until
it finds the one with han in it, which cannot be popped because han .= exc.
Notice that such behavior cannot be modeled by Visibly Pushdown Automata
or Nested Word Automata, because they need to read an input symbol for each
pop move. Thus, han protects the parent function from the exception. Since the
state contained in han’s stack symbol is A0, the execution resumes in the catch
clause of pA. pA then calls twice the error-handling function pErr, which ends
regularly both times, and returns. The string of Fig. 1 is accepted by this OPA.

In this example, we only model the stack behavior for simplicity, but other
statements, such as assignments, and other behaviors, such as continuations,
could be modeled by a different choice of the OPA and OPM, and other aspects
of the program’s state by appropriate abstractions [38].

3 POTL: Syntax and Semantics

Given a finite set of atomic propositions AP , the syntax of POTL follows:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | �tϕ | �tϕ | χt
F ϕ | χt

P ϕ | ϕ U t
χ ϕ | ϕ St

χ ϕ

| �t
Hϕ | �t

Hϕ | ϕ U t
H ϕ | ϕ St

H ϕ
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# � call � han � call � call � call � exc � call
.= ret � call

.= ret � ret � #
pA pB pC pC pErr pErr pErr pErr pA

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 3. The string of Fig. 1 as an OP word. Chains are shown by edges joining their
contexts. Standard atomic propositions are shown below SL: pl means a call or a ret is
related to procedure pl. First, procedure pA is called (pos. 1), and it installs a handler
in pos. 2. Then, three procedures are called, and one (pC) throws an exception, which
is caught by the handler. Two more functions are called and, finally, pA returns.

where a ∈ AP , and t ∈ {d, u}.
The semantics of POTL is based on the word structure—also called OP word

for short—(U,MAP , P ), where U = {0, 1, . . . , n, n+1}, with n ∈ N is a set of word
positions; P : U → P(AP ) is a function associating each position in U with the
set of atomic propositions holding in that position, with P (0) = P (n + 1) = {#}.
Given two positions i, j and a PR π, we write i π j to say P (i) π P (j).

We define the chain relation χ ⊆ U × U so that χ(i, j) holds between two
positions i, j iff i < j − 1, and i and j are resp. the left and right contexts of the
same chain. For composed chains, χ may not be one-to-one, but also one-to-many
or many-to-one. Given i, j ∈ U , relation χ has the following properties:

1. It never crosses itself: if χ(i, j) and χ(h, k), for any h, k ∈ U , then we have
i < h < j =⇒ k ≤ j and i < k < j =⇒ i ≤ h.

2. If χ(i, j), then i � i + 1 and j − 1 � j.
3. There exists at most one single position h, called leftmost context of j, s.t.

χ(h, j) and h � j or h
.= j; for any k s.t. χ(k, j) and k � j we have k > h.

4. There exists at most one single position h, called rightmost context of i, s.t.
χ(i, h) and i � h or i

.= h; for any k s.t. χ(i, k) and i � k we have k < h.

Property 4 says that when the chain relation is one-to-many, the contexts of
the outermost chains are in the .= or � relation, while the inner ones are in the
� relation. Property 3 says that contexts of outermost many-to-one chains are
in the .= or � relation, the inner ones being in the � relation. In the ST, the
right context j of a chain is at the same level as the left one i when i

.= j (e.g.,
in Fig. 4, pos. 1 and 11), at a lower level when i � j (e.g., pos. 1 with 7, and 9),
at a higher level if i � j (e.g., pos. 3 and 4 with 6).

The truth of POTL formulas is defined w.r.t. a single word position. Let
w be an OP word, and a ∈ AP . Then, for any position i ∈ U of w, we have
(w, i) |= a if a ∈ P (i). Operators such as ∧ and ¬ have the usual semantics from
propositional logic. Next, while giving the formal semantics of POTL operators,
we illustrate it by showing how it can be used to express properties on program
execution traces, such as the one of Fig. 3.
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·

# (0) ·

call (1) ·

·

·

han (2) ·

call (3) ·

call (4) ·

call (5)

exc (6)

call (7) ret (8)

call (9) ret (10)

ret (11)

# (12)

Fig. 4. The ST corresponding to the word
of Fig. 3. Dots are internal nodes.

a) Next/Back Operators. The
downward next and back operators�d and �d are like their LTL coun-
terparts, except they are true only
if the next (resp. current) position
is at a lower or equal ST level than
the current (resp. preceding) one. The
upward next and back, �u and �u,
are symmetric. Formally, (w, i) |=�dϕ iff (w, i + 1) |= ϕ and i � (i + 1)
or i

.= (i + 1), and (w, i) |= �dϕ iff
(w, i − 1) |= ϕ, and (i − 1) � i or
(i − 1) .= i. Substitute � with � to
obtain the semantics for �u and �u.
E.g., we can write �dcall to say that
the next position is an inner call (it
holds in pos. 2, 3, 4 of Fig. 3), �dcall to say that the previous position is a
call, and the current is the first of the body of a function (pos. 2, 4, 5), or the
ret of an empty one (pos. 8, 10), and �ucall to say that the current position
terminates an empty function frame (holds in 6, 8, 10). In pos. 2 �dpB holds,
but �upB does not.

b) Chain Next/Back Operators. The chain next and back operators χt
F and

χt
P , t ∈ {d, u}, evaluate their argument respectively on future and past positions

in the chain relation with the current one. The downward (resp. upward) variant
only considers chains whose right context goes down (resp. up) in the ST. E.g.,
in pos. 1 of Fig. 3, χd

F pErr holds because χ(1, 7) and χ(1, 9), meaning that pA

calls pErr at least once. Formally, (w, i) |= χd
F ϕ iff there exists a position j > i

such that χ(i, j), i � j or i
.= j, and (w, j) |= ϕ. (w, i) |= χd

P ϕ iff there exists
a position j < i such that χ(j, i), j � i or j

.= i, and (w, j) |= ϕ. Replace �

with � for the upward versions. In Fig. 3, χu
Fexc is true in call positions whose

procedure is terminated by an exception thrown by an inner procedure (e.g. pos.
3 and 4). χu

P call is true in exc statements that terminate at least one procedure
other than the one raising it, such as the one in pos. 6. χd

F ret and χu
F ret hold

in calls to non-empty procedures that terminate normally, and not due to an
uncaught exception (e.g., pos. 1).

c) Until/Since Operators. POTL has two kinds of until and since operators.
They express properties on paths, which are sequences of positions obtained by
iterating the different kinds of next or back operators. In general, a path of length
n ∈ N between i, j ∈ U is a sequence of positions i = i1 < i2 < · · · < in = j.
The until operator on a set of paths Γ is defined as follows: for any word w and
position i ∈ U , and for any two POTL formulas ϕ and ψ, (w, i) |= ϕ U(Γ ) ψ
iff there exist a position j ∈ U , j ≥ i, and a path i1 < i2 < · · · < in between
i and j in Γ such that (w, ik) |= ϕ for any 1 ≤ k < n, and (w, in) |= ψ. Since
operators are defined symmetrically. Note that, depending on Γ , a path from
i to j may not exist. We define until/since operators by associating them with
different sets of paths.
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The summary until ψ U t
χ θ (resp. since ψ St

χ θ) operator is obtained by induc-
tively applying the �t and χt

F (resp. �t and χt
P ) operators. It holds in a position

in which either θ holds, or ψ holds together with �t(ψ U t
χ θ) (resp. �t(ψ St

χ θ))
or χt

F (ψ U t
χ θ) (resp. χt

P (ψ St
χ θ)). It is an until operator on paths that can move

not only between consecutive positions, but also between contexts of a chain,
skipping its body. With the OPM of Fig. 1, this means skipping function bodies.
The downward variants can move between positions at the same level in the ST
(i.e., in the same simple chain body), or down in the nested chain structure. The
upward ones remain at the same level, or move to higher levels of the ST.

Formula � Uu
χ exc is true in positions contained in the frame of a function

that is terminated by an exception. It is true in pos. 3 of Fig. 3 because of path
3-6, and false in pos. 1, because no path can enter the chain whose contexts are
pos. 1 and 11. Formula � Ud

χ exc is true in call positions whose function frame
contains excs, but that are not necessarily terminated by one of them, such as
the one in pos. 1 (with path 1-2-6).

We define Downward Summary Paths (DSP) as follows. Given an OP word
w, and two positions i ≤ j in w, the DSP between i and j, if it exists, is a
sequence of positions i = i1 < i2 < · · · < in = j such that, for each 1 ≤ p < n,

ip+1 =

{
k if k = max{h | h ≤ j ∧ χ(ip, h) ∧ (ip � h ∨ ip

.= h)}exists;
ip + 1 otherwise, if ip � (ip + 1) or ip

.= (ip + 1).

The Downward Summary (DS) until and since operators Ud
χ and Sd

χ use as Γ the
set of DSP starting in the position in which they are evaluated. The definition
for the upward counterparts is, again, obtained by substituting � with �. In
Fig. 3, call Ud

χ (ret ∧ pErr) holds in pos. 1 because of path 1-7-8 and 1-9-10,
(call ∨ exc) Su

χ pB in pos. 7 because of path 3-6-7, and (call ∨ exc) Uu
χ ret in 3

because of path 3-6-7-8.

d) Hierarchical Operators. A single position may be the left or right context
of multiple chains. The operators seen so far cannot keep this fact into account,
since they “forget” about a left context when they jump to the right one. Thus,
we introduce the hierarchical next and back operators. The upward hierarchical
next (resp. back), �u

Hψ (resp. �u
Hψ), is true iff the current position j is the right

context of a chain whose left context is i, and ψ holds in the next (resp. previous)
pos. j′ that is the right context of i, with i � j, j′. So, �u

HpErr holds in pos. 7 of
Fig. 3 because pErr holds in 9, and �u

HpErr in 9 because pErr holds in 7. In the
ST, �u

H goes up between calls to pErr, while �u
H goes down. Their downward

counterparts behave symmetrically, and consider multiple inner chains sharing
their right context. They are formally defined as:

– (w, i) |= �u
Hϕ iff there exist a position h < i s.t. χ(h, i) and h � i and a

position j = min{k | i < k ∧ χ(h, k) ∧ h � k} and (w, j) |= ϕ;
– (w, i) |= �u

Hϕ iff there exist a position h < i s.t. χ(h, i) and h � i and a
position j = max{k | k < i ∧ χ(h, k) ∧ h � k} and (w, j) |= ϕ;

– (w, i) |= �d
Hϕ iff there exist a position h > i s.t. χ(i, h) and i � h and a

position j = min{k | i < k ∧ χ(k, h) ∧ k � h} and (w, j) |= ϕ;
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– (w, i) |= �d
Hϕ iff there exist a position h > i s.t. χ(i, h) and i � h and a

position j = max{k | k < i ∧ χ(k, h) ∧ k � h} and (w, j) |= ϕ.

In the ST of Fig. 4, �d
H and �d

H go down and up among calls terminated by the
same exc. For example, in pos. 3 �d

HpC holds, because both pos. 3 and 4 are
in the chain relation with 6. Similarly, in pos. 4 �d

HpB holds. Note that these
operators do not consider leftmost/rightmost contexts, so �u

Hret is false in pos.
9, as call .= ret, and pos. 11 is the rightmost context of pos. 1.

The hierarchical until and since operators are defined by iterating these next
and back operators. The upward hierarchical path (UHP) between i and j is a
sequence of positions i = i1 < i2 < · · · < in = j such that there exists a position
h < i such that for each 1 ≤ p ≤ n we have χ(h, ip) and h � ip, and for each
1 ≤ q < n there exists no position k such that iq < k < iq+1 and χ(h, k). The
until and since operators based on the set of UHP starting in the position in
which they are evaluated are denoted as Uu

H and Su
H . E.g., call Uu

H pErr holds
in pos. 7 because of the singleton path 7 and path 7-9, and callSu

H pErr in pos. 9
because of paths 9 and 7-9.

The downward hierarchical path (DHP) between i and j is a sequence of
positions i = i1 < i2 < · · · < in = j such that there exists a position h > j such
that for each 1 ≤ p ≤ n we have χ(ip, h) and ip � h, and for each 1 ≤ q < n
there exists no position k such that iq < k < iq+1 and χ(k, h). The until and
since operators based on the set of DHP starting in the position in which they
are evaluated are denoted as Ud

H and Sd
H . In Fig. 3, callUd

H pC holds in pos. 3,
and call Sd

H pB in pos. 4, both because of path 3-4.
The POTL until and since operators enjoy expansion laws similar to those

of LTL. Here we give those for two until operators, those for their since and
downward counterparts being symmetric.

ϕ U t
χ ψ ≡ ψ ∨

(
ϕ ∧ ( �t (ϕ U t

χ ψ) ∨ χt
F (ϕ U t

χ ψ)
))

ϕ Uu
H ψ ≡ (ψ ∧ χd

P � ∧ ¬χu
P �) ∨ (

ϕ ∧ �u
H(ϕ Uu

H ψ)
)

3.1 Expressiveness of POTL

We first define some derived operators. For t ∈ {d, u}, we define the down-
ward/upward summary eventually as �tϕ := �U t

χϕ, and the downward/upward
summary globally as �tϕ := ¬�t(¬ϕ). �uϕ and �uϕ resp. say that ϕ holds in
one or all positions in the path from the current position to the root of the ST.�dϕ says that ϕ holds in at least one position in the current subtree, and �dϕ
in all of them. E.g., if �d(¬pA) holds in a call, it means that pA never holds in
its whole function body, which is the subtree rooted next to the call.

In the technical report, we prove

Theorem 1 ([23]). POTL = FOL with one free variable on OP words.

Equivalence to FOL on the relevant algebraic structure is a desirable feature of
linear-time temporal logics, and it was proved for LTL [39] and NWTL [2]. It
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is in some sense a theoretical assurance of the sufficient expressive power of the
logic. Moreover, NWTL ⊂ OPTL was proved in [22], and OPTL ⊆ POTL comes
from Theorem 1 and the semantics of OPTL being expressible in FOL. In [23],
we also prove that there exist POTL formulas not expressible in OPTL. Thus,
we can claim CaRet [6] ⊆ NWTL ⊂ OPTL ⊂ POTL. One of such formulas is�dpA which, evaluated e.g. on a han position with a matched exc, states that
pA holds in one of the positions in the same subtree.

More importantly, POTL can express many useful requirements of proce-
dural programs. To emphasize the potential practical applications in automatic
verification, we supply a few examples of typical program properties expressed as
POTL formulas, not all of them being expressible in the other above languages.

The LTL globally can be written as �ψ := ¬�u(�d¬ψ). The two nested
eventually operators enumerate all future positions by going up and then down
in any direction in the syntax tree: when negated, this means ¬ψ may never
hold. POTL can express Hoare-style pre/postconditions with formulae such as
�(call ∧ ρ =⇒ χd

F (ret ∧ θ)), where ρ is the precondition, and θ is the
postcondition.

Unlike NWTL, POTL can easily express properties related to exception han-
dling and interrupt management [43]. E.g., the shortcut CallThr(ψ) := �u(exc ∧
ψ) ∨ χu

F (exc ∧ ψ), evaluated in a call, states that the procedure currently started
is terminated by a exc in which ψ holds. So, �(call ∧ ρ ∧ CallThr(�) =⇒
CallThr(θ)) means that if precondition ρ holds when a procedure is called, then
postcondition θ must hold if that procedure is terminated by an exception. In
object oriented programming languages, if ρ ≡ θ is a class invariant asserting that
a class instance’s state is valid, this formula expresses weak exception safety [1],
and strong exception safety if ρ and θ express particular states of the class instance.
The no-throw guarantee can be stated with �(call ∧ pA =⇒ ¬CallThr(�)),
meaning procedure pA is never interrupted by an exception.

Stack inspection [29,37], i.e. properties regarding the sequence of procedures
active in the program’s stack at a certain point of its execution, is an impor-
tant class of requirements that can be expressed with shortcut Scall(ϕ,ψ) :=
(call =⇒ ϕ) Sd

χ (call ∧ ψ), which subsumes the call since of CaRet, as it also
works with exceptions. E.g., �

(
(call ∧ pB ∧ Scall(�,pA)) =⇒ CallThr(�)

)
means that whenever pB is executed and at least one instance of pA is on the
stack, pB is terminated by an exception. The OPA of Fig. 2 satisfies this formula,
because pB is called by pA, and pC throws.

4 Model Checking

Given an OP alphabet (P(AP ),MAP ), where AP is a finite set of atomic propo-
sitions, and a POTL formula ϕ, we build an OPA Aϕ = (P(AP ),MAP , Q, I, F, δ)
that accepts models of ϕ. The construction of Aϕ resembles the classical one for
LTL and the ones for NWTL and OPTL, diverging from them significantly when
dealing with temporal obligations that involve positions in the chain relation.

We first introduce Cl(ϕ), the closure of ϕ, containing all subformulas of
ϕ, and some auxiliary operators. The latter are needed to model-check chain
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next and back operators. For any PR π ∈ {�,
.=, �}, we define them as follows:

(w, i) |= χπ
F ϕ iff there exists j > i such that χ(i, j), i π j, and (w, j) |= ϕ;

(w, i) |= χπ
P ϕ iff there exists j < i such that χ(j, i), j π i, and (w, j) |= ϕ.

Cl(ϕ) is the smallest set such that, for t ∈ {d, u}:

1. ϕ ∈ Cl(ϕ),
2. AP ⊆ Cl(ϕ),
3. if ψ ∈ Cl(ϕ) and ψ �= ¬θ, then ¬ψ ∈ Cl(ϕ) (we identify ¬¬ψ with ψ);
4. if ¬ψ ∈ Cl(ϕ), then ψ ∈ Cl(ϕ);
5. if any of ψ ∧ θ or ψ ∨ θ is in Cl(ϕ), then ψ, θ ∈ Cl(ϕ);
6. if any of �tψ, �tψ, χt

F ψ, or χt
P ψ is in Cl(ϕ), then ψ ∈ Cl(ϕ);

7. if χd
F ψ (resp. χu

F ψ) is in Cl(ϕ), then χ�

F ψ (resp. χ�

F ψ), χ
.
=
F ψ, χL are in it;

8. if χd
P ψ (resp. χu

P ψ) is in Cl(ϕ), then χ�

P ψ (resp. χ�

P ψ), χ
.
=
P ψ are in it;

9. if any of ψ U t
χ θ, ψ St

χ θ, ψ U t
H θ, or ψ St

H θ is in Cl(ϕ), then ψ, θ ∈ Cl(ϕ);
10. if ψ U t

χ θ ∈ Cl(ϕ), then �t(ψ U t
χ θ), χt

F (ψ U t
χ θ) ∈ Cl(ϕ) (since is symmetric).

The set Atoms(ϕ) contains all consistent subsets of Cl(ϕ), i.e. all Φ ⊆ Cl(ϕ) s.t.

– for every ψ ∈ Cl(ϕ), ψ ∈ Φ iff ¬ψ /∈ Φ;
– ψ ∧ θ ∈ Φ, iff ψ ∈ Φ and θ ∈ Φ;
– ψ ∨ θ ∈ Φ, iff ψ ∈ Φ or θ ∈ Φ, or both.

The consistency constraints on Atoms(ϕ) will be augmented incrementally in
the following, for each operator.

The set of states of Aϕ is Q = Atoms(ϕ)2, and its elements, which we
denote with Greek capital letters, are of the form Φ = (Φc, Φp), where Φc is the
set of formulas that hold in the current position, and Φp is the set of temporal
obligations. The latter keep track of arguments of temporal operators that must
be satisfied after a chain body, skipping it. The way they do so depends on the
transition relation δ, which we also define incrementally. Each automaton state is
associated to word positions. So, for (Φ, a, Ψ) ∈ δpush/shift, with Φ ∈ Atoms(ϕ)2

and a ∈ P(AP ), we have Φc ∩ AP = a (by Φc ∩ AP we mean the set of atomic
propositions in Φc). Pop moves do not read input symbols, and the automaton
remains at the same position when performing them: for any (Φ,Θ, Ψ) ∈ δpop

we impose Φc = Ψc. The initial set I contains states of the form (Φc, Φp), with
ϕ ∈ Φc, and the final set F states of the form (Ψc, Ψp), s.t. Ψc ∩ AP = {#}
and Ψc contains no future operators. We extend the construction to the most
important operators, leaving the others and correctness proofs to [21].

Next/Back Operators. Let (Φ, a, Ψ) ∈ δshift ∪ δpush, with Φ, Ψ ∈ Atoms(ϕ)2,
a ∈ P(AP ), and let b = Ψc ∩ AP : we have �dψ ∈ Φc iff ψ ∈ Ψc and either a � b
or a

.= b. The constraints introduced for the �d operator are symmetric, and for
their upward counterparts it suffices to replace � with �.

If χd
F ψ ∈ Cl(ϕ), for each Φ ∈ Atoms(ϕ)2 we impose that χd

F ψ ∈ Φc iff
χ�

F ψ ∈ Φc or χ
.
=
F ψ ∈ Φc. Analogous rules are defined for the upward and past

chain operators. The auxiliary symbol χL forces the current position to be the
first one of a chain body. Let the current state of the OPA be Φ ∈ Atoms(ϕ)2:
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input state stack PR move

1 call han exc ret#
Φ0

c = {call, χd
F ret, χ

.
=
F ret},

Φ0
p = {χL}

⊥ # � call push

2 hanexc ret# Φ1 = ({han}, {χ
.
=
F ret, χL}) [call, Φ0]⊥ call � han push

3 exc ret# Φ2 = ({exc}, ∅) [han, Φ1][call, Φ0]⊥ han
.= exc shift

4 ret# Φ3 = ({ret}, ∅) [exc, Φ1][call, Φ0]⊥ exc � ret pop
5 ret# Φ4 = ({ret}, {χ

.
=
F ret}) [call, Φ0]⊥ call

.= ret shift
6 # Φ5 = ({#}, ∅) [ret, Φ0]⊥ ret � # pop
7 # Φ5 = ({#}, ∅) ⊥ – –

Fig. 5. Example accepting run of the automaton for χd
F ret.

χL ∈ Φp iff the next transition (i.e. the one reading the current position) is
a push. Formally, if (Φ, a, Ψ) ∈ δshift or (Φ,Θ, Ψ) ∈ δpop, for any Φ,Θ, Ψ and
a, then χL �∈ Φp. If (Φ, a, Ψ) ∈ δpush, then χL ∈ Φp. For any initial state
(Φc, Φp) ∈ I, we have χL ∈ Φp iff # �∈ Φc.

If χ
.
=
F ψ ∈ Cl(ϕ), its satisfaction is ensured by the following constraints on δ:

1. Let (Φ, a, Ψ) ∈ δpush/shift: then χ
.
=
F ψ ∈ Φc iff χ

.
=
F ψ, χL ∈ Ψp;

2. let (Φ,Θ, Ψ) ∈ δpop: then χ
.
=
F ψ �∈ Φp, and χ

.
=
F ψ ∈ Θp iff χ

.
=
F ψ ∈ Ψp;

3. let (Φ, a, Ψ) ∈ δshift: then χ
.
=
F ψ ∈ Φp iff ψ ∈ Φc.

If χ�

F ψ ∈ Cl(ϕ), χ�

F ψ is allowed in the pending part of initial states, and we
add the following constraints:

4. Let (Φ, a, Ψ) ∈ δpush/shift: then χ�

F ψ ∈ Φc iff χ�

F ψ, χL ∈ Ψp;
5. let (Φ,Θ, Ψ) ∈ δpop: then χ�

F ψ ∈ Θp iff χL ∈ Ψp, and either χ�

F ψ ∈ Ψp or
ψ ∈ Φc.

We illustrate how the construction works for χ
.
=
F with the example of Fig. 5.

The OPA starts in state Φ0, with χd
F ret ∈ Φ0

c , and guesses that χd
F will be

fulfilled by χ
.
=
F , so χ

.
=
F ret ∈ Φ0

c . call is read by a push move, resulting in state
Φ1. The OPA guesses the next move will be a push, so χL ∈ Φ1

p. By rule 1, we
have χ

.
=
F ret ∈ Φ1

p. The last guess is immediately verified by the next push (step
2–3). Thus, the pending obligation for χ

.
=
F ret is stored onto the stack in Φ1.

The OPA, then, reads exc with a shift, and pops the stack symbol containing
Φ1 (step 4–5). By rule 2, the temporal obligation is resumed in the next state
Φ4, so χ

.
=
F ret ∈ Φ4

p. Finally, ret is read by a shift which, by rule 3, may occur
only if ret ∈ Φ4

c . Rule 3 verifies the guess that χ
.
=
F ret holds in Φ0, and fulfills

the temporal obligation contained in Φ4
p, by preventing computations in which

ret �∈ Φ4
c from continuing. Had the next transition been a pop (e.g. because there

was no ret and call�#), the run would have been blocked by rule 2, preventing
the OPA from reaching an accepting state, and from emptying the stack.

Summary Until and Since. The construction for these operators is based
on their expansion laws. For any Φ ∈ Atoms(ϕ)2, we have ψ U t

χ θ ∈ Φc, with
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t ∈ {d, u} being a direction, iff either: 1. θ ∈ Φc, 2. �t(ψ U t
χ θ), ψ ∈ Φc, or 3.

χt
F (ψ U t

χ θ), ψ ∈ Φc. The rules for since are symmetric.

Hierarchical Operators. For the hierarchical operators, we do not give an
explicit OPA construction, but we rely on a translation into other POTL
operands. For each hierarchical operator η in ϕ, we add a propositional sym-
bol q(η). The upward hierarchical operators consider the right contexts of chains
sharing the same left context. To distinguish such positions, we define formula
γL,η := χ�

P

(
q(η) ∧ �(�¬q(η)) ∧ �(�¬q(η))

)
, where � and � are as in Sect. 3.1.� and � are the LTL next and back operators, for which model checking can

be done as for �d and �d, but removing the restrictions on PR. γL,η, evaluated
on a position i, asserts that q(η) holds in the unique position h such that χ(h, i)
and h � i. Thus, q(η) can be used to distinguish other positions j such that
χ(h, j) and h � j, as χ�

P q(η) holds in them. The translations for future upward
hierarchical operators follow, the others being analogous.

�u
Hψ := γL,�u

Hψ ∧ �(
(¬χ�

P q(�u
Hψ)) Uu

χ (χ�

P q(�u
Hψ) ∧ ψ)

)
ψ Uu

H θ := γL,ψUu
Hθ ∧ (χ�

P q(ψUu
Hθ) =⇒ ψ) Uu

χ (χ�

P q(ψUu
Hθ) ∧ θ)

4.1 Model Checking for ω-Words

To perform model checking of a POTL formula ϕ on OP ω-words, we build a gen-
eralized ωOPBA Aω

ϕ = (P(AP ),MAP , Qω, I,F, δ), where Qω = Atoms(ϕ)2 ×
P(Clstack(ϕ)), which differs from the finite-word OPA only for the state set and
the acceptance condition. As in [2], the generalized Büchi acceptance condition
is a slight variation on the one shown in Sect. 2.1: F is the set of sets of Büchi
final states, and an ω-word is accepted iff at least one state from each one of the
sets contained in F is visited infinitely often during the computation.

In finite words, the stack is empty at the end of every accepting computa-
tion, which implies the satisfaction of all temporal constraints tracked by the
pending part of stack symbols. In ωOPBAs, the stack may never be empty, and
symbols with a non-empty pending part may remain in it indefinitely, never
enforcing the satisfaction of the respective formulas. To overcome this issue, we
use Atoms(ϕ)2 × P(Clstack(ϕ)), with Clstack(ϕ) ⊆ Cl(ϕ), as the state set of
the ωOPBA. Such states have the form Φ = (Φc, Φp, Φs), where Φc and Φp have
the same role as in the finite-word case, and Φs is the in-stack part of Φ. All
rules previously defined for Φc and Φp remain the same. Φs contains elements of
Clstack(ϕ) contained in any symbol currently on the stack. Clstack(ϕ) contains
formulas in Cl(ϕ) that use the stack to ensure the satisfaction of future tempo-
ral requirements, namely all χπ

F ψ ∈ Cl(ϕ), with π ∈ {�,
.=, �}. Thus, pending

temporal obligations are moved from the stack to the ωOPBA state, and they
can be considered by the Büchi acceptance condition.

Suppose we want to model check χ
.
=
F ψ. Formula χ

.
=
F ψ must be inserted in the

in-stack part of the current state whenever a stack symbol containing it in its
pending part is pushed. It must be kept in the in-stack part of the current state
until the last stack symbol containing it in its pending part is popped, marking
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input state stack PR

1 call call hanexc ret ret (call)ω Φ0 = ({call, χd
F ret, χ

.
=
F ret},

{χL}, ∅) ⊥ �

2 call hanexc ret ret (call)ω
Φ1 = ({call, χd

F ret, χ
.
=
F ret},

{χL, χ
.
=
F ret}, ∅)

[call, Φ0]⊥ �

3 hanexc ret ret (call)ω
Φ2 = ({han}, {χL, χ

.
=
F ret},

{χ
.
=
F ret})

[call, Φ1][call, Φ0]⊥ �

4 exc ret ret (call)ω Φ3 = ({exc}, ∅, {χ
.
=
F ret}) [han, Φ2][call, Φ1][call, Φ0]⊥ .

=

5 ret ret (call)ω Φ4 = ({ret}, ∅, {χ
.
=
F ret}) [exc, Φ2][call, Φ1][call, Φ0]⊥ �

6 ret ret (call)ω
Φ5 = ({ret}, {χ

.
=
F ret},

{χ
.
=
F ret})

[call, Φ1][call, Φ0]⊥ .
=

7 ret (call)ω Φ4 [ret, Φ1][call, Φ0]⊥ .
=

8 ret (call)ω Φ6 = ({ret}, {χ
.
=
F ret}, ∅) [call, Φ0]⊥ .

=
9 (call)ω Φ7 = ({call}, ∅, ∅) [ret, Φ0]⊥ �

Fig. 6. Prefix of an accepting run of the automaton for χd
F ret.

the satisfaction of its temporal requirement. Then, it is possible to define an
acceptance set F

χ
.=
F ψ

∈ F, as the set of states not containing χ
.
=
F ψ in any part.

Figure 6 shows an ωOPBA run of this kind. Notice that after step 7 χ
.
=
F ψ does

not appear in any state’s in-stack part, so the run is accepting.
This construction is formalized as follows. Let ψ ∈ Clstack(ϕ). We add a few

constraints on the transition relations. For any Φ,Θ, Ψ ∈ Qω and a ∈ P(AP ):

6. let (Φ, a,Θ) ∈ δpush: if ψ ∈ Φp, then ψ ∈ Θs;
7. let (Φ, a,Θ) ∈ δpush/shift: if ψ ∈ Φs, then ψ ∈ Θs;
8. let (Φ,Θ, Ψ) ∈ δpop: if ψ ∈ Φs and ψ ∈ Θs, then ψ ∈ Ψs.

An acceptance condition for summary until operators is also needed. For
ψ Ud

χ θ ∈ Cl(ϕ), we add an acceptance set FψUd
χθ such that for any Φ in it we

have χ�

F (ψ Ud
χ θ), χ

.
=
F (ψ Ud

χ θ) �∈ Φs, and either ψ Ud
χ θ �∈ Φc or θ ∈ Φc. The

condition for ψ Uu
χ θ is symmetric.

4.2 Complexity

The set Cl(ϕ) is linear in |ϕ|, the length of ϕ. Atoms(ϕ) has size at most
2|Cl(ϕ)| = 2O(|ϕ|), and the size of the set of states is the square of that in the
finite case, and is bounded by its cube in the ω-case. Moreover, the use of the
equivalences for the hierarchical operators causes only a linear increase in the
length of ϕ. Therefore,

Theorem 2. Given a POTL formula ϕ, it is possible to build an OPA or an
ωOPBA Aϕ accepting the language denoted by ϕ with at most 2O(|ϕ|) states.

Aϕ can then be intersected [42] with an OPA/ωOPBA modeling a program (e.g.
Fig. 2), and emptiness can be decided with summarization techniques [4].
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Table 1. Results of the evaluation. ‘# states’ refers to the OPA to be verified.

Benchmark name # states Time (ms) Memory (KiB) Result

Total MC only

1 Generic (Fig. 2) 12 867 70, 040 10, 166 True

2 Generic medium 24 673 70, 064 4, 043 False

3 Generic larger 30 1, 014 70, 063 14, 160 True

4 Jensen 42 305 70, 050 3, 154 True

5 Unsafe stack 63 1, 493 109, 610 43, 177 False

6 Safe stack 77 637 70, 089 7, 234 True

7 Unsafe stack neutrality 63 5, 286 383, 312 167, 654 True

8 Safe stack neutrality 77 840 70, 077 16, 773 True

5 Experimental Evaluation

We implemented the OPA construction of Sect. 4 in an explicit-state model
checking tool called POMC. The tool is written in Haskell [45], a purely func-
tional, statically typed programming language with lazy evaluation. POMC
checks OPA for emptiness by checking the reachability of an accepting con-
figuration, by means of a modified DFS of the transition relation. This algo-
rithm, similar to the one in [9], exploits the fact that all transitions only con-
sider the topmost stack symbol, so reachability is actually computed only for
semi-configurations made of one stack symbol and one state. Each time a chain
support is explored, its ending semi-configuration is saved and associated with
the starting one, so the next time the latter is reached, the support does not have
to be re-explored. This allows the algorithm to exploit the cyclicities of OPA to
terminate after having explored the whole transition relation. Given a POTL
specification ϕ and an OPA A to be checked, POMC executes the reachability
algorithm, generating the product between A and the OPA for ¬ϕ on-the-fly.
The present prototype of POMC only supports finite-word model checking; its
extension to deal with ω-languages is under development.

We checked with POMC several requirements on three case studies and we
report the results in Table 1. Some additional formulas we checked are in Table 2.
Such results can be reproduced through a publicly available artifact.2 The exper-
iments were executed on a laptop with a 2.2 GHz Intel processor and 15 GiB of
RAM, running Ubuntu GNU/Linux 20.04. In the tables, by “Total” memory
we mean the maximum resident memory including the Haskell runtime (which
allocates 70 MiB by default), and by “MC only” the maximum memory used by
model checking as reported by the runtime. Since model checking is polynomial
in OPA size and exponential in formula length, we focus on checking a variety
of requirements, rather than large OPA.

2 https://doi.org/10.5281/zenodo.4723741.

https://doi.org/10.5281/zenodo.4723741
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Generic Procedural Program. We checked formula

�
(
(call ∧ pB ∧ Scall(�,pA)) =⇒ CallThr(�)

)
from Sect. 3.1 on the OPA of Fig. 2 (bench. 1), and also against two larger OPA
(2, where the property does not hold, and 3, where it holds).

We also checked the largest of such OPA against a set of formulas devised
with the purpose of testing all POTL operators. The results are reported in
Table 2. All formulas are checked very quickly, with only one outlier that runs
out of memory. We ran the same experiment on a machine with a 2.0 GHz AMD
CPU and 512 GiB of RAM running Debian GNU/Linux 10, obtaining a time of
367 s with a memory occupancy of 16.3 GiB.

Stack Inspection. The security framework of the Java Development Kit (JDK)
is based on stack inspection, i.e. the analysis of the contents of the program’s
stack during the execution. The JDK provides method checkPermission(perm)
from class AccessController, which searches the stack for frames of functions
that have not been granted permission perm. If any are found, an exception
is thrown. Such permission checks prevent the execution of privileged code by
unauthorized parts of the program, but they must be placed in sensitive points
manually. Failure to place them appropriately may cause the unauthorized exe-
cution of privileged code. An automated tool to check that no code can escape
such checks is thus desirable. Any such tool would need the ability to model
exceptions, as they are used to avoid code execution in case of security viola-
tions.

[37] explains such needs by providing an example Java program for managing
a bank account. It allows the user to check the account balance, and to withdraw
money. To perform such tasks, the invoking program must have been granted
permissions CanPay and Debit, respectively. We modeled such program as an
OPA (4), and proved that the program enforces such security measures effectively
by checking it against the formula

�(call ∧ read =⇒ ¬(� Sd
χ (call ∧ ¬CanPay ∧ ¬read)))

meaning that the account balance cannot be read if some function in the stack
lacks the CanPay permission (a similar formula checks the Debit permission).

Exception Safety. [53] is a tutorial on how to make exception-safe generic con-
tainers in C++. It presents two implementations of a generic stack data struc-
ture, parametric on the element type T. The first one is not exception-safe: if the
constructor of T throws an exception during a pop action, the topmost element is
removed, but it is not returned, and it is lost. This violates the strong exception
safety requirement that each operation is rolled back if an exception is thrown.
The second version of the data structure instead satisfies such requirement.

While exception safety is, in general, undecidable, it is possible to prove
the stronger requirement that each modification to the data structure is only
committed once no more exceptions can be thrown. We modeled both versions
as OPA, and checked such requirement with the following formula:

�(exc =⇒ ¬((�u
modified ∨ χu

P modified) ∧ χu
P (Stack :: push ∨ Stack :: pop)))
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POMC successfully found a counterexample for the first implementation (5), and
proved the safety of the second one (6).

Additionally, we proved that both implementations are exception neutral (7,
8), i.e. Stack functions do not block exceptions thrown by the underlying type
T. This was accomplished by checking the following formula:

�(exc ∧ �uT ∧ χd
P (han ∧ χd

PStack) =⇒ χd
P χd

P χu
Fexc).

Table 2. Results of the additional experiments on OPA “generic larger”.

Formula Time Memory (KiB) Result

(ms) Tot. MC

χd
F pErr 1.1 70,095 175 False

�d(�d(call ∧ χu
F exc)) 21.0 70,095 1,290 False

�d(han ∧ (χd
F (exc ∧ χu

P call))) 42.2 70,088 2,297 False

�(exc =⇒ χu
P call) 10.7 70,099 839 True

� Ud
χ exc 2.2 70,093 121 False

�d(�d(� Ud
χ exc)) 4.3 70,094 113 False

�((call ∧ pA ∧ (¬ret Ud
χ WRx)) =⇒ χu

F exc) 3,257.7 238,833 102,582 True

�d(�ucall) 0.7 70,094 139 False

�d(�d(�d(�ucall))) 3.4 70,108 126 False

χd
F (�d(�ucall)) 1.3 70,096 137 False

�((call ∧ pA ∧ CallThr(�)) =⇒ CallThr(eB)) 7,793.7 402,420 173,639 False

�(�d
HpB) 2.1 70,097 114 False

�(�d
HpB) 2.8 70,097 114 False

�(pA ∧ (call Ud
H pC)) 594.9 77,806 29,786 True

�(pC ∧ (call Sd
H pA)) 676.6 96,296 37,949 True

�((pC ∧ χu
F exc) =⇒ (¬pA Sd

H pB)) — — — OOM

�(call ∧ pB =⇒ ¬pC Uu
H pErr) 198.2 70,088 10,606 True

�(�u
HpErr) 1.1 70,093 114 False

�(�u
HpErr) 1.2 70,089 114 False

�(pA ∧ (call Uu
H pB)) 10.3 70,105 115 False

�(pB ∧ (call Su
H pA)) 10.8 70,095 115 False

�(call =⇒ χd
F ret) 3.0 70,095 112 False

�(call =⇒ ¬ �u exc) 1.9 70,106 113 False

�(call ∧ pA =⇒ ¬CallThr(�)) 110.7 70,094 4,937 False

�(exc =⇒ ¬(�u(call ∧ pA) ∨ χu
P (call ∧ pA))) 28.9 70,095 112 False

�((call ∧ pB ∧ (call Sd
χ (call ∧ pA))) =⇒ CallThr(�) 926.1 70,104 13,310 True

�(han =⇒ χu
F ret) 17.0 70,079 1,252 True

� Uu
χ exc 7.7 70,101 121 True

�d(�d(� Uu
χ exc)) 44.6 70,104 2,376 True

�d(�d(�d(� Uu
χ exc))) 123.7 70,090 5,261 False

�(call ∧ pC =⇒ (� Uu
χ exc ∧ χd

P han)) 92.9 70,096 1,346 False

call Ud
χ (ret ∧ pErr) 1.8 70,107 114 False

χd
F (call ∧ ((call ∨ exc) Su

χ pB)) 10.8 70,086 117 False

�d(�d((call ∨ exc) Uu
χ ret)) 5.3 70,094 114 False
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6 Conclusions

We introduced the temporal logic POTL, gave an automata-theoretic model
checking procedure, and implemented it in a prototype tool. The results obtained
in its experimental evaluation are promising. Additionally, POTL is proved to be
FO-complete in a technical report [23]. We argue that the strong gain in expres-
sive power w.r.t. previous approaches to model checking CFL, which comes with-
out an increase in computational complexity, is worth the technicalities needed
to achieve the present—and future—results.

In the evaluation, we used models directly coded into OPAs. To ease user
interaction with our tool, we additionally implemented a new input format based
on a simple procedural language with exceptions and Boolean variables, which is
automatically translated into OPA. Moreover, we are currently working on the
implementation of the model checking for ω-words, described in Sect. 4.1.

As a future research step, we plan to develop user-friendly domain-specific
languages for specification too, to prove that OP languages and logics are suitable
in practice to program verification.

Acknowledgments. We are thankful to Davide Bergamaschi for developing an early
POMC prototype, and to Francesco Pontiggia for implementing performance optimiza-
tions.
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Abstract. Decoupled search is a state space search method originally introduced
in AI Planning. Similar to partial-order reduction methods, decoupled search
exploits the independence of components to tackle the state explosion prob-
lem. Similar to symbolic representations, it does not construct the explicit state
space, but sets of states are represented in a compact manner, exploiting compo-
nent independence. Given the success of both partial-order reduction and sym-
bolic representations when model checking liveness properties, our goal is to
add decoupled search to the toolset of liveness checking methods. Specifically,
we show how decoupled search can be applied to liveness verification for com-
posed Büchi automata by adapting, and showing correct, a standard algorithm for
detecting lassos (i.e., infinite accepting runs), namely nested depth-first search.
We evaluate our approach using a prototype implementation.

1 Introduction

Model checking is a well-known problem in formal verification. Given a formal descrip-
tion of a system M, the model checking problem is to decide whether the system satis-
fies a property φ. In contrast to safety properties, which can only express whether there
exists a finite run of the system that reaches a state with certain (bad) properties, live-
ness properties can express good behaviours of the system that should occur repeatedly,
i.e., infinite runs in which something good happens infinitely often.

In this work, we consider a liveness verification problem that arises when com-
posing a set A1, . . . ,An of non-deterministic Büchi automata (NBA), each with its
own acceptance condition. We recall that an accepting run for a single NBA is a lasso
ρp(ρc)ω with a prefix ρp and a cycle ρc that visits an accepting state. For the compo-
sition of a set of NBAs into an NBA we consider the following liveness property: a
composed run is accepting if there is a cycle visiting a state that is accepting for all
components. Such a general problem captures standard liveness verification problems
related to ω-regular properties. An archetypal example is automata-based LTL check-
ing, where system components are represented as NBAs and are composed with a prop-
erty monitor, represented as a Büchi automaton (often the negation of an LTL property).
In this case an accepting composed run witnesses a violation of a linear-time property.

The predominant approach to address such verification problems using explicit
state space search is to use nested depth-first search (NDFS) algorithms [5,22,32],
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 411–434, 2021.
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also called double depth-first search, which perform on-the-fly checking of liveness
properties while composing the NBAs. NDFS, like all state space search methods, suf-
fers from the state explosion problem. Various methods, such as partial-order reduc-
tion [10,19,27,30,34], symbolic representations [2,28], symmetry reduction [7,23],
or Petri-net unfolding [8,9] have been proposed to alleviate the state explosion prob-
lem. Here, we add decoupled state space search [14], shortly decoupled search, as a
new method for model checking liveness properties, complementary to the existing
approaches. Indeed, as Gnad and Hoffmann [14,15] have shown, decoupled search
complements these techniques in the sense that there exist cases where it yields expo-
nentially stronger reductions. It has also been shown that decoupled search can be fruit-
fully combined with partial-order reduction [16], symmetry reduction [18], and sym-
bolic search [17].

Decoupled search has recently been introduced in AI planning [14], addressing goal
reachability problems. Its applicability to model checking of safety properties has been
shown in [12], where it was effectively introduced into the SPIN model checker [20].
However, the extension of decoupled search to cycle detection problems inherent to
liveness model checking and NDFS algorithms has not yet been investigated. This paper
addresses that investigation for the first time.

Decoupled search exploits the independence of system components, similar to
partial-order reduction techniques, by not enumerating all interleavings of transitions
across components. Similar to symbolic representations, decoupled search does not
construct the explicit state space of the product. Instead, search nodes, called decoupled
states, symbolically represent sets of states. Each decoupled state compactly represents
many global states and their closure up to internal transitions of individual components.
Similar to partial-order reduction or symbolic search, decoupled search can be expo-
nentially more efficient than explicit search of the state space, as shown for reachability
problems in the domains of AI planning [14] and model checking [12].

The main contribution of our paper is to extend the scope of decoupled search from
safety properties, as done in [12], to liveness properties. In particular, we adapt a stan-
dard NDFS algorithm to the decoupled state representation. The resulting algorithms
are able to solve the verification problem mentioned above, namely checking accep-
tance of composed NBAs. The main technical challenge for the correctness of our algo-
rithms was to identify the conditions that imply existence of accepting runs in decoupled
search and to show how such runs can be constructed efficiently.

We evaluate our decoupled NDFS algorithm using a prototype implementation on
two showcase examples similar to the dining philosophers problem, and a set of ran-
domly generated models. We compare to established tools, namely the SPIN model
checker [20], and Petri-net unfolding with Cunf [30]. The results show that, like for
safety properties, decoupled search can yield exponential advantages over state-of-the-
art methods. In particular, its advantage grows with the degree to which components act
independently of others, via internal transitions that do not affect other components.

The rest of the paper is structured as follows. We start in Sect. 2 by recalling the
necessary background on NBAs, the verification problem we consider, and a standard
NDFS algorithm typically used to solve the problem. Sections 3–5 present our contri-
bution: Sect. 3 formalizes decoupled search in terms of composed NBAs, and shows
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its desired properties; Sect. 4 discusses some issues that would arise in a naı̈ve attempt
to (incorrectly) adapt it, and describes the (correct) adapted NDFS algorithm; Sect. 5
provides its correctness proof. In Sect. 6 we show our experimental evaluation, whose
code and models are publicly available at [13]. Section 7 concludes the paper discussing
related works and future research avenues.

2 Büchi Automata, Composition and Verification

This section recalls some basic notions of Büchi automata, their composition, the veri-
fication problem we consider in this paper for such composition, and its standard algo-
rithmic resolution based on NDFS.

Büchi Automata and Accepting Runs. We start with the definition of non-deterministic
Büchi automata (NBA).

Definition 1 (Non-deterministic Büchi Automaton). A non-determinitic Büchi
automaton A is a tuple 〈S,→, L, s0, A〉, where S is a finite set of states, L is a finite set
of transition labels, →⊆ S × L × S is a transition relation, s0 ∈ S is an initial state,
and A ∈ (S → B) is an acceptance function.

A run ρ of an NBA is an infinite sequence of states s0, s1, s2, · · · ∈ Sω starting from
the initial state. The i-th state of a run ρ is denoted by ρ[i] and we will use the same
notation for other lists and sequences. A run ρ is accepting if it traverses accepting
states infinitely often. Formally,

∞∃j ∈ N : A(s[j]). We define a trace π of a run ρ =
s0, s1, s2, · · · ∈ Sω as a sequence of labels π = l0, l1, · · · ∈ Lω such that ∀i∈N :
〈si, li, si+1〉 ∈→. We will also consider finite runs ρ ∈ Sn and finite traces π ∈ Ln.

As hinted in Sect. 1, the existence of accepting runs is interesting for several the-
oretical and practical reasons. On the theoretical side, the language of an NBA is the

set of all traces σ in Lω for which an accepting run exists such that ρ[i]
σ[i]−−→ ρ[i + 1]

for all i ∈ N. On the practical side, model checking ω-regular properties, including
LTL properties, can be reduced to checking the existence of accepting runs. Such runs,
indeed, provide witnesses or counterexamples for the properties of interest.

Composition of NBAs. From now on we assume that the set of labels L of an NBA is
partitioned into a set LI of internal labels and a set LG of global labels. The notion of
composition we use is based on (maximal) synchronisation on global labels, in words:
in every transition involving a global label, each component having the global label in
its set of labels must perform a local transition, while transitions with internal labels can
be performed independently. When composing NBAs we assume w.l.o.g. that they do
not share any internal label. Further, we assume that every global label is shared by at
least two component NBAs. Otherwise, such labels can be made internal. We will use
the following notation: for a set A1, . . . ,An of NBAs, we use superscripting to denote
the components of each Ai, i.e., we assume Ai = 〈Si,→i, Li = Li

I ∪ Li
G, si

0, A
i〉.
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Definition 2 (Composition of NBAs). The composition of n NBAs A1, . . . ,An,
denoted by A1 ‖ . . . ‖ An, is the NBA 〈S,→, L, s0, A〉, where S = S1 × · · · × Sn,
L =

⋃
i∈{1,...,n} Li, s0 = (s10, . . . , s

n
0 ), A = {(s1, . . . , sn) �→ ∧i=1,...,nAi(si)} and

→ is the smallest set of transitions closed under the following rules for interleaving of
local transitions (1) and maximal synchronization on global labels (2):

(1)
si

lI−→ s′
i lI ∈ Li

I

(s1, . . . , si, . . . , sn)
lI−→ (s1, . . . , s′

i, . . . , sn)

(2)
∃i∈{1,...,n} : lG ∈ Li

G ∀
j∈{1,...,n|lG∈L

j
G

} : sj
lG−→ s′

j ∀
j∈{1,...,n|lG �∈L

j
G

} : s′
j = sj

(s1, . . . , sn)
lG−→ (s′

1, . . . , s
′
n)

As notation convention, we will denote component states simply by small case let-
ters, e.g. s, and composed states (s1, . . . , sn) ∈ S by s, i.e., as a vector, and similarly
for local runs ρ (resp. traces π) and composed runs ρ (composed traces π).

In Fig. 1 we illustrate a small example of a composition of two NBAs A1,A2. In
the top of the figure, we show the local state space of the two components (A1 left, A2

right), where the component states are S1 = {1, 2, 3}, S2 = {A,B}, and the labels are
defined as L1

G = L2
G = {l1G, l2G}, L1

I = {l1I}, L2
I = {l2I}. A local state is accepting

for A1, so A1(s) = 
, iff s = 2, and similar A2(s) = 
 iff s = B. The initial states
are s10 = 1 and s20 = A. The transitions are as shown. In the bottom, we depict the
part of the state space of the composition A1 ‖ A2 reachable from s0 = (1, A) as it
would be generated by a standard DFS. Here, transitions via global labels synchronize
the components, internal transitions are executed independently. The states crossed out
would be pruned by duplicate checking, the underlined state is accepting.

1

2 3

l1I
l1G

l2G

A B

l1G

l2I

l2G (1, A) (2, A) (3, A) (1, B)

(2, B)

(1, A)

(2, A)l1I l2G l1G
l1I

l2I

l2I

Fig. 1. Example of two NBAs, A1 and A2, and the state space of their composition A1 ‖ A2.

Verification Problem and Its Resolution with NDFS. The verification problem we
address in this paper is the existence of accepting runs in the composed NBA A1 ‖
. . . ‖ An. In words, we look for runs in A1 ‖ . . . ‖ An that infinitely often traverse
states in which all component NBAs are in an accepting state. We discuss alternative
acceptance conditions in Sect. 7.

Determining the existence of accepting runs in an NBA can be boiled down to the
existence of so-called lassos, i.e., finite sequences of states in the NBA of the form ρpρc
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Fig. 2. A standard NDFS algorithm for lasso search in composed NBAs.

where ρp is the prefix of the lasso and ρc is the cycle of the lasso, which contains at
least one accepting state and closes the cycle (i.e., ρp[|ρp| − 1] = ρc[|ρc| − 1]. Such a
finite sequence of states represents an accepting run ρp(ρc)ω .

Several algorithms can be used to check the existence of lassos. The predominant
family of algorithms are the variants of NDFS, originally introduced in [5]. Figure 2
shows the pseudo-code for one such variant, based on NDFS as presented in [4]. The
algorithm is based on an ordinary depth-first search algorithm (DFS) that works as
usual: a set V is used to record already visited states, and recursion enforces the depth-
first exploration order of the state space. Moreover, a stack Stack is used to keep track of
the states on the current initial trace being explored. The main difference w.r.t. ordinary
DFS is that a second, nested, depth-first search algorithm (NestedDFS) is invoked from
accepting states on backtracking, i.e., after the recursive call to DFS. The idea is that, if
this second depth-first search finds a state that is on Stack , then it is guaranteed that a
cycle has been found, which contains at least one accepting state. That is, one finds the
(un)desired lasso. The algorithm is also complete: no accepting cycle is missed.

Fig. 3. Example run of CheckEmptiness. The wavy arrow indicates the invocation of
NestedDFS((2, B)); the dashed arrow indicates how the cycle is closed.

In Fig. 3, we illustrate an example run of the CheckEmptiness algorithm on our
example. When DFS backtracks from (2, B), NestedDFS is invoked, illustrated by the
wavy arrow. NestedDFS generates the successor (2, A), which is on Stack, so a cycle
is reported. We can construct an accepting run ρp(ρc)ω with prefix ρp induced by the
trace l1I and cycle ρc induced by the trace l2G, l1G, l1I , l

2
I .



416 D. Gnad et al.

3 The Decoupled State Space for Composed NBAs

As previously stated, decoupled state space search was recently developed in AI plan-
ning [14], and adapted to model checking of safety properties later on [12]. It is
designed to tackle the state explosion problem inherent in search problems that result
from compactly represented systems with exponentially large state spaces. In AI plan-
ning, where decoupled search was originally introduced, such systems are modelled
through state variables and a set of transition rules (called “actions”). The adaptation of
decoupled search to reachability checking in SPIN presented in [12] devised decoupled
search for automata models, but informally only. Here, we introduce decoupled search
formally for NBA models. We define the decoupled state space for composed NBAs, as
the result from the composition of a set of NBAs.

3.1 Decoupled Composition of NBAs

In contrast to the explicit construction of the state space, where all reachable states are
generated by searching over all traces of enabled transitions, decoupled search only
searches over traces of global transitions, the ones that synchronize the component
NBAs. In decoupled search, a decoupled state sD compactly represents a set of states
closed by internal steps. This is done in terms of the sequence of global labels used
to reach these states, plus a set of reached states for each component. Definition 3 for-
malizes this through the operation decoupled composition of NBAs, which adapts the
composition operation provided in Definition 2 to decoupled state space search.

Definition 3 (Decoupled composition of NBAs). The decoupled composition of n
NBAs A1, . . . ,An, denoted by A1 ‖D . . . ‖D An, is a tuple 〈SD,→D,LG, sD

0 , AD〉
defined as follows:

– SD = P+(S1) × · · · × P+(Sn), with P+(S) := 2S \ ∅.
– sD

0 = 〈iclose(s10), . . . , iclose(sn
0 )〉, with iclose(s) being the set of states s′ that are

reachable from s in Ai using only Ai’s internal transitions Li
I :

iclose(s) = {s′ | s
lI∈Li

I−−−−−−→∗s′} and iclose(S) =
⋃

s∈S iclose(s).
– AD(sD) = ∀i∈{1,...,n} : ∃si ∈ Si : Ai(si), where sD = 〈S1, . . . , Sn〉.
– →D is the smallest set of transitions closed under the following rule:

lG ∈ LG ∀i∈{1,...n} : S′
i = {s′

i | s ∈ sD : s
lG−→ (s′

1, . . . , s
′
i, . . . , s

′
n)} S′

i �= ∅
sD lG−→D 〈iclose(S′

1), . . . , iclose(S′
n)〉

where, abusing notation, we write s∈sD if sD=〈S1, . . . , Sn〉 and s ∈ S1× . . .×Sn.

In the decoupled composition A1 ‖D . . . ‖D An a decoupled state sD is defined
by a tuple 〈sD[A1], . . . , sD[An]〉, consisting of a non-empty set of component states
sD[Ai] for each Ai. A decoupled state represents exponentially many member states,
namely all composed states s = (s1, . . . , sn) such that s ∈ sD[A1] × · · · × sD[An].
We will always use a superscript D to denote decoupled states sD.
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We overload the subset operation ⊆ for decoupled states sD by doing it component-
wise on the sets of reached local states, namely sD ⊆ tD ⇔ ∀Ai : sD[Ai] ⊆ tD[Ai].

During a search in the decoupled composition we define the global trace of a decou-
pled state sD, denoted πG(sD), as the sequence of global transitions on which sD was
reached from sD

0 . For DFS, as considered in this work, this is well-defined.
In explicit state search, states that have been visited before – duplicates – are

pruned to avoid repeating the search effort unnecessarily. The corresponding operation
in decoupled search is dominance pruning [14]. A newly generated decoupled state tD

is pruned if there exists a previously seen decoupled state sD that dominates tD, i.e.,
where tD ⊆ sD. With the correctness result given below, this is safe. One can make
the representation of decoupled states, and thereby also the dominance checking, more
efficient by representing the state sets sD[Ai] symbolically [17].

The initial decoupled state is obtained by closing each local state with internal steps
(iclose), and decoupled transitions generate decoupled states whose local states are also
closed under internal steps. This maximally preserves the decomposition afforded by
the decoupled representation. Namely, as we will prove in what follows, a decoupled
state sD compactly represents all explicit states that are reachable via traces that extend
the global trace πG(sD) = l1G, l2G, . . . , lkG with local transition labels. That is, for every
component Ai, sD contains the non-empty subset of its local states sD[Ai] ⊆ Si that
can be reached with traces πi = l1, l2, . . . , ln such that there exist indices j1 < j2 <
· · · < jk where ljt = πG(sD)[jt] for all 1 ≤ t ≤ k. In words, after every global label
on πG(sD), arbitrary enabled sequences of internal transitions are allowed.

We remark that the decoupled composition of a set of NBAs is always deterministic.
For every pair of decoupled state sD and global label lG, there is a unique successor
tD. This is easy to see, since if there is a composed state s contained in sD that has
multiple outgoing transitions labelled with lG, all of the composed successor states are
contained in tD. This increases the possible state space reduction compared to standard
search, which needs to branch over all these successors. Note that this is different from
the determinization of NBA, which comes with a blow-up [31]. The determinism is
a consequence of the compact representation where all possible outcome states of a
non-deterministic transition are contained in the decoupled successor state.

3.2 Correctness of Decoupled Composition

In this section we show that decoupled search, as presented here, is sound and complete
w.r.t. reachability properties. We adapt the corresponding result from AI planning [14].

We require some additional notation. For a trace π, by πG(π) we denote the subse-
quence of π that is obtained by projecting onto the global labels LG.

As previously stated, the decoupled state space captures reachability of the com-
posed system exactly. The proof is an adaptation of previous results from AI Plan-
ning [14] to composed NBAs as considered here.

Theorem 1. A state t of a composition of NBAs A1 ‖ . . . ‖ An is reachable from a
state s via a trace π, iff there exist decoupled states sD, tD in the decoupled composition
A1 ‖D . . . ‖D An, such that s ∈ sD, t ∈ tD, and tD is reachable from sD via πG(π).
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Ai Bi

la,iG

lb,jG

AiBi Ci

lG lG

Fig. 4. Illustration of the exponential separations to ample sets (left) and unfolding (right).

Proof. Let πG(π) = l1G, . . . , lkG, and sD
i

li+1
G−−→D sD

i+1 for all 1 ≤ i < k. We prove the
claim by induction over the length of πG(π). For the base case |πG(π)| = 0, the claim
trivially holds, since, by the definition of iclose(), sD contains all composed states t
that are reachable from any s ∈ sD via only internal transitions.

Assume a decoupled state sD
i is reachable from sD via l1G, . . . , liG. Then, by the

definition of decoupled transitions and iclose(), the state sD
i+1 contains all composed

states si+1 that are reachable from a state si ∈ sD
i via a trace πi→i+1 that consists

of only internal transitions and li+1
G . By hypothesis, we can extend the traces reaching

every such si from a s ∈ sD by πi→i+1 and obtain a trace reaching si+1 from s with
global sub-trace l1G, . . . , liG, li+1

G .
For the other direction, if a composed state si is reached in a decoupled state sD

i

and can reach a state si+1 via a trace πi→i+1 that consists of internal labels and li+1
G ,

then there exists a decoupled transition sD
i

li+1
G−−→D sD

i+1 and, again by the definition of
decoupled transitions and iclose(), sD

i+1 contains si+1. By hypothesis sD
i is reachable

from sD, where si is reachable from s ∈ sD. Thus, sD
i+1 is reachable from sD via

l1G, . . . , liG, li+1
G . ��

3.3 Relation to Other State-Space Reduction Methods

Prior work has investigated the relation of decoupled search to other state-space reduc-
tion methods in the context of AI planning [14,15], in particular to strong stubborn
sets [34], Petri-net unfolding [8,9], and symbolic representations using BDDs [2,28].
For all these techniques, there exist families of scaling examples where decoupled
search is exponentially more efficient.

We capture this formally in terms of exponential separations. A search method X
is exponentially separated from decoupled search if there exists a family of models
{Mn=A1, . . . ,Am | n ∈ N} of size polynomially related to n such that (1) the number
of reachable decoupled states in A1 ‖D . . . ‖D Am is bounded by a polynomial in n,
and (2) the state space representation of A1 ‖ . . . ‖ Am under X is exponential in n.

We next describe two scaling models showing that the ample sets variant of
SPIN [21,29], as a representative for partial-order reduction in explicit-state search, and
Petri-net unfolding are exponentially separated from decoupled search. For symbolic
search with BDDs, the reduction achieved by both methods is in general incomparable.

For ample sets, a simple model family looks as follows: there are n components,
each with the same state space: two local states Ai, Bi, initial state Ai, two global tran-
sitions la,i

G , lb,j
G , one internal transition. A component and the transitions are depicted in
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the left of Fig. 4 (the dashed transition is internal). The global transitions synchronize
components pairwise; our argument holds for every possible such synchronization.

Under ample set pruning, no reduction is achieved (no state is pruned) because there
is a global transition enabled in every state. Thus, there exists no state where only safe
(i.e. internal) transitions are enabled, and the search always branches over all enabled
transitions of all components. The decoupled state space, in contrast, only has a single
decoupled state, where both local states are reached in each component. All decoupled
successor states are dominated and will be pruned.

Similar to decoupled search, Petri-net unfolding exploits component independence
by a special representation. Instead of searching over composed states and pruning tran-
sitions, the states of individual components are maintained separately.1

A scaling model showing that unfolding is exponentially separated from decoupled
search is illustrated in the right of Fig. 4. There are n components, each with the same
state space with three local states Ai, Bi, Ci, a global label lG, and transitions as shown
in the figure. In a Petri net, this model is encoded with 3n places and 2n transitions, one
for every combination of one output place in each of the components. In the unfolding,
this results in an event (the equivalent of a state) for every net transition. The decoupled
state space has only two decoupled states: the initial state where {Ai} is reached for all
components, and its lG-successor where {Bi, Ci} is reached in every component.

4 NDFS for Decoupled Search

We now adapt NDFS to decoupled search. We start by discussing the deficiencies of
a naı̈ve adaptation. We will then introduce the key concepts in our fixed algorithm in
Sect. 4.2, and present the algorithm itself in Sect. 4.3. We close this section by showing
that the exponential separations to partial-order reduction and unfolding from Sect. 3.3
carry over to liveness checking by simple modifications of the models.

4.1 Issues with a Naı̈ve Adaptation of NDFS

In a naı̈ve adaptation of NDFS to decoupled search, the only thing that changes is the
treatment of decoupled states, which represent sets of composed states, compared to sin-
gle states in the standard variant. This leads to three mostly minor changes: (1) instead
of duplicate checking we perform dominance pruning; (2) checking if a decoupled state
is accepting boils down to checking if it contains an accepting member state; and (3) to
see if a state t contained in a state tD generated in NestedDFS is on the stack, we need
to check if tD has a non-empty intersection with a state on Stack .

As we will show next, it turns out that this naı̈ve adaptation can miss cycles due to
pruning. Revisiting a composed state in NestedDFS does actually not imply a cycle,
because reaching tD from sD entails only that every member state of tD can be reached
from at least one member state of sD, not from all of them. The critical point is that
pruning does not take into account from where states are reachable.

1 A general difference between the methods is that checking reachability of a conjunctive prop-
erty is linear in the number of decoupled states, but NP-complete for an unfolding prefix [27].
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sD0 [A1] = {1, 2, 3, 4}
sD1 [A1] = {1, 2, 3, 4} sD2 [A1] = {1, 2, 3, 4}sD0,A[A1] = {2, 4}

sD1,A[A1] = {3}

sD2,A[A1] = {2}

sD3,A[A1] = {3}

sD4,A[A1] = {3}
sD1 = sD0 sD2 = sD0

sD3,A = sD1,A

sD4,A = sD1,A
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l2G

l2G

l1G

l1G

Fig. 5. Counterexample showing that a naı̈ve adaptation of the NDFS algorithm is incomplete.
The (only) component NBA A1 is depicted on the left. The search tree on the right shows the
entire reachable decoupled state space, where pruned states are crossed out; the wavy arrow
depicts the invocation of NestedDFS on the acceptance restriction sD

0,A of sD
0 .

Consider the example in Fig. 5. The left part of the figure shows the local state space
of component NBA A1. For simplicity, we only show a single component, which is
sufficient to illustrate the issue. Here, A1 is defined as follows: S1 = {1, 2, 3, 4}, L1

G =
{l1G, l2G}, L1

I = {l1I , l
2
I , l

3
I}, A1(s) = 
 iff s ∈ {2, 4}, and s10 = 1. The transitions are

as shown in the left of the figure. The decoupled search space generated using NDFS is
depicted in the right of the figure. Pruned states are crossed out.

NestedDFS is launched (indicated by the wavy arrow) on the accepting initial state
sD
0 . Before explaining the main issue, we remark that, to ensure that a cycle through an

accepting member state of sD
0 is found, not a cycle through a non-accepting one, we

need to restrict the set of reached local states to those that are accepting, and the states
internally reachable from those via iclose(). Thus, NestedDFS starts in what we call the
acceptance-restriction sD

0,A of sD
0 , where sD

0,A[A1] = {2, 4}. Now, the issue results from
the fact that sD

0,A contains two accepting member states, only one of which, namely
state 2, is on a cycle. Assuming that the decoupled states are generated in order of
increasing subscripts, so sD

1 before sD
2 and so on, state 2 is first reached in NestedDFS

as a member state of sD
2,A, but via the transition labelled with l2G from state 3, so the

cycle cannot be closed. When generating the l1G successor sD
4,A of sD

0,A, its only member
state 3 has already been reached in sD

1,A, so sD
4,A is pruned and the cycle of state 2 via

l1G, l2G is missed. In the next Section we show how to fix this, through an extended state
representation that keeps track of reachability from a set of reference states.

Another minor issue are lassos ρp(ρc)ω whose cycle ρc is induced by internal labels
only. These will not be detected, because NestedDFS only considers traces via global
labels. We fix this by checking for LI -cycles in every accepting decoupled state gener-
ated during DFS, to see if there exists a component that can reach such a state.

4.2 Reference-State Splits

The problem underlying the issue described in the previous section is that pruning is
done regardless of the accepting states in the root node of NestedDFS. We now intro-
duce an operation on decoupled states splitting them with respect to the set of reached
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local accepting states for each component. In our algorithm, this will serve to distin-
guish the different accepting states, and thus force dominance pruning to distinguish
reachability from these. Formally, we define the restriction to accepting local states as
a new transition with a global label lAG that is a self-loop for all accepting states:

Definition 4 (Acceptance-Split Transition). Let 〈SD,→D,L, sD
0 , AD〉 be the decou-

pled composition of A1, . . . ,An. Let sD be an accepting decoupled state, and for
1 ≤ i ≤ n let 〈si

1, . . . , s
i
ci〉 ⊆ sD[Ai] be the list of reached accepting states of Ai,

where for all 1 ≤ j ≤ ci : Ai(si
j) = 
. Then the acceptance-split transition lAG in sD is

defined as follows:

AD(sD) = 
 ∀i ∈ {1, . . . n}, j ∈ {1, . . . , ci} : si
j ∈ sD[Ai] ∧ Ai(si

j) = 

sD lAG−→D 〈〈iclose(s11), . . . , iclose(s1c1)〉, . . . , 〈iclose(sn

1 ), . . . , iclose(sn
cn)〉〉

The outcome state sD
A of an acceptance-split transition is a split decoupled state. The

set of reference states of sD
A is R(sD

A) := {s | ∃Ai : s ∈ sD[Ai] ∧ Ai(s) = 
}.

In words, the operation splits up the single set of reached component states sD[Ai]
of Ai into a list of state sets, where each such set sD

A [Ai]s contains the states that can
be reached via internal transitions from the respective accepting state s ∈ sD[Ai].

Our search algorithm will use the acceptance-split transition to generate the root
node sD

A of NestedDFS from an accepting state sD backtracked from in DFS. Hence
NestedDFS will search in the space of split decoupled states. The transitions over these
behind an sD

A are defined as follows:

Definition 5 (Split Transitions). Let 〈SD,→D,L, sD
0 , AD〉 be the decoupled compo-

sition of A1, . . . ,An. Let sD and tD be decoupled states, with a transition sD lG−→D tD.

Let 〈si
1, . . . , s

i
ci〉 ⊆ Si be reference states for Ai. Then the split transition sD

R
lG−→D tDR

is defined such that for every Ai and every 1 ≤ j ≤ ci we have:

tDR [Ai]si
j
=

{
iclose({s′ ∈ tD[Ai] | ∃s ∈ sD

R [Ai]si
j
: s

lG−→is′}) lG ∈ Li
G

sD
R [Ai]si

j
lG �∈ Li

G

The list of reference states for an Ai does not change along a trace of split
transitions. Let sD

A be a decoupled state generated by an acceptance-split transition

sD lAG−→D sD
A , then for all successor states tD of sD

A , the set of reference states is
R(tD) = R(sD

A).
We extend set operations to the split representation as follows. A split decoupled

state sD
R dominates a split decoupled state tDR , denoted tDR ⊆R sD

R , if R(tDR) ⊆ R(sD
R)

and for all components Ai and reference states s ∈ R(tDR) ∩ Si we have tDR [Ai]s ⊆
sD

R [Ai]s. In contrast, state membership is defined in a global manner, across reference
states. Namely, the set of local states of an Ai reached in a split decoupled state sD

R is
defined as sD

R [Ai] :=
⋃

s∈R(sD
R )∩Si sD

R [Ai]s. Composed state membership is defined

relative to these sD
R [Ai] as before.

An important property of the splitting is that it preserves reachability of member

states. Concretely, for a split-transition sD
R

lG−→D tDR induced by a transition sD lG−→D tD

for all Ai it holds that if sD
R [Ai] = sD[Ai], then tDR [Ai] = tD[Ai].
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As a notation convention, we will always denote split states sD
R by a subscript R,

and the direct outcome of an acceptance-split transition by sD
A , with a subscript A.

sD1,A[A1] = 〈{2}2, {4}4〉

sD1,R[A1] = 〈{}2, {3}4〉 sD2,R[A1] = 〈{}2, {2}4〉 sD3,R[A1] = 〈{}2, {3}4〉

sD4,R[A1] = 〈{3}2, {}4〉 sD5,R[A1] = 〈{2}2, {}4〉

sD3,R ⊆R sD1,Rl2G

l2G l1G

l1G

l2G

Fig. 6. With acceptance-splitting, NestedDFS invoked on the lAG-successor sD
1,A of sD

0 of the
example in Fig. 5 correctly detects the cycle of state 2 induced by the trace l1G, l2G.

Considering our example again, Fig. 6 illustrates how, on split decoupled states, the

cycle 2
l1G−→ 3

l2G−→ 2 is not pruned. The state sD
3,R is still pruned, as it contains only

component states reached from state 4. In sD
4,R and sD

5,R, the decoupled state keeps
track of the traces from the origin state 2, so none of the two is pruned, since they are
not dominated by any state sD

i,R (the root node sD
1,A of NestedDFS is not yet visited).

As indicated before, in our emptiness checking algorithm we will use split decou-
pled states only within NestedDFS. The seed state sD

A of NestedDFS will always be the
lAG-successor of an accepting state sD backtracked from in DFS. Every member state of
sD

A is accepting, or can be reached with LI -transitions from an accepting state.

4.3 Putting Things Together: Decoupled NDFS

We are now ready to describe our adaptation of the standard NDFS algorithm to decou-
pled compositions. The pseudo-code is shown in Fig. 7. The differences w.r.t the stan-
dard algorithm (Fig. 2) are highlighted in blue. The basic structure of the algorithm is
preserved. It starts by putting the decoupled initial state sD

0 onto the Stack in Check-
Emptiness, and launches the main DFS from it.

In DFS, the control flow does not change, decoupled states are generated in depth-
first order by recursion, updating the stack accordingly. There are however three differ-
ences to the standard variant:

1. Before generating the successors, we call CheckLocalAccept on each accepting
decoupled state sD. This detects cycles resulting from LI -transitions, i.e., cycles
that occur “within” a decoupled state. To this end, we check whether there exists a
component Ai for which an accepting local state si

a is reached that can reach itself
using only internal labels Li

I (the set of such local states can be precomputed, so
that the check becomes a lookup operation). We can then construct an accepting run
for the composed system by appending the Li

I -cycle to the sequence of states that
reaches si

a in sD for Ai. Note that it suffices if a single component moves and all
other components remain in a reached accepting state.

2. Instead of doing duplicate checking, the algorithm performs dominance pruning,
pruning a new decoupled state tD if all its member states have been reached in an
already visited decoupled state rD.
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Fig. 7. Adaptation of a standard NestedDFS for lasso search in decoupled compositions of NBA.

3. As discussed in Sect. 4.2, when we launch NestedDFS at a decoupled state sD, we
do so on the acceptance-split lAG-successor sD

A of sD.

NestedDFS now starts in the acceptance-split sD
A , and traverses split transitions

as per Definition 5. On generation of a new state tDR , we perform dominance pruning
against the decoupled states visited during all prior calls to NestedDFS. If in an tDR for
every component Ai there exists a reference state s ∈ Si that is reachable from itself,
so s ∈ tD[Ai]s, then we can construct a cycle. As we will show in Theorem 4, this test
is guaranteed to find all cycles that start from an accepting state sA ∈ sD

A .
Note that we cannot check for a non-empty intersection with states rD on Stack ,

since these are not split relative to the reference states of sD
A . Thus, since we do not

know from which local state in rD the state in the intersection was reached, such a
non-empty intersection would not imply a cycle. What we can do, however, is check
for dominance instead, as an algorithm optimization inspired by [22]. The pseudo-code
in Fig. 7 does so by checking whether tDR ⊇ rD, where the ⊇ relation between a split
vs. non-split state is simply evaluated based on the overall sets tDR [Ai] vs. rD[Ai] of
reached components states. If this domination relation holds true, then the reachability
issue mentioned in the previous section is resolved because all t ∈ rD are then reach-
able from sD

A – including those t from which an accepting state s ∈ sD
A is reachable.

Lemma 1 in the next section will spell out this argument as part of our correctness proof.
Observe that splitting a decoupled state incurs an increase in the size of the state

representation, as the same local state may be reached from several reference states.
More importantly, as dominance pruning is weaker on split states (which after all is
the purpose of the split operation) the size of the search space may increase. As shown
by the example in Fig. 5, though, there is no easy way around the splitting, since the
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A1: AB

C

D

E

F

G

H

l1G

l4G

lI

l2G

l5G

l6G

lIl3Gl7G

A2: 1 l1−7
G

Fig. 8. Illustration of the component NBAs used in Example 1.

algorithm has to be able to know from which component state the successors states
are reached. Assuming a component has M accepting states, then in the worst case all
local successor states that are shared between these accepting states can be visited M
times across all NestedDFS invocations. Unless some of the decoupled states revisiting
the same member state are pruned by dominance pruning, it can actually happen that
the revisits multiply across the components, so the size of the decoupled state space in
NestedDFS can potentially be exponentially larger than the standard state space. As we
shall see in our experimental evaluation, typically such blow-ups do not seem to occur.

In case we want to construct a lasso, we need to store a pointer to the predecessor
of each decoupled state and the label of the generating transition. With this, we can, for
each component Ai separately, reconstruct a trace π of a state t ∈ tD reached from
a state s ∈ sD where πG(sD, tD) = πG(π). Here, for a decoupled state tD that was
reached from another decoupled state sD, by πG(sD, tD) we denote the global trace via
which tD was reached from sD. This can be done in time polynomial in the size of the
component and linear in the length of πG(sD, tD). Since the traces for all components
are synchronized via πG(π), we add the required internal labels for each component in
between every pair of global labels. We remark that, to decide if a lasso exists, we do
not need to store any predecessor or generating label pointers.

We next show on an example how our algorithm works.

Example 1. The model has two component NBAs A1,A2 illustrated in Fig. 8. It is a
variant of an example from [26]. The Figure should be self-explanatory, we remark that
all global transitions l1G, . . . l7G induce a self loop in the only state 1 of A2.

CheckEmptiness starts by putting sD
0 onto Stack and enters DFS(sD

0 ). Let sD
1 =

〈{B,D}, {1}〉, sD
2 = 〈{E,F}, {1}〉, and sD

3 = 〈{D}, {1}〉 be the successors generated
along the trace l1G, l2G, l3G in DFS. Since sD

3 ⊆ sD
1 ∈ V , sD

3 is pruned and the search
backtracks to sD

1 . Say DFS selects the transition via l4G next, generating the state sD
4 =

〈{C}, {1}〉 and its l5G-successor sD
5 = 〈{F}, {1}〉. Then sD

5 is pruned because it is
dominated by sD

2 ∈ V , and the search backtracks from sD
4 , which is accepting.

Thus, NestedDFS(sD
5,A) is invoked, where sD

5,A = 〈〈{C}C〉, 〈{1}1〉〉, because C

and 1 are accepting local states that become the reference states of sD
5,A. NestedDFS

will follow the trace l5G, l3G, l6G, l7G, l7G, which among others generates the state sD
6,R =

〈〈{G}C〉, 〈{1}1〉〉 by l6G, and ends in sD
7,R = 〈〈{G}C〉, 〈{1}1〉〉. The latter is pruned,

because it is dominated by sD
6,R, which is contained in V ′. No cycle is reported. This is

correct, because the only member state (C, 1) of sD
5,A does not occur on a cycle.
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Ai Bi

la,iG

lb,jG

AiBi Ci

lG lG

Fig. 9. Illustration of the exponential separations to ample sets (left) and unfolding (right).

DFS then backtracks to sD
1 = 〈{B,D}, {1}〉 and generates its remaining successor

sD
8 = 〈{G}, {1}〉 via l6G. DFS further generates the l7G-successors of sD

8 and eventually
backtracks from sD

8 , invoking NestedDFS(sD
8,A), where sD

8,A = 〈〈{G}G〉, 〈{1}1〉〉.
After two transitions via l7G the resulting state sD

9,R = 〈〈{G}G〉, 〈{1}1〉〉 satisfies
the condition that for all components Ai ∃s : s ∈ sD

9,R[Ai]s, namely G and 1. Thus, a
cycle is reported. It is induced by the trace l1G, lI , l

6
G, l7G, l7G.

Note that no decoupled state in the second NestedDFS is pruned, since none of
them is dominated by a state in V ′ of the first NestedDFS invocation. In particular,
sD
8,A = 〈{G}G, {1}1〉 is not dominated by sD

6,R = 〈{G}C , {1}1〉, because the reference
states differ – G and 1 for sD

8,R and C and 1 for sD
6,R.

4.4 Relation to Other State-Space Reduction Methods

The comparison to ample set pruning and Petri-net unfolding from Sect. 3.3 carries over
directly to liveness checking via simple adaptations to the examples, see Fig. 9.

Theorem 2. CheckEmptiness with explicit-state search and ample sets pruning is
exponentially separated from CheckEmptiness with decoupled search.

Proof (sketch). The argument from Sect. 3.3 remains valid. With the states Bi accepting
(see Fig. 9, left), explicit-state search with ample sets pruning in the worst case has to
exhaust the entire state space. It invokes NestedDFS on the accepting state (Bi)n and,
worst-case, needs to exhaust the state space again to detect the cycle. Decoupled search
invokes NestedDFS on the initial state restricted to the component states Bi. Every
successor of that state closes the cycle via an arbitrary lbG transition. So there are only
three decoupled states overall (including the acceptance-restricted initial state). ��
Theorem 3. Constructing a complete unfolding prefix is exponentially separated from
CheckEmptiness with decoupled search.

Proof (sketch). The component states Bi are made accepting and internal transitions
Bi → Ai are added to the model (see Fig. 9, right). Unfolding constructs a complete
prefix as described in Sect. 3.3, plus one event for each new internal transition.2 Decou-
pled search generates the two states as described. The second state has {Ai, Bi, Ci}
reached for all components, its successor via lG is pruned. NestedDFS is invoked on
its restriction to Bi, in which all Ai get reached via the new internal transitions. The
lG-successor of this state closes the cycle, so there are only four decoupled states. ��
2 A weaker cut-off rule is required for liveness checking that can only increase the prefix size [8].
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5 Decoupled NDFS Correctness

We now show the correctness of our approach. In Lemmas 1, 2, 3, we show that if our
algorithm reports a cycle, then there exists an accepting run for A1 ‖ . . . ‖ An. In
Theorem 4, we then show that decoupled NDFS does not miss an accepting run.

We first show that the optimization of checking dominance of states in NestedDFS
against states on the stack is sound, i.e., that an accepting run exists.

Lemma 1. Let rD be a decoupled state on the current DFS Stack , and let tDR be a
decoupled state generated by NestedDFS. If tDR ⊇ rD, then there exists an accepting
run for A1 ‖ . . . ‖ An.

Proof. Let sD be the accepting state that is backtracked from in DFS, i.e., the current
NestedDFS was invoked on its lAG-successor sD

A .
From Theorem 1 we know that if sD

2 is reachable from sD
1 , then for every state

s2 ∈ sD
2 there exists a state s1 ∈ sD

1 such that s1
π−→ s2, where πG(π) = πG(sD

1 , sD
2 ).

This result also holds for decoupled states reached in NestedDFS from states in
DFS. This is because the acceptance-split transition lAG only restricts the set of reached
member states of sD in sD

A , so in particular sD
A ⊆ sD. Furthermore, split transitions

generating states behind sD
A do not affect reachability of member states of these split-

decoupled states compared to their non-split counterparts.
In particular, (1) for every state s2 ∈ sD there exists a state s1 ∈ sD

0 that reaches
s2 on a trace π where πG(π) = πG(sD

0 , sD), which, with sD
A ⊆ sD also holds for all

s2 ∈ sD
A ; and (2) for every state t ∈ tDR there exists an accepting state sA ∈ sD

A that
reaches t on a trace π where πG(π) = πG(sD

A , tDR).
Since rD is on Stack, it holds that every s ∈ sD

A is reachable from a r ∈ rD, and,
with tDR ⊇ rD, that every r ∈ rD is reachable from an accepting state sA ∈ sD

A .
Let pred(sD

1 , sD
2 , s2) be a function that, if sD

2 is reachable from sD
1 and s2 ∈ sD

2 ,
outputs a state s1 ∈ sD

1 that reaches s2 via a trace π with πG(sD
1 , sD

2 ) = πG(π).
Let s0 be a state reached in both tDR and rD, and let s1 = pred(rD, tDR , s0) be

its predecessor in rD. If s1 = s0, then we are done, because there exists a lasso
s0, . . . , s0, . . . , sA, . . . , s0, . . . , sA, where sA is an accepting state traversed in sD

A .
Such an accepting state exists because all member states of a decoupled state in
NestedDFS are reachable from an accepting state in sD

A .
If s1 �= s0, then we iterate and set si = pred(rD, tDR , si−1), where such si exist

because rD ⊆ tDR . Because there are only finitely many states in rD, eventually we get
si = sj (where j < i) and there exists a lasso as follows:

First, there exists a cycle si, . . . , si−1, . . . , sj = si, where between every pair of
states sk, sk−1 an accepting state sk,A in sD

A is traversed, for the same reason as before.
We can obviously shift and truncate the cycle to start right after and end in si,A. The
prefix of the lasso is s0, . . . , si,A. ��

Lemmas 2 and 3 show the soundness of our main termination criterion, and of
CheckLocalAccept.

Lemma 2. Let tDR be a split decoupled state generated in NestedDFS. If for every
component Ai there exists a component state si such that si ∈ tD[Ai]si , then there
exists an accepting run for A1 ‖ . . . ‖ An.
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Proof. Let sD
A be the acceptance-split decoupled state from which NestedDFS was

started. If for every component Ai such an si exists, then the state s = (s1, . . . , sn) is
reachable in both sD

A and tDR . By the construction of the reached state sets tDR [Ai]si , s
is reachable from itself and is accepting. Hence, there exists a lasso s0, . . . , s, . . . , s. ��
Lemma 3. Let tD be an accepting decoupled state generated in DFS such that a cycle
is reported by CheckLocalAccept(tD), then an accepting run for A1 ‖ . . . ‖ An exists.

Proof. By prerequisite, there exists an accepting member state s of tD. If CheckLo-
calAccept(tD) reports a cycle, then there exists a component Ai, where an accepting
state si ∈ tD[Ai] is reached that lies on an cycle induced by transitions labelled with
Li

I . Thus, we can set the local state of Ai in s to si, and the lasso looks as follows:
s0, . . . , s, . . . , s, where on the cycle only Ai moves. ��

We are now ready to prove the correctness of our decoupled NDFS algorithm.

Theorem 4. Let A1 ‖ . . . ‖ An be the composition of n NBA and let A1 ‖D . . . ‖D An

be its decoupled composition. Then CheckEmptiness(A1 ‖D . . . ‖D An) reports a
cycle if and only if an accepting run for A1 ‖ . . . ‖ An exists.

Proof. If CheckEmptiness reports a cycle, then by Lemmas 1, 2, and 3, which cover
exactly the cases where a cycle is reported, an accepting run for A1 ‖ . . . ‖ An exists.

For the other direction, assume that ρ is an accepting run for A1 ‖ . . . ‖ An. Let sa,
with 0 ≤ a < k, be the accepting state that starts the cycle of the lasso ρp = s0, . . . , sa,
ρc = sa+1, . . . , sk, where sa = sk. Let π = l1, . . . , lk be the trace on which sk is
reached, i.e., for all 1 ≤ i < k : 〈si, li+1, si+1〉 ∈→.

By Theorem 1, there exists a decoupled state sD reached in DFS that contains sa.
If π is such that for all a < i ≤ k : li ∈ LI , i.e., the cycle ρc is induced only

by internal labels, we next proof that CheckLocalAccept(sD) reports a cycle: As sa is
accepting, sD is accepting, too, so unless a cycle is reported before, eventually Check-
LocalAccept(sD) is called. If ρc is induced by only internal labels, then, because there
cannot be any component interaction via LI -transitions, there must exist a component
Ai for which the local state si in sa reaches itself with only Li

I -transitions. We can
pick any such Ai and ignore transitions from ρc that are labelled by an element of
LI \ Li

I , since these are not required for an accepting cycle. Consequently, CheckLo-
calAccept(sD) reports a cycle.

We next show that, if π contains a global label on the cycle, i.e., there exists
an i ∈ {a + 1, . . . , k} such that li ∈ LG, then, unless a cycle is reported before,
NestedDFS(sD

A) reports a cycle, where sD
A is the lAG-successor of sD.

Assume for contradiction that this is not the case, i.e., no cycle has been reported
before, and NestedDFS(sD

A) does not report a cycle. Let NestedDFS(sD
A) be the first

call to NestedDFS that misses a cycle, although an sa ∈ sD
A that is on a cycle exists.

If sa is on a cycle, then by Theorem 1 there exists a decoupled state tD reachable
from sD

A that also contains sa. The result of Theorem 1 holds in this case because, by
the definition of split transitions, the splitting does not affect reachability of member
states. So there exists tDR reachable from sD

A that contains sa.
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Fig. 10. Statistics on the two scaling models, where #A is the number of philosophers, resp. the
number of NBAs, Time is runtime in seconds, #States (#S) and #E are the number of visited
states, resp. generated events, and Mem (M) is the memory usage in MiB.

Denote by πc = la+1, . . . lk the cycle part of π. Because sa is an accepting mem-
ber state of sD, all its component states si

A become reference states in sD
A . Therefore,

assuming that πG(sD
A , tDR) = πG(πc), for all components we have si

A ∈ tDR [Ai]si
A
and

a cycle is reported. If this is not the case, then either (1) sD was not reached in DFS, or
(2) tDR was not reached in NestedDFS(sD

A).
In case (1), there must exist a state sD

P ⊇ sD that prunes sD. But then, sD
P contains

sa, too, and NestedDFS was called on its lAG-successor sD
P,A and the cycle of sa was

missed before, in contradiction.
For (2), either (a) there exists a state tDP,R ⊇R tDR that was reached in a prior invo-

cation of NestedDFS on an accepting state sD
P,A, or (b) a state tDP,R ⊇ tDR was reached

in NestedDFS(sD
A) before tDR . In both cases, tDR is pruned and the cycle through sa

is missed. Case (a) can only happen if sD
P,A contains sa, too, because the reference

states of sD
A need to be a subset of the ones of sD

P,A. But then, the cycle of sa was
missed before, in contradiction. For (b), if tDR ⊆R tDP,R, then for all Ai we have
si

A ∈ tDP,R[Ai]si
A
, so the cycle would have been reported before, in contradiction.

The reachability argument in (1,2a,2b) applies recursively to all predecessors of sD

in DFS, and of tDR in NestedDFS(sD
A), so, unless a cycle is reported before, eventually

a state sD is reached in DFS that contains sa, and a state tDR with si
A ∈ tDR [Ai]si

A
in

NestedDFS(sD
A). ��

6 Experimental Evaluation

We implemented a prototype of the decoupled NDFS algorithm from Fig. 7. The input
is specified in the Hanoi Omega-Automata format [1], describing a set of NBAs syn-
chronized via global labels as in Definition 2. We compare our prototype to the SPIN
model checker [20] (v6.5.1), and to the Cunf Petri-net unfolding tool [30] (v1.6.1). We
also experimented with the symbolic model checkers NuSMV and PRISM [3,25], but
both are significantly outperformed by the other methods. We conjecture that this is
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Fig. 11. Left part: scatterplots with the runtime of DecNDFS on the y-axis and the one of SPIN
(left column) and Cunf (right column) on the x-axis, on randomly generated models. Each point
represents one instance. In the top row, we highlight different ratios of local labels with differ-
ent colors/shapes, in the bottom row we highlight different numbers of components. Right part:
illustrations of the ring model (top) and the fork (middle) and philosopher (bottom) NBAs of the
philosophers model. Initial (accepting) states are marked by an incoming arrow (double circle).

because both systems are not specifically designed for asynchronous execution of pro-
cesses, or LTL model checking. For SPIN, we translate each NBA to a process where
NBA states are represented by state labels, internal transitions by goto statements, and
global transitions by rendezvous channel operations. For the latter, SPIN only supports
synchronization of two processes at a time, so we restrict the models to global transi-
tions with exactly two components. We model acceptance for SPIN explicitly using a
monitor process that gets into an accepting state if all processes are in a local accept-
ing state. The translation for Cunf encodes NBA states as net places and transitions as
net transitions into a single Petri net, ignoring the individual components. In our proto-
type and in SPIN, when a lasso is reported or the algorithm proved that no lasso exists
within the cut-off limits, we say that the instance was solved. For Cunf, we attempt to
construct a complete unfolding prefix. We consider an instance solved if the construc-
tion terminates, i.e., we do not actually check the liveness property. The experiments
were performed on a cluster of Intel E5-2660 machines running at 2.20GHz, with time
(memory) cut-offs of 15min (4 GiB). Our code and models are publicly available [13].

We compare SPIN with standard options, i.e., with partial-order reduction enabled,
Cunf with the cut-off rule of [10], and decoupled search (DecNDFS), using two kinds of
benchmarks: (1) two scaling examples to showcase the behaviour on well-known mod-
els. One is an encoding of the dining philosophers problem, the other is a ring-shaped
synchronisation topology. Both are illustrated in Fig. 11 (right). The philosophers model
has 2N NBAs, N philosophers and N forks, synchronized by global transitions llFi

G

and lrFi

G . After synchronizing with its left and right fork, a philosopher can perform an
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Ratio # SPIN Cunf DecNDFS #A # SPIN Cunf DecNDFS
2 750 721 750 749
3 750 696 745 712

0% 1050 373 369 319 4 750 411 243 541
20% 1050 385 384 462 5 750 130 114 372
40% 1050 397 384 573 6 750 49 53 266
60% 1050 422 394 723 7 750 24 34 180
80% 1050 468 431 888 8 750 14 23 145∑

5250 2045 1962 2965
∑

5250 2045 1962 2965

Fig. 12. Number of solved instances on the random models as a function of the ratio of internal
transitions (left) and the number of components #A (right).

internal eat transition; after releasing the forks it can perform an internal think transi-
tion. In the ring-topology model, each component can enter a diamond-shaped region
via internal transitions, followed by a synchronization with its left or right neighbor
via liG or li+1

G . No accepting run exists for either model. Moreover, (2) we use a set
of random automata, where for each combination of a ratio of internal transitions in
{0%, 20%, . . . , 80%}, i.e., the number of transitions labelled with LI divided by the
total number of transitions, and a number of components in {2, . . . , 8}, we generated
sets of 150 random graphs. Each component has 15 to 100 local states, out of which up
to 3% are accepting (at least one). We ensure that none of the instances has an inter-
nal accepting cycle to focus on more interesting cases. One could easily implement a
lookup similar to CheckLocalAccept, which is necessary for DecNDFS, for the other
methods, too, which then essentially simplifies the problem to basic reachability.

In Fig. 10, we show detailed statistics for the scaling models, with increasing num-
ber of components #A (Time in seconds, #States is the sum of states visited in both
DFSs, #E is the number of events in the prefix, Memory inMiB). In dining philosophers,
SPIN and DecNDFS show similar results. SPIN has a runtime advantage in the larger
instances of roughly a factor of 2, but DecNDFS uses only a fraction of the memory.
Cunf clearly outperforms both. This model is not very well suited to decoupled search.
Only half of the NBAs have internal transitions, and only two each, and there are no
non-deterministic transitions that DecNDFS could represent compactly. On the ring-
topology model, SPIN manages to exhaust the search space for up to 9 components.
Cunf and DecNDFS scale significantly higher, the number of decoupled states grows
only linearly in the number of components. Cunf on the other hand does show a blow-
up and runs out of memory between 50 and 75 components. This showcase example
only serves to illustrate a near-to-optimal case for decoupled search reductions, which
likely does not carry over in this extent to real-world models.

In Fig. 11 (left part), we show detailed runtime behaviour in terms of scatter plots
with a per-instance comparison on the random models. Each point corresponds to one
instance, where the x-value is the runtime of SPIN, resp. Cunf, and the y-value is the
runtime of DecNDFS, so points below the diagonal indicate an advantage of DecNDFS.
Different ratios of internal labels (top row) and numbers of components (bottom row)
are depicted in different colors/shapes. We observe that, as expected, with a higher ratio
of internal transitions, the advantage of DecNDFS increases significantly. For all ratios,
DecNDFS clearly improves with a higher number of components.
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In Fig. 12, for the same benchmark set we show the number of solved instances
as a function of the ratio (left) and of the number of components (right). Here, we
see that from around 20% internal transitions, DecNDFS consistently beats both SPIN
and Cunf. SPIN and Cunf also benefit from the decrease in synchronizing statements,
although not as much as DecNDFS. On the right, we see that starting with 4 component
NBAs (#A), DecNDFS consistently beats SPIN and Cunf. While SPIN and Cunf show a
significant decline with more components, this effect is less pronounced for DecNDFS.

7 Concluding Remarks and Future Work

We have presented an approach to adapt decoupled search, an AI planning technique to
mitigate the state-space explosion, to the verification of liveness properties of composed
NBAs. Specifically, we have adapted a standard on-the-fly algorithm for checking ω-
regular properties, nested depth-first search (NDFS), and proven its correctness. The
necessary adaptations essentially pertain to the conditions that identify the existence
of accepting runs, which must be handled differently given the different properties of
decoupled states. Our approach extends the scope of decoupled search from safety prop-
erties, as done in [12], to liveness properties. Our experimental evaluation has shown
that decoupled search can yield significant reductions in search effort across random
models that consist of a set of synchronized NBAs, and simple scaling showcase exam-
ples.

We have focused on a verification problem for composed NBAs that is sufficiently
general to cover significant cases like automata-based LTL model checking. We believe
that our solution can be adapted to other verification problems for composed NBAs,
including Büchi automata with multiple acceptance conditions such as generalized
Büchi automata, and language intersection of the involved automata. Indeed, NDFS has
successfully been used for emptiness checking of generalized NBA. We are confident
that decoupled NDFS can be adapted to the compilation introduced by [33], where an
additional “counter component” is added to keep track of the components that already
have an accepting cyle during the nested DFS. Concretely, we believe that the verifi-
cation problem of generalized NBA can be handled with adaptations by our approach:
In the compilation by [33], the counter component increases its local state from 1 to n
(assuming n components), one by one whenever component i has an accepting state.
We can essentially apply the same compilation in decoupled NDFS, restricting the set of
local states of Ai to the accepting ones when the counter is increased from i to i+1 by
a separate acceptance-split transition lA

i

G for each Ai. This ensures that a global cycle
includes an accepting state for all components.

There are several interesting topics for future work, like the adaptation of opti-
mizations proposed for basic NDFS (e.g. [22,32]), or the combination with orthogo-
nal state space reduction methods, as previously done in the context of AI planning
for partial-order reduction [16], symmetry reduction [18], and symbolic search [17].
Having focused on NDFS [5,22,32] in this work, we believe that the adaptation of
SCC-based algorithms is a promising line of research [6,11], extending the scope of
decoupled search further to model checking of CTL properties [24].
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Abstract. AIGEN is an open source tool for the generation of transi-
tion systems in a symbolic representation. To ensure diversity, it employs
a uniform random sampling over the space of all Boolean functions
with a given number of variables. AIGEN relies on reduced ordered
binary decision diagrams (ROBDDs) and canonical disjunctive normal
form (CDNF) as canonical representations that allow us to enumerate
Boolean functions, in the former case with an encoding that is inspired by
data structures used to implement ROBDDs. Several parameters allow
the user to restrict generation to Boolean functions or transition systems
with certain properties, which are then output in AIGER format. We
report on the use of AIGEN to generate random benchmark problems
for the reactive synthesis competition SYNTCOMP 2019, and present
a comparison of the two encodings with respect to time and memory
efficiency in practice.

1 Introduction

Verification and synthesis algorithms require benchmark problems that can be
used for testing and evaluation. Unfortunately, a diverse set of benchmarks is
very hard to obtain. This is a problem not only for tool developers, but also for
organizers of competitions [3,4,8,11] that need to evaluate tools on a wide range
of benchmarks, and to regularly search for new meaningful benchmarks.

If done properly, the generation of random benchmarks can be a solution
to this problem by providing the best possible diversity and by generating new
benchmarks whenever needed. On the other hand, random benchmarks come
with a few caveats. First of all, completely random generation is usually not
desired, since it could result in many benchmarks that, while drawn from a
diverse set, are not interesting, e.g., they may be too easy or too difficult to solve
for existing tools. Secondly, users may be interested in how their implementation
handles benchmarks with specific properties, for instance those that require long
chains of computations to reach a conclusion. Finally, if users know how realistic
benchmarks for a certain type of verification or synthesis problem usually look
like, they may want to restrict the random generation to such benchmarks, e.g.,
by forcing them to comply with certain conditions on their structure.
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 435–446, 2021.
https://doi.org/10.1007/978-3-030-81688-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_20


436 S. Jacobs and M. Sakr

In this paper we present AIGEN, a tool for random generation of transition
systems in a symbolic representation. We generated transition systems with par-
titioned transition relation, i.e., consisting of sets of Boolean functions. We ensure
diversity at the level of individual Boolean functions by requiring a uniform ran-
dom sampling over all Boolean functions with a given number of variables.

While for some application areas there exist tools that generate random
Boolean functions in a specific form (e.g. randomly generated propositional for-
mulas in CNF [9,16]), to the best of our knowledge none of these supports
uniformly random distributions. The obvious benefit of this approach is that
random samplings allow to make statements about the actual space of Boolean
functions, instead of statements about a specific representation of the functions,
and these benefits extend to the random generation of transition systems.

To ensure uniform random sampling, we rely on an enumeration of all Boolean
functions with a given number of variables, based on their truth tables. From the
truth tables one can generate in a straightforward way standard canonical repre-
sentations of the functions, e.g., in canonical disjunctive normal form (CDNF) or
canonical conjunctive normal form. As a more memory-efficient alternative, we
developed an encoding that is inspired by data structures used for implementing
reduced ordered binary decision diagrams (ROBDDs).

AIGEN implements our ROBDD-based algorithm and a CDNF-based algo-
rithm. Development of AIGEN was motivated by the evaluation of reactive syn-
thesis tools [13], and it was used to generate benchmarks for the reactive syn-
thesis competition (SYNTCOMP) [11,12]. Since the existing benchmark library
of SYNTCOMP consists mostly of benchmarks that were hand-crafted by tool
developers, the diversity of benchmarks is limited, and their choice may be
skewed towards problems or encodings that are well-suited for the existing tools.
Hence, as an addition to the existing hand-crafted examples, random benchmarks
are a valuable source of insight into the performance of synthesis algorithms.

Outline. We introduce BDDs and ROBDDs in Sect. 2. In Sect. 3 we present
our basic idea for the random generation of symbolic transition systems, based
on enumerating Boolean functions. In Sect. 4, we present a detailed description
of the ROBDD-based algorithm, and in Sect. 5 the algorithm based on CDNF.
Finally, in Sect. 6 we present a comparison between the ROBDD and the CDNF
approaches, and we give details about our implementation and how to effectively
use the tool to produce diverse benchmarks.

2 Canonical Representation of Boolean Functions

A Binary Decision Diagram (BDD) over a set of variables X is a directed acyclic
graph G = (V,E) with V ⊂ N, exactly one root vr ∈ V , and a labeling on nodes.
Each terminal node v ∈ V is labeled with a value val(v) ∈ {0, 1}. Each non-
terminal node v ∈ V is labeled with a variable var(v) ∈ X and has exactly
two outgoing edges, leading to nodes that are denoted by high(v) ∈ V and
low(v) ∈ V , respectively. Note that if v ∈ V is a non-terminal node, then the
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directed acyclic graph rooted in v is also a BDD. It is called the sub-BDD of G
with root v.

A BDD G(V,E) over a set of variables X is ordered if on every path from
the root to a terminal node, variables in node labels occur in the same order and
each variable occurs at most once. A BDD is reduced if it does not contain any
of the following:

– non-terminal nodes v �= w ∈ V with var(v) = var(w), low(v) = low(w) and
high(v) = high(w),

– terminal nodes v �= w ∈ V with val(v) = val(w),
– a non-terminal node v ∈ V with low(v) = high(v).

Any ordered BDD can be transformed into a reduced BDD by using the
isomorphism and Shannon reductions (cp. [10]). A BDD that is reduced and
ordered is called a Reduced Ordered Binary Decision Diagram (ROBDD).

Note that in an ROBDD, a triple (x, high(v), low(v)) of a node v, where
x = var(v), uniquely defines a sub-ROBDD. This implies that ROBDDs are a
canonical representation of Boolean functions [10], i.e., for a fixed variable order
there is a unique ROBDD representation for every Boolean function.

3 Enumerating Boolean Functions

Based on a canonical representation of Boolean functions, we define an enumer-
ation, i.e., a bijective mapping from natural numbers to Boolean functions (or
ROBDDs), such that any procedure that produces uniformly random natural
numbers (in some range) can be used to produce uniformly random Boolean
functions (in some range, see below for details).

To define our mapping, we first describe the data structure for ROBDDs
that is used by various BDD packages. Then we will illustrate the data structure
we use for ROBDDs and how it guarantees canonicity and uniform random
distribution. In the following, we assume that X = {x1, . . . , xm} is a set of
variables with a fixed order.

Unique Table. BDD packages use the so-called unique table as a data structure
for storing ROBDD nodes. The unique table of a BDD G = (V,E) over a set of
variables X is a hash table that establishes a bijection between nodes v ∈ V and
triples (x, h, l) ∈ X × V × V that uniquely identify them, where x = val(v) if v
is a terminal node, and x = var(v) otherwise, h = high(v) and l = low(v).

Virtual ROBDD Table. We will use the ideas from the unique table that is
used in BDD packages to define the virtual ROBDD table that enumerates all
possible ROBDDs with respect to our variable order. This table can of course
not be constructed explicitly, but the idea of this table can be used to define
a (bijective) mapping from natural numbers to ROBDDs. We want to generate
random Boolean functions that are based on a uniform distribution. For this
reason the algorithm generates randomly a natural number bddID ≤ 22

m

(since
there are 22

m

different Boolean functions of type B
m → B), then computes a
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unique triple similar to the one above that corresponds to bddID, and then
iteratively builds the complete ROBDD.

For the sake of illustrating how the algorithm computes the triple, assume
that there exists a table, called Virtual ROBDD Table (or short: VRT), that
maps natural numbers to ROBDDs, identified by a triple of variable index, and
high and low children. In other words, every entry in the table maps uniquely a
number bddID ∈ N (i.e. a BDD node) to a triple (level, high, low) where level is
a variable index, high = high(bddID), and low = low(bddID). Like the unique
table, none of the entries (i.e., ROBDDs) appears twice. However, in contrast
to the unique table, the VRT is based on the fixed variable order, and uses the
variable index in this order instead of the variable itself. Table 1 depicts a sketch
of the VRT.

Table 1. VRT: Entries in the table are in ascending order over bddID. Each row is
annotated with a level and a sublevel. Li denotes the ith level, containing all triples
with variable index i. The sublevel slij denotes the jth sublevel of Li which contains
all triples of Li in which j is the high or the low child, and the other child j′ is a
bddID that belongs to a level Li′ with i′ < i such that [j.j′] has not appeared before
in Li. Each cell in a row annotated with Li and slij is of the form (bddID)[high.low]

where bddID is the unique identifier of the triple (i, high, low). Let Y1 = 22i−1
and

Y2 =
j−1∑

m=1
2(22i−1 − m).

L0 (1)[0] (2)[1]

L1 sl11 (3)[1.2] (4)[2.1]

L2 sl21 (5)[1.2] (6)[2.1] (7)[1.3] (8)[3.1] (9)[1.4] (10)[4.1]

sl22 (11)[2.3] (12)[3.2] (13)[2.4] (14)[4.2]

sl23 (15)[3.4] (16)[4.3]

.

.

.
.
.
.

.

.

.

Li sli1 (Y1+1)[1.2] (Y1+2)[2.1] . . . (Y1+2(Y1−1))[Y1.1]

.

.

.
.
.
.

slij (Y1+Y2+1)[j.j+1] . . . (Y1+Y2+2(Y1−j))[Y1.j]

.

.

.
.
.
.

sliY1−1

.

.

.
.
.
.

Note that a bddID between 1 and 22
m

corresponds to a Boolean function with
at most m input variables, and a bddID between 22

m−1
+1 and 22

m

corresponds
to a function with exactly m input variables. Thus, to uniformly sample Boolean
functions, we can use a random number generator that uniformly samples natural
numbers in such a range.
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(16)[4.3]

(4)[2.1] (3)[1.2]

(1)[0] (2)[1]

2:

1:

0:

Fig. 1. BDD generated for number 16. Equivalent to boolean function: x2x1 + x̄2x̄1.
The numbers on the left of the BDD represent the level i.e. corresponding variable
indices.

It is important to remember that the VRT is not constructed explicitly.
Instead, given a number of variables m, and based on the predefined order-
ing of ROBDD in the VRT (22

m

ROBDDs), the algorithm generates first a
random number bddID ≤ 22

m

, then computes the triple (level, high, low) to
which bddID maps. We note: level (or i) is equal to �log2(log2(bddID))�. Let
Y1 = 22

i−1
, then we solve the following system of equations to compute x which

is equivalent to the sublevel:
Y1 + 2(Y1 − 1) + . . . + 2(Y1 − x) < bddID
Y1 + 2(Y1 − 1) + . . . + 2(Y1 − (x + 1)) ≥ bddID

High and low are then computed according to what is given in the table,
see Sect. 4 for more details. Figure 1 shows the BDD generated for bddID = 16
which is equivalent to: x2x1 + x̄2x̄1.

4 Random Generation of (Controllable) Transition
Systems

In this section we present our algorithm for generating random transition sys-
tems, represented as AIGER circuits [5]. We use a generalization of the usual
notion of transition systems that allows some of the input signals to be declared
as controllable. This is useful to define synthesis problems, i.e., a synthesis pro-
cedure can define how these inputs should behave depending on the state and
uncontrollable inputs of the system.

A controllable transition system (or short: controllable system) TS is a 6-
tuple (L,Xu,Xc, F , BAD, q0), where L is a set of state variables (also called
latches), Xu is a set of uncontrollable input variables, Xc is a set of controllable
input variables, F = (f1, ..., f|L|) with fi : BL × B

Xu × B
Xc → B is a vector of

update functions for the latches, BAD : BL → B is the set of unsafe states, and
q0 is the initial state where all latches are initialized to 0.

Then, the idea of our tool for random generation of transition systems can
be summarized in the following way:

– The user input determines parameters of the system, such as the number of
latches and controllable or uncontrollable inputs.
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– For every latch, we generate a random Boolean function that determines how
this latch is updated based on the current state and input of the system,
represented as ROBDD as described in Sect. 3.

– Additionally, we generate a random Boolean function that determines the set
of unsafe states of the system.

– The system composed of these functions is then encoded into an AIGER
circuit.

4.1 Random Generation Algorithm

The procedure GenerateRandomAiger takes as input the number of latches
l, uncontrollable inputs u, controllable inputs c, the bound o, optionally a list of
seeds (i.e., natural numbers used to initialize a pseudorandom number genera-
tor). As output it produces a file in AIGER format.

Lines 3–6 generate for every latch a random ROBDD that represents an
update function B

l+c+u → B for the latch, i.e., a function that takes all current
values of inputs and latches as input, and returns a new value for the given
latch. Line 4 generates a random integer with 2vars random bits, i.e., a natural
number between 1 and 22

vars

. All the seeds used for generating the random
integers will be written in the comment section at the end of the generated file.
These seeds can be fed to the algorithm in order to regenerate the same instance.
Line 5 constructs the ROBDD that corresponds to the generated number. Line
6 converts the constructed ROBDD into an AIG (And-Inverter Graph) relying
on the fact that a BDD can be seen as a network of multiplexers.

Lines 8–10 construct the ROBDD of the function fBAD : B
o → B which

uses o ≤ l latch variables. The set of unsafe states BAD is then defined as
f(xi1 , . . . , xio) ∧ ∧

j∈{1,...,l}\{i1,...,io} xj where the indices {i1, . . . , io} are also
picked randomly. Line 11 creates the AIGER file that corresponds to the total
number of variables and to the update functions that were randomly generated.
Line 12 uses the ABC [7] tool to reduce the size of the generated AIGER file.

ConstructBDD is a recursive procedure for constructing all the nodes of
the ROBDD that corresponds to the unique ID bddID. It starts with the root
node and recursively proceeds to the child nodes until it reaches the nodes 0 or
1. Line 14 checks if the node was already created. If not, Line 15 computes the
triple (level, high, low) that uniquely represent the node and adds it to the table
robddTable. Lines 18–17 construct the child nodes. Note that the robddTable is
initialized with the IDs 1 and 2 which correspond respectively to nodes 0 and 1.

Given an ID, procedure GetChildren computes the triple (level, high, low).
Line 20 computes the level. Lines 21–24 compute the sublevel. Note that, as
depicted in Table 1, a sub-level sij has size 2(22

i−1 − j), where 22
i−1

is the sum
of the sizes of all levels that are smaller than i. To compute the sublevel, we
have to compute the single solution of the system of inequations in Lines 22,
23, to see that check the VRT table. Line 25 computes the ID of the left-most
bit in the sub-level. Lines 26–27 compute the ID of the second child node, and
Lines 28–30 check which node is the low edge and which node is the high edge.
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Algorithm 1. Generate Random Aiger
1: procedure GenerateRandomAiger(l, u, c, o)
2: vars ← l + u + c, l′ = l, robddTable = [(1, 0), (2, 1)]
3: while l′ > 0 do
4: rand fct ID = random.getrandbits(2vars) + 1
5: ConstructBDD(rand fct ID, robddTable)
6: aigerTable[rand fct ID] =ConvertToAIG(rand fct ID, robddTable)
7: l′ ← l′ − 1

8: bad ID = random.getrandbits(2o) + 1
9: ConstructBDD(bad ID, robddTable)

10: aigerTable[bad ID] =ConvertToAIG(bad ID, robddTable)
11: aigerF ilePath ←CreateAiger(aigerTable)
12: abcMinimize(aigerF ilePath)

13: procedure ConstructBDD(bddID, robddTable)
14: if bddID �∈ robddTable then
15: (level, high, low) ← GetChildren(bddID)
16: robddTable[bddID] ← (level, high, low)
17: ConstructBDD(high)
18: ConstructBDD(low)

19: procedure GetChildren(bddID)
20: level = �log2(log2(bddID))�
21: n ← 22level−1

22: sli ←ComputeASol(n + 2(n − 1) + . . . + 2(n − x) < bddID,
23: n + 2(n − 1) + . . . + 2(n − (x + 1)) ≥ bddID)
24: child1 ← sli + 1
25: sl 1 ID ← n + 2(n − 1) + . . . + 2(n − sli)
26: sle ← bddID − sl 1 ID
27: child2 ← child1 + �sle/2�
28: if sle mod 2 �= 0 then
29: return (level, child1, child2)

30: return (level, child2, child1)

5 CDNF-based Algorithm

An obvious alternative to our ROBDD approach is to make use of the canonical
disjunctive or conjunctive normal forms to generate random Boolean functions.
Algorithm 2 employs CDNF as it is easier to convert to And-Inverter graph.
CDNF is usually constructed directly from a truth table by taking the OR of all
satisfying assignments. To convert a Boolean formula fi = cl1 ∨ cl2 ∨ . . .∨ cln in
CDNF to AIG, we consider its equivalent f ′

i = ¬(¬cl1 ∧ ¬cl2 ∧ . . . ∧ ¬cln).
The procedure DNFGenerateRandomAiger takes as input the number

of latches l, uncontrollable inputs u, controllable inputs c, the bound o, and
produces a file in AIGER format as output. Lines 3–6 generate a random update
function for every latch. Line 4 generates a random bit vector of size 2vars.
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Algorithm 2. Random Aiger generation using DNF approach
1: procedure DNFGenerateRandomAiger(l, u, c, o)
2: vars ← l + u + c, l′ ← 0
3: while l′ < l do
4: truthTable = random.getrandbits(2vars)
5: dnfFormula = ConstructDNF(truthTable, vars)
6: aigerTable[l′] = ConvertToAIG(dnfFormula)
7: l′ ← l′ + 1

8: badTruthTable = random.getrandbits(2o)
9: badDnfFormula = ConstructDNF(truthTable, o)

10: aigerTable[l′] = ConvertToAIG(badDnfFormula)
11: aigerF ilePath ← CreateAiger(aigerTable)
12: ABCMinimize(aigerF ilePath)

13: procedure ConstructDNF(bitV ec, vars)
14: dnfFormula ← True, i ← 0
15: while i < bitV ec.size() do
16: if bitV ec[i] = 1 then
17: clauseBitvec ←ToBinary(i, vars)
18: dnfClause ←ToClause(clauseBitvec)
19: dnfFormula ← dnfFormula ∧ negate(dnfClause)

20: return negate(dnfFormula)

This bit vector represents the valuation of all the minterms1 of the truth table
that represents the random function fi. For instance, if the left-most bit of the
bit vector is equal to 1, then xc0 = 0, . . . , xc|c|−1 = 0, xu0 = 0, . . . , xu|u|−1 =
0, xl0 = 0, . . . , xl|l|−1 = 0 is a satisfying assignment of fi. Similarly, if the last
element of the bit vector is equal to 1, then xc0 = 1, . . . , xc|c|−1 = 1, xu0 =
1, . . . , xu|u|−1 = 1, xl0 = 1, . . . , xl|l|−1 = 1 is a satisfying assignment of fi. Line
5 builds the random function that corresponds to the generated bit vector, and
Line 6 converts it to AIG. Lines 8–10 generate the output random function, and
Lines 11, 12 creates the AIGER file and call ABC to minimize it.

The procedure ConstructDNF takes as input a bit vector and the number
of variables and generates the corresponding Boolean function. Line 14 initializes
the DNF function to be created. For every element in the bit vector, if the
ith element is equal to 1 (Line 15) then, in order to obtain the corresponding
minterm, Line 17 converts the positive integer i to binary. For instance if i =
3 and vars = 3, then the minterm xc ∧ ¬xu ∧ xl is created. Line 18 creates
the corresponding minterm. Line 19 negates the created clause and adds is to
the DNF formula. Line 20 returns the negation of the constructed formula. As
mentioned earlier, as the formula represented by the truth table is in DNF, we
need to generate its equivalent that includes only AND and NOT logical gates.
For instance giving a formula fi = cl1 ∨ cl2 ∨ . . .∨ cln in CDNF, we construct its
equivalent f ′

i = ¬(¬cl1 ∧ ¬cl2 ∧ . . . ∧ ¬cln).

1 A minterm of n variables is a product (logical AND) of the variables in which each
appears exactly once in uncomplemented or complemented form.
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Fig. 2. Average number of AND gates. Fig. 3. Average running time in seconds
including the time needed to minimize
the generated Aiger circuit using ABC
tool.

Fig. 4. Average running times.

6 Implementation and Evaluation

AIGEN is implemented in Python, and a virtual machine with the tool ready to
run is available at https://doi.org/10.5281/zenodo.4721314 [14]. The source code
of AIGEN is also publicly available at https://github.com/mhdsakr/AIGEN-
Tool, allowing interested users to add functionality, e.g., in order to add further
parameters to generate only Boolean functions or transition systems with certain
properties. It uses the mpmath [15] library together with GMPY [1] to deal with
large numbers. By default, mpmath uses Python integers, however if GMPY is
also installed on the operating system, mpmath will automatically detect it and
use gmpy integers intead. This makes mpmath perform much faster, particularly
at high precision (approximately above 100 digits). Furthermore, AIGEN uses
ABC [7], and the AIGER tool set [6] to post-process AIGER circuits.

AIGEN has been used to generate thousands of random transition systems.
Figures 4, 2, 3 shows average times and sizes for generating systems where,
for example, 4.3.7 denotes systems with 4 controllable inputs, 3 uncontrollable
inputs, and 7 latches (o = l = 7). These times were measured on a laptop with
quad-core i7-6600U CPU at 2.6 GHz and 20 GB RAM.

https://doi.org/10.5281/zenodo.4721314
https://github.com/mhdsakr/AIGEN-Tool
https://github.com/mhdsakr/AIGEN-Tool
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Figures 4 and 2 compare average running time and average number of AND-
gates between the ROBDD and DNF approaches. These results are without
the use of the ABC tool (i.e. the command “ABCMinimize(aigerFilePath)” was
skipped). Figure 4 shows that the DNF approach was faster in all cases which was
expected due to the fact that generating a random ROBDD is much more com-
plex than generating a truth table. Figure 2 shows that the ROBDD approach
is much better in all cases. Figure 3 compares average running time between the
ROBDD and DNF approaches, including the time needed for the ABC tool to
minimize the generated transition system. Benchmarks 8.8.4, 9.9.4, and 10.11.2
timed out for the DNF approach(we used 10 h as a time limit). Obviously the
ABC tool needed a lot of time to process these benchmarks. After a thorough
inspection, the reason was, in addition to the huge size of these circuits, the
incredibly long chains of AND-gates for every generated Boolean function. This
figure shows that the total running time of the tool was way better when used
with the ROBDD approach.

The Effect of Parameters. Although the benchmarks are randomly generated,
AIGEN allows the user to choose the input parameters to obtain benchmarks
with certain properties that correspond to their needs, for example:

– The degree of the generated graph (i.e., the transition system) is equal to 2u+c,
therefore increasing the ratio (u + c)/l will make the graph more congested
and consequently more complex.

– The parameter o gives the user the ability to determine the size of the set of
unsafe states, i.e., the number of unsafe states cannot exceed 2o. Accordingly,
increasing the ratio o/l will increase the probability that the error set is
reachable, and decreasing this ratio will lower the probability.

– Increasing the ratio c/u will increase the probability that the benchmark is
realizable, and decreasing it will serve the opposite goal. Moreover, if this
ratio is close to 1 the realizability check will be harder, since the probability
of realizability will be roughly equal to the probability of unrealizability.

To demonstrate the effect of these parameters, Table 2 shows the running
time and results (realizable or unrealizable) of the synthesis tool SimpleBDD-
Solver on selected benchmarks, generated using the ROBDD-based approach, in
SyntComp 2019. SimpleBDDSolver has won all previous iterations of the Synt-
comp competition. A benchmark name contains the parameters that were used
to generate the file, e.g., random n 19 1 3 15 14 1 abc means that the bench-
mark has in total 19 variables with 1 controllable input, 3 uncontrollable inputs,
15 latches, and o = 14. The table shows that the example benchmarks with
ratio c/u = 1/3 or c/u = 1/5 were unrealizable, the benchmarks with ratio
c/u = 2 were realizable, while benchmarks with ratio c/u = 1/2 were difficult
to solve for the tool, which timed out while trying to solve them. Note that a
benchmark with c/u = 1/5 can still be realizable, and one with c/u = 2 can be
unrealizable—it is just unlikely that this is the case for a randomly generated
benchmark.
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Table 2. Results of SimpleBDDSolver on selected random benchmarks generated by
AIGEN in SyntComp 2019 [2]

Benchmark Time (s) Result

random n 19 1 3 15 14 1 abc 3412.41 UNREALIZABLE

random n 19 1 5 13 13 2 abc 1361.39 UNREALIZABLE

random n 19 1 2 16 14 8 abc Timeout –

random n 19 1 4 14 13 11 abc Timeout –

random n 19 4 2 13 12 11 abc 43.68 REALIZABLE

random n 19 4 2 13 12 12 abc 35.71 REALIZABLE

random n 19 4 2 13 12 3 abc 240.61 REALIZABLE

random n 19 4 2 13 12 62 abc 299.5 REALIZABLE

random n 19 4 2 13 12 95 abc 258.92 REALIZABLE

7 Conclusion

We have presented AIGEN, a tool for the generation of random transition sys-
tems in a symbolic representation, using either ROBDDs or CDNF for represent-
ing Boolean functions. Although the ROBDD based approach generates much
smaller symbolic transition systems, the CDNF approach is faster when ABC
minimization procedure is disabled. In contrast to the ROBDD approach, to gen-
erate a random formula in CDNF, no complex computation is needed. However,
when using minimization, the huge size of these formulas becomes a problem for
ABC as it has to deal and inspect all the generated AND-gates.

In future work, instead of using a fixed variable order, we will also allow
to use a random order. The drawback of a fixed order is that some Boolean
functions only have a large ROBDD representation, even though smaller ones
exist with different orderings, and vice versa. Going further, we plan to include
variable reorder techniques to find an order that leads to small ROBDDs at
runtime. Finally, we also plan to investigate the use of AIGEN for finding bugs
in verification and synthesis tools.
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Abstract. The effective parallelisation of Bounded Model Checking is
challenging, due to SAT and SMT solving being hard to parallelise. We
present ParaFROST, which is the first tool to employ a graphics proces-
sor to accelerate BMC, in particular the simplification of SAT formulas
before and repeatedly during the solving, known as pre- and inprocessing.
The solving itself is performed by a single CPU thread. We explain the
design of the tool, the data structures, and the memory management, the
latter having been particularly designed to handle SAT formulas typically
generated for BMC, i.e., that are large, with many redundant variables.
Furthermore, the solver can make multiple decisions simultaneously. We
discuss experimental results, having applied ParaFROST on programs
from the Core C99 package of Amazon Web Services.

Keywords: Bounded model checking · SAT solving · GPU computing

1 Introduction

Bounded Model Checking (BMC) [5] determines whether a model M satisfies a
certain property ϕ expressed in temporal logic, by translating the model check-
ing problem to a propositional satisfiability (SAT) problem or a Satisfiability
Modulo Theories (SMT) problem. The term bounded refers to the fact that the
BMC procedure searches for a counterexample to the property, i.e., an execution
trace, which is bounded in length by an integer k. If no counterexample up to this
length exists, k can be increased and BMC can be applied again. This process
can continue until a counterexample has been found, a user-defined threshold has
been reached, or it can be concluded (via k-induction [38]) that increasing k fur-
ther will not result in finding a counterexample. CBMC [14] is an example of a
successful BMC model checker that uses SAT solving. CBMC can check ANSI-C
programs. The verification is performed by unwinding the loops in the program
under verification a finite number of times, and checking whether the bounded
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(a) The amount of variable redundancy in CBMC formulas (b) The amount of variable redundancy w.r.t. the number of vari-
ables

Fig. 1. Variable redundancy in CBMC SAT formulas

executions of the program satisfy a particular safety property [22]. These prop-
erties may address common program errors, such as null-pointer exceptions and
array out-of-bound accesses, and user-provided assertions.

The performance of BMC heavily relies on the performance of the solver.
Over the last decade, efficient SAT solvers [3,6,17,26] have been developed and
applied for BMC [5,10–12,25]. Effectively parallelising BMC is hard. Parallel
SAT solving often involves running several solvers, each solving the problem in
its own way [18]. For BMC, multiple solvers can be used to solve the problem for
different values of the bound k in parallel [1,21]. However, in these approaches,
the individual solvers are still single-threaded.

Recently, Leiserson et al. [23] concluded that in the future, advances in
computational performance will come from many-threaded algorithms that can
employ hardware with a massive number of processors. Graphics processors
(GPUs) are an example of such hardware. Multi-threaded BMC model checkers
have been proposed, such as in [13,19,35], but these address tens of threads, not
thousands.

In this paper, we propose the application of GPUs to accelerate SAT-based
BMC. To the best of our knowledge, this is the first time this is being addressed.
Recently, GPUs have been applied for explicit-state model checking and graph
analysis [8,9,40,41]. In SAT solving, we used GPUs to accelerate test pattern
generation [31], metaheuristic search [42], preprocessing [32,33] and inprocess-
ing [34]. In these operations, a given SAT formula is simplified, i.e., it is rewritten
to a formula with fewer variables and/or clauses, while preserving satisfiability,
using various simplification rules. In preprocessing, this is only done once before
the solving starts, while in inprocessing, this is done periodically during the
solving. While the impact of accelerating these procedures has been demon-
strated [34], its impact on BMC has not yet been addressed.

The structure of typical BMC SAT formulas suggests that GPU pre- and
inprocessing will be effective. Figure 1a shows for a BMC benchmark set taken
from the Core C99 package of Amazon Web Services (AWS)1 [2], consisting of
168 problems of various data structures, that propositional formulas produced
by CBMC tend to have a substantial amount of redundant variables that can

1 We thank Daniel Kroening and Natasha Jebbo for pointing us to this package.
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be removed using simplification procedures. For approximately 50% of the cases,
40% of the variables can be removed. Furthermore, Fig. 1b presents the amount
of redundancy in relation to the total number of variables in the formula. It
indicates that when a formula contains one million variables or more, at least
25% of those are redundant, and often many more. In the benchmark set, the
maximum number of variables in one formula is 13 million (encoding the verifi-
cation of the priority-queue shift-down routine), of which 65% is redundant.
In contrast, the largest formula we encountered in the application track of the
2013–2020 SAT competitions that is not encoding a verification problem only
has 0.2 million variables (it encodes a graph coloring problem [29]).

Contributions. We present the SAT solver ParaFROST that applies Con-
flict Driven Clause Learning (CDCL) [26] with GPU acceleration of pre- and
inprocessing [32–34], tuned for BMC. It has been implemented in CUDA C++
v11 [28], is based on CaDiCaL [6], and interfaces with CBMC.

Having to deal on a GPU with large formulas with a lot of redundancy offers
particular challenges. The elimination of variables typically leads to actually
adding new clauses, and since the amount of memory on a GPU is limited, this
cannot be done carelessly. Therefore, first of all, we have worked on compacting
the data structure used to store formula clauses in ParaFROST as much as
possible, while still allowing for the application of effective solving optimisations.
Second of all, we introduce memory-aware variable elimination, to avoid running
out of memory due to adding too many new clauses. In practice, we experienced
this problem when applying the original procedure of [34] for BMC.

Additionally, to support BMC, ParaFROST must be an incremental solver,
i.e., it must exploit that a number of very similar SAT problems are solved in
sequence [16]. The procedure in [34] does not support this, so we extended it.

Finally, because of the many variables in BMC SAT formulas, ParaFROST

supports Multiple Decision Making (MDM) in the solving procedure, as pre-
sented in [30]. With MDM, multiple decisions can be made at once, periodically
during the solving. In case there are many variables, there is more potential
to make many decisions simultaneously. We have generalised the original MDM

decision procedure [30], making it easier to integrate MDM in solvers other than
MiniSat and Glucose [3]. The effectiveness of MDM in BMC has never been
investigated before, nor has been combined with GPU pre- and inprocessing.

2 Background

SAT Solving. We assume that SAT formulas are in conjunctive normal form
(CNF). A CNF formula is a conjunction of m clauses C1 ∧ · · · ∧ Cm, and each
clause Ci is a disjunction of n literals �1∨· · ·∨�n. A literal is a Boolean variable x
or its negation ¬x, also referred to as x̄. The domain of all literals is L. A clause
can be interpreted as a set of literals, i.e., {�1, . . . , �n} encodes �1∨ . . .∨�n, and a
SAT formula S as a set of clauses, i.e., {C1, . . . , Cm} encodes C1∧ . . .∧Cm. With
Var(C), we refer to the set of variables in C: Var(C) = {x | x ∈ C ∨ x̄ ∈ C}.
The set S� consists of all clauses in S containing �: S� = {C ∈ S | � ∈ C}.
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In CDCL, clauses are LEARNT or ORIGINAL. A LEARNT clause has been derived
by the CDCL clause learning process during solving, and an ORIGINAL clause is
part of the formula. We refer with L to the set of LEARNT clauses.

For a set of assignments Σ, consisting of all literals that have been assigned
true, a formula S evaluates to true iff ∀C ∈ S.∃� ∈ C.� ∈ Σ. When a decision
is made, a literal is picked and added to Σ. Each assignment is associated with a
decision level (time stamp) to monitor the assignment order. We call a clause C
unit iff a single literal in it is still unassigned, and the others are assigned false,
i.e., |Var(C) \ Var(Σ)| = 1 and C ∩ Σ = ∅.

Variable-Clause Elimination (VCE). Variables and clauses can be removed
from formulas by applying simplification rules [15,20]. They rewrite a formula
to an equi-satisfiable one with fewer variables and/or clauses. Applying them is
referred to as pre- and inprocessing, before and during the solving, respectively.

Incremental Bounded Model Checking. Since 2001, incremental BMC has
been applied to hardware and software verification [16,39]. It relies on incre-
mental SAT solving [16]. In CDCL, clauses are learnt during the solving each
time a wrong decision has been made, to avoid making those decisions again in
the future. Incremental SAT solving builds on this: when multiple SAT formulas
with similar characteristics are solved sequentially, then in each iteration, the
clauses learnt in previous iterations are reused. An efficient approach to add and
remove clauses is by using assumptions [16], which are initial assignments.

For BMC, the transition relation of a system design and the (negation of) the
property to be verified are encoded in a SAT formula. A predicate I(s0) identifies
the initial states, δ(si, si+1) encodes the transition relation at trace depth i, and
E(i) =

∨
0≤j≤i e(sj) encodes the reachability of an error state up to trace depth i,

where e(sj) is true iff state sj is an error state. For incremental BMC, additional
unit clauses σi are used. These predicates are combined to define the following
series of SAT formulas S(i) that must be solved incrementally:

S(0) = I(s0) ∧ (E(0) ∨ σ0), under assumption ¬σ0

S(i + 1) = S(i) ∧ δ(si, si+1) ∧ σi ∧ (E(i + 1) ∨ σi+1), under assumption ¬σi+1

Formula S(i) is satisfiable iff an error state is reachable via a trace with a length
up to i [16,39]. At iteration i + 1, we know that E(i), included via S(i), cannot
be satisfied (otherwise iteration i + 1 would not have been started). This means
that E(i) must be removed to avoid that S(i + 1) is unsatisfiable. To effectively
remove E(i), σi is assigned true, resulting in E(i)∨σi being satisfied. In general,
at iteration i, σi is assigned false, while in iterations i′ > i, it is assigned true.

GPU Programming. CUDA [28] is NVIDIA’s parallel computing platform
that can be used to develop general purpose GPU programs. A GPU consists of
multiple streaming multiprocessors (SMs), and each SM contains several stream-
ing processors (SPs). A GPU program consists of a host part, executed on a
CPU, and device functions, or kernels, executed on a GPU. Each time a kernel
is launched, the number of threads that need to execute it is given. On the SPs,
the threads are executed. Compared to a CPU thread, GPU threads perform
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Fig. 2. An activity diagram for the workflow of ParaFROST.

a relatively simple task. In particular, they read some data, perform a com-
putation, and write the result. This allows the SPs to switch contexts easily.
In practice, one to two orders of magnitude more threads are typically launched
than the number of SPs, which results in hiding the memory latency: whenever a
thread is waiting for some data, the associated SP can switch to another thread.

A GPU has various types of memory. Relevant here are registers and global
memory. Global memory is used to copy data between the host and the device.
Registers are used for on-chip storage of thread-local data. Global memory has a
much higher latency than registers. We use unified memory [28] to store clauses.
Unified memory creates one virtual memory pool for host and device. In this way,
the same memory addresses can be used by the host and the device, combining
the main memory of the host side and the global memory of the device side.

3 GPU-Accelerated Bounded Model Checking

We implemented ParaFROST
2 with CUDA C++ v11. It is a hybrid CPU-GPU

tool, with (sequential) solving done on the host side, and (parallel) VCE done
on the device side. An interface with CBMC is implemented in C++. CBMC is
patched to read a configuration file before ParaFROST is instantiated. This
file contains all options supported by ParaFROST.

The Workflow. Figure 2 presents the general workflow of ParaFROST in
the form of an activity diagram with host and device lanes. The diagram is
focused on inprocessing; preprocessing works similarly on the device. First, the
host performs a predetermined number of solving iterations. Once those have
finished, and (un)satisfiability has not yet been proven, relevant clause data is
copied to the global memory. To hide the latency of this operation as much as
possible, clauses are copied asynchronously in batches. One batch is copied while
the next is formatted for the GPU, as not all clause information on the host side
is relevant for the device (see the next paragraph on data structures). On the
device, signatures are computed for fast clause comparison, and the clauses are
sorted for VCE (more on VCE later). Next, the device constructs a histogram,
for fast lookup of clauses, and sorts the variables. The Thrust library is used
2 The tool is available at https://gears.win.tue.nl/software/gpu4bmc.

https://gears.win.tue.nl/software/gpu4bmc


452 M. Osama and A. Wijs

for sorting.3 After that, the host schedules variables for VCE, marking those
variables in the global memory using unified memory. Next, the device applies
VCE, marking clauses to be removed as DELETED. The host propagates units
(literals in unit clauses are assigned true), which directly has an effect on the
formula in the global memory. The VCE procedure is repeated until it has been
performed a predetermined number of times. After each time, DELETED clauses
are removed, and after the last iteration, this is done while the new clauses are
copied to the host. Once this has been done, the overall procedure is repeated.

Data Structures and Memory Management. We have worked on making
the storage of each clause in the GPU global memory as efficient as possible.
However, we also wanted to annotate each clause with sufficient information for
effective optimisations. In ParaFROST, the following information is stored for
each clause:

– The state field (2 bits) stores if the state is ORIGINAL, LEARNT or DELETED.
– The used field (2 bits) keeps track of how many search iterations a LEARNT

clause can still be used. LEARNT clauses are used at most twice [6].
– Two fields (1 bit each) are used for VCE bookmarking.
– The literal block distance (lbd) (26 bits) stores the number of decision levels

contributing to a conflict, if there is one [3]. A maximum value of 226 turns
out to be sufficient. This field is updated when the clause is altered.

– The size (32 bits) of the clause, i.e., the number of literals.
– A signature sig (32 bits) is a clause hash, for fast clause comparison [15].

In addition, a list of literals is stored, each literal taking 32 bits (1 bit to
indicate whether it is negated or not, and 31 bits to identify the variable). In
total, a clause requires 12 + 4t bytes, with t the number of literals in the clause.
For comparison, MiniSat only requires 4 + 4t bytes, but it does not involve the
used, lbd and sig fields, thereby not supporting the associated optimisations.
CaDiCaL [6] uses 28 + 4t bytes, since it applies solving and VCE on the same
structures. In ParaFROST, the GPU is only used for VCE, in which infor-
mation for probing [24] and vivification [36], for instance, is irrelevant. Finally,
in [34], 20 + 4t bytes are used, storing the same information as ParaFROST.

To store a formula S, a clause array is preallocated in the global memory,
and filled with the clauses of S. More space is allocated than the size of S, to
allow the addition of clauses that result from VCE. As the amount of allocated
space is the limiting factor for the addition of new clauses, we have developed a
memory-aware VCE mechanism, which we explain later in the current section.

Parallel VCE. ParaFROST supports the VCE rules substitution (i.e., gate
equivalence reasoning), resolution (RES), subsumption elimination (SUB) and
eager redundancy elimination (ERE) [15,20]. Substitution applies to patterns
representing logical gates, and substitutes the involved variables with their gate
definitions. ParaFROST supports AND/OR, Inverter, If Then Else and XOR.

3 https://docs.nvidia.com/cuda/thrust.

https://docs.nvidia.com/cuda/thrust
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RES: x ∪ C1, x̄ ∪ C2 ⇒ C1 ∪ C2 (x ∪ C1 ∧L∈� x̄ ∪ C2 L∈� )

SUB1: x ∪ C1 ∪ C2, x̄ ∪ C2 ⇒ C1 ∪ C2, x̄ ∪ C2

SUB2: C1 ∪ C2, C2 ⇒ C2 (C2 ∈ L =⇒ L′ = L \ {C2})
ERE: x ∪ C1, x̄ ∪ C2, C1 ∪ C2 ⇒ x ∪ C1, x̄ ∪ C2 ({x ∪ C1, x̄ ∪ C2} ∩ L �= ∅ =⇒ C1 ∪ C2 ∈ L)

Fig. 3. VCE rules in ParaFROST. C1 and C2 are non-empty sets of literals.

In Fig. 3, we provide rewrite rules for SUB and RES. If clauses exist in S of
the form expressed by the left hand side of a rule, then the rule is applicable,
and the involved clauses are replaced by the clauses (called resolvents) on the
right hand side. RES is applicable if there are two clauses of the form x∪C1 and
x̄ ∪ C2, and applying it results in replacing those with a clause C1 ∪ C2. SUB
consists of two rules; the second is applied once the first is no longer applicable.

Conditions are given between parentheses. For RES, only ORIGINAL clauses
are considered. Besides that, if C1 ∪ C2 evaluates to true, it is actually not
created. As LEARNT clauses are sometimes deleted during solving, SUB2 should
only produce ORIGINAL clauses; if C2 is LEARNT before applying the rule, it will
become ORIGINAL (L′ refers to the set of LEARNT clauses after application). For
ERE, LEARNT clauses cannot cause the deletion of an ORIGINAL clause.

VCE is applied in parallel by ParaFROST by scheduling sets of mutually-
independent variables for analysis. Two variables x and y are independent in S
iff S does not contain a clause containing literals that refer to both variables,
i.e., Sx ∪ Sx̄ and Sy ∪ Sȳ are disjoint. This ensures that two threads focussing
on x and y, respectively, does not lead to data races. In incremental solving,
variables referred to by assumptions must be excluded from VCE. In each VCE

iteration, a different set Ψ of variables is selected. This is achieved by using
an upper-bound μ for the number of occurrences of a variable in S. After each
iteration, μ is increased, allowing the selection of more variables. ParaFROST

supports configuring μ and the number of VCE iterations.
As already mentioned, clauses that can be removed are marked DELETED

before they are removed. The removal of clauses is done once VCE has finished
(see Fig. 2) to avoid data races. However, because of this, VCE may at first
require more memory to store clauses. The clauses added during VCE must fit
in the memory, otherwise the procedure fails. To ensure this, we have developed
a memory-aware mechanism for VCE. Next, we explain this mechanism for the
RES rule and substitution, as the application of those rules results in new clauses.

Algorithm 1 presents how RES and substitution are applied in ParaFROST.
It requires S, stored in a clause array clauses. As clauses are of varying sizes, we
need an array references that provides a reference to each clause. In addition,
arrays varinfo, cindex and rindex are given, which are filled in the first lines.

At line 1, the kernel VceScan is called in which a different thread is assigned
to each variable x ∈ Ψ . Each thread checks the applicability of VCE rules
on its variable and computes the number of clauses and literals that will be
produced by the first applicable rule. A thread with ID i stores the type τ of the
applicable rule (NONE, RESOLVE, or SUBSTITUTE) and the number of clauses β and
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Algorithm 1: Parallel memory-aware application of RES and substitution
Input : global Ψ , clauses, references, varinfo, cindex, rindex

1 varinfo ← VceScan(Ψ, S)
2 cindex ← computeClauseIndices(varinfo, size(clauses))
3 rindex ← computeClauseRefIndices(varinfo, size(references))
4 VceApply(Ψ, clauses, references, varinfo, cindex, rindex)
5 kernel VceApply(Ψ, clauses, references, varinfo, cindex, rindex):
6 for all i ∈ [0, |Ψ |〉 do in parallel
7 register cidx ← cindex[i], ridx = rindex[i]
8 register τ, β, γ ← varinfo[i]
9 if τ = RESOLVE ∧ memorySafe(ridx, cidx, β, γ) then

10 ResApply(clauses, references, x, ridx, cidx)
11 if τ = SUBSTITUTE ∧ memorySafe(ridx, cidx, β, γ) then
12 SubApply(clauses, references, x, ridx, cidx)

13 device function memorySafe(ridx , cidx , β, γ):
14 reqSpace ← cidx + 12 × β + (4 · γ) // required number of bytes
15 if reqSpace > capacity(clauses) then return false
16 numRefs ← ridx + β // required number of clause references
17 if numRefs > capacity(references) then return false
18 return true

literals γ produced by that rule in one integer at varinfo[i]. At lines 2–3, kernels
computeClauseIndices and computeClauseRefIndices are called to add
up the β’s and γ’s to obtain offsets into the arrays references and clauses
(the method size(A) refers to the amount of data in array A). Both methods
apply a parallel exclusive prefix sum [37], involving the β’s and γ’s. The result
is that thread i, assigned to x, is instructed to start writing clause references
at references[rindex[i]] and clauses at clauses[cindex[i]] when applying the
next VCE rule for x. Whether the data actually fits is checked later.

Next, the kernel VceApply is called (lines 5–12). To each variable in Ψ ,
a thread is assigned. It retrieves the precomputed data (lines 7–8) and either
applies the RES rule (lines 9–10), substitution (lines 11–12), or nothing, in case
τ = NONE. However, a condition for applying a rule is that there is enough space,
which is checked using the device function memorySafe (lines 13–18). The
amount of allocated space for A is reflected by capacity(A), and memorySafe

checks if there is enough space in clauses, starting at cidx (lines 14–15). If there
is, it is checked if the references can be stored in references (lines 16–17).

4 Multiple Decision Making in Incremental Solving

Given the fact that BMC SAT formulas often have many variables, a recently
proposed extension of CDCL [30], in which periodically multiple decisions are
made (MDM) at the same time, has much potential to speed up BMC. When the
MDM method is called, it constructs a set M = {� ∈ L | Var({�})∩Var(Σ) = ∅}
such that there does not exist a clause C ∈ S with |Var(C) \ Var(Σ)| = 1. In
other words, the decisions M do not lead to logical follow-up assignments, i.e.,
implications. The reason for this restriction is that implications may lead to
conflicts (clauses that cannot be satisfied). When a single decision is made, this
decision needs to be rolled back when a conflict is caused, but when multiple
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Algorithm 2: Decision making method decide, with integrated MDM

Input: Σ,L, decqueue, r,nConflicts,ConfFactor, prevMDsize
1 freevars ← Var(L) \ Var(Σ)
2 if r > 0 then
3 M ← MDM(freevars, decqueue)
4 r ← r − 1, prevMDsize ← |M|
5 else
6 M ← singleDecision(freevars, decqueue)
7 if r = 0 ∧ |freevars| ≥ prevMDsize then
8 r ← periodicFuse(nConflicts,ConfFactor)
9 return M

10 function periodicFuse(nConflicts,ConfFactor):
11 if nConflicts ≥ ConfFactor then
12 updateFactor(ConfFactor)
13 return mdmrounds

14 else
15 return 0

decisions are made, detecting which decisions actually cause a conflict is more
difficult. Note that MDM cannot always make multiple decisions; implications
are needed to solve a formula, so single decisions still have to be made frequently.

In [30], MDM was integrated into MiniSat and Glucose, and since multiple
decisions should be selected periodically, a mechanism was proposed that decides
when to make multiple decisions based on the solver restart policy. However,
since solvers can differ greatly in this policy, we wanted to create an alternative
mechanism not depending on this. ParaFROST is based on CaDiCaL [6],
which has a very different restart policy compared to MiniSat and Glucose.

Algorithm 2 presents ParaFROST’s decide method, which is called every
time a decision must be made. Besides Σ and L, it is given a queue decqueue, in
which the variables are ordered based on a decision heuristic. In ParaFROST,
the heuristics Variable State Independent Decaying Sum (VSIDS) [27] and Vari-
able Move-To-Front (VMTF) [7] are alternatingly used. The latter was not
used before in [30]. decide also gets a variable r, initially set to the constant
mdmrounds. These values are used to control the periodic call of MDM, in which
a set of multiple decisions is made per round. Experiments have shown that
mdmrounds = 3 is effective [30]. Finally, the number of conflicts so far (nCon-
flicts), a variable ConfFactor used to switch MDM on and off, and a variable
prevMDsize, storing the size of the most recent set of multiple decisions, are
given.

To select new decisions, the set of unassigned variables is created at line 1.
If we are calling MDM mdmrounds times (line 2), then MDM is called again
and r is updated. The alternative is to make a single decision (line 6). If we
have stopped calling MDM, and enough unassigned variables are present (line
7), method periodicFuse is called, which either sets r back to mdmrounds or to
0, depending on nConflicts (lines 10–15). There are enough unassigned variables
if there are more unassigned variables than variables in the most recent multiple
decisions set. In periodicFuse, nConflicts is compared to ConfFactor , which is
initially set to a configurable value (default 2,000). ConfFactor is updated using
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a function updateFactor. This makes ConfFactor grow linearly, to achieve a
suitable balance between ConfFactor and nConflicts as the solving progresses.

5 Benchmarks

We conducted experiments with CBMC in combination with MiniSat (the
default), Glucose, CaDiCaL, ParaFROST, ParaFROST with MDM, and
a CPU-only version, referred to as ParaFROST (noGpu).4 We used the AWS
benchmarks in which the data structures hash table, array list, array buff,
linked list, priority queue, byte cursor and string were analysed. The
loop unwinding upper-bounds 8, 16, 64, 128 and 1,000 were used, resulting in
168 different verification problems.

All experiments were executed on the DAS-5 cluster [4]. Each program was
verified in isolation on a separate node, with a time-out of 3,600 s. Each node had
an Intel Xeon E5-2630 CPU (2.4 GHz) with 64 GB of memory, and an NVIDIA
RTX 2080 Ti, with 68 SMs (64 cores/SM) and 11 GB global memory.

Figure 4 presents the decision procedure runtime, and how much time was
spent on VCE. ParaFROST outperforms all sequential solvers including CaD-

iCaL (plot 4a). Even though ParaFROST is based on CaDiCaL, its different
data structures, simplification mechanism and parameters tuned for large for-
mulas makes ParaFROST more effective in these experiments. MDM further
improves ParaFROST. Plot 4b demonstrates that CBMC with MiniSat often
spends most of the time on VCE. ParaFROST significantly reduces the time
spent on VCE compared to other solvers.

In Table 1, the Verified column lists per solver the number of verified pro-
grams, and PAR-2 gives the penalized average runtime-2 metric. PAR-2 score
accumulates the running times of all solved instances with 2× the time-out of
unsolved ones, divided by the total number of formulas. The solver with the
lowest score is the winner. The triangles � and � mean significantly better and
worse, respectively. The MiniSat column lists how many programs were veri-
fied faster with the other solvers compared to MiniSat. Between parentheses,
it is given how many of those programs were not solved by MiniSat at all. The
final four columns serve the same purpose for the other solvers. For example,
ParaFROST-MDM verified 123 programs faster than CaDiCaL, in which 12
could not be verified by the latter. The last two rows provide a similar compari-
son. Clearly, ParaFROST-MDM verified the largest number of programs, with
the lowest score.

Figure 5 presents the speedups of the ParaFROST configurations
for the individual cases. Overall, SAT solving was accelerated effectively
with ParaFROST and ParaFROST-MDM. Compared to ParaFROST

(noGpu), ParaFROST (and ParaFROST-MDM), accelerated multiple
instances by up to 18× (and 27×), and the geometric average speedup for all
programs was 1.3× (and 1.6×).
4 We also tried to use CBMC with Z3, but were not able to correctly configure this

combination at the time of writing.
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(a) Verification time (timeout: 3600 seconds) (b) Percentage of verification time used for VCE

Fig. 4. CBMC runtimes for all solvers over the benchmark suite.

Table 1. CBMC performance analysis using the various solvers.

Configuration Verified PAR-2 MiniSat Glucose CaDiCaL PFCPU PFGPU

CBMC + MiniSat 143 1219 n/a n/a n/a n/a n/a
CBMC + Glucose 139 � 1388 � 49 (-4) n/a n/a n/a n/a
CBMC + CaDiCaL 143 1226 43 53 (+4) n/a n/a n/a
CBMC + PFCPU 154 824 51 (+11) 62 (+15) 83 (+11) n/a n/a
CBMC + PFGPU 155 � 765 � 66 (+12) � 83 (+16) � 96 (+12) 120 (+1) n/a
CBMC + PFGPU-MDM 155 � 743 � 84 (+12) � 102 (+16) � 123 (+12) 133 (+1) 121

Fig. 5. Speedups of the individual cases.

6 Conclusion

We have presented ParaFROST, the first tool to accelerate BMC using GPUs.
Given that BMC formulas tend to have much redundancy, ParaFROST effec-
tively reduces solving times with GPU pre- and inprocessing, and by using
MDM, which is particularly effective when many variables are present. In the
future, we will combine our approach with (existing) multi-threaded BMC. We
expect these techniques to strengthen each other.
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Abstract. Symbolic model checking is an important tool for finding
bugs (or proving the absence of bugs) in modern system designs. Because
of this, improving the ease of use, scalability, and performance of model
checking tools and algorithms continues to be an important research
direction. In service of this goal, we present Pono, an open-source SMT-
based model checker. Pono is designed to be both a research platform
for developing and improving model checking algorithms, as well as a
performance-competitive tool that can be used for academic and indus-
try verification applications. In addition to performance, Pono prioritizes
transparency (developed as an open-source project on GitHub), flexibil-
ity (Pono can be adapted to a variety of tasks by exploiting its general
SMT-based interface), and extensibility (it is easy to add new algorithms
and new back-end solvers). In this paper, we describe the design of the
tool with a focus on the flexible and extensible architecture, cover its cur-
rent capabilities, and demonstrate that Pono is competitive with state-
of-the-art tools.

1 Introduction

Model checking [39,61] is an influential verification capability in modern system
design. Its greatest success has been with finite-state systems, where proposi-
tional methods such as binary decision diagrams (BDDs) [28] and Boolean sat-
isfiability (SAT) solvers [69] are used as verification engines. At the same time,
significant efforts have been made to lift model checking techniques from finite-
state to infinite-state systems [24,30,31,35,46,63]. This requires more expressive
verification engines, such as solvers for satisfiability modulo theories (SMT) [19].
Proponents of SMT-based techniques argue that such techniques can also benefit
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finite-state systems, due to their ability to leverage word-level reasoning. Indeed,
a word-level model checker won the most recent hardware model checking com-
petition [22], giving credence to this claim. Despite these successes, there remain
many directions for exploration in model checking. In this paper, we present
Pono, an SMT-based model checking tool, with the goal of providing an open
research platform for advancing these efforts.

Pono is designed with three use cases in mind: 1) push-button verification;
2) expert verification; and 3) model checker development. For 1, Pono provides
competitive implementations of standard model checking algorithms. For 2, it
exposes a flexible API, affording expert users fine-grained control over the tool.
This can be useful in traditional model checking tasks (e.g., manually guiding
the tool to an invariant, or adjusting the encoding for better performance), but
it also enables the tool to be easily adapted for other tasks. In addition, Pono
is designed using a completely generic SMT solver interface, making it trivial
to experiment with different back-end solvers. For 3, Pono is open-source [7]
and designed to be easily modifiable and extensible with a simple, modular,
and hierarchical architecture. Taken together, these features make it relatively
easy to do controlled experiments by comparing results obtained using Pono,
while varying only the SMT solver or the model checking algorithm. Pono has
already been used in a variety of research projects, both for model checking and
other custom applications. It has also been used in two graduate level courses at
Stanford University, where students used both the command-line interface and
the API. With this promising start, we hope it will have a long and productive
existence supporting research, education, and industry.

2 Design

Pono is designed around the manipulation and analysis of transition systems.
A symbolic transition system is a tuple 〈X, I, T 〉, where X is a set of (sorted)
uninterpreted constants referred to as the current-state variables of the system
and coupled with corresponding next-state variables X ′; I(X) is a formula con-
straining the initial states of the system; and T (X,X ′) is a formula expressing
the transition relation, which encodes the dynamics of the system. The transi-
tion system representation provides a clean and general interface, allowing Pono
to target both hardware and software model checking. Pono is designed to fully
leverage the expressivity and reasoning power of modern SMT solving. Its for-
mulas use the language and semantics of the SMT-LIB standard [17], and its
model checking algorithms use an SMT solving oracle. To streamline the interac-
tion with SMT solvers, Pono uses Smt-Switch [59], an open-source C++ API for
SMT solving. Smt-Switch provides a convenient, efficient, and generic interface
for SMT solving. Smt-Switch supports a variety of SMT solver back-ends and
can switch between them easily.

The diagram in Fig. 1 displays the overall architecture of Pono. The blocks
with a dashed outline are globally available and used throughout the codebase.
The Pono API provides access to all of the components shown, supporting the
design goal of giving expert users control and flexibility.
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Fig. 1. Architecture diagram

Core. The TransitionSystem class in Pono represents symbolic transition sys-
tems as structured Smt-Switch terms. Key data structures include the following:
i) inputvars: a vector of Smt-Switch symbolic constants representing primary
inputs to the system (i.e., they are part of X, but their primed versions are not
used and cannot appear in T ); ii) statevars: a vector of Smt-Switch symbolic
constants corresponding to the non-input state variables (the remaining variables
in X); iii) next map: a map from current (X) to next-state (X ′) variables; iv)
init: an Smt-Switch formula representing I(X); and v) trans: an Smt-Switch
formula representing T (X,X ′).

There are two kinds of transition systems: RelationalTransitionSystem
and FunctionalTransitionSystem. The former has no restrictions on the form
of the transition relation, while the latter is restricted to only functional updates:
an equality (update assignment) with a next-state variable on the left and a
function of current-state and input variables on the right. Some model check-
ing algorithms take advantage of this structure [46,47]. Built-in checks ensure
compliance with the restrictions.

A Property is an Smt-Switch formula representing a property to check for
invariance.1 A ProverResult is an enum which can be one of the following:
i) UNKNOWN (result could not be determined, including incompleteness due to
checking only up to some bound); ii) FALSE (the property does not hold); iii)
TRUE (the property holds); and iv) ERROR (there was an internal error). The
Unroller is a class for producing unrolled transition systems, i.e., encoding a
finite-length symbolic execution by introducing fresh variables for each timestep.

1 Pono currently supports invariant checking. Support for temporal properties is left
to future work.
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Engines. Model checking algorithms are implemented as subclasses of the
abstract class Prover and stored in the engines directory. We cover the current
suite of engines in more detail in Sect. 3.

Frontends. Although users can manually build transition systems through the
API, it is also convenient to generate transition systems from structured input
formats. Pono includes the following frontends: i) BTOR2Encoder: uses the open-
source btor2tools [2] library to read the BTOR2 [66] format for hardware model
checking; ii) SMVEncoder: supports a subset of nuXmv’s [30] SMT-based the-
ory extension of SMV [61], which added support for infinite-state systems; iii)
CoreIREncoder: encodes the CoreIR [11] circuit intermediate representation.
Note that Verilog [10] can be supported by using a translator from Verilog
to either BTOR2 or SMV. Examples of translators include Yosys [72] and Ver-
ilog2SMV [53], both of which are open-source.

Printers. Pono prints witness traces when a property does not hold. The sup-
ported formats are the BTOR2 witness format and the VCD standard format used
by EDA tools [10]. For theories such as arithmetic that are not supported by
these formats, Pono implements simple extensions, ensuring that all variable
assignments are included in witness traces.

Modifiers and Refiners. Pono includes functions that perform various trans-
formations on transition systems, including: adding an auxiliary variable [14];
building an implicit predicate abstraction [70]; and computing a static cone-of-
influence reduction for a functional transition system under a given property. It
also includes functions for refining an abstract transition system.

Utils and Options. utils contains a collection of general-purpose classes and
functions for manipulating and analyzing Smt-Switch terms and transition sys-
tems. options contains a single class, PonoOptions, for managing command-line
options.

API. Pono’s native API is in C++. In addition, Pono has Python bindings that
interact with the Smt-Switch Python bindings, both written in Cython [20].
These bindings behave very similarly to “pure” Python objects, allowing intro-
spection and pythonic use of the API.

We follow best practices for modern C++ development and code quality
maintenance, including issue tracking, code reviews, and continuous integration
(via GitHub Actions). The build infrastructure is written in CMake [3] and is
configurable. The Pono repository also provides helper scripts for installing its
dependencies. We support GoogleTest [5] for unit testing and gperftools [12]
for code profiling. Tests can be parameterized by both the SMT solver and the
algorithm or type of transition system. We utilize PyTest [9] to manage and
parameterize unit tests for the python bindings.

3 Capabilities

In this section, we highlight some key capabilities of Pono. The design makes
use of abstract interfaces and inheritance to make it easy to add or extend
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functionality. Base class implementations of core functionality are provided but
are kept simple to prioritize readability and transparency. And, of course, they
can be overridden using inheritance and virtual functions.

We start by describing the interface and engines provided for push-button
verification. Next, we take a closer look at two ways that the basic architecture
can be extended. We then show how to use Pono to reason about a transition
system using algebraic datatypes, demonstrating the expressive power provided
by the SMT back-end.

Main Engines. All model checking algorithms in Pono are derived classes of
the abstract base class Prover. The base class defines a simple public interface
through a set of virtual functions:

– initialize initializes any objects and data structures the prover needs.
– check until takes a non-negative integer parameter, k (the effort level), and

calls the prover engine (the meaning of k is algorithm-dependent: in BMC [21]
and k-induction [68], k is the unrolling length and in IC3-style [25] algorithms,
it is the number of frames). The interface allows check until to be called
repeatedly with increasing values of k. An incremental algorithm can take
advantage of this to reuse proof effort from previous calls. Engines that pro-
duce full proofs can do so as long as they do it within the provided effort
level.

– prove attempts to prove a property without any limit on the bound.
– witness is called after a failed call to prove or check until. It provides

variable assignments for each step in a counterexample trace.
– invar is called after a successful full proof; it returns an inductive invariant

that implies the property. The invariant is an Smt-Switch Term over current-
state variables. Not all algorithms support this functionality.

Pono has several engines, all of which have been lifted to the SMT-level. We
now list the main engines and include the corresponding lines of code (LoC) in
the primary source file (the LoC includes all comments and license headers):
1. Bounded Model Checking [21] (88 LoC); 2. K-Induction [68] (161 LoC); 3.
Interpolant-based Model Checking [62] (230 LoC); 4. IC3-style algorithms [25]
(see below for LoC). The engines leverage the reusable infrastructure described
in Sect. 2 (e.g., the Unroller for the unrolling based techniques).

IC3 Variants. IC3 is widely recognized as one of the best-performing algorithms
for SAT-based model checking [43]. Liftings to SMT are an area of active research
and have produced several variations with promising results [23,24,34,35,47,51,
54,55,71]. To support this active research direction, Pono includes a special IC3
base class IC3Base, which implements a framework common to all variations of
the algorithm.2 The framework has several parameters that can be provided by
specific instances of the algorithm: IC3Formula is a configurable data structure
used to represent formulas constraining IC3 frames; inductive generalization
is the method used for inductive generalization; predecessor generalization

2 For details on how the IC3 algorithm works, we refer the reader to [25,43].
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is the method used for predecessor generalization; and abstract and refine
are methods that can be implemented for abstraction-refinement approaches to
IC3 [35,47]. The implementation of IC3Base is 1086 lines of code. Current instan-
tiations of IC3Base implemented in Pono include: i) IC3: a standard Boolean
IC3 implementation [25,43] (152 LoC); ii) IC3Bits: a simple extension of IC3 to
bit-vectors, which learns clauses over the individual bits (113 LoC); iii) Model-
based IC3: a naive implementation of IC3 lifted to SMT, which learns clauses
of equalities between variables and model values (397 LoC); iv) IC3IA: IC3 via
Implicit Predicate Abstraction [35] (456 LoC); v) IC3SA: a basic implementation
of IC3 with Syntax-Guided Abstraction for hardware verification [47] (984 LoC);
vi) SyGuS-PDR: a syntax-guided synthesis approach for inductive generalization
targeting hardware designs [73] (1047 LoC).

Counterexample-Guided Abstraction Refinement (CEGAR). CEGAR
[57] is a popular framework for iteratively solving difficult model checking prob-
lems. It is typically parameterized by the underlying model checking algorithm,
which operates on an abstract system that is iteratively refined as needed. Pono
provides a generic CEGAR base class, parameterized by a model checking engine
through a template argument. We describe two example uses of the CEGAR
infrastructure implemented in Pono.

Operator Abstraction. This simple CEGAR algorithm uses uninterpreted func-
tions (UF) to abstract potentially expensive theory operators (e.g. multiplica-
tion). The implementation is parameterized by the set of operators to replace
with UFs. The refinement step analyzes a counterexample trace by restoring
the concrete theory operator semantics. If the trace is found to be spurious, con-
straints are added to enforce the real semantics for the abstracted operators (e.g.,
equalities between certain abstract UFs and their theory operator counterparts),
thus ruling out the spurious counterexample.

Counterexample-Guided Prophecy. This CEGAR approach replaces array vari-
ables with initially memoryless variables of uninterpreted sort and replaces the
select and store array operators with UFs [58]. Due to the array theory seman-
tics, it is not always possible to remove spurious counterexamples with quantifier-
free refinement axioms over existing variables. However, instead of using poten-
tially expensive quantifiers, the algorithm adds auxiliary variables (history and
prophecy variables) [14], which can rule out spurious counterexamples of a given
finite length. This approach has the effect of removing the need for array solv-
ing and can sometimes prove properties using prophecy variables that would
otherwise require a universally quantified invariant.

Case Study with Algebraic Datatypes. To illustrate the flexibility of Pono’s
SMT-based formalism, we next describe a case study with generalized algebraic
theories (GATs) [29]. GATs are a rich formalism which can be used for high-level
specifications of software or mathematical constructs. While the equality of two
terms in a GAT is undecidable, one can ask the bounded question: “Does there
exist a path of up to n rewrites to take a source term to a target term?”
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To model this question, we use algebraic datatypes to represent depend-
ently-typed abstract syntax trees (ASTs), paths through an AST (e.g., the 2nd
argument of the 3rd argument of a term’s 1st argument), and rewrite rules (e.g.,
succ(n+1) = succ(m+1) ≡ succ(n) = succ(m)). Smt-Switch supports algebraic
datatypes through the CVC4 [18] back-end. A rewrite function is encoded as a
transition relation. The decision of which rule to apply and at which subpath
to apply it is controlled by input variables, and a state variable represents the
current AST term (initially set to the source term). We check the property
that the target term is not reachable from the source term. Consequently, any
discovered counterexample is a valid rewrite sequence, serving as a proof of an
equality that holds in the theory.

The workflow accepts a GAT input, produces an SMT encoding optimized
for that particular theory, and then parses user-provided source and target terms
into this theory before running bounded model checking. We used Pono to suc-
cessfully find equalities in the theories of Boolean algebras, preorders, monoids,
categories, and read-over-write arrays. This case study demonstrates Pono’s abil-
ity to model and model check unconventional systems.

4 Related Work

Existing academic model checkers span a wide range of supported theories,
modeling capabilities, and implemented algorithms. An important early model
checker was SMV [61], which pioneered symbolic model checking of temporal
logic properties [67] through BDDs [28]. NuSMV [32] and NuSMV2 [33] refined and
extended the tool, followed by nuXmv [30] – a closed-source tool which added sup-
port for various SMT-based verification techniques using the SMT solver Math-
SAT5 [36]. Spin [52] is a well-known explicit-state model checker with extensive
support for partial order reduction and other optimizations.

Several model checkers specifically target hardware verification. ABC [26] is a
well-established, state-of-the-art bit-level hardware model checker based on SAT
solving. CoSA [60] is an open-source model checker implemented in Python using
the Python solver-agnostic SMT solving library, PySMT [45]. Although CoSA also
relies on a generic API similar to Smt-Switch, the Python implementation intro-
duces significant overhead, limiting its ability to include efficient procedures that
must be implemented outside of the underlying SMT solver (e.g., CEGAR loops
and some IC3 variants). AVR [48] is a state-of-the-art SMT-based hardware model
checker supporting several standard model checking algorithms. It also imple-
ments a novel technique: IC3 via syntax-guided abstraction [47]. Importantly,
AVR won the hardware model checking competition in 2020 [22], outperforming
the previous state-of-the-art SAT-based model checker, ABC. AVR is currently
closed-source, making it unsuitable for several of the use-cases targeted by our
work, but a binary is available on GitHub [1].

There are several SMT-based model checkers focused on parameterized pro-
tocols. MCMT [46], the open-source extension Cubicle [49], and related sys-
tems [15,16] perform backward-reachability analysis over infinite-state arrays.
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Other open-source SMT-based model checkers include: i) ic3ia [13] – an
example implementation of IC3IA built on MathSAT [36]; ii) Kind2 [31] – a
model checker for Lustre programs; iii) Sally [42] – a model checker for infinite-
state systems that uses the SAL language [65] and MCMT, an extension of
the SMT-LIB text format for declaring transition systems; iv) Spacer [56] – a
Constrained Horn Clauses (CHC) solver built into the open-source Z3 [64] SMT
solver, also based on an IC3-style algorithm; and v) Intrepid [27] – a model
checker focusing primarily on the control engineering domain.

Pono is open-source, SMT-based, and implements a variety of model checking
algorithms over transition systems. Furthermore, in contrast to the tools which
focus on more limited domains, it has support for a wide set of SMT theories
including fixed-width bit-vectors, arithmetic, arrays, and algebraic datatypes.
To our knowledge all current open-source SMT-based model checkers tie the
implementation directly to an existing SMT solver or use PySMT or the SMT-
LIB text format to interact with arbitrary solvers. In contrast, Pono makes use
of the C++ API of Smt-Switch to efficiently manipulate SMT terms and solvers
in memory without a need for a textual interface. This allows Pono to provide
both flexibility and performance. Finally, like the new model checker Intrepid,
Pono provides an extensive API, which can be adapted and extended as needed.
However, the focus is broader than Intrepid in terms of application domains.

5 Evaluation

In this section, we evaluate Pono3 against current state-of-the-art model checkers
across several domains. Our evaluation is not intended to be exhaustive. Rather,
we highlight the breadth of Pono by selecting four sets of benchmarks in three
diverse categories and a few reasonable competitors for each. The benchmarks are
drawn from the following theories: i) unbounded quantifier-free arrays indexed by
integers; ii) quantifier-free linear arithmetic over reals and integers; and iii) hard-
ware verification over quantifier-free bit-vectors and (finite, bit-vector indexed)
arrays. We ran all experiments on a 3.5 GHz Intel Xeon E5-2637 v4 CPU with
a timeout of 1 h and a memory limit of 16 Gb. For all results, we also include
the average runtime of solved instances in seconds. For portfolio solving, we ran
each configuration in its own process with the full time and memory resources.
In the first two categories, Pono used MathSAT5 [36] as the underlying SMT
solver and interpolant [37,40,62] producer. For the hardware benchmarks, it
used MathSAT5, Boolector [66], or both, depending on the configuration.

Arrays. We evaluate Pono on the integer-indexed array benchmark set of [44].
These are Constrained Horn Clauses (CHC) benchmarks inspired by software
verification problems. Although there are no quantifiers in the benchmarks them-
selves, most cannot be proved safe without strengthening the property with
quantified invariants. We compare against: i) freqhorn [44], a state-of-the-art
CHC solver for this type of problem; ii) prophic3 [8], a recent method that

3 GitHub commit c175a302857ff00229a0919d5cc8fc3f78d04a26.
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Pono prophic3 prophic3-SA freqhorn nuXmv

solved 71 (16s) 71 (20s) 66 (31s) 69 (6s) 4 (51s)

Fig. 2. Results on Freqhorn Array benchmarks (81 total), all expected to be safe.

result SystemC (43 total) Lustre (951 total)
Pono nuXmv Pono nuXmv kind2

safe 18 (673s) 21 (571s) 521 (10s) 516 (8s) 506 (2s)

unsafe 14 (325s) 15 (479s) 412 (5s) 412 (1s) 409 (0.2s)

total 32 (521s) 36 (533s) 933 (8s) 928 (5s) 915 (1s)

Fig. 3. Results on arithmetic benchmarks.

outperforms freqhorn [58]; and iii) nuXmv, which does not support quanti-
fied invariants, to illustrate that most of these benchmarks do require them;
freqhorn takes the CHC format natively, and we used scripts from the ic3ia
and nuXmv distributions to translate the CHC input to SMV and the Verification
Modulo Theories (VMT) format [38] – an annotated SMT-LIB file representing
a transition system – for the other tools. We ran Pono with Counterexample-
Guided Prophecy using IC3IA as the underlying model checking technique. We
ran prophic3 with both of the option sets used in their paper, and we ran the
default configuration of freqhorn. Our results are shown in Fig. 2. We observe
that Pono solves the same number of benchmarks as the reference implementa-
tion prophic3 and is a bit faster.

Arithmetic. We next evaluate Pono on two sets of arithmetic benchmarks,
both from the nuXmv distribution’s example directory. The first uses linear real
arithmetic, and the second uses linear integer arithmetic. Figure 3 displays the
results on both benchmark sets.

Linear Real Arithmetic. We chose the systemc QF LRA example benchmarks,
because this is the largest set of linear real arithmetic benchmarks in the subset
of SMV supported by Pono.4 We ran both nuXmv and Pono with BMC and
IC3IA in a portfolio. For both model checkers, BMC did not contribute any
unique solves. We observe that Pono is quite competitive with nuXmv on nuXmv’s
own benchmarks.

Linear Integer Arithmetic. We also evaluate Pono on a set of Lustre benchmarks
which use quantifier-free linear integer arithmetic. We obtained the Lustre bench-
marks from the Kind [50] website [6] and the SMV translation of the benchmarks
from the distribution of nuXmv. We compare against both nuXmv and Kind2 [31],
the latest version of Kind. We ran all tools with a portfolio of techniques. For
Pono and nuXmv we ran BMC and IC3IA. For Kind2 we ran two configurations
suggested by the authors: the default configuration with Z3 [64] and the default
configuration, but with Yices2 [41] as the main SMT solver. Since the default

4 Pono does not yet support enumeration types.
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result BV (324 total) BV + Array (315 total)
Pono AVR CoSA2 sygus-apdr Pono AVR CoSA2

safe 183 (283s) 215 (115s) 98 (283s) 115 (545s) 252 (224s) 274 (63s) 209 (299s)

unsafe 47 (314s) 47 (220s) 41 (232s) 15 (279s) 19 (208s) 19 (352s) 19 (204s)

total 230 (289s) 262 (134s) 139 (268s) 130 (514s) 271 (223s) 293 (82s) 228 (291s)

Fig. 4. Results on HWMCC2020 benchmarks.

configurations of Kind2 run 8 techniques in parallel, we gave each configura-
tion 8 cores. Additionally, we ran Kind2’s BMC and IC3 implementations using
MathSAT5 as the SMT solver, because this is closest to the other model check-
ers’ configurations. The default with Z3 was the best configuration of Kind2.
We observe that Pono solves the most benchmarks overall. Once again, BMC
contributed no unique solves for any model checker.

Hardware Verification. Finally, we evaluate Pono on the 2020 Hardware
Model Checking Competition (HWMCC) benchmarks. The benchmarks are split
into bitvector-only and bitvector plus array categories. We evaluate against
AVR [1,48] and CoSA2 [4] (a previous name and version of Pono), the winners
of HWMCC 2020 and HWMCC 2019, respectively. We also compare against
sygus-apdr (the reference implementation of SyGuS-PDR [73]) on the bitvec-
tor benchmarks (as sygus-apdr targets bitvectors). We ran all 16 configura-
tions of AVR from their HWMCC 2020 entry: several configurations of BMC and
k-induction, and 11 configurations of IC3SA. We ran the 4 configurations of
CoSA2 from the HWMCC 2019 entry: two BMC configurations, k-induction, and
interpolant-based model checking. We ran sygus-apdr with 4 different param-
eters controlling the grammar for lemmas. For the bitvector-only benchmarks,
we ran Pono with 10 configurations: 3 configurations of IC3IA, 2 configurations
of IC3SA, 2 configurations of SyGuS-PDR, IC3Bits, k-induction, and BMC. For
the array benchmarks, we ran 5 configurations: 3 configurations of IC3IA (one
with Counterexample-Guided Prophecy), k-induction, and BMC. We show our
results on the HWMCC 2020 benchmarks in Fig. 4. AVR wins in both categories,
although Pono is fairly competitive, outperforming the other tools.

These results show that Pono is well on its way to being both widely applica-
ble and performance-competitive. The arithmetic experiments demonstrate the
capabilities of its IC3IA engine, but other engines have some room for improve-
ment. In particular, both IC3SA and SyGuS-PDR were recently added to Pono,
and its implementation of these algorithms still lags the corresponding imple-
mentations in AVR and sygus-apdr, respectively. There are also some features
that are known to help performance and are not yet implemented in Pono. For
example, the best configurations of AVR use UF data abstraction. This differs
from our UF operator abstraction in that it replaces all abstracted data with
uninterpreted sorts and learns targeted data refinement axioms.
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6 Conclusion

We have presented Pono: a new open-source, SMT-based, and solver-agnostic
model checker. We described its capabilities, design, and the emphasis on flexi-
bility and extensibility in addition to performance. We demonstrated empirically
that the suite of model checking algorithms is competitive with state-of-the-art
tools. Pono has already been used in several research projects and two graduate-
level classes. With this promising start, we believe that Pono is poised to have
an enduring and beneficial impact on research, education, and model checking
applications. Future work includes adding support for temporal properties [67]
and improving and adding to Pono’s engines, in particular the IC3 variants.
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Abstract. We pursue the vision of an ideal language framework, where
programming language designers only need to define the formal syntax
and semantics of their languages, and all language tools are automati-
cally generated by the framework. Due to the complexity of such a lan-
guage framework, it is a big challenge to ensure its trustworthiness and
to establish the correctness of the autogenerated language tools. In this
paper, we propose an innovative approach based on proof generation.
The key idea is to generate proof objects as correctness certificates for
each individual task that the language tools conduct, on a case-by-case
basis, and use a trustworthy proof checker to check the proof objects.
This way, we avoid formally verifying the entire framework, which is
practically impossible, and thus can make the language framework both
practical and trustworthy. As a first step, we formalize program execu-
tion as mathematical proofs and generate their complete proof objects.
The experimental result shows that the performance of our proof object
generation and proof checking is very promising.

Keywords: Semantic framework · Proof generation · Proof checking

1 Introduction

Unlike natural languages that allow vagueness and ambiguity, programming lan-
guages must be precise and unambiguous. Only with rigorous definitions of pro-
gramming languages, called the formal semantics, can we guarantee the reliabil-
ity, safety, and security of computing systems.

Our vision is thus an ideal language framework based on the formal semantics
of programming languages. Shown in Fig. 1, an ideal language framework is one
where language designers only need to define the formal syntax and semantics
of their language, and all language tools are automatically generated by the
framework. The correctness of these language tools is established by generating
complete mathematical proofs as certificates that can be automatically machine-
checked by a trustworthy proof checker.
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Fig. 1. An ideal language framework vision; language tools are autogenerated, with
machine-checkable mathematical proofs as correctness certificates.

The K language framework (https://kframework.org) is in pursuit of the
above ideal vision. It provides a simple and intuitive front end language (i.e., a
meta-language) for language designers to define the formal syntax and semantics
of other programming languages. From such a formal language definition, the
framework automatically generates a set of language tools, including a parser,
an interpreter, a deductive verifier, a program equivalence checker, among many
others [9,24]. K has obtained much success in practice, and has been used to
define the complete executable formal semantics of many real-world languages,
such as C [12], Java [2], JavaScript [21], Python [13], Ethereum virtual machines
byte code [15], and x86-64 [10], from which their implementations and formal
analysis tools are automatically generated. Some commercial products [14,18]
are powered by these autogenerated implementations and/or tools.

What is missing in K (compared to the ideal vision in Fig. 1) is its ability
to generate proof objects as correctness certificates. The current K implemen-
tation is a complex artifact with over 500,000 lines of code written in 4 pro-
gramming languages, with new code committed on a weekly basis. Its code base
includes complex data structures, algorithms, optimizations, and heuristics to
support the various features such as defining formal language syntax using BNF
grammar, defining computation configurations as constructor terms, defining
formal semantics using rewrite rules, specifying arbitrary evaluation strategies,
and defining the binding behaviors of binders (Sect. 3). The large code base and
rich features make it challenging to formally verify the correctness of K.

Our main contribution is the proposal of a practical approach to establish-
ing the correctness of a complex language framework, such as K, via proof object
generation. Our approach consists of the following main components:

1. A small logical foundation of K;
2. Proof parameters that are provided by K as the hints for proof generation;

https://kframework.org
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3. A proof object generator that generates proof objects from proof parameters;
4. A fast and trustworthy third-party proof checker that verifies proof objects.

The key idea that makes our approach practical is that we establish the correct-
ness not for the entire framework, but for each individual language tasks that it
conducts, on a case-by-case basis. This idea is not limited to K but also appli-
cable to the existing language frameworks and/or formal semantics approaches.

As a first step, we formalize program execution as mathematical proofs and
generate their complete proof objects. The experimental result (Table 1) shows
promising performance of the proof object generation and proof checking. For
example, for a 100-step program execution trace, its complete proof object has
1.6 million lines of code that takes only 5.6 s to proof-check.

We organize the rest of the paper as follows. We give an overview of our app-
roach in Sect. 2. We introduce K and discuss the generation of proof parameters
in Sect. 3. We discuss matching logic—the logical foundation of K—in Sect. 4.
We then compile K to matching logic in Sect. 5, and discuss proof object gener-
ation in Sect. 6. We discuss the limitations of our current implementation and
show the experiment results in Sects. 7 and 8, respectively. Finally, we discuss
related work in Sect. 9 and conclude the paper in Sect. 10.

2 Our Approach Overview

We give an overview of our approach via the following four main components:
(1) a logical foundation of K, (2) proof parameters, (3) proof object generation,
and (4) a trustworthy proof checker.

Logical Foundation of K. Our approach is based on matching logic [5,22].
Matching logic is the logical foundation of K, in the following sense:

1. The K definition (i.e., the language definition in Fig. 1) of a programming
language L corresponds to a matching logic theory ΓL, which, roughly speak-
ing, consists of a set of logical symbols that represents the formal syntax of
L, and a set of logical axioms that specify the formal semantics.

2. All language tools in Fig. 1 and all language tasks that K conducts are for-
mally specified by matching logic formulas. For example, program execution
is specified (in our approach) by the following matching logic formula:

ϕinit ⇒ ϕfinal (1)

where ϕinit is the formula that specifies the initial state of the execution, ϕfinal

specifies the final state, and “⇒” states the rewriting/reachability relation
between states (see Sect. 5.1).

3. There exists a matching logic proof system that defines the provability relation
� between theories and formulas. For example, the correctness of the above
execution from ϕinit to ϕfinal is witnessed by the formal proof:

ΓL � ϕinit ⇒ ϕfinal (2)



480 X. Chen et al.

Therefore, matching logic is the logical foundation of K. The correctness of K
conducting one language task is reduced to the existence of a formal proof in
matching logic. Such formal proofs are encoded as proof objects, discussed below.

Proof Parameters. A proof parameter is the necessary information that K

should provide to help generate proof objects. For program execution, such as
Eq. (2), the proof parameter includes the following information:

– the complete execution trace ϕ0, ϕ1, . . . , ϕn, where ϕ0 ≡ ϕinit and ϕn ≡
ϕfinal ; we call ϕ0, . . . , ϕn the intermediate snapshots of the execution;

– for each step from ϕi to ϕi+1, the rewriting information that consists of the
rewrite/semantic rule ϕlhs ⇒ ϕrhs that is applied, and the corresponding
substitution θ such that ϕlhsθ ≡ ϕi.

In other words, a proof parameter of a program execution trace contains the
complete information about how such an execution is carried out by K. The
proof parameter, once generated by K, is passed to the proof object generator
to generate the corresponding proof object, discussed below.

Proof Object Generation. In our approach, a proof object is an encoding
of matching logic formal proofs, such as Eq. (2). Proof objects are generated by
a proof object generator from the proof parameters provided by K. At a high
level, a proof object for program execution, such as Eq. (2), consists of:

1. the formalization of matching logic and its provability relation �;
2. the formalization of the formal semantics ΓL as a logical theory, which

includes axioms that specify the rewrite/semantic rules ϕlhs ⇒ ϕrhs ;
3. the formal proofs of all one-step executions, i.e., ΓL � ϕi ⇒ ϕi+1 for all i;
4. the formal proof of the final proof goal ΓL � ϕinit ⇒ ϕfinal .

Our proof objects have a linear structure, which implies a nice separation of
concerns. Indeed, Item 1 is only about matching logic and is not specific to any
programming languages/language tasks, so we only need to develop and proof-
check it once and for all. Item 2 is specific to the language semantics ΓL but is
independent of the actual program executions, so it can be reused in the proof
objects of various language executions for the same programming language L.

A Trustworthy Proof Checker. A proof checker is a small program that
checks whether the formal proofs encoded in a proof object are correct. The proof
checker is the main trust base of our work. In this paper, we use Metamath [20]—
a third-party proof checking tool that is simple, fast, and trustworthy—to for-
malize matching logic and encode its formal proofs.
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Fig. 2. The complete K formal definition of an imperative language IMP.

Summary. Our approach to establishing the correctness of K is based on its
logical foundation—matching logic. We formalize language semantics as logi-
cal theories, and program executions as formulas and proof goals, whose proof
objects are automatically generated and proof-checked. Our proof objects have
a linear structure that allows easy reuse of their components. The key charac-
teristics of our logical-based approach are the following:

– It is faithful to the real K implementation because proof objects are generated
from proof parameters, which include all execution snapshots and the actual
rewriting information, provided by K.

– It is practical because proof objects are generated for each program executions
on a case-by-case bases, avoiding the verification of the entire K.

– It is trustworthy because the autogenerated proof objects are checked using
the trustworthy third-party Metamath proof checker.

3 K Framework and Generation of Proof Parameters

3.1 K Overview

K is an effort in realizing the ideal language framework vision in Fig. 1. An easy
way to understand K is to look at it as a meta-language that can define other
programming languages. In Fig. 2, we show an example K language definition
of an imperative language IMP. In the 39-line definition, we completely define
the formal syntax and the (executable) formal semantics of IMP, using a front
end language that is easy to understand. From this language definition, K can
generate all language tools for IMP, including its parser, interpreter, verifier, etc.

We use IMP as an example to illustrate the mainK features. There are twomod-
ules: IMP-SYNTAX defines the syntax and IMP defines the semantics using rewrite
rules. Syntax is defined as BNF grammars. The keyword syntax leads production
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rules that can have attributes that specify the additional syntactic and/or seman-
tic information. For example, the syntax of if -statements is defined in lines 11–12
and has the attribute [strict(1)] , meaning that the evaluation order is strict in
the first argument, i.e., the condition of an if -statement.

In the module IMP , we define the configurations of IMP and its formal
semantics. A configuration (lines 23–25) is a constructor term that has all seman-
tic information needed to execute programs. IMP configurations are simple, con-
sisting of the IMP code and a program state that maps variables to values. We
organize configurations using (semantic) cells: </k> is the cell of IMP code and
</state> is the cell of program states. In the initial configuration (lines 24–25),
</state> is empty and </k> contains the IMP program that we pass to K for

execution (represented by the special K variable $PGM ).
We define formal semantics using rewrite rules. In lines 26–27, we define the

semantics of variable lookup, where we match on a variable X in the </k> cell
and look up its value I in the </state> cell, by matching on the binding X �→ I .
Then, we rewrite X to I , denoted by X ⇒ I in the </k> cell in line 26. Rewrite
rules in K are similar to those in the rewrite engines such as Maude [7].

Fig. 3. Running example TWO-COUNTERS .

A Running Example. IMP is too
complex as a running example so we
introduce a simpler one: TWO-COUNTERS .
Although simple, TWO-COUNTERS still
uses the core features of defining for-
mal syntax as grammars and formal
semantics as rewrite rules.

TWO-COUNTERS is a tiny language that defines a state machine with two coun-
ters. Its computation configuration is simply a pair 〈m,n〉 of two integers m and
n, and its semantics is defined by the following (conditional) rewrite rule:

〈m,n〉 ⇒ 〈m − 1, n + m〉 if m > 0 (3)

Therefore, TWO-COUNTERS adds n by m and reduces m by 1. Starting from the
initial state 〈m, 0〉, TWO-COUNTERS carries out m execution steps and terminates
at the final state 〈0,m(m + 1)/2〉, where m(m + 1)/2 = m + (m − 1) + · · · + 1.

3.2 Program Execution and Proof Parameters

In the following, we show a concrete program execution trace of TWO-COUNTERS

starting from the initial state 〈100, 0〉:
〈100, 0〉, 〈99, 100〉, 〈98, 199〉, . . . , 〈1, 5049〉, 〈0, 5050〉 (4)

To make K generate the above execution trace, we need to follow these steps:

1. Prepare the initial state 〈100, 0〉 in a source file, say 100.two-counters .
2. Compile the formal semantics TWO-COUNTERS into a matching logic theory,

explained in Sect. 5.
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3. Use the K execution tool krun and pass the source file to it:
$ krun 100.two-counters --depth N

The option --depth N tells K to execute for N steps and output the (interme-
diate) snapshot. By letting N be 1, 2, . . . , we collect all snapshots in Eq. (4).

The proof parameter of Eq. (4) includes the additional rewriting information
for each execution step. That is, we need to know the rewrite rule that is applied
and the corresponding substitution. In TWO-COUNTERS , there is only one rewrite
rule, and the substitution can be easily obtained by pattern matching, where we
simply match the snapshot with the left-hand side of the rewrite rule.

Note that we regard K as a “black box”. We are not interested in its complex
internal algorithms. Instead, we hide such complexity by letting K generate proof
parameters that include enough information for proof object generation. This
way, we create a separation of concerns between K and proof object generation.
K can aim at optimizing the performance of the autogenerated language tools,
without making proof object generation more complex.

4 Matching Logic and Its Formalization

We review the syntax and proof system of matching logic—the logical foundation
of K. Then, we discuss its formalization, which is our main technical contribution
and is a critical component of the proof objects we generate for K (see Sect. 2).

4.1 Matching Logic Overview

Matching logic was proposed in [23] as a means to specify and reason about
programs compactly and modularly. The key concept is its formulas, called pat-
terns, which are used to specify program syntax and semantics in a uniform way.
Matching logic is known for its simplicity and rich expressiveness. In [4–6,22],
the authors developed matching logic theories that capture FOL, FOL-lfp, sepa-
ration logic, modal logic, temporal logics, Hoare logic, λ-calculus, type systems,
etc. In Sect. 5, we discuss the matching logic theories that capture K.

The syntax of matching logic is parametric in two sets of variables EV and
SV . We call EV the set of element variables, denoted x, y, . . . , and SV the set
of set variables, denoted X,Y, . . . .

Definition 1. A (matching logic) signature Σ is a set of (constant) symbols.
The set of Σ-patterns, denoted Pattern(Σ), is inductively defined as follows:

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x. ϕ | μX. ϕ

where in μX. ϕ we require that ϕ has no negative occurrences of X.

Thus, element variables, set variables, and symbols are patterns. ϕ1 ϕ2 is a
pattern, called application, where the first argument is applied to the second. We
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Fig. 4. Capture-free substitution are defined in the usual way and formalized later in
Sect. 4.2 as a part of our proof objects.

have propositional connectives ⊥ and ϕ1 → ϕ2, existential quantification ∃x. ϕ,
and the least fixpoints μX. ϕ, from which the following notations are defined:

¬ϕ ≡ ϕ → ⊥ � ≡ ¬⊥ ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)
ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2 ∀x. ϕ ≡ ¬∃x.¬ϕ νX. ϕ ≡ ¬μX. ¬ϕ[¬X/X]

We use fv(ϕ) to denote the free variables of ϕ, and ϕ[ψ/x] and ϕ[ψ/X] to denote
capture-free substitution. Their (usual) definitions are listed in Fig. 4.

Matching logic has a pattern matching semantics, where a pattern ϕ is inter-
preted as the set of elements that match it. For example, ϕ1 ∧ ϕ2 is the pattern
that is matched by those matching both ϕ1 and ϕ2. Matching logic semantics is
not needed for proof object generation, so we exile it to [5,22].

We show the matching logic proof system in Fig. 5, which defines the prov-
ability relation, written Γ � ϕ, meaning that ϕ can be proved using the proof
system, with patterns in Γ added as additional axioms. We call Γ a match-
ing logic theory. The proof system is a main component of proof objects. To
understand it, we first need to define application contexts.

Definition 2. A context is a pattern C with a hole variable �. We write C[ϕ] ≡
C[ϕ/�] as the result of context plugging. We call C an application context, if

1. C ≡ � is the identity context; or
2. C ≡ ϕ C ′ or C ≡ C ′ ϕ, where C ′ is an application context and � �∈ fv(ϕ).

That is, the path from the root to � in C has only applications.
The proof rules are sound and can be divided into 4 categories: FOL rea-

soning, frame reasoning, fixpoint reasoning, and some technical rules. The FOL
reasoning rules provide (complete) FOL reasoning (see, e.g., [25]). The frame
reasoning rules state that application contexts are commutative with disjunctive
connectives such as ∨ and ∃. The fixpoint reasoning rules support the stan-
dard fixpoint reasoning as in modal μ-calculus [17]. The technical proof rules are
needed for some completeness results (see [5] for details).

4.2 Formalizing Matching Logic

We discuss the formalization of matching logic, which is our first main contri-
bution and forms an important component in our proof objects (see Sect. 2).
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Fig. 5. Matching logic proof system (where C,C1, C2 are application contexts).

Metamath [20] is a tiny language to state abstract mathematics and their
proofs in a machine-checkable style. In our work, we use Metamath to formalize
matching logic and to encode our proof objects. We choose Metamath for its
simplicity and fast proof checking: Metamath proof checkers are often hundreds
lines of code and can proof-check thousands of theorems in a second.

Our formalization follows closely Sect. 4.1. We formalize the syntax of pat-
terns and the proof system. We also need to formalize some metalevel operations
such as free variables and capture-free substitution. An innovative contribution
is a generic way to handling notations (such as ¬ and ∧) in matching logic. The
resulting formalization has only 245 lines of code, which we show in [16]. This
formalization of matching logic is the main trust base of our proof objects.

Metamath Overview. We use an extract of our formalization of matching
logic (Fig. 6) to explain the basic concepts in Metamath. At a high level, a
Metamath source file consists of a list of statements. The main ones are:

1. constant statements ( $c ) that declare Metamath constants;
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Fig. 6. An extract of the Metamath formalization of matching logic.

2. variable statements ( $v ) that declare Metamath variables, and floating
statements ( $f ) that declare their intended ranges;

3. axiomatic statements ( $a ) that declare Metamath axioms, which can be
associated with some essential statements ( $e ) that declare the premises;

4. provable statements ( $p ) that states a Metamath theorem and its proof.

Figure 6 defines the fragment of matching logic with only implications. We
declare five constants in a row in line 1, where \imp , ( , and ) build the
syntax, #Pattern is the type of patterns, and |- is the provability relation. We
declare three metavariables of patterns in lines 3–6, and the syntax of implication
ϕ1 → ϕ2 as ( \imp ph1 ph2 ) in line 7. Then, we define matching logic proof rules
as Metamath axioms. For example, lines 18–22 define the rule (Modus Ponens).

In line 23, we show an example (meta-)theorem and its formal proof in Meta-
math. The theorem states that � ϕ1 → ϕ1 holds, and its proof (lines 25–43) is
a sequence of labels referring to the previous axiomatic/provable statements.

Metamath proofs are very easy to proof-check, which is why we use it in our
work. The proof checker reads the labels in order and push them to a proof stack
S, which is initially empty. When a label l is read, the checker pops its premise
statements from S and pushes l itself. When all labels are consumed, the checker
checks whether S has exactly one statement, which should be the original proof
goal. If so, the proof is checked. Otherwise, it fails.

As an example, we look at the first 5 labels of the proof in Fig. 6, line 25:

// Initially, the proof stack S is empty
ph1-is-pattern // S = [ #Pattern ph1 ]
ph1-is-pattern // S = [ #Pattern ph1 ; #Pattern ph1 ]
ph1-is-pattern // S = [ #Pattern ph1 ; #Pattern ph1 ; #Pattern ph1 ]
imp-is-pattern // S = [ #Pattern ph1 ; #Pattern ( \imp ph1 ph1 ) ]
imp-is-pattern // S = [ #Pattern ( \imp ph1 ( \imp ph1 ph1 ) ) ]
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where we show the stack status in comments. The first label ph1-is-pattern

refers to a $f -statement without premises, so nothing is popped off, and the
corresponding statement #Pattern ph1 is pushed to the stack. The same happens,
for the second and third labels. The fourth label imp-is-pattern refers to a $a -
statement with two metavariables of patterns, and thus has 2 premises. There-
fore, the top two statements in S are popped off, and the corresponding con-
clusion #Pattern ( \imp ph1 ph1 ) is pushed to S. The last label does the same,
popping off two premises and pushing #Pattern ( \imp ph1 ( \imp ph1 ph1 ) ) to
S. Thus, these five proof steps prove the wellformedness of ϕ1 → (ϕ1 → ϕ1).

Formalizing Matching Logic Syntax. Now, we go through the formalization
of matching logic and emphasize some highlights. See [5,6,22] for full detail.

The syntax of patterns is formalized below, following Definition 1:

$c \bot \imp \app \exists \mu ( ) $.

var-is-pattern $a #Pattern xX $.

symbol-is-pattern $a #Pattern sg0 $.

bot-is-pattern $a #Pattern \bot $.

imp-is-pattern $a #Pattern ( \imp ph0 ph1 ) $.

app-is-pattern $a #Pattern ( \app ph0 ph1 ) $.

exists-is-pattern $a #Pattern ( \exists x ph0 ) $.

${ mu-is-pattern.0 $e #Positive X ph0 $.

mu-is-pattern $a #Pattern ( \mu X ph0 ) $. $}

Note that we omit the declarations of metavariables (such as xX , sg0 , . . . )
because their meaning can be easily inferred. The only nontrivial case above is
mu-is-pattern , where we require that ph0 is positive in X , discussed below.

Metalevel Assertions. To formalize matching logic, we need the following
metalevel operations and/or assertions:

1. positive (and negative) occurrences of variables;
2. free variables;
3. capture-free substitution;
4. application contexts;
5. notations.

Item 1 is needed to define the syntax of μX.ϕ, while Items 2–5 are needed
to define the proof system (Fig. 5). Here, we show how to define capture-free
substitution as an example. Notations are discussed in the next section.

To formalize capture-free substitution, we first define a Metamath constant

$c #Substitution $.

that serves as an assertion symbol: #Substitution ph ph’ ph” xX holds iff ph ≡
ph’ [ ph” / xX ]. Then, we can define substitution following Fig. 4. The only

nontrivial case is when ph’ is ∃x. ϕ or μX. ϕ, in which case α-renaming is
required to avoid variable capture. We show the case when ph’ is ∃x. ϕ below:
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substitution-exists-shadowed

$a #Substitution ( \exists x ph1 ) ( \exists x ph1 ) ph0 x $.

${ $d xX x $.

$d y ph0 $.

substitution-exists.0 $e #Substitution ph2 ph1 y x $.

substitution-exists.1 $e #Substitution ph3 ph2 ph0 xX $.

substitution-exists

$a #Substitution ( \exists y ph3 ) ( \exists x ph1 ) ph0 xX $. $}

There are two cases, as expected from Fig. 4. substitution-exists-shadowed is
when the substitution is shadowed. substitution-exists is the general case, where
we first rename x to a fresh variable y and then continue the substitution.
The $d -statements state that the substitution is not shadowed and y is fresh.

Supporting Notations. Notations (e.g., ¬ and ∧) play an important role
in matching logic. Many proof rules such as (Propagation∨) and (Singleton) use
notations (see Fig. 5). However, Metamath has no built-in support for notations.
To define a notation, say ¬ϕ ≡ ϕ → ⊥, we need to (1) declare a constant \not

and add it to the pattern syntax; (2) define the equivalence relation ¬ϕ ≡ ϕ → ⊥;
and (3) add a new case for \not to every metalevel assertions. While (1) and (2)
are reasonable, we want to avoid (3) because there are many metalevel assertions
and thus it creates duplication.

Therefore, we implement an innovative and generic method that allows us to
define any notations in a compact way. Our method is to declare a new constant
#Notation and use it to capture the congruence relation of sugaring/desugaring.

Using #Notation , it takes only three lines to define the notation ¬ϕ ≡ ϕ → ⊥:

$c \not $.

not-is-pattern $a #Pattern ( \not ph0 ) $.

not-is-sugar $a #Notation ( \not ph0 ) ( \imp ph0 \bot ) $.

To make the above work, we need to state that #Notation is a congruence
relation with respect to the syntax of patterns and all the other metalevel asser-
tions. Firstly, we state that it is reflexive, symmetric, and transitive:

notation-reflexivity $a #Notation ph0 ph0 $.

${ notation-symmetry.0 $e #Notation ph0 ph1 $.

notation-symmetry $a #Notation ph1 ph0 $. $}

${ notation-transitivity.0 $e #Notation ph0 ph1 $.

notation-transitivity.1 $e #Notation ph1 ph2 $.

notation-transitivity $a #Notation ph0 ph2 $. $}

And the following is an example where we state that #Notation is a congruence
with respect to provability:

${ notation-provability.0 $e #Notation ph0 ph1 $.

notation-provability.1 $e |- ph0 $.

notation-provability $a |- ph1 $. $}
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This way, we only need a fixed number of statements that state that #Notation

is a congruence, making it more compact and less duplicated to define notations.

Formalizing Proof System. With metalevel assertions and notations, it is
now straightforward to formalize matching logic proof rules. We have seen the
formalization of (Modus Ponens) in Fig. 6. In the following, we formalize the fix-
point proof rule (Kanaster-Tarski), whose premises use capture-free substitution:

${ rule-kt.0 $e #Substitution ph0 ph1 ph2 X $.

rule-kt.1 $e |- ( \imp ph0 ph2 ) $.

rule-kt $a |- ( \imp ( \mu X ph1 ) ph2 ) $. $}

5 Compiling K into Matching Logic

To execute programs using K, we need to compile the K language definition
for language L into a matching logic theory, written ΓL (see Sect. 3.2). In this
section, we discuss this compilation process and show how to formalize ΓL.

5.1 Basic Matching Logic Theories

Firstly, we discuss the basic matching logic theories that are required by ΓL. We
discuss the theories of equality, sorts (and sorted functions), and rewriting.

Theory of Equality. By equality, we mean a (predicate) pattern ϕ1 = ϕ2 that
holds (i.e., equals to �) iff ϕ1 equals to ϕ2, and fails (i.e., equals to ⊥) otherwise.
We first need to define definedness �ϕ�, which is a predicate pattern that states
that ϕ is defined, i.e., ϕ is matched by at least one element: ϕ is not ⊥.

Definition 3. Consider a symbol �_� ∈ Σ, called the definedness symbol. We
write �ϕ� for the application �_� ϕ. In addition, we define the following axiom:

(Definedness) �x� (5)

(Definedness) states that any element x is defined. Using the definedness sym-
bol, we can define many important mathematical instruments, including equality,
as the following notations:

�ϕ� ≡ ¬�¬ϕ� // Totality ϕ1 = ϕ2 ≡ �ϕ1 ↔ ϕ2� // Equality
ϕ1 ⊆ ϕ2 ≡ �ϕ1 → ϕ2� // Inclusion x ∈ ϕ ≡ �x ∧ ϕ� // Membership

[22, Section 5.1] shows that the above indeed capture the intended semantics.
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Theory of Sorts. Matching logic is not sorted, but K is. To compile K into
matching logic, we need a systematic way to dealing with sorts. We follow the
“sort-as-predicate” paradigm to handle sorts and sorted functions in matching
logic, following [4,6]. The main idea is to define a symbol �_� ∈ Σ, called
the inhabitant symbol, and use the inhabitant pattern �s� (abbreviated for the
application �_� s) to represent the inhabitant set of sort s. For example, to define
a sort Nat , we define a corresponding symbol Nat that represents the sort name,
and use �Nat� to represent the set of all natural numbers.

Sorted functions can be axiomatized as special matching logic symbols. For
example, the successor function succ of natural numbers is a symbol with axiom:

∀x. x ∈ �Nat� → ∃y. y ∈ �Nat� ∧ succ x = y (6)

In other words, for any x in the inhabitant set of Nat , there exists a y in the
inhabitant set of Nat such that succ x equals to y. Thus, succ is a sorted function
from Nat to Nat .

Theory of Rewriting. Recall that in K, the formal language semantics is
defined using rewrite rules, which essentially define a transition system over
computation configurations. In matching logic, a transition system can be cap-
tured by only one symbol • ∈ Σ, called one-path next, with the intuition that
for any configuration γ, •γ is matched by all configurations that can go to γ in
one step. In other words, γ is reached on one-path in the next configuration.

Program execution is the reflexive and transitive closure of one-path next.
Formally, we define program execution (i.e., rewriting) as follows:

�ϕ ≡ μX.ϕ ∨ •X // Eventually; equals to ϕ ∨ •ϕ ∨ ••ϕ ∨ . . .

ϕ1 ⇒ ϕ2 ≡ ϕ1 → �ϕ2 // Rewriting

5.2 Kore: The Intermediate Between K and Matching Logic

The K compilation tool kompile (explained shortly) is what compiles a K lan-
guage definition into a matching logic theory ΓL, written in a formal language
called Kore. For legacy reasons, the Kore language is not the same as the syntax
of matching logic (Definition 1), but an axiomatic extension with equality, sorts,
and rewriting. Thus, to formalize ΓL in proof objects, we need to (1) formalize
the matching logic theories of equality, sorts, and rewriting; and (2) automati-
cally translate Kore definitions into the corresponding matching logic theories.
Figure 7 shows the 2-phase translation from K to matching logic, via Kore.

Phase 1: From K to Kore. To compile a K definition such as two-counters.k in
Fig. 3, we pass it to the K compilation tool kompile as follows:

$ kompile two-counters.k

The result is a compiled Kore definition two-counters.kore . We show the auto-
generated Kore axiom in Fig. 7 that corresponds to the rewrite rule in Eq. (3). As
we can see, Kore is a much lower-level language than K, where the programming
language concrete syntax and K’s front end syntax are parsed and replaced by
the abstract syntax trees, represented by the constructor terms.
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Fig. 7. Automatic translation from K to matching logic, via Kore

Phase 2: From Kore to Matching Logic. We develop an automatic encoder that
translates Kore syntax into matching logic patterns. Since Kore is essentially the
theory of equality, sorts, and rewriting, we can define the syntactic constructs
of the Kore language as notations, using the basic theories in Sect. 5.1.

6 Generating Proof Objects for Program Execution

In this section, we discuss how to generate proof objects for program execution,
based on the formalization of matching logic and K/Kore in Sects. 4 and 5.
The key step is to generate proof objects for one-step executions, which are
then put together to build the proof objects for multi-step executions using the
transitivity of the rewriting relation. Thus, we focus on the process of generating
proof objects for one-step executions from the proof parameters provided by K.

6.1 Problem Formulation

Consider the following K definition that consists of K (conditional) rewrite rules:

S = {tk ∧ pk ⇒ sk | k = 1, 2, . . . ,K}
where tk and sk are the left- and right-hand sides of the rewrite rule, respectively,
and pk is the rewriting condition. Consider the following execution trace:

ϕ0, ϕ1, . . . , ϕn (7)

where ϕ0, . . . , ϕn are snapshots. We let K generate the following proof parameter:

Θ ≡ (k0, θ0), . . . , (kn−1, θn−1) (8)

where for each 0 ≤ i < n, ki denotes the rewrite rule that is applied on ϕi

(1 ≤ ki ≤ K) and θi denotes the corresponding substitution such that tki
θi = ϕi.

As an example, the rewrite rule of TWO-COUNTERS , restated below:

〈m,n〉 ⇒ 〈m − 1, n + m〉 if m > 0 // Same as Eq. (3)

has the left-hand side tk ≡ 〈m,n〉, the right-hand side sk ≡ 〈m− 1, n+m〉, and
the condition pk ≡ m ≥ 0. Note that the right-hand side pattern sk contains
the arithmetic operations “+” and “−” that can be further evaluated to a value,
if concrete instances of the variables m and n are given. Generally speaking,
the right-hand side of a rewrite rule may include (built-in or user-defined) func-
tions that are not constructors and thus can be further evaluated. We call such
evaluation process a simplification.
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6.2 Applying Rewrite Rules and Applying Simplifications

In the following, we list all proof objects for one-step executions.

ΓL � ϕ0 ⇒ sk0θ0 // by applying tk0 ∧ pk0 ⇒ sk0 using θ0

ΓL � sk0θ0 = ϕ1 // by simplifying sk0θ0

· · ·
ΓL � ϕn−1 ⇒ skn−1θn−1 // by applying tkn−1 ∧ pkn−1 ⇒ skn−1 using θn−1

ΓL � skn−1θn−1 = ϕn // by simplifying skn−1θn−1

As we can see, there are two types of proof objects: one that proves the results
of applying rewrite rules and one that applies simplification.

Applying Rewrite Rules. The main steps in proving ΓL � ϕi ⇒ ski
θi are

(1) to instantiate the rewrite rule tki
∧ pki

⇒ ski
using the substitution

θi = [c1/x1, . . . , cm/xm]

given in the proof parameter, and (2) to show that the (instantiated) rewriting
condition pki

θi holds. Here, x1, . . . , xm are the variables that occur in the rewrite
rule and c1, . . . , cm are terms by which we instantiate the variables. For (1), we
need to first prove the following lemma, called (Functional Substitution) in [5], which
states that ∀-quantification can be instantiated by functional patterns:

∀x. tk1 ∧ pki
⇒ ski

∃y1. ϕ1 = y1 · · · ∃ym. ϕm = ym
y1, . . . , ym fresh

tki
θi ∧ pki

θi ⇒ ski
θi

Intuitively, the premise ∃y1. ϕ1 = y1 states that ϕ1 is a functional pattern
because it equals to some element y1.

If Θ in Eq. (8) is the correct proof parameter, θi is the correct substitution
and thus tki

θi ≡ ϕi. Therefore, to prove the original proof goal for one-step
execution, i.e. ΓL � ϕi ⇒ ski

θi, we only need to prove that ΓL � pki
θi, i.e., the

rewriting condition pki
holds under θi. This is done by simplifying pki

θi to �,
discussed together with the simplification process in the following.

Applying Simplifications. K carries out simplification exhaustively before
trying to apply a rewrite rule, and simplifications are done by applying (oriented)
equations. Generally speaking, let s be a functional pattern and p → t = t′ be
a (conditional) equation, we say that s can be simplified w.r.t. p → t = t′, if
there is a sub-pattern s0 of s (written s ≡ C[s0] where C is a context) and a
substitution θ such that s0 = tθ and pθ holds. The resulting simplified pattern is
denoted C[t′θ]. Therefore, a proof object of the above simplification consists of
two proofs: ΓL � s = C[t′θ] and ΓL � pθ. The latter can be handled recursively,
by simplifying pθ to �, so we only need to consider the former.

The main steps of proving ΓL � s = C[t′θ] are the following:
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1. to find C, s0, θ, and t = t′ in ΓL such that s ≡ C[s0] and s0 = tθ; in other
words, s can be simplified w.r.t. t = t′ at the sub-pattern s0;

2. to prove ΓL � s0 = t′θ by instantiating t = t′ using the substitution θ, using
the same (Functional Substitution) lemma as above;

3. to prove ΓL � C[s0] = C[t′] using the transitivity of equality.

Finally, we repeat the above one-step simplifications until no sub-patterns
can be simplified further. The resulting proof objects are then put together by
the transitivity of equality.

7 Discussion on Implementation

As discussed in Sect. 2, a complete proof object for program execution (i.e.,
ΓL � ϕinit ⇒ ϕfinal) consists of (1) the formalization of matching logic and its
basic theories; (2) the formalization of ΓL; and (3) the proofs of one-step and
multi-step program executions. In our implementation, (1) is developed manually
because it is fixed for all programming languages and program executions. (2)
and (3) are automatically generated by the algorithms in Sect. 6.

During the (manual) development of (1), we needed to prove many basic
matching logic (meta-)theorems as lemmas, such as (Functional Substitution) in
Sect. 6.2. To ease the manual work, we developed an interactive theorem prover
(ITP) for matching logic, which allows us to carry out higher-level interactive
proofs that are later automatically translated into the lower-level Metamath
proofs. We show the highlights of our ITP for matching logic in Sect. 7.1.

In Sect. 7.2, we discuss the main limitations of our current preliminary imple-
mentation. These limitations are planned to be addressed in future work.

7.1 An Interactive Theorem Prover for Matching Logic

Metamath proofs are low-level and not human readable (see, e.g., the proof of
� ϕ → ϕ in Fig. 6). Metamath has its own interactive theorem prover (ITP), but
it is for general purposes and does not have specific support for matching logic.
Therefore, we developed a new ITP for matching logic that has the following
characteristic features:

– Our ITP understands the syntax of matching logic patterns and has proof
tactics to desugar notations in the proof goals;

– Our ITP has an automatic proof tactic for propositional tautologies, based
on the resolution method;

– Our ITP allows dynamic proofs, meaning that new lemmas can be dynami-
cally added during an interactive proof; this makes our ITP easier to use.

When an interactive proof is finished, our ITP will translate the higher-level
proof tactics into real Metamath formal proofs, and thus ease the manual devel-
opment. It is not our interest to fully introduce ITP in this paper, as more detail
about the ITP is to be found in future publications.
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7.2 Limitations and Threats to Validity

We discuss the trust base of the autogenerated proof objects by pointing out the
main threats to validity, caused by the limitations of our preliminary implemen-
tation. It should be noted that these limitations are about the implementation,
and not our approach. We shall address these limitations in future work.

Limitation 1: Need to Trust Kore. Our current implementation is based on
the existing K compilation tool kompile that compiles K into Kore definitions.
Recall that Kore is a (legacy) formal language with built-in support for equality,
sorts, and rewriting, and thus is different (and more complex) than the syntax
of matching logic. By using Kore as the intermediate between K and matching
logic (Fig. 7), we need to trust Kore and the K complication tool kompile .

In the future, we will eliminate Kore entirely from the picture and formalize
K directly. To do that, we need to formalize the “front end matters” of K, such as
concrete programming language syntax and K attributes, currently handled by
kompile . That is, we need to formalize and generate proof objects for kompile .

Limitation 2: Need to Trust Domain Reasoning. K has built-in support
for domain reasoning such as integer arithmetic. Our current proof objects do
not include the formal proofs of such domain reasoning, but instead regard them
as assumed lemmas. In the future, we will incorporate the existing research on
generating proof objects for SMT solvers [1] into our implementation, in order
to generate proof objects also for domain reasoning; see also Sect. 9.

Limitation 3: Do Not Support More Complex Kfeatures. Our current
implementation only supports the core K features of defining programming lan-
guage syntax and of defining formal semantics as rewrite rules. Some more com-
plex features are not supported; the main ones are (1) the [strict] attributes
that specify evaluation orders; and (2) the use of built-in collection datatypes,
such as lists, sets, and maps.

To support (1), we should handle the so-called heating/cooling rules that are
autogenerated rewrite rules that implement the specified evaluation orders. Our
current implementation does not support these heating/cooling rules because
they are conditional rules, and their conditions are those that state that an
element is not a computation result. To prove such conditions, we need additional
constructors axioms for the sorts/types that represent results of computation. To
support (2), we should extend our algorithms in Sect. 6 with unification modulo
these collection datatypes.

8 Evaluation

In this section, we evaluate the performance of our implementation and discuss
the experiment results, summarized in Table 1. We use two sets of benchmarks.
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Table 1. Performance of proof generation/checking (time measured in seconds).

Programs Proof generation Proof checking Proof size
Sem Rewrite Total Logic Task Total kLOC MB

10.two-counters 5.95 12.19 18.13 3.26 0.19 3.44 963.8 77
20.two-counters 6.31 24.33 30.65 3.41 0.38 3.79 1036.5 83
50.two-counters 6.48 73.09 79.57 3.52 0.98 4.50 1259.2 100
100.two-counters 6.75 177.55 184.30 3.50 2.10 5.60 1635.6 130
add8 11.59 153.34 164.92 3.40 3.09 6.48 1986.8 159
factorial 3.84 34.63 38.46 3.57 0.90 4.47 1217.9 97
fibonacci 4.50 12.51 17.01 3.44 0.21 3.65 971.7 77
benchexpr 8.41 53.22 61.62 3.61 0.80 4.41 1191.3 95
benchsym 8.79 47.71 56.50 3.53 0.72 4.25 1163.4 93
benchtree 8.80 26.86 35.66 3.47 0.32 3.80 1021.5 81
langton 5.26 23.07 28.33 3.46 0.40 3.86 1048.0 84
mul8 14.39 279.97 294.36 3.48 7.18 10.66 3499.2 280
revelt 4.98 51.83 56.81 3.35 1.10 4.45 1317.4 105
revnat 4.81 123.44 128.25 3.37 5.28 8.65 2691.9 215
tautologyhard 5.16 400.89 406.05 3.55 14.50 18.04 6884.7 550

The first is our running example TWO-COUNTERS with different inputs (10, 20, 50,
and 100). The second is REC [11], which is a popular performance benchmark for
rewriting engines. We evaluate both the performance of proof object generation
and that of proof checking. Our implementation can be found in [16] and [3].

The main takeaways of our experiments are:

1. Proof checking is efficient and takes a few seconds; in particular, the task-
specific checking time is often less than one second (“task” column in Table 1).

2. Proof object generation is slower and takes several minutes.
3. Proof objects are huge, often of millions LOC (wrapped at 80 characters).

Proof Object Generation. We measure the proof object generation time as
the time to generate complete proof objects following the algorithms in Sect. 6,
from the compiled language semantics (i.e., Kore definitions) and proof parame-
ters. As shown in Table 1, proof generation takes around 17–406 s on the bench-
marks, and the average is 107 s.

Proof object generation can be divided into two parts: that of the language
semantics ΓL and that of the (one-step and multi-step) program executions.
Both parts are shown in Table 1 under columns “sem” and “rewrite”, respectively.
For the same language, the time to generate language semantics ΓL is the same
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(up to experimental error). The time for executions is linear to the number of
steps.

Proof Checking. Proof checking is efficient and takes a few seconds on our
benchmarks. We can divide the proof checking time into two parts: that of the
logical foundation and that of the actual program execution tasks. Both parts
are shown in Table 1 under columns “logic” and “task”. The “logic” part includes
formalization of matching logic and its basic theories, and thus is fixed for any
programming language and program and has the same proof checking time (up to
experimental error). The “task” part includes the language semantics and proof
objects for the one-step and multi-step executions. Therefore, the time to check
the “task” part is a more valuable and realistic measure, and according to our
experiments, it is often less than 1 s, making it acceptable in practice.

As a pleasant surprise, the time for “task-specific”proof checking is roughly
the same as the time that it takes K to parse and execute the programs. In other
words, there is no significant performance difference on our benchmarks between
running the programs directly in K and checking the proof objects.

There exists much potential to optimize the performance of proof check-
ing and make it even faster than program execution. For example, in our app-
roach proof checking is an embarrassingly parallel problem, because each meta-
theorems can be proof-checked entirely independently. Therefore, we can signif-
icantly reduce the proof checking time by running multiple checkers in parallel.

9 Related Work

The idea of using proof generation to address the functional correctness of com-
plicated systems has been introduced a long time ago.

Interactive theorem provers such as Coq [19] and Isabelle [26] are often used
to formalize programming language semantics and to reason about program
properties. These provers often provide a high-level proof script language that
allows the users to develop human-readable proofs, which are then automatically
translated into lower-level proof objects that can be checked by the corresponding
proof checkers. For example, the proof objects of Coq are of the form t : t′, where
t′ is a term that represents the proposition to be proved and t′ represents a formal
proof. The typing claim t : t′ can then be proof-checked by a proof checker that
implements the typing rules of the calculus of inductive constructions (CIC) [8],
which is the logical foundation of Coq.

There are two main differences between provers such as Coq and our tech-
nique. Firstly, Coq is not regarded as a language framework in the sense of Fig. 1
because no language tools are autogenerated from the formal semantics. In our
case, we need to be able to handle the correctness of individual tasks on a case-
by-case basis to reduce the complexity. Secondly, Coq proof checking is based on
CIC, which is arguably more complex than matching logic—the logical founda-
tion of K as demonstrated in this paper. Indeed, the formalization of matching
logic requires only 245 LOC which we display entirely in [16].
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Another application of proof generation is to ensure the correctness of SMT
solvers. These are popular tools to check the satisfiability of FOL formulas, writ-
ten in a formal language containing interpreted functions and predicates. SMT
solvers often implement complex data structures and algorithms, putting their
correctness at risk. There is recent work such as [1] studying proof generation
for SMT solvers. The research has been incorporated in theorem provers such as
Lean, which attempts to bridge the gap between SMT reasoning and proof assis-
tants more directly by building a proof assistant with efficient and sophisticated
built-in SMT capabilities. As discussed in Sect. 7, our current implementation
does not generate proofs for domain reasoning. So, we plan to incorporate the
above SMT proof generation work into our future implementation.

10 Conclusion

We propose an innovative approach based on proof generation. The key idea is
to generate proof objects as proof certificates for each individual task that the
language tools conduct, on a case-by-case basis. This way, we avoid formally
verifying the entire framework, which is practically impossible, and thus can
make the language framework both practical and trustworthy.
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Abstract. Explainability is the process of linking part of the inputs
given to a calculation to its output, in such a way that the selected
inputs somehow “cause” the result. We establish the formal foundations
of a notion of explainability for arbitrary abstract functions manipulating
nested data structures. We then establish explanation relationships for
a set of elementary functions, and for compositions thereof. A fully func-
tional implementation of these concepts is finally presented and experi-
mentally evaluated.

1 Introduction

Developers of information systems in all disciplines are facing increasing pres-
sure to come up with mechanisms to describe how or why a specific result is
produced—a concept called explainability. For example, a web application test-
ing tool that discovers a layout bug can be asked to pinpoint the elements of
the page actually responsible for the bug [24]. A process mining system finding
a compliance violation inside a business process log can extract a subset of the
log’s sequence of events that causes the violation [46]. Similarly, an event stream
processing system can monitor the state of a server room and, when raising an
alarm, identify what machines in the room are the cause of the alarm [40]. All
these situations have in common that one is not only interested in an oracle
that produces a simple Boolean pass/fail verdict from a given input, but also
additional information that somehow links parts of this input to the result.

Explainability is currently handled by ad hoc means, if at all. Hence, a devel-
oper may write a script that checks a complex condition on some input object;
however, for this script to provide an explanation, and not just a verdict, extra
code must be written in order to identify, organize, and format the relevant input
elements that form an explanation for the result. This extra code is undesirable:
it represents additional work, is specific to the condition being evaluated, and
relies completely on the developer’s intuition as to what constitutes a suitable
“explanation”. Better yet would be a formal framework where this notion would
be defined for arbitrary abstract functions, and accompanied by a generic and
systematic way of constructing an explanation.
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In this paper, we present the theoretical foundations of a notion of explain-
ability. Our model focuses on abstract functions whose input arguments and
output values can be composite objects—that is, data structures that may be
composed of multiple parts, such as lists. In contrast with existing works on the
subject, which consider relationships between inputs and outputs as a whole, our
framework is fine-grained: it is possible to point to a specific part of an output
result, and construct an explanation that refers to precise parts of the input.

Figure 1 illustrates the approach on a simple example. On the left is an input,
which in this case is a text log of comma-separated values. Suppose that on this
log, one wishes to extract the second element of each line, and check that the
average of any three successive values is always greater than 3. It is easy to see
that the condition is false, but where in the input log are the locations that
cause it to be violated? By applying the systematic mechanism described in this
paper, one can construct an explanation that is represented by the graph at the
right. We can observe that the false output of the condition (the graph’s root) is
linked to several leaves that designate parts of the input (character locations in
each line of the file, identified by colors). Moreover, the graph contains Boolean
nodes, indicating that the explanation may involve multiple elements (“and”),
and that alternate explanations are possible (“or”).

Fig. 1. Left: a simple text file. Right: an explanation graph obtained from the evalua-
tion of a function on this input.

First, in Sect. 2, we review existing works related to the concept of causality,
provenance and taint propagation, which are the notions closest to our concerns.
Section 3 lays out the theoretical foundations of our framework: it introduces
the notion of parts of composite objects, and formally defines a relation between
parts of inputs and outputs of an arbitrary function, called explanation. More-
over, it shows how an explanation can be constructed for a function that is
a composition of basic functions, by composing their respective explanations.
Section 4 then illustrates these definitions by demonstrating what constitutes
an explanation on a small yet powerful set of basic functions. Taken together,
these results make it possible to easily construct explanations for a wide range
of computations.

To showcase the feasibility of this approach, Sect. 5 presents Petit Poucet, a
fully-functioning Java library that implements these concepts. The library allows
users to create their own complex functions by composing built-in primitives,
and can automatically produce an explanation for any result computed by these
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functions on a given input. Experiments on a few examples provide insight on
the time and memory overhead incurred by the handling of explanations. Finally,
Sect. 6 identifies a number of exciting open theoretical questions that arise from
our formal framework.

2 Related Work

Explainability can be seen as a particular case of a more general concept called
lineage, where inputs and outputs of a calculation are put in relation according
to various definitions. Related works around this notion can be separated into a
few categories, which we briefly describe below.

2.1 Causality

In the field of testing and formal verification of software systems, lineage often
takes the form of causality. A classical definition is given by Halpern and Pearl
[28], based on what is called “counterfactual dependence”: A is a cause of B if the
absence of A entails the absence of B. According to this principle, some feature
of an object causes the failure of a verification or testing procedure if the absence
of this feature instead causes the procedure to emit a passing verdict. This notion
can be transposed for various types of systems. When a condition is expressed as
a propositional logic formula, the cause of the true or false value of the formula
can be constructed in the form of an explanatory sub-model ; informally, it can
be thought of as the smallest set of propositional variables whose value implies
the value of the formula.

In the case of conditions expressed on state-based systems, the cause of a vio-
lation has been taken either as the shortest prefix that guarantees the violation
of the property regardless of what follows [23], or as a minimal set of word-level
predicates extracted from a failed execution [50]. A platform for hardware for-
mal verification, called RuleBasePE, expands on this latter definition to identify
components of a system that are responsible for the violation of a safety property
on a single execution trace [5].

Causality has been criticized as an all-or-nothing notion; responsibility has
been introduced a refinement on this concept, where the involvement of some
element A as the cause of B can be quantified [12]. The problem of deciding
causality also has a high computational complexity; as a matter of fact, deter-
mining if A is a cause of B in a model only allowing Boolean values to variables
is already NP-complete [18]. Tight automata [31,43] have also been developed
to produce minimal counter-examples, which in this case, are sequences of states
produced by a traversal of the finite-state machine. Explanatory sub-models can
also be extended to the temporal case [19]. Another approach involves the com-
putation of a so-called “minimal debugging window”, which is a small segment
of the input trace that contains the discovered violation [36].

Finally, distance-based approaches compare a faulty trace with the closest
valid trace (according to a given distance metric) [22]; the differences between
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the two traces are defined as the cause of the failure. A similar principle is
applied in a software testing technique called delta debugging to identify values
of variables in a program that are responsible for a failure [15].

2.2 Provenance in Information Systems

In a completely different direction, a large amount of work on lineage has been
done in the field of databases, where this notion is often called provenance. A
thorough survey of related approaches on provenance [9] reveals that this concept
has been studied in several different areas of data management, such as scientific
data processing and database management systems.

Research in this field typically distinguishes between three types of prove-
nance. The first type is called why-provenance [17]: to each tuple t in the output
of a relational database query, why-provenance associates a set of tuples present
in the input of the query that helped to “produce” t. How-provenance, as its
name implies, keeps track not only of what input tuples contribute to the input,
but also in which way these tuples have been combined to form the result [21].
For example, a symbolic polynomial like t2 + t · t′ indicates that an output tuple
can be explained in two alternative ways: either by using tuple t twice, or by
combining t and t′. Finally, where-provenance describes where a piece of data is
copied from [8]. It is typically expressed at a finer level of granularity, by allow-
ing to link individual values inside an output tuple to individual values of one
or more input tuple. One possible way of doing it is through a technique called
annotation-propagation, where each part of the input is given symbolic “anno-
tations”, which are then percolated and tracked all the way to the output [7].

A recent survey reveals the existence of more than two dozen provenance-
aware systems [38]. Where-provenance has been implemented into Polygen [51],
DBNotes [11], Mondrian [20], MXQL [48] and Orchestra [29]. The Spider

system performs a slightly different task, by showing to a user the “route” from
input to output that is being taken by data when a specific database query is
executed [10]. The foundations for all these systems are relational databases,
where sets of tuples are manipulated by operators from relational algebra, or
extensions of SQL.

Taken in a broad sense, we also list in this category various works that aim
to develop explainable Artificial Intelligence [42]. Models used in AI vary widely,
ranging from deep neural networks to Bayesian rules and decision trees; conse-
quently, the notion of what constitutes an explanation for each of them is also
very variable, and is at times only informally stated.

2.3 Taint Analysis and Information Flow

A last line of works this time considers the linkage between the inputs and the
outputs produced by a piece of procedural code, mostly for considerations of
security. Dynamic taint analysis consists in marking and tracking certain data
in a program at run-time. A typical use case for taint analysis is to check whether
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sensitive information (such as a password) is being leaked into an unprotected
memory location, or if a “tainted” piece of input such as a user-provided string
is being passed to a function like a database query without having been sanitized
first (opening the door to injection attacks).

In this category, TaintCheck has been developed into a system where each
memory byte is associated with a 4-byte pointer to a taint data structure [37];
program inputs are marked as tainted, and the system propagates taint markers
to other memory locations during the execution of a program; this concept has
been extended to the operating system as a whole in an implementation called
Asbestos [47]. Hardware implementations of this principle have also been pro-
posed [16,44]. Dytan [14] is a notable system for taint propagation and analysis
on programs written in assembly language. We shall also mention the Gift sys-
tem, as well as a compiler based on it called Aussum [32]. On its side, Rifle

focuses on the information flow [45], while TaintBochs is a system that has been
used to track the lifetime of sensitive data inside the memory of a program [13].

The capability of following taint markings on the inputs of a program can be
used in many ways. For example, a system called Comet uses taint propagation
to improve the coverage of an existing test suite [33]. Taint analysis can also be
used to quantify the amount of information leak in a system [34]. Stated simply,
the propagation of taint markings can be seen as a form of how-provenance,
applied to variables and procedural code instead of tuples and relational queries.
Note however that it operates in a top-down fashion: mark the inputs, and track
these markings on their way to the output. In contrast, we shall see that our
notion of explanation is bottom-up: point at a part of the output, and retrace
the parts of the input that are related to it.

3 A Formal Definition of Explanation

The problem we consider can be simply stated. Given an abstract function f and
an input argument x, establish a formal relationship that explains f(x) based
on x. While this is more or less closely related to the works we presented in the
previous section, the solution we propose has a few distinguishing features.

First, x and f(x) may be composite objects made of multiple “parts”, and
it is possible to relate specific parts of an output to specific parts of an input.
Second, if f is itself a composition g ◦ h, it is possible to construct the input-
output relationships of f from the individual input-output relationships of g
and h. Third, these relations are not defined ad hoc for each individual function,
but come as consequences of a general definition. Finally, given x and f(x),
determining the parts of x in relation with a given part of f(x) is tractable.

In this section, we establish the formal foundations of our proposed approach.
We start by defining an abstract “part-of” relation between abstract objects,
based on the notion of designator, and establish some properties of this relation.
We then propose a definition of explanation for arbitrary functions, and discuss
how it differs from existing causality and lineage relationships mentioned earlier.
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3.1 Object Parts

Let U =
⋃

i Oi be a union of sets of objects; the sets Oi are called types. We sup-
pose that U contains a special object, noted �, that represents “nothing”. Types
are disjoint sets, with the exception of � which, for convenience, is assumed to
be part of every type.

Each type O is associated with a set ΠO, whose elements are called parts. The
set ΠO contain functions of the form π : O → O′; it is expected that π(�) = �

for every such function. In addition, we impose that ΠO always contains two
other functions defined as 1 : x �→ x, and 0 : x �→ �. We shall override the term
“part” and say that an object o′ ∈ O′ is a part of some oth er object o ∈ O if it
is the result of applying some π ∈ ΠO to o. A proper part is any part other than
1 and 0; we shall use Π∗

O to designate the set of proper parts for a given type.
A type O is called scalar if Π∗

O = ∅; otherwise it is called composite.

Fig. 2. Illustration of two abstract composite objects of the same type. Composite parts
are represented by gray rectangles; scalar parts are represented by colored rectangles.
(Color figure online)

Figure 2 shows an example of two abstract composite objects X and Y of the
same type O, which we suppose has a set of three proper parts called πA, πB and
πC . Parts of an object can themselves be of a composite type; we assume here
that type A has four parts π1, . . . , π4, type B has two parts π5, π6, and type C
is a scalar. For example, πB(X) corresponds to the rectangle numbered 4, and
πC(Y ) is the rectangle numbered 7. Consistent with our definitions, 1 designates
the whole object, hence 1(X) is the rectangle 1. These parts are not all present
in all objects of a given type; for example we see that πC(X) = �.

Parts can be composed in the usual way: if π : O → O′ and π′ : O′ → O′′,
their composition π ◦ π′ is defined as o �→ π(π′(o)). This corresponds intuitively
to the notion of the part of some part of an object, and will allow us to point
to arbitrarily fine-grained portions of input arguments or output values. For
example, in Fig. 2, we have that (π1 ◦ πA)(X) corresponds to the rectangle num-
bered 8, which indeed corresponds to part π1 of the part πA of object X. If
Π = {π1, . . . , πn} is a set of parts and π is another part, we will abuse notation
and write Π ◦ π to mean the set {π1 ◦ π, . . . , πn ◦ π}.
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If π is a part of an object, we shall say that π′ ◦ π is a refinement of π;
inversely, π is a generalization of π′ ◦ π, as it corresponds to a “greater” part of
the object. Remark that since (1◦π) = (π ◦1) = π, any part π is simultaneously
a refinement and a generalization of itself. If π is a proper part of o, all its
refinements are also considered as parts of o. The notions of refinement and
generalization can be extended to sets of parts. Given two sets Π = {π1, . . . , πm}
and Π ′ = {π′

1, . . . , π
′
n}, Π is a refinement if there exists an injection μ between

Π and Π ′ such that μ(π) = π′ if and only if π is a refinement of π′; conversely,
Π ′ is a generalization of Π. Again, a refinement of a set of parts Π picks fewer
parts, and more selective parts of an object than Π. In the example of Fig. 2, the
set Π = {π1 ◦ πA, πC} is a refinement of Π ′ = {πA, π5 ◦ πB , πC} (the injection
here being the two associations π1 ◦ πA �→ πA and πC �→ πC).

Given a part π, two objects o, o′ ∈ O are said to differ on π if π(o) �= π(o′).
This can be illustrated in Fig. 2. Objects X and Y differ on πC , since πC(X) �=
πC(Y ). They also differ on πA (since rectangles 3 and 5 are different) and on
π4 ◦ πA (which produces rectangle 11 for X and � for Y ). However, they do not
differ on πB (rectangles 4 and 6 are identical), and they do not differ on π3 ◦ πA

(rectangles 10 and 16 are identical). This example shows that if two objects differ
on a part π, they do not necessarily differ on a refinement of π (compare πA and
π1 ◦ πA). Given a set of parts Π = {π1, . . . , πn}, two objects differ on Π if they
differ in some πi ∈ Π. Obviously, if objects differ on Π, they also differ on any
of its generalizations.

Finally, two parts π and π′ intersect if there exist two parts πI and π′
I

(different from 0) such that whenever (πI ◦π)(o) �= � and (π′
I ◦π′)(o) �= �, then

(πI ◦ π)(o) = (π′
I ◦ π′)(o). Two sets of parts Π and Π ′ intersect if at least one of

their respective parts intersect. In Fig. 2, the sets {πA} and {π2◦πA, πC} intersect
(they have in common the part π2 ◦ πA), while the sets {πA} and {π5 ◦ πB} do
not.

3.2 A Definition of Explanation

We are now interested in relations between a part of a function’s output, and
one or more parts of that function’s input. We shall focus on the set of unary
functions f : O → O′. For the sake of simplicity, functions of multiple input
arguments will be modeled as unary functions whose input is a composite type
that contains the arguments. These composite types will be used informally to
illustrate the notions, and will be formally defined in Sect. 4.

Definition 1. Let f : O → O′ be a function, Π ⊆ ΠO be a set of parts of
the function’s input type, and π ∈ ΠO′ be a part of the function’s output type.
Consider a set Π such that there exists an object o′ that differs from o only on
Π, and for which f(o) and f(o′) differ on π. We say that Π explains π if Π is
minimal, meaning that no refinement of Π satisfies the previous condition.

As an example, consider the function f : 〈x, y〉 �→ xy, with x = 1, y = 1.
For this particular input object, the part designating the first element of the
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input is an explanation, as changing it to any other value changes the result of
the function; the same argument can be made for the part that designates the
second element of the input. Consider now the case where x = 0, y = 1. This
time, the value of the second element is irrelevant: changing it to anything else
still produces 0. Therefore, the second element of the input is not an explanation
for the output; the first element of the input alone “explains” the result of 0 in
the output.

Based on these simple definitions, we can already put our framework in con-
trast with some of the papers we surveyed in Sect. 2. First, note how this defini-
tion is different from counterfactual causality [1,28]. This can be illustrated by
considering the previous function, in the case where x = 0 and y = 0. Argument
x is not a counterfactual cause of the output value, as changing it to anything
else still produces 0; the same argument shows that y is not a cause of the output
either. Therefore, one ends up with the counter-intuitive conclusion that none
of the inputs cause the output.

In contrast, there exists a minimal set of parts that satisfies our explanation
property, which is the set that contains both the first and the second element.
Indeed, there exists another input object that differs on both elements, and
which produces a different result. This is in line with the intuition that either
element is sufficient to explain the null value produced by the function, and
that therefore both need to be changed to have an impact. It highlights a first
distinguishing feature of our approach: the presence of multiple parts inside a
set indicates a form of “disjunction” or “alternate” explanations, something that
cannot be easily accounted for in many definitions of causality.1

Why-provenance is expressed on tuples manipulated by a relational query
[17], but our simple case can easily be adapted by assuming that x, y and f(〈x, y〉)
each are tuples with a dummy attribute a. The definition then leads to the
conclusion that both x and y are considered to “produce” the output, whereas
explanation rather concludes that either explains the output; the use of how-
provenance [21] would produce a similar verdict. Where-provenance [8] is even
less appropriate here, as it makes little sense to ask whether the product of two
numbers “copies” any of the input arguments to its output.

Since a single explanation is a set of parts, the set of all explanations is
therefore a set of sets of parts. As we have shown, a set of parts intuitively
represents an alternative (either part is an explanation). In turn, elements of
a set of set of parts represents the fact that each of them is an explanation.
Therefore, a concise graphical notation for representing sets of sets of parts are
and-or trees, such as the one shown in Fig. 3. In the present case, leaves of the
tree each represent a (single) object part, while non-leaf nodes are labeled either
with “and” (∧) or “or” (∨). For example, this tree represents the set of sets
{{π1}, {π2 ◦ π3, π5 ◦ π6, π4}, {π2 ◦ π3, π7 ◦ π6, π4}}.2

1 Case in point, in [1] a cause is assumed to be a conjunction of assertions of the form
X = x.

2 Obviously, there exist multiple equivalent trees for the same set of sets of parts.
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4 Building Explanations for Functions

Equipped with these abstract definitions, we shall now establish properties of a
handful of elementary functions, namely logical and arithmetic operations, and
list manipulations. The reader may find that this section is stating the obvious,
as many of the results we present correspond to very intuitive notions. The main
interest of our approach is that these seemingly trivial conclusions are not defined
ad hoc, but rather come as consequences of the general definition of explanation
introduced in the previous section.

Fig. 3. An example of and-or tree where leaves are object parts.

We first consider as scalar types the sets of Boolean values B, the set of real
numbers R, and the set of characters S. Then, we shall denote by V〈O1, . . . ,On〉
the set of vectors of size n, where the i-th element is of type O. Its set of parts
ΠV〈O1,...,On〉 contains 1 and 0, as well as all functions [i] : V〈O1, . . . ,On〉 → Oi

defined as:

[i] : 〈o1, . . . , on〉 �→
{

oi if 1 ≤ i ≤ n

� otherwise.

In other words, the proper parts of a vector are each of its elements. We shall
designate for finite vectors of variable length and uniform type O by V〈O∗〉.
Finally, character strings will be viewed as the type V〈S∗〉, i.e. finite words over
the alphabet of symbols S. We stress that, although our concept of explanation
is illustrated on a small set of functions operating on these types, it is by no
means limited to these functions or these types.

4.1 Conservative Generalizations

Some of the functions we shall consider return objects that may be compos-
ite; these functions introduce the additional complexity that one may want to
refer not only to the whole output of the function, but also to a single part of
that function’s output. What is more, the inputs of these functions can also be
composite objects, and explicitly enumerating all their minimal sets of parts for
explanation may not be possible.

Take for example the function f : V〈O〉→V〈O〉, which simply returns its
input vector as is. Suppose that we focus on π = [1], the first element of the
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output vector. Clearly, the set {[1]}, pointing to the first element of the input
vector, should be recognized as the only one that explains this output. However,
if O is a composite type, this set is not minimal, and should be further broken
down into all the parts of O. Besides being unmanageable, this enumeration also
misses the intuition that what explains the first element of the output is simply
the first element of the input.

In the following, we employ an alternate approach, which will be to define a
set of conservative generalizations of the function’s input parts. For most func-
tions, the principle will be the same: given an output part π, we shall define a
set of sets of input parts Π = {Π1, . . . , Πn}, and demonstrate that any input
part Π ′ that explains π on some input intersects with one of the Πi. It follows
that any minimal input part that explains the output is a refinement of one of
the Πi.

Π

1

1

Π2

Π3

Π

Π'

Fig. 4. The sets of parts Π1, Π2 and Π3 (in green) represent a conservative general-
ization of the minimal sets of explanation parts (yellow circles) (Color figure online).

This is illustrated in Fig. 4, where the minimal sets of explanations of an
input are illustrated in yellow. Here, the set {Π1,Π2,Π3} has been identified as
the target set of sets of input parts. It is possible to see that if one establishes
that any set lying outside of the green ovals is not an explanation, it follows that
the minimal sets of parts for explanation are all contained inside one of Π1, Π2

and Π3. Note that this is a generalization, as, for example, Π2 does not contain
any minimal set. However, this generalization is conservative, in the sense that
all minimal sets are indeed contained within a green oval.

The goal is therefore to come up with generalizations that are, in a sense, as
tight as possible. In the example of function f above, we could easily demonstrate
that any set of input parts Π that has an impact on the first element of the output
must contain a refinement of the first element of the input, and therefore identify
Π = {{[1]}} as a sufficient set that “covers” all the minimal explanation input
parts. It so happens that this set corresponds exactly to the intuitive result we
expected in the first place: the first element of the input vector contains all the
parts that impact the output, and no other part of the input has this property.
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4.2 Explanation for Scalar Functions

In the following, we provide the formal definition of conservative generalizations
of the explanation relationship for a number of elementary functions. We start
with functions performing basic arithmetic operations returning a scalar value.
Establishing explanation for addition over a vector of numbers is trivial.

Theorem 1. Let f : V〈R∗〉 → R be the function defined as 〈x1, . . . , xn〉 �→
x1 + · · · + xn. For any input 〈x1, . . . , xn〉, Π explains 1 on 〈x1, . . . , xn〉 if and
only if Π = {[i]} for some 1 ≤ i ≤ n.

In other words, any single element of the input vector explains the result; the
case of subtraction is defined identically. Multiplication, however, has a different
definition. This is caused by the fact that 0 is an absorbing element, hence its
presence suffices for a product to yield zero, as is explained by the following
theorem.

Theorem 2. Let f : Rn → R be the function defined as 〈x1, . . . , xn〉 �→ x1 · · · xn.
For a given input 〈x1, . . . , xn〉, Π explains 1 if and only if:

– Π = {[i]} for some 1 ≤ i ≤ n, if for all 1 ≤ j ≤ n, xj �= 0
– Π =

⋃
i∈{j:1 ≤ j ≤ n and xj = 0}{[i]} otherwise.

Proof. Suppose that all elements of the input vector are non-null. Let Π = {[i]}
for some 1 ≤ i ≤ n. Clearly, any input that differs from 〈x1, . . . , xn〉 only in the
i-th element produces a different product, and hence is a minimal explanation.
Suppose now that at least one element of the vector is null; in such a case, the
function returns 0. Let S = {j : 1 ≤ j ≤ n and xj = 0} be the set of all such
vector indices. A vector must differ from the input in at least all these positions
in order to produce a different output, otherwise the function still returns zero.
The only refinements of this set are its strict subsets, but none is sufficient to
change the output, and hence the defined set is the only minimal set satisfying
the explanation property. ��

The same argument can be made of the Boolean function that computes the
conjunction of a vector of Boolean values. If all elements of the vector are �,
changing any of them produces a change of value, and hence each {[i]} explains
the output. Otherwise, the set Π =

⋃
i∈{j:1 ≤ j ≤ n and xj = ⊥}{[i]} is the only

minimal set of input parts that explains the output, by a reasoning similar to
the case of multiplication above. A dual argument can be done for disjunction
by swapping the roles of � and ⊥.

The case of the remaining usual arithmetic and Boolean functions can be
dispatched easily. Functions taking a single argument (abs, etc.) obviously have
this single argument as their only minimal explanation part.

We finally turn to the case of a function that extracts the k-th element of a
vector. We recall that vectors can be nested, and hence this element may itself
be composite. The intuition here is that what explains a part of the output is
that same part in the k-th element of the input.
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Theorem 3. Let fk : V〈On〉 → O be the function defined as 〈x1, . . . , xn〉 �→ xk

if 1 ≤ k ≤ n, and 〈x1, . . . , xn〉 �→ � otherwise. Let π ∈ ΠO be an arbitrary part
of O. For any input 〈x1, . . . , xn〉, Π explains π for 〈x1, . . . , xn〉 if and only if
Π = {π ◦ [k]} and 1 ≤ k ≤ n.

Proof. If k < 0 or k > n, fk produces � regardless of its argument, and so
no set of input explains the result. Otherwise, it suffices to observe that (π ◦
[i])(〈x1, . . . , xn〉) = π(xi) = π(fk(〈x1, . . . , xn〉)), and hence {π ◦ [i]} explains the
output. No other set satisfies this condition. ��

Table 1. Definition of elementary vector functions studied in this paper.

[i](〈o1 . . . on〉) =

{
〈oi〉 if 1 ≤ i ≤ n

� otherwise

αf (〈o1, . . . , on〉) = 〈f(o1), . . . , f(on)〉
ωk,o
f (〈o1, . . . , on〉) = 〈f(〈o1, . . . , ok〉), . . . , f(〈on−k, . . . , on〉)〉

¿(〈b, o, o′〉) =

{
o if b = �
o′ otherwise

4.3 Explanation for Vector Functions

We shall delve into more detail on basic functions that produce a value that
may be of non-scalar type, summarized in Table 1 (function [i] has already been
discussed earlier). Here, we must consider the fact that an explanation may refer
to a part of an element of their output, i.e. designators of the form π ◦ [i], with
π some arbitrary designator.

The first function, noted αf , applies a function f on each element of an input
vector, resulting in an output vector of same cardinality.

Theorem 4. On a given input 〈x1, . . . , xn〉, Π explains π ◦ [i] of αf if and only
if Π = {Π ′ ◦ [i]} for some set of parts Π ′, and Π ′ explains π for xi of f .

Proof. The i-th element of the output of αf is f(xi); if Π ′ explains xi of f , then
Π ′ ◦ [i] explains 〈x1, . . . , xn〉 of αf . Conversely, suppose that Π ′ ◦ [i] explains
〈x1, . . . , xn〉 of αf ; by definition, there exists another input 〈x′

1, . . . , x
′
n〉 that

differs on Π ′ ◦ [i] and such that the output of αf differs on π ◦ [i]. Then xi and
x′
i differ on Π ′, and by the definition of αf , f(xi) and f(x′

i) differ on π. If Π ′

admits a proper part that satisfies this property, then Π is not an explanation,
which contradicts the hypothesis. Hence Π ′ is minimal, and it therefore explains
π for xi of f . ��

Function ωk,o
f applies a function f on a sliding window of width k to the input

vector. That is, the first element of the output vector is the result of evaluating
f on the first k elements; the second element is the evaluation of f on elements
at positions 2 to k + 1, and so on. If the input vector has fewer than k elements,
the function is defined to return a predefined value o. To establish the set of
minimal explanations, we define a special function σi; given a set of parts Π
such that all parts are of the form π ◦ [j], replaces each of them by π ◦ [j − i]. In
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other words, parts pointing to a part π of the j-th element of a vector end up
pointing to the same part π of the (j − i)-th element of a vector.

Theorem 5. On a given input 〈x1, . . . , xn〉, Π explains π◦ [i] of ωk,o
f if and only

if n ≥ k, i ≥ n − k, Π = {Π ′ ◦ [i]} for some set of parts Π ′. and σi(Π ′) explains
π for xi of f .

Proof. The proof is almost identical as for αf , with the added twist that in the
i-th window, an explanation for f referring to a part of the j-th element of its
input vector actually refers to the (j − i)-th element of the input vector given to
ωf ; this explains the presence of σi. We omit the details. ��

Finally, function “¿” acts as a form of if-then-else construct: depending on
the value of its (Boolean) first argument, it returns either its second or its third
argument (which can be arbitrary objects). Defining its explanation requires a
few cases, depending on whether the second and third element of the input are
equal.

Theorem 6. On a given input 〈x1, x2, x3〉, if x2 �= x3, then {[1]} always explains
π of ¿; moreover {π ◦ [2]} explains π of ¿ if x1 = �, and {π ◦ [3]} explains π of ¿
if x1 = ⊥. However, if x2 = x3, then: 1. if x1 = �, Π explains π of ¿ if and only
if Π = {π ◦ [2]} or Π = {[1], π ◦ [3]}; 2. if x1 = ⊥, Π explains π of ¿ if and only
if Π = {π ◦ [3]} or Π = {[1], π ◦ [2]}.

Proof. Direct from the fact that ¿(〈�, x2, x3〉) = x2, and ¿(〈⊥, x2, x3〉) = x3.
The only corner case is when x2 = x3; if x1 = �, one must change either x2, or
both x1 and x3 in order to produce a different result (and dually when x1 = ⊥).

��

4.4 Explanation for Composed Functions

Defining and proving conservative generalizations is a task that can quickly
become tedious for complex functions, as the previous examples have shown
us. Moreover, this process must be done from scratch for each new function one
wishes to consider, as the proofs for each of them are quite different. In this
section, we consider the situation where a complex function f is built through
the composition of simpler functions.

We first demonstrate a recipe for building conservative generalizations for
compositions of functions. In such a case, it is possible to derive a conserva-
tive generalization for f by chaining and combining the generalizations already
obtained for the simpler functions it is made of. To ease notation, we shall write
Π �o π to indicate that Π is a conservative generalization of all minimal input
parts that explain π for input o. We extend the notion of generalization to sets
of output parts; for a set of parts Π ′, we have that Π �o Π ′ if Π �o π′ for every
π′ ∈ Π ′. We first trivially observe the following:

Theorem 7. For a given function f : O → O′ and a given input o ∈ O, if
Π1 �o π1 and Π2 �o π2, then Π1 ∪ Π2 �o {π1, π2}.
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Thus, given a set of output parts Π ′, a conservative generalization can be
obtained by taking the union of the generalizations for each individual part in
Π ′. We can then establish a result for the composition of two functions.

Theorem 8. Let π be an output part of some function f , and a given input
o ∈ O. Let Πf be a set of sets of parts such that Πf �o π for function f . Let
Πg be a set of sets of parts such that Πg �f(o) Πf for some function g. Then
Πg �o π for function f ◦ g.

Proof. Suppose that there is a set of parts Π that does not intersect with Πg,
and such that for two inputs o and o′ that differ on πg, π(f ◦g)(o) �= π(f ◦g)(o′).
Let x = g(o) and y = g(o′); since π(f(x)) �= π(f(y)), then x and y differ on a
set of parts Π ′. By definition, a refinement of Π ′, called Π ′′, is also a refinement
of Πf . Since Πg �f(o) Πf , this implies that o and o′ differ on a part that
intersects with Πg, which contradicts the hypothesis. It follows that all sets of
parts of f ◦ g that explain o for π intersect with Πg, and hence Πg �f(o) π for
function f ◦ g. ��

Thanks to this result, one can obtain a conservative generalization for f ◦ g
by first finding a conservative generalization Π of π for g, and then finding
a conservative generalization of Π ′ of Π for f . This spares us from defining
an input-output explanation relation for each possible function, at the price of
obtaining a conservative approximation of the actual relation. When express-
ing these explanations as and-or trees, this simply amounts to appending the
root of an explanation (the output of a function) to the leaf designating the
corresponding input of the function it is composed with.

We recall that one of the claimed features of our proposed approach was
tractability. The theorems stated throughout this section give credence to this
claim. One can see that, for each of the elementary functions we studied in
Sects. 4.2 and 4.3, determining the sets of input parts that are (conservative)
explanations of an output part can be done by applying simple rules that require
no particular calculation. Then, building an explanation for a composed function
is not much harder, and requires properly matching the output parts of a function
to the input parts of the one it calls.

5 Implementation and Experiments

Combined, the previous results make it possible to systematically construct
explanations for a wide range of computations. It suffices to observe that nested
lists-of-lists, coupled with the functions defined in Sect. 4, represent a significant
fragment of a functional programming language such as Lisp.

To illustrate this point, the concepts introduced above have been concretely
implemented into Petit Poucet3, an open source Java library.4 The library allows
3 In English Hop-o’-My-Thumb, a fairy tale by French writer Charles Perrault where

the main character uses stones to mark a trail that enables him to successfully lead
his lost brothers back home.

4 https://github.com/liflab/petitpoucet. Version 1.0 is considered in this paper.

https://github.com/liflab/petitpoucet
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users to create complex functions by composing the elementary functions studied
earlier, to evaluate these functions on inputs, and to generate the corresponding
explanation graphs. This library is meant as a proof of concept that serves two
goals:1. show the feasibility of our proposed theoretical framework and provide
initial results on its running time and memory consumption; 2. provide a test
bench allowing us to study the explanation graphs of various functions for various
inputs.

5.1 Library Overview

Petit Poucet provides a set of ready-made Function objects; in its current imple-
mentation, it contains all the functions defined in Sect. 4, in addition to a few
others for number comparison, type conversion, descriptive statistics (i.e. aver-
age), basic I/O (reading and writing to files) and string and list manipulation.
Composed functions are created by adding elementary functions into an object
called CircuitFunction, and manually connecting the output of each function
instance to the input argument of another.

Figure 5 shows a graphical representation of a complex function that can be
created by instantiating and composing elementary functions of the library. Each
white box represents an elementary function; composition is illustrated by lines
connecting the output (dark square) of a function to the input (light square) of
another. For functions taking other functions as parameters, namely αf and ωf ,
the parameterized function is represented by a rectangle attached with a dotted
line (such as box A attached to box 2). The composed function shown here is
exactly the one from our example in the introduction: from a CSV file (box 1),
the second element of each line is extracted and cast to a number (boxes 2 and
A), the average over a sliding window is taken (boxes 3 and B), each value is
checked to be greater than 3 (boxes 4 and C), and the logical conjunction of all
these values is taken (box 5).

Fig. 5. Evaluating a condition on the average of values over a sliding window.

Once created, a function can be evaluated with input arguments. When this
happens, it returns a special object called a Queryable. The purpose of the
queryable is to retain the information about the function’s evaluation necessary
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to answer “queries” about it at a later time. Each evaluation of the function
produces a distinct queryable object with its own memory. Given a designator
pointing to a part of the function’s output, calling a Queryable’s method query
produces the corresponding explanation and-or tree. Typically, one is interested
in a simplified rendition displaying only the root, leaves and Boolean nodes,
hiding the intermediate nodes made of the input/output of the intermediate
functions in the explanation. On the CSV file shown in the introduction, the
library produces the tree that is shown in Fig. 1.5

One can see that the false result produced by the function admits three alter-
nate explanations (the three sub-trees under the “or” node). The first explana-
tion involves the numerical values in lines 3-4-5 (children of the first “and” node),
the second includes lines 4-5-6, and the third explanation is made of the num-
bers in lines 5-6-7. This corresponds exactly to the three windows of successive
value whose average is not greater than 3. Indeed, the presence of either of these
three windows, and nothing else, suffices for our global condition to evaluate
to false. Note how the explanation generation mechanism correctly and auto-
matically identifies these, and also how, thanks to our concept of designator, the
explanation can refer to specific locations inside specific lines of the input object.

In Petit Poucet, lineage capabilities are built-in. The user is not required to
perform any special task in order to keep track of provenance information. In
addition, it shall be noted that one does not need to declare in advance what
designation graph will be asked for. The construction of the Queryable objects is
the same, regardless of the output part being used as the starting point. Finally,
the library follows a modular architecture where the set of available functions can
easily be extended by creating packages defining new descendants of Function.
It suffices for each function to produce a Queryable object that computes its
specific input-output relationships; an explanation can then be computed for any
composed function that uses it.

5.2 Experiments

To test the performance of the library, we selected various data processing tasks
and implemented them as composed functions in Petit Poucet.

Get All Numbers. Represents a simple operation that takes an input comma-
separated list of elements, and produces a vector containing only the elements of
the file that are numerical values. The explanation we ask is to point at a given
element of the output vector, and retrace the location in the input string that
corresponds to this number.

Sliding Window Average. Given a CSV file, this task extracts the numerical
value in each line, compute the average of each set of n successive values and
check that it is below some threshold t (similar to the example we discussed

5 Or more precisely a directed acyclic graph, since leaf nodes with the same designator
are not repeated.
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earlier). Computing an aggregation over a sliding window is a common task in
the field of event stream processing [26] and runtime verification [4], and is also
provided by most statistical software, such as R’s smooth package. It can be
seen as a basic form of trend deviation detection [41], where the end result of
the calculation is an “alarm” indicating that the expected trend has not been
followed across the whole data file; a classical example of this is the detection
of temperature peaks in a server rack [40]. The explanation we ask is to point
at the output Boolean value (true or false), and retrace the locations in the file
corresponding to the numbers explaining the result.

Triangle Areas. Given a list of arbitrary vectors, this task checks that each vector
contains the lengths of the three sides of a valid triangle; if so, it computes their
area using Heron’s formula6 and sums the area of all valid triangles. It was chosen
because it involves multiple if-then-else cases to verify the sides of a triangle. It
also involves a slightly more involved arithmetical calculation to get the area,
which is completely implemented by composing basic arithmetic operators in
a composed function. The whole function is the composition of 59 elementary
functions.

This example is notable, because the explanations it generates may take
different forms. An explanation for the output value (total area) includes an
explanation for each vector: if it represents a valid triangle, it refers to its three
sides; if it does not, the condition can fail for different reasons: the vector may
not have three elements, or have one of its elements that is not a number, or
contain a negative value, or violate the triangle inequality. Each condition, when
violated, produces different explanations pointing at different elements of the
vector, or the vector as a whole. Moreover, each vector in the list may not be
a valid triangle for different reasons, and hence a different explanation will be
built for each of them. For example, given the list [〈a, 4, 2〉, 〈3, 5, 6〉, 〈2, 3〉], a tree
will be produced that describes an explanation involving three elements: the first
points at the element a of the first vector (not a number), the second points at
all three components of the second vector (valid triangle), and the last points at
the whole third vector (wrong number of elements).

Nested Bounding Boxes. Given a DOM tree7, this task checks that each ele-
ment has a bounding box (width and height) larger than all of its children. This
condition is the symptom of a layout bug which shows visually as an element pro-
truding from its parent box inside the web browser’s window. This corresponds
to one of the properties that is evaluated by web testing tools such as Cornipickle
[24] and ReDeCheck [49] on real web pages. In this task, trees are represented
as nested lists-of-lists, with each DOM node corresponding to a triplet made of
its width, height, and a list of its children nodes. The explanation we ask is to
point at the Boolean output of the condition, and retrace the nodes of the tree
that violate it.

6 A =
√

s(s − a)(s − b)(s − c), where s = a+b+c
2

.
7 A DOM tree represents the structure of elements in an HTML document [2].
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In all these tasks, the inputs given to the function are randomly generated
structures of the corresponding type. The experiments were implemented using
the LabPal testing framework [25], which makes it possible to bundle all the nec-
essary code, libraries and input data within a single self-contained executable file,
such that anyone can download and independently reproduce the experiments.
A downloadable lab instance containing all the experiments of this paper can be
obtained online [27]. Overall, our empirical measurements involve 56 individual
experiments, which together generated 224 distinct data points. All the exper-
iments were run on a AMD Athlon II X4 640 1.8 GHz running Ubuntu 18.04,
inside a Java 8 virtual machine with 3566 MB of memory.

Memory Consumption. The first experiment aims to measure the amount
of memory used up by the Queryable objects generated by the evaluation of a
function, and the impact of the size of the input on global memory consump-
tion. To this end, we ran various functions on inputs of different size; for each,
we measured the amount of memory consumed, with explainability successively
turned on and off. This is possible thanks to a switch provided by Petit Poucet,
and which allows users to completely disable tracking if desired.

Fig. 6. Impact of explainability on memory consumption.

Figure 6 shows a plot that compares the amount of memory consumed by
Function objects. Each point in the plot corresponds to a pair of experiments:
the x coordinate corresponds to the memory consumed by a function without
explainability, and the y coordinate corresponds to the memory consumed by
the same function on the same input, but with explainability enabled. All the
points for the same task have been grouped into a category and are given the
same color.

Analyzing this plot brings both bad news and good news. The “bad” news is
that the additional memory required for explainability is high when expressed in
relative terms. For example, a composed that requires 498 KB to be evaluated
on an input requires close to 15 MB once explainability is enabled. The “good”
news is twofold. First, this consumption is still reasonable in the absolute: at this



518 S. Hallé and H. Tremblay

rate, it takes an input file of 42 million lines before filling up the available RAM
in a 64 GB machine. Second, and most importantly, the relationship between
memory consumption with and without lineage is linear: for all the tasks we
tested, if m is the memory used without lineage, then the memory m′ used when
lineage is enabled is in O(m), i.e. the ratio m′/m does not depend on the size of
the input.

These figures should be put in context by comparing the overhead incurred by
other systems mentioned in Sect. 2. Related systems for provenance in databases
(namely Polygen [51], Mondrian [20], MXQL [48], DBNotes [11] pSQL [7] and
Orchestra [29]) do not divulge their storage overhead for provenance data.
A recent technical report on a provenance-aware database management system
measures an overhead ranging between 19% and 702% [3]. Dynamic taint propa-
gation systems report a memory overhead reaching 4× for TaintCheck [37], 240×
[14] for Dytan, and “an enormity” of logging information for Rifle ([13], authors’
quote). Although these systems operate at a different level of abstraction, this
shows that explainability is inherently costly regardless of the approach chosen.

Computation Time. We performed the same experiments, but this time mea-
suring computation time. The results are shown in Fig. 7; similar to memory con-
sumption, they compare the running time of the same function on the same input,
both with and without explanation tracking. The largest slowdown observed
across all instances is 6.7×. For a task like Sliding Window Average, the aver-
age slowdown observed is 1.93× across all inputs. Although this slowdown is
non-negligible, it is reasonable nevertheless, adding at most a few hundreds of
milliseconds on the problems considered in our benchmark.

Fig. 7. Impact of explainability on computation time.

Again, these results should be put in context with respect to existing works
that include a form of lineage. The Mondrian system reports an average slow-
down of 3×; pSQL ranges between 10× and 1,000×; the remaining tools do not
report CPU overhead. For taint analysis tools, Dytan reports a 30–50× slow-
down; GIFT-compiled programs are slowed down by up to 12×; TaintCheck has
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a slowdown of around 20×, 1–2× for Rifle and around 20× for TaintCheck. Of
course, these various systems compute different types of lineage information, but
these figures give an outlook of the order of magnitude one should expect from
such systems.

6 Conclusion

This paper provided the formal foundations for a generic and granular explain-
ability framework. An important highlight of this model is its capability to han-
dle abstract composite data structures, including character strings or lists of ele-
ments. The paper then defined the notion of designator, which are functions that
can point to and extract parts of these data structures. An explainability rela-
tionship on functions has been formally defined, and conservative approximations
of this relation have been proved for a set of elementary functions. A point in
favor of this approach is that explanations of composed functions can be built by
composing the explanations for elementary functions. Combined, these concepts
make it possible to automatically extract the explanation of a result for generic
functions at a fine level of granularity. These concepts have been implemented
into a proof-of-concept, yet fully functional library called Petit Poucet, and eval-
uated experimentally on a number of data processing tasks. These experiments
revealed that the amount of memory required to track explainability metadata
is relatively high, but more importantly, showed that it is linear in the size of
the memory required to evaluate the function in the first place.

Obviously, Petit Poucet is not intended to replace programs written using
other languages and following different paradigms. However, it could be used as
a library by other tools that could benefit from its explanation features. In par-
ticular, testing libraries such as JUnit could be extended by assertions written
as Petit Poucet functions, and provide a detailed explanation of a test failure
without requiring extra code. Explainability functionalities could also easily be
retrofitted into existing (Java) software, with minimal interference on their cur-
rent code. Case in point, we already identified the Cornipickle web testing tool
[24] and the BeepBeep event stream processing engine [26] as some of the first
targets for the addition of explainability based on Petit Poucet. A lineage-aware
version of the GRAL plotting library8 is also considered.

The existence of a definition of fine-grained explainability opens the way to
multiple exciting theoretical questions. For example: for a given function, is there
a part of the input that is present in all explanations? We can see an example
of this in Fig. 1, with the leaf pointing to value −80. Intuitively, this tends to
indicate that some parts of an input have a greater “responsibility” than others
in the result, and could provide an alternate way of quantifying this notion than
what has been studied so far [12]. On the contrary, is there a part of the input
that never explains the production of the output, regardless of the input? This
latter question could shed a different light on an existing notion called vacuity
[6], expressed not in terms of elements of the specification, but on the parts of
8 https://github.com/eseifert/gral.

https://github.com/eseifert/gral
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the input it is evaluated on. More generally, explainability can be viewed as a
particular form of static analysis for functions; it would therefore be interesting
to recast our model in the abstract interpretation framework [35,39] in order to
further assess its strengths and weaknesses.

Finally, explanations could also prove useful from a testing and verification
standpoint. The explanation graph could be used for log trace and bug triaging
[30]: if two execution traces violate the same condition, one could keep one trace
instance for each distinct explanation they induce, as representatives of traces
that fail for different reasons. This could help reduce the amount of log data that
needs to be preserved, by keeping only one log instance of each type of failure.
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27. Hallé, S., Tremblay, H.: Measuring the impact of lineage tracking in the Petit
Poucet library (version v1.0), April 2021

28. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach,
part I: causes. Brit. J. Philos. Sci. 56(4), 843–887 (2005)

29. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data provenance. In: Elma-
garmid, A.K., Agrawal, D. (eds.) Proceedings of the SIGMOD 2010, pp. 951–962.
ACM (2010)
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Abstract. We revisit two well-established verification techniques, k-in-
duction and bounded model checking (BMC), in the more general setting
of fixed point theory over complete lattices. Our main theoretical contri-
bution is latticed k-induction, which (i) generalizes classical k-induction
for verifying transition systems, (ii) generalizes Park induction for bound-
ing fixed points of monotonic maps on complete lattices, and (iii) extends
from naturals k to transfinite ordinals κ, thus yielding κ-induction.

The lattice-theoretic understanding of k-induction and BMC enables
us to apply both techniques to the fully automatic verification of infinite-
state probabilistic programs. Our prototypical implementation manages
to automatically verify non-trivial specifications for probabilistic pro-
grams taken from the literature that—using existing techniques—cannot
be verified without synthesizing a stronger inductive invariant first.

Keywords: k-induction · Bounded model checking · Fixed point
theory · Probabilistic programs · Quantitative verification

1 Introduction

Bounded model checking (BMC) [12,17] is a successful method for analyzing
models of hardware and software systems. For checking a finite-state transition
system (TS) against a safety property (“bad states are unreachable”), BMC
unrolls the transition relation until it either finds a counterexample and hence
refutes the property, or reaches a pre-computed completeness threshold on the
unrolling depth and accepts the property as verified. For infinite-state systems,
however, such completeness thresholds need not exist (cf. [64]), rendering BMC a
refutation-only technique. To verify infinite-state systems, BMC is typically com-
bined with the search for an inductive invariant, i.e., a superset of the reachable
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states which is closed under the transition relation. Proving a—not necessarily
inductive—safety property then amounts to synthesizing a sufficiently strong,
often complicated, inductive invariant that excludes the bad states. A plethora
of techniques target computing or approximating inductive invariants, includ-
ing IC3 [14], induction [13,20], interpolation [50,51], and predicate abstrac-
tion [27,36]. However, invariant synthesis may burden full automation, as it
either relies on user-supplied annotations or confines push-button technologies
to semi-decision or approximate procedures.

k-induction [65] generalizes the principle of simple induction (aka 1-
induction) by considering k consecutive transition steps instead of only a single
one. It is more powerful: an invariant can be k-inductive for some k > 1 but not
1-inductive. Following the seminal work of Sheeran et al. [65] which combines
k-induction with SAT solving to check safety properties, k-induction has found
a broad spectrum of applications in the realm of hardware [29,37,45,65] and
software verification [10,21–23,55,63]. Its success is due to (1) being a founda-
tional yet potent reasoning technique, and (2) integrating well with SAT/SMT
solvers, as also pointed out in [45]: “the simplicity of applying k-induction made
it the go-to technique for SMT-based infinite-state model checking”. This paper
explores whether k-induction can have a similar impact on the fully automatic
verification of infinite-state probabilistic programs. That is, we aim to verify that
the expected value of a specified quantity—think: “quantitative postcondition”—
after the execution of a probabilistic program is bounded by a specified threshold.

Example 1 (Bounded Retransmission Protocol [19,32]). The loop

while ( sent < toSend ∧ fail < maxFail ) {
{ fail := 0 ; sent := sent + 1 } [ 0.9 ] { fail := fail + 1 ; totalFail := totalFail + 1 }

}
models a simplified version of the bounded retransmission protocol, which
attempts to transmit toSend packages via an unreliable channel (that fails with
probability 0.1) allowing for at most maxFail retransmissions per package.

Using our generalization of k-induction, we can fully automatically verify that
the expected total number of failed transmissions is at most 1, if the number
of packages we want to (successfully) send is at most 3. In terms of weakest
preexpectations [38,44,49], this quantitative property reads

wp�C� (totalFail) � [toSend ≤ 3] · (totalFail + 1) + [toSend > 3] · ∞.

The bound on the right-hand-side of the inequality is 4-inductive, but not 1-
inductive; verifying the same bound using 1-induction requires finding a non-
trivial—and far less perspicuous—inductive invariant. Moreover, if we consider
an arbitrary number of packages to send, i.e., we drop [toSend ≤ 3], this bound
becomes invalid. In this case, our BMC procedure produces a counterexample,
i.e., values for toSend and maxFail, proving that the bound does not hold. �

Lifting the classical formalization (and SAT encoding) of k-induction over
TSs to the probabilistic setting is non-trivial. We encounter the following chal-
lenges:
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(A) Quantitative reachability. In a TS, a state reachable within k steps
remains reachable on increasing k. In contrast, reachability probabilities in
Markov chains—a common operational model for probabilistic programs [28]—
may increase on increasing k. Hence, proving that the probability of reaching
a bad state remains below a given threshold is more intricate than reasoning
about qualitative reachability.

(B) Counterexamples are subsystems. In a TS, an acyclic path from an initial
to a bad state suffices as a witness for refuting safety, i.e., non-reachability. SAT
encodings of k-induction rely on this by expressing the absence of witnesses
up to a certain path-length. In the probabilistic setting, however, witnesses are
no longer single paths [30]. Rather, a witness for the probability of reaching a
bad state to exceed a threshold is a subsystem [15], i.e., a set of possibly cyclic
paths.

(C) Symbolic encodings. To enable fully automated verification, we need a
suitable encoding such that our lifting integrates well into SMT solvers. Verify-
ing probabilistic programs involves reasoning about execution trees, where each
(weighted) branch corresponds to a probabilistic choice. A suitable encoding
needs to capture such trees which requires more involved theories than encoding
paths in classical k-induction.

We address challenges (A) and (B) by developing latticed k-induction, which
is a proof technique in the rather general setting of fixed point theory over
complete lattices. Latticed k-induction generalizes classical k-induction in three
aspects: (1) it works with any monotonic map on a complete lattice instead of
being confined to the transition relation of a transition system, (2) it generalizes
the Park induction principle for bounding fixed points of such monotonic maps,
and (3) it extends from natural numbers k to (possibly transfinite) ordinals κ,
hence its short name: κ-induction.

It is this lattice-theoretic understanding that enables us to lift both k-in-
duction and BMC to reasoning about quantitative properties of probabilistic
programs. To enable automated reasoning, we address challenge (C) by an incre-
mental SMT encoding based on the theory of quantifier-free mixed integer and
real arithmetic with uninterpreted functions (QF UFLIRA). We show how to effec-
tively compute all needed operations for κ-induction using the SMT encoding
and, in particular, how to decide quantitative entailments.

A prototypical implementation of our method demonstrates that κ-induction
for (linear) probabilistic programs manages to automatically verify non-trivial
specifications for programs taken from the literature which—using existing tech-
niques—cannot be verified without synthesizing a stronger inductive invariant.

Due to space restrictions, most proofs and details about individual bench-
marks have been omitted; they are found in an extended version of this paper [8].

Related Work. Besides the aforementioned related work on k-induction, we
briefly discuss other automated analysis techniques for probabilistic systems and
other approaches for bounding fixed points. Symbolic engines exist for exact
inference [26] and sensitivity analysis [33]. Other automated approaches focus
on bounding expected costs [56], termination analysis [2,16], and static analy-
sis [3,67]. BMC has been applied in a rather rudimentary form to the on-the-fly
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verification of finite unfoldings of probabilistic programs [35], and the enumer-
ative generation of counterexamples in finite Markov chains [68]. (Semi-)auto-
mated invariant-synthesis techniques can be found in [6,24,41]. A recent variant
of IC3 for probabilistic programs called PrIC3 [7] is restricted to finite-state sys-
tems. When applied to finite-state Markov chains, our κ-induction operator is
related to other operators that have been employed for determining reachabilitiy
probabilities through value iteration [4,31,61]. In particular, when iterated on
the candidate upper bound, the κ-induction operator coincides with the (upper
value iteration) operator in interval iteration [4]; the latter operator can be used
together with the up-to techniques (cf. [53,58,59]) to prove our κ-induction rule
sound (in contrast, we give an elementary proof). However, the κ-induction oper-
ator avoids comparing current and previous iterations. It is thus easier to imple-
ment and more amenable to SMT solvers. Finally, the proof rules for bounding
fixed points recently developed in [5] are restricted to finite-state systems.

2 Verification as a Fixed Point Problem

We start by recapping some fundamentals on fixed points of monotonic operators
on complete lattices before we state our target verification problem.

Fundamentals. For the next three sections, we fix a complete lattice (E, �), i.e.
a carrier set E together with a partial order �, such that every subset S ⊆ E
has a greatest lower bound

�
S (also called the meet of S) and a least upper

bound
⊔

S (also called the join of S). For just two elements {g, h} ⊆ E, we
denote their meet by g � h and their join by g 	 h. Every complete lattice has a
least and a greatest element, which we denote by ⊥ and �, respectively.

In addition to (E, �), we also fix a monotonic operator Φ : E → E. By
the Knaster-Tarski theorem [43,47,66], every monotonic operator Φ admits a
complete lattice of (potentially infinitely many) fixed points. The least fixed
point lfp Φ and the greatest fixed point gfp Φ are moreover constructible by
(possibly transfinite) fixed point iteration from ⊥ and �, respectively: Cousot &
Cousot [18] showed that there exist ordinals α and β, such that1

lfp Φ = Φ�α� (⊥) and gfp Φ = Φ�β� (�) , (†)

where Φ
�δ� (g) denotes the upper δ-fold iteration and Φ�δ� (g) denotes the lower

δ-fold iteration of Φ on g, respectively. Formally, Φ
�δ� (g) is given by2

1 We use lowercase greek letters α, β, γ, δ, etc. to denote arbitrary (possibly transfinite)
ordinals and i, j, k, m, n, etc. to denote natural (finite) numbers in N.

2 To ensure well-definedness of transfinite iterations, we fix an ambient ordinal ν and
tacitly assume δ < ν for all ordinals δ considered throughout this paper. Formally,
ν is the smallest ordinal such that |ν| > |E|. Intuitively, ν then upper-bounds the
length of any repetition-free sequence over elements of E.
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Φ�δ� (g) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g if δ = 0,

Φ
(
Φ

�γ� (g)
)

if δ = γ + 1 is a successor ordinal,
⊔ {

Φ
�γ� (g)

∣
∣ γ < δ

}
if δ is a limit ordinal.

Intuitively, if δ is the successor of γ, then we simply do another iteration of Φ.
If δ is a limit ordinal, then Φ

�δ� (g) can also be thought of as a limit, namely
of iterating Φ on g. However, simply iterating Φ on g need not always converge,
especially if the iteration does not yield an ascending chain. To remedy this, we
take as limit the join over the whole (possibly transfinite) iteration sequence,
i.e., the least upper bound over all elements that occur along the iteration. The
lower δ-fold iteration Φ�δ� (g) is defined analogously to Φ

�δ� (g), except that we
take a meet instead of a join whenever δ is a limit ordinal.

An important special case for fixed point iteration (see (†)) is when the opera-
tor Φ is Scott-continuous (or simply continuous), i.e., if Φ

(⊔ {g1 � g2 � . . .})
=

⊔
Φ

({g1 � g2 � . . .})
. In this case, α in (†) coincides with the first infinite limit

ordinal ω (which can be identified with the set N of natural numbers). This fact
is also known as the Kleene fixed point theorem [1].

Problem Statement. Fixed points are ubiquitous in computer science. Prime
examples of properties that can be conveniently characterized as least fixed
points include both the set of reachable states in a transition system and the
function mapping each state in a Markov chain to the probability of reaching
some goal state (cf. [60]). However, least and greatest fixed points are often
difficult or even impossible [39] to compute; it is thus desirable to bound them.

For example, it may be sufficient to prove that a system modeled as a Markov
chain reaches a bad state from its initial state with probability at most 10−6,
instead of computing precise reachability probabilities for each state. Moreover,
if said probability is not bounded by 10−6, we would like to witness that as well.

In general lattice-theoretic terms, our problem statement reads as follows:

Given a complete lattice (E, �), a monotonic operator Φ : E → E,
and a candidate upper bound f ∈ E on lfp Φ,

prove or refute that lfp Φ � f.

For proving, we will present latticed k-induction; for refuting, we will present
latticed bounded model checking. Running both in parallel may (and under certain
conditions: will) lead to a decision of the above problem.

3 Latticed k-Induction

In this section, we generalize the well-established k-induction verification tech-
nique [23,29,37,45,55,65] to latticed k-induction (for short: κ-induction; reads:
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Fig. 1. κ-induction and latticed BMC in case that lfp Φ � f . An arrow from g to h
indicates g � h. The solid blue arrow from Φ(Ψ

�κ�
f (f)) to f is the premise of κ-

induction, i.e., the LHS of Lemma 2, which implies the dash-dotted blue arrow from
Φ(Ψ

�κ�
f (f)) to Ψ

�κ�
f (f), i.e., the RHS of Lemma 2. The dashed blue arrow from lfp Φ

to Φ(Ψ
�κ�
f (f)) is a consequence of the dash-dotted arrow (by Park induction, Theorem

1) and ultimately proves that lfp Φ � f .

“kappa induction”). With κ-induction, our aim is to prove that lfp Φ � f . To
this end, we attempt “ordinary” induction, also known as Park induction:

Theorem 1 (Park Induction [57]). Let f ∈ E. Then

Φ (f) � f implies lfp Φ � f.

Intuitively, this principle says: if pushing our candidate upper bound f through Φ
takes us down in the partial order �, we have verified that f is indeed an upper
bound on lfp Φ. The true power of Park induction is that applying Φ once tells
us something about iterating Φ possibly transfinitely often (see (†) in Sect. 2).

Park induction, unfortunately, does not work in the reverse direction: If we
are unlucky, f � lfp Φ is an upper bound on lfp Φ, but nevertheless Φ (f) �� f .
In this case, we say that f is not inductive. But how can we verify that f is
indeed an upper bound in such a non-inductive scenario? We search below f for
a different, but inductive, upper bound on lfp Φ, that is, we

search for an h ∈ E such that lfp Φ � Φ(h) � h � f.

In order to perform a guided search for such an h, we introduce the κ-induction
operator—a modified version of Φ that is parameterized by our candidate f :

Definition 1 (κ-Induction Operator). For f ∈ E, we call

Ψf : E → E, g �→ Φ (g) � f

the κ-induction operator (with respect to f and Φ).
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What does Ψf do? As illustrated in Fig. 1, if Φ (f) �� f (i.e. f is non-inductive)
then “at least some part of Φ (f) is greater than f”. If the whole of Φ (f) is
greater than f , then f � Φ (f); if only some part of Φ (f) is greater and some is
smaller than f , then f and Φ (f) are incomparable. The κ-induction operator Ψf

now rectifies Φ (f) being (partly) greater than f by pulling Φ (f) down via the
meet with f (i.e., via � f), so that the result is in no part greater than f .
Applying Ψf to f hence always yields something below or equal to f .

Together with the observation that Ψf is monotonic, iterating Ψf on f nec-
essarily descends from f downwards in the direction of lfp Φ (and never below):

Lemma 1 (Properties of the κ-Induction Operator). Let f ∈ E and
let Ψf be the κ-induction operator with respect to f and Φ. Then

(a) Ψf is monotonic, i.e., ∀ g1, g2 ∈ E : g1 � g2 implies Ψf (g1) � Ψf (g2).
(b) Iterations of Ψf starting from f are descending, i.e., for all ordinals γ, δ,

γ < δ implies Ψ
�δ�
f (f) � Ψ

�γ�
f (f).

(c) Ψf is dominated by Φ, i.e., ∀ g ∈ E : Ψf (g) � Φ (g) .

(d) If lfp Φ � f , then for any ordinal δ,

lfp Φ � . . . � Ψ
�δ�
f (f) � . . . � Ψ

�2�
f (f) � Ψf (f) � f.

The descending sequence f � Ψf (f) � Ψ
�2�
f (f) � . . . constitutes our guided

search for an inductive upper bound on lfp Φ. For each ordinal κ (hence the
short name: κ-induction), Ψ

�κ�
f (f) is a potential candidate for Park induction:

Φ
(
Ψ

�κ�
f (f)

) potentially� Ψ
�κ�
f (f). (‡)

For efficiency reasons, e.g., when offloading the above inequality check to an SMT
solver, we will not check the inequality (‡) directly but a property equivalent
to (‡), namely whether Φ(Ψ �κ�

f (f)) is below f instead of Ψ
�κ�
f (f):

Lemma 2 (Park Induction from κ-Induction). Let f ∈ E. Then

Φ
(
Ψ

�κ�
f (f)

)
� f iff Φ

(
Ψ

�κ�
f (f)

)
� Ψ

�κ�
f (f).

Proof. The if-direction is trivial, as Ψ
�κ�
f (f) � f (Lemma 1(d)). For only-if:

Ψ
�κ�
f (f) � Ψ

�κ+1�
f (f) (by Lemma 1(b))

= Ψf

(
Ψ

�κ�
f (f)

)
(by definition of Ψ

�κ+1�
f (f))

= Φ
(
Ψ

�κ�
f (f)

)
� f (by definition of Ψf )

� Φ
(
Ψ

�κ�
f (f)

)
. (by the premise) �	
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Algorithm 1: Latticed k-induction
input: Φ : E → E and f ∈ E.
output: “verify” if f is a k-inductive

invariant, diverge otherwise.

1 g ← f ;
2 while Φ (g) �� f do
3 g ← Ψf (g) ;

// recall: Ψf (g) = Φ (g) � f

4 return verify ;

Algorithm 2: Latticed BMC
input: Φ : E → E and f ∈ E.
output: “refute” if there exists

k ∈ N with Φ
�k�

(⊥) �� f ,
diverge otherwise.

1 g ← ⊥ ;
2 repeat
3 g ← Φ (g) ;
4 until g �� f ;

5 return refute ;

If Φ
(
Ψ

�κ�
f (f)

) � f , then Lemma 2 tells us that Ψ
�κ�
f (f) is Park inductive and

thereby an upper bound on lfp Φ. Since iterating Ψf on f yields a descending
iteration sequence (see Lemma 1(b)), Ψ

�k�
f (f) is below f and therefore f is also

an upper bound on lfp Φ. Put in more traditional terms, we have shown that
Ψ

�κ�
f (f) is an inductive invariant stronger than f . Formulated as a proof rule,

we obtain the following induction principle:

Theorem 2 (κ-Induction). Let f ∈ E and let κ be an ordinal. Then

Φ
(
Ψ

�κ�
f (f)

)
� f implies lfp Φ � f.

Proof. Following the argument above, for details see [8, Appx. A.2]. �	
An illustration of κ-induction is shown in (the right frame of) Fig. 1. For every
ordinal κ, if Φ(Ψ �κ�

f (f)) � f , then we call f (κ+1)-inductive (for Φ). In particu-
lar, κ-induction generalizes Park induction, in the sense that 1-induction is Park
induction and, (κ > 1)-induction is a more general principle of induction.

Algorithm 1 depicts a (semi-)algorithm that performs latticed k-induction (for
k < ω) in order to prove lfp Φ � f by iteratively increasing k. For implementing
this algorithm, we require, of course, that both Φ and Ψf are computable and that
� is decidable. Notice that the loop (lines 2–3) never terminates if f � Φ (f)—
a condition that can easily be checked before entering the loop. Even with this
optimization, however, Algorithm1 is a proper semi-algorithm: even if lfp Φ � f ,
then f is still not guaranteed to be k-inductive for some k < ω. And even if an
algorithm could somehow perform transfinitely many iterations, then f is still
not guaranteed to be κ-inductive for some ordinal κ:

Counterexample 1 (Incompleteness of κ-Induction). Consider the car-
rier set {0, 1, 2}, partial order 0 � 1 � 2, and the monotonic operator Φ with
Φ(0) = 0 = lfp Φ, and Φ(1) = 2, and Φ(2) = 2 = gfp Φ. Then lfp Φ � 1, but for
any ordinal κ, Ψ

�κ�
1 (1) = 1 and Φ(1) = 2 �� 1. Hence 1 is not κ-inductive. �

Despite its incompleteness, we now provide a sufficient criterion which ensures
that every upper bound on lfp Φ is κ-inductive for some ordinal κ.
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Theorem 3 (Completeness of κ-Induction for Unique Fixed Point). If
lfp Φ = gfp Φ (i.e. Φ has exactly one fixed point), then, for every f ∈ E,

lfp Φ � f implies f is κ-inductive for some ordinal κ.

Proof. By the Knaster-Tarski theorem, we have Φ�β�(�) = gfp Φ for some ordi-
nal β. We then show that f is (β+1)-inductive; see [8, Appx A.3] for details.

�	
The proof of the above theorem immediately yields that, if the unique fixed point
can be reached through finite fixed point iterations starting at �, then f is k-
inductive for some natural number k; Algorithm 1 thus eventually terminates.

Corollary 1. If Φ�n� (�) = lfp Φ for some n ∈ N, then, for every f ∈ E,

lfp Φ � f implies f is n-inductive for some n ∈ N.

4 Latticed vs. Classical k-Induction

We show that our purely lattice-theoretic κ-induction from Sect. 3 generalizes
classical k-induction for hardware- and software verification. To this end, we first
recap how k-induction is typically formalized in the literature [10,23,29,37]:
Let TS = (S, I, T ) be a transition system, where S is a (countable) set of
states, I ⊆ S is a non-empty set of initial states, and T ⊆ S × S is a transition
relation. As in the seminal work on k-induction [65], we require that T is a
total relation, i.e., every state has at least one successor. This requirement is
sometimes overlooked in the literature, which renders the classical SAT-based
formulation of k-induction ((1a) and (1b) below) unsound in general.

Our goal is to verify that a given invariant property P ⊆ S covers all states
reachable in TS from some initial state. Suppose that I, T and P are character-
ized by logical formulae I(s), T (s, s′) and P (s) (over the free variables s and s′),
respectively. Then, achieving the above goal with classical k-induction amounts
to proving the validity of

I(s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk) =⇒ P (s1) ∧ . . . ∧ P (sk), and (1a)
P (s1) ∧ T (s1, s2) ∧ . . . ∧ P (sk) ∧ T (sk, sk+1) =⇒ P (sk+1). (1b)

Here, the base case (1a) asserts that P holds for all states reachable within
k transition steps from some initial state; the induction step (1b) formalizes
that P is closed under taking up to k transition steps, i.e., if we start in P and
stay in P for up to k steps, then we also end up in P after taking the (k+1)-
st step. If both (1a) and (1b) are valid, then classical k-induction tells us that
the property P holds for all reachable states of TS. How is the above principle
reflected in latticed k-induction (cf. Sect. 3)? For that, we choose the complete
lattice (2S , ⊆), where 2S denotes the powerset of S; the least element is ⊥ = ∅
and the meet operation is standard intersection ∩.
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Moreover, we define a monotonic operator Φ whose least fixed point precisely
characterizes the set of reachable states of the transition system TS:

Φ : 2S → 2S , F �→ I ∪ Succs(F ),

That is, Φ maps any given set of states F ⊆ S to the union of the initial states I
and of those states Succs(F ) that are reachable from F using a single transition.3

Using the κ-induction operator ΨP constructed from Φ and P according to
Definition 1, the principle of κ-induction (cf. Theorem 2) then tells us that

Φ
(
Ψ

�κ�
P (P )

)
⊆ P implies lfp Φ

︸︷︷︸
reachable states of TS

⊆ P.

For our above choices, the premise of κ-induction equals the classical formaliza-
tion of k-induction—formulae (1a) and (1b)—because the set of initial states I
is “baked into” the operator Φ. More concretely, for the base case (1a), we have

I(s1)
︸ ︷︷ ︸
Φ(∅)

∧T (s1, s2)

︸ ︷︷ ︸
Φ

�2�
(∅)

∧ . . . ∧ T (sk−1, sk)

︸ ︷︷ ︸
Φ

�k�
(∅)

=⇒ P (s1) ∧ . . . ∧ P (sk)

︸ ︷︷ ︸
meaning Φ

�k�
(∅) ⊆ P

.

In other words, formula (1a) captures those states that are reachable from I via
at most k transitions. If we assume that (1a) is valid, then P contains all initial
states and formula (1b) coincides with the premise of κ-induction:

P (s1) ∧ T (s1, s2)
︸ ︷︷ ︸

Φ(P )

∧P (s2)

︸ ︷︷ ︸
ΨP (P ) = Φ(P )∩P

∧T (s2, s3) ∧ . . . ∧ P (sk)

︸ ︷︷ ︸
Ψ

�k−1�
P (P )

∧T (sk, sk+1)

︸ ︷︷ ︸
Φ

(
Ψ

�k−1�
P (P )

)

=⇒ P (sk+1)

︸ ︷︷ ︸
meaning Φ

(
Ψ

�k−1�
P (P )

)
⊆ P

.

It follows that, when considering transition systems, our (latticed) κ-induction
is equivalent to the classical notion of k-induction for κ < ω:

Theorem 4. For every natural number k ≥ 1,

Φ
(
Ψ

�k−1�
P (P )

)
⊆ P iff formulae (1a) and (1b) are valid.

3 Formally, Succs(F ) � { t′ | t ∈ F, (t, t′) ∈ T }.
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C ::= skip

| x := e

| C ; C

| { C } [ p ] { C }
| if ( ϕ ) { C } else { C }
| while ( ϕ ) { C }

(a) pGCL programs

e ::= n

| x

| n · e

| e + e

| e .− e (monus max{0, e − e})

(b) Linear expressions

ϕ ::= e < e

| ϕ ∧ ϕ

| ¬ϕ

(c) Linear guards

Fig. 2. Syntax of pGCL programs, linear expressions, and guards, where x is a variable
taken from a countable set Vars of program variables (evaluating to natural numbers),
p ∈ [0, 1] ∩ Q is a rational probability, and n ∈ N is a constant.

5 Latticed Bounded Model Checking

We complement κ-induction with a latticed analog of bounded model check-
ing [11,12] for refuting that lfp Φ � f . In lattice-theoretic terms, bounded model
checking amounts to a fixed point iteration of Φ on ⊥ while continually checking
whether the iteration exceeds our candidate upper bound f . If so, then we have
indeed refuted lfp Φ � f :

Theorem 5 (Soundness of Latticed BMC). Let f ∈ E. Then

∃ ordinal δ : Φ�δ� (⊥) �� f implies lfp Φ �� f.

Furthermore, if we were actually able to perform transfinite iterations of Φ on ⊥,
then latticed bounded model checking is also complete: If f is in fact not an upper
bound on lfp Φ, this will be witnessed at some ordinal:

Theorem 6 (Completeness of Latticed BMC). Let f ∈ E. Then

lfp Φ �� f implies ∃ ordinal δ : Φ�δ� (⊥) �� f.

More practically relevant, if Φ is continuous (which is the case for Bellman oper-
ators characterizing reachability probabilities in Markov chains), then a simple
finite fixed point iteration, see Algorithm2, is sound and complete for refutation:

Corollary 2 (Latticed BMC for Continuous Operators). Let f ∈ E and
let Φ be continuous. Then

∃n ∈ N : Φn(⊥) �� f iff lfp Φ �� f.

6 Probabilistic Programs

In the remainder of this article, we employ latticed k-induction and BMC to ver-
ify imperative programs with access to discrete probabilistic choices—branching
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on the outcomes of coin flips. In this section, we briefly recap the necessary
background on formal reasoning about probabilistic programs (cf. [44,49] for
details).

6.1 The Probabilistic Guarded Command Language

Syntax. Programs in the probabilistic guarded command language pGCL adhere
to the grammar in Fig. 2a. The semantics of most statements is standard. In
particular, the probabilistic choice { C1 } [ p ] { C2 } flips a coin with bias p ∈
[0, 1] ∩ Q. If the coin yields heads, it executes C1; otherwise, C2. In addition
to the syntax in Fig. 2, we admit standard expressions that are definable as
syntactic sugar, e.g., true, false, ϕ1 ∨ ϕ2, e1 = e2, e1 ≤ e2, etc.

Program States. A program state σ maps every variable in Vars to its value,
i.e., a natural number in N.4 To ensure that the set of program states Σ remains
countable5, we restrict ourselves to states in which only finitely many variables—
those that appear in a given program—evaluate to non-zero values. Formally,

Σ �
{

σ : Vars → N

∣
∣
∣

∣
∣{ x ∈ Vars | σ(x) �= 0 }∣

∣ < ∞
}

.

The evaluation of expressions e and guards ϕ under a state σ, denoted by e(σ)
and ϕ(σ), is standard. For example, we define the evaluation of “monus” as

(e1 .− e2)(σ) � max { 0, e1(σ) − e2(σ) } .

6.2 Weakest Preexpectations

Expectations. An expectation f : Σ → R
∞
≥0 is a map from program states to the

non-negative reals extended by infinity. We denote by E the set of all expecta-
tions. Moreover, (E, �) forms a complete lattice, where the partial order � is
given by the pointwise application of the canonical ordering ≤ on R

∞
≥0, i.e.,

f � g iff ∀σ ∈ Σ : f(σ) ≤ g(σ).

To conveniently describe expectations evaluating to some r ∈ R
∞
≥0 for every state,

we slightly abuse notation and denote by r the constant expectation λσ. r. Sim-
ilarly, given an arithmetic expression e, we denote by e the expectation λσ. e(σ).

4 We prefer unsigned integers because our quantitative “specifications” (aka expecta-
tions) must evaluate to non-negative numbers. Otherwise, expectations like x+y are
not well-defined, and, as a remedy, we would frequently have to take the absolute
value of every program variable. Restricting ourselves to unsigned variables does not
decrease expressive power as signed variables can be emulated (cf. [9, Sec. 11.2]).

5 In order to avoid any technical issues pertaining to measurability.
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Table 1. Rules defining the weakest preexpectation transformer.

C wp �C� (g)

skip g

x := e g [x/e]

C1 ; C2 wp�C1�
(
wp�C2� (g)

)

{ C1 } [ p ] { C2 } p · wp�C1� (g) + (1 − p) · wp�C2� (g)

if ( ϕ ) { C1 } else { C2 } [ϕ] · wp�C1� (g) + [¬ϕ] · wp�C2� (g)

while ( ϕ ) { C′ } lfp h. [¬ϕ] · g + [ϕ] · wp�C′� (h)

The least element of (E, �) is 0 and the greatest element is ∞. We employ the
Iverson bracket notation to cast Boolean expressions into expectations, i.e.,

[ϕ] = λσ.
{

1 if ϕ(σ) = true,

0 if ϕ(σ) = false.

The weakest preexpectation transformer wp : pGCL → (E → E) is defined in
Table 1, where g [x/e] denotes the substitution of variable x by expression e, i.e.,

g [x/e] � λσ. g(σ [x �→ e(σ)]), where σ [x �→ e(σ)] � λy.
{

e(σ) if y = x,

σ(y) otherwise.

We call wp�C� (g) the weakest preexpectation of program C w.r.t. postexpecta-
tion g. The weakest preexpectation wp�C� (g) is itself an expectation of type E,
which maps each initial state σ to the expected value of g after running C on σ.
More formally, if μσ

C is the distribution over final states obtained by executing C
on initial state σ, then for any postexpectation g [44],

wp�C� (g) (σ) =
∑

τ∈Σ
μσ

C(τ) · g(τ).

For a gentle introduction to weakest preexpectations, see [38, Chap. 2 and 4].

7 BMC and k-Induction for Probabilistic Programs

We now instantiate latticed κ-induction and BMC (as developed in Sects. 2 to
5) to enable verification of loops written in pGCL; we discuss practical aspects
later in Sects. 7.1 to 7.3 and Sect. 8. For the next two sections, we fix a loop

Cloop = while ( ϕ ) { C } .

For simplicity, we assume that the loop body C is loop-free (every probabilistic
program can be rewritten as a single while loop with loop-free body [62]).
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Given an expectation g ∈ E and a candidate upper bound f ∈ E on
the expected value of g after executing Cloop (i.e. wp�Cloop� (g)), we will
apply latticed verification techniques to check whether f indeed upper-bounds
wp�Cloop� (g).

To this end, we denote by Φ the characteristic functional of Cloop and g, i.e.,

Φ : E → E, h �→ [¬ϕ] · g + [ϕ] · wp�C� (h) ,

whose least fixed point defines wp�Cloop� (g) (cf. Table 1). We remark that Φ is
a monotonic—and in fact even continuous—operator over the complete lattice
(E, �) (cf. Sect. 6.2). In this lattice, the meet is a pointwise minimum, i.e.,

h � h′ = h min h′ � λσ. min { h(σ), h′(σ) } .

By Definition 1, Φ and g then induce the (continuous) κ-induction operator

Ψf : E → E, h �→ Φ (h) min f.

With this setup, we obtain the following proof rule for reasoning about proba-
bilistic loops as an immediate consequence of Theorem 2:

Corollary 3 (k-Induction for pGCL). For every natural number k ∈ N,

Φ
(
Ψ

�k�
f (f)

)
� f implies wp�Cloop� (g) � f.

Analogously, refuting that f upper-bounds the expected value of g after execu-
tion of Cloop via bounded model checking is an instance of Corollary 2:

Corollary 4 (Bounded Model Checking for pGCL).

∃n ∈ N : Φn(0) �� f iff wp�Cloop� (g) �� f.

Example 2 (Geometric Loop). The pGCL program

Cgeo = while ( x = 1 ) { { x := 0 } [ 0.5 ] { c := c + 1 } }
keeps flipping a fair coin x until it flips heads, sets x to 0, and terminates.
Whenever it flips tails instead, it increments the counter c and continues. We
refer to Cgeo as the “geometric loop” because after its execution, the counter
variable c is distributed according to a geometric distribution.

What is a (preferably small) upper bound on the expected value wp�Cgeo� (c)
of c after execution of Cgeo? Using 2-induction, we can (automatically) verify that
c + 1 is indeed an upper bound: Since Φ (Ψc+1(c + 1)) � c + 1, where Φ denotes
the characteristic functional of Cgeo, Corollary 3 yields wp�Cgeo� (c) � c + 1.

However, c + 1 cannot be proven an upper bound using Park induction
as it is not inductive. Moreover, it is indeed the least upper bound, i.e., any
smaller bound is refutable using BMC (cf. Corollary 4). For example, we have
wp�Cgeo� (c) �� c + 0.99, since Φ

�11� (0) �� c + 0.99. Finally, we remark that some
correct upper bounds only become κ-inductive for transfinite ordinals κ. For
instance, the innocuous-looking bound 2 · c+1 is not k-inductive for any natural
number k, but it is (ω + 1)-inductive, since Φ

(
Ψ

�ω�
2·c+1(2 · c + 1)

) � 2 · c + 1. �
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In principle, we can semi-decide whether wp�Cloop� (g) �� f holds or whether
f is k-inductive for some k: it suffices to run Algorithms 1 and 2 in parallel.
However, for these two algorithms to actually be semi-decision procedures, we
cannot admit arbitrary expectations. Rather, we restrict ourselves to a suitable
subset Exp of expectations in E satisfying all of the following requirements:

1. Exp is closed under computing the characteristic functional Φ, i.e.,

∀h ∈ Exp : Φ (h) is computable and belongs to Exp.

2. Quantitative entailments between expectations in Exp are decidable, i.e.,

∀h, h′ ∈ Exp : it is decidable whether h � h′.

3. (For k-induction) Exp is closed under computing meets, i.e.,

∀h, h′ ∈ Exp : h min h′ is computable and belongs to Exp.

Below, we show that linear expectations meet all of the above requirements.

7.1 Linear Expectations

Recall from Fig. 2b that we assume all expressions appearing in pGCL programs
to be linear. For our fragment of syntactic expectations, we consider extended
linear expressions ẽ that (1) are defined over rationals instead of natural numbers
and (2) admit ∞ as a constant (but not as a subexpression). Formally, the set
of extended linear expressions is given by the following grammar:

ẽ :: = e | ∞ e :: = r | x | r · e | e + e | e .− e (r ∈ Q≥0)

Similarly, we admit extended linear expressions (without ∞) in linear guards ϕ.6

With these adjustments to expressions and guards in mind, the set LinExp of
linear expectations is defined by the grammar

h :: = ẽ | [ϕ] · h | h + h.

We write h = h′ if h and h′ are syntactically identical ; and h ≡ h′ if they are
semantically equivalent , i.e., if for all states σ, we have h(σ) = h′(σ).

Furthermore, the rescaling c·h of a linear expectation h by a constant c ∈ Q≥0

is syntactic sugar for rescaling suitable7 arithmetic subexpressions of h, e.g.,

1/2 · ([x = 1] · 4 + 1/3 · x + ∞) ≡ 1/2 · [x = 1] · 4 + 1/2 · 1/3 · x + ∞ ∈ LinExp.

A formal definition of the rescaling c · h is found in [8, Appx A.5].
6 We do not admit ∞ in guards for convenience. In principle, all comparisons with ∞

in guards can be removed by a simple preprocessing step.
7 We do not rescale every subexpression to account for the corner cases c · ∞ = ∞

and 0 · ∞ = 0.
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If we choose a linear expectation h as a postexpectation, then a quick inspec-
tion of Table 1 reveals that the weakest preexpectation wp�C� (h) of any loop-free
pGCL program C and h yields a linear expectation again. Hence, linear expec-
tations are closed under applying Φ— Requirement 1 above—because

∀ g, h ∈ LinExp : Φ (h) = [¬ϕ] · g
︸ ︷︷ ︸
∈ LinExp

+ [ϕ] · wp�C� (h)
︸ ︷︷ ︸

∈ LinExp
︸ ︷︷ ︸

∈ LinExp

.

7.2 Deciding Quantitative Entailments Between Linear
Expectations

To prove that linear expectations meet Requirement 2—decidability of quanti-
tative entailments—we effectively reduce the question of whether an entailment
h � h′ holds to the decidable satisfiability problem for QF LIRA—quantifier-free
mixed linear integer and real arithmetic (cf. [42]).

As a first step, we show that every linear expectation can be represented as
a sum of mutually exclusive extended arithmetic expressions—a representation
we refer to as the guarded normal form (similar to [41, Lem. 1], [9, Lem. A.2]).

Definition 2 (Guarded Normal Form (GNF)). h ∈ LinExp is in GNF if

h =
∑n

i=1
[ϕi] · ẽi,

where ẽ1, . . . , ẽn are extended linear expressions, n ∈ N is some natural number,
and ϕ1, . . . , ϕn are linear Boolean expressions that partition the set of states, i.e.,
for each σ ∈ Σ there exists exactly one i ∈ {1, . . . , n} such that ϕi(σ) = true.

Lemma 3. Every linear expectation h ∈ LinExp can effectively be transformed
into an equivalent linear expectation GNF (h) ≡ h in guarded normal form.

The number of summands |GNF (h) | in GNF (h) is, in general, exponential in the
number of summands in h. In practice, however, this exponential blow-up can
often be mitigated by pruning summands with unsatisfiable guards. Throughout
the remainder of this paper, we denote the components of GNF (h) and GNF (h′),
where h and h′ are arbitrary linear expectations, as follows:

GNF (h) =
∑n

i=1
[ϕi] · ẽi and GNF (h′) =

∑m

j=1
[ψj ] · ãj .

We now present a decision procedure for the quantitative entailment over LinExp.

Theorem 7. (Decidability of Quantitative Entailment over LinExp).
For h, h′ ∈ LinExp, it is decidable whether h � h′ holds.

Proof. Let h, h′ ∈ LinExp. By Lemma 3, we have h � h′ iff GNF (h) � GNF (h′).
Let σ be some state. By definition of the GNF, σ satisfies exactly one guard

ϕi and exactly one guard ψj . Hence, the inequality GNF (h) (σ) ≤ GNF (h′) (σ)
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does not hold iff ẽi(σ) > ãj(σ) holds for the expressions ẽi and ãj guarded by ϕi

and ψj , respectively. Based on this observation, we construct a QF LIRA formula
cex� (h, h′) that is unsatisfiable iff there is no counterexample to h � h′:

cex� (h, h′) �
∨n

i=1

∨m

j=1, ãj �=∞ (ϕi ∧ ψj ∧ encodeInfty (ẽi) > ãj) .

Here, we identify every program variable in h or h′ with an N-valued SMT
variable. Moreover, to account for comparisons with ∞, we rely on the fact that
our (extended) arithmetic expressions either evaluate to ∞ for every state or
never evaluate to ∞. To deal with the case ẽi > ∞, which is always false, we
can thus safely exclude cases in which ãj = ∞ holds. To deal with the case
∞ > ãj , we represent ∞ by some unbounded number, i.e., we introduce a fresh,
unconstrained N-valued SMT variable infty and set encodeInfty (ẽ) to infty if
ẽ = ∞; otherwise, encodeInfty (ẽ) = ẽ. Since QF LIRA is decidable (cf. [42]), we
conclude that the quantitative entailment problem is decidable. �	
Since quantitative entailments are decidable, we can already conclude that, for
linear expectations, Algorithm 2 is a semi-decision procedure.

7.3 Computing Minima of Linear Expectations

To ensure that latticed k-induction on pGCL programs (cf. Algorithm 1
and Sect. 7) is a semi-decision procedure when considering linear expectations,
we have to consider Requirement 3—the expressability and computability of
meets:

Theorem 8. LinExp is effectively closed under taking minima.

Proof. For k ∈ N, let k � {1, . . . , k}. Then, for two linear expectations h, h′, the
linear expectation GNF (h) min GNF (h′) ∈ LinExp is given by:

∑

(i,j)∈n×m

⎧
⎪⎨

⎪⎩

[ϕi ∧ ψj ] · ãj , if ẽi = ∞,

[ϕi ∧ ψj ] · ẽi, if ãi = ∞,

[ϕi ∧ ψj ∧ ẽi ≤ ãj ] · ẽi + [ϕi ∧ ψj ∧ ẽi > ãj ] · ãj otherwise,

where we exploit that, for every state, exactly one guard ϕi and exactly one
guard ψj is satisfied (cf. Lemma 3). Notice that in the last case we indeed obtain
a linear expectation since neither ẽ nor ã are equal to ∞. �	

8 Implementation

We have implemented a prototype called kipro2—k-Induction for PRObabilis-
tic PROgrams—in Python 3.7 using the SMT solver Z3 [54] and the solver-API
PySMT [25]. Our tool, its source code, and our experiments are available online.8

8 � https://github.com/moves-rwth/kipro2.

https://github.com/moves-rwth/kipro2
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kipro2 performs in parallel latticed k-induction and BMC to fully automati-
cally verify upper bounds on expected values of pGCL programs as described in
Sect. 7. In addition to reasoning about expected values, kipro2 supports veri-
fying bounds on expected runtimes of pGCL programs, which are characterized
as least fixed points à la [40]. Rather than fixing a specific runtime model, we
took inspiration from [56] and added a statement tick (n) that does not affect
the program state but consumes n ∈ N time units.

To discharge quantitative entailments and compute the meet, we use the con-
structions in Theorems 7 and 8, respectively. As an additional optimization, we
do not iteratively apply the k-induction operator Ψf directly but use an incre-
mental encoding. We briefly sketch our encoding for k-induction (Algorithm2);
the encoding for BMC is similar. In both cases, we employ uninterpreted func-
tions on top of mixed integer and real arithmetic, i.e., QF UFLIRA.

Recall Example 2, the geometric loop Cgeo, where we used k-induction to
prove wp�Cgeo� (c) � c + 1. For every k ∈ N, Φ(Ψ �k�

c+1(c + 1)) is given by

[x = 1] ·
(
0.5 · Ψ

�k�
c+1(c + 1)

︸ ︷︷ ︸
Qk

[x/0] + 0.5 · Ψ
�k�
c+1(c + 1)

︸ ︷︷ ︸
Qk

[c/c + 1]
)

+ [x �= 1] · c

︸ ︷︷ ︸
Pk

.

To obtain an incremental encoding, we introduce an uninterpreted function
Pk : N × N → R≥0 and a formula ρk(c, x) specifying that Pk(c, x) characterizes
Φ(Ψ �k�

c+1(c + 1)), i.e., for all σ ∈ Σ and r ∈ R≥0 with Φ(Ψ �k�
c+1(c + 1))(σ) < ∞,9

ρk(σ(c), σ(x)) ∧ Pk(σ(c), σ(x)) = r is satisfiable iff r = Φ
(
Ψ

�k�
c+1(c + 1)

)
(σ).

If Φ(Ψ �k�
c+1(c + 1))(σ) = ∞, our construction of ρk(x, c) ensures that the above

conjunction is satisfiable for arbitrarily large r. Analogously, we introduce an
uninterpreted function Qk : N × N → R≥0 that characterizes Ψ

�k�
c+1(c + 1).

In particular, may use all uninterpreted functions introduced for smaller
or equal values of k—not just the function Pk(c, x) it needs to characterize.
This enables an incremental encoding, i.e., ρk(c, x) can be computed on top of
ρk−1(c, x) by reusing Pk−1(c, x), Qk(c, x), and the construction in Theorem 8.

Moreover, we can reuse ρk(c, x) to avoid computing the (expensive) GNF for
deciding certain quantitative entailments (cf. Theorem 7): For example, to check
whether Φ(Ψ �k�

c+1(c + 1)) �� h′ holds, we only need to transform the right-hand
side into GNF (cf. Sect. 7.2), i.e., if GNF (h′) =

∑m
j=1 [ψj ] · ãj , then

Φ
(
Ψ

�k�
c+1(c + 1)

)
�� g iff ρk ∧

∨m

j=1, ãj �=∞ ψj ∧ Pk(c, x) > ãj is satisfiable.

9 Notice that we do not axiomatize in ρk(c, x) that Φ(Ψ
�k�
c+1(c+1)) and Pk(c, x) are the

same function because we have no access to universal quantifiers. Rather, we spec-
ify that both functions coincide for any fixed concrete values assigned to c and x.
This weaker notion is not robust against formal modifications of the parameters,
e.g., through substitution. For example, to assign the correct interpretation to
Pk(c, x) [c/c + 1], we have to construct a (second) formula ρk(c, x) [c/c + 1].
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9 Experiments

We evaluate kipro2 on two sets of benchmarks. The first set, shown in Table 2,
consists of four (infinite-state) probabilistic systems compiled from the literature;
each benchmark is evaluated on multiple variants of candidate upper bounds:

(1) brp is a pGCL variant of the bounded retransmission protocol [19,32]. The
goal is to transmit toSend many packages via an unreliable channel allowing
for at most maxFail many retransmissions per package (cf. Example 1).
The variable totalFail keeps track of the total number of failed attempts
to send a package. We verified upper bounds on the expected outcome of
totalFail (variants 1–4). In doing so, we bound the number of packages to
send by 4 (10, 20, 70) while keeping maxFail unbounded, i.e., we still verify
an infinite-state system. We notice that k > 1 is required for proving any
of the candidate bounds; for up to k = 11, kipro2 manages to prove non-
trivial bounds within a few seconds. However, unsurprisingly, the complexity
increases rapidly with larger k. While kipro2 can prove variant 3, it needs
to increase k to 23; we observe that the complexity grows rapidly both in
terms of the size of formulae and in terms of runtime with increased k.
Furthermore, variants 5–7 correspond to (increasing) incorrect candidate
bounds (totalFail + 1, totalFail + 1.5, totalFail + 3) that are refuted (or time
out) when not imposing any restriction on toSend.

(2) geo corresponds to the geometric loop from Example 2. We verify that c+1
upper-bounds the expected value of c for every initial state (variant 1); we
refute the incorrect candidates c + 0.99 and c + 0.999999999999 (variants
2–3).

(3) rabin is a variant of Rabin’s mutual exclusion algorithm [46] taken from [34].
We aim to verify that the probability of obtaining a unique winning process
is at most 2/3 for at most 2 (3, 4) participants (variants 1–3) and refute both
1/3 (variant 4) and 3/5 (variant 5) for an unbounded number of participants.

(4) unif gen implements the algorithm in [48] for generating a discrete uniform
distribution over some interval {l, . . . , l+n−1} using only fair coin flips. We
aim to verify that 1/n upper-bounds the probability of sampling a particular
element from any such interval of size at most n = 2 (3, 4, 5, 6) (variants
1–5).

Our second set of benchmarks, shown in Table 3, confirms the correctness of
(1-inductive) bounds on the expected runtime of pGCL programs synthesized by
the runtime analyzers Absynth [56] and (later) KoAT [52]; this gives a baseline
for evaluating the performance of our implementation. Moreover, it demonstrates
the flexibility of our approach as we effortlessly apply the expected runtime
calculus [40] instead of the weakest preexpectation calculus for verification.

Setup. We ran Algorithms 1 and 2 in parallel using an AMD Ryzen 5 3600X pro-
cessor with a shared memory limit of 8GB and a 15-minute timeout. For every
benchmark finishing within the time limit, kipro2 either finds the smallest k
required to prove the candidate bound by k-induction or the smallest unrolling
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depth k to refute it. If kipro2 refutes, the SMT solver provides a concrete ini-
tial state witnessing that violation. In Tables 2 and 3, column #formulae gives
the maximal number of conjuncts on the solver stack; formulae t, sat t, and
total t give the amount of time spent on (1) computing formulae, (2) satisfia-
bility checking, and (3) everything (including preprocessing), respectively. The
input consists of a program, a candidate upper bound, and a postexpectation;
in Table 3, the latter is fixed to “postruntime” 0 and thus omitted.

Table 2. Empirical results for the first benchmark set (time in seconds).

postexpectation variant result k #formulae formulae t sat t total t

b
r
p

totalFail

1 ind 5 285 0.15 0.01 0.28

2 ind 11 2812 1.77 0.12 2.03

3 ind 23 26284 17.68 28.09 45.94

4 TO – – – – –

5 ref 13 949 0.84 14.39 15.28

6 TO – – – – –

7 TO – – – – –

g
e
o

c

1 ind 2 18 0.01 0.00 0.08

2 ref 11 103 0.04 0.01 0.09

3 ref 46 1223 0.39 0.04 0.48

r
a
b
i
n

[i = 1]

1 ind 1 21 0.01 0.00 0.15

2 ind 5 1796 1.27 0.03 1.44

3 TO – – – – –

4 ref 4 458 0.31 0.03 0.40

5 ref 8 10508 8.76 2.85 11.68

u
n
i
f
g
e
n

[c = i]

1 ind 2 267 0.27 0.02 0.56

2 ind 3 1402 1.45 0.10 1.81

3 ind 3 1402 1.48 0.11 1.86

4 ind 5 40568 47.31 15.70 63.28

5 TO – – – – –

Evaluation of Benchmark Set 1. Table 2 empirically underlines that probabilistic
program verification can benefit from k-induction to the same extent as classical
software verification: kipro2 fully automatically verifies relevant properties of
infinite-state randomized algorithms and stochastic processes from the literature
that require k to be strictly larger than 1. That is, proving these properties
using (1-)inductive invariants requires either non-trivial invariant synthesis or
additional user annotations. This indicates that k-induction mitigates the need
for complicated specifications in probabilistic program verification (cf. [40]).

We observe that k-induction tends to succeed if some variable is bounded
in the candidate upper bound under consideration (cf. brp, rabin, unif gen).
However, k-induction can also succeed without any bounds (cf. geo). The time
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and formulae required for checking k-inductivity increases rapidly for larger k;
this is particularly striking for rabin and unif gen. When refuting candidate
bounds with BMC, we obtain a similar picture. Both the time and formulae
required for refutation increase if the candidate bound increases (cf. brp, geo,
rabin).

For both k-induction and BMC, we observe a direct correlation between the
complexity of the loop, i.e., the number of possible traces through the loop
from some fixed initial state after some bounded number of iterations, and the
required time and space (number of formulae). Whereas for geo and brp—which
exhibit a rather simple structure—these checks tend to be fast, this is not the
case for rabin and unif gen, which have more complex loop bodies. For such
complex loops, k-induction and BMC quickly become infeasible as k increases.

Table 3. Empirical results for (a subset of) the ERTs [56] (time in milliseconds).

runtime bound candidate result k #formulae formulae t sat t total t

2drwalk 2 · (n + 1 .− d) TO – – – – –

bayesian network 5 · n TO – – – – –

ber 2 · (n .− x) ind 1 9 7.22 0.44 88.12

C4B t303 0.5 · (x + 2) + 0.5 · (y + 2) ind 3 129 91.38 10.01 216.11

condand m + n ind 1 10 7.10 0.43 76.21

fcall 2 · (n .− x) ind 1 9 6.73 0.41 75.73

hyper 5 · (n .− x) ind 1 11 7.24 0.46 97.52

linear01 0.6 · x ind 1 11 7.19 0.49 74.38

prdwalk 1.14286 · (n + 4 .− x) ind 1 17 7.64 0.72 194.44

prspeed 2 · (m .− y) + 0.6666667 · (n .− x) ind 1 18 7.64 0.81 145.13

race 0.666667 · (t + 9 .− h) ind 1 30 9.21 0.86 695.89

rdspeed 2 · (m .− y) + 0.666667 · (n .− x) ind 1 19 7.70 0.78 143.45

rdwalk 2 · (n + 1 .− x) ind 1 12 10.22 0.75 85.03

sprdwalk 2 · (n .− x) ind 1 9 7.28 0.42 83.40

Evaluation of Benchmark Set 2. From Table 3, we observe that—in almost every
case—verification is instantaneous and requires very few formulae. The programs
we verify are equivalent to the programs provided in [56] up to interpreting minus
as monus and using N-typed (instead of Z) variables. A manual inspection reveals
that this matters for C4B t303 and rdwalk, which is the reason why the runtime
bound for C4B t303 is 3-inductive rather than 1-inductive.

There are two timeouts (2drwalk, bayesian network) due to the GNF con-
struction from Lemma 3, which exhibits a runtime exponential in the number of
possible execution branches through the loop body. We conjecture that further
preprocessing (by pruning infeasible branches upfront) can mitigate this, render-
ing 2drwalk and bayesian network tractable as well. We consider a thorough
investigation of suitable preprocessing strategies for GNF construction, which is
outside the scope of this paper, a worthwhile direction for future research.
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10 Conclusion

We presented κ-induction, a generalization of classical k-induction to arbitrary
complete lattices, and—together with a complementary bounded model check-
ing approach—obtained a fully automated technique for verifying infinite-state
probabilistic programs. Experiments showed that this technique can prove non-
trivial properties in an automated manner that using existing techniques cannot
be proven—at least not without synthesizing a stronger inductive invariant. If
a given candidate bound is k-inductive for some k, then our prototypical tool
will find that k for linear programs and linear expectations. In theory, our tool
is also applicable to non-linear programs at the expense of an undecidability
quantitative entailment problem. It is left for future work to consider (positive)
real-valued program variables for non-linear expectations.

Acknowledgements. B. L. Kaminski thanks Larry Fischer for his linguistic advice.
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Abstract. We investigate the problem of monitoring partially observ-
able systems with nondeterministic and probabilistic dynamics. In such
systems, every state may be associated with a risk, e.g., the probabil-
ity of an imminent crash. During runtime, we obtain partial information
about the system state in form of observations. The monitor uses this
information to estimate the risk of the (unobservable) current system
state. Our results are threefold. First, we show that extensions of state
estimation approaches do not scale due the combination of nondetermin-
ism and probabilities. While exploiting a geometric interpretation of the
state estimates improves the practical runtime, this cannot prevent an
exponential memory blowup. Second, we present a tractable algorithm
based on model checking conditional reachability probabilities. Third,
we provide prototypical implementations and manifest the applicability
of our algorithms to a range of benchmarks. The results highlight the
possibilities and boundaries of our novel algorithms.

1 Introduction

Runtime assurance is essential in the deployment of safety-critical (cyber-
physical) systems [12,29,45,49,50]. Monitors observe system behavior and indi-
cate when the system is at risk to violate system specifications. A critical aspect
in developing reliable monitors is their ability to handle noisy or missing data.
In cyber-physical systems, monitors observe the system state via sensors, i.e.,
sensors are an interface between the system and the monitor. A monitor has
to base its decision solely on the obtained sensor output. These sensors are not
perfect, and not every aspect of a system state can be measured.

This paper considers a model-based approach to the construction of monitors
for systems with imprecise sensors. Consider Fig. 1(b). We assume a model for
the environment together with the controller. Typically, such a model contains
both nondeterministic and probabilistic behavior, and thus describes a Markov
decision process (MDP): In particular, the sensor is a stochastic process [56] that
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translates the environment state into an observation. For example, this could be a
perception module on a plane that during landing estimates the movements of an
on-ground vehicle, as depicted in Fig. 1(a). Due to lack of precise data, the vehicle
movements itself may be most accurately described using nondeterminism.

We are interested in the associated state risk of the current system state.
The state risk may encode, e.g., the probability that the plane will crash with
the vehicle within a given number of steps, or the expected time until reaching
the other side of the runway. The challenge is that the monitor cannot directly
observe the current system state. Instead, the monitor must infer from a trace
of observations the current state risk. This cannot be done perfectly as the sys-
tem state cannot be inferred precisely. Rather, we want a sound, conservative
estimate of the system state. More concretely, for a fixed resolution of the non-
determinism, the trace risk is the weighted sum over the probability of being
in a state having observed the trace, times the risk imposed by this state. The
monitoring problem is to decide whether for any possible scheduler resolving the
nondeterminism the trace risk of a given trace exceeds a threshold.

Monitoring of systems that contain either only probabilistic or only nonde-
terministic behavior is typically based on filtering. Intuitively, the monitor then
estimates the current system states based on the model. For purely nondeter-
ministic systems (without probabilities) a set of states needs to be tracked, and
purely probabilistic systems (without nondeterminism) require tracking a dis-
tribution over states. This tracking is rather efficient. For systems that contain
both probabilistic and nondeterministic behavior, filtering is more challenging.
In particular, we show that filtering on MDPs results in an exponential memory
blowup as the monitor must track sets of distributions. We show that a reduc-
tion based on the geometric interpretation of these distributions is essential for
practical performance, but cannot avoid the worst-case exponential blowup. As a
tractable alternative to filtering, we rephrase the monitoring problem as the com-
putation of conditional reachability probabilities [9]. More precisely, we unroll
and transform the given MDP, and then model check this MDP. This alternative
approach yields a polynomial-time algorithm. Indeed, our experiments show the
feasibility of computing the risk by computing conditional probabilities. We also
show benchmarks on which filtering is a competitive option.

Contribution and Outline. This paper presents the first runtime monitoring
for systems that can be adequately abstracted by a combination of probabili-
ties and nondeterminism and where the system state is partially observable. We
describe the use case, show that typical filtering approaches in general fail to deal
with this setting, and show that a tractable alternative solution exists. In Sect. 3,
we investigate forward filtering, used to estimate the possible system states in
partially observable settings. We show that this approach is tractable for sys-
tems that have probabilistic or nondeterministic uncertainty, but not for systems
that have both. To alleviate the blowup, Sect. 4 discusses an (often) efficacious
pruning strategy and its limitations. In Sect. 5 we consider model checking as
a more tractable alternative. This result utilizes constructions from the analysis
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Fig. 1. A probabilistic world and sensor model represented by two MDPs for the sce-
nario of an airplane in landing approach with on-ground vehicle movements.

of partially observable MDPs and model checking MDPs with conditional prop-
erties. In Sect. 6 we present baseline implementations of these algorithms, on
top of the open-source model checker Storm, and evaluate their performance.
The results show that the implementation allows for monitoring of a variety of
MDPs, and reveals both strengths and weaknesses of both algorithms. We start
with a motivating example and review related work at the end of the paper.

Motivating Example. Consider a scenario where an autonomous airplane is
in its final approach, i.e., lined up with a designated runway and descending for
landing, see Fig. 1(a). On the ground, close to the runway, maintenance vehicles
may cross the runway. The airplane tracks the movements of these vehicles and
has to decide, depending on the movements of the vehicles, whether to abort
the landing. To simplify matters, assume that the airplane (P) is tracking the
movement of one vehicle (V) that is about to cross the runway. Let us further
assume that P tracks V using a perception module that can only determine the
position of the vehicle with a certain accuracy [33], i.e., for every position of V,
the perception module reports a noisy variant of the position of V. However, it
is important to know that the plane obtains a sequence of these measurements.
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Figure 1 illustrates the dynamics of the scenario. The world model describing
the movements of V and P is given in Fig. 1(c), where D2,D1, and D0 define
how close P is to the runway, and R, M , and L define the position of V. Depend-
ing on what information V perceives about P, given by the atomic proposition
{(p)rogress}, and what commands it receives {(w)ait}, it may or may not cross
the runway. The perception module receives the information about the state of
the world and reports with a certain accuracy (given as a probability) the posi-
tion of V. The (simple) model of the perception module is given in Fig. 1(d). For
example, if P is in zone D2 and V is in R then there is high chance that the per-
ception module returns that V is on the runway. The probability of incorrectly
detecting V’s position reduces significantly when P is in D0.

A monitor responsible for making the decision to land or to perform a go-
around based on the information computed by the perception module, must take
into consideration the accuracy of this returned information. For example, if the
sequence of sensor readings passed to the monitor is the sequence τ = Ro ·Ro ·Mo,
and each state is mapped to a certain risk, then how risky is it to land after
seeing τ? If, for instance, the world is with high probability in state 〈M,D0〉, a
very risky state, then the plane should go around. In the paper, we address the
question of computing the risk based on this observation sequence. We will use
this example as our running example.

2 Monitoring with Imprecise Sensors

In this section, we formalize the problem of monitoring with imprecise sensors
when both the world and sensor models are given by MDPs. We start with a
recap of MDPs, define the monitoring problem for MDPs, and finally show how
the dynamics of the system under inspection can be modeled by an MDP defined
by the composition of two MDPs of the sensors and world model of the system.

2.1 Markov Decision Processes

For a countable set X, let Distr(X) ⊂ (X → [0, 1]) define the set of all distribu-
tions over X, i.e., for d ∈ Distr(X) it holds that Σx∈Xd(x) = 1. For d ∈ Distr(X),
let the support of d be defined by supp(d) := {x | d(x) > 0}. We call a distribu-
tion d Dirac, if |supp(d)| = 1.

Definition 1 (Markov decision process). A Markov decision process is a
tuple M = 〈S, ι,Act, P,Z, obs〉, where S is a finite set of states, ι ∈ Distr(S)
is an initial distribution, Act is a finite set of actions, P : S × Act → Distr(S)
is a partial transition function, Z is a finite set of observations, and obs : S →
Distr(Z) is a observation function.

Remark 1. The observation function can also be defined as a state-action obser-
vation function obs : S × Act → Distr(Z). MDPs with state-action observation
function can be easily transformed into equivalent MDPs with a state observation
function using auxiliary states [19]. Throughout the paper we use state-action
observations to keep (sensor) models concise.
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For a state s ∈ S, we define AvAct(s) = {α | P (s, α) �= ⊥}. W.l.o.g.,
|AvAct(s)| ≥ 1. If all distributions in M are Dirac, we refer to M as a
Kripke structure (KS). If |AvAct(s)| = 1 for all s ∈ S, we refer to M as
a Markov chain (MC). When Z = S, we refer to M as fully observable and
omit Z and obs from its definition. A finite path in an MDP M is a sequence
π = s0a0s1 . . . sn ∈ S × (

Act × S
)∗ such that for every 0 ≤ i < n it holds that

P (si, ai)(si+1) > 0 and ι(s0) > 0. We denote the set of finite paths of M by
ΠM. The length of the path is given by the number of actions along the path.
The set Πn

M for some n ∈ N denotes the set of finite paths of length n. We use π↓
to denote the last state in π. We omit M whenever it is clear from the context.
A trace is a sequence of observations τ = z0 . . . zn ∈ Z+. Every path induces a
distribution over traces.

As standard, any nondeterminism is resolved by means of a scheduler.

Definition 2 (Scheduler). A scheduler for an MDP M is a function
σ : ΠM → Distr(Act) with supp(σ(π)) ⊆ AvAct(π↓) for every π ∈ ΠM.

We use Sched(M) to denote the set of schedulers. For a fixed scheduler σ ∈
Sched(M), the probability Prσ(π) of a path π (under the scheduler σ) is the
product of the transition probabilities in the induced Markov chain. For more
details we refer the reader to [8].

2.2 Formal Problem Statement

Our goal is to determine the risk that a system is exposed to having observed a
trace τ ∈ Z+. Let r : S → R≥0 map states in M to some risk in R≥0. We call
r a state-risk function for M. This function maps to the risk that is associated
with being in every state. For example, in our experiments, we flexibly define the
state risk using the (expected reward extension of the) temporal logic PCTL [8],
to define the probability of reaching a fail state. For example, we can define risk
as the probability to crash within H steps. The use of expected rewards allows
for even more flexible definitions.

Intuitively, to compute this risk of the system we need to determine the
current system state having observed τ , considering both the probabilistic and
nondeterministic context. To this end, we formalize the (conditional) probabil-
ities and risks of paths and traces. Let Prσ(π | τ) define the probability of a
path π, under a scheduler σ, having observed τ . Since a scheduler may define
many paths that induce the observation trace τ , we are interested in the weighted
risk over all paths, i.e.,

∑
π∈Π

|τ|
M

Prσ(π | τ) · r(π↓). The monitoring problem for
MDPs then conservatively over-approximates the risk of a trace by assuming
an adversarial scheduler, that is, by taking the supremum risk estimate over all
schedulers1.

1 We later see in Lemma 8 that this is indeed a maximum.
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The Monitoring Problem. Given an MDP M, a state-risk r : S → R≥0,
an observation trace τ ∈ Z+, and a threshold λ ∈ [0,∞), decide Rr(τ) > λ,
where the weighted risk function Rr : Z+ → R≥0 is defined as

Rr(τ) := sup
σ∈Sched(M)

∑

π∈Π
|τ|
M

Prσ(π | τ) · r(π↓).

The conditional probability Prσ(π | τ) can be characterized using Bayes’ rule2:

Prσ(π | τ) =
Pr(τ | π) · Prσ(π)

Prσ(τ)
.

The probability Pr(τ | π) of a trace τ for a fixed path π is obstr(π)(τ), where

obstr(s) := obs(s), obstr(παs′) := {τ · z 
→ obstr(π)(τ) · obs(s′)(z)},

when |π| = |τ |, and obstr(π)(τ) = 0 otherwise. The probability Prσ(τ) of a trace τ
is

∑
π Prσ(π) · Pr(τ | π).

We call the special variant with λ = 0 the qualitative monitoring problem.
The problems are (almost) equivalent on Kripke structures, where considering a
single path to an adequate state suffices. Details are given in [36, Appendix].

Lemma 1. For Kripke structures the monitoring and qualitative monitoring
problems are logspace interreducible.

In the next sections we present two types of algorithms for the monitoring
problem. The first algorithm is based on the widespread (forward) filtering app-
roach [44]. The second is new algorithm based on model checking conditional
probabilities. While filtering approaches are efficacious in a purely nondetermin-
istic or a purely probabilistic setting, it does not scale on models such as MDPs
that are both probabilistic and nondeterministic. In those models, model check-
ing provides a tractable alternative. Before going into details, we first connect
the problem statement more formally to our motivating example.

2.3 An MDP Defining the System Dynamics

We show how the weighted risk for a system given by a world and sensor model
can be formalized as a monitoring problem for MDPs. To this end, we define the
dynamics of the world and sensors that we use as basis for our monitor as the
following joint MDP.

For a fully observable world MDP E = 〈SE , ιE ,ActE , PE〉 and a sensor MDP
S = 〈SS , ιS , SE , PS ,Z, obs〉, where obs is state-action based, the inspected sys-
tem is defined by an MDP �〈E ,S〉� = 〈SJ , ιJ ,ActE , PJ ,Z, obsJ 〉 being the syn-
chronous composition of E and S:

2 For conciseness we assume throughout the paper that 0
0

= 0.



Runtime Monitors for Markov Decision Processes 559

Fig. 2. A run with its observations of the inspected system �〈E , S〉� where E and S are
the models given in Fig. 1.

– SJ := SE × SS ,
– ιJ is defined as ιJ (〈u, s〉) := ιE(u) · ιS(s) for each u ∈ SE and s ∈ SS ,
– PJ : SJ × ActE → Distr(SJ ) such that for all 〈u, s〉 ∈ SJ and α ∈ ActE ;

PJ (〈u, s〉, α) = du,s ∈ Distr(SJ ),

where for all u′ ∈ SE and s′ ∈ SS : du,s(〈u′, s′〉) = PE(u, α)(u′) · PS(s, u)(s′),
– obsJ : SJ → Distr(Z) with obsJ : 〈u, s〉 
→ obs(s, u).

In Fig. 2 we illustrate a run of �〈E ,S〉� for the world and sensor MDPs pre-
sented in Fig. 1. We particularly show the observations of the joint MDP given
by the distributions over the observations for each transition in the run (we omit-
ted the probabilistic transitions for simplicity). The observations of the MDP M
present the output of the sensor upon a path through M. These observations in
turn are the inputs to a monitor on top of the system. The role of the monitor
is then to compute the risk of being in a critical state based on the received
observations.

3 Forward Filtering for State Estimation

We start by showing why standard forward filtering does not scale well on MDPs.
We briefly show how filtering can be used to solve the monitoring problem for
purely nondeterministic systems (Kripke structures) or purely probabilistic sys-
tems (Markov Chains). Then, we show why for MDPs, the forward filtering needs
to manage, although finite but an exponential set of distributions. In Sect. 4 we
present a new improved variant of forward filtering for MDPs based on filtering
with vertices of the convex hull. In Sect. 5 we present a new polynomial-time
model checking-based algorithm for solving the problem.

3.1 State Estimators for Kripke Structures.

For Kripke structures, we maintain a set of possible states that agree with the
observed trace. This set of states is inductively characterized by the function
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estKS : Z+ → 2S which we define formally below. For an observation trace τ ,
estKS(τ) defines the set of states that can be reached with positive probabil-
ity. This set can be computed by a forward state traversal [31]. To illustrate
how estKS(τ) is computed for τ , consider the underlying Kripke structure of
the inspected system �〈E ,S〉� for our running example in Fig. 1 (to make this a
Kripke structure, we remove the probabilities). Consider further the observation
trace τ = Ro · Mo · Lo. Since �〈E ,S〉� has only one initial state 〈〈R,D2〉, sense〉
and Ro is observable with a positive probability in this state, estKS(Ro) =
{〈〈R,D2〉, sense〉}. As Mo is observed next, estKS(Ro · Mo) computes the states
reached from 〈〈R,D2〉, sense〉 and where Mo can be observed with a positive
probability, i.e., estKS(Ro · Mo) = {〈〈R,D1〉, sense〉, 〈〈R,M1〉, sense〉}. Finally,
the current state having observed Ro ·Mo ·Lo may be one of the states estKS(τ) =
{〈〈M,D1〉, sense〉, 〈〈L,D1〉, sense〉, 〈〈L,D0〉, sense〉, 〈〈M,D0〉, sense〉}, which
especially shows that we might be in the high-risk world state 〈M,D0〉.
Definition 3 (KS state estimator). For KS = 〈S, ι,Act, P,Z, obs〉, the state
estimation function estKS : Z+ → 2S is defined as

estKS(z) := {s ∈ S | ι(s) > 0 ∧ obs(s)(z) > 0}
estKS(τ · z) :=

{
s′ ∈ S | ∃s ∈ estKS(τ), ∃α ∈ Act, P (s, α)(s′) > 0 ∧ obs(s′)(z) > 0

}
.

For a Kripke structure KS and a given trace τ , the monitoring problem can
be solved by computing estKS(τ), using [31] and Lemma 1.

Lemma 2. For a Kripke stucture KS = 〈S, ι,Act, P,Z, obs〉, a trace τ ∈ Z+, and
a state-risk function r : S → R≥0, it holds that Rr(τ) = max

s∈estKS(τ)
r(s). Computing

Rr(τ) requires time O(|τ | · |P |) and space O(|S|).
A proof can be found in [36, Appendix]. The time and space requirements follow
directly from the inductive definition of estKS which resembles solving a forward
state traversal problem in automata [31]. In particular, the algorithm allows
updating the result after extending τ in O(|P |).

3.2 State Estimators for Markov Chains

For Markov chains, in addition to tracking the potential reachable system states,
we also need to take the transition probabilities into account. When a system
is (observation-)deterministic, we can adapt the notion of beliefs, similar to
RVSE [54], and similar to the construction of belief MDPs for partially observable
MDPs, cf. [53]:

Definition 4 (Belief). For an MDP M with a set of states S, a belief bel is
a distribution in Distr(S).

In the remainder of the paper, we will denote the function S → {0} by 0 and
the set Distr(S) ∪ {0} by Bel. A state estimator based on Bel is then defined as
follows [51,54,57]3:
3 For the deterministic case, we omit the unique action for brevity.
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Definition 5 (MC state estimator). For MC = 〈S, ι,Act, P,Z, obs〉, a trace
τ ∈ Z+ the state estimation function estMC : Z+ → Bel is defined as

estMC(z) :=

⎧
⎨

⎩

{
s 
→ ι(s)·obs(s)(z)∑

ŝ∈S

ι(ŝ)·obs(ŝ)(z)
} ∃s ∈ S. ι(s) · obs(z) > 0,

0 otherwise.

estMC(τ · z) :=

⎧
⎪⎨

⎪⎩
s′ 
→

∑

s∈S

estMC(τ)(s) · P (s, s′) · obs(s′)(z)
∑

s∈S

estMC(τ)(s) · ( ∑

ŝ∈S

P (s, ŝ) · obs(ŝ)(z)
)

⎫
⎪⎬

⎪⎭

To illustrate how estMC is computed, consider again our system in Fig. 1
and assume that the MDP has only the actions labeled with {p} (reducing it
to the Markov chain induced by the a scheduler that only performs the {p}
actions). Again we consider the observation trace τ = Ro · Mo · Lo and compute
estMC(τ). For the first observation Ro, and since there is only one initial state,
it follows that estMC(Ro) = {〈R,D2〉 
→ 1}4. From 〈R,D2〉 and having observed
Mo we can reach the states 〈R,D1〉 and 〈M,D1〉 with probabilities estMC(Ro ·
Mo) = {〈R,D1〉 
→ 1

2 · 13
1
2 · 13+ 1

2 · 34
= 4

13 , 〈M,D1〉 
→ 1
2 · 34

1
2 · 13+ 1

2 · 34
= 9

13}. Finally, from
the later two states, when observing Lo, the states 〈M,D0〉 and 〈L,D0〉 can be
reached with probabilities estMC(Ro · Mo · Lo) = {〈M,D0〉 
→ 0.0001, 〈L,D0〉 
→
0.999}. Notice that although the state 〈R,D0〉 can be reached from 〈R,D1〉, the
probability of being in this state is 0 since the probability of observing Lo in this
state is obs(〈R,D0〉)(Lo) = 0.

Lemma 3. For a Markov chain MC = 〈S, ι,Act, P,Z, obs〉, a trace τ ∈ Z+, and
a state-risk function r : S → R≥0, it holds that Rr(τ) =

∑
s∈S estMC(τ)(s) · r(s).

Computing Rr(τ) can be done in time O(|τ | · |S| · |P |) , and using |S| many
rational numbers. The size of the rationals5 may grow linearly in τ .

Proof Sketch. Since the system is deterministic, there is a unique scheduler σ,
thus Rr(τ) =

∑
π∈Π

|τ|
MC

Prσ(π | τ) ·r(π↓) by definition. We can show by induction
over the length of τ that Prσ(π | τ) = estMC(τ)(π↓) and conclude that Rr(τ) =∑

π∈Π
|τ|
M

estMC(τ)(π↓) · r(π↓) =
∑

s∈S estMC(τ)(s) · r(s) because estMC(τ)(s) = 0

for all s ∈ S for which there is no path π ∈ Π
|τ |
M with π↓ = s. The complexity

follows from the inductive definition of estMC that requires in each inductive step
to iterate over all transitions of the system and maintain a belief over the states
of the system. ��

3.3 State Estimators for Markov Decision Processes

In an MDP, we have to account for every possible resolution of nondeterminism,
which means that a belief can evolve into a set of beliefs:
4 We omit the (single) sensor state for conciseness.
5 To avoid growth, one may use fixed-precision numbers that over-approximate the

probability of being in any state—inducing a growing (but conservative) error.
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Definition 6 (MDP state estimator). For an MDP M = 〈S, ι,Act,
P,Z, obs〉, a trace τ ∈ Z+, and a state-risk function r : S → R≥0, the state
estimation function estMDP : Z+ → 2Bel is defined as

estMDP(z) = {estMC(z)},

estMDP(τ · z) =
{
bel′ ∈ Bel

∣
∣
∣ ∃bel ∈ estMDP(τ). bel′ ∈ estupMDP(bel, z)

}
,

and where bel′ ∈ estupMDP(bel, z) if there exists ςbel : S → Distr(Act) such that:

∀s′.bel′(s′) =

∑

s∈S

bel(s) · ∑

α∈Act

ςbel(s)(α) · P (s, α, s′) · obs(s′)(z)
∑

s∈S

bel(s) · ∑

α∈Act

ςbel(s)(α) · ∑

ŝ∈S

P (s, α, ŝ) · obs(ŝ)(z)
.

The definition conservatively extends both Definition 3 and Definition 5. Fur-
thermore, we remark that we do not restrict how the nondeterminism is resolved:
any distribution over actions can be chosen, and the distributions may be dif-
ferent for different traces.

Consider our system in Fig. 1. For the trace τ = Ro · Mo · Lo, estMDP(τ) is
computed as follows. First, when observing Ro, the state estimator computes
the initial belief set estMDP(Ro) = {{〈R,D2〉 
→ 1}}. From this set of beliefs,
when observing Mo, a set estMDP(Ro · Mo) can be computed since all transi-
tions ∅, {p}, {w}, {p,w} (as well as their convex combinations) are possible from
〈R,D2〉. One of these beliefs is for example {〈R,D1〉 
→ 4

13 , 〈M,D1〉 
→ 9
13} when

a scheduler takes the transition {p} (as was computed in our example for the
Markov chain case). Having additionally observed Lo a new set estMDP(RoMoLo)
of beliefs can be computed based on the beliefs in estMDP(RoMo). For exam-
ple from the belief {〈R,D1〉 
→ 4

13 , 〈M,D1〉 
→ 9
13}, two of the new beliefs

are {〈L,D0〉 
→ 0.999, 〈M,D0〉 
→ 0.0001} and {〈M,D1〉 
→ 0.0287, 〈M,D0〉 
→
0.0001, 〈L,D0〉 
→ 0.9712}. The first belief is reached by a scheduler that takes
a transition {p} at both 〈R,D1〉 and 〈M,D1〉. Notice that the belief does not
give a positive probability to the state 〈R,D0〉 because Lo cannot be observed
in this state. The second belief is reached by considering a scheduler that takes
transition {p} at 〈M,D1〉 and transition ∅ at 〈R,D1〉.
Theorem 1. For an MDP M = 〈S, ι,Act, P,Z, obs〉, a trace τ ∈
Z+, and a state-risk function r : S → R≥0, it holds that Rr(τ) =
supbel∈estMDP(τ)

∑
s∈S bel(s) · r(s).

Proof Sketch. For a given trace τ , each (history-dependent, randomizing) sched-
uler induces a belief over the states of the Markov chain induced by the scheduler.
Also, each belief in estMDP(τ) corresponds to a fixed scheduler, namely that one
used to compute the belief recursively (i.e., an arbitrary randomizing memory-
less scheduler for every time step). Once a scheduler σ and its corresponding
belief bel is fixed, or vice versa, we can show using induction over the length of
τ that

∑
π∈Π

|τ|
M

Prσ(π | τ) · r(π↓) =
∑

s∈S bel(s) · r(s). ��
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Fig. 3. Beliefs in R
n on M for τ = z0z0, z0z0z0 and z0z0z1, respectively.

4 Convex Hull-Based Forward Filtering

In this section, we show that we can use a finite representation for estMDP(τ),
but that this representation is exponentially large for some MDPs.

4.1 Properties of estMDP(τ ).

First, observe that 0 never maximizes the risk. Furthermore, 0 is closed
under updates, i.e., estupMDP(0, z) = {0}. We can thus w.l.o.g. assume that
0 �∈ estMDP(τ). Second, observe that estMDP(τ) �= ∅ if Prσ(τ) > 0.

We can interpret a belief bel ∈ Bel as point in (a bounded subset of) R(|S|−1).
We are in particular interested in convex sets of beliefs. A set B ⊆ Bel is convex if
the convex hull CH(B) of B, i.e. all convex combination of beliefs in B6, coincides
with B, i.e., CH(B) = B. For a set B ⊆ Bel, a belief bel ∈ B is an interior belief
if it can be expressed as convex combination of the beliefs in B \{bel}. All other
beliefs are (extremal) points or vertices. Let the set V(B) ⊆ B denote the set of
vertices of the convex hull of B.

Example 1. Consider Fig. 3(a). All observation are Dirac, and only states s2
and s4 have observation z1. The beliefs having observed z0z0 are distributions
over s1, s3, and can thus be depicted in a one-dimensional simplex. In particu-
lar, we have V(estMDP(z0z0)) = {{s1 
→ 1}, {s1 
→ 3/4, s3 
→ 1/4}}, as depicted in
Fig. 3(b). The six beliefs having observed z0z0z0 are distributions over s0, s1, s3,
depicted in Fig. 3(c). Five out of six beliefs are vertices. The belief having
observed z0z0z1 is in Fig. 3(d).

Remark 2. Observe that we illustrate the beliefs over only the states estKS(τ).
We therefore call |estKS(τ)| the dimension of estMDP(τ).

From the fundamental theorem of linear programming [47, Ch. 7] it immediately
follows that the trace risk Rτ is obtained at a vertex of the beliefs of estMDPτ .
We obtain the following refinement over Theorem 1:
6 That is, CH(B) = {∑

bel∈B w(bel) · bel | for all w ∈ R
B
≥0 with

∑
w(bel) = 1}.
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Theorem 2. For every τ and r: Rr(τ) = max
bel∈V(estMDP(τ))

∑
s∈S bel(s) · r(s).

Lemma 5 below clarifies that this maximum indeed exists.
We make some observations that allow us to compute the vertices more effi-

ciently: Let estupMDP(B, z) denote
⋃

bel∈B estupMDP(bel, z). From the properties of
convex sets [18, Ch. 2], we make the following observations: If B is convex,
estupMDP(B, z) is convex, as all operations in computing a new belief are convex-
set preserving7. Furthermore, if B has a finite set of vertices, then estupMDP(B, z)
has a finite set of vertices. The following lemma which is based on the observa-
tions above clarifies how to compute the vertices:

Lemma 4. For a convex set of beliefs B with a finite set of vertices and an
observation z:

V(estupMDP(B, z)) = V(estupMDP(V(B), z)).

By induction and using the facts above we obtain:

Lemma 5. Any V(estMDP(τ)) is finite.

A monitor thus only needs to track the vertices. Furthermore, estupMDP(B, z) can
be adapted to compute only vertices by limiting ςbel to S → Act.

4.2 Exponential Lower Bounds on the Relevant Vertices

We show that a monitor in general cannot avoid an exponential blow-up in the
beliefs it tracks. First observe that updating bel yields up to

∏
s |Act(s)| new

beliefs (vertex or not), a prohibitively large number. The number of vertices is
also exponential:

Lemma 6. There exists a family of MDPs Mn with 2n + 1 states such that
|V(estMDP(τ))| = 2n for every τ with |τ | > 2.

Proof Sketch. We construct Mn with n = 3, that is, M3 in Fig. 4(a). For this
MDP and τ = AAA, |V(estMDP(τ))| = 23. In particular, observe how the belief
factorizes into a belief within each component Ci = {hi, li} and notice that Mn

has components C1 to Cn. In particular, for each component, the belief being that
we are with probability mass 1/n (for n = 3, 1/3) in the ’low’ state li or the ’high’
state hi. We depict the beliefs in Fig. 4(b,c,d). Thus, for any τ with |τ | > 2 we can
compactly represent V(estMDP(τ)) as bit-strings of length n. Concretely, the belief

{h1, l2, l3 
→ 1/3, l1, h2, h3 
→ 0} maps to 100, and
{h1, l2, h3 
→ 1/3, l1, h2, l3 
→ 0} maps to 101.

These are exponentially many beliefs for bit strings of length n. ��
One might ask whether a symbolic encoding of an exponentially large set

may result in a more tractable approach to filtering. While Theorem 2 allows
7 The scaling is called a projection.



Runtime Monitors for Markov Decision Processes 565

Fig. 4. Construction for the correctness of Lemma 6.

to compute the associated risk from a set of linear constraints with standard
techniques, it is not clear whether the concise set of constraints can be efficiently
constructed and updated in every step. We leave this concern for future work.

In the remainder we investigate whether we need to track all these beliefs.
First, when the monitor is unaware of the state-risk, this is trivially unavoid-
able. More precisely, all vertices may induce the maximal weighted trace risk by
choosing an appropriate state-risk:

Lemma 7. For every τ and every bel ∈ V(estMDP(τ)) there exists an r s.t.
∑

s∈S

bel(s) · r(s) ≥ max
bel′∈V(estMDP(τ))\{bel}

∑

s∈S

bel′(s) · r(s) with max
bel∈∅

= −∞.

Proof Sketch. We construct r such that r(s) > r(s′) if bel(s) > bel(s′). ��
Second, even if the monitor is aware of the state risk r, it may not be able to

prune enough vertices to avoid exponential growth. The crux here is that while
some of the current beliefs may induce a smaller risk, an extension of the trace
may cause the belief to evolve into a belief that induces the maximal risk.

Theorem 3. There exist MDPs Mn a τ with B := V(estMDP(τ)) and a state-
risk r such that |B| = 2n and for all bel ∈ B exists τ ′ ∈ Z+ with Rr(τ · τ ′) >
supbel∈B′

∑
s bel(s) · r(s), where B′ = estupMDP(B \ {bel}, τ ′).
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It is helpful to understand this theorem as describing the outcome of a game
between monitor and environment: The statement says if the monitor decides to
drop some vertices from estMDPτ , the environment may produce an observation
trace τ ′ that will lead the monitor to underestimate the weighted risk at Rr(τ ·τ ′).

Proof Sketch. We extend the construction of Fig. 4(a) with choices to go to a
final state. The full proof sketch can be found in [36, Appendix].

4.3 Approximation by Pruning

Finally, we illustrate that we cannot simply prune small probabilities from
beliefs. This indicates that an approximative version of filtering for the mon-
itoring problem is nontrivial. Reconsider observing z0z0 in the MDP of Fig. 3,
and, for the sake of argument, let us prune the (small) entry s3 
→ 1/4 to 0. Now,
continuing with the trace z0z0z1, we would update the beliefs from before and
then conclude that this trace cannot be observed with positive probability. With
pruning, there is no upper bound on the difference between the computed Rτ

and the actual Rτ . Thus, forward filtering is, in general, not tractable on MDPs.

5 Unrolling with Model Checking

We present a tractable algorithm for the monitoring problem. Contrary to filter-
ing, this method incorporates the state risk. We briefly consider the qualitative
case. An algorithm that solves that problem iteratively guesses a successor such
that the given trace has positive probability, and reaches a state with sufficient
risk. The algorithm only stores the current and next state and a counter.

Theorem 4. The Monitoring Problem with λ = 0 is in NLOGSPACE.

This result implies the existence of a polynomial time algorithm, e.g., using a
graph-search on a graph growing in |τ |. There also is a deterministic algorithm
with space complexity O(log2(|M|+ |τ |)), which follows from applying Savitch’s
Theorem [46] , but that algorithm has exponential time complexity.

We now present a tractable algorithm for the quantitative case, where we
need to store all paths. We do this efficiently by storing an unrolled MDP with
these paths using ideas from [9,19]. In particular, on this MDP, we can effi-
ciently obtain the scheduler that optimizes the risk by model checking rather
than enumerating over all schedulers explicitly. We give the result before going
into details.

Theorem 5. The Monitoring Problem (with λ > 0) is P-complete.

The problem is P-hard, as unary-encoded step-bounded reachability is P-hard [41].
It remains to show a P-time algorithm8, which is outlined below. Roughly, the algo-
rithm constructs an MDP M′′′ from M in three conceptual steps, such that the
8 On first sight, this might be surprising as step-bounded reachability in MDPs is

PSPACE-hard and only quasi-polynomial. However, our problem gets a trace and
therefore (assuming that the trace is not compressed) can be handled in time polyno-
mial in the length of the trace.
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Fig. 5. Polynomial-time algorithm for solving Problem 1 illustrated.

maximal probability of reaching a state in M′′′ coincides with the Rr(τ). The for-
mer can be solved by linear programming in polynomial time. The downside is that
even in the best case, the memory consumption grows linearly in |τ |.

We outline the main steps of the algorithm and exemplify them below: First,
we transform M into an MDP M′ with deterministic state observations, i.e.,
with obs′ : S → Z. This construction is detailed in [19, Remark 1], and runs in
polynomial time. The new initial distribution takes into account the initial obser-
vation and the initial distribution. Importantly, for each path π and each trace τ ,
obstr(π)(τ) is preserved. From here, the idea for the algorithm is a tailored adap-
tion of the construction for conditional reachability probabilities in [9]. We ensure
that r(s) ∈ [0, 1] by scaling r and λ accordingly. Now, we construct a new MDP
M′′ = 〈S′′, ι′′,Act′′, P ′′〉 with state space S′′ := (S′×{0, . . . , |τ |−1})∪{⊥,�} and
an n-times unrolled transition relation. Furthermore, from the states 〈s, |τ |−1〉,
there is a single outgoing action that with probability r(s) leads to � and with
probability 1 − r(s) leads to ⊥. Observe that the risk is now the supremum
of conditioned reachability probabilities over paths that reach �, conditioned
by the trace τ . The MDP M′′ is only polynomially larger. Then, we construct
MDP M′′′ by copying M′′ and replacing (part of) the transition relation P ′′

by P ′′′ such that paths π with τ �∈ obstr(π) are looped back to the initial state
(resembling rejection sampling). Formally,

P ′′′(〈s, i〉, α) =

{
P ′′(〈s, i〉, α) if obs′(s) = τi,

ι otherwise.

The maximal conditional reachability probability in M′′ is the maximal reacha-
bility probability in M ′′′ [9]. Maximal reachability probabilities can be computed
by solving a linear program [43], and can thus be computed in polynomial time.

Example 2. We illustrate the construction in Fig. 5. In Fig. 5(a), we depict an
MDP M, with ι = {s0, s1 
→ 1/2}. Furthermore, let τ = z0z0 and let r(s0) = 1
and r(s1) = 2. Let obs(s0) = {z0 
→ 1} and obs(s1) = {z0 
→ 1/4, z1 
→ 3/4}.
State s1 has two possible observations, so we split s1 into s1 and s2 in MDP
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M′, each with their own observations. Any transition into s1 is now split. As
|τ | = 2, we unroll the MDP M′ into MDP M′′ to represent two steps, and
add goal and sink states. After rescaling, we obtain that r(s0) = 1/2, whereas
r(s1) = r(s2) = 2/2 = 1, and we add the appropriate outgoing transitions to
the states s1∗. In a final step, we create MDP M′′′ from M′′: we reroute all
probability mass that does not agree with the observations to the initial states.
Now, Rr(z0z0) is given by the probability to reach, in M′′′, in an unbounded
number of steps, �.

The construction also implies that maximizing over a finite set of schedulers,
namely the deterministic schedulers with a counter from 0 to |τ |, suffices. We
denote this class ΣDC(|τ |). Formally, a scheduler is in ΣDC(k) if for all π, π′:

(
π↓ = π′↓ ∧ (|π| = |π′| ∨ (|π| > k ∧ |π′| > k)

))
implies σ(π) = σ(π′).

Lemma 8. For every τ , it holds that

Rr(τ) = max
σ∈ΣDC(|τ |)

∑

π∈Π
|τ|
M

Prσ(π | τ) · r(π↓).

The crucial idea underpinning this lemma is that memoryless schedulers suffice
for the unrolling, and that the states of the unrolling can be uniquely mapped to
a state and the length of the history for every π through M. By reducing step-
bounded reachability we can also show that this set of schedulers is necessary [4].

6 Empirical Evaluation

Implementation. We provide prototype implementations for both filtering- and
model-checking-based approaches from Sect. 3, built on top of the probabilistic
model checker Storm [30]. We provide a schematic setup of our implementation
in Fig. 6. As input, we consider a symbolic description of MDPs with state-
based observation labels, based on an extended dialect of the Prism language.
We define the state risk in this MDP via a temporal property (given as a PCTL

formula), and obtain the concrete state-risk by model checking. We take a seed
that yields a trace using the simulator. For the experiments, actions are resolved
uniformly in this simulator9. The simulator iteratively feeds observations into
the monitor, running either of our two algorithms (implemented in C++). After
each observation zi, the monitor computes the risk Ri having observed z0 . . . zi.
We flexibly combine these components via a Python API10.

For filtering as in Sect. 4, we provide a sparse data structure for beliefs that is
updated using only deterministic schedulers. This is sufficient, see Lemma 4. To
further prune the set of beliefs, we implement an SMT-driven elimination [48]
9 This is not an assumption but rather our evaluation strategy.

10 Available at https://github.com/monitoring-MDPs/premise.

https://github.com/monitoring-MDPs/premise
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Fig. 6. Schematic setup for prototype mapping stream z0 . . . zk to stream R0 . . . Rk.

of interior beliefs, inside of the convex hull11. We construct the unrolling as
described in Sect. 5 and apply model checking via any sparse engines in Storm.

Reproducibility. We archived a container with sources, benchmarks, and scripts
to reproduce our experiments: https://doi.org/10.5281/zenodo.4724622.

Set-Up. For each benchmark described below, we sampled 50 random traces
using seeds 0–49 of lengths up to |τ | = 500. We are interested in the prompt-
ness, that is, the delay of time between getting an observation zi and returning
corresponding risk ri, as well as the cumulative performance obtained by sum-
ming over the promptness along the trace. We use a timeout of 1 second for
this query. We compare the forward filtering (FF) approach with and without
convex hull (CH) reduction, and the model unrolling approach (UNR) with two
model checking engines of Storm: exact policy iteration (EPI, [43]) and opti-
mistic value iteration (OVI, [28]). All experiments are run on a MacBook Pro
MV962LL/A, using a single core. The memory limit of 6GB was not violated.
We use Z3 [38] as SMT-solver [11] for the convex hull reduction.

Benchmarks. We present three benchmark families, all MDPs with a combination
of probabilities, nondeterminism and partial observability.

Airport-A is as in Sect. 1, but with a higher resolution for both ground vehicle
in the middle lane and the plane. Airport-B has a two-state sensor model with
stochastic transitions between them.

Refuel-A models robots with a depleting battery and recharging stations. The
world model consists of a robot moving around in a D×D grid with some ded-
icated charging cells, where each action costs energy. The risk is to deplete the
battery within a fixed horizon. Refuel-B is a two-state sensor variant.

Evade-I is inspired by a navigation task in a multi-agent setting in a D×D grid.
The monitored robot moves randomly, and the risk is defined as the probability
of crashing with the other robot. The other robot has an internal incentive in
the form of a cardinal direction, and nondeterministically decides to move or

11 Advanced algorithms like Quickhull [10] are not without significant adaptions appli-
cable as the set of beliefs can be degenerate (roughly, a set without full rank).

https://doi.org/10.5281/zenodo.4724622
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Table 1. Performance for promptness of online monitoring on various benchmarks.

CH Forward Filtering Unrolling

Id Name Inst |S| |P | |τ | N T
avg

T
max

B
avg

B
max

D
avg

D
max

N T
avg

T
max

|Su|
avg

|Su|
max

1 airport-A 7,50,30 20910 114143
100 50 0.01 0.01 4.5 7 4.6 7 50 0.04 0.11 524 599

500 50 0.01 0.01 1.0 1 1.0 1 50 0.01 0.01 1075 1258

2 airport-B 3,50,30 20232 106012
100 0 50 0.09 0.16 556 629

500 0 50 0.01 0.01 1460 1647

3 airport-B 7,50,30 41820 308474
100 0 50 0.14 0.33 1000 1183

500 0 11 0.02 0.02 2097 2297

4 refuel-A 12,50 45073 2431691
100 50 0.01 0.01 2.2 4 2.8 5 50 0.01 0.05 325 409

500 50 0.01 0.01 1.5 4 1.7 5 50 0.01 0.19 1071 2409

5 refuel-B 12,50 90145 9725277
100 50 0.06 0.23 4.2 8 5.6 10 50 0.04 0.17 608 732

500 50 0.01 0.01 2.9 8 3.3 10 46 0.04 0.09 2171 4688

6 evade-I 15 377101 2022295
100 50 0.01 0.02 2.6 10 3.3 4 49 0.01 0.06 332 363

500 50 0.01 0.01 2.4 5 3.4 4 45 0.08 0.90 1655 1891

7 evade-V 5,3 1001 5318
100 26 0.01 0.01 1.0 1 1.0 1 50 0.00 0.02 134 241

500 25 0.01 0.01 1.0 1 1.0 1 50 0.00 0.01 538 671

8 evade-V 6,3 2161 11817
100 1 0.01 0.01 1.0 1 1.0 1 50 0.02 0.32 319 861

500 1 0.01 0.01 1.0 1 1.0 1 49 0.01 0.02 777 1484

to uniformly randomly change its incentive. The monitor observes everything
except the incentive of the other robot. Evade-V is an alternative navigation
task: Contrary to above, the other robot does not have an internal state and
indeed navigates nondeterministically in one of the cardinal directions. We only
observe the other robot location is within the view range.

Results. We split our results in two tables. In Table 1, we give an ID for every
benchmark name and instance, along with the size of the MDP (nr. of states
|S| and transitions |P |) our algorithms operate on. We consider the promptness
after prefixes of length |τ |. In particular, for forward filtering with the convex
hull optimization, we give the number N of traces that did not time out before,
and consider the average Tavg and maximal time Tmax needed (over all sampled
traces that did not time-out before). Furthermore, we give the average, Bavg,
and maximal, Bmax, number of beliefs stored (after reduction), and the average,
Davg, and maximal, Dmax, dimension of the belief support. Likewise, for unrolling
with exact model checking, we give the number N of traces that did not time
out before, and we consider average Tavg and maximal time Tmax, as well as the
average size and maximal number of states of the unfolded MDP.

In Table 2, we consider for the benchmarks above the cumulative perfor-
mance. In particular, this table also considers an alternative implementation for
both FF and UNR. We use the IDs to identify the instance, and sum for each
prefix of length |τ | the time. For filtering, we recall the number of traces N that
did not time out, the average and maximal cumulative time along the trace,
the average cumulative number of beliefs that were considered, and the average
cumulative number of beliefs eliminated. For the case without convex hull, we
do not eliminate any vertices. For unrolling, we report average Tavg and maxi-
mal cumulative time using EPI, as well as the time required for model building,
Bld% (relative to the total time, per trace). We compare this to the average
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Table 2. Summarized performance for online monitoring

FF w/o CH FF w/ CH UNR (EPI) UNR (OVI)

Id |τ | N T
avg

T
max

B
avg

N T
avg

T
max

B
avg

E
avg

N T
avg

T
max

Bld%

avg
Bld%

max
N T

avg
T

max

1 100 0 50 0.9 1.1 493 241 50 2.9 3.6 6 56 50 0.0 0.1

500 0 50 3.7 4.3 1040 316 50 7.5 10.7 21 24 50 0.4 0.8

2 100 0 0 50 3.7 4.7 6 54 50 0.1 0.1

500 0 0 50 11.9 17.1 18 23 50 0.6 0.8

3 100 0 0 50 7.6 10.6 5 55 50 0.1 0.2

500 0 0 11 21.3 28.7 19 23 50 0.9 1.7

4 100 1 0.9 0.9 1473 50 0.7 0.8 241 138 50 0.7 1.0 35 69 50 0.0 0.1

500 1 0.9 0.9 1873 50 3.4 3.7 868 226 50 5.6 21.2 57 67 50 0.5 0.9

5 100 0 50 7.4 10.7 442 2267 50 2.5 4.4 32 57 50 0.1 0.2

500 0 50 16.5 42.2 1781 4249 46 19.5 64.2 55 70 50 1.3 2.3

6 100 13 0.7 2.9 2055 50 1.1 4.8 273 160 49 0.5 2.0 34 65 47 0.0 0.1

500 2 4.4 6.8 20524 50 5.1 11.5 1237 632 45 22.4 53.6 13 29 43 0.5 0.7

7 100 13 0.1 0.5 274 26 0.8 1.2 106 11 50 0.4 1.0 19 45 48 0.0 0.1

500 13 0.1 0.5 674 25 3.7 4.2 505 7 50 1.3 4.4 46 58 47 0.2 0.3

8 100 0 1 1.3 1.3 124 109 50 1.5 7.0 15 39 36 0.4 5.6

500 0 1 4.3 4.3 524 109 49 4.9 28.1 37 56 35 0.7 6.4

and maximal cumulative time for using OVI (notice that building times remain
approximately the same).

Discussion. The results from our prototype show that conservative (sound) pre-
dictive modeling of systems that combine probabilities, nondeterminism and
partial observability is within reach with the methods we proposed and state-
of-the-art algorithms. Both forward filtering and an unrolling-based approaches
have their merits. The practical results thus slightly diverge from the complexity
results in Sect. 3.1, due to structural properties of some benchmarks. In par-
ticular, for airport-A and refuel-A, the nondeterminism barely influences
the belief, and so there is no explosion, and consequentially the dimension of
the belief is sufficiently small that the convex hull can be efficiently computed.
Rather than the number of states, this belief dimension makes evade-V a dif-
ficult benchmark12. If many states can be reached with a particular trace, and
if along these paths there are some probabilistic states, forward filtering suffers
significantly. We see that if the benchmark allows for efficacious forward filter-
ing, it is not slowed down in the way that unrolling is slower on longer traces.
For UNR, we observe that OVI is typically the fastest, but EPI does not suffer
from the numerical worst-cases as OVI does. If an observation trace is unlikely,
the unrolled MDP constitutes a numerically challenging problem, in particular
for value-iteration based model checkers, see [27]. For FF, the convex hull com-
putation is essential for any dimension, and eliminating some vertices in every
step keeps the number of belief states manageable.

12 The max dimension =1 in evade-V is only over the traces that did not time-out.
The dimension when running in time-outs is above 5.
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7 Related Work

We are not the first to consider model-based runtime verification in the presence
of partial observability and probabilities. Runtime verification with state estima-
tion on hidden Markov models (HMM)—without nondeterminism has been stud-
ied for various types of properties [51,54,57] and has been extended to hybrid
systems [52]. The tool Prevent focusses on black-box systems by learning an
HMM from a set of traces. The HMM approximates (with only convergence-in-
the-limit guarantees) the actual system [6], and then estimates during runtime
the most likely trace rather than estimating a distribution over current states.
Extensions consider symmetry reductions on the models [7]. These techniques
do not make a conservative (sound) risk estimation. The recent framework for
runtime verification in the presence of partial observability [23] takes a more
strict black-box view and cannot provide state estimates. Finally, [26] chooses to
have partial observability to make monitoring of software systems more efficient,
and [58] monitors a noisy sensor to reduce energy consumption.

State beliefs are studied when verifying HMMs [59], where the question
whether a sequence of observations likely occurs, or which HMM is an adequate
representation of a system [37]. State beliefs are prominent in the verification of
partially observable MDPs [16,32,40], where one can observe the actions taken
(but the problem itself is to find the right scheduler). Our monitoring problem
can be phrased as a special case of verification of partially observable stochastic
games [20], but automatic techniques for those very general models are lack-
ing. Likewise, the idea of shielding (pre)computes all action choices that lead
to safe behavior [3,5,15,24,34,35]. For partially observable settings, shielding
again requires to compute partial-information schedulers [21,39], contrary to
our approach. Partial observability has also been studied in the context of diag-
nosability, studying if a fault has occurred (in the past) [14], or what actions
uncover faults [13]. We, instead assume partial observability in which we do
detect faults, but want to estimate the risk that these faults occur in the future.

The assurance framework for reinforcement learning [42] implicitly allows
for stochastic behavior, but cannot cope with partial observability or nondeter-
minism. Predictive monitoring has been combined with deep learning [17] and
Bayesian inference [22], where the key problem is that the computation of an
imminent failure is too expensive to be done exactly. More generally, learning
automata models has been motivated with runtime assurance [1,55]. Testing
approaches statistically evaluate whether traces are likely to be produced by a
given model [25]. The approach in [2] studies stochastic black-box systems with
controllable nondeterminism and iteratively learns a model for the system.

8 Conclusion

We have presented the first framework for monitoring based on a trace of obser-
vations on models that combine nondeterminism and probabilities. Future work
includes heuristics for approximate monitoring and for faster convex hull com-
putations, and to apply this work to gray-box (learned) models.
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Abstract. We revisit the symbolic verification of Markov chains with
respect to finite horizon reachability properties. The prevalent approach
iteratively computes step-bounded state reachability probabilities. By
contrast, recent advances in probabilistic inference suggest symbolically
representing all horizon-length paths through the Markov chain. We ask
whether this perspective advances the state-of-the-art in probabilistic
model checking. First, we formally describe both approaches in order
to highlight their key differences. Then, using these insights we develop
Rubicon, a tool that transpiles Prism models to the probabilistic infer-
ence tool Dice. Finally, we demonstrate better scalability compared to
probabilistic model checkers on selected benchmarks. All together, our
results suggest that probabilistic inference is a valuable addition to the
probabilistic model checking portfolio, with Rubicon as a first step
towards integrating both perspectives.

1 Introduction

Systems with probabilistic uncertainty are ubiquitous, e.g., probabilistic pro-
grams, distributed systems, fault trees, and biological models. Markov chains
replace nondeterminism in transition systems with probabilistic uncertainty, and
probabilistic model checking [4,7] provides model checking algorithms. A key
property that probabilistic model checkers answer is: What is the (precise) prob-
ability that a target state is reached (within a finite number of steps h)? Contrary
to classical qualitative model checking and approximate variants of probabilistic
model checking, precise probabilistic model checking must find the total proba-
bility of all paths from the initial state to any target state.
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(a) Motivating factory Markov chain with si = [[ ci = 0 ]], ti = [[ ci = 1 ]].

const double p1, p2, p3, q1, q2, q3;
module F1
c1 : bool init false;

[a] !c1 -> p1: (c′
1=1) +1−p1: (c′

1=0);

[a] c1 -> q1: (c′
1=0) +1−q1: (c′

1=1);
endmodule
module F2 = F1[c1=c2,p1=p2,q1=q2]
module F3 = F1[c1=c3,p1=p3,q1=q3]
label "allStrike" = c1 & c2 & c3;

(b) A Prism model of (a) with 3 factories.
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Fig. 1. Motivating example. Figure 1(c) compares the performance of Rubicon ( ),
Storm’s explicit engine ( ), Storm’s symbolic engine ( ) and Prism ( )
when invoked on a (b) with arbitrarily fixed (different) constants for pi, qi and horizon
h = 10. Times are in seconds, with a time-out of 30 min.

Nevertheless, the prevalent ideas in probabilistic model checking are gener-
alizations of qualitative model checking. Whereas qualitative model checking
tracks the states that can reach a target state (or dually, that can be reached
from an initial state), probabilistic model checking tracks the i-step reachability
probability for each state in the chain. The i+1-step reachability can then be
computed via multiplication with the transition matrix. The scalability concern
is that this matrix grows with the state space in the Markov chain. Mature model
checking tools such as Storm [36], Modest [34], and Prism [51] utilize a variety
of methods to alleviate the state space explosion. Nevertheless various natural
models cannot be analyzed by the available techniques.

In parallel, within the AI community a different approach to representing a
distribution has emerged, which on first glance can seem unintuitive. Rather than
marginalizing out the paths and tracking reachability probabilities per state, the
probabilistic AI community commonly aggregates all paths that reach the target
state. At its core, inference is then a weighted sum over all these paths [16].
This hinges on the observation that this set of paths can often be stored more
compactly, and that the probability of two paths that share the same prefix or
suffix can be efficiently computed on this concise representation. This inference
technique has been used in a variety of domains in the artificial intelligence
(AI) and verification communities [9,14,27,39], but is not part of any mature
probabilistic model checking tools.

This paper theoretically and experimentally compares and contrasts these
two approaches. In particular, we describe and motivate Rubicon, a probabilistic
model checker that leverages the successful probabilistic inference techniques. We
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begin with an example that explains the core ideas of Rubicon followed by the
paper structure and key contributions.

Motivating Example. Consider the example illustrated in Fig. 1(a). Suppose
there are n factories. Each day, the workers at each factory collectively decide
whether or not to strike. To simplify, we model each factory (i) with two states,
striking (ti) and not striking (si). Furthermore, since no two factories are identi-
cal, we take the probability to begin striking (pi) and to stop striking (qi) to be
different for each factory. Assuming that each factory transitions synchronously
and in parallel with the others, we query: “what is the probability that all the
factories are simultaneously striking within h days?”

Despite its simplicity, we observe that state-of-the-art model checkers like
Storm and Prism do not scale beyond 15 factories.1 For example, Fig. 1(b)
provides a Prism encoding for this simple model (we show the instance with
3 factories), where a Boolean variable ci is used to encode the state of each
factory. The “allStrike” label identifies the target state. Figure 1(c) shows the
run time for an increasing number of factories. While all methods eventually
time out, Rubicon scales to systems with an order of magnitude more states.

Why is This Problem Hard? To understand the issue with scalability, observe
that tools such as Storm and Prism store the transition matrix, either explicitly
or symbolically using algebraic decision diagrams (ADDs). Every distinct entry
of this transition matrix needs to be represented; in the case of ADDs using a
unique leaf node. Because each factory in our example has a different probability
of going on strike, that means each subset of factories will likely have a unique
probability of jointly going on strike. Hence, the transition matrix then will
have a number of distinct probabilities that is exponential in the number of
factories, and its representation as an ADD must blow up in size. Concretely,
for 10 factories, the size of the ADD representing the transition matrix has 1.9
million nodes. Moreover, the explicit engine fails due to the dense nature of the
underlying transition matrix. We discuss this method in Sect. 3.

How to Overcome This Limitation? This problematic combinatorial explosion
is often unnecessary. For the sake of intuition, consider the simple case where
the horizon is 1. Still, the standard transition matrix representations blow up
exponentially with the number of factories n. Yet, the probability of reaching
the “allStrike” state is easy to compute, even when n grows: it is p1 · p2 · · · pn.

Rubicon aims to compute probabilities in this compact factorized way by
representing the computation as a binary decision diagram (BDD). Figure 1(d)
gives an example of such a BDD, for three factories and a horizon of one. A key
property of this BDD, elaborated in Sect. 3, is that it can be interpreted as a
parametric Markov chain, where the weight of each edge corresponds with the
probability of a particular factory striking. Then, the probability that the goal
state is reached is given by the weighted sum of paths terminating in T : for this
instance, there is a single such path with weight p1 ·p2 ·p3. These BDDs are tree-
like Markov-chains, so model checking can be performed in time linear in the size
1 Section 6 describes the experimental apparatus and our choice of comparisons.
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of the BDD using dynamic programming. Essentially, the BDD represents the
set of paths that reach a target state—an idea common in probabilistic inference.

To construct this BDD, we propose to encode our reachability query sym-
bolically as a weighted model counting (WMC) query on a logical formula. By
compiling that formula into a BDD, we obtain a diagram where computing the
query probability can be done efficiently (in the size of the BDD). Concretely
for Fig. 1(d), the BDD represents the formula c

(1)
1 ∧ c

(1)
2 ∧ c

(1)
3 , which encodes

all paths through the chain that terminate in the goal state (all factories strike
on day 1). For this example and this horizon, this is a single path. WMC is a
well-known strategy for probabilistic inference and is currently the among the
state-of-the-art approaches for discrete graphical models [16], discrete probabilis-
tic programs [39], and probabilistic logic programs [27].

In general, the exponential growth of the number of paths might seem like
it dooms this approach: for n = 3 factories and horizon h = 1, we need to
only represent 8 paths, but for h = 2, we would need to consider 64 different
paths, and so on. However, a key insight is that, for many systems – such as
the factory example – the structural compression of BDDs allows a concise rep-
resentation of exponentially many paths, all while being parametric over path
probabilities (see Sect. 4). To see why, observe that in the above discussion, the
state of each factory is independent of the other factories: independence, and
its natural generalizations like conditional and contextual independence, are the
driving force behind many successful probabilistic inference algorithms [47]. Suc-
cinctly, the key advantage of Rubicon is that it exploits a form of structure that
has thus far been under-exploited by model checkers, which is why it scales to
more parallel factories than the existing approaches on the hard task. In Sect. 6
we consider an extension to this motivating example that adds dependencies
between factories. This dependency (or rather, the accompanying increase in
the size of the underlying MC) significantly decreases scalability for the existing
approaches but negligibly affects Rubicon.

This leads to the task: how does one go from a Prism model to a concise BDD
efficiently? To do this, Rubicon leverages a novel translation from Prism models
into a probabilistic programming language called Dice (outlined in Sect. 5).

Contribution and Structure. Inspired by the example, we contribute concep-
tual and empirical arguments for leveraging BDD-based probabilistic inference
in model checking. Concretely:

1. We demonstrate fundamental advantages in using probabilistic inference on
a natural class of models (Sect. 1 and 6).

2. We explain these advantages by showing the fundamental differences between
existing model checking approaches and probabilistic inference (Sect. 3 and 4).
To that end, Sect. 4 presents probabilistic inference based on an operational
and a logical perspective and combines these perspectives.

3. We leverage those insights to build Rubicon, a tool that transpiles Prism to
Dice, a probabilistic programming language (Sect. 5).
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Fig. 2. (a) MC toy example (b) (distinct) pMC toy example (c) ADD transition matrix

4. We demonstrate that Rubicon indeed attains an order-of-magnitude scaling
improvement on several natural problems including sampling from parametric
Markov chains and verifying network protocol stabilization (Sect. 6).

Ultimately we argue that Rubicon makes a valuable contribution to the port-
folio of probabilistic model checking backends, and brings to bear the extensive
developments on probabilistic inference to well-known model checking problems.

2 Preliminaries and Problem Statement

We state the problem formally and recap relevant concepts. See [7] for details. We
sometimes use p̄ to denote 1−p. A Markov chain (MC) is a tuple M = 〈S, ι, P, T 〉
with S a (finite) set of states, ι ∈ S the initial state, P : S → Distr(S) the
transition function, and T a set of target states T ⊆ S, where Distr(S) is the set
of distributions over a (finite) set S. We write P (s, s′) to denote P (s)(s′) and call
P a transition matrix. The successors of s are Succ(s) = {s′ | P (s, s′) > 0}. To
support MCs with billions of states, we may describe MCs symbolically, e.g., with
Prism [51] or as a probabilistic program [42,48]. For such a symbolic description
P, we denote the corresponding MC with [[P ]]. States then reflect assignments
to symbolic variables.

A path π = s0 . . . sn is a sequence of states, π ∈ S+. We use π↓ to denote
the last state sn, and the length of π above is n and is denoted |π|. Let Pathsh

denote the paths of length h. The probability of a path is the product of the
transition probabilities, and may be defined inductively by Pr(s) = 1, Pr(π ·
s) = Pr(π) · P (π↓, s). For a fixed horizon h and set of states T , let the set
[[ s→♦≤hT ]] = {π | π0 = s ∧ |π| ≤ h ∧ π↓ ∈ T ∧ ∀i < |π|. πi 
∈ T} denote paths
from s of length at most h that terminate at a state contained in T . Furthermore,
let PrM(s |= ♦≤hT ) =

∑
π∈[[ s→♦≤hT ]] Pr(π) describe the probability to reach

T within h steps. We simplify notation when s = ι and write [[♦≤hT ]] and
PrM(♦≤hT ), respectively. We omit M whenever that is clear from the context.
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Formal Problem: Given an MC M and a horizon h, compute PrM(♦≤hT ).

Example 1. For conciseness, we introduce a toy example MC M in Fig. 2(a).
For horizon h = 3, there are three paths that reach state 〈1,0〉: For example the
path 〈0, 0〉〈0, 1〉〈1, 0〉 with corresponding reachability probability 0.4 · 0.5. The
reachability probability PrM(♦≤3{〈1, 0〉}) = 0.42.

It is helpful to separate the topology and the probabilities. We do this by
means of a parametric MC (pMC) [22]. A pMC over a fixed set of parameters
p generalises MCs by allowing for a transition function that maps to Q[p], i.e.,
to polynomials over these variables [22]. A pMC and a valuation of parameters
u : p → R describe a MC by replacing p with u in the transition function P
to obtain P [u]. If P [u](s) is a distribution for every s, then we call u a well-
defined valuation. We can then think about a pMC M as a generator of a set of
MCs {M[u] | u well-defined}. Figure 2(b) shows a pMC; any valuation u with
u(p),u(q) ∈ [0, 1] is well-defined. We consider the following associated problem:

Parameter Sampling: Given a pMC M, a finite set of well-defined valu-
ations U , and a horizon h, compute PrM[u ](♦≤hT ) for each u ∈ U .

We recap binary decision diagrams (BDDs) and their generalization into
algebraic decision diagrams (ADDs, a.k.a. multi-terminal BDDs). ADDs over a
set of variables X are directed acyclic graphs whose vertices V can be partitioned
into terminal nodes Vt without successors and inner nodes Vi with two successors.
Each terminal node is labeled with a polynomial over some parameters p (or
just to constants in Q), val : Vt → Q[p], and each inner node Vi with a variable,
var : Vi → X. One node is the root node v0. Edges are described by the two
successor functions E0 : Vi → V and E1 : Vi → V . A BDD is an ADD with
exactly two terminals labeled T and F . Formally, we denote an ADD by the tuple
〈V, v0,X, var, val, E0, E1〉. ADDs describe functions f : BX → Q[p] (described by
a path in the underlying graph and the label of the corresponding terminal node).
As finite sets can be encoded with bit vectors, ADDs represent functions from
(tuples of) finite sets to polynomials.

Example 2. The transition matrix P of the MC in Fig. 2(a) maps states, encoded
by bit vectors, 〈x, y〉, 〈x′, y′〉 to the probabilities to move from state 〈x, y〉 to
〈x′, y′〉. Figure 2(c) shows the corresponding ADD.2

3 A Model Checking Perspective

We briefly analyze the de-facto standard approach to symbolic probabilistic
model checking of finite-horizon reachability probabilities. It is an adaptation of
qualitative model checking, in which we track the (backward) reachable states.
This set can be thought of as a mapping from states to a Boolean indicating
whether a target state can be reached. We generalize the mapping to a func-
tion that maps every state s to the probability that we reach T within i steps,
2 The ADD also depends on the variable order, which we assume fixed for conciseness.
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state horizon h
0 1 2 3

〈0,0〉 0 0 0.2 0.42
〈0,1〉 0 0.5 0.75 0.875
〈1,0〉 1 1 1 1
〈1,1〉 0 0.5 0.75 0.875

(a) PrM(♦≤h{〈0,1〉})

y

x

1 0.2 0.75

(b) PrM(♦≤2{〈0,1〉}) as ADD

Fig. 3. Bounded reachability and symbolic model checking for the MC M in Fig. 2(a).

denoted PrM(s |= ♦≤iT ). First, it is convenient to construct a transition relation
in which the target states have been made absorbing, i.e., we define a matrix
with A(s, s′) = P (s, s′) if s 
∈ T and A(s, s′) = [s = s′]3 otherwise. The following
Bellman equations characterize that aforementioned mapping:

Pr
M

(
s |= ♦≤0T

)
= [s ∈ T ],

Pr
M

(
s |= ♦≤iT

)
=

∑

s′∈Succ(s)

A(s, s′) · Pr
M

(s′ |= ♦≤i−1T ) with i > 0.

The main aspect model checkers take from these equations is that to compute
the h-step reachability from state s, one only needs to combine the h−1-step
reachability from any state s′ and the transition probabilities P (s, s′). We define
a vector T with T (s) = [s ∈ T ]. The algorithm then iteratively computes and
stores the i step reachability for i = 0 to i = h, e.g. by computing A3 · T
using A · (A · (A ·T )). This reasoning is thus inherently backwards and implicitly
marginalizing out paths. In particular, rather than storing the i-step paths that
lead to the target, one only stores a vector x = Ai ·T that stores for every state
s the sum over all i-long paths from s.

Explicit representations of matrix A and vector x require memory at least in
the order |S|.4 To overcome this limitation, symbolic probabilistic model checking
stores both A and Ai · T as an ADD by considering the matrix as a function
from a tuple 〈s, s′〉 to A(s, s′), and x as a function from s to x(s) [2].

Example 3. Reconsider the MC in Fig. 2(a). The h-bounded reachability proba-
bility PrM(♦≤h{〈1, 0〉}) can be computed as reflected in Fig. 3(a). The ADD for
P is shown in Fig. 2(c). The ADD for x when h = 2 is shown in Fig. 3(b).

The performance of symbolic probabilistic model checking is directly gov-
erned by the sizes of these two ADDs. The size of an ADD is bounded from
below by the number of leafs. In qualitative model checking, both ADDs are
in fact BDDs, with two leafs. However, for the ADD representing A, this lower
bound is given by the number of different probabilities in the transition matrix.
In the running example, we have seen that a small program P may have an
underlying MC [[P ]] with an exponential state space S and equally many dif-
ferent transition probabilities. Symbolic probabilistic model checking also scales
3 Where [x]=1 if x holds and 0 otherwise.
4 Excluding e.g., partial exploration or sampling which typically are not exact.
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Fig. 4. The computation tree for M and horizon 3 and its compression. We label states
as s=〈0,0〉, t=〈0,1〉, u=〈1,0〉, v=〈1,1〉. Probabilities are omitted for conciseness.

badly on some models where A has a concise encoding but x has too many
different entries.5 Therefore, model checkers may store x partially explicit [49].

The insights above are not new. Symbolic probabilistic model checking has
advanced [46] to create small representations of both A and x. In competitions,
Storm often applies a bisimulation-to-explicit method that extracts an explicit
representation of the bisimulation quotient [26,36]. Finally, game-based abstrac-
tion [32,44] can be seen as a predicate abstraction technique on the ADD level.
However, these methods do not change the computation of the finite horizon
reachability probabilities and thus do not overcome the inherent weaknesses of
the iterative approach in combination with an ADD-based representation.

4 A Probabilistic Inference Perspective

We present four key insights into probabilistic inference. (1) Sect. 4.1 shows
how probabilistic inference takes the classical definition as summing over the
set of paths, and turns this definition into an algorithm. In particular, these
paths may be stored in a computation tree. (2) Sect. 4.2 gives the traditional
reduction from probabilistic inference to the classical weighted model counting
(WMC) problem [16,57]. (3) Sect. 4.3 connects this reduction to point (1) by
showing that a BDD that represents this WMC is bisimilar to the computation
tree assuming that the out-degree of every state in the MC is two. (4) Sect. 4.4
describes and compares the computational benefits of the BDD representation.
In particular, we clarify that enforcing an out-degree of two is a key ingredient
to overcoming one of the weaknesses of symbolic probabilistic model checking:
the number of different probabilities in the underlying MC.

4.1 Operational Perspective

The following perspective frames (an aspect of) probabilistic inference as a model
transformation. By definition, the set of all paths – each annotated with the
transition probabilities – suffices to extract the reachability probability. These
sets of paths may be represented in the computation tree (which is itself an MC).

5 For an interesting example of this, see the “Queue” example in Sect. 6.
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Example 4. We continue from Example 1. We put all paths of length three in
a computation tree in Fig. 4(a) (cf. the caption for state identifiers). The three
paths that reach the target are highlighted in red. The MC is highly redundant.
We may compress to the MC in Fig. 4(b).

Definition 1. For MC M and horizon h, the computation tree (CT)
CT(M, h) = 〈Pathsh, ι, P ′, T ′〉 is an MC with states corresponding to paths in M,
i.e., PathsM

h , initial state ι, target states T ′ = [[♦≤hT ]], and transition relation

P ′(π, π′) =

{
P (π↓, s) if π↓ /∈ T ∧ π′ = π.s,

[π↓ ∈ T ∧ π′ = π] otherwise.
(1)

The CT contains (up to renaming) the same paths to the target as the original
MC. Notice that after h transitions, all paths are in a sink state, and thus we can
drop the step bound from the property and consider either finite or indefinite
horizons. The latter considers all paths that eventually reach the target. We
denote the probability mass of these paths with PrM(s |= ♦T ) and refer to [7]
for formal details.6 Then, we may compute bounded reachability probabilities in
the original MC by analysing unbounded reachability in the CT:

PrM(♦≤hT ) = PrCT(M,h)(♦≤hT ′) = PrCT(M,h)(♦T ′).

The nodes in the CT have a natural topological ordering. The unbounded reach-
ability probability is then computed (efficiently in CT’s size) using dynamic pro-
gramming (i.e., topological value iteration) on the Bellman equation for s 
∈ T :

PrM(s |= ♦T ) =
∑

s′∈Succ(s) P (s, s′) · PrM(s′ |= ♦T ).

For pMCs, the right-hand side naturally is a factorised form of the solution
function f that maps parameter values to the induced reachability probability, i.e.
f(u) = PrM[u](♦≤hT ) [22,24,33]. For bounded reachability (or acyclic pMCs),
this function amounts to a sum over all paths with every path reflected by a term
of a polynomial, i.e., the sum is a polynomial. In sum-of-terms representation,
the polynomial can be exponential in the number of parameters [5].

For computational efficiency, we need a smaller representation of the CT. As
we only consider reachability of T , we may simplify [43] the notion of (weak)
bisimulation [6] (in the formulation of [40]) to the following definition.

Definition 2. For M with states S, a relation R ⊆ S × S is a (weak) bisim-
ulation (with respect to T ) if sRs′ implies PrM(s |= ♦T ) = PrM(s′ |= ♦T ).
Two states s, s′ are (weakly) bisimilar (with respect to T ) if PrM(s |= ♦T ) =
PrM(s′ |= ♦T )

Two MCs M,M′ are bisimilar, denoted M ∼ M′ if the initial states are bisimilar
in the disjoint union of the MCs. It holds by definition that if M ∼ M′, then
PrM(♦T ) = PrM′(♦T ′). The notion of bisimulation can be lifted to pMCs [33].

6 Alternatively, on acyclic models, a large step bound h > |S| suffices.
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Idea 1: Given a symbolic description P of a MC [[P ]], efficiently construct
a concise MC M that is bisimilar to CT([[P ]], h).

Indeed, the (compressed) CT in Fig. 4(b) and Fig. 4(a) are bisimilar. We remark
that we do not necessarily compute the bisimulation quotient of CT([[P ]], h).

4.2 Logical Perspective

The previous section defined weakly bisimilar chains and showed computational
advantages, but did not present an algorithm. In this section we frame the finite
horizon reachability probability as a logical query known as weighted model count-
ing (WMC). In the next section we will show how this logical perspective yields
an algorithm for constructing bisimilar MCs.

Weighted model counting is well-known as an effective reduction for prob-
abilistic inference [16,57]. Let ϕ be a logical sentence over variables C. The
weight function WC : C → R≥0 assigns a weight to each logical variable. A
total variable assignment η : C → {0, 1} by definition has weight weight(η) =∏

c∈C WC(c)η(c) + (1 − WC(c)) · (1 − η(c)). Then the weighted model count for
ϕ given W is WMC(ϕ,WC) =

∑
η|=ϕ weight(η). Formally, we desire to compute

a reachability query using a WMC query in the following sense:

Idea 2: Given an MC M, efficiently construct a predicate ϕC
M,h and a

weight-function WC such that PrM(♦≤hT ) = WMC(ϕC
M,h,WC).

Consider initially the simplified case when the MC M is binary : every state has
at most two successors. In this case producing (ϕC

M,h,WC) is straightforward:

Example 5. Consider the MC in Fig. 2(a), and note that it is binary. We intro-
duce logical variables called state/step coins C = {cs,i | s ∈ S, i < h} for every
state and step. Assignments to these coins denote choices of transitions at par-
ticular times: if the chain is in state s at step i, then it takes the transition to
the lexicographically first successor of s if cs,i is true and otherwise takes the
transition to the lexicographically second successor. To construct the predicate
ϕC

M,3, we will need to write a logical sentence on coins whose models encode
accepting paths (red paths) in the CT in Fig. 4(a).

We start in state s = 〈0, 0〉 (using state labels from the caption of Fig. 4). We
order states as s = 〈0, 0〉 < t = 〈0, 1〉 < u = 〈1, 0〉 < v = 〈1, 1〉. Then, cs,0 is true
if the chain transitions into state s at time 0 and false if it transitions to state
t at time 0. So, one path from s to the target node 〈1, 0〉 is given by the logical
sentence (cs,0 ∧ ¬cs,1 ∧ ct,2). The full predicate ϕC

M,3 is therefore:

ϕC
M,3 = (cs,0 ∧ ¬cs,1 ∧ ct,2) ∨ (¬cs,0 ∧ ct,1) ∨ (¬cs,0 ∧ ¬ct,1 ∧ cv,2).
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Each model of this sentence is a single path to the target. This predicate ϕC
M,h

can clearly be constructed by considering all possible paths through the chain,
but later on we will show how to build it more efficiently.

Finally, we fix WC : The weight for each coin is directly given by the transition
probability to the lexicographically first successor: for 0 ≤ i < h, WC(cs,i) = 0.6
and WC(ct,i) = WC(cv,i) = 0.5. The WMC is indeed 0.42, reflecting Example 1.

When the MC is not binary, it suffices to limit the out-degree of an MC to be
at most two by adding auxiliary states, hence binarizing all transitions, cf. [38].

4.3 Connecting the Operational and the Logical Perspective

Now that we have reduced bounded reachability to weighted model counting,
we reach a natural question: how do we perform WMC?7 Various approaches
to performing WMC have been explored; a prominent approach is to compile
the logical function into a binary decision diagram (BDD), which supports fast
weighted model counting [21]. In this paper, we investigate the use of a BDD-
driven approach for two reasons: (i) BDDs admit straightforward support for
parametric models. (ii) BDDs provide a direct connection between the logical and
operational perspectives. To start, observe that the graph of the BDD, together
with the weights, can be interpreted as an MC:

Definition 3. Let ϕX be a propositional formula over variables X and <X an
ordering on X. Let BDD(ϕX , <X) = 〈V, v0,X, var, val, E0, E1〉 be the correspond-
ing BDD, and let W be a weight function on X with 0 ≤ W (x) ≤ 1. We define the
MC BDDMC(ϕX , <X ,W ) = 〈S, ι, P, T 〉 with S = V , ι = v0, P (s) = {E0(s) 
→
W (var(s)), E1(s) 
→ 1 − W (var(s))} and T = {v ∈ V | val(v) = 1}.
These BDDs are intimately related to the computation trees discussed before. For
a binary MC M, the tree CT(M, h) is binary and can be considered as a (not
necessarily reduced) BDD. More formally, let us construct BDDMC(ϕC

M,h, <C ,).
We fix a total order on states. Then we fix state/step coins C = {cs,i | s ∈ S, i <
h} and the weights as in Example 5. Finally, let <C be an order on C such that
i < j implies cs,i<Ccs,j . Then:

CT(M, h) ∼ BDDMC(ϕC
M,h, <C ,W ). (2)

In the spirit of Idea 1, we thus aim to construct BDDMC(ϕC
M,h, <C ,W ), a repre-

sentation as outlined in Idea 2, efficiently. Indeed, the BDD (as MC) in Fig. 4(c)
is bisimilar to the MC in Fig. 4(b).

Idea 3: Represent a bisimilar version of the computation tree using a BDD.

7 In this paper, we concentrate on reductions to exact WMC, leaving approximate
approaches for future work [14].
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Fig. 5. Two computation trees for the motivating example in Sect. 1.

4.4 The Algorithmic Benefits of BDD Construction

Thus far we have described how to construct a binarized MC bisimilar to the
CT. Here, we argue that this construction has algorithmic benefits by filling in
two details. First, the binarized representation is an important ingredient for
compact BDDs. Second, we show how to choose a variable ordering that ensures
that the BDDs grow linearly in the horizon. In sum,

Idea 4: WMC encodings of binarized Markov Chains may increase compres-
sion of computation trees.

To see the benefits of binarized transitions, we return to the factory exam-
ple in Sect. 1. Figure 5(a) gives a bisimilar computation tree for the 3-factory
h = 1 example. However, in this tree, the states are unfactorized : each node in
the tree is a joint configuration of factories. This tree has 8 transitions (one for
each possible joint state transition) with 8 distinct probabilities. On the other
hand, the bisimilar computation tree in Fig. 1(d) has binarized transitions: each
node corresponds to a single factory’s state at a particular time-step, and each
transition describes an update to only a single factory. This binarization enables
the exploitation of new structure: in this case, the independence of the facto-
ries leads to smaller BDDs, that is otherwise lost when considering only joint
configurations of factories.

Recall that the size of the ADD representation of the transition function is
bounded from below by the number of distinct probabilities in the underlying
MC: in this case, this is visualized by the number of distinct outgoing edge
probabilities from all nodes in the unfactorized computation tree. Thus, a good
binarization can have a drastically positive effect on performance. For the run-
ning example, rather than 2n different transition probabilities (with n factories),
the system now has only 4 · n distinct transition probabilities!
Causal Orderings. Next, we explore some of the engineering choices Rubicon
makes to exploit the sequential structure in a MC when constructing the BDD for
a WMC query. First, note that the transition matrix P (s, s′) implicitly encodes
a distribution over state transition functions, S → S. To encode P as a BDD,
we must encode each transition as a logical variable, similar to the situation in
Sect. 4.2. In the case of binary transitions this is again easy. In the case of non-
binary transitions, we again introduce additional logical variables [16,27,39,57].
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This logical function has the following form:

fP : {0, 1}C → (S → S). (3)

Whereas the computation tree follows a fixed (temporal) order of states,
BDDs can represent the same function (and the same weighted model count)
using an arbitrary order. Note that the BDD’s size and structure drastically
depends both on the construction of the propositional formula and the order of
the variables in that encoding. We can bound the size of the BDD by enforcing
a variable order based on the temporal structure of the original MC. Specifically,
given h coin collections C = C×. . .×C, one can generate a function f describing
the h-length paths via repeated applications of fP :

f : {0, 1}C → Pathsh f(C1, . . . , Ch) =
(

fP (Ch) ◦ . . . ◦ fP (C1)
)

(ι) (4)

Let ψ denote an indicator for the reachability property as a function over paths,
ψ : Pathsh → {0, 1} with ψ(π) = [π ∈ [[♦≤hT ]]]. We call predicates formed
by composition with fP , i.e., ϕ = ψ ◦ fP , causal encodings and orderings on
ci,t ∈ C that are lexicographically sorted in time, t1 < t2 =⇒ ci,t1 < cj,t2 ,
causal orderings. Importantly, causally ordered / encoded BDDs grow linearly in
horizon h, [61, Corollary 1]. More precisely, let ϕC

M,h be causally encoded where
|C| = h ·m. The causally ordered BDD for ϕC

M,h has at most h · |S ×Sψ| ·m ·2m

nodes, where |Sψ| = 2 for reachability properties.8 However, while the worst-case
growth is linear in the horizon, constructing that BDD may induce a super-linear
cost in the size, e.g., function composition using BDDs is super-linear!

Figure 5(b) shows the motivating factory example with 2 factories and h = 2.
The variables are causally ordered: the factories in time step 1 occur before the
factories in time step 2. For n factories, a fixed number f(n) of nodes are added to
the BDD upon each iteration, guaranteeing growth on the order O(f(n)·h). Note
the factorization that occurs: the BDD has node sharing (node c

(2)
2 is reused)

that yields additional computational benefits.

Summary and Remaining Steps. The operational view highlights that we want to
compute a transformation of the original input MC M. The logical view presents
an approach to do so efficiently: By computing a BDD that stores a predicate
describing all paths that reach the target, and interpreting and evaluating the
(graph of the) BDD as an MC. In the following section, we discuss the two steps
that we follow to create the BDD: (i) From P generate P ′ such that CT([[P ]], h) ∼
[[P ′ ]]. (ii) From P ′ generate M such that M = [[P ′ ]].

5 RUBICON

We present Rubicon which follows the two steps outlined above. For exposition,
we first describe a translation of monolithic Prism programs to Dice programs
8 Generally, it is the smallest number of states required for a DFA to recognize ψ.
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module main
x : [0.. 1] init 0;
y : [0.. 2] init 1;
[] x=0 & y<2 -> 0.5 :x’=1 + 0.5 :y’=y+1;
[] y=2 -> 1:y’=y-1;
[] x=1 & y!=2 -> 1:x’=y & y’=x;

endmodule
property: P=? [F<=2 (x=0 & y=2)]

(a) Prism program with reachability query

〈0, 0〉 〈0, 1〉 〈0, 2〉

〈1, 0〉 〈1, 1〉 〈1, 2〉

1/2

1/2

1/2

1/2

1

1

1

1

(b) Underlying MC

let s = init() in // init state
let T = hit(s) in // init target
let (s, T) = if !T

then let s’ = step(s) in (s’, hit(s’))
else (s, T) in

let (s, T) = if !T then
then let s’ = step(s) in (s’, hit(s’))
else (s, T) in

T

(c) Main Dice program for h=2

fun init() { (0,1) }
fun hit((x,y)) { x ==0 && y == 2 }
fun step((x,y)) {
if x==0 && y<2 then

if flip 0.5 then (1,y) else (x,y+1)
else if y==2 then (x,y-1)
else if x==1 && y!=1 then (y,x)
else (x,y)

}

(d) Dice auxiliary functions

Fig. 6. From Prism to Dice using Rubicon.

and then extend this translation to admit modular programs. Technical steps
and extensions are deferred to [38, Appendix].

Dice Preliminaries. We give a brief description of Dice, a probabilistic pro-
gramming language (PPL) introduced in [39]. A PPL is a programming language
augmented with a primitive notion of random choice: for instance, in Dice, a
Bernoulli random variable is introduced by the syntax flip 0.5. The syntax
of Dice is similar to the programming language OCaml: local variables are intro-
duced by the syntax let x = e1 in e2, where e1 and e2 are expressions, i.e.,
sub-programs. Dice supports procedures, bounded integers, bounded loops, and
standard control flow via if-statements.

One goal of a PPL is to perform probabilistic inference: compute the prob-
ability that the program returns a particular value. Inference on the tiny Dice
program let x = flip 0.1 in x would yield that true is returned with proba-
bility 0.1. The Dice compiler performs probabilistic inference via weighted model
counting and BDD compilation. In doing so, it accomplishes the non-trivial tasks
of: (i) choosing a logical encoding for probabilistic programs (ii) establishing
good variable orderings (iii) efficiently manipulating and constructing BDDs (iv)
performing WMC . For details, we refer the reader to [39].

Rubicon uses Dice to effectively construct a BDD and perform WMC on a
Dice program that reflects a description of some computation tree. This imple-
mentation exploits the structure that was described in Sect. 4.4: in particular, the
BDD generated in Fig. 5(b) is exactly the BDD that will be generated by Dice
from the output of Rubicon. The variable ordering used by Dice is given by
the order in which program variables are introduced, and Rubicon’s translation
was designed with this variable ordering in mind.

Transpiling Prism to Dice. We present the core translation routine imple-
mented in Rubicon. We note that the ultimate performance of Rubicon is
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heavily dependent on the quality of this translation. We evaluate the perfor-
mance in the next section.

The Prism specification language consists of one or more reactive modules
(or partially synchronized state machines) that may interact with each other. Our
example in Fig. 1(b) illustrates fully synchronized state machines. While Prism
programs containing multiple modules can be flattened into a single monolithic
program, this yields an exponential blow-up: If one flattens the n modules in
Fig. 1(b) to a single module, the resulting program has 2n updates per command.
This motivates our direct translation of PRISM programs containing multiple
modules.

Monolithic Prism Programs. We explain most ideas on Prism programs that
consist of a single “monolithic” module before we address the modular translation
at the end of the subsection. A module has a set of bounded variables, and the
valuations of these variables span the state space of the underlying MC. Its
transitions are described by guarded commands of the form:

[act] guard → p1 : update1 + . . . . . . + pn : updaten

The action name act is only relevant in the modular case and can be ignored for
now. The guard is a Boolean expression over the module’s variables. If the guard
evaluates to true for some state (a valuation), then the module evolves into one
of the n successor states by updating its variables. An update is chosen according
to the probability distribution given by the expressions p1, . . . , pn. In every state
enabling the guard, the evaluation of p1, . . . , pn must sum up to one. A set of
guards overlap if they all evaluate to true on a given state. The semantics of
overlapping guards in the monolithic setting is to first uniformly select an active
guard and then apply the corresponding stochastic transition. Finally, a self-loop
is implicitly added to states without an enabled guard.

Example 6. We present our translation primarily through example. In Fig. 6(a),
we give a Prism program for a MC. The program contains two variables x and
y, where x is either zero or one, and y between zero and two. There are thus 6
different states. We denote states as tuples with the x- and y-value. We depict
the MC in Fig. 6(b). From state 〈0, 0〉, (only) the first guard is enabled and thus
there are two transitions, each with probability a half: one in which x becomes
one and one in which y is increased by one. Finally, there is no guard enabled in
state 〈1, 1〉, resulting in an implicit self-loop.

Translation. All Dice programs consist of two parts: a main routine, which is
run by default when the program starts, and function declarations that declare
auxiliary functions. We first define the auxiliary functions. For simplicity let us
temporarily assume that no guards overlap and that probabilities are constants,
i.e., not state-dependent.

The main idea in the translation is to construct a Dice function step that,
given the current state, outputs the next state. Because a monolithic Prism
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module main
x : [0.. 2] init 1;
y : [0.. 2] init 1;
[] x>1 -> 1:x’=y&y’=x;
[] y<2 -> 1:x’=min(x+1,2);
endmodule

(a)

fun step((x,y)) {
let aEn =(x>1) in
let bEn =(y<2) in
let act = selectFrom(aEn, bEn) in
if act==1 then (y,x)
else if act==2 then (min(x+1,2),y)
else (x,y)} ...

(b)

Fig. 7. Prism program with overlapping guards and its translation (conceptually).

module m1
x : [0..1] init 0;
[a] x=1 -> 1:x’=1-y;
[b] x=0 -> 1:x’=0;
endmodule
module m2
y : [0..1] init 0;
[b] y=1 -> 0.5:y’=0 +0.5:y’=1;
[c] true -> 1:x’=1-x;
endmodule

(a)

fun step((x,y)) {
let aEn =(x==1) in
let bEn =(x=0 &&y=1) in
let cEn =true in
let act =selectFrom(aEn, bEn, cEn) in
if act==1 then (1-y, y)
else if act==2 then (0, flip 0.5)
else if act==3 then (1-x, y)
else (x, y)

}

(b)

Fig. 8. Modular Prism and resulting Dice step function.

program is almost a sequential program, in its most basic version, the step func-
tion is straightforward to construct using built-in Dice language primitives: we
simply build a large if-else block corresponding to each command. This block
iteratively considers each command’s guard until it finds one that is satisfied.
To perform the corresponding update we flip a coin – based on the probabilities
corresponding to the updates – to determine which update to perform. If no
command is enabled, we return the same state in accordance with the implicit
self-loop. Figure 6(d) shows the program blocks for the Prism program from
Fig. 6(a) with target state [[x = 0, y = 2 ]]. There are two other important auxil-
iary functions. The init function simply returns the initial state by translating
the initialization statements from Prism, and the hit function checks whether
the current state is a target state that is obtained from the property.

Now we outline the main routine, given for this example in Fig. 6(c). This
function first initializes the state. Then, it calls step 2 times, checking on each
iteration using hit if the target state is reached. Finally, we return whether we
have been in a target state. The probability to return true corresponds to the
reachability probability on the underlying MC specified by the Prism program.
Overlapping Guards. Prism allows multiple commands to be enabled in the
same state, with semantics to uniformly at random choose one of the enabled
commands to evaluate. Dice has no primitive notion of this construct.9 We
illustrate the translation in Fig. 7(a) and Fig. 7(b). It determines which guards
aEn, bEn, cEn are enabled. Then, we randomly select one of the commands which
are enabled, i.e., we uniformly at random select a true bit from a given tuple

9 One cannot simply condition on selecting an enabled guard as this redistributes
probability mass over all paths and not only over paths with the same prefix.
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of bits. We store the index of that bit and use it to execute the corresponding
command.
Modular Prism Programs. For modular Prism programs, the action names at
the front of Prism commands are important. In each module, there is a set of
action names available. An action is enabled if each module that contains this
action name has (at least) one command with this action whose guard is satisfied.
Commands with an empty action are assumed to have a globally unique action
name, so in that case the action is enabled iff the guard is enabled. Intuitively,
once an action is selected, we randomly select a command per module in all mod-
ules containing this action name. Our approach resembles that for overlapping
guards described above. See Fig. 8 for an intuitive example. To automate this,
the updates require more care, cf. [38] for details.
Implementation. Rubicon is implemented on top of Storm’s Python API and
translates Prism to Dice fully automatically. Rubicon supports all MCs in the
Prism benchmark suite and a large set of benchmarks from the Prism website
and the QVBS [35], with the note that we require a single initial state and ignore
reward declarations. Furthermore, we currently do not support the hide/restrict
process-algebraic compositions and some integer operations.

6 Empirical Comparisons

We compare and contrast the performance of Storm against Rubicon to empir-
ically demonstrate the following strengths and weaknesses:10

Explicit Model Checking (Storm) represents the MC explicitly in a sparse
matrix format. The approach suffers from the state space explosion, but has
been engineered to scale to models with many states. Besides the state space,
the sparseness of the transition matrix is essential for performance.

Symbolic Model Checking (Storm) represents the transition matrix and
the reachability probability as an ADD. This method is strongest when the
transition matrix and state vector have structure that enables a small ADD
representation, like symmetry and sparsity.

Rubicon represents the set of paths through the MC as a (logical) BDD. This
method excels when the state space has structure that enables a compact
BDD representation, such as conditional independence, and hence scales well
on examples with many (asymmetric) parallel processes or queries that admit
a compact representation.

The sources, benchmarks and binaries are archived.11
There is no clear-cut model checking technique that is superior to others (see

QCOMP [12]). We demonstrate that, while Rubicon is not competitive on some

10 All experiments were conducted with Storm version 1.6.0 on the same server with
512 GB of RAM, using a single thread of execution. Time was reported using the
built-in Unix time utility; the total wall-clock time is reported.

11 http://doi.org/10.5281/zenodo.4726264 and http://github.com/sjunges/rubicon.

http://doi.org/10.5281/zenodo.4726264
http://github.com/sjunges/rubicon
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Fig. 9. Scaling plots comparing Rubicon ( ), Storm’s symbolic engine ( ), and
Storm’s explicit engine ( ). An “(R)” in the caption denotes random parameters.

commonly used benchmarks [52], it improves a modern model checking portfolio
approach on a significant set of benchmarks. Below we provide several natural
models on which Rubicon is superior to one or both competing methods. We
also evaluated Rubicon on standard benchmarks, highlighting that Rubicon
is applicable to models from the literature. We see that Rubicon is effective on
Herman (elaborated below), has mixed results on BRP [38, Appendix], and is
currently not competitive on some other standard benchmarks (NAND, EGL,
LeaderSync). While not exhaustive, our selected benchmarks highlight specific
strengths and weaknesses of Rubicon. Finally, a particular benefit of Rubicon
is fast sampling of parametric chains, which we demonstrate on Herman and
our factory example.

Scaling Experiments. In this section, we describe several scaling experiments
(Fig. 9), each designed to highlight a specific strength or weakness.

Weather Factories. First, Fig. 9(a) describes a generalization of the motivating
example from Sect. 1. In this model, the probability that each factory is on strike
is dependent on a common random event: whether or not it is raining. The rain
on each day is dependent on the previous day’s weather. We plot runtime for
an increasing number of factories for h=10. Both Storm engines eventually fail
due to the state explosion and the number of distinct probabilities in the MC.
Rubicon is orders of magnitude faster in comparison, highlighting that it does
not depend on complete independence among the factories. Figure 9(b) shows
a more challenging instance where the weather includes wind which, each day,
affects whether or not the sun will shine, which in turn affects strike probability.

Herman. Herman is based on a distributed protocol [37] that has been well-
studied [1,53] and which is one of the standard benchmarks in probabilistic
model checking. Rather than computing the expected steps to ‘stabilization’, we
consider the step-bounded probability of stabilization. Usually, all participants in
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the protocol flip a coin with the same bias. The model is then highly symmetric,
and hence is amenable to symbolic representation with ADDs. Figures 9(c) and
9(e) show how the methods scale on Herman examples with 13 and 17 parallel
processes. We observe that the explicit approach scales very efficiently in the
number of iterations but has a much higher up-front model-construction cost,
and hence can be slower for fewer iterations.

To study what happens when the coin biases vary over the protocol partici-
pants, we made a version of the Herman protocol where each participant’s bias
is randomly chosen, which ruins the symmetry and so causes the ADD-based
approaches to scale significantly worse (Figs. 9(d) and 9(f), and 9(g)); we see
that symbolic ADD-based approaches completely fail on Herman 17 and Her-
man 19 (the curve terminating denotes a memory error). Rubicon and the
explicit approach are unaffected by varying parameters.

Queues. The Queues model has K queues of capacity Q where every step, tasks
arrive with a particular probability. Three queues are of type 1, the others of
type 2. We ask the probability that all queues of type 1 and at least one queue
of type 2 is full within k steps. Contrary to the previous models, the ADD
representation of the transition matrix is small. Figure 9(h) shows the relative
scaling on this model with K = 8 and Q = 3. We observe that ADDs quickly
fail due to inability to concisely represent the probability vector x from Sect. 3.
Rubicon outperforms explicit model checking until h = 10.

Sampling Parametric Markov Chains. We evaluate performance for the
pMC sampling problem outlined in Sect. 2. Table 1 gives for four models the time
to construct the BDD and to perform WMC, as well as the time to construct
an ADD in Storm and to perform model checking with this ADD. Finally,
we show the time for Storm to compute the solution function of the pMC
(with the explicit representation). The pMC sampling in Storm – symbolic and
explicit – computes the reachability probabilities with concrete probabilities.
Rubicon, in contrast, constructs a ‘parametric’ BDD once, amortizing the cost
of repeated efficient evaluation. The ‘parametric BDD’ may be thought of as a
solution function, as discussed in Sect. 4.1. Storm cannot compute these solution
functions as efficiently. We observe in Table 1 that fast parametric sampling is
realized in Rubicon: for instance, after a 40s up-front compilation of the factories
example with 15 factories, we have a solution function in factorized form and it
costs an order of magnitude less time to draw a sample. Hence, sampling and
computation of solution functions of pMCs is a major strength of Rubicon.

7 Discussion, Related Work, and Conclusion

We have demonstrated that the probabilistic inference approach to probabilis-
tic model checking can improve scalability on an important class of problems.
Another benefit of the approach is for sampling pMCs. These are used to evaluate
e.g., robustness of systems [1], or to synthesise POMDP controllers [41]. Many
state-of-the-art approaches [17,19,24] require the evaluation of various instanti-
ated MCs, and Rubicon is well-suited to this setting. More generally, support
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Table 1. Sampling performance comparison and pMC model checking, time in seconds.

Model Rubicon Storm (w/ ADD) Storm (explicit)
Build WMC Build Solve pMC solving

Herman R 13 (h = 10) 3 <1 32 18 >1800
Herman R 17 (h = 10) 45 28 >1800 – >1800
Factories 12 (h = 15) 2 <1 59 286 >1800
Factories 15 (h = 15) 40 4 >1800 – >1800

of inference techniques opens the door to a variety of algorithms for additional
queries, e.g., computing conditional probabilities [3,8].

An important limitation of probabilistic inference is that only finitely many
paths can be stored. For infinite horizon properties in cyclic models, an infi-
nite set of arbitrarily long paths would be required. However, as standard in
probabilistic model checking, we may soundly approximate infinite horizons.
Additionally, the inference algorithm in Dice does not support a notion of non-
determinism. It thus can only be used to evaluate MCs, not Markov decision pro-
cesses. However, [61] illustrates that this is not a conceptual limitation. Finally,
we remark that Rubicon achieves its performance with a straightforward trans-
lation. We are optimistic that this is a first step towards supporting a larger
class of models by improving the transpilation process for specific problems.

Related Work. The tight connection with inference has been recently inves-
tigated via the use of model checking for Bayesian networks, the prime model
in probabilistic inference [56]. Bayesian networks can be described as probabilis-
tic programs [10] and their operational semantics coincides with MCs [31]. Our
work complements these insights by studying how symbolic model checking can
be sped up by probabilistic inference.

The path-based perspective is tightly connected to factored state spaces. Fac-
tored state spaces are often represented as (bipartite) Dynamic Bayesian net-
works. ADD-based model checking for DBNs has been investigated in [25], with
mixed results. Their investigation focuses on using ADDs for factored state
space representations. We investigate using BDDs representing paths. Other
approaches also investigated a path-based view: The symbolic encoding in [28]
annotates propositional sub-formulae with probabilities, an idea closer to ours.
The underlying process implicitly constructs an (uncompressed) CT leading to
an exponential blow-up. Likewise, an explicit construction of a computation
tree without factorization is considered in [62]. Compression by grouping paths
has been investigated in two approximate approaches: [55] discretises probabil-
ities and encodes into a satisfiability problem with quantifiers and bit-vectors.
This idea has been extended [60] to a PAC algorithm by purely propositional
encodings and (approximate) model counting [14]. Finally, factorisation exploits
symmetries, which can be exploited using symmetry reduction [50]. We highlight
that the latter is not applicable to the example in Fig. 1(d).
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There are many techniques for exact probabilistic inference in various forms
of probabilistic modeling, including probabilistic graphical models [20,54]. The
semantics of graphical models make it difficult to transpile Prism programs,
since commonly used operations are lacking. Recently, probabilistic program-
ming languages have been developed which are more amenable to transpila-
tion [13,23,29,30,59]. We target Dice due to the technical development that it
enables in Sect. 4, which enabled us to design and explain our experiments. Clos-
est related to Dice is ProbLog [27], which is also a PPL that performs inference
via WMC; ProbLog has different semantics from Dice that make the transla-
tion less straightforward. The paper [61] uses an encoding similar to Dice for
inferring specifications based on observed traces. ADDs and variants have been
considered for probabilistic inference [15,18,58], which is similar to the process
commonly used for probabilistic model checking. The planning community has
developed their own disjoint sets of methods [45]. Some ideas from learning have
been applied in a model checking context [11].

8 Conclusion

We present Rubicon, bringing probabilistic AI to the probabilistic model check-
ing community. Our results show that Rubicon can outperform probabilistic
model checkers on some interesting examples, and that this is not a coincidence
but rather the result of a significantly different perspective.
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Abstract. Partially-Observable Markov Decision Processes (POMDPs)
are a well-known stochastic model for sequential decision making under
limited information. We consider the EXPTIME-hard problem of syn-
thesising policies that almost-surely reach some goal state without ever
visiting a bad state. In particular, we are interested in computing the
winning region, that is, the set of system configurations from which a
policy exists that satisfies the reachability specification. A direct appli-
cation of such a winning region is the safe exploration of POMDPs by,
for instance, restricting the behavior of a reinforcement learning agent to
the region. We present two algorithms: A novel SAT-based iterative app-
roach and a decision-diagram based alternative. The empirical evaluation
demonstrates the feasibility and efficacy of the approaches.

1 Introduction

Partially observable Markov decision processes (POMDPs) constitute the stan-
dard model for agents acting under partial information in uncertain environ-
ments [34,52]. A common problem is to find a policy for the agent that maxi-
mizes a reward objective [36]. This problem is undecidable, yet, well-established
approximate [27], point-based [43], or Monte-Carlo-based [49] methods exist.
In safety-critical domains, however, one seeks a safe policy that exhibits strict
behavioral guarantees, for instance in the form of temporal logic constraints [44].
The aforementioned methods are not suitable to deliver provably safe policies.
In contrast, we employ almost-sure reach-avoid specifications, where the proba-
bility to reach a set of avoid states is zero, and the probability to reach a set of
goal states is one. Our Challenge 1 is to compute a policy that adheres to such
specifications. Furthermore, we aim to ensure the safe exploration of a POMDP,
with safe reinforcement learning [23] as direct application. Challenge 2 is then
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to compute a large set of safe policies for the agent to choose from at any state
of the POMDP. Such sets of policies are called permissive policies [21,31].

POMDP Almost-Sure Reachability Verification. Let us remark that in POMDPs,
we cannot directly observe in which state we are, but we are in general able to
track a belief, i.e., a distribution over states that describes where in the POMDP
we may be. The belief allows us to formulate the following verification task:

For a POMDP, sets of target and avoid states, and a belief, does a policy
exist such that we reach the target states without ever visiting a bad state?

The underlying EXPTIME-complete problem requires—in general—policies
with access to memory of exponential size in the number of states [4,18]. For
safe exploration and, e.g., to support nested temporal properties, the ability to
solve this problem for each belief in the POMDP is essential.

We base our approaches on the concept of a winning region, also referred to
as controllable or attractor regions. Such regions are sets of winning beliefs from
which a policy exists that guarantees to satisfy an almost-sure specification.
The verification task relates three concrete problems which we tackle in this
paper: (1) Decide whether a belief is winning, (2) compute the maximal winning
region, and (3) compute a large yet not necessarily maximal winning region. We
now outline our two approaches. First, we directly exploit model checking for
MDPs [5] using belief abstractions. The second, much faster approach iteratively
exploits satisfiability solving (SAT) [8]. Finally, we define a scheme to enable safe
reinforcement learning [23] for POMDPs, referred to as shielding [2,30].

MDP Model Checking. A prominent approach gives the semantics of a POMDP
via an (infinite) belief MDP whose states are the beliefs in the POMDP [36].
For almost-sure specifications, it is sufficient to consider belief-supports rather
than beliefs. In particular, two beliefs with the same support are either both in a
winning region or not [47]. We abstract a belief MDP into a finite belief-support
MDP, whose states are the support of beliefs. The (maximal) winning region are
(all) states of the belief-support MDP from which one can almost surely reach
a belief support that contains a goal state without visiting belief support states
that contain an avoid state.

To find a winning region in the POMDP, we thus just have to solve almost-
sure reachability in this finite MDP. The number of belief supports, however, is
exponentially large in the number of POMDP states, threatening the efficient
application of explicit state verification approaches. Symbolic state space rep-
resentations are a natural option to mitigate this problem [7]. We construct a
symbolic description of the belief support MDP and apply state-of-the-art sym-
bolic model checking. Our experiments show that this approach (referred to as
MDP Model Checking) does in general not alleviate the exponential blow-up.

Incremental SAT Solving. While the belief support model exploits the structure
of the belief support MDP by using a symbolic state space representation, it does
not exploit elementary properties of the structure of winning regions. To overcome
the scalability challenge, we aim to exploit information from the original POMDP,
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rather than working purely on the belief-support MDP. In a nutshell, our app-
roach computes thewinning regions in a backward fashion by optimistically search-
ing policies without memory on the POMDP level. Concretely, starting from the
belief support states that shall be reached almost-surely, further states are added
to the winning region if we quickly can find a policy that reaches these states with-
out visiting those that are to avoid. We search for these policies by incrementaly
employing an encoding based on SAT solving. This symbolic encoding avoids an
expensive construction of the belief support MDP. The computed winning region
directly translates to sufficient constraints on the set of safe policies, i.e., each pol-
icy satisfying these constraints satisfies, by construction, the specification. The key
idea is to successively add short-cuts corresponding to already known safe policies.
These changes to the structure of the POMDP are performed implicitly on the SAT
encoding. The resulting scalable method is sound, but not complete by itself. How-
ever, it can be rendered complete by trading off a certain portion of the scalability;
intuitively one would eventually search for policies with larger amounts of memory.

Shielding. An agent that stays within a winning region is guaranteed to adhere
to the specification. In particular, we shield (or mask) any action of the agent
that may lead out of the winning region [1,39,42]. We stress that the shape of
the winning region is independent of the transition probabilities or rewards in
the POMDP. This independence means that the only prior knowledge we need to
assume is the topology, that is, the graph of the POMDP. A pre-computation of
the winning region thus yields a shield and allows us to restrict an agent to safely
explore environments, which is the essential requirement for safe reinforcement
learning [22,23] of POMDPs. The shield can be used with any RL agent [2].

Comparison with the State-of-the-Art. Similar to our approach, [15] solves almost-
sure specifications using SAT. Intuitively, the aim is to find a so-called simple pol-
icy that is Markovian (aka memoryless). Such a policy may not exist, yet, the
method can be applied to a POMDP that has an extended state space to account
for finite memory [33,37]. There are three shortcomings that our incremental SAT
approach overcomes. First, one needs to pre-define the memory a policy has at
its disposal, as well as a fixed lookahead on the exploration of the POMDP. Our
encoding does not require to fix these hyperparameter a priori. Second, the app-
roach is only feasible if small memory bounds suffice. Our approach scales to mod-
els that require policies with larger memory bounds. Third, the approach finds a
single simple policy starting from a pre-defined initial state. Instead, we find a
large winning region. For safe exploration, this means that we may exclude many
policies and never explore important parts of the system, harming the final per-
formance of the agent. Shielding MDPs is not new [2,9,10,30]. However, those
methods do neither take partial observability into account, nor can they guaran-
tee reaching desirable states. Nam and Alur [39] cover partial observability and
reachability, but do not account for stochastic uncertainty.

Experiments. To showcase the feasibility of our method, we adopted a number of
typical POMDP environments. We demonstrate that our method scales better
than the state of the art. We evaluate the shield by letting an agent explore the
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POMDP environment according to the permissive policy, thereby enforcing the
satisfaction of the almost-sure specification. We visualize the resulting behavior
of the agent in those environments with a set of videos.

Contributions. Our paper makes four contributions: (1) We present an incre-
mental SAT-based approach to compute policies that satisfy almost-sure prop-
erties. The method scales to POMDPs whose belief-support states count billions;
(2) The novel approach is able to find large winning regions that yield permis-
sive policies. (3) We implement a straightforward approach that constructs the
belief-support symbolically using state-of-the-art model checking. We show that
its completeness comes at the cost of limited scalability. (4) We construct a
shield for almost-sure specifications on POMDPs which enforces at runtime that
no unsafe states are visited and that, under mild assumptions, the agent almost-
surely reaches the set of desirable states.

Further Related Work. Chatterjee et al. compute winning regions for minimizing
a reward objective via an explicit state representation [17], or consider almost-
sure reachability using an explicit state space [16,51]. The problem of determin-
ing any winning policy can be cast as a strong cyclic planning problem, proposed
earlier with decision diagrams [7]. Indeed, our BDD-based implementation on the
belief-support MDP can be seen as a reimplementation of that approach.

Quantitative variants of reach-avoid specifications have gained attention in,
e.g., [11,28,40]. Other approaches restrict themselves to simple policies [3,33,45,
58]. Wang et al. [55] use an iterative Satisfiability Modulo Theories (SMT) [6]
approach for quantitative finite-horizon specifications, which requires computing
beliefs. Various general POMDP approaches exist, e.g., [26,27,29,48,49,54,56].
The underlying approaches depend on discounted reward maximization and can
satisfy almost-sure specifications with high reliability. However, enforcing prob-
abilities that are close to 0 or 1 requires a discount factor close to 1, drastically
reducing the scalability of such approaches [28]. Moreover, probabilities in the
underlying POMDP need to be precisely given, which is not always realistic [14].

Another line of work (for example [53]) uses an idea similar to winning regions
with uncertain specifications, but in a fully observable setting. Finally, comple-
mentary to shielding, there are approaches that guide reinforcement learning
(with full observability) via temporal logic constraints [24,25].

2 Preliminaries and Formal Problem

We briefly introduce POMDPs and their semantics in terms of belief MDPs, before
formalising and studying the problem variants outlined in the introduction. We
present belief-support MDPs as a finite abstraction of infinite belief MDPs.

We define the support supp(μ) = {x ∈ X | μ(x) > 0} of a discrete probability
distribution μ and denote the set of all distributions with Distr(X).

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
〈S,Act, μinit,P〉 with a set S of states, an initial distribution μinit ∈ Distr(S), a
finite set Act of actions, and a transition function P : S × Act → Distr(S).
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Let posts(α) = supp(P(s, α)) denote the states that may be the successors of the
state s ∈ S for action α ∈ Act under the distribution P(s, α). If posts(α) = {s}
for all actions α, s is called absorbing.

Definition 2 (POMDP). A partially observable MDP (POMDP) is a tuple
P = 〈M, Ω, obs〉 with M = 〈S,Act, μinit,P〉 the underlying MDP with finite
S, Ω a finite set of observations, and obs : S → Ω an observation function.
We assume that there is a unique initial observation, i.e., that |{obs(s) | s ∈
supp(μinit)}| = 1.

More general observation functions obs : S → Distr(Ω) are possible via a
(polynomial) reduction [17]. A path through an MDP is a sequence π, π =
(s0, α0)(s1, α1) . . . sn of states and actions. such that si+1 ∈ postsi

(αi) for
αi ∈ Act and 0 ≤ i < n. The observation function obs applied to a path yields
an observation(-action) sequence obs(π) of observations and actions.

For modeling flexibility, we allow actions to be unavailable in a state (e.g.,
opening doors is only available when at a door), and it turned out to be crucial
to handle this explicitly in the following algorithms. Technically, the transition
function is a partial function, and the enabled actions are a set EnAct(s) = {α ∈
Act | posts(α) �= ∅}. To ease the presentation, we assume that states s, s′ with
the same observation share a set of enabled actions EnAct(s) = EnAct(s′).

Definition 3 (Policy). A policy σ : (S×Act)∗×S → Distr(Act) maps a path π
to a distribution over actions. A policy is observation-based, if for each two paths
π, π′ it holds that obs(π) = obs(π′) ⇒ σ(π) = σ(π′). A policy is memoryless,
if for each π, π′ it holds that last(π) = last(π′) ⇒ σ(π) = σ(π′). A policy is
deterministic, if for each π, σ(π) is a Dirac distribution, i.e., if |supp(σ(π))| = 1.

Policies resolve nondeterminism and partial observability by turning a (PO)MDP
into the induced infinite discrete-time Markov chain whose states are the finite
paths of the (PO)MDP. Probability measures are defined on this Markov chain.

For POMDPs, a belief describes the probability of being in certain state based
on an observation sequence. Formally, a belief b is a distribution b ∈ Distr(S)
over the states. A state s with positive belief b(s) > 0 is in the belief support,
s ∈ supp(b). Let Prσ

b(S′) denote the probability to reach a set S′ ⊆ S of states
from belief b under the policy σ. More precisely, Prσ

b(S′) denotes the probability
of all paths that reach S′ from b when nondeterminism is resolved by σ.

The policy synthesis problem usually consists in finding a policy that satisfies
a certain specification for a POMDP. We consider reach-avoid specifications, a
subclass of indefinite horizon properties [46]. For a POMDP P with states S,
such a specification is ϕ = 〈REACH,AVOID〉 ⊆ S × S. We assume that states
in AVOID and in REACH are (made) absorbing and REACH ∩ AVOID = ∅.

Definition 4 (Winning). A policy σ is winning for ϕ from belief b in
(PO)MDP P iff Prσ

b(AVOID) = 0 and Prσ
b(REACH) = 1, i.e., if it reaches

AVOID with probability zero and REACH with probability one (almost-surely)
when b is the initial state. Belief b is winning for ϕ in P if there exists a winning
policy from b.
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We omit P and ϕ whenever it is clear from the context and simply call b winning.

Problem 1: Given a POMDP, a belief b, and a specification ϕ, decide
whether b is winning and find a policy σ that is winning from b.

The problem is EXPTIME-complete [18]. Contrary to MDPs, it is not sufficient
to consider memoryless policies.

Model checking queries for POMDPs often rely on the analysis of the belief
MDP. Indeed, we may analyse this generally infinite model. Let us first recap
a formal definition of the belief MDP, using the presentation from [11]. In the
following, let P(s, α, z) :=

∑
s′∈S [obs(s′)=z] ·P(s, α, s′) denote the probability1

to move to (a state with) observation z from state s using action α. Then,
P(b, α, z) :=

∑
s∈S b(s) ·P(s, α, z) is the probability to observe z after taking α

in b. We define the belief obtained by taking α from b, conditioned on observing z:

update(b|α, z)(s′) :=
[obs(s′)=z] · ∑

s∈S b(s) · P(s, α, s′)
P(b, α, z)

. (1)

Definition 5 (Belief MDP). The belief MDP of POMDP P = 〈M, Ω, obs〉
where M = 〈S,Act, μinit,P〉 is the MDP BelMDP(P) := 〈B,Act,PB, μinit〉 with
B = Distr(S), and transition function PB given by

PB(b, α, b′) :=

{
P(b, α, obs(b′)) if b′ = update(b|α, obs(b′)),
0 otherwise.

Due to (1) and the unique initial observation, we may restrict the beliefs to B =⋃
z∈Ω Distr({s | obs(s) = z}), that is, each belief state has a unique associated

observation. We can lift specifications to belief MDPs: Avoid-beliefs are the set
of beliefs b such that supp(b) ∩ AVOID �= ∅, and reach-beliefs are the set of
beliefs b such that supp(b) ⊆ REACH.

Towards obtaining a finite abstraction, the main algorithmic idea is the fol-
lowing. For the qualitative reach-avoid specifications we consider, the belief prob-
abilities are irrelevant—only the belief support is important [47].

Lemma 1. For winning belief b, belief b′ with supp(b) = supp(b′) is winning.

Consequently, we can abstract the belief MDP into a finite belief support MDP.

Definition 6 (Belief-Support MDP). For a POMDP P = 〈M, Ω, obs〉 with
M = 〈S,Act, μinit,P〉, the finite state space of a belief-support MDP PB is
B =

{
b ⊆ S | ∀s, s′ ∈ b : obs(s) = obs(s′)

}
where each state is the support of

a belief state. Action α in state b leads (with an irrelevant positive probability
p > 0) to a state b′, if

b′ ∈
{ ⋃

s∈b

posts(α) ∩ {s | obs(s) = z} | z ∈ Ω
}

.

1 We use Iverson brackets: [x] = 1 if x holds and 0 otherwise.
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Thus, transitions between states within b and b′ are mimicked in the POMDP.
Equivalently, the following clarifies the belief-support MDP as an abstraction of
the belief MDP: there are transitions with action α between b and b′, if there
exists beliefs b, b′ with supp(b) = b and supp(b′) = b′, such that b′ ∈ postb(α).
We lift the specification as before:

Definition 7 (Lifted specification). For ϕ = 〈AVOID,REACH〉, we define
ϕB = 〈AVOIDB ,REACHB〉 with AVOIDB = {b | b ∩ AVOID �= ∅}, and
REACHB = {b | b ⊆ REACH}.

We obtain the following lemma, which follows from the fact that almost-sure
reachability is a graph property2.

Lemma 2. If belief b is winning in the POMDP P for ϕ, then the support
supp(b) is winning in the belief-support MDP PB for ϕB.

Lemma 2 yields an equivalent reformulation of Problem 1 for belief supports:

Problem 1 (equivalent): Given a POMDP P, belief b, and specification
ϕ, decide whether supp(b) is winning for ϕB in the belief-support MDP PB .

3 Winning Regions

This section provides the observations on winning regions, a key concept for this
paper. An important consequence of Lemma2 and the reformulation of Prob-
lem 1 to the belief-support MDP is that the initial distribution of the POMDP
is no longer relevant. Winning policies for individual beliefs may be composed
to a policy that is winning for all of these beliefs, using the individual action
choices.

Lemma 3. If the policies σ and σ′ are winning for the belief supports b and b′,
respectively, then there exists a policy σ′′ that is winning for both b and b′.

While this statement may seem trivial on the MDP (or equivalently on beliefs),
we notice that it does not hold for POMDP states. As a natural consequence,
we are able to consider winning beliefs without referring to a specific policy.

Definition 8 (Winning region). Let σ be a policy. A set Wσ
ϕ ⊆ B of belief

supports is a winning region for ϕ and σ, if σ is winning from each b ∈ Wσ
ϕ . A

set Wϕ ⊆ B is a winning region for ϕ, if every b ∈ Wϕ is winning. The region
containing all winning beliefs is the maximal winning region3.

2 Although the probabilities are not relevant to compute almost-sure reachabil-
ity, it is important to notice that almost-sure reachability is different from sure-
reachability [5]: For almost-sure reachability, there can be an infinite path that
never reaches the target, as long as the probability mass over all those paths is
0. Almost-sure reachability can, however, be expressed as sure-reachability in a par-
ticular game-setting [47].

3 In some literature, winning region always refers to a maximal winning region.
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Observe that the maximal winning region in MDPs exists for qualitative reach-
ability, but not for quantitative reachability, which we do not consider here.

Problem 2: Given a POMDP P and a specification ϕ, find the maximal
winning region Wϕ.

Using this definition of winning regions, we are able to reformulate Problem 1
by asking whether the support of some belief b is in the winning region.

Part of Problem 1 was to compute a winning policy. Below, we study the
connection between the winning region and winning policies. We are interested
in subsets of the maximal winning region that exhibit two properties:

Definition 9 (Deadlock-free). A set W of belief-supports W ⊆ B is
deadlock-free, if for every b ∈ W , an action α ∈ EnAct(b) exists such that
postb(α) ⊆ W .

Definition 10 (Productive). A set of belief supports W ⊆ B is productive
(towards a set REACHB), if from every b ∈ W , there exists a (finite) path
π = b0α1b1 . . . bn from b0 to bn ∈ REACHB with bi ∈ W and postbi

(α) ⊆ W for
all 1 ≤ i ≤ n.

Every productive region is deadlock-free, as REACH-states are absorbing. The
maximal winning region is productive towards REACHB (and thus deadlock-
free) by definition. Intuitively, while a deadlock-free region ensures that one
never has to leave the region, any productive winning region ensures that from
every belief support within this region there is a policy to stay in the winning
region and that can almost-surely reach a REACH-state. In particular, to find a
winning policy (Challenge 1) or for the purpose of safe exploration (Challenge 2),
it is sufficient to find a productive subset of the maximal winning region. We
detail on this insight in Sect. 6.

Problem 3: Given a POMDP P and a specification ϕ, find a (large) pro-
ductive winning region Wϕ.

To allow a compact representation of winning regions, we exploit that for any
belief support b′ ⊆ b it holds that postb′(α) ⊆ postb(α) for all actions α ∈ Act,
that is, the successors of b′ are contained in the successors of b.

Lemma 4. For winning belief support b, b′ ⊆ b is winning.

4 Iterative SAT-Based Computation of Winning Regions

We devise an approach for iteratively computing an increasing sequence of pro-
ductive winning regions. The approach delivers a compact symbolic encoding
of winning regions: For a belief (or belief-support) state from a given winning
region, we can efficiently decide whether the outcome of an action emanating
from the state stays within the winning region.

Key ingredient is the computation of so-called memoryless winning policies.
We start this section by briefly recapping how to compute such policies directly
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Fig. 1. Cheese-Maze example to explain memoryless policies and shortcuts

on the POMDP, before we build an efficient incremental approach on top of this
base method. In particular, we first present a naive iterative algorithm based on
the notion of shortcuts, then describe how to implicitly add shortcuts within the
encoding, and then finally combine the ideas to an efficient algorithm.

4.1 One-Shot Approach to Find Small Policies from a Single Belief

We aim to solve Problem 1 and determine a winning policy. The number of
policies is exponential in the actions and the (exponentially many) belief support
states. Searching among doubly exponentially many possibilities is intractable in
general. However, Chatterjee et al. [15] observe that often much simpler winning
policies exist and provides a one-shot approach to find them. The essential idea
is to search only for memoryless observation-based policies σ : Ω → Distr(Act)
that are winning for the (initial) belief support b.

Example 1. Consider the small Cheese-POMDP [35] in Fig. 1(a). States are cells,
actions are moving in the cardinal directions (if possible), and observations are
the directions with adjacent cells, e.g., the boldface states 6, 7, 8 share an obser-
vation. We set REACH = {10} and AVOID = {9, 11}. From belief support
b = {6, 8} there is no memoryless winning policy—In states {6, 8} we have to
go north, which prevents us from going south in state 7. However, we can find a
memoryless winning policy for {1, 5}, see Fig. 1(b).

This problem is NP-complete, and it is thus natural to encode the problem as a
satisfiability query in propositional logic. We mildly adapt the original encoding
of winning policies [15]. We introduce three sets of Boolean variables: Az,α, Cs

and Ps,j . If a policy takes action α ∈ Act with positive probability upon obser-
vation z ∈ Ω, then and only then, Az,α is true. If under this policy a state s ∈ S
is reached from some initial belief support bι with positive probability, then and
only then, Cs is true. We define a maximal rank k to ensure the productivity.
For each state s and rank 0 ≤ j ≤ k, variable Ps,j indicates rank j for s, that
is, a path from s leads to s′ ∈ REACH within j steps.4 A winning policy is
then obtained by finding a satisfiable solution (via a SAT solver) to the conjunc-
tion Ψϕ

P (bι, k) of the constraints (2a)–(5), where S? = S \ (
AVOID ∪ REACH

)
.

4 Notice that a state s can have multiple ‘ranks’ in this encoding. Its rank is the
smallest j such that Ps,j is true.
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∧

s∈bι

Cs (2a)
∧

z∈Ω

( ∨

α∈EnAct(z)

Az,α

)
(2b)

The initial belief support is clearly reachable (2a). The conjunction in (2b)
ensures that in every observation, at least one action is taken.

∧

s∈AVOID

¬Cs ∧
∧

s∈S
α∈EnAct(s)

(
Cs ∧ Aobs(s),α →

∧

s′∈posts(α)

Cs′
)

(3)

The conjunction (3) ensures that for any model for these formulas, the set of
states {s ∈ S | Cs = true} is reachable, does not overlap with AVOID, and is
transitively closed under reachability (for the policy described by Az,α).

∧

s∈S?

Cs → Ps,k (4)

∧

s �∈REACH

¬Ps,0 ∧
∧

s∈S?
1≤j≤k

Ps,j ↔
( ∨

α∈EnAct(s)

(
Aobs(s),α ∧ ( ∨

s′∈posts(α)

Ps′,j−1

)))
(5)

Conjunction (4) states that any state that is reached almost-surely reaches a
state in REACH, i.e., that there is a path (of length at most) k to the target.
Conjunctions (5) describe a ranking function that ensures the existence of this
path. Only states in REACH have rank zero, and a state with positive probability
to reach a state with rank j−1 within a step has rank at most j.

By [15, Thm. 2], it holds that the conjunction Ψϕ
P (bι, k) of the con-

straints (2a)–(5) is satisfiable, if there is a memoryless observation-based pol-
icy such that ϕ is satisfied. If k = |S|, then the reverse direction also holds. If
k < |S|, we may miss states with a higher rank. Large values for k are practically
intractable [15], as the encoding grows significantly with k. Pandey and Rinta-
nen [41] propose extending SAT-solvers with a dedicated handling of ranking
constraints.

In order to apply this to small-memory policies, one can unfold log(m) bits of
memory of such a policy into an m times larger POMDP [15,33], and then search
for a memoryless policy in this larger POMDP. Chatterjee et al. [15] include a
slight variation to this unfolding, allowing smaller-than-memoryless policies by
enforcing the same action over various observations.

4.2 Iterative Shortcuts

We exploit the one-shot approach to create a naive iterative algorithm that con-
structs a productive winning region. The iterative algorithm avoids the following
restrictions of the one-shot approach. (1) In order to increase the likelihood of
finding winning policies, we do not restrict ourselves to small-memory policies,
and (2) we do not have to fix a maximal rank k. These modifications allow us
to find more winning policies, without guessing hyper-parameters. As we do not
need to fix the belief-state, those parts of the winning region that are easy to
find for the solver are encountered first.
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The One-Shot Approach on Winning Regions. To understand the naive iterative
algorithm, it is helpful to consider the previous encoding in the light of Problem
3, i.e., finding productive winning regions. Consider first the interpretation of
the variables. Indeed, observe that we have found the same winning policy for
all states s where Cs is true. Consequentially, any belief support bz = {s |
Cs true ∧ obs(s) = z} is winning.

Lemma 5. If σ is winning for b and b′, then σ is also winning for b ∪ b′.

This lemma is somewhat dual to Lemma 4, but requires a fixed policy. The
constraints (3) and ensure that a winning-region is deadlock-free. The constraints
(4) and (5) ensure productivity of the winning region.

Adding Shortcuts Explicitly. The key idea is that we iteratively add short-cuts
in the POMDP that represent known winning policies. We find a winning policy
σ for some belief states in the first iteration, and then add a fresh action ασ

to all (original) POMDP states: This action leads – with probability one – to
a REACH state, if the state is in the wining belief-support under policy σ.
Otherwise, the action leads to an AVOID state.

Definition 11. For POMDP P = 〈M, Ω, obs〉 where M = 〈S,Act, μinit,P〉
and a policy σ with associated winning region Wσ

ϕ , and assuming w.l.o.g., � ∈
REACH and ⊥ ∈ AVOID, we define the shortcut POMDP P{σ} = 〈M′, Ω, obs〉
with M′ = 〈S,Act′, μinit,P′〉, Act′ = Act∪{ασ}, P′(s, α) = P(s, α) for all s ∈ S
and α ∈ Act, and P′(s, ασ) = {� �→ [{s} ∈ W σ

ϕ ],⊥ �→ [{s} �∈ W σ
ϕ ]}.

Lemma 6. For a POMDP P and policy σ, the (maximal) winning regions for
P{σ} and P coincide.

First, adding more actions will not change a winning belief-support to be not
winning. Furthermore, by construction, taking the novel action will only lead to
a winning belief-support whenever following σ from that point onwards would
be a winning policy. The key benefit is that adding shortcuts may extend the
set of belief-support states that win via a memoryless policy. This observation
also gives rise to the following extension to the one-shot approach.

Example 2. We continue with Example 1. If we add shortcuts, we can now find
a memoryless winning policy for b = {6, 8}, depicted in Fig. 1(c).

Iterative Shortcuts to Extend a Winning Region. The idea is now to run the one-
shot approach, extract the winning region, add the shortcuts to the POMDP, and
rerun the one-shot approach. To make the one-shot approach applicable in this
setting, it only needs one change: Rather than fixing an initial belief-support,
we ask for an arbitrary new belief-support to be added to the states that we
have previously covered. We use a data structure Win such that Win(z) encodes
all winning belief supports with observation z. Internally, the data structure
stores maximal winning belief supports (w.r.t. set inclusion, see also Lemma 4)
as bit-vectors. By construction, for every b ∈ Win(z), a winning region exists,
i.e., conceptually, there is a shortcut-action leading to REACH.
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Algorithm 1 Naive construction of winning regions
Input: POMDP P, reach-avoid specification ϕ
Output: Winning region encoded in Win
Win(z) ← {s ∈ REACH | obs(s) = z} for all z ∈ Ω
Φ ← Encode(P, ϕ,Win) � Create encoding (2b),(3),(6),(7).
while ∃η s.t. η |= Φ do � Call an SMT solver

Win(z) ← Win(z) ∪ {b | s ∈ b iff η(Cs)} for all z ∈ Ω
P ← P{ση} � Extend POMDP with Def. 11

� with ση policy encoded by η.
Φ ← Encode(P, ϕ,Win)

We extend the encoding (in partial preparation of the next subsection) and
add a variable Uz ∈ b that is true if the policy is winning in a belief support
that is not yet in Win(z). We replace (2a) with:
∨

z∈Ω

Uz ∧
∧

z∈Ω
Win(z)=∅

(
Uz ↔

∨

s∈S
obs(s)=z

Cs

)
∧

∧

z∈Ω
Win(z) �=∅

(
Uz ↔

∧

X∈Win(z)

∨

s∈S\X
obs(s)=z

Cs

)

(6)

For an observation z for which we have not found a winning belief support
yet, finding a policy from any state s with obs(s) updates the winning region.
Otherwise, it means finding a winning policy for a belief support that is not
subsumed by a previous one (6).

Real-Valued Ranking. To avoid setting a maximal path length, we use unbounded
(real) variables Rs rather than Boolean variables for the ranking [57]. This relax-
ation avoids the growth of the encoding and admits arbitrarily large ranks with
a fixed-size encoding into difference logic. This logic is an extension to proposi-
tional logic that can be checked using an SMT solver [6].

∧

s∈S?

Cs →
( ∨

α∈EnAct(s)

(
Aobs(s),α ∧ ( ∨

s′∈posts(α)

Rs > Rs′
)))

(7)

We replace (4) and (5): A state must have a successor state with a lower rank –
as before, but with real-valued ranks (7).

Algorithm. Together, the algorithm is given in Algorithm1. We initialize the
winning region based on the specification, then encode the POMDP using the
(modified) one-shot encoding. As long as the SMT solver finds policies that are
winning for a new belief-support, we add those belief supports to the winning
region. In each iteration, Win contains a winning region. Once we find no more
policies that extend the winning region on the extended POMDP, we terminate.

The algorithm always terminates because the set of winning regions is finite,
but in general does not solve Problem 2. Formally, the maximal winning region
is a greatest fixpoint [5] and we iterate from below, i.e., the fixpoint that we find
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will be the smallest fixpoint (of the operation that we implement). However, iter-
ating from above requires to reason that none of the doubly-exponentially many
policies is winning for a particular belief support state; whereas our approach
profits from finding simple strategies early on. Unfolding of memory as discussed
earlier also makes this algorithm complete, yet, suffers from the same blow-up.
A main advantage is that the algorithm often avoids the need for unfolding when
searching for a winning policy or large winning regions.

Next, we address two weaknesses: First, the algorithm currently creates a new
encoding in every iteration, yielding significant overhead. Second, the algorithm
in many settings requires adding a bit of memory to realize behavior where in
a particular observation, we first want to execute an action α and then follow
a shortcut from the state (with the same observation) reached from there. We
adapt the encoding to explicitly allow for these (non-memoryless) policies.

4.3 Incremental Encoding of Winning Regions

In this section, instead of naively adjusting the POMDP, we realize the idea of
adding shortcuts directly on the encoding. This encoding is the essential step
towards an efficacious approach for solving Problem 3. We find winning states
based on a previous solution, and instead of adding actions, we allow the solver
to decide following individual policies from each observation. In Sect. 4.4, we
embed this encoding into an improved algorithm.

Our encoding represents an observation-based policy that can decide to take
a shortcut, which means that it follows a previously computed winning policy
from there (implicitly using Lemma 3). In addition to Az,α, Cs and Rs from the
previous encoding, we use the following variables: The policy takes shortcuts in
states s where Ds is true. For each observation, we must take the same shortcut,
referred to by a positive integer-valued index Iz. More precisely, Iz refers to a
shortcut from a previously computed (fragment of a) winning region stored in
Win(z)Iz

. The policy may decide to switch, that is, to follow a shortcut after
taking an action starting in a state with observation z. If Fz is true, the policy
takes some action from z-states and from the next state, we take a shortcut. The
encoding thus implicitly represents policies that are not memoryless but rather
allow for a particular type of memory.
The conjunction of (6) and (8)–(13) yields the encoding Φϕ

P(Win):
∧

z∈Ω

( ∨

α∈EnAct(z)

Az,α

)
∧

∧

s∈AVOID

¬Cs ∧ ¬Ds (8)

∧

s∈S
α∈EnAct(s)

(
Cs ∧ Aobs(s),α ∧ ¬Fobs(s) →

∧

s′∈posts(α)

Cs′
)

(9)

∧

s∈S
α∈EnAct(s)

(
Cs ∧ Aobs(s),α ∧ Fobs(s) →

∧

s′∈posts(α)

Ds′
)

(10)

Similar to (2b), (3), we select at least one action and AVOID-states should not
be reached (8). States reached are closed under the transitive closure, however,
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Algorithm 2 Naive construction of winning regions with incremental encoding
Input: POMDP P, reach-avoid specification ϕ
Output: Winning region encoded in Win
Win(z) ← {s ∈ REACH | obs(s) = z} for all z ∈ Ω
Φ ← Encode(P, ϕ,Win) � Create encoding (6),(8)–(13).
while ∃η s.t. η |= Φ do � Call an SMT solver

Win(z) ← Win(z) ∪ {b | s ∈ b iff η(Cs)} for all z ∈ Ω
Φ ← Encode(P, ϕ,Win)

only if we do not switch to taking a shortcut (9). Furthermore, we mark the
states reached after switching (10) and need to select a shortcut for these states.

∧

s∈S

(
Ds → Iobs(s) > 0

) ∧
∧

z∈Ω

Iz ≤ |Win(z)| (11)

∧

z∈Ω
0<i≤|Win(z)|

∧

s∈S\Win(z)i

obs(s)=z

Ds → Iz �= i (12)

If we reach a state s after switching, then we must pick a shortcut. We can only
pick an index that reflects a found winning region (11). If we pick this shortcut
reflecting a winning region (fragment) for observation z, then we are winning
from the states in Win(z)i, but not from any other state s with that observation.
Thus, for s �∈ Win(z)i, if we are going to follow any shortcut (that is, Ds holds),
we should not pick this particular shortcut encoded by Iz (because it will lead
to an AVOID-state). In terms of the policy: Taking this previously computed
policy from state s is not (known to) lead us to a REACH-state (12). Finally,
we update the ranking to account for shortcuts.

∧

s∈S?

Cs →
( ∨

α∈EnAct(s)

(
Aobs(s),α ∧ ( ∨

s′∈posts(α)

Rs > Rs′
)) ∨ Fobs(s)

)
(13)

We make a slight adaption to (7): Either we have a successor state with a lower
rank (as before) or we follow a shortcut—which either leads to the target or to
violating the specification (13). We formalize the correctness of the encoding:

Lemma 7. If η |= Φϕ
P(Win), then for every observation z, the belief support

bz = {s | η(Cs) = true, obs(s) = z} is winning.

Algorithm 2 is a straightforward adaption of Algorithm1 that avoids adding
shortcuts explicitly (and uses the updated encoding). As before, the algorithm
terminates and solves Problem 3. We conclude:

Theorem 1. In any iteration, Algorithm2 computes a productive winning region.

4.4 An Incremental Algorithm

We adapt the algorithm sketched above to exploit the incrementality of modern
SMT solvers. Furthermore, we aim to reduce the invocations of the solver by
finding some extensions to the winning region via a graph-based algorithm.
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Algorithm 3 Incremental construction of winning regions
Input: POMDP P, reach-avoid specification ϕ
Output: Winning region encoded in Win
Win(z) ← {s ∈ REACH | obs(s) = z} for all z ∈ Ω
Win ← GraphPreprocessing(Win)
Φfix ← Encodefix(P, ϕ,Win) � Create encoding (8)–(13)
Φinc ← Encodeinc(P, ϕ,Win) � Encode (6)
while ∃η s.t. η |= Φfix ∧ Φinc do � Call an SMT solver, fix η

do � Extend policy
Φη ← ∧{Az,α | η(Uz) ∧ η(Az,α)} � Part. fix policy

while ∃η s.t. η |= Φfix ∧ Φvar ∧ Φη � Call SMT, fix η
Win(z) ← Win(z) ∪ {B | s ∈ B iff η(Cs)} for all z ∈ Ω
Win ← GraphPreprocessing(Win)
Φfix ← Φfix ∧ Encode(11)(12)(P, ϕ,Win) � Update: (11),(12)
Φinc ← Encodeinc(P, ϕ,Win) � Encode (6)

Graph-Based Preprocessing. To reduce the number of SMT invocations, we
employ polynomial-time graph-based heuristics. The first step is to use (fully
observable) MDP model checking on the POMDP as follows: find all states that
under each (not necessarily observation-based) policy reach an AVOID-state
with positive probability, and make them absorbing. Then, we find all states
that under each policy reach a REACH-state almost-surely. Then, we iteratively
search for winning observations and use them to extend the REACH-states. An
observation z is winning, if the belief-support {s | obs(s) = z} is winning. We
start with a previously determined winning region W. We iteratively update W
by adding states bz = {s | obs(s) = z} for some observation z, if there is an
action α such that from every s ∈ bz, it holds posts(α) ⊆ W. The iterative
updates are interleaved with MDP model checking on the POMDP as described
above until we find a fixpoint.

Optimized Algorithm. We improve Algorithm 2 along four dimensions to obtain
Algorithm 3. First, we employ fewer updates of the winning region: We aim to
extend the policy as much as possible, i.e., we want the SMT-solver to find more
states with the same observation that are winning under the same policy. There-
fore, we fix the variables for action choices that yield a new winning policy, and
let the SMT solver search whether we can extend the corresponding winning
region by finding more states and actions that are compatible with the partial
policy. Second, we observe that between (outer) iterations, large parts of the
encoding stay intact, and use an incremental approach in which we first push
all the constraints from the POMDP onto the stack, then all the constraints
from the winning region, and finally a constraint that asks for progress. After
we found a new policy, we pop the last constraint from the stack, add new con-
straints regarding the winning region (notice that the old constraints remain
intact), and push new constraints that ask for extending the winning region
to the stack. We refresh the encoding periodically to avoid unnecessary clutter-
ing. Third, further constraints (1) make the usage of shortcuts more flexible—we
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allow taking shortcuts either immediately or after the next action, and (2) enable
an even more incremental encoding with some minor technical reformulations.
Fourth, we add the graph-preprocessing discussed above during the outer itera-
tion.

5 Symbolic Model Checking for the Belief-Support MDP

In this section, we briefly describe how we encode a given POMDP into a belief-
support MDP to employ symbolic, off-the-shelf probabilistic model checking. In
particular, we employ symbolic (decision-diagram, DD) representations of the
belief-support MDP as we expect this MDP to be huge. Constructing that DD
representation effectively is not entirely trivial. Instead, we advocate construct-
ing a (modular) symbolic description of the belief support MDP. Concretely,
we automatically generate a model description in the MDP modeling language
JANI [13],5 and then apply off-the-shelf model checking on the JANI description.

Conceptually, we create a belief-support MDP with auxiliary states to allow
for a concise encoding.6 We use this auxiliary state b̂ to describe for any transition
the conditioning on the observation. Concretely, a single transition P(b, α, b′) in
the belief-support MDP is reflected by two transitions P(b, α, b̂) and P(b̂, α⊥, b′)
in our encoding, where α⊥ is a unique dummy action. We encode states using
triples 〈belsup, newobs, lact〉. belsup is a bit vector with entries for every state
s that we use to encode the belief support. Variables newobs and lact store
an observation and an action and are relevant only for the auxiliary states.
Technically, we now encode the first transition from b with the nondeterministic
action α to b̂. P(b, α) then yields (with arbitrary positive) probability a new
observation that will reflect the observation obs(b′). We store α and obs(b′) in
lact and newobs, respectively. The second step is a single deterministic (dummy)
action updating belsup while taking into account newobs. The step also resets
lact and newobs.

The encoding of the transitions as follows: For the first step, we create nonde-
terministic choices for each action α and observation z. We guard these choices
with z meaning that the edge is only applicable to states having observation z,
i.e., the guard is

∨
s∈S,obs(s)=z belsup(s). With these guarded edges, we define

the destinations: With an arbitrary7 probability p, we go to an observation z1 if
there is at least one state in s ∈ belsup which has a successor state s′ ∈ posts(α)
with obs(s′) = z1.

5 The description here works on a network of synchronized state machines as is also
common in the PRISM language.

6 The usage of message passing or indexed assignments in JANI would circumvent the
need for intermediate states, but is to the best of our knowledge not supported by
decision-diagram based model checkers.

7 We leave this a parametric probability in model building to reduce the number of
different probabilities, as this is beneficial for the size of the decision diagram that
Storm constructs – it will only have leafs 0, p, 1. Technically, such MDPs are not
necessarily well-defined but we can employ model checking on the graph structure.
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The following pseudocode reflects the first step in the transition encoding. The
syntax is as follows: take an action if a Boolean guard is satisfied, then updates
are executed with probability prob. An example for a guard is an observation z.

takeα if z then

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

prob
( ∨

s∈S
P(s,α,z1)>0

belsup(s) ? p : 0
)
:

newobs ← z1

lact ← α

. . . . . .

prob
( ∨

s∈S
P(s,α,zn)>0

belsup(s) ? p : 0
)
:

newobs ← zn

lact ← α

The second step synchronously updates each state s′ in the POMDP indepen-
dently: The entry belsup(s′) is set to true if obs(s) = newobs and if there is a
state s currently true in (the old) belsup with s′ ∈ posts(lact). The step thus
can be captured by the following pseudocode for each s′:

takeα⊥ if true thenprob1 : belsup(s′) ← ( ∨

s
P(s, lact, s′) > 0

) ∧ obs(s′)

Finally, whenever the dummy action α⊥ is executed, we also reset the variables
newobs and lact. The resulting encoding thus has transitions in the order of
|S| + |Ω|2 · |maxz∈Ω EnAct(z)|.

6 Almost-Sure Reachability Shields in POMDPs

In this section, we define a shield for POMDPs – towards the application of safe
exploration (Challenge 2) – that blocks actions which would lead an agent out
of a winning region. In particular, the shield imposes restrictions on policies to
satisfy the reach-avoid specification. Technically, we adapt so-called permissive
policies [21,31] for a belief-support MDP. To force an agent to stay within a
productive winning region Wϕ for specification ϕ, we define a ϕ-shield ν : b →
2Act such that for any winning b for ϕ we have ν(b) ⊆ {α ∈ Act | postb(α) ⊆
Wϕ}, i.e., an action is part of the shield ν(b) if it exclusively leads to belief
support states within the winning region.

A shield ν restricts the set of actions an arbitrary policy may take8. We
call such restricted policies admissible. Specifically, let bτ be the belief sup-
port after observing an observation sequence τ . Then policy σ is ν-admissible if
supp(σ(τ)) ⊆ ν(bτ ) for every observation-sequence τ . Consequently, a policy is
not admissible if for some observation sequence τ , the policy selects an action
α ∈ Act which is not allowed by the shield.

Some admissible policies may choose to stay in the winning region without
progressing towards the REACH states. Such a policy adheres to the avoid-part
of the specification, but violates the reachability part. To enforce progress, we

8 While memory policies based on the belief (support) are sufficient to ensure almost-
sure reachability, the goal is to shield other policies that do not necessarily fall in
this restricted class.
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Fig. 2. Video stills from simulating a shielded agent on three different benchmarks.

adapt a notion of fairness. A policy is fair if it takes every action infinitely often
at any belief support state that appears infinitely often along a trace [5]. For
example, a policy that randomizes (arbitrarily) over all actions is fair–we notice
that most reinforcement learning policies are therefore fair.

Theorem 2. For a ϕ-shield ν and a winning belief support b, any fair ν-
admissible policy satisfies ϕ from b.

We give a proof (sketch) in [32, Appendix]. The main idea is to show that
the induced Markov chain of any admissible policy has only bottom SCCs that
contain REACH-states.

Remark 1. If ϕ is a safety specification (where Prσ
b(AVOID) = 0 suffices), we

can rely on deadlock-free winning regions rather than productive winning regions
and drop the fairness assumption.

7 Empirical Evaluation

We investigate the applicability of our incremental approach (Algorithm3) to
Challenge 1 andChallenge 2, and compare with our adaption and implementa-
tion of the one-shot approach [15], see Sect. 4.1. We also employ the MDP model-
checking approach from Sect. 5. Experiments, videos, source code are archived9.

Setting. We implemented the one-shot algorithm, our incremental algorithm,
and the generation of the JANI description of the belief support MDP into the
model checker Storm [19] on top of the SMT solver z3 [38]. To compare with
the one-shot algorithm for Problem 1, that is, for finding a policy from the
initial state, we add a variant of Algorithm3. Intuitively, any outer iteration
starts with an SMT-check to see whether we find a policy covering the initial
states. We realize the latter by fixing (temporarily) the Cs-variables. In the first
iteration, this configuration and its resulting policy closely resemble the one-
shot approach. For the MDP model-checking approach, we use Storm (from
the C++ API) with the dd engine and default settings.

For the experiments, we use a MacBook Pro MV962LL/A, a single core, no
randomization, and use a 6 GB memory limit. The time-out (TO) is 15 min.
9 http://doi.org/10.5281/zenodo.4784940 or on http://github.com/sjunges/shielding-

POMDPs.

http://doi.org/10.5281/zenodo.4784940
http://github.com/sjunges/shielding-POMDPs
http://github.com/sjunges/shielding-POMDPs
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Baseline. We compare with the one-shot algorithm including the graph-based
preprocessing to identify more winning observations. We use two setups: (1) We
(manually, a-priori) search for optimal hyper-parameters for each instance. We
search for the smallest amount of memory possible, and for the smallest maximal
rank k (being a multiplicative of five) that yields a result. Guessing parameters
as an “oracle” is time-consuming and unrealistic. We investigate (2) the perfor-
mance of the one-shot algorithm by fixing the hyper-parameters to two memory-
states and k = 30. These parameters provide results for most benchmarks.

Benchmarks. Our benchmarks involve agents operating in N×N grids, inspired
by, e.g., [12,15,20,50,51]. See Fig. 2 for video stills of simulating the following
benchmarks. Rocks is a variant of rock sample. The grid contains two rocks which
are either valuable or dangerous to collect. To find out with certainty, the rock
has to be sampled from an adjacent field. The goal is to collect a valuable rock,
bring it to the drop-off zone, and not collect dangerous rocks. Refuel concerns a
rover that shall travel from one corner to the other, while avoiding an obstacle
on the diagonal. Every movement costs energy and the rover may recharge at
recharging stations to its full battery capacity E. It receives noisy information
about its position and battery level. Evade is a scenario where a robot needs to
reach a destination and evade a faster agent. The robot has a limited range of
vision (R), but may scan the whole grid instead of moving. A certain safe area
is only accessible by the robot. Intercept is inverse to Evade in the sense that
the robot aims to meet an agent before it leaves the grid via one of two available
exits. On top of the view radius, the agent observes a corridor in the center of the
grid. Avoid is a related scenario where a robot shall keep distance to patrolling
agents that move with uncertain speed, yielding partial information about their
position The robot may exploit their predefined routes. Obstacle contains static
obstacles where the robot needs to reach the exit. Its initial state and movement
are uncertain, and it only observes whether the current position is a trap or exit.

Results for Challenge 1. Table 1 details the numerical benchmark results. For
each benchmark instance (columns), we report the name and relevant charac-
teristics: the number of states (|S|), the number of transitions (#Tr, the edges
in the graph described by the POMDP), the number of observations (|Ω|), and
the number of belief support states (|b|). For the incremental method, we pro-
vide the run time (Time, in seconds), the number of outer iterations (#Iter.)
in Algorithm 3, and the number of invocations of the SMT solver (#solve), and
the approximate size of the winning region (|W|). We then report these numbers
when searching for a policy that wins from the initial state. For the one-shot
method, we provide the time for the optimal parameters (on the next line)–TOs
reflect settings in which we did not find any suitable parameters, and the time
for the preset parameters (2,30), or N/A if no policy can be found with these
parameters. Finally, for (belief-support) MDP model checking, we give only the
run times.

The incremental algorithm finds winning policies for the initial state without
guessing parameters and is often faster versus the one-shot approach with an
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Table 1. Numerical results towards solving Problem 1 and Problem 3.

Inst. Rocks (N) Refuel (N ,E) Evade (N ,R) Avoid (N ,R) Intercept (N ,R) Obstacle (N)

4 6 6,8 7,7 6,2 7,2 6,3 7,4 7,1 7,2 6 8

|S| 331 816 270 302 4232 8108 5976 13021 4705 4705 37 65

#Tr 3484 7292 1301 1545 28866 57570 14373 33949 18049 18049 224 421

|Ω| 65 74 36 35 2202 4172 3300 8584 2002 2598 4 4

|b| 3.5e5 7.7e25 5.6e14 7.4e19 1.1e8 4.4e11 1.1e15 2.9e17 6.4e10 2.7e9 1.1e9 2.9e17

in
c
re

m
e
n
ta

l

fi
x
p
o
in

t Time 19 753 6 3 142 613 167 745 116 86 2 30

#Iter. 36 284 40 30 4 6 3 4 8 8 68 150

#solve 1702 13650 1023 528 681 1129 629 1027 1171 976 839 4291

|W| 3.5e5 7.7e25 1.2e11 2.1e8 1.0e8 4.2e11 1.1e15 2.9e17 9.2e4 2.9e4 4.1e7 3.8e14

in
it

ia
l

Time 17 226 2 2 49 576 10 40 11 2 <1 <1

#Iter. 29 65 2 4 1 1 1 1 2 1 10 12

#solve 1215 2652 62 80 1 1 1 1 81 1 114 229

|W| 4.4e4 1.8e13 8.4e6 3.7e4 5.0e7 1.0e11 3.7e5 6.9e10 6.2e3 2.1e3 4.1e5 4.5e9

1
-s
h
o
t

o
p
t Time 120 TO 2 <1 12 270 22 53 8 1 1 195

Mem,k 2,10 ? 2,15 2,15 1,20 1,30 1,30 1,25 2,10 1,10 6,10 5,50

fi
x

Time TO TO 11 37 TO TO TO TO 28 18 N/A N/A

MDP Time 400 TO 219 MO TO TO TO TO TO TO 6 MO

oracle providing optimal parameters, and significantly faster than the one-shot
approach with reasonably fixed parameters. In detail, Rocks shows that we can
handle large numbers of iterations, solver invocations, and winning regions. The
incremental approach scales to larger models, see e.g., Avoid. Refuel shows a
large sensitivity of the one-shot method on the lookahead (going from 15 to 30
increases the runtime), while Evade shows sensitivity to memory (from 1 to 2).
In contrast, the incremental approach does not rely on user-input, yet deliv-
ers comparable performance on Refuel or Avoid. It suffers slightly on Evade,
where the one-shot approach has reduced overhead. We furthermore conclude
that off-the-shelf MDP model checking is not a fast alternative. Its advantage
is the guarantee to find the maximal winning region, however, for our bench-
marks, maximal winning regions (empirically) coincide with the results from the
incremental fixpoint approach.

Results for Challenge 2. Winning regions obtained from running incrementally
to a fixpoint are significantly larger than when running them only until an initial
winning policy is found (cf. the table), but requires extra computational effort.

If a shielded agent moves randomly through the grid-worlds, the larger win-
ning regions indeed induce more permissiveness, that is, freedom to move for the
agent (cf. the videos, Fig. 2). This observation can also be quantified. In Table 2,
we compare the two different types of shields. For both, we give average and stan-
dard deviation over permissiveness over 250 paths. We choose to approximate per-
missiveness along a path as the number of cumulative actions allowed by the per-
missive scheduler along a path, divided by the number of cumulative actions avail-
able in the POMDP along that path. As the shield is correct by construction, each
run indeed never visits avoid states and eventually reaches the target (albeit after
many steps). This statement is not true for the unshielded agents.
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Table 2. Quantification of permissiveness using fraction of allowed actions.

Inst. Rocks (N) Refuel (N ,E) Evade (N ,R) Avoid (N ,R) Intercept (N ,R) Obstacle (N)

4 6 6,8 7,7 6,2 7,2 6,3 7,4 7,1 7,2 6 8

initial
avg 0.85 0.81 0.43 0.36 0.62 0.50 0.51 0.56 0.45 0.47 0.68 0.74

stdev 0.066 0.070 0.046 0.014 0.046 0.043 0.013 0.019 0.037 0.047 0.040 0.047

fixpoint
avg 0.88 0.89 0.77 0.73 0.86 0.87 0.78 0.80 0.78 0.84 0.73 0.73

stdev 0.060 0.037 0.037 0.024 0.015 0.016 0.015 0.017 0.078 0.070 0.036 0.059

8 Conclusion

We provided an incremental approach to find POMDP policies that satisfy
almost-sure reachability specifications. The superior scalability is demonstrated
on a string of benchmarks. Furthermore, this approach allows to shield agents in
POMDPs and guarantees that any exploration of an environment satisfies the
specification, without needlessly restricting the freedom of the agent. We plan to
investigate a tight interaction with state-of-the-art reinforcement learning and
quantitative verification of POMDPs. For the latter, we expect that an explicit
approach to model checking the belief-support MDP can be feasible.
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Abstract. We present a detailed study of roundoff errors in probabilistic
floating-point computations. We derive closed-form expressions for the
distribution of roundoff errors associated with a random variable, and
we prove that roundoff errors are generally close to being uncorrelated
with their generating distribution. Based on these theoretical advances,
we propose a model of IEEE floating-point arithmetic for numerical
expressions with probabilistic inputs and an algorithm for evaluating this
model. Our algorithm provides rigorous bounds to the output and error
distributions of arithmetic expressions over random variables, evaluated
in the presence of roundoff errors. It keeps track of complex dependen-
cies between random variables using an SMT solver, and is capable of
providing sound but tight probabilistic bounds to roundoff errors using
symbolic affine arithmetic. We implemented the algorithm in the PAF
tool, and evaluated it on FPBench, a standard benchmark suite for the
analysis of roundoff errors. Our evaluation shows that PAF computes
tighter bounds than current state-of-the-art on almost all benchmarks.

1 Introduction

There are two common sources of randomness in a numerical computation (a
straight-line program). First, the computation might be using inherently noisy
data, for example from analog sensors in cyber-physical systems such as robots,
autonomous vehicles, and drones. A prime example is data from GPS sensors,
whose error distribution can be described very precisely [2] and which we study in
some detail in Sect. 2. Second, the computation itself might sample from random
number generators. Such probabilistic numerical routines, known as Monte-Carlo
methods, are used in a wide variety of tasks, such as integration [34,42], opti-
mization [43], finance [25], fluid dynamics [32], and computer graphics [30]. We
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call numerical computations whose input values are sampled from some proba-
bility distributions probabilistic computations.

Probabilistic computations are typically implemented using floating-point
arithmetic, which leads to roundoff errors being introduced in the computation.
To strike the right balance between the performance and energy consumption
versus the quality of the computed result, expert programmers rely on either
a manual or automated floating-point error analysis to guide their design deci-
sions. However, the current state-of-the-art approaches in this space have pri-
mary focused on worst-case roundoff error analysis of deterministic computa-
tions. So what can we say about floating-point roundoff errors in a probabilistic
context? Is it possible to probabilistically quantify them by computing confidence
intervals? Can we, for example, say with 99% confidence that the roundoff error
of the computed result is smaller than some chosen constant? What is the dis-
tribution of outputs when roundoff errors are taken into account? In this paper,
we explore these and similar questions. To answer them, we propose a rigorous
– that is to say sound – approach to quantifying roundoff errors in probabilis-
tic computations. Based on this approach, we develop an automatic tool that
efficiently computes an overapproximate probabilistic profile of roundoff errors.

As an example, consider the floating-point arithmetic expression (X +Y )÷Y ,
where X and Y are random inputs represented by independent random variables.
In Sect. 4, we first show how the computation in finite-precision of a single arith-
metic operation such as X + Y can be modeled as (X + Y )(1 + ε), where ε is
also a random variable. We then show how this random variable can be computed
from first principles and why it makes sense to view (X + Y ) and (1 + ε) as inde-
pendent expressions, which in turn allows us to easily compute the distribution of
(X + Y )(1 + ε). The distribution of ε depends on that of X + Y , and we there-
fore need to evaluate arithmetic operations between random variables. When the
operands are independent – as in X + Y – this is standard [48], but when the
operands are dependent – as in the case of the division in (X + Y ) ÷ Y – this is a
hard problem. To solve it, we adopt and improve a technique for soundly bound-
ing these distributions described in [3]. Our improvement comes from the use of an
SMT solver to reason about the dependency between (X + Y ) and Y and remove
regions of the state-space with zero probability. We describe this in Sect. 6.

We can thus soundly bound the output distribution of any probabilistic com-
putation, such as (X +Y )÷Y , performed in floating-point arithmetic. This gives
us the ability to perform probabilistic range analysis and prove rigorous asser-
tions like: 99% of the outputs of a floating-point computation are smaller than a
given constant bound. In order to perform probabilistic roundoff error analysis
we develop symbolic affine arithmetic in Sect. 5. This technique is combined with
probabilistic range analysis to compute conditional roundoff errors. Specifically,
we over-approximate the maximal error conditioned on the output landing in the
99% range computed by the probabilistic range analysis, meaning conditioned
on the computations not returning an outlier.

We implemented our model and algorithms in a tool called PAF (for Prob-
abilistic Analysis of Floating-point errors). We evaluated PAF on the standard
floating-point benchmark suite FPBench [11], and compared its range and error
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analysis with the worst-case roundoff error analyzer FPTaylor [46,47] and the
probabilistic roundoff error analyzer PrAn [36]. We present the results in Sect. 7,
and show that FPTaylor’s worst-case analysis is often overly pessimistic in the
probabilistic setting, while PAF also generates tighter probabilistic error bounds
than PrAn on almost all benchmarks.

We summarize our contributions as follows:

(i) We derive a closed-form expression (6) for the distribution of roundoff errors
associated with a random variable. We prove that roundoff errors are gen-
erally close to being uncorrelated with their input distribution.

(ii) Based on these results we propose a model of IEEE 754 floating-point arith-
metic for numerical expressions with probabilistic inputs.

(iii) We evaluate this model by developing a new algorithm for rigorously bound-
ing the output range and roundoff error distributions of floating-point arith-
metic expressions with probabilistic inputs.

(iv) We implement this model in the PAF tool,1 and perform probabilistic range
and roundoff error analysis on a standard benchmark suite. Our comparison
with the current state-of-the-art shows the advantages of our approach in
terms of computing tighter, and yet still rigorous, probabilistic bounds.

2 Motivating Example

GPS sensors are inherently noisy. Bornholt [1] shows that the conditional prob-
ability of the true coordinates given a GPS reading is distributed according to a
Rayleigh distribution. Interestingly, since the density of any Rayleigh distribu-
tion is always zero at x = 0, it is extremely unlikely that the true coordinates lie
in a small neighborhood of those given by the GPS reading. This leads to errors,
and hence the sensed coordinates should be corrected by adding a probabilistic
error term which, on average, shifts the observed coordinates into an area of high
probability for the true coordinates [1,2]. The latitude correction is given by:

TrueLat = GPSLat + ((radius ∗ sin(angle)) ∗ DPERM), (1)

where radius is Rayleigh distributed, angle uniformly distributed, GPSLat is
the latitude, and DPERM a constant for converting meters into degrees.

A developer trying to strike the right balance between resources, such as
energy consumption or execution time, versus the accuracy of the computation,
might want to run a rigorous worst-case floating-point analysis tool to determine
which floating-point format is accurate enough to process GPS signals. This is
mandatory if the developer requires rigorous error bounds holding with 100%
certainty. The problem when analyzing a piece of code involving (1) is that the
Rayleigh distribution has [0,∞) as its support, and any worst-case roundoff error
analysis will return an infinite error bound in this situation. To get a meaningful
(numeric) error bound, we need to truncate the support of the distribution. The
most conservative truncation is [0,max ], where max is the largest representable
number (not causing an overflow) at the target floating-point precision format.
1 PAF is open source and publicly available at https://github.com/soarlab/paf.

https://github.com/soarlab/paf
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Table 1. Roundoff error analysis for the probabilistic latitude correction of (1).

Precision Max FPTaylor PAF 100% PAF 99.9999%

Absolute Meters

Double ≈10307 4.3e+286 4.3e+286 4.1e−15 4.5e−10

Single ≈1038 2.1e+26 2.1e+26 3.7e−06 4.1e−1

Half ≈104 2.5e−2 2.5e−2 2.4e−2 2667

In Table 1, we report a detailed roundoff error analysis of (1) implemented
in IEEE 754 double-, single-, and half-precision formats, with GPSLat set to
the latitude of the Greenwich observatory. With each floating-point format, we
associate the range [0,max ] of the truncated Rayleigh distribution. We compute
worst-case roundoff error bounds for (1) with the state-of-the-art error analyzer
FPTaylor [47] and with our tool PAF by setting the confidence interval to 100%.
As expected, the error bounds from the two tools are identical. Finally, we com-
pute the 99.9999% conditional roundoff error using PAF. This value is an upper
bound to the roundoff error conditioned on the computation having landed in
an interval capturing 99.9999% of all possible outputs. Column Absolute gives
the error in degrees and Meters in meters (1◦ ≈111km).

By looking at the results obtained without our probabilistic error analysis
(columns FPTaylor and PAF 100%), the developer might erroneously conclude
that half-precision format is the most appropriate to implement (1) because it
results in the smallest error bound. However, with the information provided by
the 99.9999% conditional roundoff error, the developer can see that the average
error is many orders of magnitude smaller than the worst-case scenarios. Armed
with this information, the developer can conclude that with a roundoff error of
roughly 40 cm (4.1e−1 ms) when correcting 99.9999% of GPS latitude readings,
working in single-precision is an adequate compromise between efficiency and
accuracy of the computation.

This motivates the innovative concept of probabilistic precision tuning, evolv-
ed from standard worst-case precision tuning [5,12], to determine which floating-
point format is the most appropriate for a given computation. As an example, let
us do a probabilistic precision tuning exercise for the latitude correction compu-
tation of (1). We truncate the Rayleigh distribution in the interval [0, 10307], and
assume we can tolerate up to 1e−5 roundoff error (roughly 1 m). First, we man-
ually perform worst-case precision tuning using FPTaylor to determine that the
minimal floating-point format not violating the given error bound needs 1022 man-
tissa and 11 exponent bits. Such large custom format is prohibitively expensive,
in particular for devices performing frequent GPS readings, like smartphones or
smartwatches. Conversely, when we manually perform probabilistic precision tun-
ing using PAF with a confidence interval set to 99.9999%, we determine we need
only 22 mantissa and 11 exponent bits. Thanks toPAF, the developer can provide
a custom confidence interval of interest to the probabilistic precision tuning rou-
tine to adjust for the extremely unlikely corner cases like the ones we described for
(1), and ultimately obtain more optimal tuning results.
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3 Preliminaries

3.1 Floating-Point Arithmetic

Given a precision p ∈ N and an exponent range [emin, emax] � {n | n ∈
N ∧ emin ≤ n ≤ emax}, we define F(p, emin, emax), or simply F if there is no
ambiguity, as the set of extended real numbers

F �
{

(−1)s2e

(
1 +

k

2p

)∣∣∣∣ s ∈ {0, 1}, e ∈ [emin, emax], 0 ≤ k < 2p

}
∪ {−∞, 0,∞}

Elements z = z(s, e, k) ∈ F will be called floating-point representable numbers
(for the given precision p and exponent range [emin, emax]) and we will use the
variable z to represent them. The variable s will be called the sign, the variable
e the exponent, and the variable k the significand of z(s, e, k).

Next, we introduce a rounding map Round : R → F that rounds to nearest
(or to −∞/∞ for values smaller/greater than the smallest/largest finite element
of F) and follows any of the IEEE 754 rounding modes in case of a tie. We will
not worry about which choice is made since the set of mid-points will always have
probability zero for the distributions we will be working with. All choices are thus
equivalent, probabilistically speaking, and what happens in a tie can therefore
be left unspecified. We will denote the extended real line by R � R∪ {−∞,∞}.
The (signed) absolute error function errabs : R → R is defined as: errabs(x) =

x−Round(x). We define the sets 
z, z� �
= {y ∈ R | Round(y) = Round(z)}. Thus

if z ∈ F, then 
z, z� is the collection of all reals rounding to z. As the reader will
see, the basic result of Sect. 4 (Eq. (5)) is expressed entirely using the notation

z, z� which is parametric in the choice of the Round function. It follows that
our results apply to rounding modes other that round-to-nearest with minimal
changes. The relative error function errrel : R \ {0} → R is defined by

errrel(x) =
x − Round(x)

x
.

Note that errrel(x) = 1 on 
0, 0� \ {0}, errrel(x) = ∞ on 
 − ∞,−∞� and
errrel(x) = −∞ on 
∞,∞�. Recall also the fact [26] that −2−(p+1) < errrel(x) <
2−(p+1) outside of 
0, 0�∪
−∞,−∞�∪
∞,∞�. The quantity 2−(p+1) is usually
called the unit roundoff and will be denoted by u.

For z1, z2 ∈ F and op ∈ {+,−,×,÷} an (infinite-precision) arithmetic oper-
ation, the traditional model of IEEE 754 floating-point arithmetic [26,39] states
that the finite-precision implementation opm of op must satisfy

z1 opm z2 = (z1 op z2)(1 + δ) |δ| ≤ u, (2)

We leave dealing with subnormal floating-point numbers to future work. The
model given by Eq. (2) stipulates that the implementation of an arithmetic
operation can induce a relative error of magnitude at most u. The exact size of
the error is, however, not specified and Eq. (2) is therefore a non-deterministic
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model of computation. It follows that numerical analyses based on Eq. (2) must
consider all possible relative errors δ and are fundamentally worst-case analyses.
Since the output of such a program might be the input of another, one should
also consider non-deterministic inputs, and this is indeed what happens with
automated tools for roundoff error analysis, such as Daisy [12] or FPTaylor [46,
47], which require for each variable of the program a (bounded) range of possible
values in order to perform a worst-case analysis (cf. GPS example in Sect. 2).

In this paper, we study a model formally similar to Eq. (2), namely

z1 opm z2 = (z1 op z2)(1 + δ) δ ∼ dist. (3)

The difference is that δ is now distributed according to dist, a probability distribu-
tion whose support is [−u, u]. In other words, we move from a non-deterministic
to a probabilistic model of roundoff errors. This is similar to the ‘Monte Carlo
arithmetic’ of [41], but whilst op. cit. postulates that dist is the uniform distri-
bution on [−u, u], we compute dist from first principles in Sect. 4.

3.2 Probability Theory

To fix the notation and be self-contained, we present some basic notions of
probability theory which are essential to what follows.

Cumulative Distribution Functions and Probability Density Func-
tions. We assume that the reader is (at least intuitively) familiar with the notion
of a (real) random variable. Given a random variable X we define its Cumulative
Distribution Function (CDF) as the function c(t) � P [X ≤ t]. If there exists a
non-negative integrable function d : R → R such that

c(t) � P [X ≤ t] =
∫ t

−∞
d(t) dt

then we call d(t) the Probability Density Function (PDF) of X. If it exists,
then it can be recovered from the CDF by differentiation d(t) = ∂

∂tc(t) by the
fundamental theorem of calculus.

Not all random variables have a PDF: consider the random variable which
takes value 0 with probability 1/2 and value 1 with probability 1/2. For this
random variable it is impossible to write P [X ≤ t] =

∫
d(t) dt. Instead, we will

write the distribution of such a variable using the so-called Dirac delta measure
at 0 and 1 as 1/2δ0 + 1/2δ1. It is possible for a random variable to have a PDF
covering part of its distribution – its continuous part – and a sum of Dirac
deltas covering the rest of its distribution – its discrete part. We will encounter
examples of such random variables in Sect. 4. Finally, if X is a random variable
and f : R → R is a measurable function, then f(X) is a random variable. In
particular errrel(X) is a random variable which we will describe in Sect. 4.

Arithmetic on Random Variables. Suppose X,Y are independent random
variables with PDFs fX and fY , respectively. Using the arithmetic operations we
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can form new random variables X +Y,X −Y,X ×Y,X ÷Y . The PDFs of these
new random variables can be expressed as operations on fX and fY , which can
be found in [48]. It is important to note that these operations are only valid if X
and Y are assumed to be independent. When an arithmetic expression containing
variable repetitions is given a random variable interpretation, this independence
can no longer be assumed. In the expression (X +Y )÷Y the sub-term (X +Y )
can be interpreted by the formulas of [48] if X,Y are independent. However, the
sub-terms X + Y and Y cannot be interpreted in this way since X + Y and Y
are clearly not independent random variables.

Soundly Bounding Probabilities. The constraint that the distribution of
a random variable must integrate to 1 makes it impossible to order random
variables in the ‘natural’ way: if P [X ∈ A] ≤ P [Y ∈ A], then P [Y ∈ Ac] ≤
P [X ∈ Ac], i.e., we cannot say that X ≤ Y if P [X ∈ A] ≤ P [Y ∈ A]. This
means that we cannot quantify our probabilistic uncertainty about a random
variable by sandwiching it between two other random variables as one would do
with reals or real-valued functions. One solution is to restrict the sets used in
the comparison, i.e., declare that X ≤ Y iff P [X ∈ A] ≤ P [Y ∈ A] for A ranging
over a given set of ‘test subsets’. Such an order can be defined by taking as ‘test
subsets’ the intervals (−∞, x] [44]. This order is called the stochastic order. It
follows from the definition of the CDF that this order can be defined by simply
saying that X ≤ Y iff cX ≤ cY , where cX and cY are the CDFs of X and Y ,
respectively. If it is possible to sandwich an unknown random variable X between
known lower and upper bounds Xlower ≤ X ≤ Xupper using the stochastic order
then it becomes possible to give sound bounds to the quantities P [X ∈ [a, b]] via

P [X ∈ [a, b]] = cX(b) − cX(a) ≤ cXupper
(b) − cXlower

(a)

P-Boxes and DS-Structures. As mentioned above, giving a random variable
interpretation to an arithmetic expression containing variable repetitions cannot
be done using the arithmetic of [48]. In fact, these interpretations are in general
analytically intractable. Hence, a common approach is to give up on soundness
and approximate such distributions using Monte-Carlo simulations. We use this
approach in our experiments to assess the quality of our sound results. However,
we will also provide sound under- and over-approximations of the distribution of
arithmetic expressions over random variables using the stochastic order discussed
above. Since Xlower ≤ X ≤ Xupper is equivalent to saying that cXlower

(x) ≤
cX(x) ≤ cXupper

(x), the fundamental approximating structure will be a pair of
CDFs satisfying c1(x) ≤ c2(x). Such a structure is known in the literature as
a p-box [19], and has already been used in the context of probabilistic roundoff
errors in related work [3,36]. The data of a p-box is equivalent to a pair of
sandwiching distributions for the stochastic order.

A Dempster-Shafer structure (DS-structure) of size N is a collection (i.e., set)
of interval-probability pairs {([x0, y0], p0), ([x1, y2], p1), .., ([xN , yN ], pN )} where∑N

i=0 pi = 1. The intervals in the collection might overlap. One can always
convert a DS-structure to a p-box and back again [19], but arithmetic operations
are much easier to perform on DS-structures than on p-boxes ([3]), which is why
we will use DS-structures in the algorithm described in Sect. 6.
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4 Distribution of Floating-Point Roundoff Errors

Our tool PAF computes probabilistic roundoff errors by conditioning the max-
imization of symbolic affine form (presented in Sect. 5) on the output of the
computation landing in a confidence interval. The purpose of this section is to
provide the necessary probabilistic tools to compute these intervals. In other
words, this section provides the foundations of probabilistic range analysis. All
proofs can be found in the extended version [7].

4.1 Derivation of the Distribution of Rounding Errors

Recall the probabilistic model of Eq. (3) where op is an infinite-precision
arithmetic operation and opm its finite-precision implementation:

z1 opm z2 = (z1 op z2)(1 + δ) δ ∼ dist.

Let us also assume that z1, z2 are random variables with known distributions.
Then z1 op z2 is also a random variable which can (in principle) be computed.
Since the IEEE 754 standard states that z1 opm z2 is computed by rounding the
infinite precision operation z1 op z2, it is a completely natural consequence of
the standard to require that δ is simply be given by

δ = errrel(z1 op z2)

Thus, dist is the distribution of the random variable errrel(z1 op z2). More gen-
erally, if X is a random variable with know distribution, we will show how to
compute the distribution dist of the random variable

errrel(X) =
X − Round(X)

X
.

We choose to express the distribution dist of relative errors in multiples of the
unit roundoff u. This choice is arbitrary, but it allows us to work with a dis-
tribution on the conceptually and numerically convenient interval [−1, 1], since
the absolute value of the relative error is strictly bounded by u (see Sect. 3.1),
rather than the interval [−u, u].

To compute the density function of dist, we proceed as described in Sect. 3.2
by first computing the CDF c(t) and then taking its derivative. Recall first from
Sect. 3.1 that errrel(x) = 1 if x ∈ 
0, 0� \ {0}, errrel(x) = ∞ if x ∈ 
 − ∞,−∞�,
errrel(x) = −∞ if x ∈ 
∞,∞�, and −u ≤ errrel(x) ≤ u elsewhere. Thus:

P [errrel(X) = −∞] = P
[
X ∈ 
∞,∞�]

P [errrel(X) = 1] = P
[
X ∈ 
0, 0�]

P [errrel(X) = ∞] = P
[
X ∈ 
 − ∞,−∞�]

In other words, the probability measure corresponding to errrel has three discrete
components at {−∞}, {1}, and {∞}, which cannot be accounted for by a PDF
(see Sect. 3.2). It follows that the probability measure dist is given by

distc + P
[
X∈
0, 0�]

δ1 + P
[
X∈
 − ∞,−∞�]

δ∞ + P
[
X∈
∞,∞�]

δ−∞ (4)
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Fig. 1. Theoretical vs. empirical error distribution, clockwise from top-left: (i) Eq.
(5) for Unif(2, 4) 3 bit exponent, 4 bit significand, (ii) Eq. (5) for Unif(2, 4) in half-
precision, (iii) Eq. (6) for Unif(7, 8) in single-precision, (iv) Eq. (6) for Unif(4, 5) in
single-precision, (v) Eq. (6) for Unif(4, 32) in single-precision, (vi) Eq. (6) for Norm(0, 1)
in single-precision.

where distc is a continuous measure that is not quite a probability measure
since its total mass is 1 − P [X ∈ 
0, 0�] − P [X∈
 − ∞,−∞�] − P [X∈
∞,∞�].
In general, distc integrates to 1 in machine precision since P [X ∈ 
0, 0�] is of
the order of the smallest positive floating-point representable number, and the
PDF of X rounds to 0 way before it reaches the smallest/largest floating-point
representable number. However in order to be sound, we must in general include
these three discrete components to our computations. The density distc is given
explicitly by the following result whose proof can already be found in [9].

Theorem 1. Let X be a real random variable with PDF f . The continuous part
distc of the distribution of errrel(X) has a PDF given by

d(t) =
∑

z∈F\{−∞,0,∞}
1
z,z�

(
z

1 − tu

)
f

(
z

1 − tu

)
u |z|

(1 − tu)2
, (5)

where 1A(x) is the indicator function which returns 1 if x ∈ A and 0 otherwise.

Figure 1 (i) and (ii) shows an implementation of Eq. (5) applied to the distri-
bution Unif(2, 4), first in very low precision (3 bit exponent, 4 bit significand) and
then in half-precision. The theoretical density is plotted alongside a histogram
of the relative error incurred when rounding 100,000 samples to low precision
(computed in double-precision). The reported statistic is the K-S (Kolmogorov-
Smirnov) test which measures the likelihood that a collection of samples were
drawn from a given distribution. This test reports that we cannot reject the
hypothesis that the samples are drawn from the corresponding density. Note
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how in low precision the term in 1
(1−tu)2 induces a visible asymmetry on the

central section of the distribution. This effect is much less pronounced in half-
precision.

For low precisions, say up to half-precision, it is computationally feasible
to explicitly go through all floating-point numbers and compute the density of
the roundoff error distribution dist directly from Eq. (5). However, this rapidly
becomes prohibitively computationally expensive for higher precisions (since the
number of floating-point representable numbers grows exponentially).

4.2 High-Precision Case

As the working precision increases, a regime changes occurs: on the one hand
it becomes practically impossible to enumerate all floating-point representable
numbers as done in Eq. (5), but on the other hand sufficiently well-behaved den-
sity functions are numerically close to being constant at the scale of an interval
between two floating-point representable numbers. We exploit this smoothness
to overcome the combinatorial limit imposed by Eq. (5).

Theorem 2. Let X be a real random variable with PDF f . The continuous part
distc of the distribution of errrel(X) has a PDF given by dc(t) = dhp(t) + R(t)
where dhp(t) is the function on [−1, 1] defined by

dhp(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
1−tu

emax−1∑
s,e=emin+1

∫ (−1)s2e(2−u)

(−1)s2e(1−u)
|x|

2e+1 f(x) dx |t| ≤ 1
2

1
1−tu

emax−1∑
s,e=emin+1

∫ (−1)s2e( 1
|t|−u)

(−1)s2e(1−u)
|x|

2e+1 f(x) dx 1
2 < |t| ≤ 1

(6)

and R(t) is an error whose total contribution |R|�∫ 1

−1
|R(t)|dt can be bounded by

|R| ≤ P [Round(X) = z(s, emin, k)] + P [Round(X) = z(s, emax, k)] +

3
4

( ∑
s,emin<e<emax

|f ′(ξe,s)ξe,s + f(ξe,s)| 22e

2p

)

where for each exponent e and sign s, ξe,s is a point in [z(s, e, 0), z(s, e, 2p − 1)]
if s = 0 and in [z(s, e, 2p − 1), z(s, e, 0)] if s = 1.

Note how Eq. (6) reduces the sum over all floating-point representable num-
bers in Eq. (5) to a sum over the exponents by exploiting the regularity of f .
Note also that since f is a PDF, it usually decreases very quickly away from 0,
and its derivative decreases even quicker and |R| thus tends to be very small and
|R| → 0 as the precision p → ∞.

Figure 1 shows Eq. (6) for: (i) the distribution Unif(7, 8) where large signif-
icands are more likely, (ii) the distribution Unif(4, 5) where small significands
are more likely, (iii) the distribution Unif(4, 32) where significands are equally
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likely, and (iv) the distribution Norm(0, 1) with infinite support. The graphs show
the density function given by Eq. (6) in single-precision versus a histogram of
the relative error incurred when rounding 1,000,000 samples to single-precision
(computed in double-precision). The K-S test reports that we cannot reject the
hypothesis that the samples are drawn from the corresponding distributions.

4.3 Typical Distribution

Fig. 2. Typical distribution.

The distributions depicted in graphs (ii), (v)
and (vi) of Fig. 1 are very similar, despite being
computed from very different input distributions.
What they have in common is that their input
distributions have the property that all signif-
icands in their supports are equally likely. We
show that under this assumption, the distribution
of roundoff errors given by Eq. (5) converges to
a unique density as the precision increases, irre-
spective of the input distribution! Since signifi-
cands are frequently equiprobable (it is the case for a third of our benchmarks),
this density is of great practical importance. If one had to choose ‘the’ canonical
distribution for roundoff errors, we claim that the density given below should be
this distribution, and we therefore call it the typical distribution; we depict it in
Fig. 2 and formalize it with the following theorem, which can mostly be found
in [9].

Theorem 3. If X is a random variable such that P [Round(X) = z(s, e, k0)] =
1
2p for any significand k0, then

dtyp(t) � lim
p→∞ d(t) =

{
3
4 |t| ≤ 1

2
1
2

(
1
t − 1

)
+ 1

4

(
1
t − 1

)2 |t| > 1
2

(7)

where d(t) is the exact density given by Eq. (5).

4.4 Covariance Structure

The result above can be interpreted as saying that if X is such that all man-
tissas are equiprobable, then X and errrel(X) are asymptotically independent
(as p → ∞). Much more generally, we now show that if a random variable X
has a sufficiently regular PDF, it is close to being uncorrelated from errrel(X).
Formally, we prove that the covariance

Cov(X, errrel(X)) = E [X.errrel(X)] − E [X]E [errrel(X)] (8)

is small, specifically of the order of u. Note that the expectation in the first
summand above is taken w.r.t. the joint distribution of X and errrel(X).

The main technical obstacles to proving that the expression above is small
are that E [errrel(X)] turns out to be difficult to compute (we only manage to
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bound it) and that the joint distribution P [X ∈ A ∧ errrel(X) ∈ B] does not have
a PDF since it is not continuous w.r.t. the Lebesgue measure on R

2. Indeed, it
is supported by the graph of the function errrel which has a Lebesgue measure
of 0. This does not mean that it is impossible to compute the expectation

E [X.errrel(X)] =
∫
R2

xut dP (9)

but it is necessary to use some more advanced probability theory. We will make
the simplifying assumption that the density of X is constant on each interval

z, z� in order to keep the proof manageable. In practice this is an extremely good
approximation. Without this assumption, we would need to add an error term
similar to that of Theorem 2 to the expression below. This is not conceptually
difficult, but it is messy, and would distract from the main aim of the following
theorem which is to bound E [errrel(X)], compute E [X.errrel(X)], and show that
the covariance between X and errrel(X) is typically of the order of u.

Theorem 4. If the density of X is piecewise constant on intervals 
z, z�, then

(
L − E [X] K

u

6

)
≤ Cov(X, errrel(X)) ≤

(
L − E [X] K

4u

3

)

where L =
∑
s,e

f((−1)s2e)(−1)s22e 3u2

2 and K =
emax−1∑

s,e=emin+1

∫ (−1)s2e(2−u)

(−1)s2e(1−u)
|x|

2e+1

f(x) dx.

If the distribution of X is centered (i.e., E [X] = 0) then L is the exact value of
the covariance, and it is worth noting that L is fundamentally an artifact of the
floating-point representation and is due to the fact that the intervals 
2e, 2e� are
not symmetric. More generally, for E [X] of the order of, say, 2, the covariance
will be small (of the order of u) as K ≤ 1 (since |x| ≤ 2e+1 in each summand).
For very large values of E [X] it is worth noting that there is a high chance
that L is also be very large, partially canceling E [X]. An illustration of this
is given by the doppler benchmark examined in Sect. 7, an outlier as it has an
input variable with range [20, 20000]. Nevertheless, even for this benchmark the
bounds of Theorem 4 still give a small covariance of the order of 0.001.

4.5 Error Terms and P-Boxes

In low-precision we can use the exact formula Eq. (5) to compute the error distri-
bution. However, in high-precision, approximations (typically extremely good)
like Eqs. (6) and (7) must be used. In order to remain sound in the implemen-
tation of our model (see Sect. 6) we must account for the error made by this
approximation. We have not got the space to discuss the error made by Eq. (7),
but taking the term |R| of Theorem 2 as an illustration, we can use the notion
of p-box described in Sect. 3.2 to create an object which soundly approximates
the error distribution. We proceed as follows: since |R| bounds the total error
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accumulated over all t ∈ [−1, 1], we can soundly bound the CDF c(t) of the error
distribution given by Eq. (6) by using the p-box

c−(t) = max(0, c(t) − |R|) and c+(t) = min(1, c(t) + |R|)

5 Symbolic Affine Arithmetic

In this section, we introduce symbolic affine arithmetic, which we employ to gen-
erate the symbolic form for the roundoff error that we use in Sect. 6.3. Affine
arithmetic [6] is a model for range analysis that extends classic interval arith-
metic [40] with information about linear correlations between operands. Sym-
bolic affine arithmetic extends standard affine arithmetic by keeping the coeffi-
cients of the noise terms symbolic. We define a symbolic affine form as

x̂ = x0 +
n∑

i=1

xiεi, where εi ∈ [−1, 1]. (10)

We call x0 the central symbol of the affine form, while xi are the symbolic
coefficients for the noise terms εi. We can always convert a symbolic affine form
to its corresponding interval representation. This can be done using interval
arithmetic or, to avoid precision loss, using a global optimizer.

Affine operations between symbolic forms follow the usual rules, such as

αx̂ + βŷ + ζ = αx0 + βy0 + ζ +
n∑

i=1

(αxi + βyi)εi

Non-linear operations cannot be represented exactly using an affine form. Hence,
we approximate them like in standard affine arithmetic [49].

Sound Error Analysis with Symbolic Affine Arithmetic. We now show
how the roundoff errors get propagated through the four arithmetic operations.
We apply these propagation rules to an arithmetic expression to accurately keep
track of the roundoff errors. Since the (absolute) roundoff error directly depends
on the range of a computation, we describe range and error together as a pair
(range: Symbol, êrr: Symbolic Affine Form). Here, range represents the
infinite-precision range of the computation, while êrr is the symbolic affine form
for the roundoff error in floating-point precision. Unary operators (e.g., rounding)
take as input a (range, error form) pair, and return a new output pair; binary
operators take as input two pairs, one per operand. For linear operators, the
ranges and errors get propagated using the standard rules of affine arithmetic.

For the multiplication, we distribute each term in the first operand to every
term in the second operand:

(x, êrrx) ∗ (y, êrry) = (x*y, x ∗ êrry + y ∗ êrrx + êrrx ∗ êrry)

The output range is the product of the input ranges and the remaining terms
contribute to the error. Only the last (quadratic) expression cannot be repre-
sented exactly in symbolic affine arithmetic; we bound such non-linearities using
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a global optimizer. The division is computed as the term-wise multiplication of
the numerator with the inverse of the denominator. Hence, we need the inverse
of the denominator error form, and then we can proceed as for multiplication. To
compute the inverse, we leverage the symbolic expansion used in FPTaylor [46].

Finally, after every operation we apply the unary rounding operator from
Eq. (2). The infinite-precision range is not affected by rounding. The rounding
operator appends a fresh noise term to the symbolic error form. The coefficient
for the new noise term is the (symbolic) floating-point range given by the sum
of the input range with the input error form.

Fig. 3. Toolflow of PAF.

6 Algorithm and Implementation

In this section, we describe our probabilistic model of floating-point arithmetic
and how we implement it in a prototype named PAF (for Probabilistic Analysis
of Floating-point errors). Figure 3 shows the toolflow of PAF.

6.1 Probabilistic Model

PAF takes as input a text file describing a probabilistic floating-point compu-
tation and its input distributions. The kinds of computations we support are
captured with this simple grammar:

t ::= z | xi | t opm t z ∈ F, i ∈ N, opm ∈ {+,−,×,÷}
Following [8,31], we interpret each computation t given by the grammar as a
random variable. We define the interpretation map �−� over the computation
tree inductively. The base case is given by �z(s, e, k)� � (−1)s2e(1 + k2−p)
and �xi� � Xi, where the real numbers �z(s, e, k)� are understood as constant
random variables and each Xi is a random input variable with a user-specified
distribution. Currently, PAF supports several well-known distributions out-of-
the-box (e.g., uniform, normal, exponential), and the user can also define custom
distributions as piecewise functions. For the inductive case �t1 opm t2�, we put
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the lessons from Sect. 4 to work. Recall first the probabilistic model from Eq.
(3):

x opm y = (x op y)(1 + δ), δ ∼ dist

In Sect. 4.1, we showed that dist should be taken as the distribution of the actual
roundoff errors of the random elements (x op y). We therefore define:

�t1 opm t2� � (�t1� op �t2�) × (1 + errrel(�t1� op �t2�)) (11)

To evaluate the model of Eq. (11), we first use the appropriate closed-form
expression Eqs. (5) to (7) derived in Sect. 4 to evaluate the distribution of the
random variable errrel(�t1� op �t2�)—or the corresponding p-box as described
in Sect. 4.5. We then use Theorem 4 to justify evaluating the multiplication oper-
ation in Eq. (11) independently—that is to say by using [48]—since the roundoff
process is very close to being uncorrelated to the process generating it. The
validity of this assumption is also confirmed experimentally by the remarkable
agreement of Monte-Carlo simulations with this analytical model.

We now introduce the algorithm for evaluating the model given in Eq. (11).
The evaluation performs an in-order (LNR) traversal of the Abstract Syntax
Tree (AST) of a computation given by our grammar, and it feeds the results
to the parent level along the way. At each node, it computes the probabilistic
range of the intermediate result using the probabilistic ranges computed for its
children nodes (i.e., operands). We first determine whether the operands are
independent or not (Ind? branch in the toolflow), and we either apply a cheaper
(i.e., no SMT solver invocations) algorithm if they are independent (see below) or
a more involved one (see Sect. 6.2) if they are not. We describe our methodology
at a generic intermediate computation in the AST of the expression.

We consider two distributions X and Y discretized into DS-structures DSX

and DSY (Sect. 3.2), and we want to derive the DS-structure DSZ for Z =
X op Y , op ∈ {+,−,×,÷}. Together with the DS-structures of the operands, we
also need the traces traceX and traceY containing the history of the operations
performed so far, one for each operand. A trace is constructed at each leaf of the
AST with the input distributions and their range. It is then propagated to the
parent level and populated at each node with the current operation. Such history
traces are critical when dealing with dependent operations since they allow us
to interrogate an SMT solver about the feasibility of the current operation, as
we describe in the next section. When the operands are independent, we simply
use the arithmetic operations on independent DS-structures [3].

6.2 Computing Probabilistic Ranges for Dependent Operands

When the operands are dependent, we start by assuming that the dependency is
unknown. This assumption is sound because the dependency of the operation is
included in the set of unknown dependencies, while the result of the operation is
no longer a single distribution but a p-box. Due to this “unknown assumption”,
the CDFs of the output p-box are a very pessimistic over-approximation of
the operation, i.e., they are far from each other. Our key insight is to use an
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Algorithm 1. Dependent Operation Z = X op Y

1: function dep op(DSX , op , DSY , traceX , traceY )
2: DSZ = list()
3: for all ([x1, x2], px) ∈ DSX do
4: for all ([y1, y2], py) ∈ DSY do
5: [z1, z2] = [x1, x2] op [y1, y2] � operation between intervals
6: [z′

1, z
′
2] = SMT.prune([z1, z2])

7: if SMT.check(traceX ∧ traceY ∧ [x1, x2] ∧ [y1, y2]) is SAT then
8: pZ = unknown-probability
9: else

10: pZ = 0

11: DSZ .append(([z′
1, z

′
2], pZ))

12: traceZ = traceX ∪ traceY ∪ {Z = X op Y }
13: return DSZ , traceZ

SMT solver to prune infeasible combinations of intervals from the input DS-
structures, which prunes regions of zero probability from the output p-box. This
probabilistic pruning using a solver squeezes together the CDFs of the output
p-box, often resulting in a much more accurate over-approximation. With the
solver, we move from an unknown to a partially known dependency between the
operands. Currently, PAF supports the Z3 [17] and dReal [23] SMT solvers.

Algorithm 1 shows the pseudocode of our algorithm for computing the proba-
bilistic output range (i.e., DS-structure) for dependent operands. When dealing
with dependent operands, interval arithmetic (line 5) might not be as precise
as in the independent case. Hence, we use an SMT solver to prune away any
over-approximations introduced by interval arithmetic when computing with
dependent ranges (line 6); this use of the solver is orthogonal to the one dealing
with probabilities. On line 7, we check with an SMT solver whether the current
combination of ranges [x1, x2] and [y1, y2] is compatible with the traces of the
operands. If the query is satisfiable, the probability is strictly greater than zero
but currently unknown (line 8). If the query is unsatisfiable, we assign a proba-
bility of zero to the range in DSZ (line 10). Finally, we append a new range to
the DS-structure DSZ (line 11). Note that the loops are independent, and hence
in our prototype implementation we run them in parallel.

After this algorithm terminates, we still need to assign probability values to
all the unknown-probability ranges in DSZ . Since we cannot assign an exact
value, we compute a range of potential values [pzmin

, pzmax
] instead. This com-

putation is encoded as a linear programming routine exactly as in [3].

6.3 Computing Conditional Roundoff Error

The final step of our toolflow computes the conditional roundoff error by com-
bining the symbolic affine arithmetic error form of the computation (see Sect. 5)
with the probabilistic range analysis described above. The symbolic error form
gets maximized conditioned on the results of all the intermediate operations
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Algorithm 2. Conditional Roundoff Error Computation

1: function cond err(DSS, errorForm, confidence)
2: allRanges = list()
3: for all DSi ∈ DSS do
4: focals = sorted(DSi, key = prob, order = descending)
5: accumulator = 0
6: ranges = Ø
7: for all ([x1, x2], px) ∈ focals do
8: accumulator = accumulator + px

9: ranges = ranges ∪ [x1, x2]
10: if accumulator ≥ confidence then
11: allRanges.append(ranges)
12: break
13: error = maximize(errorForm, allRanges)
14: return error

landing in the given confidence interval (e.g., 99%) of their respective ranges
(computed as described in the previous section). Note that conditioning only on
the last operation of the computation tree (i.e., the AST root) would lead to
extremely pessimistic over-approximation since all the outliers in the intermedi-
ate operations would be part of the maximization routine. This would lead to our
tool PAF computing pessimistic error bounds typical of worst-case analyzers.

Algorithm 2 shows the pseudocode of the roundoff error computation algo-
rithm. The algorithm takes as input a list DSS of DS-structures (one for each
intermediate result range in the computation), the generated symbolic error
form, and a confidence interval. It iterates over all intermediate DS-structures
(line 3), and for each it determines the ranges needed to support the chosen confi-
dence intervals (lines 4–12). In each iteration, it sorts the list of range-probability
pairs (i.e., focal elements) of the current DS-structure by their probability value
in a descending order (line 4). This is a heuristic that prioritizes the focal ele-
ments with most of the probability mass and avoids the unlikely outliers that
cause large roundoff errors into the final error computation. With the help of an
accumulator (line 8), we keep collecting focal elements (line 9) until the accumu-
lated probability satisfies the confidence interval (line 10). Finally, we maximize
the error form conditioned to the collected ranges of intermediate operations (line
13). The maximization is done using the rigorous global optimizer Gelpia [24].

7 Experimental Evaluation

We evaluate PAF (version 1.0.0) on the standard FPBench benchmark suite [11,
20] that uses the four basic operations we currently support {+,−,×,÷}. Many
of these benchmarks were also used in recent related work [36] that we compare
against. The benchmarks come from a variety of domains: embedded software
(bsplines), linear classifications (classids), physics computations (dopplers), fil-
ters (filters), controllers (traincars, rigidBody), polynomial approximations of
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functions (sine, sqrt), solving equations (solvecubic), and global optimizations
(trids). Since FPBench has been primarily used for worst-case roundoff error
analysis, the benchmarks come with ranges for input variables, but they do
not specify input distributions. We instantiate the benchmarks with three well-
known distributions for all the inputs: uniform, standard normal distribution,
and double exponential (Laplace) distribution with σ = 0.01 which we will call
‘exp’. The normal and exp distributions get truncated to the given range. We
assume single-precision floating-point format for all operands and operations.

To assess the accuracy and performance of PAF, we compare it with PrAn
(commit 7611679 [10]), the current state-of-the-art tool for automated analysis
of probabilistic roundoff errors [36]. PrAn currently supports only uniform and
normal distributions. We run all 6 tool configurations and report the best result
for each benchmark. We fix the number of intervals in each discretization to 50 to
match PrAn. We choose 99% as the confidence interval for the computation of our
conditional roundoff error (Sect. 6.3) and of PrAn’s probabilistic error. We also
compare our probabilistic error bounds against FPTaylor (commit efbbc83 [21]),
which performs worst-case roundoff error analysis, and hence it does not take
into account the distributions of the input variables. We ran our experiments in
parallel on a 4-socket 2.2 GHz 8-core Intel Xeon E5-4620 machine.

Table 2 compares roundoff errors reported by PAF, PrAn, and FPTaylor.
PAF outperforms PrAn by computing tighter probabilistic error bounds on
almost all benchmarks, occasionally by orders of magnitude. In the case of uni-
form input distributions, PAF provides tighter bounds for 24 out of 27 bench-
marks, for 2 benchmarks the bounds from PrAn are tighter, while for sqrt they
are the same. In the case of normal input distributions, PAF provides tighter
bounds for all the benchmarks. Unlike PrAn, PAF supports probabilistic output
range analysis as well. We present these results in the extended version [7].

In Table 2, of particular interest are benchmarks (10 for normal and 18 for
exp) where the error bounds generated by PAF for the 99% confidence interval
are at least an order of magnitude tighter than the worst-case bounds generated
by FPTaylor. For such a benchmark and input distribution, PAF’s results inform
a user that there is an opportunity to optimize the benchmark (e.g., by reducing
precision of floating-point operations) if their use-case can handle at most 1% of
inputs generating roundoff errors that exceed a user-provided bound. FPTaylor’s
results, on the other hand, do not allow for a user to explore such fine-grained
trade-offs since they are worst-case and do not take probabilities into account.

In general, we see a gradual reduction of the errors transitioning from uniform
to normal to exp. When the input distributions are uniform, there is a significant
chance of generating a roundoff error of the same order of magnitude as the worst-
case error, since all inputs are equally likely. The standard normal distribution
concentrates more than 99% of probability mass in the interval [−3, 3], resulting
in the long tail phenomenon, where less than 0.5% of mass spreads in the interval
[3,∞]. When the normal distribution gets truncated in a neighborhood of zero
(e.g., [0, 1] for bsplines and filters) nothing changes with respect to the uniform
case—there is still a high chance of committing errors close to the worst-case.
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Table 2. Roundoff error bounds reported by PAF, PrAn, and FPTaylor given uniform
(uni), normal (norm), and Laplace (exp) input distributions. We set the confidence
interval to 99% for PAF and PrAn, and mark the smallest reported roundoff errors for
each benchmark in bold. Asterisk (*) highlights a difference of more than one order of
magnitude between PAF and FPTaylor.

Benchmark Uniform Normal Exp FpTaylor

PAF PrAn PAF PrAn PAF

bspline0 5.71e−08 6.12e−08 5.71e−08 6.12e−08 5.71e−08 5.72e−08

bspline1 1.86e−07 2.08e−07 1.86e−07 2.08e−07 6.95e−08 1.93e−07

bspline2 1.94e−07 2.13e−07 1.94e−07 2.13e−07 2.11e−08 2.10e−07

bspline3 4.22e−08 4.65e−08 4.22e−08 4.65e−08 7.62e−12* 4.22e−08

classids0 6.93e−06 8.65e−06 4.45e−06 8.64e−06 1.70e−06 6.85e−06

classids1 3.71e−06 4.63e−06 2.68e−06 4.62e−06 7.62e−07 3.62e−06

classids2 5.23e−06 7.32e−06 3.85e−06 7.32e−06 1.46e−06 5.15e−06

doppler1 7.95e−05 1.17e−04 5.08e−07* 1.17e−04 4.87e−07* 6.10e−05

doppler2 1.43e−04 2.45e−04 6.61e−07* 2.45e−04 6.28e−07* 1.11e−04

doppler3 4.55e−05 5.12e−05 9.11e−07* 5.12e−05 8.95e−07* 3.41e−05

filter1 1.25e−07 2.03e−07 1.25e−07 2.03e−07 5.43e−09* 1.25e−07

filter2 7.93e−07 1.01e−06 6.13e−07 1.01e−06 2.90e−08* 7.93e−07

filter3 2.34e−06 2.86e−06 2.05e−06 2.87e−06 1.09e−07* 2.23e−06

filter4 4.15e−06 5.20e−06 4.15e−06 5.20e−06 4.61e−07 3.81e−06

rigidbody1 1.74e−04 1.58e−04 6.14e-06* 1.58e−04 4.80e−07* 1.58e−04

rigidbody2 1.96e−02 9.70e−03 5.99e-05* 9.70e−03 9.55e−07* 1.94e−02

sine 2.37e−07 2.40e−07 2.37e−07 2.40e−07 1.49e−08* 2.38e−07

solvecubic 1.78e−05 1.83e−05 6.84e−06 1.83e−05 2.76e−06 1.60e−05

sqrt 1.54e−04 1.54e-04 1.10e−06* 1.54e−04 2.46e−07* 1.51e−04

traincars1 1.76e−03 1.96e−03 8.26e−04 1.96e−03 4.50e−04 1.74e−03

traincars2 1.04e−03 1.36e−03 3.61e−04 1.36e−03 2.83e−05* 9.46e−04

traincars3 1.75e−02 2.29e−02 9.56e−03 2.29e−02 8.95e−04* 1.80e−02

traincars4 1.81e−01 2.30e−01 8.87e−02 2.30e−01 7.33e−03* 1.81e−01

trid1 6.01e−03 6.03e−03 1.58e−05* 6.03e−03 1.58e−05* 6.06e−03

trid2 1.03e−02 1.17e−02 2.42e−05* 1.17e−02 2.43e−05* 1.03e−02

trid3 1.75e−02 1.95e−02 6.80e−05* 1.95e−02 6.77e−05* 1.75e−02

trid4 2.69e−02 2.88e−02 2.64e−04* 3.03e−02 2.64e−04* 2.66e−02

However, when the normal distribution gets truncated to a wider range (e.g.,
[−100, 100] for trids), then the outliers causing large errors are very rare events,
not included in the 99% confidence interval. The exponential distribution further
compresses the 99% probability mass in the tiny interval [−0.01, 0.01], so the long
tails effect is common among all the benchmarks.
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Fig. 4. CDFs of the range (left) and error (right) distributions for the benchmark
traincars3 for uniform (top), normal (center), and exp (bottom).

The runtimes of PAF vary between 10 min for small benchmarks, such as
bsplines, to several hours for benchmarks with more than 30 operations, such
as trid4 ; they are always less than two hours, except for trids with 11 h and
filters with 6 h. The runtime of PAF is usually dominated by Z3 invocations,
and the long runtimes are caused by numerous Z3 timeouts that the respective
benchmarks induce. The runtimes of PrAn are comparable to PAF since they
are always less than two hours, except for trids with 3 h, sqrt with 3 h, and sine
with 11 h. Note that neither PAF nor PrAn are memory intensive.

To assess the quality of our rigorous (i.e., sound) results, we implement Monte
Carlo sampling to generate both roundoff error and output range distributions.
The procedure consists of randomly sampling from the provided input distribu-
tions, evaluating the floating-point computation in both the specified and high-
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precision (e.g., double-precision) floating-point regimes to measure the roundoff
error, and finally partitioning the computed errors into bins to get an approx-
imation (i.e., histogram) of the PDF. Of course, Monte Carlo sampling does
not provide rigorous bounds, but is a useful tool to assess how far the rigorous
bounds computed statically by PAF are from an empirical measure of the error.

Figure 4 shows the effects of the input distributions on the output and round-
off error ranges of the traincars3 benchmark. In the error graphs (right column),
we show the Monte Carlo sampling evaluation (yellow line) together with the
error bounds from PAF with 99% confidence interval (red plus symbol) and
FPTaylor’s worst-case bounds (green crossmark). In the range graphs (left col-
umn), we also plot PAF’s p-box over-approximations. We can observe that in the
case of uniform inputs the computed p-boxes overlap at the extrema of the out-
put range. This phenomenon makes it impossible to distinguish between 99% and
100% confidence intervals, and hence as expected the bound reported by PAF is
almost identical to FPTaylor’s. This is not the case for normal and exponential
distributions, where PAF can significantly improve both the output range and
error bounds over FPTaylor. This again illustrates how pessimistic the bounds
from worst-case tools can be when the information about the input distributions
is not taken into account. Finally, the graphs illustrate how the p-boxes and
error bounds from PAF follow their respective empirical estimations.

8 Related Work

Our work draws inspiration from probabilistic affine arithmetic [3,4], which aims
to bound probabilistic uncertainty propagated through a computation; a similar
goal to our probabilistic range analysis. This was recently extended to polyno-
mial dependencies [45]. On the other hand, PAF detects any non-linear depen-
dency supported by the SMT solver. While these approaches show how to bound
moments, we do not consider moments but instead compute conditional roundoff
error bounds, a concern specific to the analysis of floating-point computations.
Finally, the concentration of measure inequalities [4,45] provides bounds for (pos-
sibly very large) problems that can be expressed as sums of random variables,
for example multiple increments of a noisy dynamical system, but are unsuitable
for typical floating-point computations (such as FPBench benchmarks).

The most similar approach to our work is the recent static probabilistic
roundoff error analysis called PrAn [36]. PrAn also builds on [3], and inherits the
same limitations in dealing with dependent operations. Like us, PrAn hinges on
a discretization scheme that builds p-boxes for both the input and error distribu-
tions and propagates them through the computation. The question of how these
p-boxes are chosen is left open in the PrAn approach. In contrast, we take the
input variables to be user-specified random variables, and show how the distri-
bution of each error term can be computed directly and exactly from the random
variables generating it (Sect. 4). Furthermore, unlike PrAn, PAF leverages the
non-correlation between random variables and the corresponding error distribu-
tion (Sect. 4.4). Thus, PAF performs the rounding in Eq. (3) as an independent
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operation. Putting these together leads to PAF computing tighter probabilistic
roundoff error bounds than PrAn, as our experiments show (Sect. 7).

The idea of using a probabilistic model of rounding errors to analyze deter-
ministic computations can be traced back to Von Neumann and Goldstine [51].
Parker’s so-called ‘Monte Carlo arithmetic’ [41] is probably the most detailed
description of this approach. We, however, consider probabilistic computations.
For this reason, the famous critique of the probabilistic approach to roundoff
errors [29] does not apply to this work. Our preliminary report [9] presents some
early ideas behind this work, including Eqs. (5) and (7) and a very rudimentary
range analysis. However, this early work manipulated distributions unsoundly,
could not handle any repeated variables, and did not provide any roundoff error
analysis. Recently, probabilistic roundoff error models have also been investi-
gated using the concentration of measure inequalities [27,28]. Interestingly, this
means that the distribution of errors in Eq. (3) can be left almost completely
unspecified. However, as in the case of related work from the beginning of this
section [4,45], concentration inequalities are very ill-suited to the applications
captured by the FPBench benchmark suite.

Worst-case analysis of roundoff errors has been an active research area with
numerous published approaches [12–16,18,22,33,35,37,38,46,47,50]. Our sym-
bolic affine arithmetic used in PAF (Sect. 5) evolved from rigorous affine arith-
metic [14] by keeping the coefficients of the noise terms symbolic, which often
leads to improved precision. These symbolic terms are very similar to the first-
order Taylor approximations of the roundoff error expressions used in FPTay-
lor [46,47]. Hence, PAF with the 100% confidence interval leads to the same
worst-case roundoff error bounds as computed by FPTaylor (Sect. 7).
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47. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with Symbolic Taylor Expansions. In: FM
(2015)

48. Malik, H.J.: The Algebra of Random Variables (Springer, MD). Wiley (1979)
49. Stolfi, J., Figueiredo, L.H.D.: Self-validated numerical methods and applications.

In: IMPA (1997)
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Abstract. We study reinforcement learning for the optimal control of
Branching Markov Decision Processes (BMDPs), a natural extension of
(multitype) Branching Markov Chains (BMCs). The state of a (discrete-
time) BMCs is a collection of entities of various types that, while
spawning other entities, generate a payoff. In comparison with BMCs,
where the evolution of a each entity of the same type follows the same
probabilistic pattern, BMDPs allow an external controller to pick from
a range of options. This permits us to study the best/worst behaviour of
the system. We generalise model-free reinforcement learning techniques
to compute an optimal control strategy of an unknown BMDP in the
limit. We present results of an implementation that demonstrate the
practicality of the approach.

1 Introduction

Branching Markov Chains (BMCs), also known as Branching Processes, are
natural models of population dynamics and parallel processes. The state of a
BMC consists of entities of various types, and many entities of the same type
may coexist. Each entity can branch in a single step into a (possibly empty) set
of entities of various types while disappearing itself. This assumption is natural,
for instance, for annual plants that reproduce only at a specific time of the year,
or for bacteria, which either split or die. An entity may spawn a copy of itself,
thereby simulating the continuation of its existence.

The offspring of an entity is chosen at random among options according to a
distribution that depends on the type of the entity. The type captures significant
differences between entities. For example, stem cells are very different from

This work was supported by the Engineering and Physical Sciences Research Council
through grant EP/P020909/1 and by the National Science Foundation through grant
2009022. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 101032464 (SyGaST)
and 864075 (CAESAR).

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 651–673, 2021.
https://doi.org/10.1007/978-3-030-81688-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_30&domain=pdf
http://orcid.org/0000-0002-9348-7684
http://orcid.org/0000-0003-4220-3212
http://orcid.org/0000-0002-9093-9518
http://orcid.org/0000-0002-2085-2003
http://orcid.org/0000-0001-9346-0126
http://orcid.org/0000-0001-5560-0546
https://doi.org/10.1007/978-3-030-81688-9_30


652 E. M. Hahn et al.

regular cells; parallel processes may be interruptible or have different privileges.
The type may reflect characteristics of the entities such as their age or size.

Although entities coexist, the BMC model assumes that there is no
interaction between them. Thus, how an entity reproduces and for how long
it lives is the same as if it were the only entity in the system. This assumption
greatly improves the computational complexity of the analysis of such models
and is appropriate when the population exists in an environment that has
virtually unlimited resources to sustain its growth. This is a common situation
that holds when a species has just been introduced into an environment, in an
early stage of an epidemic outbreak, or when running jobs in cloud computing.

BMCs have a wide range of applications in modelling various physical
phenomena, such as nuclear chain reactions, red blood cell formation, population
genetics, population migration, epidemic outbreaks, and molecular biology.
Many examples of BMC models used in biological systems are discussed in [12].

Branching Markov Decision Processes (BMDPs) extend BMCs by allowing
a controller to choose the branching dynamics for each entity. This choice is
modelled as nondeterministic, instead of random. This extension is analogous to
how Markov Decision Processes (MDPs) generalise Markov chains (MCs) [24].
Allowing an external controller to select a mode of branching allows us to study
the best/worst behaviour of the examined model.

As a motivating example, let us discuss a simple model of cloud computing. A
computation may be divided into tasks in order to finish it faster, as each server
may have different computational power. Since the computation of each task
depends on the previous one, the total running time is the sum of the running
times of each spawned task as well as the time needed to split and merge the
result of each computation into the final solution. As we shall see, the execution
of each task is not guaranteed to be successful and is subject to random delays.
Specifically, let us consider the following model with two different types (T and
S), and two actions (a1 and a2). This BMDP consists of the main task, T , that
may be split (action a1) into three smaller tasks, for simplicity assumed to be
of the same type S, and this split and merger of the intermediate results takes
1 hour (1h). Alternatively (action a2), we can execute the whole task T on the
main server, but it will be slow (8 h). Task S can (action a1) be run on a reliable
server in 1.6 h or (action a2) an unreliable one that finishes after 1 h (irrespective
of whether or not the computation is completed successfully), but with a 40%
chance we need to rerun this task due to the server crashing. We can represent
this model formally as:

T
a1−→ SSS [1h] S

a1−→ ε [1.6h]

T
a2−→ ε [8h] S

a2−→ 40% : S or 60% : ε [1h]

We would like to know the infimum of the expected running time (i.e. the
expected running time when optimal decisions are made) of task T . In this case
the optimal control is to pick action a1 first and then actions a1 for all tasks
S with a total running time of 5.8 h. The expected running time when picking
actions a2 for S instead would be 1 + 3 · 1/0.6 = 6 [hours].
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Let us now assume that the execution of tasks S for action a1 may be
interrupted with probability 30% by a task of higher priority (type H). Moreover,
these H tasks may be further interrupted by tasks with even higher priority (to
simplify matters, again modelled by type H). The computation time of T is
prolonged by 0.1 h for each H spawned. Our model then becomes:

T
a1−→ SSS [1h] S

a1−→ 30% : H or 70% : ε [1.6h] H
∗−→ 30% : HH or

T
a2−→ ε [8h] S

a2−→ 40% : S or 60% : ε [1h] 70% : ε [0.1h]

As we shall see, the expected total running time of H can be calculated by
solving the equation x = 0.3(x + x) + 0.1, which gives x = 0.25 [hour]. So the
expected running time of S using action a1 increases by 0.3 ·0.25 = 0.075 [hour].
This is enough for the optimal strategy of running S to become a2. Note that if
the probability of H being interrupted is at least 50% then the expected running
time of H becomes ∞.

When dealing with a real-life process, it is hard to come up with a
(probabilistic and controlled) model that approximates it well. This requires
experts to analyse all possible scenarios and estimate the probability of outcomes
in response to actions based on either complex calculations or the statistical
analysis of sufficient observational data. For instance, it is hard to estimate the
probability of an interrupt H occurring in the model above without knowing
which server will run the task, its usual workload and statistics regarding the
priorities of the tasks it executes. Even if we do this estimation well, unexpected
or rare events may happen that would require us to recalibrate the model as we
observe the system under our control.

Instead of building such a model explicitly first and fixing the probabilities
of possible transitions in the system based on our knowledge of the system or
its statistics, we advocate the use of reinforcement learning (RL) techniques [27]
that were successfully applied to finding optimal control for finite-state Markov
Decision Processes (MDPs). Q-learning [30] is a well-studied model-free RL
approach to compute an optimal control strategy without knowing about the
model apart from its initial state and the set of actions available in each of
its states. It also has the advantage that the learning process converges to the
optimal control while exploiting along the way what it already knows. While the
formulation of the Q-learning algorithm for BMDPs is straightforward, the proof
that it works is not. This is because, unlike the MDPs with discounted rewards
for which the original Q-learning algorithm was defined, our model does not have
an explicit contraction in each step, nor does boundedness of the optimal values
or one-step updates hold. Similarly, one cannot generalise the result from [11]
that estimates the time needed for the Q-learning algorithm to converge within
ε of the optimal values with high probability for finite-state MDPs.

1.1 Related Work

The simplest model of BMCs are Galton-Watson processes [31], discrete-time
models where all entities are of the same type. They date as far back as 1845 [14]



654 E. M. Hahn et al.

and were used to explain why some aristocratic family surnames became extinct.
The generalisation of this model to multiple types of entities was first studied
in 1940s by Kolmogorov and Sevast’yanov [17]. For an overview of the results
known for BMCs, see e.g. [13] and [12]. The precise computational complexity
of decision problems about the probabilities of extinction of an arbitrary BMC
was first established in [9]. The problem of checking if a given BMC terminates
almost surely was shown in [5] to be strongly polynomial. The probability of
acceptance of a run of a BMC by a deterministic parity tree automaton was
studied in [4] and shown to be computable in PSPACE and in polynomial time
for probabilities 0 or 1. In [16] a generalisation of the BMCs was considered that
allowed for limited synchronisation of different tasks.

BMDPs, a natural generalisation of BMCs to a controlled setting, have been
studied in the OR literature e.g., [23,26]. Hierarchical MDPs (HMDPs) [10]
are a special case of BMDPs where there are no cycles in the offspring graph
(equivalently, no cyclic dependency between types). BMDPs and HMDPs have
found applications in manpower planning [29], controlled queuing networks [2,
15], management of livestock [20], and epidemic control [1,25], among others. The
focus of these works was on optimising the expected average, or the discounted
reward over a run of the process, or optimising the population growth rate.
In [10] the decision problem whether the optimal probability of termination
exceeds a threshold was studied: it was shown to be solvable in PSPACE and
at least as hard as the square-root sum problem, but one can determine if the
optimal probability is 0 or 1 in polynomial time. In [7], it was shown that the
approximation of the optimal probability of extinction for BMDPs can be done
in polynomial time. The computational complexity of computing the optimal
expected total cost before extinction for BMDPs follows from [8] and was shown
there to be computable in polynomial time via a linear program formulation.
The problem of maximising the probability of reaching a state with an entity of
a given type for BMDPs was studied in [6]. In [28] an extension of BMDPs with
real-valued clocks and timing constraints on productions was studied.

1.2 Summary of the Results

We show that an adaptation of the Q-learning algorithm converges almost surely
to the optimal values for BMDPs under mild conditions: all costs are positive
and each Q-value is selected for update independently at random. We have
implemented the proposed algorithm in the tool Mungojerrie [21] and tested
its performance on small examples to demonstrate its efficiency in practice. To
the best of our knowledge, this is the first time model-free RL has been used for
the analysis of BMDPs.

2 Problem Definitions

2.1 Preliminaries

We denote by N the set of non-negative integers, by R the set of reals, by
R+ the set of positive reals, and by R≥0 the set of non-negative reals. We let
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˜R+ = R+ ∪ {∞}, and ˜R≥0 = R≥0 ∪ {∞}. We denote by |X| the cardinality
of a set X and by X∗ (Xω) the set of all possible finite (infinite) sequences of
elements of X. Finite sequences are also called lists.

Vectors and Lists. We use x̄, ȳ, c̄ to denote vectors and x̄i or x̄(i) to denote its
i-th entry. We let 0̄ denote a vector with all entries equal to 0; its size may vary
depending on the context. Likewise 1̄ is a vector with all entries equal to 1. For
vectors x̄, ȳ ∈ ˜R

n
≥0, x̄ ≤ ȳ means xi ≤ yi for every i, and x̄ < ȳ means x̄ ≤ ȳ and

xi �= yi for some i. We also make use of the infinity norm ‖x̄‖∞ = maxi |x̄(i)|.
We use α, β, γ to denote finite lists of elements. For a list α = a1, a2, . . . , ak

we write αi for the i-th element ai of list α and |α| for its length. For two lists
α and β we write α · β for their concatenation. The empty list is denoted by ε.

Probability Distributions. A finite discrete probability distribution over a
countable set Q is a function μ : Q→[0, 1] such that

∑

q∈Q μ(q)=1 and its
support set supp(μ)= {q ∈ Q |μ(q)>0} is finite. We say that μ ∈ D(Q) is a
point distribution if μ(q)=1 for some q ∈ Q.

Markov Decision Processes. Markov decision processes [24], are a well-studied
formalism for systems exhibiting nondeterministic and probabilistic behaviour.

Definition 1. A Markov decision process (MDP) is a tuple M = (S,A, p, c)
where:

– S is the set of states;
– A is the set of actions;
– p : S × A → D(S) is a partial function called the probabilistic transition

function; and
– c : S × A → R is the cost function.

We say that an MDP M is finite (discrete) if both S and A are finite
(countable). We write A(s) for the set of actions available at s, i.e., the set
of actions a for which p(s, a) is defined. In an MDP M, if the current state is
s, then one of the actions in A(s) is chosen nondeterministically. If the chosen
action is a then the probability of reaching state s′ ∈ S in the next step is
p(s, a)(s′) and the cost incurred is c(s, a).

2.2 Branching Markov Decision Processes

We are now ready to define (multitype) BMDPs.

Definition 2. A branching Markov decision process (BMDP) is a tuple B =
(P,A, p, c) where:

– P is a finite set of types;
– A is a finite set of actions;
– p : P × A → D(P ∗) is a partial function called the probabilistic transition

function where every D(·) is a finite discrete probability distribution; and
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– c : P × A → R+ is the cost function.

We write A(q) for the set of actions available to an entity of type q ∈ P , i.e., the
set of actions a for which p(q, a) is defined. A Branching Markov Chain (BMC)
is simply a BMDP with just one action available for each type.

Let us first describe informally how BMDPs evolve. A state of a BMDP B
is a list of elements of P that we call entities. A BMDP starts at some initial
configuration, α0 ∈ P ∗, and the controller picks for one of the entities one of the
actions available to an entity of its type. In the new configuration α1, this one
entity is replaced by the list of new entities that it spawned. This list is picked
according to the probability distribution p(q, a) that depends both on the type
of the entity, q, and the action, a, performed on it by the controller. The process
proceeds in the same manner from α1, moving to α2, and from there to α3, etc.
Once the state ε is reached, i.e., when no entities are present in the system, the
process stays in that state forever.

Definition 3 (Semantics of BMDP). The semantics of a BMDP B =
(P,A, p, c) is an MDP MB = (StatesB,ActionsB,ProbB,CostB) where:

– StatesB = P ∗ is the set of states;
– ActionsB = N × A is the set of actions;
– ProbB : StatesB × ActionsB → D(StatesB) is the probabilistic transition

function such that, for α ∈ StatesB and (i, a) ∈ ActionsB, we have that
ProbB(α, (i, a)) is defined when i ≤ |α| and a ∈ A(αi); moreover

ProbB(α, (i, a))(α1 . . . αi−1 · β · αi+1 . . .) = p(αi, a)(β),

for every β ∈ P ∗ and 0 in all other cases.
– CostB : StatesB × ActionsB → R+ is the cost function such that

CostB(α, (i, a)) = c(αi, a).

For a given BMDP B and states α ∈ StatesB, we denote by ActionsB(α) the
set of actions (i, a) ∈ ActionsB, for which ProbB(α, (i, a)) is defined.

Note that our semantics of BMDPs assumes an explicit listing of all the
entities in a particular order similar to [10]. One could, instead, define this as
a multi-set or simply a vector just counting the number of occurrences of each
entity as in [23]. As argued in [10], all these models are equivalent to each other.
Furthermore, we assume that the controller expands a single entity of his choice
at the time rather all of them being expanded simultaneously. As argued in [32],
that makes no difference for the optimal values of the expected total cost that
we study in this paper, provided that all transitions’ costs are positive.

2.3 Strategies

A path of a BMDP B is a finite or infinite sequence

π = α0, ((i1, a1), α1), ((i2, a2), α2), ((i3, a3), α3), . . .
∈ StatesB × ((ActionsB×StatesB)∗ ∪ (ActionsB×StatesB)ω),
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consisting of the initial state and a finite or infinite sequence of action and state
pairs, such that ProbB(αj , (ij , aj))(αj+1) > 0 for any 0 ≤ j ≤ |π|, where |π| is
the number of actions taken during path π. (|π| = ∞ if the path is infinite.) For
a path π, we denote by πA(j) = (ij , aj) the j-th action taken along path π, by
πS(j)(= αj) the j-th state visited, where πS(0)(= α0) is the initial state, and by
π(j)(= α0, ((i1, a1), α1), . . . , ((ij , aj), αj)) the first j action-state pairs of π.

We call a path of infinite (finite) length a run (finite path). We write RunsB
(FPathB) for the sets of all runs (finite paths) and RunsB,α (FPathB,α) for the
sets of all runs (finite paths) that start at a given initial state α ∈ StatesB, i.e.,
paths π with πS(0) = α. We write last(π) for the last state of a finite path π.

A strategy in BMDP B is a function σ : FPathB → D(ActionsB) such that,
for all π ∈ FPathB, supp(σ(π)) ⊆ ActionsB(last(π)). We write ΣB for the set
of all strategies. A strategy is called static, if it always applies an action to the
first entity in any state and for all entities of the same type in any state it
picks the same action. A static strategy τ is essentially a function of the form
σ : P → A, i.e., for an arbitrary π ∈ FPathB, we have τ(π) = (1, σ(last(π)1))
whenever last(π) �= ε.

A strategy σ ∈ ΣB and an initial state α induce a probability measure over
the set of runs of BMDP B in the following way: the basic open sets of RunsB
are of the form π · (ActionsB ×StatesB)ω, where π ∈ FPathB, and the measure of
this open set is equal to

∏|π|−1
i=0 σ(π(i))(πA(i+1)) · ProbB(πS(i), πA(i+1))(πS(i+1))

if πS(0) = α and equal to 0 otherwise. It is a classical result of measure theory
that this extends to a unique measure over all Borel subsets of RunsB and we
will denote this measure by Pσ

B,α.
Let f : RunsB → ˜R+ be a function measurable with respect to Pσ

B,α. The
expected value of f under strategy σ when starting at α is defined as Eσ

B,α {f} =
∫

RunsB
f dPσ

B,α (which can be ∞ even if the probability that the value of f

is infinite is 0). The infimum expected value of f in B when starting at α is
defined as V∗(α)(f) = infσ∈ΣB E

σ
B,α {f}. A strategy, σ̂, is said to be optimal

if E
σ̂
B,α {f} = V∗(α)(X) and ε-optimal if E

σ̂
B,α {f} ≤ V∗(α)(f) + ε. Note that

ε-optimal strategies always exists by definition. We omit the subscript B, e.g.,
in StatesB, ΣB, etc., when the intended BMDP is clear from the context.

For a given BMDP B and N ≥ 0 we define TotalN (π), the cumulative cost
of a run π after N steps, as TotalN (π) =

∑N−1
i=0 Cost(πS(i), πA(i+1)). For a

configuration α ∈ States and a strategy σ ∈ Σ, let ETotalN (B, α, σ) be the
N -step expected total cost defined as ETotalN (B, α, σ) = E

σ
B,α

{

TotalN
}

and
the expected total cost be ETotal∗(B, α, σ) = limN→∞ ETotalN (B, α, σ). This
last value can potentially be ∞. For each starting state α, we compute the
optimal expected cost over all strategies of a BMDP starting at α, denoted by
ETotal∗(B, α), i.e.,

ETotal∗(B, α) = inf
σ∈ΣB

ETotal(B, α, σ).
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As we are going to prove in Theorem4.b that, for any α ∈ States, we have

ETotal∗(B, α) =
|α|
∑

i=1

ETotal∗(B, αi).

This justifies focusing on this value for initial states that consist of a single entity
only, as we will do in the following section.

3 Fixed Point Equations

Following [8], we define here a linear equation system with a minimum operator
whose Least Fixed Point solution yields the desired optimal values for each type
of a BMDP with non-negative costs. This system generalises the Bellman’s
equations for finite-state MDPs. We use a variable xq for each unknown
ETotal∗(B, q) where q ∈ P . Let x̄ be the vector of all xq,whereq ∈ P . The
system has one equation of the form xq = Fq(x̄) for each type q ∈ P , defined as

xq = min
a∈A(q)

(

c(q, a) +
∑

α∈P ∗
p(q, a)(α)

∑

i≤|α|
xαi

)

. (♠)

We denote the system in vector form by x̄ = F (x̄). Given a BMDP, we can
easily construct its associated system in linear time. Let c̄∗ ∈ ˜R

n
≥0 denote the

n-dimensional vector of ETotal∗(B, q)’s where n = |P |. Let us define x̄0 = 0̄,
x̄k+1 = F k+1(0̄) = F (x̄k), for k ≥ 0.

Theorem 4. The following hold:

(a) The map F : ˜R
n
≥0 → ˜R

n
≥0 is monotone and continuous (and so 0̄ ≤ x̄k ≤

x̄k+1 for all k ≥ 0).
(b) c̄∗ = F (c̄∗).
(c) For all k ≥ 0, x̄k ≤ c̄∗.
(d) For all c̄′ ∈ ˜R

n
≥0, if c̄′ = F (c̄′), then c̄∗ ≤ c̄′.

(e) c̄∗ = limk→∞ x̄k.

Proof.

(a) All equations in the system F (x) are minimum of linear functions with non-
negative coefficients and constants, and hence monotonicity and continuity
are preserved.

(b) It suffices to show that once action a is taken when starting with a single
entity q and, as a result, q is replaced by α with probability p(q, a)(α), then
the expected total cost is equal to:

c(q, a) +
∑

i≤|α|
ETotal∗(B, αi) . (♣)
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This is because then the expected total cost of picking action a when at
q is just a weighted sum of these expressions with weights p(q, a)(α) for
offspring α. And finally, to optimise the cost, one would pick an action a
with the smallest such expected total cost showing that

ETotal∗(B, q) = min
a∈A(q)

(

c(q, a) +
∑

α∈P ∗
p(q, a)(α)

∑

i≤|α|
ETotal∗(B, αi)

)

indeed holds.
Now, to show (♣), consider an ε-optimal strategy σi for a BMDP that starts
at αi. It can easily be composed into a strategy σ that starts at α just by
executing σ1 first until all descendants of α1 die out, before moving on to
σ2, etc. If one of these strategies, σi, never stops executing then, due to the
assumption that all costs are positive, the expected total cost when starting
with αi has to be infinite and so has to be the overall cost when starting
with α (as all descendants of αi have to die out before the overall process
terminates), so (♣) holds. This shows that c(q, a) +

∑

i≤|α| ETotal∗(B, xαi
)

can be achieved when starting at α. At the same time, we cannot do better
because that would imply the existence of a strategy σ′ for one of the entities
σj with a better cost than its optimal cost ETotal∗(B, αj).

(c) Since x̄0 = 0̄ ≤ c̄∗ and due to (b), it follows by repeated application of F to
both sides of this inequality that x̄k ≤ F (c̄∗) = c̄∗, for all k ≥ 0.

(d) Consider any fixed point c̄′ of the equation system F (x̄). We will prove that
c̄∗ ≤ c̄′. Let us denote by σ′ a static strategy that picks for each type an
action with the minimum value of operator F in c̄′, i.e., for each entity
q we choose σ′(q) = arg mina∈A(q)

(

c(q, a) +
∑

α∈P ∗ p(q, a)(α)
∑

i≤|α| c̄
′
αi

)

,
where we break ties lexicographically.
We now claim that, for all k ≥ 0, ETotalk(B, q, σ′) ≤ c̄′

q holds. For k = 0,
this is trivial as ETotalk(B, q, σ′) = 0 ≤ c̄′

q. For k > 0, we have that

ETotalk(B, q, σ′)
(1)

≤ c(q, σ′(q))+
∑

α∈P ∗
p(q, σ′(q))(α)

∑

i≤|α|
ETotalk−1(B, αi, σ

′)

(2)

≤ c(q, σ′(q)) +
∑

α∈P ∗
p(q, σ′(q))(α)

∑

i≤|α|
c̄′
αi

(3)
= min

a∈A(q)

(

c(q, a) +
∑

α∈P ∗
p(q, a)(α)

∑

i≤|α|
c̄′
αi

)

(4)
= c̄′

q

where (1) follows from the fact that after taking action σ′(q) first, there
are only k − 1 steps left of the BMDP B that would need to be distributed
among the offspring α of q somehow. Allowing for k−1 steps for each of the
entities αi is clearly an overestimate of the actual cost. (2) follows from the
inductive assumption. (3) follows from the definition of σ′. The last equality,
(4), follows from the fact that c̄′ is a fixed point of F .
Finally, for every q ∈ P , from the definition we have c̄∗

q = ETotal∗(B, q) ≤



660 E. M. Hahn et al.

ETotal∗(B, q, σ′) = limk→∞ ETotalk(B, q, σ′) and each element of the last
sequence was just shown to be ≤ c̄′

q.
(e) We know that x̄∗ = limk→∞ x̄k exists in ˜R

n
≥0 because it is a monotonically

non-decreasing sequence (note that some entries may be infinite). In fact
we have x̄∗ = limk→∞ F k+1(0̄) = F (limk→∞ F k(0̄)), and thus x̄∗ is a fixed
point of F . So from (d) we have c̄∗ ≤ x̄∗. At the same time, due to (c), we
have x̄k ≤ c̄∗ for all k ≥ 0, so x̄∗ = limk→∞ x̄k ≤ c̄∗ and thus limk→∞ x̄k =
c̄∗.


�
The following is a simple corollary of Theorem 4.

Corollary 5. In BMDPs, there exists an optimal static control strategy σ∗.

Proof. It is enough to pick as σ∗, the strategy σ′ from Theorem 4.d, for c̄′ = c̄∗.
We showed there that for all k ≥ 0 and q ∈ P we have ETotalk(B, q, σ∗) ≤ c̄′

q.
So ETotal∗(B, q, σ∗) = limk→∞ ETotalk(B, q, σ∗) ≤ c̄∗

q = ETotal∗(B, q), so in
fact ETotal∗(B, q, σ∗) = ETotal∗(B, q) has to hold as clearly ETotal∗(B, q, σ∗) ≥
ETotal∗(B, q). 
�

Note that for a BMDPs with a fixed static strategy σ (or equivalently BMCs),
we have that F (x̄) = Bσx̄ + c̄σ, for some non-negative matrix Bσ ∈ R

n×n
≥0 , and

a positive vector c̄σ > 0 consisting of all one step costs c(q, σ(q)). We will refer
to F as Fσ in such a case and exploit this fact later in various proofs.

We now show that c̄∗ is in fact essentially a unique fixed point of F .

Theorem 6. If F (x̄) = x̄ and x̄q < ∞ for some q ∈ P then x̄q = c̄∗
q .

Proof. By Corollary 5, there exists an optimal static strategy, denoted by σ∗,
which yields the finite optimal reward vector c̄∗.

We clearly have that x̄ = F (x̄) ≤ Fσ∗(x̄), because σ∗ is just one possible pick
of actions for each type rather than the minimal one as in (♠). Furthermore,

Fσ∗(x̄) = Bσ∗ x̄ + bσ∗

≤ Bσ∗(Bσ∗ x̄ + bσ∗) + bσ∗

= B2
σx̄ + (Bσ∗ + 1)b∗

σ

≤ . . . ≤ lim
k→∞

Bk
σ∗ x̄ +

(
∞
∑

k=0

Bk
σ∗

)

bσ∗ .

Note that c̄∗ = (
∑∞

k=0 Bk
σ∗)bσ∗ , because

c̄∗ = lim
k→∞

F k(0̄) = lim
k→∞

F k
σ∗(0̄) = lim

k→∞

k
∑

i=0

Bi
σ∗bσ∗ .

Due to Theorem 4.d, we know that c̄∗
q ≤ x̄q < ∞, so all entries in the q-th

row of Bk
σ∗ have to converge to 0 as k → ∞, because otherwise the q-th row
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of
∑∞

k=0 Bk
σ∗ would have at least one infinite value and, as a result, the q-th

position of c̄∗ = (
∑∞

k=0 Bk
σ∗)bσ∗ would also be infinite as all entries of bσ∗ are

positive. Therefore, limk→∞(Bk
σ∗ x̄)q = 0 and so

x̄q ≤ ( lim
k→∞

Bk
σ∗ x̄)q + ((

∞
∑

k=0

Bk
σ∗)bσ∗)q = c̄∗

q .

The proof is now complete. 
�

4 Q-learning

We next discuss the applicability of Q-learning to the computation of the fixed
point defined in the previous section.

Q-learning [30] is a well-studied model-free RL approach to compute an
optimal strategy for discounted rewards. Q-learning computes so-called Q-values
for every state-action pair. Intuitively, once Q-learning has converged to the fixed
point, Q(s, a) is the optimal reward the agent can get while performing action a
after starting at s. The Q-values can be initialised arbitrarily, but ideally they
should be close to the actual values. Q-learning learns over a number of episodes,
each consisting of a sequence of actions with bounded length. An episode can
terminate early if a sink-state or another non-productive state is reached. Each
episode starts at the designated initial state s0. The Q-learning process moves
from state to state of the MDP using one of its available actions and accumulates
rewards along the way. Suppose that in the i-th step, the process has reached
state si. It then either performs the currently (believed to be) optimal action
(so-called exploitation option) or, with probability ε, picks uniformly at random
one of the actions available at si (so-called exploration option). Either way, if
ai, ri, and si+1 are the action picked, reward observed and the state the process
moved to, respectively, then the Q-value is updated as follows:

Qi+1(si, ai) = (1 − λi)Qi(si, ai) + λi(ri + γ · max
a

Qi(si+1, a)) ,

where λi ∈ ]0, 1[ is the learning rate and γ ∈ ]0, 1] is the discount factor. Note the
model-freeness: this update does not depend on the set of transitions nor their
probabilities. For all other pairs s, a we have Qi+1(s, a) = Qi(s, a), i.e., they are
left unchanged. Watkins and Dayan showed the convergence of Q-learning [30].

Theorem 7 (Convergence [30]). For γ < 1, bounded rewards ri and learning
rates 0 ≤ λi < 1 satisfying:

∞
∑

i=0

λi = ∞ and
∞
∑

i=0

λ2
i < ∞,

we have that Qi(s, a) → Q(s, a) as i → ∞ for all s, a ∈ S×A almost surely if all
(s, a) pairs are visited infinitely often.
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However, in the total reward setting that corresponds to Q-learning with
discount factor γ = 1, Q-learning may not converge, or converge to incorrect
values. However, it is guaranteed to work for finite-state MDPs in the setting of
undiscounted total reward with a target sink-state under the assumption that
all strategies reach that sink-state almost surely. The assumption that we make
instead is that every transition of BMDP incurs a positive cost. This guarantees
that a process that does not terminate almost surely generates an expected
infinite reward in which case the Q-learning will coverage (or rather diverge) to
∞, so our results generalise these existing results for Q-learning.

We adopt the Q-learning algorithm to minimise cost as follows. Each episode
starts at the designated initial state q0 ∈ P . The Q-learning process moves from
state to state of the BMDP using one of its available actions and accumulates
costs along the way. Suppose that, in the i-th step, the process has reached state
α. It then selects uniformly at random one of the entities of α, e.g., the j-th
one, αj and either performs the currently (believed to be) optimal action or,
with probability ε, picks an action uniformly at random among all the actions
available for αj . If c and β denote the observed cost and entities spawned by this
action, respectively, then the Q-value of the pair αj , ai are updated as follows:

Qi+1(αj , ai) = (1 − λi)Qi(αj , ai) + λi

(

c +
|β|
∑

i=1

min
a∈A(βi)

Qi(βi, a)
)

.

and all other Q-values are left unchanged. In the next section we show that Q-
learning almost surely converges (diverges) to the optimal finite (respectively,
infinite) value of c̄∗ almost surely under rather mild conditions.

5 Convergence of Q-Learning for BMDPs

We show almost sure convergence of the Q-learning to the optimal values c̄∗ in
a number of stages. We first focus on the case when all optimal values in c̄∗ are
finite. In such a case, we show a weak convergence of the expected optimal values
for BMCs to the unique fixed-point c̄∗, as defined in Sect. 3. To establish this,
we show that the expected Q-values are monotonically decreasing (increasing) if
we start with Q-values κc̄∗ for κ > 1 (κ < 1). This convergence from above and
below gives us convergence in expectation using the squeeze theorem.

We then establish almost sure convergence to c̄∗ by proving a contraction
argument, with the extra assumption that the selection of the Q-value to update
is done independently at random in each step.

In the next step, we extend this result to BMDPs, first establishing that
Q-learning will almost surely converge to the region of the Q-values less than or
equal to c̄∗. We then show that, when considering the pointwise limes inferior
values of the sequences of Q-values, there is no point in that region such that
every ε-ball around it has a non-zero probability to be represented in the limes
inferior. This establishes that c̄∗ is the fixed point the Q-values converge against.
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Only at the very end, we show that Q-learning also converges (or rather
diverges) to the optimal value even if that value happens to be infinite. We then
turn to a type with non-finite optimal value and provide an argument for the
divergence to ∞ of its corresponding Q-value.

We assume that all the Q-values are stored in a vector Q of size (|P | · |A|).
We also use Q(q, a) to refer to the entry for type q ∈ P and action a ∈ A(q). We
introduce the target for Q operator, T , that maps a Q-values vector Q to:

T (Q)(q, a) = c(q, a) +
∑

α∈Q∗
p(q, a)(α)

|α|
∑

i=1

min
ai∈A(αi)

Q(αi, ai) .

We call T the ‘target’, because, when the Q(q, a) value is updated, then

E(Qi+1(q, a)) = (1 − λi)Qi(q, a) + λiT (Qi)(q, a)

holds, whereas otherwise Qi+1(q, a) = Qi(q, a).
Thus, when Q(q, a) is selected for update with a chance of pq,a, we have that

E(Qi+1(q, a)) = (1 − λipq,a)Qi(q, a) + λipq,aT (Qi)(q, a) . (♥)

5.1 Convergence for BMCs with Finite c̄∗

Since BMCs have only one action, we omit mentioning it for ease of notation.
Note that for BMCs, the target for the Q-values is a simple affine function:

T (Q)(q) = c(q) +
∑

α∈P ∗
p(q)(α)

|α|
∑

i=1

Q(αi).

And it coincides with operator F as defined in Sect. 3. Therefore, due to
Theorem 6, T (Q) has a unique fixed point which is c̄∗. Moreover, T (Q) = BQ+c̄,
where B is a non-negative matrix and c̄ is a vector of one step costs c(q), which
are all positive.

Naturally, applying T to a non-negative vector Q or multiplying it by B are
monotone: Q ≥ Q′ → T (Q) ≥ T (Q′) and BQ ≥ BQ′. Also, due to the linearity
of T , E(T (Q)) = T (E(Q)) holds, where Q is a random vector.

We now start with a lemma describing the behaviour of Q-learning for initial
Q-values when they happen to be equal to κc̄∗ for some κ ≥ 1.

Lemma 8. Let Q0 = κc̄∗ for a scalar factor κ ≥ 1. Then the following holds
for all i ∈ N,

c̄∗ ≤ T (E(Qi)) ≤ E(Qi+1) ≤ E(Qi),

assuming that Q-value to be updated in each step is selected independently at
random.



664 E. M. Hahn et al.

Proof. We show this by induction. For the induction basis (i = 0), we have that
c̄∗ ≤ Q0 by definition.

As c̄∗ is the fixed-point of T , we have T (c̄∗) = c̄∗, and the monotonicity of T
provides T (c̄∗) ≤ T (Q0). At the same time

T (Q0) = T (κc̄∗) = Bκc̄∗ + c̄

= κ(Bc̄∗ + c̄) − κc̄ + c̄

= κc̄∗ − (κ − 1)c̄
= Q0 − (κ − 1)c̄ ≤ Q0.

This provides c̄∗ ≤ T (E(Q0)) ≤ E(Q0). Finally, T (E(Q0)) ≤ E(Q0) entails
for a learning rate λ0 ∈ [0, 1] that T (E(Q0)) ≤ E(Q1) ≤ E(Q0) due to (♥).

For the induction step (i �→ i + 1), we use the induction hypothesis

c̄∗ ≤ T (E(Qi)) ≤ E(Qi+1) ≤ E(Qi).

The monotonicity of T and c̄∗ ≤ E(Qi+1) ≤ E(Qi) imply that T (c̄∗) ≤
T (E(Qi+1)) ≤ T (E(Qi)) holds. With T (c̄∗) = c̄∗ (from the fixed point equations)
and the induction hypothesis, c̄∗ ≤ T (E(Qi+1)) ≤ E(Qi+1) follows.

Using T (E(Qi+1)) = E(T (Qi+1)), this provides E(T (Qi+1)) ≤ E(Qi+1),
which implies with λi+1 ∈ [0, 1] that

T (E(Qi+1)) = E(T (Qi+1)) ≤ E(Qi+2) ≤ E(Qi+1)

holds, completing the induction step. 
�
By simply replacing all ≤ with ≥ in the above proof, we can get the following

for all initial Q-values that happen to be κc̄∗ where κ ≤ 1:

Lemma 9. Let Q0 = κc̄∗ for a scalar factor κ ∈ [0, 1]. Then the following
holds for all i ∈ N, assuming that the Q-value to update in each step is selected
independently at random: c̄∗ ≥ T (E(Qi)) ≥ E(Qi+1) ≥ E(Qi). 
�

We now first establish that the distance between Q and c̄∗ can be upper
bounded by the distance between Q and T (Q) with a fixed linear factor μ > 0.

Lemma 10. There exists a constant μ > 0 such that
∑

q∈P

|(Q − T (Q)(q)| ≥ μ
∑

q∈P

|(Q − c̄∗(q)|

when Q0 = κc̄∗.

Proof. We show this for κ > 1. The proof for κ < 1 is similar, and there is
nothing to show for κ = 1.

We first consider the linear programme with a variable for each type with
the following constraints for some fixed δ > 0:

Q ≥ c̄∗, T (Q) ≤ Q, and
∑

q∈P

Q(q) =
∑

q∈P

c̄∗(q) + δ.
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An example solution to this constraint system is Q = (1 + δ
∑

q∈P c̄∗(q) )c̄
∗.

We then find a solution minimising the objective
∑

q∈P |(Q−T (Q)(p)|, noting
that all entries are non-negative due to the first constraint. This is expressed by
adding 2|P | constraints

xq ≥ Q(q) − T (Q)(q)
xq ≥ T (Q)(q) − Q(q)

and minimising
∑

q∈P xq.
As c̄∗ is the only fixed-point of T , and

∑

q∈P Q(q) =
∑

q∈P c̄∗(q) + δ implies
that, for an optimal solution Q∗, Q∗ �= c̄∗, we have that

∑

q∈P

|(Q∗ − T (Q∗)(q)| > 0.

Due to the constraint Q ≥ c̄∗, we always have Q = c̄∗ + QΔ for some QΔ > 0̄.
We can now re-formulate this linear programme to look for QΔ instead of Q:

QΔ ≥ 0̄,

BQΔ ≤ QΔ, and
∑

q∈P

QΔ(q) = δ,

with the objective to minimise
∑

q∈P |(QΔ − BQΔ)(q)|.
The optimal solution Q∗

Δ to this linear programme gives an optimal value
Q∗ = c̄∗+Q∗

Δ for the former and, vice versa, the value Q∗ for the former provides
an optimal solution Q∗

Δ − c̄∗ for the latter, and these two solutions have the same
value in their respective objective function.

Thus, while the former constraint system is convenient to show that the value
of the objective function is positive, the latter constraint system is, except for
∑

q∈P QΔ(q) = δ, linear. This means that any optimal solution for δ = δ1 can
be obtained from the optimal solution for δ = δ2 just by rescaling it by δ1/δ2. It
follows that the optimal value of the objective function is linear in δ, e.g., there
exists μ > 0 such that its value is μδ. 
�

We now show that the sequence of Q-values updates converges in expectation
to c̄∗ when Q0 = κc̄∗.

Lemma 11. Let Q0 = κc̄∗ where κ ≥ 0. Then, assuming that each type-action
pair is selected for update with a minimal probability pmin in each step, and that
∑∞

i=0 λi = ∞, then limi→∞ E(Qi) = c̄∗ holds.

Proof. We proof this for κ ≥ 1. A similar proof shows this for any κ ∈ [0, 1].
Lemma 8 provides that all E(Qi) satisfy the constraints E(Qi) ≥ c̄∗ and
T (E(Qi)) ≤ E(Qi).
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Let pmin be the smallest probability any Q-value is selected with in each
update step. Due to Lemma 10, there is a fixed constant μ > 0 such that

∑

q∈P

|Qi(q) − T (Qi)(q)| ≥ μ
∑

q∈P

|Qi(q) − c̄∗(q)| .

By taking the expected value of both sides and the fact that c̄∗ ≤ T (E(Qi)) ≤
E(Qi+1) ≤ E(Qi) due to Lemma 8, we get

∑

q∈P

E(Qi)(q) − T (E(Qi))(q) ≥ μ
∑

q∈P

E(Qi)(q) − c̄∗(q),

then due to (♥) we have
∑

q∈P

E(Qi)(q) − E(Qi+1)(q) ≥ μpminλi

∑

q∈P

E(Qi)(q) − c̄∗(q),

and finally just by rearranging these terms we get
∑

q∈P

E(Qi+1)(q) − c̄∗(q) ≤ (1 − μpminλi)
∑

q∈P

E(Qi)(q) − c̄∗(q) .

Note that all summands are positive by Lemma 8.
With

∑∞
i=0 λi = ∞, we get that

∑∞
i=0 μpminλi = ∞, because pmin and μ

are fixed positive values. This implies that
∏∞

i=0(1 − μpminλi) = 0 and so the
distance between E(Qi) and c̄∗ converges to 0. 
�
Lemma 11 suffices to show convergence of Q-values in expectation.

Theorem 12. When each Q-value is selected for an update with a minimal
probability pmin in each step, and

∑∞
i=0 λi = ∞, then limi→∞ E(Qi) = c̄∗ holds

for every starting Q-values Q0 ≥ 0̄.

Proof. We first note that none of the entries of c̄∗ can be 0. This implies that
there is a scalar factor κ ≥ 0 such that 0̄ ≤ Q0 ≤ κc̄∗. As the Qi are monotone
in the entries of Q0, and as the property holds for Q′

0 = 0̄ = 0 · c̄∗ and Q′′
0 = κc̄∗

by Lemma 11, the squeeze theorem implies that it also holds for Q0. 
�
Convergence of the expected value is a weaker property than expected

convergence, which also explains why our assumptions are weaker than in
Theorem 7. With the common assumption of sufficiently fast falling learning
rates,

∑∞
i=0 λi

2 < ∞, we will now argue that the pointwise limes inferior of the
sequence of Q-values almost surely converges to c̄∗. This will later allow us to
infer convergence of the actual sequence of Q-values to c̄∗.

Theorem 13. When each Q-value is selected for update with a minimal
probability pmin in each step,

∞
∑

i=0

λi = ∞ and
∞
∑

i=0

λ2
i < ∞,

then limi→∞ Qi = c̄∗ holds almost surely for every starting Q-values Q0 ≥ 0̄.
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Proof. We assume for contradiction that, for some ̂Q �= c̄∗, there is a non-zero
chance of a sequence {Qi}i∈N0 such that

– ‖ ̂Q − lim infi→∞ Qi‖∞ < ε′ for all ε′ > 0, and
– there is a type q such that ̂Q(q) < T ( ̂Q)(q).

Then there must be an ε > 0 such that ̂Q(q)+3ε < T ( ̂Q−2ε · 1̄)(q). We fix such
an ε > 0.

Now we have the assumption that the probability of ‖ ̂Q−lim infn→∞ Qi‖∞ <
ε is positive. Then, in particular, the chance that, at the same time,
lim infi→∞ Qi > ̂Q − ε · 1̄ and lim infi→∞ Qi < ̂Q + ε · 1̄, is positive.

Thus, there is a positive chance that the following holds: there exists an nε

such that, for all i > nε, Qi ≥ ̂Q − 2ε · 1̄. This implies

T (Qi)(q) ≥ T ( ̂Q − 2ε · 1̄)(q) > ̂Q(q) + 3ε.

Thus, the expected limit value of Qi(q) is at least ̂Q(q) + 3ε, for every tail of
the update sequence. Now, we can use ̂Q−2ε as a bound on the estimation of the
updates in Q-learning as Qi ≥ ̂Q − 2ε · 1̄ holds. At the same time, the variation
of the sum of the updates goes to 0 when

∑

i = 0∞λ2
i is bounded. Therefore, it

cannot be that lim infi→∞ Qi < ̂Q + ε · 1̄ holds; a contradiction.
We note that if, for a Q-values Q ≥ 0̄, there is a q ∈ P with Q(q′) < c̄∗(q′),

then there is a q ∈ P with Q(q) < T (Q)(q) and Q(q) < c̄∗(q). This is because,
for the Q-values Q′ with Q′(q) = min{Q(q), c̄∗(q)} for all q ∈ Q, Q′ < c̄∗. Thus,
there must be a type q ∈ P such that κ = Q′(q)

c̄∗(q) < 1 is minimal, and Q′ ≥ κc̄∗.
As we have shown before, T (κc̄∗) = κc̄∗ − (κ−1)c̄, such that the following holds:

T (Q)(q) ≥ T (Q′)(q) ≥ T (κc̄∗)(q) = κc̄∗(q) + (1 − κ)c(q) > c̄∗(q) = Q(q).

Thus, we have that lim infi→∞ Qi ≥ c̄∗ holds almost surely. With
limi→∞ E(Qi) = c̄∗, it follows that limi→∞ Qi = c̄∗. 
�

5.2 Convergence for BMDPs and Finite c̄∗

We start with showing that, for BMDPs, the pointwise limes superior of each
sequence is almost surely less than or equal to c̄∗. We then proceed to show that
the limes inferior of a sequence is almost surely c̄∗, which together implies almost
sure convergence.

Lemma 14. When each Q-value of BMDP is selected for update with a
minimal probability pmin in each step,

∑∞
i=0 λi = ∞,

∑∞
i=0 λ2

i < ∞, then
lim supi→∞ Qi ≤ c̄∗ holds almost surely for every starting Q-values Q0 ≥ 0̄.

Proof. To show the property for the limes superior, we fix an optimal static
strategy σ∗ that exists due to Corollary 5.

We define an BMC obtained by replacing each type q in the BMDP with
A(q) = {a1, . . . , ak}, by k types (q, a1), . . . , (q, ak) with one action, where each
type q′ is replaced by the type-action pair (q′, σ∗(q′)).
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It is easy to see that a type (q, σ∗(q)) for the resulting BMC has the same
value as the type q and the type-action pair (q, σ∗(q)) in the BMDP that we
started with.

When identifying these corresponding type-action pairs, we can look at the
same sampling for the BMDP and the BMC, leading to sequences Q0, Q1, Q2, . . .
and Q′

0, Q
′
1, Q

′
2, . . ., respectively, where Q0 = Q′

0.
It is easy to see by induction that Qi ≤ Q′

i. Considering that {Q′
i}i∈N almost

surely converges to c̄∗ by Theorem 13, we obtain our result. 
�
Theorem 15. When each Q-value of an BMDP is selected for update with a
minimal probability pmin,

∑∞
i=0 λi = ∞,

∑∞
i=0 λ2

i < ∞, then limi→∞ Qi = c̄∗

holds almost surely for every starting Q-values Q0 ≥ 0̄.

Proof. As a first simple corollary from Lemma 14, we get the same result for the
limes inferior (as lim inf ≤ lim sup must hold).

We now assume for contradiction that, for some vector ̂Q < c̄∗, there is a
non-zero chance of a sequence {Qi}i∈N such that ‖ ̂Q − lim infn→∞ Qi‖∞ < ε′

for all ε′ > 0.
As ̂Q is below the fixed point of T , there must be one type-action pair

(q, σ∗(q)) such that ̂Q(q, σ∗(q)) < T ( ̂Q)(q, σ∗(q)) (cf. the proof of Theorem13).
Moreover, there must be an ε > 0 such that

̂Q(q, σ∗(q)) + 3ε < T ( ̂Q + 2ε · 1̄)(q, σ∗(q)).

We fix such an ε > 0.
Now we assume that the probability of ‖ ̂Q−lim infn→∞ Qi‖∞ < ε is positive.

Then the chance that, simultaneously, lim infi→∞ Qi(q, σ∗(q)) > ̂Q(q, σ∗(q)) − ε

and lim infi→∞ Qi(q, σ∗(q)) < ̂Q(q, σ∗(q)) + ε, is positive.
Thus, there is a positive chance that the following holds: there exists an nε

such that, for all i > nε we have Qi ≥ ̂Q − 2ε · 1̄. This entails

T (Qi)(q, σ∗(q)) ≥ T ( ̂Q − 2ε · 1̄)(q, σ∗(q)) > ̂Q(q, σ∗(q)) + 3ε.

Thus, the expected limit value of Qi(q, σ∗(a)) is at least ̂Q(q, σ∗(a)) + 3ε, for
every tail of the update sequence. Now, we can use T ( ̂Q − 2ε · 1̄)(q, σ∗(a)) as
a bound on the estimation of T (Q)(q, σ∗(q)) during the update of the Q-value
of the type-action pair (q, σ∗(q)). At the same time, the variation of the sum of
the updates goes to 0 when

∑∞
i=0 λ2

i is bounded. Therefore, it cannot be that
lim infi→∞ Qi(q, σ∗(a)) < ̂Q(q, σ∗(a)) + ε holds; a contradiction. 
�

5.3 Divergence

We now show divergence of Q(q) to ∞ when at least one of the entries of c̄∗(q)
is infinite. First due to Theorem6 and its proof we have that c̄∗ =

∑∞
i=0 Bic̄ for

some non-negative B and positive c̄. Therefore c̄∗ is monotonic in B for BMCs.
Likewise, the value of c̄∗ for a BMDP depends only on the cost function and the
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expected number of successors of each type spawned: Two BMDPs with same
cost functions and the expected numbers of successors have the same fixed point
c̄∗. Thus, if a type q with one action spawns either exactly one q or exactly
one q′ with a chance of 50% each, or if it spawns 10 successors of type q and
another 10 or type q′ with a chance of 5%, while dying without offspring with
a chance of 95%, both lead to identical matrices B and so the same c̄∗ (though
this difference may impact the performance of Q-learning).

Naturally, raising the number of expected number of successors of any type
for any type-action pair strictly raises c̄∗, while lowering it reduces c̄∗, and for
every set of expected numbers, the value of c̄∗ is either finite or infinite.

Let us consider a set of parameters at the fringe of finite vs. infinite c̄∗, and
let us choose them pointwise not larger than the parameters from the BMC or
BMDP under consideration. As the fixed point from Sect. 3 is clearly growing
continuously in the parameter values, this set of expected successors leads to a
c̄∗ which is not finite.

We now look at the family of parameter values that lead to α ∈ [0, 1[ times the
expected successors from our chosen parameter at the fringe between finite and
infinite values, and refer to it as the α-BMDP. Let also c̄∗

α denote the fixed point
for the reduced parameters. As the solution to the fixed point grows continuously,
so does c̄∗

α. Moreover, if c̄∗
1 = limα→1 c̄∗

α was finite, then c̄∗ would be finite as
well, because then c̄∗

1 = c̄∗.
Clearly, for all parameters α ∈ [0, 1[, the Q-values of an α-BMC or α-BMDP

converge against c̄∗
α. Thus, the Q-values for the BMC or BMDP we have started

with converges against a value, which is at least supα∈[0,1[ c̄
∗
α. As this is not a

finite value, Q-learning diverges to ∞.

6 Experimental Results

We implemented the algorithm described in the previous section in the formal
reinforcement learning tool Mungojerrie [21], a C++-based tool which
reads BMDPs described in an extension of the PRISM language [18]. The tool
provides an interface for RL algorithms akin to that of [3] and invokes a linear
programming tool (GLOP) [22] to compute the optimal expected total cost based
on the optimality equations (♠).

6.1 Benchmark Suite

The BMDPs on which we tested Q-learning are listed in Table 1. For each model,
the numbers of types in the BMDP, are given. Table 1 also shows the total cost
(as computed by the LP solver), which has full access to the BMDP. This is
followed by the estimate of the total cost computed by Q-learning and the time
taken by learning. The learner has several hyperparameters: ε is the exploration
rate, α is the learning rate, and tol is the tolerance for Q-values to be considered
different when selecting an optimal strategy. Finally, ep-l is the maximum episode
length and ep-n is the number of episodes. The last two columns of Table 1
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report the values of ep-l and ep-n when they deviate from the default values. All
performance data are the averages of three trials with Q-learning. Since costs
are undiscounted, the value of a state-action pair computed by Q-learning is a
direct estimate of the optimal total cost from that state when taking that action.

Table 1. Q-learning results. The default values of the learner hyperparameters are:
ε = 0.1, α = 0.1, tol= 0.01, ep-l= 30, and ep-n= 20000. Times are in seconds.

Name Types Optimal cost Estimated cost Time (avg.) ep-l ep-n

cloud1 3 5 5.026 0.369

cloud2 4 5 5.016 0.369

bacteria1 3 2.5 2.514 0.374

bacteria2 3 1.34831 1.413 0.387

protein 3 6 5.067 0.372

frozenSmall 16 1.84615 1.740 2.834 100

rand68 10 150.432 154.400 0.402

rand283 9 4 4 0.075 1000

rand945 19 212 208.177 10.756 200 40000

rand3242 43 4 4.372 5.960 100

rand6417 62 10 10 12.498 50

Models cloud1 and cloud2 are based on the motivating example given in
the introduction. Examples bacteria1 and bacteria2 model the population
dynamics of a family of two bacteria [28] subject to two treatments. The objective
is to determine which treatment results in the minimum expected cost to
extinction of the bacteria population. The protein example models a stochastic
Petri net description [19] corresponding to a protein synthesis example with
entities corresponding to active and inactive genes and proteins. The example
frozenSmall [3] is similar to classical frozen lake example, except that one of
the holes result in branching the process in two entities. Entities that fall in
the target cell become extinct. The objective is to determine a strategy that
results in a minimum number of steps before extinction. Finally, the remaining
5 examples are randomly created BMDP instances.

7 Conclusion

We study the total reward optimisation problem for branching decision processes
with unknown probability distributions, and give the first reinforcement learning
algorithm to compute an optimal policy. Extending Q-learning is hard, even
for branching processes, because they lack a central property of the standard
convergence proof: as the value range of the Q-table is not a priori bounded
for a given starting table Q0, the variation of the disturbance is not bounded.
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This looks like a more substantial obstacle than the one Q-learning faces
when maximising undiscounted rewards for finite-state MDPs, and it is well
known that this defeats Q-learning. So it is quite surprising that we could
not only show that Q-learning works for branching processes, but extend these
results to branching decision processes, too. Finally, in the previous section, we
have demonstrated that our Q-learning algorithm works well on examples of
reasonable size even with default hyperparameters, so it is ready to be applied
in practice without the need for excessive hyperparameter tuning.

References

1. Becker, N.: Estimation for discrete time branching processes with application to
epidemics. In: Biometrics, pp. 515–522 (1977)

2. Brázdil, T., Kiefer, S.: Stabilization of branching queueing networks. In: 29th
International Symposium on Theoretical Aspects of Computer Science (STACS
2012), vol. 14, pp. 507–518 (2012). https://doi.org/10.4230/LIPIcs.STACS.2012.
507

3. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym. CoRR abs/1606.01540 (2016)
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systems. In: Plà-Aragonés, L.M. (ed.) Handbook of Operations Research in
Agriculture and the Agri-Food Industry. ISORMS, vol. 224, pp. 419–454. Springer,
New York (2015). https://doi.org/10.1007/978-1-4939-2483-7 19

21. Perez, M., Somenzi, F., Trivedi, A.: Mungojerrie: formal reinforcement learning
(2021). https://plv.colorado.edu/mungojerrie/. University of Colorado Boulder

22. Perron, L., Furnon, V.: Or-tools (version 7.2) (2019). https://developers.google.
com/optimization. Google

23. Pliska, S.R.: Optimization of multitype branching processes. Manag. Sci. 23(2),
117–124 (1976)

24. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, Hoboken (1994)

25. Rao, A., Bauch, C.T.: Classical Galton-Watson branching process and vaccination.
Int. J. Pure Appl. Math. 44(4), 595 (2008)

26. Rothblum, U.G., Whittle, P.: Growth optimality for branching Markov decision
chains. Math. Oper. Res. 7(4), 582–601 (1982)

27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, Cambridge (2018)

28. Trivedi, A., Wojtczak, D.: Timed branching processes. In: 2010 Seventh
International Conference on the Quantitative Evaluation of Systems, pp. 219–228.
IEEE (2010)

29. Udom, A.U.: A Markov decision process approach to optimal control of a multi-
level hierarchical manpower system. CBN J. Appl. Stat. 4(2), 31–49 (2013)

30. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992).
https://doi.org/10.1007/BF00992698

31. Watson, H.W., Galton, F.: On the probability of the extinction of families. J.
Anthrop. Inst. 4, 138–144 (1874)

32. Wojtczak, D.: Recursive probabilistic models : efficient analysis and implemen-
tation. Ph.D. thesis, University of Edinburgh, UK (2009). http://hdl.handle.net/
1842/3217

https://doi.org/10.1007/978-1-4684-9469-3
https://doi.org/10.1007/978-3-642-19835-9_28
https://doi.org/10.1007/978-3-642-19835-9_28
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-1-4939-2483-7_19
https://plv.colorado.edu/mungojerrie/
https://developers.google.com/optimization
https://developers.google.com/optimization
https://doi.org/10.1007/BF00992698
http://hdl.handle.net/1842/3217
http://hdl.handle.net/1842/3217


Reinforcement Learning for Branching Markov Decision Processes 673

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Software Verification



Cameleer: A Deductive Verification Tool
for OCaml

Mário Pereira(B) and António Ravara

NOVA LINCS, Nova School of Science and Technology,
Lisbon, Portugal

{mjp.pereira,aravara}@fct.unl.pt

Abstract. We present Cameleer, an automated deductive verification
tool for OCaml. We leverage on the recently proposed GOSPEL (Generic
OCaml SPEcification Language) to attach rigorous, yet readable, behav-
ioral specification to OCaml code. The formally-specified program is fed
to our toolchain, which translates it into an equivalent one in WhyML,
the programming and specification language of the Why3 verification
framework. We report on successful case studies conducted in Cameleer.

Keywords: Deductive software verification · OCaml · Why3 ·
GOSPEL

1 Introduction

Over the past decades, we have witnessed a tremendous development in the field
of deductive software verification [11], the practice of turning the correctness of
code into a mathematical statement and then prove it. Interactive proof assis-
tants have evolved from obscure and mysterious tools into de facto standards
for proving industrial-size projects. On the other end of the spectrum, the so-
called SMT revolution and the development of reusable intermediate verification
infrastructures contributed decisively to the development of practical automated
deductive verifiers.

Despite all the advances in deductive verification and proof automation, lit-
tle attention has been given to the family of functional languages [27]. Let us
consider, for instance, the OCaml language. It is well suited for verification, given
its well-defined semantics, clear syntax, and state-of-the-art type system. Yet,
the community still lacks an easy to use framework for the specification and
verification of OCaml code. The working programmers must either re-implement
their code in a proof-aware language (and then rely on code extraction), or they
must turn themselves into interactive frameworks. Cameleer fills the gap, being
a tool for the deductive verification of programs written in OCaml, with a clear
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focus on proof automation. Cameleer uses the recently proposed GOSPEL [5], a
specification language for OCaml. We advocate here the vision of the specifying
programmer : the person who writes the code should also be able to naturally pro-
vide suitable specification. GOSPEL terms are written in a subset of the OCaml
language, which makes them more appealing to the regular programmer. More-
over, we believe specification and implementation should co-exist and evolve
together, which is exactly the approach followed in Cameleer.

Cameleer takes as input a GOSPEL-annotated OCaml program and translates
it into an equivalent counterpart in WhyML, the programming and specifica-
tion language of the Why3 framework [16]. Why3 is a toolset for the deductive
verification of software, clearly oriented towards automated proof. A distinctive
feature of Why3 is that it interfaces with several different off-the-shelf theorem
provers, namely SMT solvers.

Contributions. To the best of our knowledge, Cameleer is the first deductive
verification tool for annotated OCaml programs. It handles a realistic subset of
the language, and its interaction with the Why3 verification framework greatly
increases proof automation. Our set of case studies successfully verified with the
Cameleer tool constitutes, by itself, an important contribution towards building
a comprehensive body of verified OCaml codebases. Finally, it is worth noting
that the original presentation of GOSPEL was limited to the specification of
interface files. In the scope of this work, we have extended it to include imple-
mentation primitives, such as loop invariants and ghost code (i.e., code that has
no computational purpose and is used only to ease specification and proof effort)
evolving GOSPEL from an interface specification language into a more mature
proof language.

2 Illustrative Example – Binary Search

Higher-Order Implementation. Fig. 1 presents an implementation of binary
search, where the comparison function, cmp, is given as an argument to the
main function. For the sake of readability, we give the type of arguments and
return value of function binary search, but these can be inferred by the OCaml
compiler.

The function contract is given after its definition as a GOSPEL annotation,
written within comments of the form (*@ ... *). The first line names the
returned value. Next, the first precondition establishes that the cmp is a total
pre order following the OCaml convention: if x is smaller than y, then cmp x y
< 0; if x is greater than y, then cmp x y > 0; finally, cmp x y = 0 if x and y
are equal values1. It is worth noting that GOSPEL, hence Cameleer, assumes cmp
to be a pure function (i.e., a function without any form of side-effects). The
second precondition requires the array to be sorted according to the cmp rela-
tion. Finally, the last two clauses capture the possible outcomes of execution: the
regular postcondition (ensures clause) states the returned index is within the
bounds of a and its value is equal to v; the exceptional postcondition (raises)
1 For the sake of space, we omit the definition of predicate is total pre order.
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Fig. 1. Binary search implemented as a functor.

states that whenever exception Not found is raised, there is no such index within
bounds whose value is equal to v. As usual in deductive verification, the presence
of the while loop requires one to supply a loop invariant. Here, it boils down to
the two invariant clauses, which state the limits of the search space are always
within the bounds of a and that for every index i for which a.(i) is equal to v,
then i must be within the limits of the current search space. We also provide a
decreasing measure (variant) in order to prove loop termination.

Assuming file binary search.ml contains the program of Fig. 1, starting a
proof with Cameleer is as easy as typing cameleer binary search.ml in a ter-
minal. Users are immediately presented with the Why3 IDE, where they can con-
duct the proof. Twelve verification conditions are generated for binary search:
two for loop invariant initialization, four loop invariant preservation (two for each
branch of if..then..else), two for safety (check division by zero and index in
array bounds), two for loop termination (one for each branch), and finally one
for each postcondition. All of these are easily discharged by SMT solvers.

Functor-Based Implementation. The implementation in Fig. 2 depicts (the skele-
ton of) an alternative implementation of the binary search routine. Instead of
passing the comparison function as an argument of binary search, here the
functor Make takes as argument a module of type OrderedType, which provides
a monomorphic comparison function over a type t. This is the same approach
found in the OCaml standard library, namely in the Set and Map modules. The
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@logic attribute instructs Cameleer that cmp is both a programming and logical
function. This is what allows us to provide the axiom about the behavior of cmp.

Other than the call to Ord.cmp, the implementation and specification of
binary search does not change, hence we omit it here. When fed into Cameleer,
the functorial implementation generates the exact same twelve verification con-
ditions as the higher-order counterpart, all of them easily discharged as well.
Thus, the use of a functor does not impose any verification burden, showing the
flexibility of Cameleer to handle different idiomatic OCaml programming styles.

Fig. 2. Binary search implemented as a functor.

OCaml +
GOSPEL

OCaml AST
ppxlib

WhyML AST
Cameleer

Why3 Logic

Why3

Alt-Ergo CVC4Z3Why3 errorOCaml error

Fig. 3. Cameleer verification workflow.

3 Implementation

Cameleer Workflow. Figure 3 depicts the verification workflow of the Cameleer
tool. We use the GOSPEL toolchain2, in order to parse and manipulate (via the
ppxlib library) the abstract syntax tree of the GOSPEL-annotated OCaml pro-
gram. A dedicated parser and type-checker (extended to handle implementation
features) treat GOSPEL special comments and attach the generated specifica-
tion to nodes in the OCaml AST. Cameleer translates the decorated AST into an

2 https://github.com/ocaml-gospel/gospel.

https://github.com/ocaml-gospel/gospel
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equivalent WhyML representation, which is then fed to Why3. The Why3 type-
and-effect system might reject the input program, in which case the reported
error is propagated back to the level of the original OCaml code. Otherwise, if
the translated program fits Why3 requirements, the underlying VCGen computes
a set of verification conditions that can then be discharged by different solvers.
Throughout all this pipeline, the user only has to write the OCaml code and
GOSPEL specification (represented in Fig. 3 as a full-lined box), while every other
element is automatically generated (dash-lined boxes). The user never needs to
manipulate or even care about the generated WhyML program. In short, the
Cameleer user intervenes in the beginning and in the end of the process, i.e., in
the initial specifying phase and in the last step, helping Why3 to close the proof.
Our development effort currently amounts to 1.8K non-blank lines of OCaml
code.

Translation into WhyML. The core of Cameleer is a translation from GOSPEL-
annotated OCaml code into WhyML. In order to guide our implementation effort,
we have defined such a translation as a set of inductive inference rules between
the source and target languages [26]. Here, rather than focusing on more funda-
mental aspects, we give a brief overview of how the translation works in practice.

OCaml and WhyML are both dialects of the ML-family, sharing many syn-
tactic and semantics traits. Hence, translation of OCaml expressions and decla-
rations into WhyML is rather straightforward: GOSPEL annotations are readily
translated into WhyML specification, while supported OCaml programming con-
structions (including ghost code) are easily mapped into semantically-equivalent
WhyML constructions. Consider, for instance the following piece of OCaml code:

type ’a non_empty_list = { self: ’a list }
(*@ invariant self <> [] *)

let[@ghost] hd (l: ’a non_empty_list) = match l with
| [] -> assert false
| x :: _ -> x

(*@ r = hd l
ensures match l with

| [] -> false
| x :: _ -> r = x *)

For such case, Cameleer generates the following WhyML program:

type non_empty_list ’a = { self: list ’a }
invariant { self <> Nil }

let ghost hd (l: non_empty_list ’a)
returns { r -> match l with

| Nil -> false
| Cons x _ -> x = r end }

= match l with
| Nil -> absurd
| Cons x _ -> x end
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Other than the small syntactic differences, the generated WhyML program is
identically to the original OCaml one. In particular, the @ghost annotation gen-
erates a ghost function in WhyML, while the assert false expression (which is
treated in a special way by the OCaml type-checker) is translated into the absurd
construction, with the same semantics. Supplied annotations, in this case post-
condition and type invariant, are readily mapped into equivalent specification.

The translation of the OCaml module language is more interesting and
involved. A WhyML program is a list of modules, a module is a list of top-level
declarations, and declarations can be organized within scopes, the WhyML unit
for namespaces management. However, there is no dedicated syntax for functors
on the Why3 side. These are represented, instead, as modules containing only
abstract symbols [17]. Thus, when translating OCaml functors into WhyML, we
need to be more creative. If we consider, for instance, the Make functor from
Fig. 2, Cameleer will generate the following WhyML program:

scope Make
scope Ord

type t

val function cmp t t : int
axiom total_pre_order: is_total_pre_order cmp

end

let binary_search a v = ...
end

The functor argument Ord is encoded as a nested scope inside Make. This means
the binary search implementation can access any symbol from the Ord names-
pace, via name qualification (e.g., Ord.t and Ord.cmp).

Interaction with Why3 . One distinguishing feature of the Why3 architecture is
that it can be extended to accommodate new front-end languages [32, Chap. 4].
Building on the devised OCaml to WhyML translation scheme, we use the Why3
API to build an in-memory representation of the WhyML program. We also
register OCaml as an admissible input language for Why3, which amounts to
instructing Why3 to recognize .ml files as a valid input format and triggering
our translation in such case. Following this integration, we can use any Why3
tool, out of the box, to process a .ml file. We are currently using the extract
and session tools: the latter to gather statistics about number of generated
verification conditions and proof time; the former to erase ghost code.

Limitations of Using Why3 . The WhyML specification sub-language and
GOSPEL are similar. Moreover, they share some fundamental principles, namely
the arguments of functions are not aliased by construction and each data struc-
ture carries an implicit representation predicate. However, one can use GOSPEL
to formally specify OCaml programs which cannot be translated into WhyML.
This is evident when it comes to recursive mutable data structures. Consider,
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for instance, the cell type from the Queue module of the OCaml standard
library3:

type ’a cell = Nil | Cons of { content: ’a; mutable next: ’a cell }

As we attempt to translate such data type, Why3 emits the following error:

This field has non-pure type, it cannot be used in a recursive
type definition

Recursive mutable data types are beyond the scope of Why3’s type-and-effect
discipline [14], since these can introduce arbitrary memory aliasing which breaks
the bounded-mutability principle of Why3 (i.e., all aliases must be statically-
known). The solution would be to resort to an axiomatic memory model of
OCaml in Why3, or to employ a richer program logic, e.g., Separation Logic [28]
or Implicit Dynamic Frames [31]. We describe such an extension as future work
(Sect. 6).

4 Evaluation

In order to assess the usability and performance of Cameleer, we have put
together a test suite of over 1000 lines of OCaml code. The reported case studies
are all automatically verified. To build our gallery of verified programs we used
a combination of Alt-Ergo 2.4.0, CVC4 1.8, and Z3 4.8.6. Figure 4 summarizes
important metrics about our verified case studies: the number of generated ver-
ification conditions for each example; the total lines of OCaml code, GOSPEL
specification, and lines of ghost (these are also included in the number of OCaml
LOC), respectively; the time it takes (in seconds) to replay a proof; and finally,
if the proof is immediately discharged, i.e., no extra user effort is required other
than writing down suitable specification.

Our test bed includes OCaml implementations issued from realistic and mas-
sively used programming libraries: the List.fold left iterator and Stack mod-
ule from the OCaml standard library; the Leftist Heap implementation from
ocaml-containers4; finally, the applicative Queue module from OCamlgraph5.
We have used Cameleer to verify programs of different nature. These include:
numerical programs (e.g., binary multiplication and fast exponentiation); sorting
and searching (e.g., binary search and insertion sort); logical algorithms (con-
version of a propositional formula into conjunctive normal form); array scanning
(finding duplicate values in an array of integers); small-step iterators; data struc-
tures implemented as functors (e.g., Pairing Heaps and Binary Search Trees);
historical algorithms (checking a large routine by Turing, Boyer-Moore’s major-
ity algorithm, FIND by Hoare, and binary tree same fringe); examples in Rustain
Leino’s forthcoming textbook “Program Proofs”; and higher-order implementa-
tions (height of a binary tree computed in CPS). Both small-step iterators and

3 https://caml.inria.fr/pub/docs/manual-ocaml/libref/Queue.html.
4

https://github.com/c-cube/ocaml-containers/blob/master/src/core/CCHeap.ml
5

https://github.com/backtracking/ocamlgraph/blob/master/src/lib/persistentQueue.ml

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Queue.html
https://github.com/c-cube/ocaml-containers/blob/master/src/core/CCHeap.ml
https://github.com/backtracking/ocamlgraph/blob/master/src/lib/persistentQueue.ml
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Fig. 4. Summary of the case studies verified with the Cameleer tool.

the list fold function use a modular approach to reason about iteration [18].
Our largest case study to date is a toy compiler from arithmetic expressions
to a stack machine, while Union Find features the most involved, but very ele-
gant, specification. The former is inspired by the presentation in Nielsons’ text-
book [25]; the latter follows recently proposed specification techniques [7,12] to
achieve fully automatic proofs of correctness and termination.

The runtimes shown in Fig. 4 were measured by averaging over ten runs
on a Lenovo Thinkpad X1 Carbon 8th Generation, running Linux Mint 20.1,
OCaml 4.11.1, and Why3 1.3.3 (developer version). They show that Cameleer can
effectively verify realistic OCaml code in a decent amount of time. Following good
practices in deductive verification, Cameleer allows the user to write ghost code in
order to ease proof and specification. The number of lines of ghost code in Fig. 4
stands for ghost fields in record types, ghost functions, and lemma functions.
In particular, the arithmetic compiler example uses lemma functions to prove,
by induction, results about semantics preservation. Finally, case studies marked
with required some form of manual interaction in the Why3 IDE [9]. These
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are very simple proofs by induction (of auxiliary lemmas) and case analysis, in
order to better guide SMT solvers.

From our experience developing this gallery of verified programs, we believe
the required annotation effort is reasonable, although non-negligible. Some case
studies, namely the Heap implementations, feature a considerable amount of lines
of GOSPEL specification. However, these are classic definitions (e.g., minimum
element) and results (e.g., the root of the Heap is the minimum element), which
are easily adapted to any variant of Heap implementation.

5 Related Work

Automated Deductive Verification. One can cite Why3, F* [1], Dafny [23], and
Viper [24] as successful automated deductive verification tools. Formal proofs are
conducted in the proof-aware language of these frameworks, and then executable
reliable code can be automatically extracted. In the Cameleer project, we chose
to develop a verification tool that accepts as input a program written directly in
OCaml, instead of a dedicated proof language. This obviates the need to re-write
entire OCaml codebases (e.g., libraries), just for the sake of verification.

Regarding tools that tackle the verification of programs written in main-
stream languages, one can cite Frama-C [21] (for the C language), VeriFast [20]
(C and Java), Nagini [10] (Python), Leon [22] (Scala), Spec# [3] (C#), and
Prusti [2] (Rust). Despite the remarkable case studies verified with these tools,
programs written in the these languages can quickly degenerate into a night-
mare of pointer manipulation and tricky semantics issues. We argue the OCaml
language presents a number of features that make it a better target for formal
verification.

Finally, language-based approaches offer an alternative path to the verifica-
tion of software. Liquid Haskell [34] extends standard Haskell types with Liquid
Types [29], a form of refinement types [30], in order to prove properties about
realistic Haskell programs [33]. In this approach, verification conditions are gen-
erated and discharged during type-checking. This is also its major weakness: in
order to remain decidable, the expressiveness of the refinement language is hin-
dered. In Cameleer, the use of GOSPEL allows us to provide rich specification to
relevant case studies, while still achieving good proof automation results.

Deductive Verification of OCaml Programs. Prior to our work, CFML [4] and
coq-of-ocaml [8] were the only available tools for the deductive verification of
OCaml-written code, via translation into the Coq proof language. On one hand,
CFML features an embedding of a higher-order Separation Logic in Coq, together
with a characteristic formulae generator. On the other hand, coq-of-ocaml
compiles non-mutable OCaml programs to pure Gallina code. These two tools
have been successfully applied to the verification of non-trivial case studies, such
as the correctness and worst-case amortized complexity bound of cycle detection
algorithm [19], as well as part of the Tezos’ blockchain protocol6. However, they

6 https://clarus.github.io/coq-of-ocaml/examples/tezos/.

https://clarus.github.io/coq-of-ocaml/examples/tezos/
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still require a tremendous level of expertise and manual effort from users. Also, no
behavioral specification is provided with the OCaml implementation. The user
must write specification at the level of the generated code, which breaks our
vision that implementation and specification must coexist and evolve together.

The VOCaL project aims at developing a mechanically verified OCaml
library [6]. One of the main novelties of this project is the combined use of
three different verification tools: Why3, CFML, and Coq. The GOSPEL specifi-
cation language was developed in the scope of this project, as a tool-agnostic
language that could be manipulated by any of the three mentioned frameworks.
Up to this point, the three mentioned tools were only using GOSPEL for inter-
face specification, and not as a proof language. We believe the Cameleer approach
nicely complements the existing toolchains [13] in the VOCaL ecosystem.

6 Conclusions and Future Work

In this paper we presented Cameleer, a tool for automated deductive verification
of OCaml programs, with bounded mutability. We use the recently proposed
GOSPEL language, which we also extended in the scope of this work, in order to
attach formal specification to an OCaml program. Cameleer fulfills a gap in the
OCaml community, by providing programmers with a tool to directly specify and
verify their implementations. By departing from the interactive-based approach,
we believe Cameleer can be an important step towards bringing more OCaml
programmers to include formal methods techniques in their daily routines.

The core of Cameleer is a translation from OCaml annotated code into
WhyML. The two languages share many common traits (both in their syntax and
semantics), so it makes sense to target this intermediate verification language in
the first major iteration of Cameleer. We have successfully applied our tool and
approach to the verification of several case studies. These include implementa-
tions issued from existing libraries, and scale up to data structures implemented
as functors and tricky effectful computations. In the future, we intend to apply
Cameleer to the verification of even larger case studies.

What We Do Not Support. Currently, we target a subset of the OCaml language
which roughly corresponds to caml-light, with basic support for the module
language (including functors). Also, WhyML limits effectful computations to the
cases where alias is information statically known, which limits our support for
higher-order functions and mutable recursive data structures. Adding support for
the objective layer of the OCaml language would require a major extension to the
GOSPEL language and a redesign of our translation into WhyML. Nonetheless,
Why3 has been used in the past to verify Java-written programs [15], so in
principle an encoding of OCaml objects in WhyML is possible.

We do not support some of the more advanced type features in OCaml, namely
Generalized Algebraic Data Types (GADTs) and polymorphic variants. One
way to support such constructions would to be extend the type system of Why3
itself, which would likely mean a considerable redesign of the WhyML language.
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Another possible route is to extend the core of Cameleer with the ability to
translate OCaml code into other, richer, verification frameworks.

Interface with Viper and CFML. In order to augment the class of OCaml programs
we can treat, we plan on extending Cameleer to target the Viper infrastructure
and the CFML tool. On one hand, Viper is an intermediate verification language
based on Separation Logic but oriented towards SMT-based software verification,
allowing one to automatically verify heap-dependent programs. On the other
hand, the CFML tool allows one to verify effectful higher-order programs. We
plan on extending the CFML translation engine, in order to take source-code
level GOSPEL annotations into account. Since it targets the rich proof language
and type system of Coq, it can in principle be extended to reason about GADTs
and other advanced OCaml features. Even if it relies on an interactive proof
assistant, CFML provides a comprehensive tactics library that eases proof effort.

Our ultimate goal is to grow Cameleer to a verification tool that can simul-
taneously benefit from the best features of different intermediate verification
frameworks. Our motto: we want Cameleer to be able to verify parts of OCaml
code using Why3, others with Viper, and some very specific functions with CFML.
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4. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP), pp. 418–430 (2011).
https://doi.org/10.1145/2034773.2034828
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Abstract. Multi-threaded unit tests for high-performance thread-safe
data structures typically do not test all behaviour, because only a single
scheduling of threads is witnessed per invocation of the unit tests. Model
checking such unit tests allows to verify all interleavings of threads. These
tests could be written in or compiled to LLVM IR. Existing LLVM IR
model checkers like divine and Nidhugg, use an LLVM IR interpreter
to determine the next state. This paper introduces llmc, a multi-core
explicit-state model checker of multi-threaded LLVM IR that translates
LLVM IR to LLVM IR that is executed instead of interpreted. A test
suite of 24 tests, stressing data structures, shows that on average llmc
clearly outperforms the state-of-the-art tools divine and Nidhugg.

1 Introduction

High-performance software often uses thread-safe data structures to allow mul-
tiple threads access to the data, without corrupting it. Unit tests for such data
structures typically do not test all behaviour, because the thread scheduler of
the run-time environment non-deterministically chooses only a single interleav-
ing. Thus, only a single trace is witnessed each time the unit test is invoked. If
we would model check [1] these unit tests, we can witness all possible traces by
exploring all thread schedules. Because it does not depend on the run-time envi-
ronment, model checking can become part of a continuous integration pipeline,
enabling push-button verification of multi-threaded software.

These thread-safe data structures can be written in or compiled to LLVM IR,
the intermediate representation of the LLVM Project [2]. The LLVM Project is
a collection of modular and reusable compiler and toolchain technologies. Many
front-ends for LLVM IR exist, for example for C, C++, Java, Ruby, and Rust,
potentially allowing an LLVM IR model checker to be usable for many languages.

1.1 Related Work

Model checkers that operate on LLVM IR already exist, for example divine,
Nidhugg, RCMC and LLBMC. divine [3] is a stateful multi-core model checker
of multi-threaded LLVM IR. It has many features such as capturing I/O during
model checking, SC and TSO memory models, library support such as libc and
libpthread. Input programs are linked with divine’s operating system layer,
DiOS, and are interpreted as a whole on the DiVM virtual machine.
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 690–703, 2021.
https://doi.org/10.1007/978-3-030-81688-9_32
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divine detects memory operations to thread-private memory, by traversing
the heap on-the-fly and recognizing if a memory-object is either known only to
one thread or to multiple [4]. In the former case, memory operations to that
memory-object can be collapsed, i.e. joined with the previous instruction.

Nidhugg [5] is a stateless multi-core model checker of multi-threaded LLVM
IR that uses an LLVM IR interpreter. It features a sophisticated partial-order
reduction, rfsc [6], that categorizes traces according to which read reads from
which write and traverses only one trace in each category. In practice this reduc-
tion is quite powerful. However, Nidhugg comes with a caveat: because Nidhugg
is stateless, common prefixes of traces are traversed once per trace instead of
once in total. This down-side of a stateless approach becomes more pronounced
with longer and more often occurring common traces. Moreover, Nidhugg might
not terminate in the presence of infinite loops.

RCMC [7] is also a stateless LLVM IR model checker. During execution within
its LLVM IR interpreter, it keeps track of a happens-before graph of all observed
memory operations. Using this, RCMC can determine the possible values a read
can observe, without simply executing all interleavings of all threads. Unlike
Nidhugg, it does not support heap memory and is only released in binary form.

CBMC [8] is a bounded model checker for C and C++ programs, using SMT
solving to check for memory safety, exceptions, undefined behaviour and asser-
tions. Loops and recursion are a problem for CBMC when their bound cannot
be determined: one needs to set an upper bound on the number of unwindings.

LLBMC [9] is similar to CBMC, using SMT-solving to find bugs, but only
for single-threaded C/C++ programs and it operates on LLVM IR.

Other, less related tools include SMACK [10], SeaHorn [11] and KLEE [12].

1.2 Contribution

This paper introduces llmc 0.2, a stateful multi-core model checker of multi-
threaded LLVM IR. Instead of using an LLVM IR interpreter like divine,
Nidhugg and llmc 0.1 [13], it transforms input LLVM IR to LLVM IR that
implements the dmc api, the next-state interface to the model checker dmc [14].
We call this transformation process ll2dmc and combined with dmc (Fig.
1), it allows for up to three orders of magnitude higher throughput (states/s)
than divine. At present, llmc lacks sophisticated state space reductions, caus-
ing state space sizes of roughly two orders of magnitude larger than divine. We
compared llmc to divine and Nidhugg using a test suite covering various data
structures. Overall, despite the lack of sophisticated reductions, llmc is on aver-
age an order of magnitude faster than divine and ∼3.8x faster than Nidhugg.
Additionally, llmc is able to compute the state spaces of the tests where divine
or Nidhugg fail.

Fig. 1. The flow of how an LLVM IR input program is verified in llmc.
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2 LLMC: Low-Level Model Checker

This section explains how the transformation process (ll2dmc) transforms the
input LLVM IR of a program to LLVM IR that implements the dmc api. llmc
supports LLVM IR compiled from C and C++, by handling a number of builtins
(e.g. __atomic_* for atomic memory operations), part of libpthread (for thread
support), libc (e.g. for memory allocation) and global constructors.

2.1 DMC Model Checker

Fig. 2. DMC model checker

The model created by ll2dmc is given to dmc
to explore. Dmc interacts with the model via the
dmc api (NextState API and dtree API com-
bined) as illustrated in Fig. 2: after requesting
the initial state from the model, dmc continues
to request successor states, until the state space
has been generated. A state is a vector of 32-bit
integers; two states need not be of the same length.

The states are stored in the concurrent com-
pression tree dtree [14], allowing lossless com-
pression, fast insertion and duplicate detection of
states. When inserted, states are given a unique
StateID. A StateID can be stored in states as
well, thus allowing the creation of a DAG of states: a root-state and sub-states.
Additionally, dtree allows incremental updates to a state, without having the
actual contents of the state and it allows partial reconstruction of states. This
delta interface uses the StateID to identify states and can avoid needless copy-
ing of entire states, increasing performance. Dmc exposes these dtree features
as part of the dmc api [14].

2.2 Input Language to LL2DMC: LLVM IR

To understand how llmc handles input LLVM IR [2], we briefly explain it here.
LLVM IR supports control flow by way of basic blocks. Basic blocks are a list of
instructions that execute sequentially. The last instruction of a basic block is a
terminator instruction, such as a branch (jump) instruction or return statement.

LLVM IR uses single static assignment form for register values. To support
data flow depending on control flow, φ-nodes exist. These nodes are instructions
at the beginning of a basic block that take a value depending on the basic block
from which was jumped to the basic block containing the φ-nodes.

2.3 Output of LL2DMC: Model Implementing DMC API

The output of ll2dmc is a model that implements the NextState API part
of the dmc api of the model checker dmc [14]. The NextState API requires
two interfaces from a model: one to communicate the initial state and one to
generate next states, given a state.
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The initial state of a model generated by ll2dmc is as if one just started
the program: registers are unused, global memory is initialized to 0 and a call to
the global constructor (@llvm.global_ctors) is set up. Global constructors are
functions that are called before main, which are used to initialize memory and
miscellaneous initialization, such that the executable is set up properly before
main is invoked. Having the initial state in this manner, allows the global con-
structor to be part of the state space and thus be checked as well.

Starting with the initial state, dmc will keep asking the model to generate
the next states for a given state, by invoking the next-state interface of the
model, until there are no more new states of which to request next states. Given
a state, the next-state interface determines the states reachable from that state.
In the case of a model generated by ll2dmc, first the global constructors of the
modelled program are explored, thus faults in global constructors are detected.
When the global constructors are completed, a call to main is set up. At this
point, the exploration is performed until no new states are visited.

2.4 State Space Exploration

This section describes the next-state function and how it is generated from LLVM
IR. Figure 3 describes what a state looks like. A state contains information not
unlike what an operating system keeps track of [15]. All instructions are mapped
to a unique index, such that the PC (program counter) uniquely identifies the
current position in code. The field Thread Results holds the return values of
finished threads; the field #threads specifies the number of threads in the current
state. The remainder of the state constitutes a list of per-thread data.

Each thread has its own PC and can independently manipulate it by function
calls or branching. Status fields are used to indicate whether the thread/program
is running, done or failed. Each thread has its own set of Registers , the current
state of LLVM IR registers. The size of Registers is determined by the function
requiring the largest number of LLVM IR registers. Function calls manipulate
these registers and the list of stack frames described by Previous frame .

A Field is a StateID to a sub-state, as described in Sect. 2.1. The separation
into a root-state and sub-states allows sub-states to grow and the state storage
component of dmc, dtree, to compress them using tree compression [14]. It also
allows the use of the delta interface: a write to memory can be simply translated

Fig. 3. A description of the state used by llmc.
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to a single, efficient call, taking the current Memory index, the offset to write to
and the new data. The resulting index can be written to Memory .

A single LLVM IR instruction in the program is translated to many LLVM IR
instructions in the model. We will distinguish LLVM IR registers in the model
from registers in the source program by calling the former model-registers. In
general, a single LLVM IR instruction is translated to a single step with three
phases: In the Preamble phase, operands to the source LLVM IR instruction
are remapped to model-registers and loaded from Registers or Memory . In the
Action phase, the source LLVM IR instruction is cloned, with the operands
remapped to the LLVM IR model-registers set up during the Preamble phase.
In the Epilogue phase, if the source LLVM IR instruction assigns a value to a
register, the value returned by the cloned instruction is written to Registers .

Listing 1 illustrates how a step is performed as part of the next-state function.
Multiple steps can be performed as part of the same transition (line 8), as long
as the changes are local to the thread (line 4). This is explained in more detail
in Sect. 2.5. The step function is called for every thread in the state vector.

2.4.1 Register Manipulation
Note that the Registers are not separated into a sub-state, like Memory . We
chose this such that simple register manipulating LLVM IR instructions would
have no need for an indirection and directly translate to an identical instruction,
with its operands mapped such that they are loaded from the Registers and the
return value of the instruction written back to the corresponding register. This
allows us to trivially collapse such instructions, combining the Preamble phases,
requiring dependencies only to be loaded once.

2.4.2 Memory Instructions
Memory instructions such as loads and stores can be directly mapped to the
delta interface, reading or writing only a part of the Memory sub-state. There is
no distinction between memory allocated on the stack (alloca) and on the heap

Listing 1 In the next-state function, the step function is called for each thread.

1 void step(StateVector sv, int threadID)
2 bool onlyLocal = true; # true while handling commutative instructions
3 bool emit = false; # set to true when new state is to be emitted
4 while(sv.threads[threadID].pc > 0 and onlyLocal)
5 switch(sv.threads[threadID].pc)
6 case 0: break; # not running, do nothing
7 case SomePC: # PC of first instruction of group
8 # statically collapsed instructions: preamble, action, epilogue
9 # sv.threads[threadID].pc, onlyLocal and emit may change

10 ...
11 if(emit) MC.insert(sv); # emit new state if needed
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(malloc): both allocate memory by growing the Memory sub-state. The returned
pointer describes which thread created the memory and the offset within the
sub-state. Any thread can write to and read from any such memory location.
At present, memory cannot be freed, so free has no effect. Because of the tree
compression, this has no detrimental effect on memory usage, but does mean
llmc currently does not detect free-related bugs.

2.4.3 Branching, Function Calls and Threading
To support control flow in llmc, the PC can be changed to the index assigned to
the first instruction in the target basic block. If the target basic block contains
φ-nodes, those registers are updated to the value corresponding to the basic
block we are branching from.

Function calls set up a new stack frame with the current Registers , PC and
where to write the return value, then pushes it to the linked list of frames pointed
to by Previous frame . A return from a function pops the top frame from the
list of frames, copies the Registers into the state vector, updates the PC and
writes the return value into the right register. There is no bound on the number
of frames; the last frame has Previous frame set to 0, indicating no next frame.

Threads are created (pthread_create) by enlarging the root state with
enough space to fit another thread and incrementing #threads . When a thread
is done, it is marked as such, but not removed from the state vector. This is to
retain the memory allocated by a thread. Due to the compression of dtree, it has
little impact on the memory foot print of the state space. The return value from
the thread is added to Thread results , where it can be read (pthread_join).

2.5 State Space Reduction

Instructions that only have an effect local to a thread do not change the
behaviour of another thread. Such instructions are commutative; their respective
ordering is not relevant. Thus, such instructions can be collapsed with the pre-
vious or next instruction. For example, instructions that read and write only to
registers of a thread are local instructions and do not influence another thread.
Branching and function calls are other such commutative instructions.

llmc collapses commutative instructions statically as well as dynamically. The
latter is needed to collapse instructions after conditional control flow, because
statically the condition is unknown. On-the-fly, the condition is evaluated, the
branch taken and it is determined if the next instruction can be collapsed.

2.5.1 Thread-Private Memory llmc collapses all such commutative
instructions, with the important exception of memory operations on memory
only accessible to the current thread (memory operations to memory accessible
to other threads are never collapsed). This requires knowledge on what memory
each thread can access, which llmc currently does not track. divine imple-
ments [4] this by traversing the memory graph in every state, using a run-time
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type system to identify pointers and how to follow them (edges); each allocation
yields a node.

Nidhugg uses a partial-order-reduction [6] that takes into account from which
write a value read by a read originates. In this process, memory operations to
thread-private memory are indeed collapsed, because a read can read only a
single value: the last value written by the thread itself. The current version of
llmc does not feature an on-the-fly state space reduction for memory operations.
Instead, we preprocess the input LLVM IR and statically annotate memory oper-
ations that cannot be proven to be local to a thread. While this does reduce the
state space, because many operations are to stack variables that remain thread-
private, it can only approach the on-the-fly reductions of divine and Nidhugg.

3 Evaluation

Table 1 shows a feature comparison between the tools mentioned in Sect. 1.1.
The table shows that RCMC and CBMC do not support dynamic memory in
the presence of multiple threads. This limits their usability for our use case,
model checking multi-threaded tests of data structures, since numerous thread-
safe data structures use dynamic memory. Furthermore, RCMC, CBMC and
LLBMC do not support infinite loops and only have limited support for spin-
locks. More complex infinite loops like appending a new node in the Michael-
Scott queue [17] using compare-and-swap are not supported. Thus, we focus on
an experimental comparison between llmc, divine and Nidhugg on execution
time, memory footprint of the state space and scalability across multiple threads,
since all three tools support using multiple threads for model checking.

Table 1. A feature comparison between the tools mentioned in Sect. 1.1.
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divine [3] 4.4.2 (5494190) LLVM IR STa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nidhugg [5] 0.2 (45664bc) LLVM IR STPWAa ✓ ✓ ✓ ∼d ✓ ✓ ✓ ✓ ✓ ✓

RCMC [7] n/a LLVM IR (W)RC11 ✓ ∼b ∼c ∼d ✓ ✓ ✓

CBMC [8] 5.10 (ef00f47) C/C++ STPa ✓ ∼b ∼c ∼d ✓ ✓ ✓ ✓

LLBMC [9] 2013.1 LLVM IR n/a ✓ ∼c ∼d ✓ ✓ ✓

LLMC [13] 0.1 LLVM IR STPa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLMC 0.2 (a732c63) LLVM IR Sa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
a Models [16]: S) Sequentially consistent; T) TSO; P) PSO; W) POWER; A) ARM.
b Not supported in combination with threads.
c Only trivial spin-locks are supported.
d Threads within global constructors not supported.
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We ran our experiments on a Dell R930 with 4 E7-8890-v4 CPUs totaling 96
cores and 2TiB RAM. All sources were compiled using GCC 9.3.0.

3.1 Test Suite

We tested the tools using four real-world concurrent LLVM IR data structures,
one concurrent algorithm and one protocol. Sources for all tests are available
online1. We instantiate the tests with various combinations of threads and num-
ber of elements inserted, processed or dequeued. All combinations are listed
later, in Table 2. These six tests cover different classes of problem types, differ-
ent shapes of state spaces, and serve to illustrate the strengths and weaknesses
of the tools:

– SortedLinkedList illustrates a concurrency problem where a number of
elements are inserted by a number of threads, with a single outcome: all paths
converge to one state. Elements can be inserted throughout the chain.

– LinkedList , similar to SortedLinkedList , but with various outcomes,
because the list is not sorted. It has high contention on the head of the chain.

– Prefixsum is a concurrent approach to determine all sums up to any index
in an array. It highlights the ability of the model checker to determine thread-
private memory, because the two-pass prefixsum algorithm actually partitions
the problem into separate per-thread problems that require no communication
and one single-threaded part.

– Hashmap illustrates a concurrency problem where a key is inserted using
compare-and-swap, followed by either atomically storing the value or busy-
waiting on the value, if the key already exists (findOrPut [18]). The latter
involves atomically loading the value until a non-empty value is loaded.

– MSQ is the well-known Michael-Scott queue [17]. It is similar to LinkedList
, with the addition of dequeue operations, which may return nothing when

the queue is empty. The dequeuer can be made blocking by calling dequeue
until it successfully dequeues an element; this is done in 2 and .

– Philosophers is the Dining Philosophers Problem [19], a commonly used
protocol to illustrate issues in concurrent resource management. It involves
P philosophers and P forks; each philosopher grabs their left fork, then the
right, then puts the right fork back, then the left. This is repeated R times.
The crux is that each fork is a shared resource for two philosophers. For our
tests suite, this illustrates contention on multiple elements in a single array.

These tests highlight the strengths and weaknesses of each tool using real-
world data structures and algorithms. The well-known Michael-Scott queue
for example is used in many software packages. They reflect different kinds of
state spaces: LinkedList focuses on “wide” state spaces, with many end states;
SortedLinkedList examples state spaces that go wide, but converge into a
single end state; Prefixsum highlights the model-checker’s ability to detect
thread-local memory: model checkers that can detect this have a narrow state
space, otherwise a model checker will explore all interleavings.
1 https://github.com/bergfi/llmc/tree/cav2021/tests/performance.

https://github.com/bergfi/llmc/tree/cav2021/tests/performance
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3.2 Observations and Considerations

For each model, we verified that all expected end states were reachable. For
example for 1 , we manually verified that all 8!/(4!4!) = 70 possible outcomes of
the linked list were generated.

We witnessed divine returning varying state space sizes across different runs
on the same test when using multiple threads, indicating a concurrency problem.
It also occasionally crashed, most often when using 192 threads. Even though this
indicates the answers divine gives might not be correct, we opted to include the
results, assuming they would at least provide an indication of the performance.

Furthermore, we did run RCMC on a number of tests. RCMC often runs out
of memory before crashing; likely the result of an infinite loop. For even some
small tests, it could not finish within 100x the time other tools needed.

3.3 Experimental Results

Figure 4 shows the results of llmc compared to divine on state space explo-
ration time (4a) and Nidhugg on wall-clock time (4b) when applied to the models
from Table 2. These graphs indicate relative performance: the uppermost (blue)
line for example indicates the line where llmc is 100x faster. Figure 4c compares
llmc (lower data points) and divine (upper data points) on the memory com-
pression of the state spaces they generate. Figure 4d compares llmc (upper data
points) and divine (lower data points) on the throughput of states per second.

3.3.1 LLMC vs DIVINE
Looking at the results in Fig. 4a, we see that llmc outperforms divine by at
least 5x in all test cases except Prefixsum and two SortedLinkedList tests.
llmc suffers in the Prefixsum tests because of the lack of dynamic thread-
private memory detection. This results in significantly larger state spaces, up to
three orders of magnitude for 4 , as seen in Fig. 4c.

Comparing the sorted and non-sorted linked list cases, we notice llmc
is able to outperform divine in the non-sorted cases by higher factors than the
sorted cases. This difference can be explained by that the two tools generate more
similarly sized state spaces for non-sorted cases, but not for sorted cases.
For example, llmc generates ∼14.4x more states than divine for 4 , but only
∼2.2x more for 4 . This highlights llmc is lacking a reduction technique, which
works for divine in the sorted cases, but not as well for the non-sorted cases.

For the two Hashmap cases that both tools completed, llmc outperforms
divine by 8.4x and 157x. Since the hash map is a single global memory object all
threads can access, llmc does not have the disadvantage of lacking a dynamic
thread-private memory reduction. divine crashed for the two other test cases.

divine is unable to complete two of the four Michael-Scott queue tests,
crashing out, the others are verified 86x and 272x faster by llmc than by divine.

As the complexity of the Philosopher test cases increases, llmc increasingly
outperforms divine. The two tools generate similarly sized state state spaces,
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Fig. 4. All experimental results, see Table 2 for a legend. Results above the DNF line
mean the tool on the y-axis Did Not Finish, not supporting the test.

because the high contention leaves relatively few memory instructions to be
collapsed by divine’s reduction, thus levelling the playing field.

In summary, llmc is able to outperform divine in most of the test cases,
mostly between 10x–100x faster, with an outlier as high as 2450x faster ( ).
This highlights the performance difference, as on average llmc visits ∼1.4M

Table 2. The six tests with various combinations of number of threads and ele-
ments, totaling 24 input programs. MSQ configurations describe a combination of
Enqueuers and ([B]locking) Dequeuers in parallel (‖) and sequential (;).
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states per second (∼8.5M states/s for ), where divine visits ∼4k states per
second (Fig. 4d).

3.3.2 LLMC vs Nidhugg
Moving on to Fig. 4b, we notice Nidhugg is unable to complete any of the
Michael-Scott queue , Hashmap or Philosopher test cases. This is because
Nidhugg supports neither the __atomic_* instructions needed for the Michael-
Scott queue nor the spin-lock used in the Hashmap and Philosopher
tests. We tried Nidhugg’s transformation capabilities to transform the spin-lock
to an assume statement, thus limiting the traces traversed to the ones where
the condition of the spin-lock holds, but the generated LLVM IR was invalid
and could not be used. Additionally, we tried an experimental version (7b8be8a)
with a changelog containing potential fixes to no avail.

We see that Nidhugg outperforms llmc in the Prefixsum test cases con-
sistently by multiple orders of magnitude: Nidhugg traverses only a single trace
for each of these test cases. This highlights the strength of Nidhugg in its ability
to conclude that each read can only read a single value. Without this technique,
llmc needs to exhaustively go through all interleavings of the threads.

For the linked list, sorted and non-sorted , we see that as the cases get
bigger, llmc is able to outperform Nidhugg. This highlights the disadvantage
of stateless model checking: bigger state spaces tend to cause more common
prefixes of paths, which causes more work for stateless model checking.

3.3.3 Scalability

Fig. 5. Scalability comparison of
divine , llmc , Nidhugg .

Figure 5 shows the results for various num-
ber of threads for SortedLinkedList3.9 3 ,
chosen for the performance similarity of
the three tools. The graph shown is typ-
ical: other test expose similar patterns as
the one we highlight here. divine does
not scale well in the number of threads:
its peak performance lies typically around
4 or 8 threads, confirmed by the divine
developers2. Nidhugg expectedly does scale
very well, as threads just execute a spe-
cific trace, with hardly and communication.
llmc shows some scalability, but a ∼4x
improvement using 192 threads leaves a lot
of room for improvement3.

2 https://divine.fi.muni.cz/trac/ticket/44.
3 https://github.com/bergfi/dmc/issues/1.

https://divine.fi.muni.cz/trac/ticket/44
https://github.com/bergfi/dmc/issues/1
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3.3.4 DMC and DTREE
We highlight one aspect of the performance of llmc: the underlying model
checker dmc and its storage component dtree [14]. In Figure 4c, we notice
that although llmc on average generates state spaces of an order of magnitude
larger compared to divine, it uses two orders of magnitude less memory per
state, due to dtree. Furthermore, dtree allows to apply a delta to a state
without reconstructing the entire state. Since states are typically ∼2kiB in these
tests, this significantly avoids copying memory and increases performance.

4 Conclusion

We have introduced llmc 0.24, the multi-threaded low-level model checker that
model checks software via LLVM IR. It translates the input LLVM IR into a
model LLVM IR that implements the dmc api, the API of the high-performance
model checker dmc. This allows llmc to execute the model’s next-state func-
tion, instead of interpreting the input LLVM IR, like divine and Nidhugg. We
compared llmc to these tools using a test suite of 24 tests, covering various
data structures. llmc outperforms divine and Nidhugg up to three orders of
magnitude, while other tests have shown areas for improvement. Averaging the
results of all completed tests, llmc is an order of magnitude faster than divine
and ∼3.4x faster than Nidhugg. divine and Nidhugg are unable to complete 4
and 12 tests, respectively, due to crashing or not supporting infinite loops or
__atomic_* library calls.

Future Work. llmc will benefit most from a state space reduction technique that
collapses memory instructions to thread-private memory. We aim to integrate
this as part of a memory emulation layer that also adds support for relaxed
memory models. Even without the dynamic reduction technique, the results
show that llmc in its current form is a high performing tool to model check
software.
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Abstract. A program verifier produces reliable results only if both the
logic used to justify the program’s correctness is sound, and the imple-
mentation of the program verifier is itself correct. Whereas it is common
to formally prove soundness of the logic, the implementation of a veri-
fier typically remains unverified. Bugs in verifier implementations may
compromise the trustworthiness of successful verification results. Since
program verifiers used in practice are complex, evolving software systems,
it is generally not feasible to formally verify their implementation.

In this paper, we present an alternative approach: we validate suc-
cessful runs of the widely-used Boogie verifier by producing a certificate
which proves correctness of the obtained verification result. Boogie per-
forms a complex series of program translations before ultimately generat-
ing a verification condition whose validity should imply the correctness
of the input program. We show how to certify three of Boogie’s core
transformation phases: the elimination of cyclic control flow paths, the
(SSA-like) replacement of assignments by assumptions using fresh vari-
ables (passification), and the final generation of verification conditions.
Similar translations are employed by other verifiers. Our implementa-
tion produces certificates in Isabelle, based on a novel formalisation of
the Boogie language.

1 Introduction

Program verifiers are tools which attempt to prove the correctness of an imple-
mentation with respect to its specification. A successful verification attempt is,
however, only meaningful if both the logic used to justify the program’s correct-
ness is sound, and the implementation of the program verifier is itself correct. It
is common to formally prove soundness of the logic, but the implementations of
program verifiers typically remain unverified. As is standard for complex software
systems, bugs in verifier implementations can and do arise, potentially raising
doubts as to the trustworthiness of successful verification results.
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One way to close this gap is to prove a verifier’s implementation correct.
However, such a once-and-for-all approach faces serious challenges. Verifying
an existing implementation bottom-up is not practically feasible because such
implementations tend to be large and complex (for instance, the Boogie ver-
ifier [29] consists of over 30K lines of imperative C# code), use a variety of
libraries, and are typically written in efficient mainstream programming lan-
guages which themselves lack a formalisation. Alternatively, one could develop
a verifier that is correct by construction. However, this approach requires the
verifier to be (re-)implemented in an interactive theorem prover (ITP) such as
Coq [14] or Isabelle [24]. This precludes the free choice of implementation lan-
guage and paradigm, exploitation of concurrency, and possibility of tight inte-
gration with standard compilers and IDEs, which is often desirable for program
verifiers [4,5,13,26]. Both verification approaches substantially impede software
maintenance, which is problematic since verifiers are often rapidly-evolving soft-
ware projects (for instance, the Boogie repository [1] contains more than 5000
commits).

To address these challenges, in this work we employ a different approach.
Instead of verifying the implementation once and for all, we validate specific
runs of the verifier by automatically producing a certificate which proves the
correctness of the obtained verification result. Our certificate generation formally
relates the input and output of the verifier, but does so largely independently of
its implementation, which can freely employ complex languages, algorithms, or
optimisations. Our certificates are formal proofs in Isabelle, and so checkable by
an independent trusted tool; their guarantees for a certified run of the verifier
are as strong as those provided by a (hypothetical) verified verifier.

We apply our novel verifier validation approach to the widely-used Boogie
verifier, which verifies programs written in the intermediate verification language
Boogie. The Boogie verifier is a verification condition generator : it verifies pro-
grams by generating a verification condition (VC), whose validity is then dis-
charged by an SMT solver. Certifying a verifier run requires proving that valid-
ity of the VC implies the correctness of the input program. Certification of the
validity-checking of the VC is an orthogonal concern; our results can be combined
with work in that area [11,15,19] to obtain end-to-end guarantees.

Like many automatic verifiers, Boogie is a translational verifier : it performs
a sequence of substantial Boogie-to-Boogie translations (phases), simplifying the
task and output of the final efficient VC computation [6,18]. The key challenges
in certifying runs of the Boogie tool are to certify each of these phases, includ-
ing final VC generation. In particular, we present novel techniques for making
the following three key phases (and many smaller ones) of Boogie’s tool chain
certifying:

1. The elimination of loops (more precisely, cycles in the CFG) by reducing the
correctness of loops to checking loop invariants (CFG-to-DAG phase)

2. The replacement of assignments by (SSA-style) introduction of fresh variables
and suitable assume statements (passification phase)



706 G. Parthasarathy et al.

3. The final generation of the VC, which includes the erasure and logical encod-
ing of Boogie’s polymorphic type system [33] (VC phase).

The certification of such verifier phases is related to existing work on com-
piler verification [34] and validation [8,41,42]. However, the translations and the
certified property we tackle here are fundamentally different from those in com-
pilers. Compilers typically require that each execution of the target program
corresponds to an execution of the source program. In contrast, the encoding of
a program in a translational verifier typically has intentionally more executions
(for instance, allows more non-determinism). Moreover, translational verifiers
need to handle features not present in standard programming languages such as
assume statements and background theories. Prior work on validating such veri-
fier phases has been limited in the supported language and extent of the formal
guarantee; we discuss comparisons in detail in Sect. 8.

Contributions. Our paper makes the following technical contributions.

1. The first formal semantics for a significant subset of Boogie (including axioms,
polymorphism, type constructors), mechanised in Isabelle.

2. A validation technique for two core program-to-program translations occur-
ring in verifiers (CFG-to-DAG and passification).

3. A validation technique for the VC phase, handling polymorphism erasure and
Boogie’s type system encoding [31], for which no prior formal proof exists.

4. A version of the Boogie implementation that produces certificates for a sig-
nificant subset of Boogie.

Making the Boogie verifier certifying is an important result, reducing the
trusted code base for a wide variety of verification tools implemented via encod-
ings into Boogie, e.g. Dafny [31], VCC [13], Corral [28], and Viper [35]. Moreover,
the technical approach we present here can in future be applied to the certifica-
tion of the translations performed by these tools, and those based on comparable
intermediate verification languages such as Frama-C [26] and Krakatoa [17] based
on Why3 [16] and Prusti [4] and VerCors [10] based on Viper [35].

Outline. Section 2 explains at a high-level, how our validation approach is struc-
tured for the different phases. Section 3 introduces a formal semantics for Boogie.
Sections 4, 5 and 6 present our validation of the CFG-to-DAG, passification, and
VC phases, respectively. Section 7 evaluates our certificate-producing version of
Boogie. Section 8 discusses related work. Section 9 concludes. Further details are
available in our accompanying technical report (hereafter, TR) [37].

2 Approach

A Boogie program consists of a set of procedures, each with a specification and
a procedure body in the form of a (reducible) control-flow-graph (CFG), whose
blocks contain basic commands; we present the formal details in the next section.
Boogie verifies each procedure modularly, desugaring procedure calls according
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Fig. 1. Key phases of verification in Boogie and their certification. The solid edges show
Boogie’s transformations on a procedure body; each node Gi represents a control-flow-
graph. Our final certificate (dashed edge) is constructed by formally linking the three
phase certificates represented by the dotted edges. Each of the three phase certificates
also incorporate extra smaller transformations that we do not show here.

to their specifications. Verification is implemented via a series of phases: program-
to-program translations and a final computation of a VC to be checked by an
SMT solver. Our goal is to formally certify (per run of Boogie) that validity of
this VC implies the correctness of the original procedure.

To keep the complexity of certificates manageable, our technical approach is
modular in three dimensions: decomposing our formal goal per procedure in the
Boogie program, per phase of the Boogie verification, and per block in the CFG
of each procedure. This modularity makes the full automation of our certification
proofs in Isabelle practical. In the following, we give a high-level overview of this
modular structure; the details are presented in subsequent sections.

Procedure Decomposition. Boogie has no notion of a main program or an overall
program execution. A Boogie program is correct if each of its procedures is
individually correct (that is, the procedure body has no failing traces, as we
make precise in the next section). Boogie computes a separate VC for each
procedure, and we correspondingly validate the verification of each procedure
separately.

Phase Decomposition. We break our overall validation efforts down into per-
phase sub-problems. In this paper, we focus on the following three most substan-
tial and technically-challenging of these sequential phases, illustrated in Fig. 1.
(1) The CFG-to-DAG phase translates a (possibly-cyclic) CFG to an acyclic CFG
(cf. Sect. 4). This phase substantially alters the CFG structure, cutting loops
using annotated loop invariants to over-approximate their executions. (2) The
passification phase eliminates imperative updates by transforming the code into
static single assignment (SSA) form and then replacing assignments with con-
straints on variable versions (cf. Sect. 5). Both of these phases introduce extra
non-determinism and assume statements (which, if implemented incorrectly could
make verification unsound by masking errors in the program). (3) The final VC
phase translates the acyclic, passified CFG to a verification condition that, in
addition to capturing the weakest precondition, encodes away Boogie’s polymor-
phic type system [33].

We construct certificates for each of these key phases separately (depicted
by the blue dotted lines in Fig. 1). For each phase, we certify that if the target
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of the translation phase is correct (a correct Boogie program for the first two
phases; a valid VC for the VC phase) then the source (program) of the phase is
correct. This modular approach lets us focus the proof strategy for each phase
on its conceptually-relevant concerns, and provides robustness against changes
to the verifier since at most the certification of the changed phases may need
adjustment. Logically, our per-phase certificates are finally glued together to
guarantee the analogous end-to-end property for the entire pipeline, depicted by
the green dashed edge in Fig. 1. For our certificates, we import the input and
output programs (and VC) of each key phase from Boogie into Isabelle; we do
not reimplement any of Boogie’s phases inside Isabelle.

The certificates of the key phases also incorporate various smaller transfor-
mations between the key phases, such as peephole optimisation. Our work also
validates these smaller transformations, but we focus the presentation on the key
phases in this paper. Boogie also performs several smaller translation steps prior
to the CFG-to-DAG phase. These include transforming ASTs to corresponding
CFGs, optimisations such as dead variable elimination, and desugaring proce-
dure calls using their specifications (via explicit assert, assume, and havoc state-
ments). Our approach applies analogously to these initial smaller phases, but our
current implementation certifies only the pipeline of all phases from the (input
to the) CFG-to-DAG phase onwards. Thus, our certificate relates Boogie’s VC
to the original source AST program so long as these prior translation steps are
correct.

CFG Decomposition. When tackling the certification of each phase, we further
break down validation of a procedure’s CFG in the source program of the phase
into sub-problems for each block in the CFG. We prove two results for each block
in the source CFG:

1. Local block lemmas: We prove an independent lemma for each source CFG
block in isolation, relating the executions through the block with the corre-
sponding block in the target program (or the VC generated for that block, in
the case of the VC phase). In particular, this lemma implies that if the target
block has no failing executions (or the VC generated for that block holds, for
the VC phase), neither does the source block for corresponding input states.

2. Global block theorems: We show analogous per-block results concerning all
executions from this block onwards extending to the end of the procedure in
question; we build these compositionally by reverse-topological traversal of
either the source or target CFGs, as appropriate. The global block theorem
for the entry block establishes correctness of the phase.

This decomposition separates command-level reasoning (local block lemmas)
from CFG-level reasoning (global block theorems). It enables concise lemmas
and proofs in Isabelle and makes each comprehensible to a human.
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3 A Formal Semantics for Boogie

Our certificates prove that the validity of a VC generated by Boogie formally
implies correctness of the Boogie CFG-to-DAG source program. This proof relies
crucially on a formal semantics for Boogie itself. Our first contribution is the first
such formal semantics for a significant subset of Boogie, mechanised in Isabelle.
Our semantics uses the Boogie reference manual [29], the presentation of its type
system [33], and the Boogie implementation for reference; none of those provide
a formal account of the language. For space reasons, we explain only the key
concepts of our detailed formalisation here; more details are provided in App.
A of the TR [37] and the full Isabelle mechanisation is available as part of our
accompanying artifact [36].

3.1 The Boogie Language

Boogie programs consist of a set of top-level declarations of global variables
and constants (the global data), axioms, uninterpreted (polymorphic) functions,
type constructors, and procedures. A procedure declaration includes parameter,
local-variable, and result-variable declarations (the local data), a pre- and post-
condition, and a procedure body given as a CFG.1 CFGs are formalised as usual
in terms of basic blocks (containing a possibly-empty list of basic commands),
and edges; semantically, execution after a basic block continues via any of its
successors non-deterministically.

Fig. 2. The syntax of our formalised Boogie subset, where τ , e, and c, denote the types,
expressions, and basic commands respectively; control-flow is handled via CFGs over
the basic commands. bop and uop denote binary and unary operations, respectively.

The types, expressions, and basic commands in our Boogie subset are shown
in Fig. 2. We support the primitive types Int and Bool ; types obtained via
declared type constructors are uninterpreted types; the sets of values such types
denote are constrained only via Boogie axioms and assume commands. Moreover,
types can contain type variables (for instance, to specify polymorphic functions).

Boogie expression syntax is largely standard (e.g. including typical arithmetic
and boolean operations). Old-expressions old(e) evaluate the expression e w.r.t.
the current local data and the global data as it was in the pre-state of the
1 Source-level procedure specifications also include modifies clauses, declaring a set of

global variables the procedure may modify. As we tackle Boogie programs after pro-
cedure calls have been desugared, there are no modifies clauses in our formalisation.
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procedure execution. Boogie expressions also include universal and existential
value quantification (written ∀x : τ. e and ∃x : τ. e), as well as universal and
existential type quantification (written ∀ty t. e and ∃ty t. e). In the latter, t is
bound in e and quantifies over closed Boogie types (i.e. types that do not contain
any type variables).

Basic commands form the single-steps of traces through a Boogie CFG;
sequential composition is implicit in the list of basic commands in a CFG basic
block and further control flow (including loops) is prescribed by CFG edges.
Boogie’s basic commands are assumes, asserts, assignments, and havocs; havoc x
non-deterministically assigns a value matching the type of variable x to x.

The main Boogie features not supported by our subset are maps and other
primitive types such as bitvectors. Boogie maps are polymorphic and impredica-
tive, i.e. one can define maps that contain themselves in their domain. Giving
a semantic model for such maps in a proof assistant such as Isabelle or Coq is
non-trivial; we aim to tackle this issue in the future. Modelling bitvectors will
be simpler, although maintaining full automation may require some additional
work.

3.2 Operational Semantics

Values and State Model. Our formalisation embeds integer and boolean values
shallowly as their Isabelle counterparts; an Isabelle carrier type for all abstract
values (those of uninterpreted types) is a parameter of our formalisation. Each
uninterpreted type is (indirectly) associated with a non-empty subset of abstract
values via a type interpretation map T from abstract values to (single) types;
particular interpretations of uninterpreted types can be obtained via different
choices of type interpretation T .

One can understand Boogie programs in terms of the sets of possible traces
through each procedure body. Traces are (as usual) composed of sequences of
steps according to the semantics of basic commands and paths through the CFG;
these can be finite or infinite (representing a non-terminating execution). A trace
may halt in three cases: (1) an exit block of the procedure is reached in a state
satisfying the procedure’s postcondition (a complete trace),2 (2) an assert A
command is reached in a state not satisfying assertion A (a failing trace), or
(3) an assume A command is reached in a state not satisfying A (a trace which
goes to magic and stops). Our formalisation correspondingly includes three kinds
of Boogie program states: a distinguished failure state F, a distinguished magic
state M, and normal states N((os, gs, ls)). A normal state is a triple of partial
mappings from variables to values for the old global state (for the evaluation of
old-expressions), the (current) global state, and the local state, respectively.

Expression Evaluation. An expression e evaluates to value v if the (big-step)
judgement T , Λ, Γ,Ω � 〈e,N(ns)〉 ⇓ v holds in the context (T , Λ, Γ,Ω). Here, T

2 The case of the postcondition not holding is subsumed under point (2), since Boogie
checks postconditions by generating extra assert statements.
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Fig. 3. Running example in source code and CFG representation, respectively.

is a type interpretation (as above), Λ is a variable context : a pair (G,L) of type
declarations for the global (G) and local (L) data. Γ is a function interpretation,
which maps each function name to a semantic function mapping a list of types
and a list of values to a return value. The type substitution Ω maps type variables
to types.

The rules defining this judgement can be found in App. A.2 of the TR [37].
For example, the following rule expresses when a universal type quantification
evaluates to true (t is bound to the quantified type and may occur in e):

∀τ. closed(τ) =⇒ T , Λ, Γ,Ω(t 	→ τ) � 〈e,ns〉 ⇓ true

T , Λ, Γ,Ω � 〈∀ty t. e,ns〉 ⇓ true

The premise requires one to show that the expression e reduces to true for every
possible type τ that is closed. In general, expression evaluation is possible only
for well-typed expressions; we also formalise Boogie’s type system and (for the
first time) prove its type safety for expressions in Isabelle.

Command and CFG Reduction. The (big-step) judgement T , Λ, Γ,Ω � 〈c, s〉 →
s′ defines when a command c reduces in state s to state s′; the rules are in
App. A.3 of the TR [37]. This reduction is lifted to lists of commands cs to
model the semantics of a single trace through a CFG block (the judgement
T , Λ, Γ,Ω � 〈cs, s〉 [→] s′). The operational semantics of CFGs is modelled by
the (small-step) judgement T , Λ, Γ,Ω,G � δ →CFG δ′, expressing that the CFG
configuration δ reduces to configuration δ′ in the CFG G. A CFG configuration
is either active or final. An active configuration is given by a tuple (inl(bn), s),
where bn is the block identifier indicating the current position of the execution
and s is the current state. A final configuration consists of a tuple (inr(()), s) for
state s (and unit value ()) and is reached at the end of a block that has either
no successors, or is in a magic or failure state.
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Fig. 4. The CFG-to-DAG phase applied to the running example (source is left, target
is right). The back-edge (the red edge from B5 to B1 in the left CFG) is eliminated.
The blue commands are new. A is given by j >= 0 ∧ (i = 0 ⇒ j > 0).

3.3 Correctness

A procedure is correct if it has no failing traces. This is a partial correctness
semantics; a procedure body whose traces never leave a loop is trivially cor-
rect provided that no intermediate assert commands fail. Procedure correctness
relies on CFG correctness. A CFG G is correct w.r.t. a postcondition Q and a
context (T , Λ, Γ,Ω) in an initial normal state N(ns) if the following holds for all
configurations (r, s′):

T , Λ, Γ,Ω,G � (inl(entry(G)),N(ns)) →∗
CFG (r, s′) =⇒ [s′ �= F ∧

(r = inr(()) =⇒ (∀ns ′. s′ = N(ns ′) =⇒ T , Λ, Γ,Ω � 〈Q,N(ns ′)〉 ⇓ true))]

where entry(G) is the entry block of G and →∗
CFG is the reflexive-transitive closure

of the CFG reduction. The postcondition is needed only if a final configuration
is reached in a normal state, while failing states must be unreachable. Whenever
we omit Q, we implicitly mean the postcondition to be simply true. In our tool,
we consider only empty initial mappings Ω, since we do not support procedure
type parameters (lifting our work to this feature will be straightforward).

For a procedure p to be correct w.r.t. a context, its body CFG must be correct
w.r.t. the same context and p’s postcondition, for all initial normal states N(ns)
that satisfy p’s precondition and which respect the context. For ns to respect a
context, it must be well-typed and must satisfy the axioms when restricted to its
constants. We say that p is correct, if it is correct w.r.t. all well-formed contexts,
which must have a well-typed function interpretation and a type interpretation
that inhabits every uninterpreted closed type (and only those).

Running Example. We will use the simple CFG of Fig. 3 as a running example,
intended as body of a procedure with trivial (true) pre- and post-conditions.
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The code includes a simple loop with a declared loop invariant, which functions
as a classical Floyd/Hoare-style inductive invariant, and for the moment can
be considered as an implicit assert statement at the loop head. The CFG has
infinite traces: those which start from any state in which i is negative. Traces
starting from a state in which i is zero go to magic; they do not reach the loop.
The program is correct (has no failing traces): all other initial states will result
in traces that satisfy the loop invariant and the final assert statement. If we
removed the initial assume statement, however, there would be failing traces: the
loop invariant check would fail if i were initially zero.

4 The CFG-to-DAG Phase

In this section, we present the validation for the CFG-to-DAG phase in the
Boogie verifier. This phase is challenging as it changes the CFG structure, inserts
additional non-deterministic assignments and assume statements, and must do
so correctly for arbitrary (reducible) nested loop structures, which can include
unstructured control flow (e.g. jumps out of loops).

4.1 CFG-to-DAG Phase Overview

The CFG-to-DAG phase applies to every loop head block identified by Boo-
gie’s implementation and any back-edges from a block reachable from the loop
head block back to the loop head (following standard definitions for reducible
CFGs [21]). Figure 4 illustrates the phase’s effect on our running example. Block
B1 is the (only) loop head here, and the edge from B5 to it the only back-edge
(completing looping paths via B2 and B3 or B2 and B4). An assert A state-
ment starting a loop head (like B1) is interpreted as declaring A to be the loop
invariant.3 The CFG-to-DAG phase performs the following steps:

1. Accumulate a set XH of all (local and global) variables assigned-to on any
looping path from the loop head back to itself. In our example, XH is {i, j}.

2. Move the assert A statement declaring a loop invariant (if any) from the
loop head to the end of each preceding block (in our example: B0 and B5).

3. Insert havoc statements at the start of the loop head block per variable in XH ,
followed by a single assume A statement (preceding any further statements).

4. For each block with a back-edge to the loop head, delete the back-edge; if this
leaves the block with no successors, append assume false to its commands.4

The havoc-then-assume sequence introduced in step 3 can be understood as
generating traces for arbitrary values of XH satisfying the loop invariant A,
3 In general, multiple asserts at the beginning of a loop head may form the invariant.
4 Omitting assume false if there are no successors would be incomplete, since otherwise

the postcondition would have to be satisfied.
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effectively over-approximating the set of states reachable at the loop head in the
original program. In particular, the remnants of any originally looping path (e.g.
B′

1, B′
2, B′

3, B′
5) enforce that any non-failing trace starting from any such state

must (due to the assert added to block B′
5 in step 2) result in a state which

re-establishes the loop invariant. Such paths exist only to enforce this inductive
step (analogously to the premise of a Hoare logic while rule); so long as the
assert succeeds, we can discard these traces via step 4.

While we illustrate this step on a simple CFG, in general a loop head may
have multiple back-edges, looping structures may nest, and edges may exit multi-
ple loops. For the above translation to be correct, the CFG must be reducible and
loop heads and corresponding back-edges identified accurately, which is complex
in general. Importantly (but perhaps surprisingly), our work makes this phase
of Boogie certifying without explicitly verifying (or even defining) these notions.

4.2 CFG-to-DAG Certification: Local Block Lemmas

We define first our local block lemmas for this phase. Recall that these prove
that if executing the statements of a target block yields no failing executions,
the same holds for the corresponding source block; this result is trivial for source
blocks other than loop heads and their immediate predecessors, since these are
unchanged in this phase. To enable eventual composition of our block lemmas,
we need to also reflect the role of the assume and assert statements employed
in this phase. The formal statement of our local block lemmas is as follows5:

Theorem 1 (CFG-to-DAG Local Block Lemma). Let B be a source block
with commands csS, whose corresponding target block has commands csT . If B is
a loop head, let XH be as defined in CFG-to-DAG step 1 (and empty otherwise)
and let Apre be its loop invariant (or true otherwise). If B is a predecessor of a
loop head, let Apost be the loop invariant of its successor (and true otherwise).
Then, if:

1. T , Λ, Γ,Ω � 〈csS ,N(ns1)〉 [→] s′
1

2. ∀s′
2. T , Λ, Γ,Ω � 〈csT ,N(ns2)〉 [→] s′

2 =⇒ s′
2 �= F

3. Apre is satisfied in ns1, and ns2 differs from ns1 only on variables in XH and
variables not defined in Λ

then: s′
1 �= F and if s′

1 is a normal state, then (1) Apost is satisfied in s′
1, and (2)

if no assume false was added at the end of csT , then there is a target execution
in csT from N(ns2) that reaches a normal state that differs from s′

1 only on
variables not defined in Λ.

The gist of this lemma is to capture locally the ideas behind the four steps of
the phase. For example, consequence (1) reflects that after the transformation,
any blocks that were previously predecessors of a loop head (B′

0 and B′
5 in our

running example) will have an assert statement checking for the corresponding
invariant (and so if the target program has no failing traces, in each trace this
invariant will be true at that point).
5 We omit some details regarding well-typedness, handled fully in our formalisation.
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Fig. 5. The passification phase applied to the branch in the running example with the
result on the right. The final (green) commands in B′′

3 and B′′
4 are the synchronisation

commands. At the uppermost blocks shown here, the current versions of i and j are
i1 and j2, respectively. The full CFGs are shown in App. B of the TR [37].

4.3 CFG-to-DAG Certification: Global Block Theorems

We lift our certification to all traces through the source and target CFGs; the
statement of the corresponding global block theorems is similar to that of local
block theorems lifted to CFG executions, and for space reasons we do not present
it here, but it is included in our Isabelle formalisation. In particular, we prove
for each block (working in reverse topological order through the target CFG
blocks) that if executions starting in the target CFG block never fail, neither do
any executions starting from the corresponding source CFG block, and looping
paths modify at most the variables havoced according to step 3 of the phase.

The major challenge in these proofs is reasoning about looping paths in
the source CFG, since these revisit blocks. To solve this challenge, we perform
inductive arguments per loop head in terms of the number of steps remaining in
the trace in question.6 Our global block theorem for a block B then carries as
an assumption an induction hypothesis for each loop that contains B. Proving
a global block theorem for the origin of a back-edge is taken care of by applying
the corresponding induction hypothesis.

This proof strategy works only if we have obtained the induction hypothesis
for the loop head before we use the global block theorem of the origin of a
back-edge (otherwise we cannot discharge the block theorem’s hypothesis). In
other words, our proof implicitly shows the necessary requirement that loop
heads (as identified by Boogie) dominate all back-edges reaching them without us
formalising any notion of domination, CFG reducibility, or any other advanced
graph-theoretic concept. This shows a major benefit of our validation approach
over a once-and-for-all verification of Boogie itself: our proofs indirectly check
that the identification of loop heads and back-edges guarantees the necessary
semantic properties without being concerned with how Boogie’s implementation
computes this information.

6 This may seem insufficient since traces can be infinite, but importantly a failing
trace is always finite, and our theorems need only eliminate the chance of failing
traces.
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Our approach applies equally to nested loops and more-generally to reducible
CFG structures; all corresponding induction hypotheses are carried through
from the visited loop heads. The requirement that no more than the havoced
variables XH are modified in the source program is easily handled by showing
that variables modified in an inner loop are a subset of those in outer loops.
As for all of our results, our global block lemmas are proven automatically in
Isabelle per Boogie procedure, providing per-run certificates for this phase.

5 The Passification Phase

In this section, we describe the validation of the passification phase in the Boo-
gie verifier. Unlike the previous phase, passification makes no changes to the
CFG structure, but makes substantial changes to the program states (via SSA-
like renamings), substantially increases non-determinism, and employs assume

statements to re-tame the sets of possible traces.

5.1 Passification Phase Overview

The main goal of passification is to eliminate assignments such that a more effi-
cient VC can be ultimately generated [6,18,30]. In the Boogie verifier, this is
implemented as a single transformation phase that can be thought of as two
independent steps. Firstly, the source CFG is transformed into static single
assignment (SSA) form, introducing versions (fresh variables) for each origi-
nal program variable such that each version is assigned at most once in any
program trace. In a second step, variable assignments are completely eliminated :
each assignment command x := e is replaced by assume x = e. Havoc statements
are simply removed; their effect is implicit in the fact that a new variable version
is used (via the SSA step) after such a statement.

Figure 5 shows the effect of this phase on four blocks of our running example
(the full figure of the target CFG is shown in App. B of the TR [37]). The
commands inserted just before the join block (here, B′′

5 ) introduce a consistent
variable version (here, j4) for use in the join block. It is convenient to speak of
target variables in terms of their source program counterparts: we say e.g. that
j has version 4 on entry to block B′

5.
Compared to traces through the source program, the space of variable values

in a trace through the target program is initially much larger; each version may,
on entry to the CFG, have an arbitrary value. For example, j4 may have any
value on entry to B′′

2 ; traces in which its value does not correspond to the con-
straint of the assume statements in B′′

3 or B′′
4 will go to magic and not reach B′′

5 .
Importantly, however, not all traces go to magic; enough are preserved to simu-
late the executions of the original program: each assume statement constrains the
value of exactly one variable version, and the same version is never constrained
more than once. Capturing this delicate argument formally is the main challenge
in certifying this step.
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As extra parts of the passification phase, the Boogie verifier performs constant
propagation and desugars old-expressions (using variable versions appropriate to
the entry point of the CFG). We omit their descriptions here for brevity, but our
implementation certifies them.

5.2 Passification Certification: Local Block Lemmas

To validate the passification phase, it is sufficient to show that each source execu-
tion is simulated by a corresponding target execution, made precise by construct-
ing a relation between the states in these executions. Such forward simulation
arguments are standard for proving correctness of compilers for deterministic
languages. However, the situation here is more complex due to the fact that
the target CFG has a much wider space of traces: the values of each versioned
variable in the target program are initially unconstrained, meaning traces exist
for all of their combinations. On the other hand, many of these traces do not
survive the assume statements encountered in the target program. Picking the
correct single trace or state to simulate a particular source execution would
require knowledge of all variable assignments that are going to happen, which
is not possible due to non-determinism and would preclude the block-modular
proof strategies that our validation approach employs.

Instead, we generalise this idea to relating each single source state s with a
set T of corresponding target program states. We define variable relations VR at
each point in a trace, making explicit the mappings used in the SSA step between
source program variables and their corresponding versions. For example, on entry
to block B′

2 in the source version of our running example (correspondingly B′′
2

in the target), the VR relation relates i to i1 and j to j2. All states t ∈ T must
precisely agree with s w.r.t. VR (e.g., s(i) = t(i1), s(j) = t(j2)). On the other
hand, our sets of states T are defined to be completely unconstrained (besides
typing) for future variable versions. For example, for every t ∈ T at the same
point in our example, there will be states in T assigning each possible value (of
the same type) to i2 (and otherwise agreeing with t).

More precisely, for a set of variables X, we say that a set of states T constrains
at most X w.r.t. variable context Λ if, for every t ∈ T , z /∈ X, z is in Λ, and value
v of z’s type, we have t[z 	→ v] ∈ T . In other words, the set T is closed under
arbitrary changes to values of all variables in Λ but not in X. We construct our
sets T such that they constrain at most current and past versions of program
variables. It is this fact that enables us to handle subsequent assume statements
in the target program and, in particular, to show that the set of possible traces
in the target program never becomes empty while there are possible traces in
the source program. For example, when relating the source command j := j+1

in B′
3 with the target command assume j3 = j2 + 1 in block B′′

3 , we use the fact
that our set of states does not constrain j3 to prove that, although many traces
go to magic at this point, for a non-empty set of states T ′ ⊆ T (those in which
j3 has the “right” value equal to j2 + 1), execution continues in the target.
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We now make these notions more precise by showing the definition of our
local block lemmas for the passification phase (See footnote 5).

Theorem 2 (Passification Local Block Lemma). Let B be a source block
with commands cs, whose corresponding target block has commands cs ′; let VR

and V ′
R be the variable relations at the beginning and end of B, respectively. Let

X be a set of variable versions, and N(ns) be a normal state. Let T be a non-
empty set of normal states such that N(ns) agrees with T according to VR, and
T constrains at most X w.r.t. Λ2. Furthermore, let Y be the variable versions
corresponding to the targets of assignment and havoc statements in cs. If both

1. A,Λ1, Γ,Ω � 〈cs,N(ns)〉 [→] s′ ∧ s′ �= M
2. X ∩ Y = ∅

then there exists a non-empty set of normal states T ′ ⊆ T s.t. T ′ constrains at
most X � Y w.r.t. Λ2 and for each t′ ∈ T ′, there exists a state t′∗ s.t.

1. A,Λ2, Γ,Ω � 〈cs2, t′〉 [→] t′∗ ∧ (s′ = F =⇒ t′∗ = F)
2. If s′ is a normal state, then s′ and t′ are related w.r.t. V ′

R (and t′∗ = t′).

This lemma captures our generalised notion of forward simulation appropriately.
The first conclusion expresses that the target does not get stuck and that failures
are preserved, while the second shows that if the source execution neither fails nor
stops then the resulting states are related. Note that premise 2 is essential in the
proof to guarantee that the assume statements introduced by passification do not
eliminate the chance to simulate source executions; the condition expresses that
the variable versions newly constrained do not intersect with those previously
constrained. To prove these lemmas over the commands in a single block, we are
forced to check that the same version is not constrained twice.

5.3 Passification Certification: Global Block Theorems

As for all phases, we lift our local block lemmas to theorems certifying all exe-
cutions starting from a particular block, and thus, ultimately, to entire CFGs.
For the passification phase, most of the conceptual challenges are analogous
to those of the local block lemmas; we similarly employ VR relations between
source variables and their corresponding target versions. To connect with our
local block lemmas (and build up our global block theorems, which we do back-
wards through the CFG structure), we repeatedly require the key property that
the set of variable versions constrained in our executions so far is disjoint from
those which may be constrained by a subsequent assume statement (cf. premise 2
of our local block lemma above). Concretely tracking and checking disjointness
of these concrete sets of variables is simple, but turns out to get expensive in
Isabelle when the sets are large.

We circumvent this issue with our own global versioning scheme (as opposed
to the versions used by Boogie, which are independent for different source vari-
ables): according to the CFG structure, we assign a global version number verG(x)



Formally Validating a Practical Verification Condition Generator 719

to each variable x in the target program such that, if x is constrained in a target
block B′ and y is constrained in another target block B′′ reachable from B′,
then verG(x) < verG(y). Such a consistent global versioning always exists in the
target programs generated by Boogie because the only variables not constrained
exactly once in the program are those used to synchronise executions (i.e. j4

in Fig. 5), which always appear right before branches are merged. We can now
encode our disjointness properties much more cheaply: we simply compare the
maximal global version of all already-constrained variables with the minimal
global version of those (potentially) to be constrained. Since we represent vari-
ables as integers in the mechanisation, we directly use our global version as the
variable name for the target program; there is no need for an extra lookup table.
Note that (readability aside) it makes no difference which variables names are
used in intermediate CFGs; we ultimately care only about validating the original
CFG.

6 The VC Phase

In this section, we present the validation of the VC phase in the Boogie verifier.
This phase has two main aspects: (1) it encodes and desugars all aspects of the
Boogie type system, employing additional uninterpreted functions and axioms to
express its properties [33]; program expression elements such as Boogie functions
are analogously desugared in terms of these additional uninterpreted functions,
creating a non-trivial logical gap between expressions as represented in the VC
and those from the input program. (2) It performs an efficient (block-by-block)
calculation of a weakest precondition for the (acyclic, passified) CFG, resulting
in a formula characterising its verification requirements, subject to background
axioms and other hypotheses.

6.1 VC Structure

The generated VC has the following overall structure (represented as a shallow
embedding in our certificates)7:

∀ VC quantifiers
︸ ︷︷ ︸

type encoding parameters,
functions, variable values

. ( VC assumptions
︸ ︷︷ ︸

type encoding,
func./var./prog. axioms

=⇒ CFG WP)

The VC quantifies over parameters required for the type encoding, as well as
VC counterparts representing the variable values and functions in the Boogie
program. The VC body is an implication, whose premise contains: (1) assump-
tions that axiomatise the type encoding parameters, (2) axioms expressing the
typing of Boogie variables and functions, and (3) assumptions directly relating

7 Note that top-level quantification over functions is implicit in the (first-order) SMT
problem generated by Boogie; we quantify explicitly in our Isabelle representation.
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to axioms explicitly declared in the Boogie program. The conclusion of the impli-
cation is an optimised version of the weakest (liberal) precondition (WP) of the
CFG.8

6.2 Boogie’s Logical Encoding of the Boogie Type System

We first briefly explain Boogie’s logical encoding of its own type system. Values
and types are represented at the VC level by two uninterpreted carrier sorts
V and T . An uninterpreted function typ from V to T maps each value to the
representation of its type. Boogie type constructors are each modelled with an
(injective) uninterpreted function C with return sort T and taking arguments
(per constructor parameter) of sort T . For example, a type constructor List(t)
is represented by a VC function from T to T . Projection functions are also
generated for each type constructor (Cπ

i for each type argument at position i),
e.g. mapping the representation of a type List(t) to the representation of type t.

This encoding is then used in the VC to recover Boogie typing constraints for
the untyped VC terms. Recovering the constraints is not always straightforward
due to optimisations performed by Boogie. For example, the VC translation
of the Boogie expression ∀ty t. ∀x : List(t). e no longer quantifies over types;
all original occurrences of t in e having been translated to Listπ1 (typ(x)). This
optimisation reflects that this particular type quantification is redundant, since
t can be recovered from the type of x.9

6.3 Working from VC Validity

Our certificates assume that the generated VC is valid (certifying the validity-
checking of the VC by an SMT solver is an orthogonal concern). However, con-
necting VC validity back to block-level properties about the specific program
requires a number of technical steps. We need to construct Isabelle-level seman-
tic values to instantiate the top-level quantifiers in the VC such that the corre-
sponding VC assumptions (left-hand side of the VC) can be proved and, thus,
validity of the corresponding WP can be deduced. Moreover, we must ensure
that our instantiation yields a WP whose validity implies correctness of the Boo-
gie program. For example, a top-level VC quantifier modelling a Boogie function
f must be instantiated with a mathematical function that behaves in the same
way as f for arguments of the correct type.

We instantiate the carrier sort V for values in the VC with the corresponding
type denoting Boogie values in our formalisation; the carrier sort T for types
is instantiated to be all Boogie types that do not contain free variables (i.e.
closed types). Constructing explicit models for the quantified functions used to

8 One difference in our version of the Boogie verifier is that we switched off the gen-
eration of extra variables introduced to report error traces [32]; these are redundant
for programs that do not fail and further complicate the VC structure.

9 Note that in the VC the quantification over x ranges over all values of sort V . An
implication is used to consider only those x for which typ(x) = List(Listπ1 (typ(x))).
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model Boogie’s type system (satisfying, e.g., suitable inverse properties for the
projection functions) is straightforward. For the VC-level variable values, we can
directly instantiate the corresponding values in the initial Boogie program state.

VC-level functions representing those declared in the Boogie program are
instantiated as (total) functions which, for input values of appropriate type (the
arguments and output are untyped values of sort V ), are defined simply to return
the same values as the corresponding function in our model. However, perhaps
surprisingly, Boogie’s VC embedding of functions logically requires functions to
return values of the specified return type even if the input values do not have the
types specified by the function. In such cases, we define the instantiated function
to return some value of the specified type, which is possible since in well-formed
contexts every closed type has at least one value in our model.

After our instantiation, we need to prove the hypotheses of the VC’s impli-
cation; in particular that all axioms (both those generated by the type system
encoding and those coming from the program itself) are satisfied. The former
are standard and simple to prove (given the work above), while the latter largely
follow from the assumption that each declared axiom must be satisfied in the
initial state restricted to the constants. The only remaining challenge is to relate
VC expressions with the evaluation of corresponding Boogie expressions; an issue
which also arises (and is explained) below, where we show how to connect validity
of the instantiated WP to the program.

6.4 Certifying the VC Phase

Boogie’s weakest precondition calculation is made size-efficient by the usage
of explicit named constants for the weakest preconditions wp(B, true) for each
block B, which is defined in terms of the named constants for its successor blocks.
For example, in Fig. 5, wp(B′′

2 , true) is given by ivc
1 �= 0 =⇒ wp(B′′

3 , true) ∧
wp(B′′

4 , true). Here ivc
1 is the value that we instantiated for the variable i1.

We exploit this modular construction of the generated weakest precondition
for the local and global block theorems. We prove for each block B with com-
mands cs the following local block lemma:

Theorem 3 (VC Phase Local Block Lemma).
If A,Λ, Γ,Ω � 〈cs,N(ns)〉 [→] s′ and wp(B, true) holds, then s′ �= F and if s′ is
a normal state, then ∀Bsuc ∈ successors(B). wp(Bsuc , true).

Once one has proved this lemma for all blocks in the CFG, combining them
to obtain the corresponding global block theorems (via our usual reverse walk
of the CFG) is straightforward. The main challenge is in decomposing the proof
for the local block lemma itself for a block B, for which we outline our approach
next.

By this phase, the first command in B must be either an assume e or an
assert e command. In the former case, we rewrite wp(B, true) into the form
evc =⇒ H, where evc is the VC counterpart of e and where H corresponds
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to the weakest precondition of the remaining commands. This rewriting may
involve undoing certain optimisations Boogie’s implementation performed on the
formula structure. Next, we need to prove that e evaluates to evc (see below).
Hence, if e evaluates to true (the execution does not go to magic) then H must
be true, and we can continue inductively. The argument for assert e is similar
but where we rewrite the VC to evc ∧ H (i.e. evc and H must both hold); if e
evaluates to evc, we know that the execution does not fail.

Proving that e evaluates to evc arises in both cases and also in our previous
discharging of VC hypotheses. Note that, in contrast to e, evc is not a Boogie
expression, but a shallowly embedded formula that includes the instantiations of
quantified variables we constructed above. Showing this property works largely
on syntax-driven rules that relate a Boogie expression with its VC counterpart,
except for extra work due to mismatching function signatures and optimisations
that Boogie made either to the formula structure or via the type system encoding
(cf. Sect. 6.2). We handle some of these cases by showing that we can rewrite
the formula back into the unoptimised standard form we require for our syntax-
driven rules and in other cases we directly work with the optimised form. Both
cases are automated using Isabelle tactics.

This concludes our discussion of the certification of Boogie’s three key phases.
Combining the three certificates yields an end-to-end proof that the validity of
the generated verification conditions implies the correctness of the input program,
that is, that the given verification run is sound.

7 Implementation and Evaluation

In this section, we evaluate our certifying version of the Boogie verifier [36],
which produces Isabelle certificates proving the correctness of Boogie’s pipeline
for programs it verifies.

We have implemented our validation tool as a new C# module compiled with
Boogie. We instrumented Boogie’s codebase to call out to our module, which
allows us to obtain information that we can use to validate the key phases, and
extended parts of the codebase to extract information more easily. Moreover, we
disabled counter-example related VC features and the generation of VC axioms
for any built-in types and operators that we do not support. We added or changed
fewer than 250 non-empty, uncommented lines of code across 11 files in the
existing Boogie implementation.

Given an input file verified by Boogie, our work produces an Isabelle certifi-
cate per procedure p that certifies the correctness of the corresponding CFG-to-
DAG source CFG as represented internally in Boogie. The generation and check-
ing of the certificate is fully automatic, without any user input. We use a combi-
nation of custom and built-in Isabelle tactics. In addition to the three key phases
we describe in detail, our implementation also handles several smaller transforma-
tions made by Boogie, such as constant propagation. Our tool currently supports
the default options of Boogie (only) and does not support advanced source-level
attributes (for instance, to selectively force procedures to be inlined).
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Table 1. Selection of algorithmic examples with the lines of code (LOC), the number
of procedures (#P), the time it takes for Isabelle to check the certficate in seconds (the
average of 5 runs on a Lenovo T480 with 32 GB, i7-8550U 1.8 GhZ, Ubuntu 18.04 on
the Windows Subsystem for Linux), and the certificate size expressed as the number
of non-empty lines of Isabelle.

Name LOC #P Time [s] Size

TuringFactorial 29 1 19.4 1986
Find 27 2 27.3 2100
DivMod 69 2 28.4 4753
Summax [27] 23 1 19.1 1953
MaxOfArray [12] 22 1 19.9 1944
SumOfArray [12] 22 1 18.7 1534
Plateau [12] 50 1 22.9 2019
WelfareCrook [12] 52 1 39.4 2528
ArrayPartitioning [12] 57 2 27.6 3514
DutchFlag [12] 76 2 52.8 3994

We evaluated our work in two ways. Firstly, to evaluate the applicability
of our certificate generation, we automatically collected all input files with at
least one procedure from Boogie’s test suite [1] which verify successfully and
which either use no unsupported features or are easily desugared (by hand) into
versions without them. This includes programs with procedure calls since Boogie
simply desugars these in an early stage. For programs employing attributes, we
checked whether the program still verifies without attributes, and if so we also
kept these. In total, this yields 100 programs from Boogie’s test suite. Secondly,
we collected a corpus of ten Boogie programs which verify interesting algorithms
with non-trivial specifications: three from Boogie’s test suite and seven from the
literature [12,27]. Where needed we manually desugared usages of Boogie maps
(which we do not yet support) using type declarations, functions, and axioms.

Of the 100 programs from Boogie’s test suite, we successfully generate cer-
tificates in 96 cases. The remaining 4 cases involve special cases that we do not
handle yet. For 2 of them, extending our work is straightforward: one special
case includes a naming clash and the other case can be amended by using a more
specific version of a helper lemma. The remaining two fail because of our incom-
plete handling of function calls in the VC phase when combined with coercions
between VC integers or booleans and their Boogie counterparts. Handling this
is more challenging but is not a fundamental issue.

For the corpus of 10 examples, Table 1 shows the generated certificate size
and the time for Isabelle to check their validity.10 The ratio of certificate size to
code size ranges from 41 to 89; this rather large ratio emphasises the substantial
work in formally validating the substantial work which Boogie’s implementation

10 The time to generate the certificate is not included, but is negligible here.
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performs. Optimisations to further reduce the ratio are possible. The validation
of certificates takes usually under one second per line of code. While these times
are not short, they are acceptable since certificate generation needs to run only
for (verified) release versions of the program in question.

8 Related Work

Several works explore the validation of program verifiers. Garchery et al. [20]
validate VC rewritings in the Why3 VC generator [16]. Unlike our work, they do
not connect VCs with programs and do not handle the erasure of polymorphic
types. Strub et al. [39] validate part of a previous version of the F* verifier [40]
by generating a certificate for the F* type checker itself, which type checks
programs by generating VCs. Like us, they assume the validity of the generated
VC itself, but they do not consider program-to-program transformations such
as ours. Another approach is taken by Aguirre [2] who shows how one can map
proofs of the VC back to correctness of an F* program. They prove a once-and-
for-all result, but the approach could be lifted to a validation approach using
the proof-producing capability of SMT solvers [7]. Lifting the approach would
require extending the work to handle classical instead of constructive VC proofs.

There is some work on proving VC generator implementations correct once
and for all, although none of the proven tools are used in practice. Homeier and
Martin [23] prove a VC generator correct in HOL for an executable language
and a simpler VC phase than Boogie’s. Herms et al. [22] prove a VC genera-
tor inspired by Why3 correct in Coq. However, some more-challenging aspects
of Why3’s VC transformation and polymorphic type system are not handled.
Vogels et al. [44] prove a toolchain for a Boogie-like language correct in Coq,
including passification and VC phases. However, the language is quite limited:
without unstructured control flow, loops (i.e. no need for a CFG-to-DAG phase),
functions, or polymorphism (i.e. no type encoding). Verifiers other than VC
generators, include the verified Verasco static analyzer [25], which supports a
realistic subset of C, but whose performance is not yet on par with unverified,
industrial analyzers.

Validation has also been explored in other settings. Alkassar et al. [3] adjust
graph algorithms to produce witnesses that can be then used by verified valida-
tors to check whether the result is correct. In the context of compiler correctness,
many validation techniques express a per-run validator in Coq, prove it correct
once-and-for-all [8,41,43], and then extract executable code (the extraction must
be trusted). In the verified CompCert compiler [34], such validators have been
used in combination with the once-and-for-all approach. Validators are used for
phases that can be more easily validated than proved correct once and for all.
One such example related to our certification of the passification phase is the
validation of the SSA phase [8], dealing also with versioned variables in the tar-
get (but not with assume statements that prune executions). In contrast to our
work, they require an explicit notion of CFG domination and they do not use a
global versioning scheme to efficiently check that two parts of the CFG constrain
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disjoint versions. Our versioning idea is similar to a technique used for the valida-
tion of a dominator relation in a CFG [9], which assigns intervals to basic blocks
(as opposed to assigning versions to variables) to efficiently determine whether a
block dominates another one. The validation of the Cogent compiler [38] follows
a similar approach to ours in that it generates proofs in Isabelle.

9 Conclusion

We have presented a novel verifier validation approach, and applied it successfully
to three key phases of the Boogie verifier, providing formal underpinnings for
both the language and its verifier for the first time. Our work demonstrates that
it is feasible to provide strong formal guarantees regarding the verification results
of practical VC generators written in modern mainstream languages.

In the future, we plan to extend our supported subset of Boogie, e.g.
to include procedure calls and bitvectors. Supporting Boogie’s potentially-
impredicative maps is the main open challenge: maps can take other maps as
input, potentially including themselves. The challenge with this feature is to
still be able to express a type in Isabelle capturing all Boogie values despite the
potentially-cyclic nature of map types. In practice, however, this may not be
required in full generality: we have observed that Boogie front-ends rarely use
maps that contain maps of the same type as input. Therefore, we plan to extend
our technique to support a suitably-expressive restricted form of Boogie maps.
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Abstract. Verification of instruction encoders and decoders is essential
for formalizing manipulation of machine code. The existing approaches
cannot guarantee the critical consistency property, i.e., that an encoder
and its corresponding decoder are mutual inverses of each other. We
observe that consistent encoder-decoder pairs can be automatically
derived from bijections inherently embedded in instruction formats.
Based on this observation, we develop a framework for writing specifica-
tions that capture these bijections, for automatically generating encoders
and decoders from these specifications, and for formally validating the
consistency and soundness of the generated encoders and decoders by
synthesizing proofs in Coq and discharging verification conditions using
SMT solvers. We apply this framework to a subset of X86-32 instructions
to illustrate its effectiveness in these regards. We also demonstrate that
the generated encoders and decoders have reasonable performance.

Keywords: Formalized instruction formats · Verified parsing ·
Program synthesis · Proof synthesis · Translation validation

1 Introduction

Software that manipulates machine code such as compilers, OS kernels and
binary analysis tools, relies on instruction encoders and decoders for extract-
ing structural information of instructions from machine code and for translating
such information back into binary forms. Because of the sheer amount of instruc-
tions provided by any instruction set architecture (ISA) and the complexity of
instruction formats, it is extremely tedious and error-prone to implement instruc-
tion encoders and decoders by hand. Therefore, the literature contains abundant
work on automatic generation of instruction encoders and decoders, often from
specifications written in a formal language capable of concisely and accurately
characterizing instruction formats on various ISAs [7,12,15].

Unfortunately, the above approaches generate little formal guarantee, there-
fore not suitable for rigorous analysis or verification of machine code. In those
settings, instruction encoders and decoders are expected to be consistent, i.e.,
any encoder and its corresponding decoder are inverses of each other, and sound,
i.e., they meet formal specifications of instruction formats that human could eas-
ily understand and check.
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Consistency is essential for verification of machine code because it guaran-
tees that manipulation and reasoning over the abstract syntax of instructions
can be mirrored precisely onto their binary forms. For example, verification of
assemblers requires that instruction decoding reverts the assembling (encod-
ing) process [20]. However, the previously proposed approaches to verifying
instruction encoders and decoders all fail to establish consistency: to handle the
complexity of instruction formats (especially that of CISC architectures), they
employ expressive but ambiguous specifications such as context-free grammars
or variants of regular expressions, from which it is impossible to derive consistent
encoders and decoders. A representative example is the bidirectional grammar
proposed by Tan and Morrisett [18]. It is an extension of regular expressions
for writing instruction specifications from which verified encoders and decoders
can be generated. However, because of the ambiguity of such specifications, two
different abstract instructions may be encoded into the same bit string (i.e., a
sequence of bits). When the decoder is deterministic, not all encoded instructions
can be decoded back to the original instructions.

In this paper, we present an approach to automatic construction of instruc-
tion encoders and decoders that are verified to be consistent and sound. It is
based on the observation that an instruction format inherently implies a bijec-
tion between abstract instructions and their binary forms that manifests as the
determinacy of instruction decoding in actual hardware. This is true even for the
most complicated CISC architectures. From a well-designed instruction specifica-
tion that precisely captures this bijection, we are able to extract an appropriate
representation of instructions, a pair of instruction encoder and decoder between
this representation and the binary forms of instructions, and the consistency and
soundness proofs of the encoder and decoder.

Based on the above ideas, we develop a framework for automatically generat-
ing consistent and sound instruction encoders and decoders. It extends the app-
roach to specifying and generating instruction encoders and decoders proposed
by Ramsey and Fernández [15] with mechanisms for validating their soundness
and consistency by using theorem provers and SMT solvers. The framework con-
sists of the following components (which are also our technical contributions):

– A specification language for describing instruction formats. This language
is deliberately weaker in expressiveness than regular expressions while strong
enough for describing instruction formats on common ISAs. Different from the
existing ISA specification languages, it is rich enough for precisely capturing
the syntactical structures of instructions and their operands, which implicitly
encode a bijection between the abstract and the binary representations of
instructions.

– The algorithms for automatically generating encoders and decoders from
instruction specifications. Given any instruction specification, they generate
an abstract syntax of instructions, a partial function from the abstract syntax
to bit strings (i.e., an encoder) and a partial function from bit strings to the
abstract syntax (i.e., a decoder). The generated definitions are formalized in



730 X. Xu et al.

the Coq theorem prover so that the encoder and decoder can be formally
validated later.

– The algorithms for automatically validating the consistency and soundness of
the generated encoders and decoders. Given any instruction specification, they
synthesize the consistency and soundness proofs for the generated encoder
and decoder in Coq. This is possible because the bijection implied by the
original specification guarantees that the encoder and decoder are inverses
of each other, under the requirement that the binary “shapes” of different
instructions or operands do not overlap with each other. This requirement is
inherently satisfied by any instruction format, and can be easily proved with
SMT solvers.

To demonstrate the effectiveness of our framework, we have applied it to a
subset of 32-bit X86 instructions. In the rest of this paper, we first introduce
relevant background information for this work and discuss the inadequacy of the
existing work in Sect. 2. We then give an overview of our framework in Sect. 3
by further elaborating on the points above. After that, we discuss the definition
of our specification language and the ideas supporting its design in Sect. 4. In
the two subsequent sections Sect. 5 and Sect. 6, we discuss the algorithms for
automatically generating and validating encoders and decoders. In Sect. 7, we
present the evaluation of our framework. Finally, we discuss related work and
conclude in Sect. 8.

2 Background

For our approach to work, the specification language we use must support the
instruction formats on contemporary RISC and CISC architectures. In this
section, we first introduce the key characteristics of these formats and then
present a running example. We conclude this section by exposing the inadequacy
of the existing approaches in capturing the bijections between the abstract and
binary forms of instructions.

2.1 The Characteristics of Instruction Formats

Opcode ModRM SIB Disp Imms

Mod[7:6] Reg op[5:3] RM[2:0] Scale[7:6] Index[5:3] Base[2:0]

Fig. 1. The format of 32-bit X86 instructions

Instruction formats on CISC architectures may vary in length and structure
even for the same type of instructions and may contain complex dependencies
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between their operands. In contrast, instructions on RISC architectures usually
have fixed formats which are largely subsumed by CISC formats. Therefore, we
focus on handling CSIC formats in this paper.

We use the format of 32-bit X86 instructions as an example to illustrate the
complex characteristics of CISC instructions. It is depicted in Fig. 1. An instruc-
tion is divided into a sequence of tokens where each token is one or more bytes
playing a particular role. The first token Opcode partially or fully determines
the basic type of the instruction; it may be one to three bytes long. Follow-
ing Opcode is an one-byte token ModRM. ModRM is further divided into
a sequence of fields where a field f [n1 : n2] represents a segment of the token
named f that occupies the n2-th to n1-th bits in that token. Depending on the
value of Opcode, ModRM may or may not exist. When it exists, the value
of Reg op[5:3] may contain the encoded representation of a register operand.
Another operand of the instruction may be an addressing mode. It is collectively
determined by the values of Mod[7:6], RM[2:0], the token SIB (scaled index
byte) and the displacement Disp following ModRM. Finally, the instruction
may have an operand of immediate values in the token Imms.

For simplicity of our discussion, we have omitted some details such as the
optional prefixes of instructions in Fig. 1. However, this simplified form is already
enough to expose the key characteristics and complexity of CISC instruction
formats (some of which also manifest in RISC). We summarize them below:

1. Instructions as Composition of Components: At the abstract level, an instruc-
tion consists of a collection of components. Each component serves a specific
purpose and concretely corresponds to certain fields or tokens in the instruc-
tion format. For example, the constituents of 32-bit X86 instructions can be
classified into four different kinds of components (marked with different colors
in Fig. 1): the component determining the types of instructions (Opcode),
the component denoting register operands (Reg op[5:3]), the component
denoting addressing modes (Mod[7:6], RM[2:0], SIB and Disp) and the
component denoting immediate values (Imms).

2. Variance of Components: The concrete forms of components vary in different
ways. A component may correspond to a single token (e.g., Opcode and
Imms), a single field (e.g., Reg op[5:3]), a mixing of fields and tokens (e.g.,
addressing modes), or other forms not shown here. Moreover, the abstract
and concrete forms of a single type of components can also vary significantly
such as the different addressing modes supported by X86 (as we shall see in
detail in the following section).

3. Interleaving of Components. In most cases, there are clear sequential orders
between the concrete representations of components. For example, the com-
ponent of addressing modes immediately follows that of opcode and precedes
that of immediate values. In the other cases, components may be interleaved
with each other. For example, the component of register operands is inter-
leaved with the component of addressing modes.

4. Dependencies between and in Components : The existence and forms of compo-
nents are affected by the dependencies between each other and between their
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own fields or tokens. For example, if an instruction does not take any argu-
ment, then the value of its Opcode determines that there is no token follow-
ing Opcode. For another example, when Mod[7:6] contains the value 0b11,
the addressing mode is simply a register operand. Otherwise, the addressing
mode may further depends on the values in SIB and Disp.

Note that, despite the above complexity, an instruction format is designed to
inherently embed a (partial) bijection between the binary forms of instructions
and their abstract representation as the composition of components. This is to
ensure the determinacy of instruction decoding in hardware. This bijection is
the central property to be investigated in this work.

2.2 A Running Example

Table 1. The different forms of addressing modes

AddrMode Mod RM Scale Index Base Disp

r 0b11 r – – – –

(r) 0b00 r �= 0b100 ∧r �= 0b101 – – – –

(d) 0b00 0b101 – – – d

(s ∗ i + b) 0b00 0b100 s i �= 0b100 b �= 0b101 –

. . . . . . . . . . . . . . . . . . . . .

We present an example of encoding the add instruction to concretely illustrate
the characteristics of the X86 instruction format. It will be used as a running
example for the rest of the paper. The operands of add may have many forms.
For simplicity, we only consider two cases: 1) the first operand is a register while
the second one is an addressing mode, and 2) the first operand is an addressing
mode while the second one is an immediate value.

In the first case, Opcode is 0x03, indicating that ModRM exists and the
first operand is encoded in its Reg op field. The addressing mode has over 23
combinations because of the dependencies and constraints over their fields. We
list only some of the combinations in Table 1, where - indicates that this field
or token does not exist. The first row shows the direct addressing mode r where
Mod is 0b11 and RM contains the encoded register operand r. The following
three rows shows different kinds of indirect addressing modes. They are valid
only if Mod is 0b00 and further constraints are satisfied. For example, the
second row shows the indirect addressing mode (r) where r is encoded in RM.
In this case, r must neither be ESP (encoded as 0b100) nor be EBP (encoded
as 0b101). Similarly, the addressing mode (s ∗ i+b) requires that RM must be
0b100, Index must not be 0b100 and Base must not be 0b101.

In the second case, Opcode is 0x81, indicating that ModRM exists, the
first operand is an addressing mode, and the second operand is an immediate
value following it. Here, Reg Op must be 0b000.
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Opcode:
0x03

Mod:
0b00

Reg op:
0b011

RM:
0b100

Scale:
0b10

Index:
0b001

Base:
0b100

(a) add (4,%ecx,%esp), %ebx

Opcode:
0x03

Mod:
0b00

Reg op:
0b011

RM:
0b101

Disp:
0x88

(b) add 0x88, %ebx

Opcode:
0x81

Mod:
0b00

Reg op:
0b000

RM:
0b011

Imms:
0x66

(c) add $0x66, (%ebx)

Fig. 2. Some concrete examples of instruction encoding

We demonstrate the concrete examples of encoding add (4,%ecx,%esp), %ebx,
add 0x88, %ebx and add $0x66, (%ebx) in Fig. 2 where %ebx and %ecx are
encoded into 0b011 and 0b001, respectively (the order of operands is reversed
because we use the AT&T assembly syntax). Note how the forms of operands
change significantly depending on the different values in the related fields. Note
also, despite such complex dependencies, a bit string representing a valid add
instruction corresponds to a unique combination of components.

2.3 Inadequacy of the Existing Approaches

The existing approaches to specifying instructions are either 1) too general and
allow ambiguity or 2) too low-level and break the component-based abstrac-
tion we just described. Either way, they fail to capture the inherent bijection
embedded in an instruction format.

The bidirectional grammars [18] demonstrate the first kind of inadequacy.
They contain the alternation grammar Alt g1 g2 for matching a bit string s
when either the sub-grammar g1 or g2 matches s. The ambiguity arises when
both g1 and g2 match s: in this case, the same s corresponds to two different
internal representations. Therefore, bidirectional grammars cannot encode bijec-
tions in general. The same can be said for other work on verified parsing based
on ambiguous grammars. We shall discuss them in detail in Sect. 8.

The Specification Language for Encoding and Decoding (or SLED) demon-
strates the second kind of inadequacy [15]. It is a language for describing trans-
lations between symbolic and binary representations of machine instructions.
On the surface, SLED takes the component-based view in specifying instruc-
tions. However, SLED specifications are interpreted through a normalization
process by which every component is flattened into a sequence of tokens. After
that, the structural information of components is completely lost. As a result,
users can only derive encoders from the normalized specifications. They need
to write decoders by using completely different specifications called “matching
statements.” This inability to generate matching encoders and decoders from a
single specification is a common phenomenon in other approaches to ISA speci-
fications.
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In summary, no existing approach can precisely capture the bijections inher-
ently embedded in instruction formats. This is the main intellectual problem we
try to tackle in this paper. We shall elaborate on our solution to this problem
in the remaining sections.

3 An Overview of the Framework

S G

A

E D

S

consistency

so
un
dn
es
s soundness

input output

S

A

gen
era

te

generate

translate

translate

S : instruction specifications (in CSLED)

G : algorithms for generating formal definitions and proofs (in C++)

A : abstract syntax of instructions (on paper and in Coq)

S : relational specifications of instructions (on paper and in Coq)

E and D : encoders and decoders (in Coq)

Fig. 3. The framework

We develop a framework for automatic generation of verified encoders and
decoders that are consistent and sound. It is depicted in Fig. 3. To generate
formally verified encoders and decoders, users first need to write down a speci-
fication of instructions S in a language called CSLED (or CoreSLED). CSLED
is an enhancement to SLED for characterizing the bijection between the binary
forms and the abstract syntax of instructions. Roughly speaking, S consists of a
collection of class definitions, each of which defines a unique type of components
that form instructions or their operands; the “top-most” class defines the type of
instructions. Each class is associated with a set of patterns to uniquely determine
a bijection between the binary and abstract forms of components in that class.
Note that this bijection exists only when certain well-formedness conditions for
patterns are satisfied. We shall elaborate on these ideas in Sect. 4.

From S, the following definitions are generated and translated into Coq:

– The abstract syntax of instructions A. It is a collection of algebraic data types
corresponding to the classes defined in S.

– A relational specification of S called S. For each class, S contains a binary
predicate that precisely captures the relation between components of that
class and their binary forms. We write R[[K]] k l to denote that the component
k of class K has the binary form l.
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Then, S is fed into a collection of algorithms G to generate the following
definitions and proofs in Coq:

– An encoder E and a decoder D. The encoder is a set of partial functions—one
for each class—from the abstract syntax of that class to bit strings. We write
EK(k) = �l� to denote that l is the result of encoding a component k of class
K where �� denotes the some constructor of the option type. Conversely, the
decoder is a set of partial functions from bit strings to the abstract syntax.
We write DK(l++l′) = �(k, l′)� to denote the decoding of the bit string l into
a component k of class K where ++ is the append operation of bit strings.
Here, the tailing bit string l′ represents the remaining bits after decoding the
first component.

– The proof of consistency between the encoder and decoder. The consistency
theorems are stated as the mutual inversion between the encoder and decoder:

∀ K k l l′,EK(k) = �l� =⇒ DK(l++l′) = �(k, l′)�.
∀ K k l l′,DK(l++l′) = �(k, l′)� =⇒ EK(k) = �l�.

Their Coq proofs are automatically generated by inspecting the logical struc-
ture of classes and patterns in S. For this, we need to derive a very important
property: the decoder always decodes a bit string l back to the same sequence
of components. We achieve this goal by combining proofs in Coq with SMT
solving of verification conditions that are automatically derived from well-
formed specifications.

– The proof of soundness of the encoder and decoder. The soundness theorems
are stated as follows:

∀ K k l l′,EK(k) = �l� =⇒ R[[K]] k l.

∀ K k l l′,DK(l++l′) = �(k, l′)� =⇒ R[[K]] k l.

As we shall see later, EK and R[[K]] are both defined recursively on the defi-
nition of classes in S. Their main difference is that the former is a function
while the latter is a relation. Therefore, it is easy to prove the first soundness
theorem by induction on k. By using the second consistency theorem and the
first soundness theorem, we can easily prove the second soundness theorem.

As we shall see in the following sections, the actual implementations of encoders
and decoders and their consistency and soundness theorems are more compli-
cated than presented here. Nevertheless, the above discussion covers the high-
level ideas of our framework.

Note that in Fig. 3, S and G are not formalized and hence not in the trusted
base. The consistency and soundness of E and D are independently validated
by using Coq and SMT solvers. If the validation of either property fails, the
framework reports a failed attempt to generate the encoder and decoder. This
often indicates that the instruction specification is not well-formed.
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4 The Specification Language

The key idea underlying the design of CSLED is to record explicitly the struc-
tures of components in instruction specifications, instead of normalizing them
into tokens as did in SLED. In this way, CSLED specifications accurately cap-
ture the key characteristics of instruction formats described in Sect. 2.1, hence
the bijections embedded in instruction formats. In this section, we present the
syntax of CSLED, explain the ideas underlying its design, and use the run-
ning example to illustrate how CSLED specifications are written. We also intro-
duce the syntactical and relational interpretations of CSLED specifications and
present the well-formedness conditions for the bijections to exist.

4.1 The Syntax

S ::= 〈empty〉
| S D

D ::= token tid = T ;

| field fid = F ;

| class kid = K;

T ::= (n)

F ::= tid(n1 : n2)

K ::= B
| K | B

B ::= constr cid [aid ] (P)

(a) Definitions

P ::= J
| P;J

J ::= A
| J &A

A ::= O
| cls %i

O ::= ε:tid

| fid = n

| fid �= n

| fld %i

| O & O
| O ; O

(b) Patterns

Fig. 4. The syntax of CSLED

The syntax of CSLED is shown in Fig. 4. A CSLED specification (denoted by
S) consists of a list of definitions (denoted by D). The three kinds of definitions
are for tokens (denoted by T ), fields (denoted by F) and classes (denoted by K).
Every definition is bound to a unique identifier where tid , fid and kid represents
the identifiers of tokens, fields and classes, respectively.

Tokens represent consecutive segments of bytes and are the basic elements for
forming instructions. They are necessary for distinguishing the same sequence of
bytes with different interpretations. Their definitions have the form (n) where n
must be divisible by 8 which denotes a token of n-bits or n/8 bytes. Definitions
of fields have the form tid(n1 : n2) which denotes a field occupying the n2-th to
n1-th bits in the token tid .
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Classes represent specific types of components. They play a central role in
the specifications by accurately capturing the component-based abstraction we
discussed in Sect. 2.1. A class consists of a collection of branches (denoted by B)
each of which denotes a possible form of components in the class. Definitions of
branches have the form constr cid [aid ] (P) where cid is a unique identifier for
the branch (denoting a constructor) and [aid ] is a list of fid or kid denoting the
sub-components or fields for constructing a component (i.e., the arguments to
the constructor). These arguments capture the nested structures of components
where a bigger component may be constructed from smaller ones or basic fields.

A branch is associated with a single pattern P. A pattern plays two roles: it
determines the types of a sequence of tokens that concretely forms components
of this branch, and it describes a relation between these tokens (and their fields)
with the abstract arguments of the branch. This relation essentially encodes the
bijection between the abstract and binary forms of components in this branch.

At the top-most level, P is a sequence of judgments (denoted by J ) separated
by ;, such that J1; . . . ;Jn matches a sequence of tokens concretely represented
by a bit string l if and only if l = l1++l2++ . . . ++ln and Ji matches li for 1 ≤
i ≤ n. This sequential pattern is enough for relating abstract and binary forms
of components when each Ji (and li) corresponds to a single (sub-)component.
However, according to the discussion in Sect. 2.1, components may be interleaved
with each other and Ji may correspond to multiple components. Therefore, a
judgment is a conjunction of atomic patterns (denoted by A) each of which
matches an interleaved component. In case there is no interleaving, a judgment
reduces to a single atomic pattern.

An atomic pattern has two forms: cls %i for relating a sequence of tokens
to the i-th argument in [aid ] of the corresponding branch which must be a class,
and O for relating tokens to field arguments in [aid ] and for further constraining
the fields of these tokens. The O patterns are called basic patterns. Among them
ε:tid matches any token of type tid ; fid = n (fid �= n) matches a token with
the field fid whose value is (is not) the constant n; similar to cls %i, fld %i
relates the i-th argument in [aid ] of the branch which must be a field to the
concrete value of the field in the matching token. The last two cases of basic
patterns indicate that arbitrary sequencing and interleaving of basic patterns
are allowed. Despite such free interleaving, a basic pattern can only match with
sequences of tokens of the same length and of a unique type because we require
that O1 & O2 be well-formed only if both O1 and O2 match sequences of tokens
with the same type. Therefore, basic patterns have the same expressiveness as
SLED specifications in their normalized forms [15].

In contrast to basic patterns, judgments and atomic patterns are much more
expressive as they may match tokens of different lengths and forms. This is
because a class pattern cls %i can match components of a class K with mul-
tiple branches, each of which may have different patterns. By introducing class
patterns into atomic patterns, we are able to represent the complete structures
of components and establish bijections from these structures. This is the key
improvement we made in CSLED compared to SLED.
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4.2 The CSLED Specification of the Running Example

token Opcode = (8); token Disp = (32); token Imms = (32);
token ModRM = (8); token SIB = (8);

field opcode = Opcode(7 : 0); field disp = Disp(31 : 0);
field imms = Imms(31 : 0); field mod = ModRM (7 : 6);
field reg op = ModRM (5 : 3); field rm = ModRM (2 : 0);
field scale = SIB(7 : 6); field index = SIB(5 : 3);
field base = SIB(2 : 0);

class Addrmode =
| constr addr r [rm] (mod = 0b11 & fld %1)
| constr addr ir [rm] (mod = 0b00 & rm �= 0b100 & rm �= 0b101 & fld %1)
| constr addr disp [disp] (mod = 0b00 & rm = 0b101; fld %1)
| constr addr sib [scale, index , base]

(mod = 0b00 & rm = 0b100;

fld %1 & fld %2 & fld %3 & index �= 0b100 & base �= 0b101)
. . .

class Instruction =
| constr AddGvEv [reg op,Addrmode] (opcode = 0x03; fld %1 & cls %2)
| constr AddEvIz [Addrmode, imms]

(opcode = 0x81; reg op = 0b000 & cls %1; fld %2)
. . .

Fig. 5. The CSLED specification of the running example

The CSLED specification of our running example is depicted in Fig. 5. The
Addrmode class specifies the possible addressing modes. Its branches are trans-
lated from the addressing modes described in Table 1 one by one, such that their
patterns exactly match the binary structures of components in the correspond-
ing branches. For instance, the branch addr sib is translated from the fourth
addressing mode in Table 1. Its pattern is a sequence of two judgment. The first
judgment is a conjunction of two basic patterns that are the required constraints
on the fields mod and rm of ModRM described in Table 1. Therefore, it must
match the single token ModRM . The second judgment is a conjunction of basic
patterns that constrain the fields index and base of SIB and relate arguments
of addr sib with the concrete values in the fields scale, index and base. Because
these patterns all constrain the fields of SIB , the second judgment must match
the single token SIB .

Similarly, the Instruction class specifies the instructions. Its two branches
characterize the two kinds of add instructions described in Sect. 2.2. Note
how conjunctions between the basic patterns for reg op and class patterns for
Addrmode are used to describe the interleaving of register operands and address-
ing modes. Note also that in every branch of Addrmode the first pattern matches
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the token ModRM , and in any branch of Instruction the token Opcode is always
followed by Addrmode. Therefore, ModRM always follows Opcode as desired.

By this example, we demonstrate the critical feature of CSLED: because the
syntax of CSLED is designed to precisely describe instruction formats in ISA
manuals, it implicitly captures the embedded bijections. Note that, because of
its faithfulness to the ISA manuals, CSLED’s syntax contains full details about
instruction encoding by nature. However, it is not hard to imagine this syntax
being refined to the client’s syntax through another straightforward bijection. In
fact, this is how we anticipate clients will use CSLED in practice, e.g., to build
verified assemblers for X86.

4.3 Interpretation of CSLED Specifications

From a CSLED specification S, we extract 1) a collection of data types for
representing the abstract syntax of components, and 2) a collection of binary
relations between these data types and bit strings for representing the mappings
between the abstract and concrete forms of components.

Data Types of Components. We use the operator T[[−]] to denote the inter-
pretation of basic fields and classes into data types. The translation for fields are
simple: given a field definition field fid = tid(n1 : n2), T[[fid ]] = 〈n1 − n2 + 1〉
where 〈n〉 represent an unsigned binary integer of n bits. Note that we do not
further translate the values of fields as they have straightforward interpreta-
tions (such as the mapping from bits to registers described in Sect. 2.1). The
interpretation of classes is only slightly more involved. Given a class definition
class kid = K, T[[kid ]] is an algebraic data type named kid . For each branch
constr cid [aid1, . . . , aidn] P of K, there is a constructor cid for kid that takes
n arguments of types T[[aid1]], . . . ,T[[aidn]].

Relations Derived from CSLED. The translation of CSLED specifications
into relations is defined in Fig. 6. Here, BS denotes the type of bit strings.
When aids = [aid1, . . . , aidn] we write T[[aids]] to denote the product type of
T[[aid1]], . . . ,T[[aidn]]. We use ≡ to denote the definitional equality.

The function R[[aid ]] translates a type of components associated with aid into
a binary relation between its abstract representation and bit strings, where aid
may denote a field or a class. The definition for field components is straightfor-
ward. R[[kid ]] k l holds iff there is a branch of kid whose interpretation relates k
and l , which further requires (by the third rule in Fig. 6) that k is constructed
by using the constructor of that branch and the pattern of the branch relates
the arguments of the constructor to l . The latter relation is defined by Rp[[−,−]]
such that Rp[[P, aids]] args l holds iff P matches l and the arguments args satisfy
the constraints enforced by P and aids. More specifically, Rp[[P;J , aids]] args l
holds iff P matches a prefix of l and J matches the rest of l . The definition of
Rp[[J &A]] is slightly different in that Rp[[J &A, aids]] args l holds iff A matches
the whole l and J matches a prefix of l. This is necessary for describing the
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Fig. 6. Translation of CSLED specifications into relations

interleaving of components. Furthermore, certain constraints need to be satis-
fied for deriving a bijection as shall discuss in Sect. 4.4. Rp[[O1;O2, aids]] and
Rp[[O1&O2, aids]] are not shown in Fig. 6 because they are defined the same as
Rp[[P;J , aids]] and Rp[[J &A, aids]], respectively. Rp[[fid = n, aids]] args l holds
iff l is a token containing fid whose value is n; similar for Rp[[fid �= n, aids]].
Rp[[fld %i, aids]] holds iff the i-th argument in args matches with the concrete
value found in l ; same for Rp[[cls %i, aids]]. Note how the last two definitions
make use of args for getting the values of arguments.

4.4 Well-Formedness of Specifications

The binary relation we define in the last section denotes a bijection only when the
CSLED specification under investigation satisfies certain well-formedness condi-
tions. These conditions guarantee that, given any bit string l, there is at most one
abstract object related to l via the defined binary relation. Well-formedness is
the composition of three properties which we call disjointness, compatibility, and
uniqueness. We give and explain their definitions below. The logic for checking
these conditions is embedded in the generation algorithms we will discuss in the
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next section and will be exploited for the validation of the generated encoders
and decoders.

Disjointness. Given a pattern P1&P2, it satisfies disjointness if P1 and P2

match disjoint fields.1 To understand this, suppose P1 and P2 relate different
abstract arguments a1 and a2 to overlapping bits in a bit string l. Then, we
cannot determine if the values in the overlapping bits are for a1 or a2. Hence,
the derived binary relation cannot possibly be a bijection. Disjointness rules out
such possibility.

Compatibility. We call the types of sequences of tokens a pattern P matches
the “shapes” of P. Given a pattern P1&P2, it satisfies compatibility if every
possible shape of P1 is in a prefix of every possible shape of P2 when P2 is a class
pattern (and vice versa). Enforcing compatibility simplifies the interpretation of
P1&P2 when P1 or P2 is a class pattern with multiple branches that may match
bit strings with different shapes. Compatibility makes sense because for common
instruction formats it is always the case that the components matched by P1 are
embedded in the longest common prefixes of all the possible shapes of P2 when
P2 is a class pattern (and vice versa). For example, in the example depicted
in Fig. 2, Reg op is always embedded into the common prefix of all the possible
shapes of addressing modes, i.e., the ModRM token.

Uniqueness. Given a class pattern K, it satisfies uniqueness if for any bit string
l, at most one of its branches matches l. Uniqueness is essential for ensuring the
determinacy of decoders in presences of class patterns. Fortunately, it implicitly
holds for common instruction formats as they are designed with determinacy
of decoding in mind. To concretely check the uniqueness implied by instruction
formats, we first define the structural condition for a branch with pattern P as
the conjunction of the statically known constraints in P, denoted by [[P]]cond.
We then require that no structure conditions for any two branches of a class
can be satisfied simultaneously. This requirement allows us to uniquely deter-
mine the branch used to construct a class component. For example, the struc-
tural conditions of the first three branches of Addrmode are (mod = 0b11),
(mod = 0b00 & rm �= 0b100 & rm �= 0b101) and (mod = 0b00 & rm = 0b101).
Obviously, any pairwise combination of these conditions cannot possibly be sat-
isfied. This is true even if we consider all the branches of Addrmode. Therefore,
there is at most one way to decode any addressing mode.

5 Generation of Encoders and Decoders

We discuss the algorithm for generating encoders and decoders from CSLED
specifications. The structures of these encoders and decoders closely match the
relations derived from specifications. Furthermore, every operation in an encoder
has a counterpart in the corresponding decoder, and vice versa.
1 We abuse the notation by using P to denote suitable patterns such as J , A or O.
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5.1 Generation of Encoders

Fig. 7. Generation of encoders from patterns

From every class K, we extract an encoder EK for its components. It is a partial
function that takes two arguments—a component k and a bit string l representing
the result previously generated by encoders—and outputs an updated bit string
if the encoding succeeds. We shall write EK(k, l) = �l′� to denote that l′ is the
result of encoding k on top of l.

EK(k, l) is defined by recursion on the structure of k. For every branch B
of K, we generate a piece of Coq code from the pattern P of B for encoding
k. We then insert it into the definition of EK(k, l). We write GE[[P, bs, args]] to
denote the code snippet so generated, where bs is the name of the generated
bit string at this point and args contains the names of the arguments to the
constructor. GE[[P, bs , args]] is defined in Fig. 7 where we use the option monad
for sequencing the encoding operations. The first case is obvious. Code generated
by GE[[fid = n, bs, args]] writes the constant n into the field associated with fid .
GE[[fid �= n, bs , args]] checks whether the corresponding field contains the constant
n and returns none if the checking fails. GE[[fld %i, bs , args]] writes the value of
the i-th argument into the corresponding field. GE[[cls %i, bs, args]] calls the
encoder for the class corresponding to cls %i. GE[[O1 ; O2, bs, args]] encodes its
two parts recursively and concatenates the results together, where first n(bs, n)
returns the first n bits in bs and skip n(bs, n) skips the first n bits in bs and
returns the remaining ones. GE[[O1&O2, bs, args]] first encodes data matching O1,
and then passes the result to the encoding for O2. The last two cases are similar.
Note that if the generated code occurs at the beginning of a branch, then bs
coincides with the input argument l. Otherwise, bs denotes intermediate results.
As we can see, all these cases follow the logical structure of CLSED specifications
we have described before.
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5.2 Generation of Decoders

From every class K, we extract a decoder DK. It is a partial function such that
DK(l) = �(k, l1, l2)� holds iff l = l′++l2, l′ is the binary representation of k,
and l1 is the result of inverting the encoding operation, i.e., setting every bit the
decoder touches in l′ to 0. This extra return value is introduced to help with the
verification as we shall see in Sect. 6.

Fig. 8. Generation of decoders from patterns

The first step of DK is to decide which branch of K should be chosen for
decoding l. It can be done by checking the structural conditions derived from
the patterns of branches (which we have introduced in Sect. 4.4) against l. Specif-
ically, for the pattern P of each branch of K, we translate its structural condition
[[P]]cond into a decision procedure in Coq (a function returning boolean values) in
a straightforward manner. We then insert an if-statement to check if [[P]]cond can
be satisfied. If so, we start the decoding process for this branch. Otherwise, we
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repeatedly check other branches until a matching case is found. Note also that
by uniqueness, there is at most one structural condition that can be satisfied.
Therefore, DK is deterministic in choosing branches.

Once a matching branch is found, we use the algorithm GD[[P, bs , args]] (the
counterpart of GE[[P, bs, args]]) to generate a piece of Coq code for decoding
the arguments of this branch. It is defined in Fig. 8. Similar to encoding, the
generated code snippet follows the logical structure of CSLED specifications.
The function clearfid bs set the bits of the field fid in bs to 0. Note that the
decoding operations are exactly the inversion of those in Fig. 7. Note also that
the fourth and fifth cases in Fig. 8 are responsible for decoding the arguments
and storing them in argi . By applying the corresponding constructor to these
arguments, we get the output component k, which together with the two values
returned by GD form the final output of DK .

5.3 Generation for the Running Example

We show the representative cases of the generated encoder and decoder for our
running example in Fig. 9. They include the encoding and decoding procedures
for the fourth branch of Addrmode (the most complicated one). We can see that
the encoding and decoding operations are exactly the inverses of each other. The
encoder first writes the fields in ModRM and then those in SIB . Conversely,
the decoder first reads the fields in ModRM and then those in SIB . Finally, it
forms the component and returns the reverted and remaining bits. The function
BF addr sib is the decision procedure generated from the structural condition
for the fourth branch of Addrmode. We also show the encoding and decoding
procedures for the first add instruction in Fig. 9. Their structures are very similar
to those of Addrmode.

6 Validation of Encoders and Decoders

In this section, we discuss how to exploit the logical structure of and the well-
formedness conditions for CSLED specifications to automatically synthesize the
proofs of consistency and soundness for encoders and decoders.

6.1 Synthesizing the Proof of Consistency

The consistency between encoders and decoders is composed of two properties
and stated as follows:

Theorem 1 (Consistency between Encoders and Decoders). Given any
class K, its encoder EK and decoder DK are consistent with each other if they
invert each other. That is, the following properties hold:

∀ k l r l′, valid inputK(l) =⇒ EK(k, l) = �r� =⇒ DK(r++l′) = �(k, l, l′)�.
∀ k l r l′,DK(r++l′) = �(k, l, l′)� =⇒ EK(k, l) = �r�.
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Definition encode_addrmode instance input :=
match instance with
...
| addr_sib arg1 arg2 arg3 ⇒

(* Encode ModRM *)
let ModRM := input in
let tmp := write_mod ModRM b["00"] in
let tmp := write_rm tmp b[ "100"] in
let result0 := tmp in
(* Encode SIB *)
let SIB := zeros 8 in
let tmp := write_scale SIB arg1 in
let tmp := write_index tmp arg2 in
let tmp := write_base tmp arg3 in
let index := read_index tmp in
let base := read_base tmp in
do _ ← assert(index �= b["100"]);
do _ ← assert(base �= b["101"]);
let result1 := tmp in
(* Concatenate the results of

encoding ModRM and SIB *)
Some (result0++result1)

| ...
end.

Definition decode_addrmode bs :=
...
if BF_addr_sib bs then

(* Revert the encoding of ModRM *)
let ori := clear_mod bs in
let ori := clear_rm ori in
let ori1 := ori in
do remains ← skipn bs 8; (* Skip ModRM *)
(* Decode SIB to get the arguments

and revert the encoding of SIB *)
let bs := remains in
let arg3 := read_base bs in
let ori := clear_base bs in
let arg2 := read_index ori in
let ori := clear_index ori in
let arg1 := read_scale ori in
let ori := clear_scale ori in
let ori2 := ori in
do remains ← skipn bs 8; (* Skip SIB *)
(* Return the result *)
Some(addr_sib arg1 arg2 arg3,

ori1++ori2, remains)
else if BF_addr_r bs then ...

...

Definition encode_instr instance input :=
match instance with
| AddGvEv arg1 arg2 ⇒

...
let tmp := write_reg_op ModRM arg1 in
do tmp ← encode_addrmode arg2 tmp;
...

| ...
end.

Definition decode_instr bs :=
if BF_AddGvEv bs then

...
do arg2, ori, remains ←

decode_addrmode bs;
let arg1 := read_reg_op ori in
let ori := clear_reg_op ori in
...

Definition BF_addr_sib bs :=
let ModRM := firstn bs 8 in
(* mod = 0b00 ∧ rm = 0b100 *)
let result0 :=

(ModRM & b["11000111"]) = b["00000100"] in
let tmp := skipn bs 8 in
let SIB := firstn tmp 8 in
(* index �= 0b100 *)
let result10 :=

(SIB & b["00111000"]) �= b["00100000"] in
(* base �= 0b101 *)
let result11 :=

(SIB & b["00000111"]) �= b["00000101"] in
result0 ∧ result10 ∧ result11.

Definition BF_AddGvEv bs :=
let Opcode := firstn bs 8 in
(Opcode & b["11111111"]) = b["00000011"].

Fig. 9. Encoders and decoders generated from the running example

We first discuss how the proof for the first property in Theorem 1 is generated.
Here, the assumption valid inputK(l) asserts that all the bits in l that may be
modified by EK must be 0. This is necessary to ensure that the decoder can
revert the resulting bit string back to its initial state by setting them to 0 (i.e.,
the second result of decoding is the same as l).

The proof proceeds by induction on the structure of k. For each branch
B with the pattern P, we generate a lemma and its proof that the decision
procedure generated from [[P]]cond as described in Sect. 5.2 always returns true
given any bit string generated by the encoder for P. With this lemma, the proof
for the “symmetric” case where the decoder takes the same branch as the encoder
reduces to proving that the encoder and decoder generated from P are inverses
of each other. This proof is straightforward by the definitions of GE and GD
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in Sect. 5. An important point to note is that, for any pattern cls %i, we need
to recursively apply the consistency lemma for its corresponding class, which
in turn requires us to establish a valid input assumption. By the disjointness
property in Sect. 4.4, we can easily conclude that the encoding of sub-components
does not interfere with each other, thereby the desired valid input assumption
can be derived.

To finish the proof, we need to show that the “asymmetric” cases are not
possible. For each asymmetric branch B′ with the pattern P ′, we have that
[[P ′]]cond holds by the decision procedure guarding this branch. Furthermore,
by the above reasoning, [[P]]cond holds. We hence have that the conjunction
of [[P]]cond and [[P ′]]cond holds. However, this contradicts with the uniqueness
property given in Sect. 4.4. Therefore, the decoder can never go into a branch
different from the encoder. Continue with our running example, suppose we
are proving the consistency of the encoder and decoder for Addrmode. Further
suppose we are working on the branch with the constructor addr sib. Then, the
verification condition for the asymmetric case with the constructor addr r is

∀bs, (readmod bs = 0b00 ∧ readrm bs = 0b100 . . .) ∧ (readmod bs = 0b11)

which cannot possibly hold (for simplicity we omit the conditions for index and
base). We note that such condition can be easily checked by any SMT solver
with the theory of bit-vectors, and we use Z3 [5] to validate them. This checking
can also be directly formalized in Coq, which we plan to do in the future.

Finally, the second property in Theorem 1 can be proved by induction on k
in a similar fashion. We elide a discussion of its proof.

6.2 Synthesizing the Proof of Soundness

As we have discussed in Sect. 4.3, the relational specifications extracted from
CSLED specifications are tightly related to the actual instruction formats. Thus,
it is reasonable to check the soundness of the generated encoders and decoders
against these specifications. The relational specifications are easily translated
into Coq definitions and we shall use the same notations. The soundness of
encoders and decoders is then stated as follows:

Theorem 2 (Soundness of Encoders and Decoders). Given any class K,
its encoder EK is sound if the following property holds:

∀ k l r l′,EK(k, l) = �r� =⇒ R[[K]] k r.

Similarly, its encoder DK is sound if the following holds:

∀ k l r l′,DK(r++l′) = �(k, l, l′)� =⇒ R[[K]] k r.

The soundness of encoder is easily proved by induction on the structure of k. We
need to exploit the well-formedness conditions of CSLED specifications as for
the consistency proofs at relevant points. The soundness of decoder is a corollary
of the soundness of encoder and the second consistency property.
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7 Evaluation

Besides the CSLED language, our framework has two major parts: 1) the algo-
rithms for generating encoders, decoders and their proofs and 2) a Coq library
containing the definitions and properties of basic types (including bits, bytes
and bit strings) and a collection of automation tactics (Ltac definitions) for
proof synthesis. The generation algorithms amount to 5,193 lines of C++ code
(excluding comments and empty lines, and likewise for the following statistics).
The Coq library amounts to 1,036 lines of Coq code (written in Coq 8.11.0 and
counted using coqwc). We also make use of the monad definitions and some basic
data formats in CompCert’s library [13]. The whole framework took six person
months to develop.

Table 2. The lines of generated Coq code

Component Lines of definitions Lines of proofs

Relational specification 1762 0

AST, encoder and decoder 5677 0

Verification conditions 37011 4402

Consistency proof 295 30841

Soundness proof 60 7193

Total 44805 42436

To evaluate the effectiveness of our framework, we have written a CSLED
specification for a total of 186 representative X86-32 instructions which cover the
operands with the most complicated formats (e.g., addressing modes) and are
sufficient for supporting the assembling process in CompCert’s X86-32 backend.
The specification is very succinct, containing only 260 lines of CSLED code.
From this specification, our framework automatically generates around 87k lines
of Coq code which form the verified encoder and decoder. The lines of Coq
definitions and proofs for individual components are shown in Table 2. Note that
the verification conditions account for a major part of the definitions because
we need to consider all the possible combinations of structural conditions for
the proofs of consistency and soundness. The Coq proofs related to verification
conditions are for identifying the concrete forms of structural conditions. As
expected, the consistency proof is the most complicated one among all the proofs.

To evaluate the performance of the generated encoder and decoder, we ran-
domly generate four sets of instructions, encode them into bit strings, and decode
the bit strings back. The executable encoder and decoder are obtained by extract-
ing Coq definitions into OCaml programs and compiling with OCaml 4.08.0.
We repeat this experiment for 30 times on a machine with Intel(R) i7-4980HQ
CPU@2.8 GHz and 16 GB memory. For comparison, we conduct the same experi-
ments on the hand-written encoder and decoder in the X86-32 back-end of Com-
pCertELF [20]. The results are shown in Table 3. For each test case, it shows the
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Table 3. Performance evaluation

No. of Instr. CSLED Hand-Written

Enc. Time (s) Dec. Time (s) Enc. Time (s) Dec. Time (s)

Med Var.(%) Med Var.(%) Med Var.(%) Med Var.(%)

6000 0.32 0.00 0.56 0.00 0.01 0.00 0.01 0.00

12000 0.64 0.00 1.12 0.00 0.01 0.00 0.02 0.00

18000 0.98 0.03 1.70 0.15 0.02 0.00 0.03 0.01

60000 3.11 0.16 5.43 0.01 0.08 0.00 0.09 0.01

numbers of randomly generated instructions and the median time (in seconds)
and the variance (in percentage) for encoding and decoding. We observe that
the automatically generated encoder and decoder perform reasonably well, but
significantly slower than the hand-written ones. This is because 1) the hand-
written encoder and decoder in CompCertELF currently supports significantly
less instructions (about 20) than the CLSED ones due to the complexity in man-
ual implementation, and 2) the hand-written ones are manually optimized while
the auto-generated ones are not optimized at all. We plan to solve the above
issues by optimizing our generation algorithms in the future.

8 Related Work and Conclusion

We compare our framework with existing work on specification languages of
instruction sets, verified parsing and pretty printing, and formalized ISAs.

There exists a lot of work on developing languages for specifying ISAs. Their
major deficiency is the lack of formal guarantees. For example, the nML specifi-
cation language employs attribute grammars to describe instruction sets [7]. For
another example, EEL uses machine independent primitives to provide syntac-
tic and semantic information of instructions [12]. The most relevant work in this
category is the SLED language which our CSLED is based upon [15]. The pat-
terns in SLED can only describe constraints on tokens and fields. By contrast,
CSLED contains class patterns for accurately characterizing the structures of
components. This extension enables CSLED to capture the bijection between
the abstract and concrete forms of instructions.

Instruction decoding and encoding are special cases of parsing and pretty
printing, respectively. Although there was early work on verifying that pars-
ing and pretty-printing are inverses of each other by formulating them as bijec-
tions [1,10], this requirement was perceived as too strong [16]. Most of the recent
work on verified parsing and pretty printing are dedicated to verify parser gener-
ators based on context-free grammars, regular expressions, parser combinators,
or general data formats [3,11,17]. Some of them are also specialized work on
verifying the encoder-decoder pairs [6,14,19,21]. They mostly deal with gen-
eral and ambiguous grammars or specifications where bijection is difficult (if not
impossible) to establish. By contrast, we intentionally restrict the expressiveness
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of CSLED specifications to make proving consistency possible. Specifically, the
syntax presented in Fig. 4 implies that CSLED specifications can only match
sequences of tokens with finite lengths and shapes, making it strictly weaker
than regular expressions, yet sufficiently strong for precisely capture the com-
mon instruction formats.

There is also abundant work on the development of formal ISA specifications
(e.g., [2,4,8,9]). However, almost all of them focus on the problem of rigorously
defining the semantics of ISAs (such as their sequential behaviors, concurrency
models and interrupt behaviors). Although formalized encoders or decoders (or
both) are sometimes generated (e.g., in Coq or Isabelle/HOL), there is no formal
verification of the soundness or consistency of instruction encoding and decoding
which only concerns the syntax of instructions.

In this paper, we have presented a framework for specifying instruction for-
mats and for automatically generating and verifying encoders and decoders based
on such specifications. The verified encoders and decoders are consistent with
each other (being inverses of each other) and sound (conforming to high-level
specifications). Consistency is provable in our framework because our specifica-
tions capture the bijections inherently embedded in instruction formats. In the
future, we would like to apply this framework to a major part of X86-32 and X86-
64 instructions and also to other ISAs, thereby to demonstrate the versatility
and scalability of our framework.
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Abstract. Several automatic verification tools have been recently devel-
oped to verify subsets of LLVM’s optimizations. However, none of these
tools has robust support to verify memory optimizations.

In this paper, we present the first SMT encoding of LLVM’s mem-
ory model that 1) is sufficiently precise to validate all of LLVM’s intra-
procedural memory optimizations, and 2) enables bounded translation
validation of programs with up to hundreds of thousands of lines of code.
We implemented our new encoding in Alive2, a bounded translation val-
idation tool, and used it to uncover 21 new bugs in LLVM memory opti-
mizations, 10 of which have been already fixed. We also found several
inconsistencies in LLVM IR’s official specification document (LangRef)
and fixed LLVM’s code and the document so they are in agreement.

1 Introduction

Ensuring that LLVM is correct is crucial for the safety and reliability of the
software ecosystem. There has been significant work towards this goal including,
e.g., formally specifying the semantics of the LLVM IR (intermediate represen-
tation). This entails describing precisely what each instruction does and how
it handles special cases such as integer overflows, division by zero, or deref-
erencing out-of-bounds pointers [8,24,26,29,47]. There has also been work on
automatic verification of classes of optimizations, such as peephole optimiza-
tions [25,31], semi-automated proofs [48], translation validation [20,35,42,44],
and fuzzing [23,46]. All this work uncovered several hundred bugs in LLVM.

While there has been great success in improving correctness of scalar opti-
mizations, current verification tools only support basic memory optimizations, if
any. Since memory operations can take a significant fraction of a program’s run
time, memory optimizations are very important for performance. The implemen-
tation of these optimizations and related pointer analyses tends to be complex,
which further justifies the investment in verifying them.

Verifying programs with memory operations is very challenging and it is hard
to scale automatic verification tools that handle these. The main issue lies with
pointer aliasing: which objects does a given memory operation access? Without
any prior information, a verifier must consider that each operation may load or
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store from any live object (global variables and stack/heap allocations). This
creates a big case split for the underlying constraint solver to (attempt to) solve.

Since automatic verification of the source code of memory optimizations is
out of reach at the moment, we focus on bounded translation validation [30,
40] (BTV) instead. (Bounded) translation validation consists in verifying that
an optimization was correct for a particular input program (up to a bounded
unrolling of loops) rather than verifying its correctness for all input programs.

In this paper, we present the first SMT encoding of LLVM’s memory
model [24] that is precise enough to validate all of LLVM’s intraprocedural mem-
ory optimizations. The design of the encoding was guided by practical insights of
the common aliasing cases in BTV to achieve better performance. For example,
we observed that in most cases we can cheaply infer whether a pointer aliases
with a locally-allocated or a global object (but not both). Therefore, our encod-
ing case-splits itself on this property rather than leaving that to the SMT solver,
as we can cheaply resolve the case split for over 95% of the cases.

The second contribution of this paper is a new semantics for heap allocation
for the verification of optimizations for real-world C/C++ programs. Although
LLVM’s memory model has a reasonable semantics for heap allocations [24], we
realized it was not suitable for verifying optimizations. In some programming
styles, the result of functions such as malloc is not checked against NULL and
the resulting pointer is dereferenced right away. Since malloc can return NULL
in some executions, we could end up proving that some undesirable optimiza-
tions were correct since the program triggers undefined behavior in at least one
execution. We propose a new semantics for heap allocations in this paper that
is better suited for the verification of optimizations.

The third contribution is the identification of approximations to the SMT
encoding such that it is still sufficiently precise to verify (and find bugs) in
LLVM’s memory optimizations. This is possible since for translation validation
we only need to be as precise as LLVM’s static analyses (e.g., in the encoding
of aliasing rules), and therefore we do not need to consider extremely precise
analyses nor arbitrary transformations. Compilers have limited reasoning power
by construction in order to keep compilation time reasonable.

We implemented our new SMT encoding of LLVM’s memory model in
Alive2 [30], a bounded translation validation tool for LLVM. We used Alive2
to find and report 21 previously unknown bugs in LLVM memory optimizations,
10 of which have already been fixed.

To summarize, the contributions of this paper are as follows.

1. The first SMT encoding of LLVM’s memory model that is precise enough to
verify all of LLVM’s intraprocedural memory optimizations.

2. A new semantics for heap allocations for the verification of optimizations of
real-world C/C++ programs (Sect. 5.1).

3. A set of approximations to the SMT encoding to further improve the perfor-
mance of verification without introducing false positives or false negatives in
practice (Sect. 9).
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4. Thorough evaluation of LLVM’s memory model against LLVM’s implemen-
tation, which uncovered deviations from the model (Sect. 10.3).

5. Identification of 21 previously unknown bugs in LLVM. We present a few
examples in Sect. 10.1.

2 Overview

Consider the functions below in C:1 a source (original) function on the left and
a target (optimized) function on the right. According to the semantics of high-
level languages, and also of LLVM IR, a pointer received as argument or a callee
cannot guess the address of a memory region allocated within a function. That
is, pointer q is not aliased with p, r, nor touched by g(p+1). Although the caller
of f may guess the address of q in practice, that behavior is excluded by the
language semantics because p’s object (provenance) cannot be a fresh one like q.
If p happens to alias q, accessing such pointer triggers undefined behavior (UB).

1 int f(int *p) {
2 int *q = malloc (4);
3 *q = 42;
4 int *r = g(p+1);
5 *r = 37;
6 return *q;
7 }

1′ int f(int *p) {
2′ // q removed
3′

4′ int *r = g(p+1);
5′ *r = 37;
6′ return 42;
7′ }

The provenance rules allow LLVM to forward the stored value in line 3 to line
6, and therefore line 6′ simply returns 42. As the value stored to *q is not used
anymore and pointer q does not escape, LLVM also removes the heap allocation.

Next we show how to verify this example. Note that we do not require the two
programs to be aligned; the example is aligned to make it easier to understand.

2.1 Verifying the Example Transformation

We start by defining two auxiliary functions that encode the effect of memory
operations on the program state. Let state S = (m,ub) be a pair, where m is a
memory and ub a boolean that tracks whether the program has already executed
UB or not. Let p be the accessed pointer, and v the stored value. The definition
of functions load and store is as follows:

load p S ::= ( load(p, S.m) , (S.m, S.ub ∨ ¬ deref(p, sizeof(∗p), S.m) ))

store p v S ::= ( store(p, v, S.m) , S.ub ∨ ¬ deref(p, sizeof(∗p), S.m) )

load returns a pair with the loaded value and the updated state, where ub
is further constrained to ensure that pointer p is dereferenceable for at least the
size of the loaded type. Similarly, store returns the updated state. The gray
boxes ( · · · ) encode SMT expressions; we describe these in the next section.
1 We use the syntax of C for many of the examples in this paper to make them easier

to read, even though we consider the semantics of LLVM IR.
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Table 1. States and axioms after executing each of the lines of f.

# Inputs: p,m0, ub0 # Inputs: p′,m′
0, ub

′
0

2 S1 := (m0, ub0) A1 := q is fresh 2′ -

3 S2 := store q 42 S1 3′ -

4
S3 := (mg, S2.ub ∨ ubg)

A2 := r is not aliased with q ∧ mg agrees with S2.m on q
4′ S′

1 := (m′
g, ub

′
0 ∨ ub′

g)

5 S4 := store r 37 S3 5′ S′
2 := store r′ 37 S′

1

6 O := load q S4 6′ O′ := (42, S′
2)

1. Encoding the output states. Table 1 shows the state after executing each of
the programs’ lines. p, m0, and ub0 are SMT variables for the input pointer, and
function f caller’s memory and UB flag, respectively. The target’s corresponding
variables are primed. Meta variables are upper-cased and SMT variables are
lower-cased.

On line 2, q is assigned a pointer to a new object (encoded in axiom A1). On
line 3, ‘*q = 42’ updates the state using store.

On line 4, the return value, output memory, and UB of g(p+1) are repre-
sented with fresh variables r, mg, and ubg, respectively. Axiom A2 encodes the
provenance rules: the return value cannot alias with locally non-escaped point-
ers (q) and only the remaining objects are modified. Line 4′ does not need these
axioms because there are no locally-allocated objects in the target function.

Finally, the outputs O and O′ are a pair of return value and state.

2. Relating the source and target’s states. To prove correctness of a transforma-
tion, we must first establish refinement between the input states of the source/-
target functions. Refinement (�) is used rather than equality because it is allowed
for the source’s caller to give less defined inputs than the target’s.

Ain := p � p′ ∧ m0 � m′
0 ∧ (ub′

0 =⇒ ub0)

The inputs and outputs of function calls are also related using refinement.
For any pair of calls in the source and target functions, if the target’s inputs
refine those of the source, the target’s output also refines the source’s output.
The example only has one function call pair:

Acall :=
(

S2.m � m′
0 ∧ p + 1 � p′ + 1 =⇒ mg � m′

g ∧ r � r′ ∧ (ub′
g =⇒ ubg)

)

We can now state the correctness theorem for the example transformation.
For any input, if the axioms hold, the output of the target must refine that of
the source for some internal nondeterminism in the source (e.g., the address of
pointer q). Output is refined iff (i) the source triggers UB, or (ii) the target
triggers no UB, and the target’s return value and memory refine those of the
source.
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∀p, p′, m0, m
′
0, ub0, ub′

0, mg, m
′
g, ubg, ub′

g . ∃q . (A1 ∧ A2 ∧ Ain ∧ Acall) =⇒ O � O′

2.2 Efficiently Encoding LLVM’s Memory Model and Refinement

We now present our key ideas for efficiently encoding LLVM’s memory model
and refinement (the gray boxes) in SMT, which is one of our main contributions.

1. Pointers. We represent a pointer as a pair (bid, o) of a block id (i.e., its
provenance) and an offset within, so that we can easily detect out-of-bound
accesses: accessing (bid, o) in memory m triggers UB unless 0 ≤ o < m[bid].size,
from which deref((bid, o), sz,m) naturally follows.

2. Bounding the number of blocks. Our first observation is that we can safely
bound the number of memory blocks for bounded translation validation since
loops are unrolled for a fixed number of iterations. As a result, we can use a
(fixed-length) bit-vector to encode block ids.

For the example source function, four blocks are sufficient: three for pointers
p, q, r as they may all point to different blocks, and an extra to represent all the
other blocks that are not syntactically present but are accessible by function g.

For the sake of simplifying the example, we ignore that p, q, r may be null.
Our model does not make such assumption; we explain later how null is handled.

3. Aliasing rules. Several of the aliasing rules are encoded for free as we can
distinguish most blocks by construction. First, we use the most significant bit of
the block ids to distinguish local (1) from non-local (0) blocks. Second, we assign
constant ids whenever possible (e.g., global variables and stack allocations).

For the example source function, (without loss of generality) we set the block
ids of q, p and the extra block to 100(2), 000(2), and 011(2) (in binary format),
respectively. However, we cannot fix the block id of r and instead give the con-
straint that it should be either 000(2) or 001(2) since r may alias with p but not
with q. This establishes the alias constraints in A1 and A2 for free.

4. Memory accesses. In order to leverage the fact that each pointer may range
over a small number of blocks as seen above, we use one SMT array per block
(from an offset to a byte) instead of using a single global array (from a pointer
to a byte). For the latter, it becomes harder to exploit non-aliasing guarantees
since all stores to different blocks are grouped together.

For the example source function, m0 consists of four arrays m
(100)
0 , m

(000)
0 ,

m
(001)
0 , m

(011)
0 for the four blocks. Then since q’s block id is 100(2), store q 42 S1

at line 3 only updates the array m
(100)
0 , leaving the others unchanged. Similarly,

store r 2 S3 at line 5 only updates m
(000)
0 and m

(001)
0 using the SMT if-then-else

expression on r’s block id. Finally, load q S4 at line 6 reads from the updated
array at 100(2), thereby easily realizing that the read value is 42.
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5. Refinement. The value/memory refinement � is defined based on a mapping
between source and target blocks, which we efficiently encode leveraging the
alignment information between source and target as much as possible (Sect. 7).

3 LLVM’s Memory Model

In this section, we give a brief introduction to LLVM’s memory model [24]. In
this paper we only consider logical pointers (i.e., integer-to-pointer casts are not
supported) and a single address space.

Memory Block. A memory block is the unit of memory allocation: each stack or
global variable has a distinct block, and heap allocation functions like malloc
create a fresh block each time they are called. Each block is uniquely identified
with a non-negative integer (bid), and has associated properties, including size,
alignment, whether it can be written to, whether it is alive, allocation type (heap,
stack, global), physical address, and value.

Pointer. A pointer is defined as a triple (bid, off, attrs), where off is an offset
within the block bid, and attrs is a set of attributes that constrain dereference-
ability and which operations are allowed.

Pointer arithmetic operations (gep) only change the offset, with bid and attrs
being carried over. Unlike C, an offset is allowed to go out-of-bounds (OOB). Such
pointer, however, cannot be dereferenced like in C (triggers undefined behavior—
UB), but can be used for pointer comparisons for example.

LLVM supports several pointer attributes. For example, a readonly pointer
p cannot be used to store data. However, it is possible to use a non-readonly
pointer q to store data to the same location as p (provided the block is writable).
A nocapture pointer cannot escape from a function. For example, when a func-
tion returns, no global variable may have a nocapture pointer stored (otherwise
it is UB).

LLVM has three constant pointers. The null pointer is defined as (0, 0, ∅).
Block 0 is defined as zero sized and not alive. The undef2 pointer is defined
as (β, δ, ∅), with β, δ being fresh variables for each observation of the pointer.
There is also a poison3 pointer.

Instructions. We consider the following LLVM memory-related instructions:

– Memory access: load, store
– Memory allocation: malloc, calloc, realloc, alloca (stack allocation)
– Lifetime: start_lifetime (for stack blocks), free (stack/heap deallocation)

2 In LLVM, undef values are arbitrary values of a given type with the additional
property that they can yield a different value each time they are observed. undef
values can be replaced with any value of the same type, except poison values.

3 A poison value taints whole expression trees (e.g., poison + 1 = poison), and
branching on it is UB. Similarly, dereferencing a poison pointer is UB.
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– Pointer-related: gep (pointer arithmetic), icmp (pointer comparison)
– Library functions: memcpy, memset, memcmp, strlen
– Others: ptrtoint (pointer-to-integer cast), call (function call).

Unsupported memory instructions are: integer-to-pointer casts, and atomic
and volatile memory accesses.

4 Encoding Memory Blocks and Pointers in SMT

We describe our new encoding of LLVM’s memory model in SMT over the next
few sections. We use the theories of UFs (uninterpreted functions), BVs (bit-
vectors), and arrays with lambdas [7], with first order quantification. Moreover,
we consider that the scope of verification is a single function without loops (or
where loops have been previously unrolled).

4.1 Memory Blocks

Each memory block is assigned a distinct identifier (a bit-vector number). We
further split memory blocks into local and non-local. Local blocks are all those
that are allocated within the function under consideration, either on the stack
or the heap. Non-local blocks are the remaining ones, including global variables,
heap/stack allocations in callers and heap allocations in callees (stack allocations
in callees are not observable, since they are deallocated when the called function
returns, hence there is no need to consider them).

We use the most significant bit (MSB) to encode whether a block is local (1)
or non-local (0). This representation allows the null block to have bid = 0 and
be non-local. We refer to the short block id, or ˜bid, to refer to bid without the
MSB. This is used in cases where it has already been established whether the
block is local or not. Example with 4-bit block ids:

int g; // bid(g) = 0001
void f(int *p) { // bid(p) = 0xyz (with xyz = arbitrary)

int a[2]; // bid(a) = 1000
int *q = malloc(4); // bid(q) = 1001

}

The separation of local and non-local block ids is an efficient way to encode
the constraint that pointers of these groups cannot alias with each other. In the
example above, argument p cannot alias with either a or q.

As we only consider functions without loops, block ids can be statically
assigned for each allocation site.

4.2 Pointers

A pointer ptr = (bid, off, attrs) is encoded as a single bit-vector consisting in
the concatenation of the three elements. The offset is interpreted as a signed
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number (which is why blocks cannot be larger than half of the address space).
Each attribute (such as readonly) is encoded with a bit. Example with 2-bit
block ids and offsets, and a single attribute (we use . to visually separate the
elements):

void f(char readonly *p, char *q) { // p = 0x.ab.1, q = 0y.cd.0
char *r = p + 2; // r = 0x.(ab+2).1
char *s = q + 3; // s = 0y.(cd+3).0
char *t = malloc(4); // t = 10.00.0

}

Let ˜off be a truncated offset where the least significant bits corresponding to
the greatest common divisor of the alignment and sizes of all memory operations
are removed. For example, if all operations are 4-byte aligned and they access
either 4- or 8-byte values, then ˜off has less 2 bits than off (as these are guaranteed
to be always zero when accessing the memory).

4.3 Block Properties

Each block has seven associated properties: size, alignment, read-only, liveness,
allocation type (heap, stack, global), physical address, and value. Block proper-
ties are looked up and updated by memory operations. For example, when doing
a store, we need to check if the access is within the bounds of the block.

Except for liveness and value, properties are fixed at allocation time. Liveness
is encoded with a bit-vector (one bit per block), and value with arrays (indexed
on ˜off). We use a multi-memory encoding, where we have one array per bid.

The encoding of fixed properties differs for local and non-local blocks. For
non-local blocks, we use a UF symbol per property, taking ˜bid as argument.
For local blocks, we cannot use UFs because for the refinement check some of
these would have to be quantified (c.f. Sect. 7) and most, if not all, SMT solvers
do not support quantification of UF symbols. Therefore, we encode each of the
remaining properties of local blocks as an if-then-else (ITE) expression, which is
tailored for each use (e.g., each time an operation needs to lookup a local block’s
size, we build an ITE expression for the given ˜bid).

Using ITE expressions to encode properties is less concise than using UFs.
However, it is not a disaster for two reasons. Firstly, we only need to consider
the local blocks that have been allocated beforehand, since the program cannot
access blocks allocated afterward. Secondly, pointers are usually not fully arbi-
trary. Oftentimes we know statically which type of block they refer to, and even
what is the block id, given that pointer arithmetic operations do not change the
block id. Therefore, the ITE expressions are usually small in practice. Example
with 4-bit block ids and offsets of a source program:

int g; // g = 0001.0000, size_src(001) = 4
void f() {

char p[2]; // p = 1000.0000
char q[3]; // q = 1001.0000
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char *r = ... p or q or g ...
r[2] = 0;
char t[1]; // t = 1010.0000

}

The store in this program is only well defined if the size of block pointed by
r is greater than 2. This is encoded in SMT as follows:

ite(islocal(r), ite(˜bid(r) = 0, 2, 3), sizesrc(˜bid(r))) > 2

Function islocal(p) is encoded with the SMT extract expression to fetch the
MSB of the pointer. Similarly, ˜bid(p) extracts the relevant bits from a pointer.
The expression for local blocks only needs to consider local blocks 0 and 1, since
block 2 (t) is only allocated afterward. This allows a simple single pass through
the code to generate optimized ITE expressions.

Value. Value is defined as an array from short offset to byte (described later
in Sect. 6.1). For non-local blocks, only those that are constant are initialized
with the respective value. The remaining blocks are allowed to take almost any
value. The exception is for pointers: non-local blocks cannot initially have local
pointers stored, since the calling environment cannot fabricate local pointers.

Local blocks are initialized with poison values using a constant array (i.e.,
an array that yields the same value for all indexes).

4.4 Physical Addresses

If a program observes addresses (through, e.g., pointer-to-integer casting), we
need additional constraints to ensure that addresses of blocks that overlap in
time are disjoint. Since we are doing translation validation, we have two programs
with potentially different sets of locally allocated blocks. Therefore, we need to
ensure that non-local blocks’ addresses are disjoint from those of local blocks of
both programs. This makes the disjointness constraints quite complex.

As an optimization, we split the address space in two: local blocks have
MSB = 1 and non-locals have MSB = 0. Since the encoding of address disjointness
is quadratic in the worst case (cross-product of blocks), halving the number of
blocks is significant. This optimization, however, is an under-approximation of
the program’s behavior (Sect. 9). After investigating LLVM’s optimizations, we
believe it is highly unlikely this approximation will cause false negatives.

If a program does not observe any pointer’s physical address, neither the
block’s physical address property nor the disjointness axioms are instantiated.
However, when dereferencing a pointer, we need to check if the physical address
is sufficiently aligned. When physical addresses are not created, we resort to
checking alignment of both of the pointer’s block and offset. Since in this case
physical addresses are not observed (and therefore not constrained by the pro-
gram using, e.g., pointer comparisons), a block’s physical address can take any
value, and therefore blocks and offsets must be both sufficiently aligned to ensure
that physical pointers are aligned in all program executions. This argument jus-
tifies why we can soundly discard physical addresses.



SMT Encoding of LLVM’s Memory Model for Bounded TV 761

Table 2. Comparison of two semantics for pointer comparison.

Integer comparison Non-deterministic

Fold p = q to false if p.bid �= q.bid No Yes

Fold p+ i = q+ i to p = q Yes No

Fold (int)p = (int)q to p = q Yes No

Fold p < q ∧ p �= q to p < q Yes No

Fold p < q ∧ q �= null to p < q Yes Potentially

Run-time aliasing checks Yes Correct, but not useful

Analysis of pointers cast from integers Harder Easy

4.5 Pointer Comparison

Given two pointers p and q, if a program learns that q is placed right after
p in memory, the program can potentially change the contents of q without
the compiler realizing it. Detecting the existence of such code is impossible in
general, hence restricting the ways a program can learn the layout of objects in
memory is important to make pointer analyses fast yet precise.

A way the memory layout can leak is through pointer comparison. For exam-
ple, what should p < q return if these point to different memory blocks? If it is a
well-defined operation (i.e., simply compares their integer values), it leaks mem-
ory layout information. An alternative is to return a non-deterministic value to
prevent layout leaks, the formal semantics of which is defined at [24].

We found that there are pros and cons of both semantics for the comparison of
pointers of different blocks, and that neither of them covers all optimizations that
LLVM performs. Table 2 summarizes the effects on each of the optimizations.

We decided to implement the integer comparison semantics, as LLVM per-
forms all the optimizations above and its alias analyses (AA) mostly give up
when they encounter an integer-to-pointer cast. In summary, we have to remove
the first optimization from LLVM to make it sound. Additionally, we make it
harder to improve LLVM’s AA algorithms w.r.t. to pointers cast from integers.

4.6 Bounding the Maximum Number of Blocks

Since we assume that programs do not have loops, we can statically bound the
maximum number of both local and non-local blocks a program may observe.

The maximum number of local blocks in the source and target programs,
respectively, Nsrc

local and N tgt
local, is computed by counting the number of heap and

stack allocation instructions. Note that this is an upper-bound because not all
allocation sites may be reachable in practice.

For non-local blocks, we cannot see their definitions as with local blocks,
except for global variables. Nevertheless, we can still bound the maximum num-
ber of observed blocks. It is sufficient to count the number of instructions that
may return non-local pointers, such as function calls and pointer loads. In addi-
tion, we consider a null block when needed (if the null pointer may be observed).
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To encode the behavior of source and target programs, we need Nsrc
nonlocal +

N tgt
nonlocal non-local blocks in the worst case, as all referenced pointers may be dis-

tinct. However, correct transformations will not have the target program observe
more blocks than the source. If the target observes a pointer to a non-local block
that was not observed in the source, we can set that pointer to poison because
its value is not restricted by the source. Therefore, Nsrc

nonlocal non-local blocks
are sufficient to allow the target to exhibit an incorrect behavior.

The bit-width of ˜bid is: w
˜bid

= �log2(max(Nsrc
nonlocal,max(Nsrc

local, N
tgt
local)))�.

When only local or non-local pointers are used, wbid = w
˜bid

, as we know statically
if the pointer is local or not. Otherwise, wbid = w

˜bid
+ 1.

5 Memory Allocation

In LLVM, memory blocks can be allocated on the stack (alloca), in the heap
(e.g., malloc, calloc, etc.), or as global variables. It is surprisingly non-trivial to
find a semantics for memory allocations that allows all of LLVM’s optimizations,
and rejects undesired transformations. For example, we have to support alloca-
tion removal and splitting, introduce new stack allocations and new constant
global variables, etc. We explore multiple semantics and show their merits and
shortcomings in the context of proving correctness of program transformations.

5.1 Heap Allocation

Heap allocation is done through functions such as malloc, calloc, C++’s new
operator, etc. We describe semantics for malloc; remaining functions can be
described in terms of it.

First of all, it is important to note that there are two common idioms used
in practice by C programmers when doing memory allocation:

int *p = malloc(4);
*p = 0;

int *p = malloc(4);
if (p) { *p = 0; }

In some programs, like the example on the left, malloc is assumed to never
return null, say non-null assumption. This is mainly because the program does
not consume too much memory and it is expected that the computer has enough
memory/swap space. In other programs like the one on the right, malloc is
expected to sometimes return null, say may-null assumption. Therefore, the
program performs null-ness checks.

Since both programming styles are prevalent, we would like optimizations to
be correct for both. This is non-trivial, as the two assumptions are conflicting:
with the non-null assumption, it is sound to eliminate null checks, but not with
the may-null assumption. We now explore several possible semantics to find one
that works for both programming styles.
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A. Malloc always succeeds. Based on the non-null assumption, in this seman-
tics we only consider executions where there is enough space for all allocations
to succeed. Regardless of whether the target uses more or less memory than
the source, all calls to malloc yield non-null pointers. Therefore, for example,
deleting unused malloc calls is allowed.

However, removing null checks of malloc is also allowed in this semantics.
For example, optimizing the right example above into the left one is sound. This
transformation, however, is obviously undesirable.

B. Malloc only succeeds if there is enough free space. To solve the problem just
described, based on the may-null assumption, we can simulate the behavior of
dynamic memory allocation and define malloc to return a pointer to a newly
created block if there is an empty space in memory, and null otherwise. This
semantics prevents the removal of null checks of malloc as it may return null.

However, this semantics does not explain removal of unused allocations. It
aligns both source and target programs’ allocations such that any change in the
allocation sequence disrupts the program alignment and thus makes verification
fail. For example, the following transformation removing unused malloc instruc-
tions and replacing comparisons of their output with null is not supported:

int *x = malloc(4);
if (x != nullptr) { ... } ⇒ // remove x (unused)

if (true) { ... }

In case there were 0 bytes left in memory, x would be null, but since LLVM
assumes that the program cannot observe the state of the allocator it folds
the comparison x != nullptr to true after eliminating the allocation. This
optimization would be flagged as incorrect in this semantics.

LLVM assumes very little about the run-time behavior of memory allocators.
This is to support, for instance, garbage collectors, where an allocation may fail
but if repeated it may succeed because memory was reclaimed in between. This
explains why LLVM folds comparisons with null of unused memory blocks, and
also contradicts the linear view of allocations of this semantics.

C. Malloc non-deterministically returns null. This semantics abstracts
the behavior of the memory allocator by (1) allowing malloc to non-
deterministically return null even if there is available space, and (2) only consid-
ering executions where there is enough space for all allocations to succeed. This
semantics prevents the removal of null checks of malloc, which fixes the short-
comings of semantics A, and also allows the removal of unused allocations, which
fixes those of semantics B. However, this semantics is too weak and therefore
allows other undesirable transformations, like the following:

p = malloc(4);
*p = 0; ⇒ exit();

For the sake of proving refinement (Sect. 7), we need just one trace triggering
UB (i.e., one particular realization of the non-deterministic choices) for a given
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Pointer representation Byte offset1 p?

0 Integral valuePoison bits Padding

Pointer byte:

Non-pointer byte:

MSB LSB

Fig. 1. Bit-wise representation of a byte. A pointer byte is poison if ‘p?’ is zero. A
non-pointer byte tracks poison bit-wise.

input to be able to transform the source program into anything for that input.
Informally speaking, refinement always picks the worst-case execution for each
input. Since the source program executes UB when p is null, it is correct to
transform the source into any program although that is obviously undesirable.

This semantics is too weak in practice since many programs are written
without null checks, either assuming the program will not run out of memory,
or assuming the program will terminate if it runs out memory. It is not reasonable
in practice to allow compilers to break all such programs.

Our Solution. As we have seen, there is no single semantics that both allows all
desired transformations and rejects undesired ones. While semantics B prevents
desired optimizations like allocation removal, semantics A and C allow undesired
optimizations, but in a complementary way. For example, removing null checks of
malloc is allowed in A but not in C. On the other hand, transforming an access
of a malloc-allocated block without a null check beforehand into arbitrary code
is allowed in C but not in A.

Therefore, we obtain a good semantics by requiring both A and C: an opti-
mization is correct if it passes the refinement criteria with each of the two
semantics. Intuitively, this definition requires the compiler to support the two
considered coding styles: semantics A supports the non-null assumption, while
semantics C the may-null assumption.

5.2 Stack Allocation

The semantics of alloca, the stack-allocation instruction, is slightly different
from that of malloc. LLVM assumes that stack allocations always succeed, since
the program will likely crash if there is a stack overflow. That is, alloca never
returns a null pointer.

LLVM performs more optimizations on stack allocations than on heap ones.
For example, LLVM can split an allocation into multiple smaller ones or increase
the alignment. These transformations can increase memory consumption.

6 Encoding Loads and Stores in SMT

We encode the value of memory blocks with several arrays (one per bid): from
short offset to byte. We next give the definition of byte and the encoding of
memory accessing instructions in SMT.
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6.1 Byte

There are two types of bytes: pointer bytes and non-pointer bytes, cf. Fig. 1.
A pointer byte has the most significant bit (MSB) set to one. The following

bit states whether the byte is poison or not. Next is the pointer representation
as described in Sect. 4.2 (bid, off, attrs).

Pointers are often longer than one byte, so when storing a pointer to memory
we write multiple consecutive bytes. Each of these bytes records the same pointer,
but with a different byte offset (the last bits of the byte) to distinguish between
the partial bytes of the pointer.

For non-pointer bytes, we track whether each of the bits is poison or not.
This is not required for pointers, since LLVM does not allow pointer values to
be manipulated bit-wise. Non-pointer values can be manipulated bit-wise (e.g.,
using vectors with element types smaller than 8 bits). Each bit of the integral
value is only significant if the corresponding poison bit is zero.

6.2 Load and Store Instructions

Load and store instructions are trivially encoded using SMT arrays. These arrays
store bytes as described in the previous section. We next describe how LLVM
values are encoded to and decoded from our byte representation.

We define two functions, ty⇓(v) and ty⇑(b), which convert a value v into a
byte array and a byte array b back to value, respectively. We show below ty⇓(v)
when v �= poison. isz stands for the integer type with bit-width sz. If sz is not
a multiple of 8 bits, v is zero-extended first. When v is poison, all poison bits
are set to one. BitVec(n, b) stands for number n with bit-width b. Pointer’s byte
offset is 3 bits because we assume 64-bit pointers.

isz⇓(v) or float⇓(v) = λi. 0++08 ++bitrepr(v)[8×i . . . 8×(i + 1) − 1]++padding
ty∗⇓(v) = λi. 12 ++bitrepr(v)++BitVec(i, 3)

isz⇑(b) and float⇑(b) return poison if any bit is poison, or if any of the
bytes is a pointer. Otherwise, these functions return the concatenation of the
integral values of the bytes.

ty∗⇑(b) returns poison if any of the bytes is poison or not a pointer, there
is more than one distinct pointer value in b, or one of the bytes has an incorrect
byte offset (they have to be consecutive, from zero to byte size minus one).
An exception is reading a non-pointer zero byte, which is interpreted as a null
pointer byte. This allows initialization of, e.g., arrays with null pointers with
memset (which is an idiom commonly used in LLVM IR).

6.3 Multi-array Memory

As already described, we use a multi-array encoding for memory, with one array
per block id, each indexed on ˜off. A simpler encoding would have used a single
array indexed on ptr. The multi-array encoding is beneficial when we can cheaply
compute small aliasing sets for each memory access. In that case, we reduce the
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Fig. 2. Type definitions and variable naming conventions.

Fig. 3. Refinement of value and final state.

case-splitting work on bid that the SMT solver needs to do, and it enables further
formula simplifications like store forwarding.

The multi-array encoding may, however, end up in a larger encoding overall if
several of the accesses may alias with too many blocks. For load operations that
alias multiple blocks the resulting expression is a linear combination of the loads
of each block, e.g., ite(bid = 0, load(m0, ˜off), ite(bid = 1, load(m1, ˜off), . . .)).
In this case, it would be more compact to use the single-array encoding. Note
that even if we do not know the specific block id, we often know whether a
pointer refers to a local or non-local block (e.g., pointers received as argument
have unknown block id, but are known to be non-local), and hence splitting the
memory in two is usually a good idea (c.f. Sect. 10).

We perform several optimizations that are enabled with this multi-array
encoding. We do partial-order reduction (POR) to shrink the potential alias-
ing of pointers with unknown block id. For example, consider a function with
two pointer arguments (x and y) and one global variable. We assign bid = 1 to
the global variable. Then, we estipulate that x can only alias blocks with bid ≤ 2,
which is sufficient to access the global variable or another unknown block. Argu-
ment y is also constrained to only alias blocks with bid ≤ 3, allowing it to alias
with the global variable, the same block as x, or a different block. The same is
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Fig. 4. Refinement of memory and pointers.

done for function calls that return pointers. This POR technique greatly reduces
the potential aliasing of unknown pointers without losing precision.

7 Verifying Correctness of Optimizations

To verify correctness of LLVM optimizations, we establish a refinement relation
between source (or original) and target (or optimized) functions. Equivalence is
not used due to undefined behavior and nondeterminism. Compilers are allowed
to reduce the set of possible behaviors from the source.

Given functions fsrc and ftgt, set of input and output variables Isrc/Itgt and
O (which include, e.g., memory and the return value), and set of non-determinism
variables Nsrc/Ntgt, fsrc is refined by ftgt iff:

∀Isrc, Itgt, Otgt . valid(Isrc, Itgt) ∧ Isrc � Itgt ∧ ∃Nsrc .presrc(Isrc, Nsrc) ∧
(∃Ntgt .pretgt(Itgt, Ntgt) ∧ �ftgt�(Itgt, Ntgt) = Otgt

)

=⇒ (∃Nsrc .presrc(Isrc, Nsrc) ∧ �fsrc�(Isrc, Nsrc) �st Otgt)

Predicate valid(Isrc, Itgt) encodes the global precondition of the input mem-
ory and arguments such as disjointness of non-local blocks. Function’s precon-
ditions, presrc and pretgt, include the constraint for disjointness of local blocks.
The existential presrc constrains the input such that the source function has at
least one possible execution. �st is the refinement between final states.

Figure 2 shows the definition of final program state which is a tuple of return
value, return memory, and UB. A memory is a function from block id to a mem-
ory block. A memory block has seven attributes that are described in Sect. 4.3.
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Figure 3 shows the definition of refinement of value and final state. For point-
ers, we cannot simply use equality because local pointers in source and target are
internal to each of the functions. Even if they have the same block identifier, they
may refer to different allocation sites in the functions (value-ptr). Similarly,
the refinement of the final state should consider this difference between local
pointers. To address this, we track a mapping μ between escaped local blocks of
the two functions (described next).

7.1 Refinement of Memory

Checking refinement of non-local memory blocks is simple as blocks are the same
in the source and target functions (e.g., global variables have the same ids in the
two functions). Therefore, one just needs to compare blocks of source and target
functions with the same id pairwise.

Checking refinement of local blocks is harder but needed when, e.g., the
function returns a locally-allocated heap block. This is legal, but block ids in the
two functions may not be equal as allocations may have happened in a different
order. Therefore, we cannot simply compare local blocks with the same ids.

To check refinement of local blocks, we need to align the two functions’
allocations, i.e., we need to find a correspondence between local blocks of the
two functions. We introduce a mapping μ ∈ BlockID �→ BlockID between target
and source local block ids.

Local blocks become related on function calls and return statements, which
is when local pointers may be observed. For example, if a function is called with
a pointer to a local block as the first argument, μ should relate that pointer with
the first argument of an equivalent function call in the target function.

Figure 4 gives the definition of memory refinement, M �µ
mem M ′, as well

as other related relations between memory blocks and pointers. The first rule
pointer describes refinement between source pointer p and target pointer p′

with respect to μ. The following four rules define refinement between bytes b and
b′. In rule byte-nonptr, ‘a | b’ is the bitwise OR operation, and it is used to
check the equality of only those bits that are not poison. Predicate isZeroByte(b)
holds if b is a null pointer or if it is a zero-valued non-pointer byte. This is needed
because stores of null pointers can be optimized to memset instructions.

Rules bytes and block define refinement between memory blocks’ values
and memory blocks, respectively. Rule memory-map describes memory refine-
ment with respect to local block mapping μ. M [bid] stands for the memory block
with block id bid.

The well-formedness of μ is established in the refinement rules for function
calls and return statements. We show these for function calls in the next section.
We note that there might be multiple well-formed μ due to non-determinism.
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Fig. 5. Refinement between function arguments.

8 Function Calls

A call to an unknown function may change the memory arbitrarily (except for,
e.g., constant variables and non-escaped local blocks). The outputs in the source
and target are, however, related: if the target’s inputs refine those of the source,
refinement holds between their outputs as well. Alive2 already supported func-
tion calls; this section shows how it was extended to support memory.

Let (Min, vin) and (Mout, vout) be the input and output of a function call
in the source, and their primed versions, (M ′

in, v′
in) and (M ′

out, v
′
out), those of a

function call in the target. Let μin be a local block mapping before executing
the calls. To state that the outputs are refined if the inputs are refined, we add
the following formula to the target’s precondition:

(
Min �µin

mem M ′
in ∧ ∀i . vin[i] �µin,sz[i]

arg v′
in[i]

)
=⇒ (

Mout �µout
mem M ′

out ∧ vout �µout v′
out

)

A call to a function with a pointer to a local block as argument escapes this
block, as the callee may, e.g., store that pointer to a global variable. Moreover,
any pointer stored in this block also escapes as the callee may traverse the block
and grab any pointer stored there, and do so transitively. The updated mapping
μout = extend(μin,Min,M ′

in, vin, v′
in) returns μin updated with the relationship

between the newly escaped blocks in source and target functions.
Figure 5 shows the definition of refinement between function call arguments

in source and target programs. The first rule relates non-pointer arguments.
The second one handles pointers that have escaped before these calls. The third
rule handles local pointers of blocks that did not escape before these calls, and
therefore we need to check if the contents of these block are refined.

The fourth refinement rule handles byval pointer arguments. These argu-
ments get a freshly allocated block and the contents of the pointer are copied
from the pointer’s offset onwards.

9 Approximating Program Behavior

In order to speedup verification, we approximate programs’ behaviors, which can
result in false positives and false negatives. We believe none of these approxima-
tions has a significant impact for two reasons: (1) we only need to be as precise as
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LLVM’s static analyses, i.e., we do not need to support arbitrary optimizations,
and (2) we do not consider the compiler to be malicious (which may not be true
in certain contexts). Moreover, we conducted an extensive evaluation to support
these claims, on which we report in the next section.

Under-Approximations

1. Physical addresses of local memory blocks have the MSB set to 1, and non-
locals set to 0. This is reasonable if we assume the compiler is not malicious
and therefore will not exploit our approximation.

2. We do not consider the case where a (portion of a) global variable is initially
undef , only poison or a regular value.

3. Library functions strlen, memcmp, and bcmp are unrolled for a constant
number of times. A precondition is added to constrain the input to be smaller
than the unroll factor. In the case of strlen, the input pointer is often a
constant array. We compute the result straight away in this case.

Over-Approximations. The set of local blocks that escape (e.g., whose address
is stored into a global variable) is computed per function. This may over-
approximate the set of escaped pointers at times because, e.g., a pointer may
only escape in a particular branch. LLVM also computes the set of escaped
pointers per function.

10 Evaluation

We implemented our new memory model in Alive2 [30]. The implementation of
the memory model consists in about 3.0 KLoC plus an additional 0.4 KLoC for
static analyses for optimization.

We run two set of experiments to both validate our implementation and
the formal semantics, and to identify bugs in LLVM. First, we did translation
validation of LLVM’s unit tests (test/Transforms) to increase confidence that
we match LLVM’s behavior in practice. Second, we run five benchmarks: bzip2,
gzip, oggenc, ph7, and SQLite3.

Benchmarks were compiled with -O3. Moreover, we disabled type-based alias-
ing because there is no formal model for this feature yet. During compilation, we
emitted pairs of IR files before and after each intra-procedural optimization. We
discarded syntactically equal pairs as well as pairs without memory operations.

We used a machine with two Intel Xeon E5-2630 v2 CPUs (total of 12 cores).
We set Z3’s timeout to 1min and memory limit to 1 GB. Loops were unrolled
once. We used LLVM from 11/Dec (5e31e22) and Z3 [33] from 16/Dec (11477f).

10.1 LLVM Unit Tests

LLVM’s Transforms unit test suite consists in 6,600 tests totaling 36,600 func-
tions. Alive2 takes about 2.5 h (in parallel) to validate these. By running LLVM’s
unit tests, we found 21 new bugs in memory optimizations.
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Table 3. Statistics and results for the single-file benchmarks.

Program LoC Pairs Time (hours) Correct Incorrect TO OOM Unsupported
pairs

bzip2 5.1k 2.3k 1.9 316 9 574 175 1.2k

gzip 5.3k 2.6k 2.0 908 4 922 45 737

oggenc 48k 1.8k 2.0 433 5 617 49 701

ph7 43k 5.6k 3.4 1.2K 23 1.5K 15 2.8k

sqlite3 141k 12k 7.5 2.2k 38 2.2K 48 7.8k

We show below an example of a bug we found. This optimization was shrink-
ing the store from 64 to 32 bits, which is incorrect since the last 32 bits were not
copied. This happened because of the mismatch in the load/store’s sizes.

// i32 *x, *y, *z;
i32 *p = (*x < *y ? x : y);
*(i64*)z = *(i64*)p;


⇒
// i32 *x, *y, *z;
i32 r = (*x < *y ? *x : *y);
*z = r;

10.2 Benchmarks

Table 3 shows the statistics and results for translation validation. The Pairs
column indicates the number of source/optimized function pairs considered for
validation. We discarded pairs where the two functions were syntactically equal,
as the transformation is then trivially correct. The last column indicates the
number of skipped pairs because they use features Alive2 does not yet support.

All the 79 incorrect pairs are due to mismatches between LLVM and the
formal semantics. Of these, 74 are related with incorrect handling of undef and
poison values, and the remaining 5 are caused by incorrect load type punning
optimizations. This shows that our tool has no false positives.

10.3 Specification Bugs

While testing our tool, we found a mismatch in the semantics of the nonnull
attribute between LLVM’s documentation and LLVM’s code. The documenta-
tion specified that passing a null pointer to a nonnull argument triggered UB.
However, as illustrated below, LLVM adds nonnull to a pointer that may be
poison. This is incorrect because poison can be optimized into any value includ-
ing null.

p = gep inbounds q, 1
f(p) ⇒ p = gep inbounds q, 1

f(nonnull p) ; UB if p poison
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We proposed a new semantics to the LLVM developers, where non-
conforming pointers would be considered poison rather than UB. This was
accepted and we have contributed patches to fix the docs and the incorrect
optimizations.

10.4 Alias Sets

To show that splitting the memory into multiple arrays is beneficial, we gathered
statistics of the alias sets in our benchmarks. More than 96% of the dereferenced
pointers turned out to be only local or non-local, but not both. This shows that
splitting the memory into local and non-local simplifies the memory encoding.

We also counted the number of memory blocks pointers may alias with. Half
of the pointers were aliased with just one block. About 80% of the pointers
aliased with at most 3 blocks. This is much less than the median number of
blocks functions have. The median of the number of memory blocks was 7 ∼ 13
(varying over programs), and only 10% of the functions had fewer than 3 blocks.

11 Related Work

Semantics of LLVM IR. The official LLVM IR’s specification is written in
prose [1]. Vellvm [47] and K-LLVM [29] formalized large subsets of the IR in
Coq and K, respectively. [26] clarifies the semantics of undef and poison and
proposes a new freeze instruction. [24] formalizes various memory instructions
of LLVM. [32] presents a C memory model that supports compilation to that
LLVM model.

Translation validation. [38] presents a translation validation infrastructure for
GCC’s intermediate language, using a set of arithmetic/aliasing rules for show-
ing equivalence. LLVM-MD [44] and Peggy [42] verify LLVM optimizations by
showing equivalence of source and targets with rewrite rules/equality axioms.
They suffer, however, from incomplete axioms for aliasing.

In order to simplify the work of translation validation tools, it is possible
to extend the compiler to produce hints (witnesses) [18,36,38,41]. One of these
tools, Crellvm [20], is formally verified in Coq.

Verifying programs with memory using SMT solvers. SMT solvers have been
used before to check equivalence of programs with memory [11,14,21,25,31]. [12]
give an encoding of some (but not all) aliasing constraints needed to do transla-
tion validation of assembly generated by C compilers.

Other memory models encoded in SMT include one for Solidity (Etherium
smart contracts) [16], and for separation logic [37,39]. Several verification tools
include SAT/SMT-based (partial) memory models for C [2,9,10] and Java [43].

Several automatic software verification tools, often based on CHCs (con-
strained Horn clauses), support memory programs [6,13]. For example, both Sea-
Horn and Cascade use a field-sensitive alias analysis to split the memory [15,45].
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SLAyer [4] is an automatic tool for analyzing memory safety of a C program
using Z3. Smallfoot [3] verifies assertions written in separation logic.

There have been recent advances in speeding up verification of (SMT) array
programs [17,22], from which we could likely benefit.

CompCert [27] splits the memory into local (private) and non-local (public)
blocks, similarly to what we do, but assumes that allocations never fail [28]. Work
on verifying peephole optimizations for CompCert does not support memory [34].

To support integer-to-pointer casts in CompCert, [5] proposes extending inte-
ger values to carry block ids as well. In this model, arithmetic on pointer values
yields a symbolic expression. [19] makes the pointer-to-integer cast an instruction
that assigns a physical address to the block. Neither of these models supports
several optimizations performed by LLVM.

12 Conclusion

We presented the first SMT encoding of LLVM’s memory model that is suffi-
ciently precise to validate all of LLVM’s intra-procedural memory optimizations.

Using our new encoding, we found and reported 21 previously unknown bugs
in LLVM memory optimizations, 10 of which have already been fixed.

Acknowledgement. This work was supported in part by the Basic Science
Research Program through the National Research Foundation of Korea (NRF-
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Abstract. In recent years, there has been significant progress in the
development and industrial adoption of static analyzers, specifically of
abstract interpreters. Such analyzers typically provide a large, if not
huge, number of configurable options controlling the analysis precision
and performance. A major hurdle in integrating them in the software-
development life cycle is tuning their options to custom usage scenarios,
such as a particular code base or certain resource constraints.

In this paper, we propose a technique that automatically tailors an
abstract interpreter to the code under analysis and any given resource
constraints. We implement this technique in a framework, tAIlor, which
we use to perform an extensive evaluation on real-world benchmarks.
Our experiments show that the configurations generated by tAIlor are
vastly better than the default analysis options, vary significantly depend-
ing on the code under analysis, and most remain tailored to several sub-
sequent code versions.

1 Introduction

Static analysis inspects code, without running it, in order to prove properties or
detect bugs. Typically, static analysis approximates code behavior, for instance,
because checking the correctness of most properties is undecidable. Performance
is another important reason for this approximation. Typically, the closer the
approximation is to the actual code behavior, the less efficient and the more
precise the analysis is, that is, the fewer false positives it reports. For less tight
approximations, the analysis tends to become more efficient but less precise.

Recent years have seen tremendous progress in the development and indus-
trial adoption of static analyzers. Notable successes include Facebook’s Infer [7,8]
and AbsInt’s Astrée [5]. Many popular analyzers, such as these, are based on
abstract interpretation [12], a technique that abstracts the concrete program
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 777–800, 2021.
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semantics and reasons about its abstraction. In particular, program states are
abstracted as elements of abstract domains. Most abstract interpreters offer a
wide range of abstract domains that impact the precision and performance of
the analysis. For instance, the Intervals domain [11] is typically faster but less
precise than Polyhedra [16], which captures linear inequalities among variables.

In addition to the domains, abstract interpreters usually provide a large
number of other options, for instance, whether backward analysis should be
enabled or how quickly a fixpoint should be reached. In fact, the sheer number of
option combinations (over 6M in our experiments) is bound to overwhelm users,
especially non-expert ones. To make matters worse, the best option combinations
may vary significantly depending on the code under analysis and the resources,
such as time or memory, that users are willing to spend.

In light of this, we suspect that most users resort to using the default options
that the analysis designer pre-selected for them. However, these are definitely
not suitable for all code. Moreover, they do not adjust to different stages of
software development, e.g., running the analysis in the editor should be much
faster than running it in a continuous integration (CI) pipeline, which in turn
should be much faster than running it prior to a major release. The alternative of
enabling the (in theory) most precise analysis can be even worse, since in practice
it often runs out of time or memory as we show in our experiments. As a result,
the widespread adoption of abstract interpreters is severely hindered, which is
unfortunate since they constitute an important class of practical analyzers.

Our Approach. To address this issue, we present the first technique that auto-
matically tailors a generic abstract interpreter to a custom usage scenario. With
the term custom usage scenario, we refer to a particular piece of code and specific
resource constraints. The key idea behind our technique is to phrase the prob-
lem of customizing the abstract-interpretation configuration to a given usage
scenario as an optimization problem. Specifically, different configurations are
compared using a cost function that penalizes those that prove fewer properties
or require more resources. The cost function can guide the configuration search of
a wide range of existing optimization algorithms. This problem of tuning abstract
interpreters can be seen as an instance of the more general problem of algorithm
configuration [31]. In the past, algorithm configuration has been used to tune
algorithms for solving various hard problems, such as SAT solving [32,33], and
more recently, training of machine-learning models [3,18,52].

We implement our technique in an open-source framework called tAIlor
1,

which configures a given abstract interpreter for a given usage scenario using a
given optimization algorithm. As a result, tAIlor enables the abstract inter-
preter to prove as many properties as possible within the resource limit without
requiring any domain expertise on behalf of the user.

Using tAIlor, we find that tailored configurations vastly outperform the
default options pre-selected by the analysis designers. In fact, we show that
this is possible even with very simple optimization algorithms. Our experiments
1 The tool implementation is found at https://github.com/Practical-Formal-

Methods/tailor and an installation at https://doi.org/10.5281/zenodo.4719604.

https://github.com/Practical-Formal-Methods/tailor
https://github.com/Practical-Formal-Methods/tailor
https://doi.org/10.5281/zenodo.4719604
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also demonstrate that tailored configurations vary significantly depending on
the usage scenario—in other words, there cannot be a single configuration that
fits all scenarios. Finally, most of the generated configurations remain tailored
to several subsequent code versions, suggesting that re-tuning is only necessary
after major code changes.

Contributions. We make the following contributions:

1. We present the first technique for automatically tailoring abstract interpreters
to custom usage scenarios.

2. We implement our technique in an open-source framework called tAIlor.
3. Using a state-of-the-art abstract interpreter, Crab [25], with millions of con-

figurations, we show the effectiveness of tAIlor on real-world benchmarks.

2 Overview

We now illustrate the workflow and tool architecture of tAIlor and provide
examples of its effectiveness.

Terminology. In the following, we refer to an abstract domain with all its
options (e.g., enabling backward analysis or more precise treatment of arrays
etc.) as an ingredient.

As discussed earlier, abstract interpreters typically provide a large number of
such ingredients. To make matters worse, it is also possible to combine different
ingredients into a sequence (which we call a recipe) such that more properties are
verified than with individual ingredients. For example, a user could configure the
abstract interpreter to first use Intervals to verify as many properties as possible
and then use Polyhedra to attempt verification of any remaining properties. Of
course, the number of possible configurations grows exponentially in the length
of the recipe (over 6M in our experiments for recipes up to length 3).

Workflow. The high-level architecture of tAIlor is shown in Fig. 1. It takes
as input the code to be analyzed (i.e., any program, file, function, or fragment),
a user-provided resource limit, and optionally an optimization algorithm. We
focus on time as the constrained resource in this paper, but our technique could
be easily extended to other resources, such as memory.

The optimization engine relies on a recipe generator to generate a fresh recipe.
To assess its quality in terms of precision and performance, the recipe evaluator
computes a cost for the recipe. The cost is computed by evaluating how precise
and efficient the abstract interpreter is for the given recipe. This cost is used by
the optimization engine to keep track of the best recipe so far, i.e., the one that
proves the most properties in the least amount of time. tAIlor repeats this
process for a given number of iterations to sample multiple recipes and returns
the recipe with the lowest cost.

Zooming in on the evaluator, a recipe is processed by invoking the abstract
interpreter for each ingredient. After each analysis (i.e., one ingredient), the
evaluator collects the new verification results, that is, the verified assertions. All
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Fig. 1. Overview of our framework.

verification results that have been achieved so far are subsequently shared with
the analyzer when it is invoked for the next ingredient. Verification results are
shared by converting all verified assertions into assumptions. After processing
the entire recipe, the evaluator computes a cost for the recipe, which depends
on the number of unverified assertions and the total analysis time.

In general, there might be more than one recipe tailored to a particular
usage scenario. Näıvely, finding one requires searching the space of all recipes.
Section 4.3 discusses several optimization algorithms for performing this search,
which tAIlor already incorporates in its optimization engine.

Examples. As an example, let us consider the usage scenario where a user runs
the Crab abstract interpreter [25] in their editor for instant feedback during
code development. This means that the allowed time limit for the analysis is very
short, say, 1 s. Now assume that the code under analysis is a program file2 of the
multimedia processing tool ffmpeg, which is used to evaluate the effectiveness of
tAIlor in our experiments. In this file, Crab checks 45 assertions for common
bugs, i.e., division by zero, integer overflow, buffer overflow, and use after free.

Analysis of this file with the default Crab configuration takes 0.35 s to
complete. In this time, Crab proves 17 assertions and emits 28 warnings about
the properties that remain unverified. For this usage scenario, tAIlor is able to
tune the abstract-interpreter configuration such that the analysis time is 0.57 s
and the number of verified properties increases by 29% (i.e., 22 assertions are
proved). Note that the tailored configuration uses a completely different abstract
domain than the one in the default configuration. As a result, the verification
results are significantly better, but the analysis takes slightly longer to complete
(although remaining within the specified time limit). In contrast, enabling the
most precise analysis in Crab verifies 26 assertions but takes over 6 min to
complete, which by far exceeds the time limit imposed by the usage scenario.

While it takes tAIlor 4.5 s to find the above configuration, this is time well
invested; the configuration can be re-used for several subsequent code versions.
In fact, in our experiments, we show that generated configurations can remain

2 https://github.com/FFmpeg/FFmpeg/blob/master/libavformat/idcin.c

https://github.com/FFmpeg/FFmpeg/blob/master/libavformat/idcin.c
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tailored for at least up to 50 subsequent commits to a file under version control.
Given that changes in the editor are typically much more incremental, we expect
that no re-tuning would be necessary at all during an editor session. Re-tuning
may be beneficial after major changes to the code under analysis and can happen
offline, e.g., between editor sessions, or in the worst case overnight.

As another example, consider the usage scenario where Crab is integrated
in a CI pipeline. In this scenario, users should be able to spare more time for
analysis, say, 5 min. Here, let us assume that the analyzed code is a program
file3 of the curl tool for transferring data by URL, which is also used in our
evaluation. The default Crab configuration takes 0.23 s to run and only verifies
2 out of 33 checked assertions. tAIlor is able to find a configuration that takes
7.6 s and proves 8 assertions. In contrast, the most precise configuration does
not terminate even after 15 min.

Both scenarios demonstrate that, even when users have more time to spare,
the default configuration cannot take advantage of it to improve the verification
results. At the same time, the most precise configuration is completely impracti-
cal since it does not respect the resource constraints imposed by these scenarios.

3 Background: A Generic Abstract Interpreter

Many successful abstract interpreters (e.g., Astrée [5], C Global Surveyor [53],
Clousot [17], Crab [25], IKOS [6], Sparrow [46], and Infer [8]) follow the generic
architecture in Fig. 2. In this section, we describe its main components to show
that our approach should generalize to such analyzers.

Memory Domain. Analysis of low-level languages such as C and LLVM-bitcode
requires reasoning about pointers. It is, therefore, common to design a memory
domain [42] that can simultaneously reason about pointer aliasing, memory con-
tents, and numerical relations between them.

Pointer domains resolve aliasing between pointers, and array domains reason
about memory contents. More specifically, array domains can reason about indi-
vidual memory locations (cells), infer universal properties over multiple cells, or
both. Typically, reasoning about individual cells trades performance for precision
unless there are very few array elements (e.g., [22,42]). In contrast, reasoning
about multiple memory locations (summarized cells) trades precision for per-
formance. In our evaluation, we use Array smashing domains [5] that abstract
different array elements into a single summarized cell. Logico-numerical domains
infer relationships between program and synthetic variables, introduced by the
pointer and array domains, e.g., summarized cells.

Next, we introduce domains typically used for proving the absence of
runtime errors in low-level languages. Boolean domains (e.g., flat Boolean,
BDDApron [1]) reason about Boolean variables and expressions. Non-relational
domains (e.g., Intervals [11], Congruence [23]) do not track relations among dif-
ferent variables, in contrast to relational domains (e.g., Equality [35], Zones [41],

3 https://github.com/curl/curl/blob/master/lib/cookie.c

https://github.com/curl/curl/blob/master/lib/cookie.c
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Fig. 2. Generic architecture of an abstract interpreter.

Octagons [43], Polyhedra [16]). Due to their increased precision, relational
domains are typically less efficient than non-relational ones. Symbolic domains
(e.g., Congruence closure [9], Symbolic constant [44], Term [21]) abstract com-
plex expressions (e.g., non-linear) and external library calls by uninterpreted
functions. Non-convex domains express disjunctive invariants. For instance, the
DisInt domain [17] extends Intervals to a finite disjunction; it retains the scala-
bility of the Intervals domain by keeping only non-overlapping intervals. On the
other hand, the Boxes domain [24] captures arbitrary Boolean combinations of
intervals, which can often be expensive.

Fixpoint Computation. To ensure termination of the fixpoint computation,
Cousot and Cousot introduce widening [12,14], which usually incurs a loss of
precision. There are three common strategies to reduce this precision loss, which
however sacrifice efficiency. First, delayed widening [5] performs a number of
initial fixpoint-computation iterations in the hope of reaching a fixpoint before
resorting to widening. Second, widening with thresholds [37,40] limits the number
of program expressions (thresholds) that are used when widening. The third
strategy consists in applying narrowing [12,14] a certain number of times.

Forward and Backward Analysis. Classically, abstract interpreters analyze
code by propagating abstract states in a forward manner. However, abstract
interpreters can also perform backward analysis to compute the execution states
that lead to an assertion violation. Cousot and Cousot [13,15] define a forward-
backward refinement algorithm in which a forward analysis is followed by a back-
ward analysis until no more refinement is possible. The backward analysis uses
invariants computed by the forward analysis, while the forward analysis does not
explore states that cannot reach an assertion violation based on the backward
analysis. This refinement is more precise than forward analysis alone, but it may
also become very expensive.
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Algorithm 1: Optimization engine.
1 Function Optimize(P , rmax , lmax , idom , iset , recinit , GenerateRecipe,

Accept) is
2 // Phase 1 (optimize domains)
3 recbest := reccurr := recinit
4 costbest := costcurr := Evaluate(P , rmax , recbest)
5 for l := 1 to lmax do
6 for i := 1 to idom · l do
7 recnext := GenerateRecipe(reccurr , l)
8 costnext := Evaluate(P , rmax , recnext)
9 if costnext < costbest then

10 recbest , costbest := recnext , costnext

11 if Accept(costcurr , costnext) then
12 reccurr , costcurr := recnext , costnext

13 // Phase 2 (optimize settings)
14 for i := 1 to iset do
15 recmut := MutateSettings(recbest)
16 costmut := Evaluate(P , rmax , recmut)
17 if costmut < costbest then
18 recbest , costbest := recmut , costmut

19 return recbest

Intra- and Inter-procedural Analysis. An intra-procedural analysis analyzes
a function ignoring the information (i.e., call stack) that flows into it, while an
inter-procedural analysis considers all flows among functions. The former is much
more efficient and easy to parallelize, but the latter is usually more precise.

4 Our Technique

This section describes the components of tAIlor in detail; Sects. 4.1, 4.2, 4.3
explain the optimization engine, recipe evaluator, and recipe generator (Fig. 1).

4.1 Recipe Optimization

Algorithm 1 implements the optimization engine. In addition to the code P
and the resource limit rmax , it also takes as input the maximum length of the
generated recipes lmax (i.e., the maximum number of ingredients), a function to
generate new recipes GenerateRecipe (i.e., the recipe generator from Fig. 1),
and four other parameters, which we explain later.

A tailored recipe is found in two phases. The first phase aims to find the
best abstract domain for each ingredient, while the second tunes the remaining
analysis settings for each ingredient (e.g., whether backward analysis should
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be enabled). Parameters idom and iset control the number of iterations of each
phase. Note that we start with a search for the best domains since they have the
largest impact on the precision and performance of the analysis.

During the first phase, the algorithm initializes the best recipe recbest with
an initial recipe recinit (line 3). The cost of this recipe is evaluated with function
Evaluate, which implements the recipe evaluator from Fig. 1. The subsequent
nested loop (line 5) samples a number of recipes, starting with the shortest
recipes (l := 1) and ending with the longest recipes (l := lmax ). The inner loop
generates idom ingredients for each ingredient in the recipe (i.e., idom · l total
iterations) by invoking function GenerateRecipe, and in case a recipe with
lower cost is found, it updates the best recipe (lines 9–10). Several optimization
algorithms, such as hill climbing and simulated annealing, search for an optimal
result by mutating some of the intermediate results. Variable reccurr stores inter-
mediate recipes to be mutated, and function Accept decides when to update it
(lines 11–12).

As explained earlier, the purpose of the first phase is to identify the best
sequence of abstract domains. The second phase (lines 13–18) focuses on tuning
the other settings of the best recipe so far. This is done by randomly mutating
the best recipe via MutateSettings (line 15), and updating the best recipe if
better settings are found (lines 17–18). After exploring iset random settings, the
best recipe is returned to the user (line 19).

4.2 Recipe Evaluation

The recipe evaluator from Fig. 1 uses a cost function to determine the quality
of a fresh recipe with respect to the precision and performance of the abstract
interpreter. This design is motivated by the fact that analysis imprecision and
inefficiency are among the top pain points for users [10].

Therefore, the cost function depends on the number of generated warnings
w (that is, the number of unverified assertions), the total number of assertions
in the code wtotal , the resource consumption r of the analyzer, and the resource
limit rmax imposed on the analyzer:

cost(w,wtotal , r, rmax ) =

⎧
⎪⎨

⎪⎩

w +
r

rmax

wtotal
, if r ≤ rmax

∞, otherwise

Note that w and r are measured by invoking the abstract interpreter with the
recipe under evaluation. The cost function evaluates to a lower cost for recipes
that improve the precision of the abstract interpreter (due to the term w/wtotal).
In case of ties, the term r/rmax causes the function to evaluate to a lower cost
for recipes that result in a more efficient analysis. In other words, for two recipes
resulting in equal precision, the one with the smaller resource consumption is
assigned a lower cost. When a recipe causes the analyzer to exceed the resource
limit, it is assigned infinite cost.
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4.3 Recipe Generation

In the literature, there is a broad range of optimization algorithms for different
application domains. To demonstrate the generality and effectiveness of tAIlor,
we instantiate it with four adaptations of three well-known optimization algo-
rithms, namely random sampling [38], hill climbing (with regular restarts) [48],
and simulated annealing [36,39]. Here, we describe these algorithms in detail,
and in Sect. 5, we evaluate their effectiveness.

Before diving into the details, let us discuss the suitability of different kinds
of optimization algorithms for our domain. There are algorithms that leverage
mathematical properties of the function to be optimized, e.g., by computing
derivatives as in Newton’s iterative method. Our cost function, however, is eval-
uated by running an abstract interpreter, and thus, it is not differentiable or
continuous. This constraint makes such analytical algorithms unsuitable. More-
over, evaluating our cost function is expensive, especially for precise abstract
domains such as Polyhedra. This makes algorithms that require a large number
of samples, such as genetic algorithms, less practical.

Now recall that Algorithm 1 is parametric in how new recipes are generated
(with GenerateRecipe) and accepted for further mutations (with Accept).
Instantiations of these functions essentially constitute our search strategy for
a tailored recipe. In the following, we discuss four such instantiations. Note
that, in theory, the order of recipe ingredients matters. This is because any
properties verified by one ingredient are converted into assumptions for the next,
and different assumptions may lead to different verification results. Therefore,
all our instantiations are able to explore different ingredient orderings.

Random Sampling. Random sampling (rs) just generates random recipes of a
certain length. Function Accept always returns false as each recipe is generated
from scratch, and not as a result of any mutations.

Domain-Aware Random Sampling. rs might generate recipes containing
abstract domains of comparable precision. For instance, the Octagons domain is
typically strictly more precise than Intervals. Thus, a recipe consisting of these
domains is essentially equivalent to one containing only Octagons.

Now, assume that we have a partially ordered set (poset) of domains that
defines their ordering in terms of precision. An example of such a poset for a
particular abstract interpreter is shown in Fig. 3. An optimization algorithm can
then leverage this information to reduce the search space of possible recipes.
Given such a poset, we therefore define domain-aware random sampling (dars),
which randomly samples recipes that do not contain abstract domains of com-
parable precision. Again, Accept always returns false.

Simulated Annealing. Simulated annealing (sa) searches for the best recipe by
mutating the current recipe reccurr in Algorithm 1. The resulting recipe (recnext),
if accepted on line 12, becomes the new recipe to be mutated. Algoirthm 2
shows an instantiation of GenerateRecipe, which mutates a given recipe such
that the poset precision constraints are satisfied (i.e., there are no domains of
comparable precision). A recipe is mutated either by adding new ingredients with
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Algorithm 2: A recipe-generator instantiation.
1 Function GenerateRecipe(rec, lmax ) is
2 act := RandomAction({ADD: 0.2, MOD: 0.8}))
3 if act = ADD ∧ Len(rec) < lmax then
4 ingrnew := RandomPosetLeastIncomparable(rec)
5 recmut := AddIngredient(rec, ingrnew )

6 else
7 ingr := RandomIngredient(rec)
8 actm := RandomAction({GT: 0.5, LT: 0.3, INC: 0.2})
9 if actm = GT then

10 ingrnew := PosetGreaterThan(ingr)
11 else if actm = LT then
12 ingrnew := PosetLessThan(ingr)
13 else
14 recrem := RemoveIngredient(rec, ingr)
15 ingrnew := RandomPosetLeastIncomparable(recrem)

16 recmut := ReplaceIngredient(rec, ingr , ingrnew )

17 if ¬PosetCompatible(recmut) then
18 recmut := GenerateRecipe(rec, lmax )

19 return recmut

20% probability or by modifying existing ones with 80% probability (line 2). The
probability of adding ingredients is lower to keep recipes short.

When adding a new ingredient (lines 4–5), Algorithm 2 calls Random-

PosetLeastIncomparable, which considers all domains that are incompara-
ble with the domains in the recipe. Given this set, it randomly selects from the
domains with the least precision to avoid adding overly expensive domains. When
modifying a random ingredient in the recipe (lines 7–16), the algorithm can
replace its domain with one of three possibilities: a domain that is immediately
more precise (i.e., not transitively) in the poset (via PosetGreaterThan), a
domain that is immediately less precise (via PosetLessThan), or an incompa-
rable domain with the least precision (via RandomPosetLeastIncompara-

ble). If the resulting recipe does not satisfy the poset precision constraints, our
algorithm retries to mutate the original recipe (lines 17–18).

For simulated annealing, Accept returns true if the new cost (for the
mutated recipe) is less than the current cost. It also accepts recipes whose cost
is higher with a certain probability, which is inversely proportional to the cost
increase and the number of explored recipes. That is, recipes with a small cost
increase are likely to be accepted, especially at the beginning of the exploration.

Hill Climbing. Our instantiation of hill climbing (hc) performs regular restarts.
In particular, it starts with a randomly generated recipe that satisfies the poset
precision constraints, generates 10 new valid recipes, and restarts with a random
recipe. Accept returns true only if the new cost is lower than the best cost,
which is equivalent to the current cost.
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5 Experimental Evaluation

To evaluate our technique, we aim to answer the following research questions:

RQ1: Is our technique effective in tailoring recipes to different usage scenarios?
RQ2: Are the tailored recipes optimal?
RQ3: How diverse are the tailored recipes?
RQ4: How resilient are the tailored recipes to code changes?

5.1 Implementation

We implemented tAIlor by extending Crab [25], a parametric framework for
modular construction of abstract interpreters4. We extended Crab with the
ability to pass verification results between recipe ingredients as well as with the
four optimization algorithms discussed in Sect. 4.3.

Table 1 shows all settings and values used in our evaluation. The first three
settings refer to the strategies discussed in Sect. 3 for mitigating the precision loss
incurred by widening. For the initial recipe, tAIlor uses Intervals and the Crab

default values for all other settings (in bold in the table). To make the search more
efficient, we selected a representative subset of all possible setting values.

Crab uses a DSA-based [26] pointer analysis and can, optionally, reason
about array contents using array smashing. It offers a wide range of logico-
numerical domains, shown in Fig. 3. The bool domain is the flat Boolean
domain, ric is a reduced product of Intervals and Congruence, and term(int)
and term(disInt) are instantiations of the Term domain with intervals and
disInt, respectively. Although Crab provides a bottom-up inter-procedural
analysis, we use the default intra-procedural analysis; in fact, most analyses
deployed in real usage scenarios are intra-procedural due to time constraints [10].

5.2 Benchmark Selection

For our evaluation, we systematically selected popular and (at some point) active
C projects on GitHub. In particular, we chose the six most starred C repositories

Table 1. Crab settings and their possible values as used in our experiments. Default
settings are shown in bold.

Setting Possible values

NUM DELAY WIDEN {1, 2, 4, 8, 16}
NUM NARROW ITERATIONS {1,2, 3, 4}
NUM WIDEN THRESHOLDS {0, 10, 20, 30, 40}
Backward Analysis {OFF,ON }
Array Smashing {OFF ,ON}
Abstract Domains All domains in Fig. 3

4
Crab is available at https://github.com/seahorn/crab.

https://github.com/seahorn/crab
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Table 2. Overview of projects.

Project Description

curl Tool for transferring data by URL

darknet Convolutional neural-network framework

ffmpeg Multimedia processing tool

git Distributed version-control tool

php-src PHP interpreter

redis Persistent in-memory database

with over 300 commits that we could successfully build with the Clang-5.0 com-
piler. We give a short description of each project in Table 2.

For analyzing these projects, we needed to introduce properties to be verified.
We, thus, automatically instrumented these projects with four types of assertions
that check for common bugs; namely, division by zero, integer overflow, buffer
overflow, and use after free. Introducing assertions to check for runtime errors
such as these is common practice in program analysis and verification.

As projects consist of different numbers of files, to avoid skewing the results
in favor of a particular project, we randomly and uniformly sampled 20 LLVM-
bitcode files from each project, for a total of 120. To ensure that each file was
neither too trivial nor too difficult for the abstract interpreter, we used the num-
ber of assertions as a complexity indicator and only sampled files with at least 20
assertions and at most 100. Additionally, to guarantee all four assertion types
were included and avoid skewing the results in favor of a particular assertion
type, we required that the sum of assertions for each type was at least 70 across
all files—this exact number was largely determined by the benchmarks.

Overall, our benchmark suite of 120 files totals 1346 functions, 5557 assertions
(on average 4 assertions per function), and 667927 LLVM instructions (Table 3).

5.3 Results

We now present our experimental results for each research question. We performed
all experiments on a 32-core Intel®Xeon®E5-2667 v2CPU@3.30 GHzmachine
with 264 GB of memory, running Ubuntu 16.04.1 LTS.

boxes

term(disInt)

disInt

polyhedra

octagons

zones term(int) ric

intervals bool

Fig. 3. Comparing logico-numerical domains in Crab. A domain d1 is less precise than
d2 if there is a path from d1 to d2 going upward, otherwise d1 and d2 are incomparable.
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Table 3. Benchmark characteristics (20 files per project). The last three columns show
the number of functions, assertions, and LLVM instructions in the analyzed files.

Project Functions Assertions LLVM instructions

curl 306 787 50 541

darknet 130 958 55 847

ffmpeg 103 888 27 653

git 218 768 102 304

php-src 268 1031 305 943

redis 321 1125 125 639

Total 1346 5557 667 927

RQ1: Is Our Technique Effective in Tailoring Recipes to Different
Usage Scenarios? We instantiated tAIlor with the four optimization algo-
rithms described in Sect. 4.3: rs, dars, sa, and hc. We constrained the analysis
time to simulate two usage scenarios: 1 s for instant feedback in the editor, and
5 min for feedback in a CI pipeline. We compare tAIlor with the default recipe
(def), i.e., the default settings in Crab as defined by its designer after careful
tuning on a large set of benchmarks over the years. def uses a combination
of two domains, namely, the reduced product of Boolean and Zones. The other
default settings are in Table 1.

For this experiment, we ran tAIlor with each optimization algorithm on
the 120 benchmark files, enabling optimization at the granularity of files. Each
algorithm was seeded with the same random seed. In Algorithm 1, we restrict
recipes to contain at most 3 domains (lmax = 3) and set the number of iterations
for each phase to be 5 and 10 (idom = 5 and iset = 10).

The results are presented in Fig. 4, which shows the number of assertions
that are verified with the best recipe found by each algorithm as well as by
the default recipe. All algorithms outperform the default recipe for both usage
scenarios, verifying almost twice as many assertions on average. The random-
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Fig. 4. Comparison of the number of assertions verified with the best recipe generated
by each optimization algorithm and with the default recipe, for varying timeouts.
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Fig. 6. Comparison of the total time (in sec) that each algorithm requires for all iter-
ations, for varying timeouts.

sampling algorithms are shown to find better recipes than the others, with dars

being the most effective. Hill climbing is less effective since it gets stuck in local
cost minima despite restarts. Simulated annealing is the least effective because
it slowly climbs up the poset toward more precise domains (see Algorithm 2).
However, as we explain later, we expect the algorithms to converge on the number
of verified assertions for more iterations.

Figure 5 gives a more detailed comparison with the default recipe for the
time limit of 5 min. In particular, each horizontal bar shows the total number of
assertions verified by each algorithm. The orange portion represents the asser-
tions verified by both the default recipe and the optimization algorithm, while
the green and red portions represent the assertions only verified by the algo-
rithm and default recipe, respectively. These results show that, in addition to
verifying hundreds of new assertions, tAIlor is able to verify the vast majority
of assertions proved by the default recipe, regardless of optimization algorithm.

In Fig. 6, we show the total time each algorithm takes for all iterations. dars
takes the longest. This is due to generating more precise recipes thanks to its
domain knowledge. Such recipes typically take longer to run but verify more
assertions (as in Fig. 4). On average, for all algorithms, tAIlor requires only
30 s to complete all iterations for the 1-s timeout and 16 min for the 5-min
timeout. As discussed in Sect. 2, this tuning time can be spent offline.
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Fig. 7. Comparison of the number of assertions verified with the best recipe generated
by the different optimization algorithms, for different numbers of iterations.

Figure 7 compares the total number of assertions verified by each algorithm
when tAIlor runs for 40 (idom = 5 and iset = 10) and 80 (idom = 10 and iset =
20) iterations. The results show that only a relatively small number of additional
assertions are verified with 80 iterations. In fact, we expect the algorithms to
eventually converge on the number of verified assertions, given the time limit
and precision of the available domains.

As dars performs best in this comparison, we only evaluate dars in the
remaining research questions. We use a 5-min timeout.

RQ1 takeaway: tAIlor verifies between 1.6–2.1× the assertions of
the default recipe, regardless of optimization algorithm, timeout, or
number of iterations. In fact, even very simple algorithms (such as rs)
significantly outperform the default recipe.

RQ2: Are the Tailored Recipes Optimal? To check the optimality of the
tailored recipes, we compared them with the most precise (and least efficient)
Crab configuration. It uses the most precise domains from Fig. 3 (i.e., bool,
polyhedra, term(int), ric, boxes, and term(disInt)) in a recipe of 6 ingre-
dients and assigns the most precise values to all other settings from Table 1. We
generously gave a 30-min timeout to this recipe.

For 21 out of 120 files, the most precise recipe ran out of memory (264 GB).
For 86 files, it terminated within 5 min, and for 13, it took longer (within
30 min)—in many cases, this was even longer than tAIlor’s tuning time in
Fig. 6. We compared the number of assertions verified by our tailored recipes
(which do not exceed 5 min) and by the most precise recipe. For the 86 files that
terminated within 5 min, our recipes prove 618 assertions, whereas the most pre-
cise recipe proves 534. For the other 13 files, our recipes prove 119 assertions,
whereas the most precise recipe proves 98.

Consequently, our (in theory) less precise and more efficient recipes prove
more assertions in files where the most precise recipe terminates. Possible expla-
nations for this non-intuitive result are: (1) Polyhedra coefficients may overflow,
in which case the constraints are typically ignored by abstract interpreters, and
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Fig. 8. Effect of different settings on the precision and performance of the abstract
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THRESHOLDS, as: array smashing, b: backward analysis, d: abstract domain, o: ingredi-
ent ordering).

(2) more precise domains with different widening operations may result in less
precise results [2,45].

We also evaluated the optimality of tailored recipes by mutating individual
parts of the recipe and comparing to the original. In particular, for each setting
in Table 1, we tried all possible values and replaced each domain with all other
comparable domains in the poset of Fig. 3. For example, for a recipe including
zones, we tried octagons, polyhedra, and intervals. In addition, we tried
all possible orderings of the recipe ingredients, which in theory could produce
different results. We observed whether these changes resulted in a difference in
the precision and performance of the analyzer.

Figure 8 shows the results of this experiment, broken down by setting. Equal
(in orange) indicates that the mutated recipe proves the same number of asser-
tions within ±5 s of the original. Positive (in green) indicates that it either proves
more assertions or the same number of assertions at least 5 s faster. Negative (in
red) indicates that the mutated recipe either proves fewer assertions or the same
number of assertions at least 5 seconds slower.

The results show that, for our benchmarks, mutating the recipe found by
tAIlor rarely led to an improvement. In particular, at least 93% of all mutated
recipes were either equal to or worse than the original recipe. In the majority
of these cases, mutated recipes are equally good. This indicates that there are
many optimal or close-to-optimal solutions and that tAIlor is able to find one.

RQ2 takeaway: As compared to the most precise recipe, tAIlor

verified more assertions across benchmarks where the most precise
recipe terminated. Furthermore, mutating recipes found by tAIlor

resulted in improvement only for less than 7% of recipes.

RQ3: How Diverse are the Tailored Recipes? To motivate the need for
optimization, we must show that tailored recipes are sufficiently diverse such that
they could not be replaced by a well-crafted default recipe. To better understand
the characteristics of tailored recipes, we manually inspected all of them.
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Fig. 9. Occurrence of domains (in %) in the best recipes for all assertion types.

tAIlor generated recipes of length greater than 1 for 61 files. Out of these,
37 are of length 2 and 24 of length 3. For 77% of generated recipes, NUM DELAY -
WIDEN is not set to the default value of 1. Additionally, 55% of the ingredients
enable array smashing, and 32% enable backward analysis.

Figure 9 shows how often (in percentage) each abstract domain occurs in a
best recipe found by tAIlor. We observe that all domains occur almost equally
often, with 6 of the 10 domains occurring in between 9% and 13% of recipes. The
most common domain was bool at 18%, and the least common was intervals
at 4%. We observed a similar distribution of domains even when instrumenting
the benchmarks with only one assertion type, e.g., checking for integer overflow.

We also inspected which domain combinations are frequently used in the tai-
lored recipes. One common pattern is combinations between bool and numerical
domains (18 occurrences). Similarly, we observed 2 occurrences of term(disInt)
together with zones. Interestingly, the less powerful variants of combining
disInt with zones (3 occurrences) and term(int) with zones (6 occurrences)
seem to be sufficient in many cases. Finally, we observed 8 occurrences of
polyhedra or octagons with boxes, which are the most precise convex and
non-convex domains. Our approach is, thus, not only useful for users, but also
for designers of abstract interpreters by potentially inspiring new domain com-
binations.

RQ3 takeaway: The diversity of tailored recipes prevents replacing
them with a single default recipe. Over half of the tailored recipes
contain more than one ingredient, and ingredients use a variety of
domains and their settings.

RQ4: How Resilient are the Tailored Recipes to Code Changes? We
expect tailored recipes to be resilient to code changes, i.e., to retain their opti-
mality across several changes without requiring re-tuning. We now evaluate if a
recipe tailored for one code version is also tailored for another, even when the
two versions are 50 commits apart.

For this experiment, we took a random sample of 60 files from our benchmarks
and retrieved the 50 most recent commits per file. We only sampled 60 out of
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120 files as building these files for each commit is quite time consuming—it can
take up to a couple of days. We instrumented each file version with the four
assertion types described in Sect. 5.2. It should be noted that, for some files, we
retrieved fewer than 50 versions either because there were fewer than 50 total
commits or our build procedure for the project failed on older commits. This is
also why we did not run this experiment for over 50 commits.

We analyzed each file version with the best recipe, Ro, found by tAIlor for
the oldest file version. We compared this recipe with new best recipes, Rn, that
were generated by tAIlor when run on each subsequent file version. For this
experiment, we used a 5-min timeout and 40 iterations.

Note that, when running tAIlor with the same optimization algorithm and
random seed, it explores the same recipes. It is, therefore, very likely that recipe
Ro for the oldest commit is also the best for other file versions since we only
explore 40 different recipes. To avoid any such bias, we performed this experiment
by seeding tAIlor with a different random seed for each commit. The results
are shown in Fig. 10.

In Fig. 10, we give a bar chart comparing the number of files per commit
that have a positive, equal, and negative difference in the number of verified
assertions, where commit 0 is the oldest commit and 49 the newest. An equal
difference (in orange) means that recipe Ro for the oldest commit proves the
same number of assertions in the current file version, fn, as recipe Rn found by
running tAIlor on fn. To be more precise, we consider the two recipes to be
equal if they differ by at most 1 verified assertion or 1% of verified assertions since
such a small change in the number of safe assertions seems acceptable in practice
(especially given that the total number of assertions may change across commits).
A positive difference (in green) means that Ro achieves better verification results
than Rn, that is, Ro proves more assertions safe (over 1 assertion or 1% of the
assertions that Rn proves). Analogously, a negative difference (in red) means
that Ro proves fewer assertions. We do not consider time here because none of
the recipes timed out when applied on any file version.

Note that the number of files decreases for newer commits. This is because
not all files go forward by 50 commits, and even if they do, not all file versions
build. However, in a few instances, the number of files increases going forward
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in time. This happens for files that change names, and later, change back, which
we do not account for.

For the vast majority of files, using recipe Ro (found for the oldest commit)
is as effective as using Rn (found for the current commit). The difference in safe
assertions is negative for less than a quarter of the files tested, with the average
negative difference among these files being around 22% (i.e., Ro proved 22%
fewer assertions than Rn in these files). On the remaining three quarters of the
files tested however, Ro proves at least as many assertions as Rn, and thus, Ro

tends to be tailored across code versions.
Commits can result in both small and large changes to the code. We therefore

also measured the average difference in the number of verified assertions per
changed line of code with respect to the oldest commit. For most files, regardless
of the number of changed lines, we found that Ro and Rn are equally effective,
with changes to 1000 LOC or more resulting in little to no loss in precision. In
particular, the median difference in safe assertions across all changes between
Ro and Rn was 0 (i.e., Ro proved the same number of assertions safe as Rn),
with a standard deviation of 15 assertions. We manually inspected a handful
of outliers where Ro proved significantly fewer assertions than Rn (difference
of over 50 assertions). These were due to one file from git where Ro is not as
effective because the widening and narrowing settings have very low values.

RQ4 takeaway: For over 75% of files, tAIlor’s recipe for a previous
commit (from up to 50 commits previous) remains tailored for future
versions of the file, indicating the resilience of tailored recipes across
code changes.

5.4 Threats to Validity

We have identified the following threats to the validity of our experiments.

Benchmark Selection. Our results may not generalize to other bench-
marks. However, we selected popular GitHub projects from different application
domains (see Table 2). Hence, we believe that our benchmark selection mitigates
this threat and increases generalizability of our findings.

Abstract Interpreter and Recipe Settings. For our experiments, we only
used a single abstract interpreter, Crab, which however is a mature and actively
supported tool. The selection of recipe settings was, of course, influenced by the
available settings in Crab. Nevertheless, Crab implements the generic archi-
tecture of Fig. 2, used by most abstract interpreters, such as those mentioned
at the beginning of Sect. 3. We, therefore, expect our approach to generalize to
such analyzers.

Optimization Algorithms. We considered four optimization algorithms, but
in Sect. 4.3, we explain why these are suitable for our application domain. More-
over, tAIlor is configurable with respect to the optimization algorithm.
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Assertion Types. Our results are based on four types of assertions. However,
these cover a wide range of runtime errors that are commonly checked by static
analyzers.

6 Related Work

The impact of different abstract-interpretation configurations has been previ-
ously evaluated [54] for Java programs and partially inspired this work. To the
best of our knowledge, we are the first to propose tailoring abstract interpreters
to custom usage scenarios using optimization.

However, optimization is a widely used technique in many engineering dis-
ciplines. In fact, it is also used to solve the general problem of algorithm confi-
guration [31], of which there exist numerous instantiations, for instance, to
tune hyper-parameters of learning algorithms [3,18,52] and options of constraint
solvers [32,33]. Existing frameworks for algorithm configuration differ from ours
in that they are not geared toward problems that are solved by sequences of
algorithms, such as analyses with different abstract domains. Even if they were,
our experience with tAIlor shows that there seem to be many optimal or close-
to-optimal configurations, and even very simple optimization algorithms such as
rs are surprisingly effective (see RQ2); similar observations were made about
the effectiveness of random search in hyper-parameter tuning [4].

In the rest of this section, we focus on the use of optimization in program
analysis. It has been successfully applied to a number of program-analysis prob-
lems, such as automated testing [19,20], invariant inference [50], and compiler
optimizations [49].

Recently, researchers have started to explore the direction of enriching pro-
gram analyses with machine-learning techniques, for example, to automatically
learn analysis heuristics [27,34,47,51]. A particularly relevant body of work is
on adaptive program analysis [28–30], where existing code is analyzed to learn
heuristics that trade soundness for precision or that coarsen the analysis abstrac-
tions to improve memory consumption. More specifically, adaptive program anal-
ysis poses different static-analysis problems as machine-learning problems and
relies on Bayesian optimization to solve them, e.g., the problem of selectively
applying unsoundness to different program components (e.g., different loops in
the program) [30]. The main insight is that program components (e.g., loops)
that produce false positives are alike, predictable, and share common proper-
ties. After learning to identify such components for existing code, this technique
suggests components in unseen code that should be analyzed unsoundly.

In contrast, tAIlor currently does not adjust soundness of the analysis.
However, this would also be possible if the analyzer provided the corresponding
configurations. More importantly, adaptive analysis focuses on learning analysis
heuristics based on existing code in order to generalize to arbitrary, unseen code.
tAIlor, on the other hand, aims to tune the analyzer configuration to a custom
usage scenario, including a particular program under analysis. In addition, the
custom usage scenario imposes user-specific resource constraints, for instance by
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limiting the time according to a phase of the software-engineering life cycle. As
we show in our experiments, the tuned configuration remains tailored to several
versions of the analyzed program. In fact, it outperforms configurations that are
meant to generalize to arbitrary programs, such as the default recipe.

7 Conclusion

In this paper, we have proposed a technique and framework that tailors a generic
abstract interpreter to custom usage scenarios. We instantiated our framework
with a mature abstract interpreter to perform an extensive evaluation on real-
world benchmarks. Our experiments show that the configurations generated by
tAIlor are vastly better than the default options, vary significantly depend-
ing on the code under analysis, and typically remain tailored to several subse-
quent code versions. In the future, we plan to explore the challenges that an
inter-procedural analysis would pose, for instance, by using a different recipe for
computing a summary of each function or each calling context.
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Abstract. We develop machine-checked verifications of the full func-
tional correctness of C implementations of the eponymous graph algo-
rithms of Dijkstra, Kruskal, and Prim. We extend Wang et al.’s Cer-
tiGraph platform to reason about labels on edges, undirected graphs,
and common spatial representations of edge-labeled graphs such as adja-
cency matrices and edge lists. We certify binary heaps, including Floyd’s
bottom-up heap construction, heapsort, and increase/decrease priority.

Our verifications uncover subtle overflows implicit in standard text-
book code, including a nontrivial bound on edge weights necessary to
execute Dijkstra’s algorithm; we show that the intuitive guess fails and
provide a workable refinement. We observe that the common notion that
Prim’s algorithm requires a connected graph is wrong: we verify that
a standard textbook implementation of Prim’s algorithm can compute
minimum spanning forests without finding components first. Our verifi-
cation of Kruskal’s algorithm reasons about two graphs simultaneously:
the undirected graph undergoing MSF construction, and the directed
graph representing the forest inside union-find. Our binary heap verifi-
cation exposes precise bounds for the heap to operate correctly, avoids a
subtle overflow error, and shows how to recycle keys to avoid overflow.

Keywords: Separation logic · Graph algorithms · Coq · VST

1 Introduction

Dijkstra’s eponymous shortest-path algorithm [22] finds the cost-minimal paths
from a distinguished source vertex to all reachable vertices in a directed graph.
Prim’s [61] and Kruskal’s [42] algorithms return minimal spanning trees for undi-
rected graphs. Binary heaps are the first priority queue one typically encoun-
ters. These algorithms/structures are classic and ubiquitous, appearing widely
in textbooks [20,33,36,65,66,68] and in real routing protocol libraries.

In addition to decades of use and textbook analysis, recent efforts have ver-
ified one or more of these algorithms in proof assistants and formally proved
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claims about their behavior [12,15,30,45,53]. A reasonable person might think
that all that can be said, has been. However, we have found that textbook code
glosses over a cornucopia of issues that routinely crop up in real-world settings:
under/overflows, integration with performant data structures, manual memory
(de-)allocation, error handling, casts, memory alignment, etc. Further, previous
verification efforts with formal checkers often operate within idealized formal
environments, which likewise leads them to ignore the same kinds of issues.

In our work, we provide C implementations of each of these algorithms/data
structures, and prove in Coq [71] the functional correctness of the same with
respect to the formal semantics of CompCert C [50]. By “functional correctness”
we mean natural algorithmic specifications; we do not prove resource bounds.
Although our C code is developed from standard textbooks, we uncover several
subtleties that are absent from the algorithmic and formal methods literature:

§3.2 an overflow in Dijkstra’s algorithm, avoiding which requires a nontrivial
refinement to the algorithm’s precondition to bound edge weights;

§4.2 that the specification of Prim’s algorithm can be improved to apply to
disconnected graphs without any change to textbook (pseudo-)code;

§4.2 the presence of a wholly unneeded line of (pseduo-)code in Prim’s algo-
rithm, and an associated unneeded function argument;

§5 several potential overflows in binary heaps equipped with Floyd’s linear-
time build-heap function and an edit-priority operation.

We wish to develop general and reusable techniques for verifying graph-
manipulating programs written in real programming languages. This is a sig-
nificant challenge, and so we choose to leverage and/or extend three large exist-
ing proof developments to state and prove the full functional correctness of our
code in Coq: CompCert; the Verified Software Toolchain [4] (VST) separation
logic [59] deductive verifier; and our own previous efforts [73], hereafter dubbed
the CertiGraph project. Our primary extensions are to the third, and include:

§2.1 pure/abstract reasoning for graphs with edge labels, (e.g., a distinguished
edge-label value for “infinity” that indicates invalid/absent edges);

§2.2 spatial representations and associated reasoning for edge-labeled graphs
(several flavors of adjacency matrices as well as edge lists);

§2.3 pure reasoning for undirected graphs (e.g., notions of connectedness).

We prove that our pure machinery and our spatial machinery are well-isolated
from each other by verifying several implementations (of each of Dijkstra and
Prim) that represent graphs differently in memory but reuse the entire pure
portion of the proof. Likewise, we show that our spatial reasoning is generic
by reusing graph representations across Dijkstra and Prim. Our verification of
Kruskal proves that we can reason about two graphs simultaneously: a directed
graph with vertex labels for union-find and an undirected graph with edge labels
for which we are building a spanning forest. In addition to our verification of
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Dijkstra, Prim, and Kruskal, we develop increased lemma support for the preex-
isting CertiGraph union-find example [73]. Our extension to “base VST” (e.g.,
verifications without graphs) primarily consists of our verified binary heap.

The remainder of this paper is organized as follows:

§2 We explain our extensions to CertiGraph: edge-labeled graphs, spatial rep-
resentations of such graphs, and undirected graphs.

§3 We explain our verification of Dijkstra’s algorithm in some detail, discuss
a potential overflow, and refine the precondition to avoid it.

§4 We overview our verifications of the Minimum Spanning Tree/Forest algo-
rithms of Prim and Kruskal, focusing on high-level points such as our
improved novel specification of Prim’s.

§5 We overview our verification of binary heaps, including a discussion of
Floyd’s bottom-up heap construction and the edit priority operation.

§6 We briefly discuss engineering, e.g. statistics for our formal development.
§7 We discuss related work, outline future research directions, and conclude.

Our results are completely machine-checked in Coq and publicly available [1].

2 Extensions to CertiGraph

We begin with the briefest of introductions to CertiGraph’s core structure and
then detail the extensions we make to various levels of CertiGraph in service of
our Dijkstra, Prim, and Kruskal verifications. Ignoring modularity and eliding
elements not used in this work, a mathematical graph in CertiGraph is a tuple:
(V, E , vvalid, evalid, src, dst, vlabel, elabel, sound). Here V/E are the car-
rier types of vertices/edges, vvalid/evalid place restrictions specifying whether
a vertex/edge is valid1, and src/dst : E → V map edges to their source/des-
tination. Labels are allowed on vertices and edges, and a soundness condition
allows custom application-specific restrictions [73]. Mathematical graphs connect
to graphs in computer memory via spatial predicates in separation logic.

2.1 Pure Reasoning for Adjacency Matrix-Represented Graphs

Two of our algorithms operate over graphs represented as adjacency matrices.
Not every legal graph can be represented as an adjacency matrix, so we develop a
unified, reusable, and extendable soundness condition SoundAdjMat that a graph
must satisfy in order for it to be represented as an adjacency matrix.

SoundAdjMat is parameterized by the graph’s size and a distinguished
number inf. We restrict most fields in the tuple: (V = Z, E = Z × Z,
vvalid = λv. 0 ≤ v < size, evalid = . . ., src = fst , dst = snd , vlabel,
elabel, sound = . . .). We also restrict the carrier type of vertex labels to unit

1 Validity denotes presence in the graph: e.g., if we are using Z as the carrier type V,
and have only 7 vertices, then vvalid(x) is probably the proposition 0 ≤ x < 7).
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and edge labels to Z. We require the parameters size and inf be strictly posi-
tive and representable on the machine. Most critical, however, is the semantics
of evalid: a valid edge must have a machine-representable label and that label
cannot have value inf; an invalid edge must have label inf. Last, the graph
must be finite.

The restriction on edge labels is necessary because we are working with
labeled adjacency matrices on a real system: we need to set aside a distinguished
number inf such that edgeweight inf indicates the absence of an edge. We can-
not prescribe some inf because client needs can vary widely. For instance, our
verifications of Dijkstra’s and Prim’s algorithms require subtly different infs.

SoundAdjMat guarantees spatial representability as an adjacency matrix,
but it can be extended with further algorithm-specific restrictions before being
plugged in for sound. Dijkstra’s algorithm requires nonnegative edge weights,
and—as we will discuss in §3.2—nontrivial restrictions on size and inf.

2.2 New Spatial Representations for Edge-Labeled Graphs

We give predicates for adjacency matrices and edge lists for edge-labeled graphs.

Adjacency Matrices. Adjacency matrices enable efficient label access for edge-
labeled graphs. We support three common adjacency matrix representations: a
stack-allocated 2D array int graph[size][size], a stack-allocated 1D array
int graph[size×size], and a heap-allocated 2D array int **graph. To the
casual observer, these are essentially interchangeable, but that is a mistake when
thinking spatially. Apart from the arithmetic that the second flavor uses to access
cells, there is a more subtle point: the first and second enjoy a contiguous block
of memory, but the third does not: it is an allocated “spine” with pointers to
separately-allocated rows. For a taste, the spatial representation of the first is:

arr addr(ptr , i , size) Δ= ptr + (i × size)
array(ptr , list) Δ= ∗

i∈[0,|list|)
(ptr + i) �→ list [i ])

arr rep(γ, i , ptr) Δ= let row := graph2mat(γ)[i ] in
array(arr addr(ptr , i , |row |), row)

graph rep(γ, g addr , ) Δ= ∗
v∈γ

arr rep(γ, v , g addr)

We use the separation logic ∗ in its iterated form to say that the arrays are
separate in memory. We elide details relating to object sizes, pointer alignment,
and so forth, although our formal proofs handle such matters. Of particular
note are graph2mat, which performs two projections to drag out the graph’s
nested edge labels into a 2D matrix, and arr addr , which in this instance simply
computes the address of any legal row i from the base address of the graph.
Notice that this graph rep predicate ignores its third argument. To represent a
heap-allocated 2D array we can still use graph2mat but can no longer use address
arithmetic; the third parameter is then a list of pointers to the row sub-arrays.
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While ironing out these spatial wrinkles, we develop utilities that easily
unfold and refold our adjacency matrices, thus smoothing user experience when
reading and writing arrays and cells. Of course these utilities themselves vary by
flavor of representation, but the net effect is that users of our adjacency matrices
really can be agnostic to the style of representation they are using (see §3.1).

Edge Lists. Edge lists are the representation of choice for sparse graphs. Our C
implementation defines an edge as a struct containing src, dst, and weight,
and defines a graph as a struct containing the graph’s size, edge count, and an
array of edges. Our spatial representation follows this pattern:

graph rep(γ, g addr ,e addr) Δ=
(
g addr �→ (|γ.V |, |γ.E|, e addr)

) ∗ array(e addr , γ.E)

2.3 Undirectedness in a Directed World

The CertiGraph library presented in [73] supports only directed graphs, and, as
we have seen, bakes direction-reliant idioms such as src and dst deep into its
development. Our challenge is to add support for undirected graphs atop of this.

Our approach is to observe that every directed graph can be treated as an
undirected graph by ignoring edge direction. We develop a lightweight layer of
“undirected flavored” definitions atop of the existing “directed flavored” defini-
tions, state and prove connections between these, and then build the undirected
infrastructure we need. The result is that we retain full access to CertiGraph’s
graph theory formalizations modulo some mathematical bridging.

Our basic “undirected flavored” definitions are standard [20]. Vertices u and v
are adjacent if there is an edge between them in either direction; vertices are
self-adjacent. A valid upath (undirected path) is list of valid vertices that form a
pairwise-adjacent chain. Two vertices are connected when a valid upath features
them as head and foot (essentially the transitive closure of adjacenct).

The definitions above sync up with preexisting “directed flavored” definitions.
Intuitively, undirectedness is more lax than directedness, and so it is unsurprising
that these connections are straightforward weakenings of directed properties. We
next give standard definitions [20] that culminate in minimum spanning forest,
which is exactly our postcondition of both Prim’s and Kruskal’s algorithms.2

An undirected cycle (ucycle) is a valid non-empty upath whose first and last
vertices are equal. A connected graph means that any two valid vertices are
connected. is partial graph f g means everything in f is in g. We proceed:

1 Definition uforest g :=

2 (∀ e, evalid g e → strong_evalid g e) ∧
3 (∀ p l, ¬ucycle g p l).

4 Definition spanning g g’ :=

5 ∀ u v, connected g u v ↔ connected g’ u v.

2 That Prim’s postcondition has a forest may raise an eyebrow. See §4.2.
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6 Definition spanning_uforest f g :=

7 is_partial_graph f g ∧ uforest f ∧ spanning f g.

The strong evalid predicate means that the src and dst of the edge are also
valid, so e.g., a valid edge cannot point to a deleted/absent vertex. The second
conjunct of uforest is critical: a forest has no undirected cycles. The other
definitions are straightforward from there, and minimum spanning forest f g
means that no other spanning forest has lower total edge cost than f.

Our undirected work is also compatible with our new developments in §2.1
and §2.2. An adjacency matrix-representable undirected graph has all the pure
properties discussed in SoundAdjMat, and also has symmetry across the left
diagonal. We extend SoundAdjMat into SoundUAdjMat by requiring that all valid
edges have src ≤ dst. This effectively “turns off” the matrix on one half of the
diagonal and avoids double-counting. Prim’s algorithm uses SoundUAdjMat and
places no further restrictions. Further, spatial representations and fold/unfold
utilities are shared across directed and undirected adjacency matrices.

3 Shortest Path

We verify a standard C implementation of Dijkstra’s algorithm. We first sketch
our proof in some detail with an emphasis on our loop invariants, then uncover
and remedy a subtle overflow bug, and finish with a discussion of related work.

3.1 Verified Dijkstra’s Algorithm in C

Figure 1 shows the code and proof sketch of Dijkstra’s algorithm. Red text is
used in the figure to highlight changes compared to the annotation immediately
prior. Our code is implemented exactly as suggested by CLRS [20], so we refer
readers there for a general discussion of the algorithm. The adjacency-matrix-
represented graph γ of size vertices is passed as the parameter g along with the
source vertex src and two allocated arrays dist and prev. The spatial predicate
array(x,v), which connects an array pointer x with its contents v, is standard and
unexciting. PQ(pq, heap) is the spatial representation of our priority queue (PQ)
and Item(i, (key , pri , data)) lays out a struct that we use to interact with the PQ;
we leave the management of the PQ to the operations described in§ 5. Of greater
interest is AdjMat(g, γ), which as explained in §2.2, links the concrete memory
values of g to an abstract mathematical graph γ, which in turn exposes an
interface in the language of graph theory (e.g., vertices, edges, labels). Graph γ
contains the general adjacency matrix restrictions given in §2.1 along with some
further Dijkstra-specific restrictions to be explained in §3.2. We verify Dijkstra
three times using different adjacency-matrix representations as explained in §2.2.
Thanks to some careful engineering, the C code and the Coq verification are both
almost completely agnostic to the form of representation. The only variation
between implementations is when reading a cell (line 15), so we refactor this out
into a straightforward helper method and verify it separately; accordingly, the
proof bases for the three variants differ by less than 1%.
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1 void dijkstra (int **g, int src , int *dist ,

2 int *prev , int size , int inf {

3 //
{
AdjMat(g, γ) ∗ array(dist, ) ∗ array(prev, ) ∧ src ∈ γ ∧ connected(γ, src)

}
4 Item* temp = (Item*) mallocN( sizeof(Item ));

5 int* keys = mallocN (size * sizeof (int ));

6 PQ* pq = pq_make(size); int i, u, cost;

7 for (i = 0; i < size; i++)

8 { dist[i] = inf; prev[i] = inf; keys[i] = pq_push(pq,inf ,i); }

9 dist[src]= 0; prev[src]= src; pq_edit_priority(pq,keys[src],0);

10 while (pq_size(pq) > 0) {

11 //

⎧⎪⎪⎨
⎪⎪⎩

∃dist , prev , popped , heap. AdjMat(g, γ) ∗ PQ(pq, heap) ∗ Item(temp, ) ∗
array(dist, dist) ∗ array(prev, prev) ∗ array(keys, keys) ∧
linked correctly(γ, heap, keys, dist , popped) ∧
dijk correct(γ, src, popped , prev , dist)

⎫⎪⎪⎬
⎪⎪⎭

12 pq_pop(pq, temp); u = temp ->data;

13 for (i = 0; i < size; i++) {

14 //

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∃dist ′, prev ′, heap′. AdjMat(g, γ) ∗ PQ(pq, heap′) ∗
array(dist, dist ′) ∗ array(prev, prev ′) ∗ array(keys, keys) ∗
Item(temp, (keys[u], dist[u], u)) ∧ min(dist[u], heap′) ∧
linked correctly(γ, heap′, keys, dist ′, popped � {u}) ∧
dijk correct weak(γ, src, popped � {u}, prev ′, dist ′, i, u)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

15 cost = getCell(g, u, i);

16 if (cost < inf) {

17 if (dist[i] > dist[u] + cost) {

18 dist[i] = dist[u] + cost; prev[i] = u;

19 pq_edit_priority(pq, keys[i], dist[i]);

20 }}}} //

⎧⎨
⎩

∃dist ′′, prev ′′. AdjMat(g, γ) ∗ PQ(pq, ∅) ∗ Item(temp, ) ∗
array(dist, dist ′′) ∗ array(prev, prev ′′) ∗ array(keys, keys) ∧
∀dst . dst ∈ γ → inv popped(γ, src, γ.V , prev ′′, dist ′′, dst)

⎫⎬
⎭

21 freeN (temp); pq_free (pq); freeN (keys); return; }

Fig. 1. C code and proof sketch for Dijkstra’s algorithm.

Dijkstra’s algorithm uses a PQ to greedily choose the cheapest unoptimized
vertex on line 12. The best-known distances to vertices are expected to improve
as various edges are relaxed, and such improvements need to be logged in the
PQ: Dijkstra’s algorithm implicitly assumes that its PQ supports the additional
operation decrease priority. Our “advanced” PQ (§5.3) supports this opera-
tion in logarithmic time with the pq edit priority function3.

The first nine lines are standard setup. The keys array, assigned on line 8,
is thereafter a mathematical constant. The pure predicate linked correctly con-
tains the plumbing connecting the various mathematical arrays. The verifica-
tion turns on the loop invariants on lines 11 and 14. The pure while invariant

3 Because decrease priority is relatively complex to implement, several popular
workarounds (e.g. [12]) use simpler PQs at the cost of decreased performance.
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dijk correct(γ, src, popped , prev , dist) essentially unfolds into:

∀dst . dst ∈ γ → inv popped(γ, src, popped , prev , dist , dst) ∧
inv unpopped(γ, src, popped , prev , dist , dst) ∧
inv unseen(γ, src, popped , prev , dist , dst)

That is, a destination vertex dst falls into one of three categories:

1. inv popped : if dst ∈ popped , then dst has been fully processed, i.e., dst is
reachable from src via a globally-optimal path p whose vertices are all in
popped . Path p has been logged in prev and p’s cost is given in dist .

2. inv unpopped : if dst 	∈ popped , but its known distance is less than inf, then
dst is reachable in one step from a popped vertex mom. This route is locally
optimal: we cannot improve the cost via an alternate popped vertex. More-
over, prev logs mom as the best-known way to reach dst , and dist logs the
path cost via mom as the best-known cost.

3. inv unseen: if dst 	∈ popped and its known distance is inf, then there is no
edge from any popped vertex to dst ; in other words, dst is located deeper in
the graph than has yet been explored.

After line 12, the above invariant is no longer true: a minimum-cost item u has
been popped from the PQ, and so the dist and prev arrays need to be updated to
account for this pop. The for loop does exactly this repair work. Its pure invari-
ant dijk correct weak(γ, src, popped , prev , dist , u, i) essentially unfolds into:
(∀dst . dst ∈ γ → inv popped(γ, src, popped , prev , dist , dst)

) ∧(∀dst . 0 ≤ dst < i → inv unpopped(γ, src, popped , prev , dist , dst) ∧
inv unseen(γ, src, popped , prev , dist , dst)

) ∧(∀dst . i ≤ dst < size → inv unpopped weak(γ, src, popped , prev , dist , dst , u) ∧
inv unseen weak(γ, src, popped , prev , dist , dst , u)

)

We now have five cases, many of which are familiar from dijk correct :

1. inv popped : as before; if dst ∈ popped , then it has been fully processed.
For all “previously-popped vertices” (i.e., except for u), this is trivial from
dijk correct . For u itself, we reach the heart of Dijkstra’s correctness: the
locally-optimal path to the cheapest unpopped vertex is globally optimal.

2. inv unpopped (less than i): as before; if dst is reachable in one hop from a
popped vertex mom, where now mom could be u. Initially this is trivial since
i = 0, and we restore it as i increments by updating costs when they can be
improved, as on lines 18 and 19.

3. inv unseen (less than i): as before; some previously unseen neighbors of u
may be transferred to unpopped status. This is also restored as i increments.

4. inv unpopped weak (between i and size): if dst is reachable in one hop from
a previously-popped vertex mom, with potentially further improvements pos-
sible via u. As i increments, we strengthen it into inv unpopped after consid-
ering whether routing via u improves the best-known cost to dst .
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5. inv unseen weak (between i and size): no edge exists from any previously-
popped vertex to dst , but there may be one from u. As i increments, we
consider whether routing via u reveals a path to dst . This is strengthened
into inv unpopped if so, and into inv unseen if not.

At the end of the for loop the fourth and fifth cases fall away (i = size), and
the PQ and the dist and prev arrays finish “catching up” to the pop on line 12.
This allows us to infer the while invariant dijk correct , and thus continue the
while loop. The while loop itself breaks when all vertices have been popped and
processed. The second and third clauses of the while loop invariant dijk correct
then fall away, as seen on line 20: all vertices satisfy inv popped , and are either
optimally reachable or altogether unreachable. We are done.

3.2 Overflow in Dijkstra’s Algorithm

Dijkstra’s algorithm clearly cannot work when a path cost is more than INT MAX.
A reasonable-looking restriction is to bound edge costs by

⌊
INT MAX
size−1

⌋
, since the

longest optimal path has size−1 links and so the most expensive possible path
costs no more than INT MAX. However, this has two flaws.

First, since we are writing real code in C, rather than pseudocode in an
idealized setting, we must reserve some concrete int value inf for “infinity”.
Suppose we set inf = INT MAX, and that size − 1 divides INT MAX. Now the
longest path can have cost (size − 1) ·

⌊
INT MAX
size−1

⌋
= INT MAX = inf. This creates

an unpleasant ambiguity: we cannot tell if the farthest vertex is unreachable, or
if it is reachable with legitimate cost INT MAX. We need to adjust our maximum
edge weights to leave room for inf; using

⌊
INT MAX−1
size−1

⌋
solves this first issue.

Second, even though the best-known distances start at inf (see line 8) and
only ever decrease from there, the code can overflow on lines 17 and 18. Consider
applying Dijkstra’s algorithm on a 32-bit unsigned machine to the graph in
Fig. 2. The size of the graph is 3 nodes, and the proposed edge-weight upper
bound is

⌊
INT MAX−1
size−1

⌋
=

⌊
(232−1)−1

3−1

⌋
= 231 − 1, for example as in the graph

pictured in Fig. 2. A glance at the figure shows that the true distance from the
source A to vertices B and C are 231−1 and 232−2 respectively. Both values are
representable with 32 bits, and neither distance is inf = 232 − 1, so näıvely all
seems well. Unfortunately, Dijkstra’s algorithm does not exactly work like that.

After processing vertices A and B, 231 − 1 and 232 − 2 are the costs reflected
in the dist array for B and C respectively—but unfortunately vertex C is still in
the priority queue. After vertex C is popped on line 12, we fetch its neighbors in
the for loop; the cost from C to B (231 − 1) is fetched on line 15. On line 17 the
currently optimal cost to B (231 − 1) is compared with the sum of the optimal
cost to C (232 − 2) plus the just-retrieved cost of the edge from C to B (231 − 1).
Näıvely, (232 − 2) + (231 − 1) is greater than the currently optimal cost 231 − 1,
so the algorithm should stick with the latter. However, (232 − 2) + (231 − 1)
overflows, with

(
(232 − 2) + (231 − 1)

)
mod 232 = 231 − 3, which is less than
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A B C231 − 1 231 − 1

231 − 1

Fig. 2. A graph that will result in overflow on a 32-bit machine.

231 − 1! Thus the code decides that a new cheaper path from A to B exists (in
particular, A�B�C�B) and then trashes the dist and prev arrays on line 18.

Our code uses signed int rather than unsigned int so we have undefined
behavior rather than defined-but-wrong behavior, but the essence of the overflow
is identical. We ensure that the “probing edge” does not overflow by restricting
the maximum edge cost further, from

⌊
INT MAX−1
size−1

⌋
to

⌊
INT MAX
size

⌋
. In Fig. 2, edge

weights should be bounded by
⌊
232−1

3

⌋
= 1,431,655,765; call this value w. Sup-

pose we change the edge weights in Fig. 2 from 231 − 1 to w. Now vertex B has
distance w and C has distance 2 ·w. When we remove C from the priority queue,
the comparison on line 17 is between the known best cost to B (i.e., w) and the
candidate best cost to B via C (i.e., 3 · w = 232 − 1 = INT MAX). There is no
overflow, so the candidate is rejected and the code behaves as advertised.

We fold these new restrictions into the mathematical graph γ. In addition
to the bounds discussed above, we require a few other more straightforward
bounds: edge costs be non-negative, as is typical for Dijkstra; 4·size ≤ INT MAX,
to ensure that the multiplication in the malloc on line 5 does not overflow;
and that

⌊
INT MAX
size

⌋ · (size − 1) < inf, so no valid path has cost inf. These
bounds are optimal: if the input is any less restricted, the postcondition will fail.
The last restriction on inf is not sufficient when size = 1, so in that special
case we further require that any (self-loop) edges cost less than inf. Whenever
0 < 4·size ≤ INT MAX, the restrictions on inf are satisfiable with inf

Δ=INT MAX.

3.3 Related Work on Dijkstra in Algorithms and Formal Methods

We were not able to find a reference that gives a robust, precise, and full descrip-
tion of the overflow issue we describe above. Dijkstra’s original paper [22] ignores
the issue, as do the standard textbooks Introduction to Algorithms (a.k.a. CLRS)
by Cormen et al. [20] and Algorithm Design by Kleinberg and Tardos [38].
Sedgewick’s book on graph algorithms in C [66] sidesteps the overflow in line 17
by requiring weights be in double, which does have a well-defined positive infin-
ity value and cannot overflow in the traditional sense; Sedgewick and Wayne’s
Algorithms textbook in Java does the same [67]. However, Sedgewick’s sidestep
entails enduring the inevitable round-off intrinsic to floating-point arithmetic,
and so his algorithm computes approximate optimal costs rather than exact ones.
Sedgewick does not specify any bounds on input edge weights, and accordingly
does not (and cannot) provide any bound on this accumulated error. Sedgewick
is silent on how to handle an int-weighted input graph. Skiena’s Algorithm
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Design Manual [68] contains code with exactly the bug we identify: he uses inte-
ger weights and does not specify any bounds. To its credit, Heineman et al.’s
Algorithms in a Nutshell [33] takes int edge weights as inputs and mentions
overflow as a possibility. Heineman et al. hustle their way around this overflow
by performing the arithmetic in line 17 in long. However, this cast does not
really handle the problem in a fundamental way: if edge weights are given in
long rather than int, then it would be necessary to cast to long long; if edge
weights are given in long long, then Heineman’s hustle breaks as there is no big-
ger type to which to cast. Moreover, Heineman et al. do not bound edge weights,
so when the cumulative edge weights are too high their code fails silently.

Chen verified Dijkstra in Mizar [15], Gordon et al. formalized the reachability
property in HOL [29], Moore and Zhang verified it in ACL2 [53], Mange and
Kuhn verified it in Jahob [52], Filliâtre in Why3 [25], and Klasen verified it in
KeY [37]. Liu et al. took an alternative SMT-based approach to verify a Java
implementation of Dijkstra [51]. The most recent effort (2019) is by Lammich et
al., working within Isabelle/HOL, although they only return the weight of the
shortest path rather than the path itself [45]. In general the previous mechanized
proofs on Dijkstra verify code defined within idealized formal environments, e.g.
with unbounded integers rather than machine ints and a distinguished non-
integer value for infinity. No previous work mentions the overflow we uncover.

4 Minimum Spanning Trees

Here we discuss our verifications of the classic MST algorithms Prim and
Kruskal. Although our machine-checked proofs are about real C code, in this
section we take a higher-level approach than we did in §3, focusing on our
key algorithmic findings and overall experience. Accordingly, we only provide
pseudocode for Prim’s algorithm rather than a decorated program and do not
show any code for Kruskal’s. Our development contains our C code and formal
proofs [1].

4.1 Prim’s Algorithm

We put the pseudocode for Prim’s algorithm in Fig. 3; the code on the left-hand
side is directly from CLRS, whereas the code on the right omits line 5 and will
be discussed in §4.2. Note that line 12 contains an implicit call to the PQ’s
edit priority. Since the pseudocode only compares keys (i.e., edge weights)
rather than doing arithmetic on them à la Dijkstra, there are no potential over-
flows and it is reasonable to set INF to INT MAX in C.

Indeed, our initial verifications of C code were largely “turning the crank”
once we had the definitions and associated lemma support for pure/abstract
undirected graphs, forests, etc. discussed in §2.3. Accordingly, our initial con-
tribution was a demonstration that this new graph machinery was sufficient
to verify real code. We also proved that our extensions to CertiGraph from §2
were generic rather than verification-specific by reusing much pure and spatial
reasoning that had been originally developed for our verification of Dijkstra.
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Fig. 3. Left: Prim’s algorithm from CLRS [20]. Right: the same omitting line 5.

4.2 Prim’s Algorithm Handles Multiple Components Out
of the Box

Textbook discussions of Prim’s algorithm are usually limited to single-component
input graphs (a.k.a. connected graphs), producing a minimum spanning tree. It
is widely believed that Prim’s is not directly applicable to graphs with multiple
components, which should produce a minimum spanning forest. For example,
both Rozen [65] and Sedgewick et al. [66,67] leave the extension to multiple
components as a formal exercise for the reader, whereas Kepner and Gilbert
suggest that multiple-component graphs should be handled by first finding the
components and then running Prim on each component [36].

After we completed our initial verification, a close examination of our formal
invariants showed us that the algorithm exactly as given by standard textbooks
will properly handle multi-component graphs in a single run. The confusion
starts because, in a fully connected graph, any vertex u removed from the PQ
on line 8 must have u.key < INF; i.e., u must be immediately reachable from
the spanning tree that is in the process of being built. However, nothing in the
code relies upon this connectedness fact! All we need is that u is the “closest
vertex” to the “current component.” If u.key = INF and u is a minimum of the
PQ, then it simply means that the “previous component” is done, and we have
started spanning tree construction on a new unconnected component “rooted”
at u, yielding a forest. The node u’s parent will remain NIL, at it was after the
setup loop on line 4, indicating that it is the root of a spanning tree. Its key will
be INF rather than 0, but the keys are internal to Prim’s algorithm: clients only
get back the spanning forest as encoded in the parent pointers4.

Having made this discovery, we updated our proofs to support the new weaker
precondition, which is what we currently formally verify in Coq [71]. A little fur-
ther thought led to the realization that since Prim can handle arbitrary numbers

4 The keys simply record the edge-weight connecting a vertex to its candidate parent;
recall that line 12 is really a call to the PQ’s edit priority. If a client wishes to
know this edge weight, it can simply look up the edge in the graph.



Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 813

of components, the initialization of the root’s key in line 5 is in fact unneces-
sary. Accordingly, if we remove this line and the associated function argument
r from MST-PRIM (i.e., the code on the right half of Fig. 3), the algorithm still
works correctly. Moreover, the program invariants become simpler because we
no longer need to treat a specified vertex (r) in a distinguished manner. Our
formal development verifies this version of the algorithm as well [1].

4.3 Related Work on Prim in Algorithms and Formal Methods

Prim’s algorithm was in fact first developed by the Czech mathematician Vojtěch
Jarńık in 1930 [35] before being rediscovered by Robert Prim in 1957 [61] and a
third time by Edsger W. Dijkstra in 1959 [22]. Both Prim’s and Dijkstra’s treat-
ment explicitly assumes a connected graph; although we cannot read Czech, some
time with Google translate suggests that Jarńık’s treatment probably does the
same. The textbooks we surveyed [20,36,38,65–68] seem to derive from Prim’s
and/or Dijkstra’s treatment. More casual references such as Wikipedia [3] and
innumerable lecture slides are presumably derived from the textbooks cited. We
have not found any references that state that Prim’s algorithm without modi-
fication applies to multi-component graphs, even when executable code is pro-
vided: e.g., Heineman et al. provide C++ code that aligns closely with our
C code [33], but do not mention that their code works equally well on multi-
component graphs. Sadly, many sources promulgate the false proposition that
modifications to the algorithm are needed to handle multi-component graphs
(e.g., [3,36,65–67]). Likewise, we have found no reference that removes the ini-
tialization step (line 5 in Fig. 3) from the standard algorithm.

Prim’s algorithm has been the focus of a few previous formalization efforts.
Guttman formalised and proved the correctness of Prim’s algorithm using Stone-
Kleene relation algebras in Isabelle/HOL [30]. He works in an idealized formal
environment that does not require the development of explicit data structures;
his code does not appear to be executable. Lammich et al. provided a verification
of Prim’s algorithm [45]. Lammich et al. also work within the idealized formal
environment of Isabelle/HOL, but, in contrast to Guttman, develop efficient
purely functional data structures and extract them to executable code. Both
Guttman and Lammich explicitly require that the input graph be connected.

4.4 Kruskal’s Algorithm

Although Kruskal’s algorithm is sometimes presented as taking connected graphs
and producing spanning trees, the literature also discusses the more general
case of multi-component input graphs and spanning forests. However, Kruskal
has only recently been the focus of formal verification efforts, partly because it
relies on the notoriously difficult-to-verify union-find algorithm; fortunately, the
CertiGraph project has an existing fully-verified union-find implementation that
we can leverage [73]. Kruskal also requires a sorting function; we implemented
heapsort as explained in §5.2. Kruskal is optimized for compact representations
of sparse graphs, so the O(1) space cost of heapsort is a reasonable fit.
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The primary interest of our verification of Kruskal is in our proof engineering.
Kruskal inputs graphs as edge lists rather than adjacency matrices. In addition
to requiring an addition to our spatial graph predicate menu, this means that
Kruskal’s input graphs can have multiple edges between a given pair of vertices
(i.e., a “multigraph”). Pleasingly, we can reuse most of the undirected graph
definitions (§2.3), demonstrating that they are generic and reusable.

Another challenge is integrating the pre-existing CertiGraph verification of
union-find. We are pleased to say that no change was required for CertiGraph’s
existing union-find definitions, lemmas, specifications and verification. Kruskal
actually manipulates two graphs simultaneously: a directed graph with vertex
labels (to store parent pointers and ranks) within union-find, and an undirected
multigraph with edge labels (for which the algorithm is constructing a spanning
forest). Beyond showing that CertiGraph was capable of this kind of systems-
integration challenge, we had to develop additional lemma support to bridge the
directed notion of “reachability,” used within the directed union-find graph to
the undirected notion of “connectedness,” used in the MSF graph (§2.3).

4.5 Related Work on Kruskal in Algorithms and Formal Methods

Joseph Kruskal published his algorithm in 1956 [42] and it has appeared in
numerous textbooks since (e.g., [20,38,66,68]). Kruskal’s algorithm is usually
preferred over Prim’s for sparse graphs, and is sometimes presented as “the
right choice” when confronted with multi-component graphs under the mistaken
assumption that Prim’s first requires a component-finding initial step.

Guttman generalized minimum spanning tree algorithms using Stone relation
algebras [31], and provided a proof of Kruskal’s algorithm formatted in said alge-
bras. Like in his work on Prim’s [30], Guttmann works within Isabelle/HOL and
does not include concrete data structures such as priority-queues and union-find,
instead capturing their action as equivalence relations in the underlying algebras.
In Guttmann’s Kruskal paper, he mentions that his Prim paper axiomatizes the
fact that “every finite graph has a minimum spanning forest,” which he is then
able to prove using his Kruskal algorithm. Interestingly, our Prim verification
needs the same fact, but we prove it directly.

In a similar vein, Haslbeck et al. verified Kruskal’s algorithm [32] by building
on Lammich et al.’s earlier work on Prim [45]. Like Lammich et al., Haslbeck et
al. work within Isabelle/HOL with a focus on purely functional data structures.

One of the stumbling blocks in verifying Kruskal’s algorithm is the need
to verify union-find. In addition to CertiGraph [73], two recent efforts to certify
union-find are by Charguéraud and Pottier, who also prove time complexity [14];
and by Filliâtre [26], whose proof benefits from a high degree of automation.

5 Verified Binary Heaps in C

A binary heap embeds a heap-ordered tree in an array and uses arithmetic on
indices to navigate between a parent and its left and right children [20]. In addi-
tion to providing the standard insert and remove-min/remove-max operations
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(depending on whether it is a min- or max-ordered heap) in logarithmic time,
binary heaps can by upgraded to support two nontrivial operations. First, Floyd’s
heapify function builds a binary heap from an unordered array in linear time,
and as a related upgrade, heapsort performs a worst-case linearithmic-time sort
using only constant additional space. Second, binary heaps can be upgraded to
support logarithmic-time decrease- and increase-priority operations, which
we generalize straightforwardly into edit priority.

Binary heaps are a good fit for our graph algorithms because Dijkstra’s
and Prim’s algorithms need to edit priorities, and a constant-space heapsort
is appropriate for the sparse edge-list-represented graphs typically targeted by
Kruskal’s. The C language has poor support for polymorphic higher-order func-
tions, and a binary heap that supports edit priority is half as fast as a binary
heap that does not. Accordingly, we implement binary heaps in C three times:

Name Heap order edit priority heapify Payload
basic min no yes void*
advanced min yes no int
Kruskal max no yes int, int (i.e., unboxed)

Priorities are of type int. The Kruskal-specific implementation is stripped down
to the bare minimum required to implement heapsort (e.g., it does not support
insert). We next overview these verifications in three parts: basic heap opera-
tions, heapify and heapsort operations, and the edit priority operation.

5.1 The Basic Heap Operations of Insertion and Min/Max-Removal

Because we are juggling three implementations, we take some care to factor
our verification to maximize reuse. First, each C implementation has its own
exchange and comparison functions that handle the nitty-gritty of the payload
and choose between a min or max heap. The following lines are from the “basic”
implementation, in which the “payload” (data field) is of type void*:

5 void exch(unsigned int j, unsigned int k, Item arr []) {

6 int priority = arr[j]. priority; void* data = arr[j].data;

7 arr[j]. priority = arr[k]. priority; arr[j]. data = arr[k].data;

8 arr[k]. priority = priority; arr[k]. data = data; }

9 int less(unsigned int j, unsigned int k, Item arr []) {

10 return (arr[j]. priority <= arr[k]. priority ); }

These C functions are specified as refinements of Gallina functions that exchange
polymorphic data in lists and compare objects in an abstract preordered set; we
verify them in VST after a little irksome engineering. The payoff is that the key
heap operations, which, following Sedgewick [66], we call swim and sink, can
use identical C code (up to alpha renaming) in all three implementations:

11 void swim(unsigned int k, Item arr []) {

12 while (k > ROOT_IDX && less (k, PARENT(k), arr)) {

13 exch(k, PARENT(k), arr); k = PARENT(k); } }

14 void sink (unsigned int k, Item arr[], unsigned int available) {
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15 while (LEFT_CHILD(k) < available) {

16 unsigned j = LEFT_CHILD(k);

17 if (j+1 < available && less(j+1, j, arr)) j++;

18 if (less(k, j, arr)) break; exch(k, j, arr); k = j; } }

These functions involve a number of complexities, both at the algorithms level
and at the semantics-of-C level. At the C level, there is the potential for a rather
subtle bug in the macros ROOT IDX, PARENT, etc. Abstractly, these are simple: the
root is in index 0; the children of x at roughly 2x and the parent at roughly x

2 ,
with ±1 as necessary. The danger is thinking that because the variables are
unsigned int, all arithmetic will occur in this domain; in fact we must force
the associated constants into unsigned int as well:

1 #define ROOT_IDX 0u

2 #define PARENT(x) (x-1u)/2u

3 #define LEFT_CHILD(x) (2u*x)+1u

4 #define RIGHT_CHILD(x) 2u*(x+1u)

A second C-semantics issue is the potential for overflow within LEFT CHILD and
RIGHT CHILD (as well as the increments on line 17), and underflow within the
PARENT macro (if x should ever be 0). To avoid this overflow, the precondi-
tion of sink requires that when k is in bounds (i.e., k < available), then
2 · (available−1) ≤ max unsigned. An edge case occurs when deleting the last
element from a heap (k = available); we then require 2 · k ≤ max unsigned.

At the algorithmic level, both the swim and sink functions involve nontrivial
loop invariants; sink is complicated by the further need to support Floyd’s
heapify, during which a large portion of the array is unordered. Accordingly,
we build Gallina models of both functions and show that they restore heap order
given a mostly-ordered input heap. There are two different versions of “mostly-
ordered”. Specifically, swim uses a “bottom-up” version:

5 Definition weak_heapOrdered2 (L : list A) (j : nat) : Prop :=

6 (∀ i b, i �= j → nth_error L i = Some b →
7 ∀ a, nth_error L (parent i) = Some a → a � b) ∧
8 (grandsOk L j root_idx ).

whereas sink uses a “top-down” version:

9 Definition weak_heapOrdered_bounded (L:list A) (k:nat) (j:nat) :=

10 (∀ i a, i ≥ k → i �= j → nth_error L i = Some a →
11 (∀ b, nth_error L (left_child i) = Some b → a � b) ∧
12 (∀ c, nth_error L (right_child i) = Some c → a � c)) ∧
13 (grandsOk L j k).

The parameter j indicates a “hole”, at which the heap may not be heap-ordered;
grandsOk bridges this hole by ordering the parent and the children of j:

1 Definition grandsOk (L : list A) (j : nat) (k : nat) : Prop :=

2 j �= root_idx → parent j ≥ k →
3 ∀ gs bb , parent gs = j → nth_error L gs = Some bb →
4 ∀ a, nth_error L (parent j) = Some a → a � bb.

The parameter k is used to support Floyd’s heapify: it bounds the portion of
the list in which elements are heap-ordered (with the exception of j). The proofs
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that the Gallina swim and sink can restore (bounded) heap-orderedness involve a
number of edge cases, but given the above definitions go through. The invariants
of the C versions of swim and sink are stated via the associated Gallina versions,
thereby delegating all heap-ordering proofs to the Gallina versions.

The insertion and remove functions we verify are in fact “non-checking”
versions (insert nc and remove nc): their preconditions assume there is room
in the heap to add or an item in the heap to remove. In the context of Dijkstra
and Prim, these preconditions can be proven to hold. The associated verifications
involve a little separation logic hackery (specifically, to Frame away the “junk”
part of the heap-array from the “live” part), but are straightforward using VST.
We avoid the overflow issue in sink by bounding the maximum capacity of the
heap: 4 ≤ 12 · capacity ≤ max unsigned; the magic number 12 comes from the
size of the underlying data structure in C. We require users to prove this bound
on heap creation, and thereafter handle it under the hood.

5.2 Bottom-Up Heapify and Heapsort

Floyd’s bottom-up procedure for constructing a binary heap in linear time, and
using a binary heap to sort, are classics of the literature [20,66]. Happily, while
the asymptotic bound on heap construction is nontrivial, the implementations
of both are basically repeated calls to sink (and exchanges to remove the root):

19 void build_heap(Item arr[], unsigned int size) {

20 unsigned int start = PARENT(size);

21 while (1) { sink(start , arr , size);

22 if (start == 0) break; start --; } }

23 void heapsort_rev(Item* arr , unsigned int size) {

24 build_heap(arr ,size);

25 while (size > 1) { size --;

26 exch(ROOT_IDX , size , arr); sink(ROOT_IDX , arr , size); } }

Given that in §5.1 we already generalized the specification for sink to han-
dle a portion of the array being unordered, the verification of these functions
is straightforward. There is, however, the possibility of a subtle underflow on
line 20, in the case when building an empty heap (i.e., size = 0). In turn,
this means that heapsort rev as given above cannot sort empty lists; in our
“basic” implementation we strengthen the precondition accordingly, whereas
in our “Kruskal” implementation we add a line before 24 that returns when
size = 0. We use a max-heap for Kruskal because heapsort yields a reverse
sorted list.

5.3 Modifying an Element’s Priority

To support edit-priority, each live item is associated not only with its usual int
priority but also given a unique unsigned int “key”, generated during insert
and returned to the client. The binary heap internally maintains a secondary
array key table that maps each key to the current location of the associated
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item within the primary heap array. The client calls edit priority by supplying
the key for the item that it wishes to modify, which the binary heap looks up in
the key table to locate the item in the heap array before calling sink or swim.
To keep everything linked together, the key table is modified during exchange.

To generate the keys on insert, we store a key field within each heap-item in
the main array. These keys are initialized to 0..(capacity − 1), and thereafter
are never modified other than when two cells are swapped during exchange. An
invariant can then be maintained that the keys from the “live” and “junk” parts
have no duplicates. On insertion, we “recycle” the key of the first “junk” item,
which is by the invariant known to be appropriately fresh.

5.4 Related Work on Binary Heaps in Algorithms and Formal
Methods

J. W. J. Williams published the binary heap data structure, along with heap-
sort, in June 1964 [28]. Floyd proposed his linear-time bottom-up method to
construct such heaps that December [27]. Since then, binary heaps, including
Floyd’s construction and heapsort, have become a staple of the introductory
data structure diet [20]. On the other hand, standard textbooks are surprisingly
vague on the implementation of edit priority [20,38,66], and completely silent
on the generation of fresh keys during insertion. Our method above of “recycling
keys” avoids a subtle overflow in a näıve approach, and does not appear in the
literature we examined. The näıve idea is to have a global counter starting at
0, which is then increased on each insert. Unfortunately, this is unsound: during
(very) long runs involving both insert and remove-min, this key counter will
overflow. Although overflow is defined in C for unsigned int, this overflow is
fatal algorithmically: multiple live items could be assigned the same key.

Binary heaps have been verified several times in the literature. They were
problem 2 of the VACID-0 benchmark [49], and solved in this regard as well
by the Why3 team [69]. These solutions did not implement bottom-up heap
construction or edit priority. Summers verified heapsort in Viper, again without
bottom-up heap construction [56]. Lammich verified Introsort, which includes a
heapsort subroutine [44]. Previous formal work ignores nitty-gritty C issues such
as the difference between signed and unsigned arithmetic. We believe we are the
first formally verified binary heap to support edit-priority.

6 Engineering Considerations

Verifying real code is meaningfully harder than verifying toy implementations.
On top of such challenges, verifying graph algorithms requires a significant
amount of mathematical machinery: there are many plausible ways to define
basic notions such as reachability, but not all of them can handle the challenges
of verifying real code [72]. Moreover, we would like our mathematical, spatial,
and verification machinery to be generic and reusable.
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All of the above suggests that it is important to work within existing for-
mal proof developments due a strong desire to not reinvent very large wheels
(the existing proof bases we work with contain hundreds of thousands of lines
of formal proof). We chose to work with the CompCert certified compiler [50];
the Verified Software Toolchain [4], which provides significant tactic support
for separation logic-based deductive verification of CompCert C programs; and
the CertiGraph framework [73], which provides much pure and spatial reason-
ing support for verifying graph-manipulating programs within VST. We did so
because these frameworks can handle the challenges of real code and because the
CertiGraph included several fully verified implementations of union-find that we
wished to reuse in our verification of Kruskal’s algorithm.

Modular formal proof development involves major software engineering chal-
lenges [64]. Accordingly, we took care factoring our extensions to CertiGraph into
generic and reusable pieces. This factoring allows us to reuse machinery between
verifications, including in the mathematical, spatial, and verification levels. So,
e.g., we share significant pure and spatial machinery between Dijkstra, Prim,
and Kruskal. Moreover, we maintain good separation between pure and spatial
reasoning. So, e.g., both our Dijkstra and Prim verifications can handle multiple
spatial variants of adjacency matrices without significant change.

On the other hand, working within existing developments involves some chal-
lenges, primarily in that some design decisions have been already made and are
hard to change. Moreover, our verifications tickled numerous bugs within VST,
including: overly-aggressive automatic entailment simplifying, poor error mes-
sages, improper handling of C structs, and performance issues. We have been
fortunate that the VST team has been willing to work with us to fix such bugs,
although some work still remains. Performance remains one area of focus: for
example, checking our verification of Kruskal with a 3.7 GHz processor and 32 gb
of memory takes more than 22 min even after all of the generic pure and spatial
reasoning has been checked, i.e. approximately 7 s per line of C code (includ-
ing whitespace and comments). This performance is unviable for verifying an
industrial-sized application of equivalent difficulty: e.g., it would take 13 years
for Coq to check the proof for 1,000,000 lines of C. Before some optimizations
to our proof structure, the time was significantly longer still.

Our contributions to CertiGraph include pieces that are reused repeatedly
and pieces that are more bespoke. Below, we give a sense of both the size of our
development (lines of formal Coq proof) and the mileage we get out of our own
work via reuse. Items “added with +” are very similar (within 1%) of each other;
Prim #4 is the version that does not set the root, i.e. on the right in Fig. 3.



820 A. Mohan et al.

Name Used LoC
MathAdjMat 7x 165
Undirected 5x 2,139
MathUAdjMat 4x 1,024
SpaceAdjMat1+2+3 7x 499
EdgeListGraph 1x 911
MathDijkGraph 3x 165
DijkPureProof 3x 2,124
UndirectedUF 1x 183
BinaryHeapModel 1x 1,870
Total (pure/spatial) 9,080

Name LoC
DijkSpec1+2+3 301
VerifDijk1+2+3 3,554
PrimSpec1+2+3+4 508
VerifPrim1+2+3+4 7,455
KruskalSpec 302
VerifKruskal 1,606
VerifHeapSort 568
VerifBasicBinaryHeap 777
VerifAdvBinaryHeap 2,253
Total (verifications) 17,234

In total we have 26,314 novel lines of Coq proof to verify 1,155 lines of C code
divided among 12 files, including 3 variants of Dijkstra, 4 variants of Prim, 1 of
Kruskal (which includes its heapsort), and 2 binary heaps.

7 Concluding Thoughts: Related and Future Work

We have already discussed work directly related to Dijkstra’s (§3.3), Prim’s
(§4.3), and Kruskal’s (§4.5) algorithms, as well as binary heaps (§5.4). Summa-
rizing briefly to the point of unreasonableness, our observations about Dijkstra’s
overflow and Prim’s specification are novel, and existing formal proofs focus on
code working within idealized environments rather than handling the real-world
considerations that we do. We have also discussed the three formal developments
we build upon and extend: CompCert, VST, and CertiGraph (Sect. 6). Our goal
now is to discuss mechanized graph reasoning and verification more broadly.

Reasoning About Mathematical Graphs. There is a 30+ year history of mech-
anizing graph theory, beginning at least with Wong [74] and Chou [19] and
continuing to the present day; Wang discusses many such efforts [72, §3.3]. The
two abstract frameworks that seem closest to ours are those by Noschinski [58];
and by Lammich and Nipkow [45]. The latter is particularly related to our work,
because they too start with a directed graph library and must extend it to handle
undirected graphs so that they can verify Prim’s algorithm.

More-Automated Verification. Broadly speaking, mechanized verification of soft-
ware falls in a spectrum between more-automated-but-less-precise verifications
and less-automated-but-more-precise verifications. Although VST contains some
automation, we fall within the latter camp. In the former camp, landmark ini-
tial separation logic [63] tools such as Smallfoot [7] have grown into Facebook’s
industrial-strength Infer [11]. Other notable relatively-automated separation
logic-based tools include HIP/SLEEK [17], Bedrock [18], KIV [24], VerCors [9],
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and Viper [57]. More-automated solutions that use techniques other than sepa-
ration logic include Boogie [6], Blast [8], Dafny [48], and KeY [2]. In Sect. 3.3
we discuss how some of these more-automated approaches have been applied to
verify Dijkstra’s algorithm. Petrank and Hawblitzel’s Boogie-based verification
of a garbage collector [60], Bubel’s KeY-based verification of the Schorr-Waite
algorithm, and Chen et al.’s Tarjan’s strongly connected components algorithm
in (among others) Why3 [16] are three examples of more-automated verifica-
tion of graph algorithms. Müller verified binomial (not binary) heaps in Viper,
although his implementation did not support an edit-priority function [55]. The
VOCAL project has verified a number of data structures, including binary and
other heaps (all without edit-priority) and union-find [13].

We are not confident that more-automated tools would be able to repli-
cate our work easily. We prove full functional correctness, whereas many more-
automated tools prove only more limited properties. Moreover, our full functional
correctness results rely upon a meaningful amount of domain-specific knowledge
about graphs, which automated tools usually lack. Even if we restrict ourselves
to more limited domains such as overflows, several more automated efforts did
not uncover the overflow that we described in Sect. 3.3. The proof that certain
bounds on edge weights and inf suffice depends on an intimate understanding of
Dijkstra’s algorithm (in particular, that it explores one edge beyond the optimum
paths); overall the problem seems challenging in highly-automated settings. The
more powerful specification we discover for Prim’s algorithm in Sect. 4.2 is like-
wise not something a tool is likely to discover: human insight appears necessary,
at least given the current state of machine learning techniques.

In contrast, several of the potential overflows in our binary heap might
be uncovered by more-automated approaches, especially those related to the
PARENT and LEFT CHILD macros from Sect. 5.1. Although the arithmetic involves
both addition/subtraction and multiplication/division, we suspect a tool such
as Z3 [54] could handle it. Moreover, a sufficiently-precise tool would probably
spot the necessity of forcing the internal constants into unsigned int. The issue
of sound key generation described in Sect. 5.3 might be a bit trickier. On the
one hand, unsigned int overflow is defined in C, so real code sometimes relies
upon it. Accordingly, merely observing that the counter could overflow does not
guarantee that the code is necessarily buggy. On the other hand, some tools
might flag it anyway out of caution (i.e. right answer, wrong reason).

Less-Automated Verification. Although as discussed above some more-
automated tools have been applied to verify graph algorithms, the problem
domain is sufficiently complex that many of the verifications discussed in Sect.
3.3, Sect. 4.3, and Sect. 4.5 use less-automated techniques. Two basic approaches
are popular. The “shallow embedding” approach is to write the algorithm in the
native language of a proof assistant. The “deep embedding” approach is to write
the algorithm in another language whose semantics has been precisely defined in
the proof assistant. VST uses a deep embedding, and so we do too; one of VST’s
more popular competitors in the deep embedding style is “Iris Proof Mode” [39].
In contrast, Lammich et al. have produced a series of results verifying a vari-
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ety of graph algorithms using a shallow embedding (e.g., [32,43,45–47]). From
a bird’s-eye view Lammich et al.’s work is the most related to our results in
this paper: they verify all three algorithms we do and are able to extract fully-
executable code, even if sometimes their focus is a bit different, e.g. on novel
purely-functional data structures such as a priority queue with edit priority.

Pen-and-Paper Verification of Graph Algorithms. We use separation logic [63]
as our base framework. Initial work on graph algorithms in separation logic was
minimal; Bornat et al. is an early example [10]. Hobor and Villard developed
the technique of ramification to verify graph algorithms [34], using a particular
“star/wand” pattern to express heap update. Wang et al. later integrated rami-
fication into VST as the CertiGraph project we use [73]. Krishna et al. [40] have
developed a flow algebraic framework to reason about local and global proper-
ties of flow graphs in the program heap; their flow algebra is mainly used to
tackle local reasoning of global graphs in program heaps. Flow algebras should
be compatible with existing separation logics; implementation and integration
with the Iris project appears to be work in progress [41].

Krishna et al. are interested in concurrency [40]; Raad et al. provide another
example of pen-and-paper reasoning about concurrent graph algorithms [62].

Future Work. We see several opportunities for decreasing the effort and/or
increasing the automation in our approach. At the level of Hoare tuples, we see
opportunities for improved VST tactics to handle common cases we encounter in
graph algorithms. At the level of spatial predicates, we can continue to expand
our library of graph constructions, for example for adjacency lists. We also
believe there are opportunities to increase modularity and automation at the
interface between the spatial and the mathematical levels, e.g. we sometimes
compare C pointers to heap-represented graph nodes for equality, and due to the
nature of our representations this equality check will be well-defined in C when
the associated nodes are present in the mathematical graph, so this check should
pass automatically.

We believe that more automation is possible at the level of mathematical
graphs: for example reachability techniques based on regular expressions over
matrices and related semirings [5,23,70]. We are also intrigued by the recent
development of various specialized graph logics such as by Costa et al. [21] and
hope that these kinds of techniques will allow us to simplify our reasoning. The
key advantage of having end-to-end machine-checked examples such as the ones
we presented above is that they guide the automation efforts by providing precise
goals that are known to be strong enough to verify real code.

Conclusion. We extend the CertiGraph library to handle undirected graphs
and several flavours of graphs with edge labels, both at the pure and at the
spatial levels. We verify the full functional correctness of the three classic graph
algorithms of Dijkstra, Prim, and Kruskal. We find nontrivial bounds on edge
costs and infinity for Dijkstra and provide a novel specification for Prim. We



Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 823

verify a binary heap with Floyd’s heapify and edit priority. All of our code
is in CompCert C and all of our proofs are machine-checked in Coq.

Acknowledgements. We thank Shengyi Wang for his help and support.
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25. Filliâtre, J.C.: Dijkstra’s shortest path algorithm in Why3 (2011). http://toccata.

lri.fr/gallery/dijkstra.en.html
26. Fillître, J.C.: Simpler proofs with decentralized invariants. J. Log. Algebraic Meth-

ods Program. 121, 100645 (2021)
27. Floyd, R.W.: Algorithm 245: treesort. Commun. ACM 7(12), 701 (1964)
28. Forsythe, G.E.: Algorithms. Commun. ACM 7(6), 347–349 (1964)
29. Gordon, M., Hurd, J., Slind, K.: Executing the formal semantics of the accellera

property specification language by mechanised theorem proving. In: Geist, D.,
Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 200–215. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-39724-3 19

30. Guttmann, W.: Relation-algebraic verification of prim’s minimum spanning tree
algorithm. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp.
51–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4 4

31. Guttmann, W.: Verifying minimum spanning tree algorithms with stone relation
algebras. J. Log. Algebraic Methods Program. 101, 132–150 (2018)

32. Haslbeck, M.P.L., Lammich, P.: Refinement with time - refining the run-time of
algorithms in Isabelle/HOL. In: ITP (2019)

33. Heineman, G., Pollice, G., Selkow, S.: Algorithms in a Nutshell. O’Reilly (2008)
34. Hobor, A., Villard, J.: Ramifications of sharing in data structures. In: POPL (2013)
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Gillian, Part II: Real-World Verification for
JavaScript and C

Abstract. We introduce verification based on separation logic to Gillian,
a multi-language platform for the development of symbolic analysis tools
which is parametric on the memory model of the target language. Our
work develops a methodology for constructing compositional memory
models for Gillian, leading to a unified presentation of the JavaScript and
C memory models. We verify the JavaScript and C implementations of the
AWS Encryption SDK message header deserialisation module, specifically
designing common abstractions used for both verification tasks, and find
two bugs in the JavaScript and three bugs in the C implementation.

1 Introduction

Separation logic (SL) [25,40] introduced compositional program verification us-
ing Hoare reasoning. Current analysis tools based on ideas from SL include:
the automatic tool Infer [8,9] used inside Facebook to find lightweight bugs in
Java/C/C++/Obj-C programs; the semi-automatic tool Verifast [26], which
provides full verification for fragments of C and Java; the semi-automatic tool
JaVerT [21], which provides bug-finding and verification for JavaScript (JS) pro-
grams; and the Viper architecture [36,35], which provides a verification backend
for multiple programming languages, including Java, Rust, and Python. Our goal
is to introduce verification based on SL to Gillian [19], a multi-language platform
for symbolic analysis, integrating bug-finding and verification in the spirit of
JaVerT and targeting many languages in the spirit of Viper.

Gillian currently supports three types of program analysis: symbolic test-
ing, verification and bi-abduction. In [19], the focus was on symbolic testing,
parametrised on complete concrete and symbolic memory models of the target
language (TL), and underpinned by a core symbolic execution engine with strong
mathematical foundations. Gillian analysis is done on GIL, an intermediate goto
language parametric on a set of memory actions, which describe the fundamental
ways in which TL programs interact with their memories. To instantiate Gillian
to a new TL, a tool developer must: (1) identify the set of the TL memory actions
and implement the TL memory models using these actions; and (2) provide a
© The Author(s) 2021
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trusted compiler from the TL to GIL, which preserves the TL memory models and
the semantics. In [19], Gillian was instantiated to JS and C, and used to find bugs
in two real-world data-structure libraries, Buckets.js [43] and Collections-C [41].
Here, we introduce compositional memory models for Gillian, extend Gillian anal-
ysis with verification based on separation logic, adapt Gillian-JS and Gillian-C
to this compositional setting, and provide verified specifications of the JS and C
implementations of the deserialisation module of the AWS Encryption SDK.

The compositional Gillian memory models (§2) are given by the tool developer
for each TL instantiation. They are based on partial memories, and formulated us-
ing core predicates and the associated consumer and producer actions. Core
predicates describe fundamental units of TL memories: e.g., a property of a JS
object and a C block cell. Consumers and producers, respectively, frame off and
frame on the TL memory resource described by the core predicates. Partiality
and frame are familiar concepts from SL [25,40,11]. What is perhaps less familiar
is our emphasis on negative resource: i.e., the resource known to be absent from
the partial memory. For example, in JS, a new extensible object is known not to
contain any property; and, in C, a freed block is known not to be in memory and
a cell is known not to exist beyond the block bound. We introduce a methodology
for designing Gillian compositional memory models, and apply it to JS and C (§3),
resulting in a unexpected similarity between the two models. Our compositional
JS memory models follow those given in work on a JS program logic [24] and the
JaVerT tool [21], where negative resource was essential for frame preservation,
inspired by the use of negative resource to capture stability properties in the
CAP concurrent separation logic [14], now used in Iris [27]. Our compositional C
memory models are based on the complete CompCert memory model [31]. Despite
a large body of work on separation logic for C, we were unable to find a partial
C memory model that captures the negative resource in its entirety. The nearest
is probably the CH20 formalism [29], which handles freed locations but not block
bounds. Negative resource for freed locations has also been used in incorrectness
logic [39], and for block bounds in a program logic for WebAssembly [48].

We build Gillian verification on top of our compositional memory models.
In particular, using the core predicates, we design an assertion language for
writing function specifications in separation logic and, using the consumers and
producers, we build a fully parametric spatial entailment engine which enables
the use of function specifications in symbolic execution. Gillian also supports
user-defined predicates, which allow tool developers to identify the TL language
interface familiar to code developers, and code developers to describe and prove
properties about the particular data structures in their programs.

We extend Gillian-JS and Gillian-C to enable verification, introducing the JS
and C compositional memory models, and using the same trusted compilers as
in [19]. With these instantiations, we provide functionally-correct, verified specifi-
cations of the message header deserialisation module of the AWS Encryption SDK
JS and C implementations (§4, §5). This is stable, critical, industry-grade code
(~200loc for JS, ~950loc for C), which uses advanced language features to manipu-
late complex data structures. To verify this code, we create language-independent
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predicates to capture the message header, which we then connect without modifi-
cation to both JS and C memories, giving specifications for the module functions.
We also build a library of associated lemmas, used for the verification of both
implementations. The verification itself required a substantial improvement of
the reasoning capabilities of Gillian, especially when it came to handling arrays
of symbolic size. We discovered two bugs in the JS implementation: one a form
of prototype poisoning, predicted theoretically in our paper on JaVerT [21]; and
another that allowed third parties to potentially alter authenticated, non-secret
data. We have also discovered three bugs in the C implementation: one which
allowed some malformed headers to be parsed as correct; one over-allocation; and
one undefined behaviour. All of these bugs have been fixed.

2 Gillian Verification

We introduce Gillian verification based on separation logic (§2.2), extending the
GIL execution engine presented in [19] with compositional memory models (§2.1).

2.1 Compositional Memory Models

GIL is a simple goto intermediate language whose syntax is given below. It is
parametric on a set of TL memory actions, A 3 α, given per instantiation by
the tool developer. GIL values, v ∈ Val , contain numbers, strings, booleans,
uninterpreted symbols (used, e.g., to represent memory locations), simple types
(e.g., numbers, strings), function identifiers and lists of values. GIL expressions,
e ∈ Expr , contain values, program variables, and unary and binary operators (e.g.
addition, list concatenation); GIL symbolic expressions, ê ∈ Êxpr , are analogous
except that symbolic variables, x̂ ∈ X̂ , are used instead of program variables.

GIL Syntax

v ∈ Val , i, j, n ∈ N | s ∈ S | b ∈ B | ς ∈ U | τ ∈ T | f ∈ F | v ∈ List(Val)
e ∈ Expr , v | x ∈ X | 	e | e1 ⊕ e2 ê ∈ Êxpr , v | x̂ ∈ X̂ | 	ê | ê1 ⊕ ê2
c ∈ Cmd , x := e | ifgoto e i | x := e(e′) | x := α(e) | func ∈ Func , f(x){c}

x := uSym/iSym(e) | return e | fail e | vanish p ∈ Prog = P!(Func)

GIL commands, c ∈ Cmd , contain variable assignment, conditional goto,
function call, memory actions, allocation of uninterpreted/interpreted symbols,
function return, error termination and path cutting. A GIL function, f(x){c},
comprises an identifier f ∈ F , a formal parameter x3, and a body given by a list
of commands c. A GIL program is a set of GIL functions with unique identifiers.

GIL execution is defined in terms of state models, which are parametric
on a value set, V ⊇ Val , and a set of memory actions, A. We distinguish
the Boolean value set, Π ⊂ V, and refer to π ∈ Π as a context. State mod-
els expose an interface consisting of state actions, A ] AS , where the actions
3 The implementation supports multiple parameters.
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Memory Action - Success
cmd(p, cs, i) = x := α(e)

σ.evale (−) v σ.α(v) (σ′, v′)S

σ′.setVarx (v′) σ′′

p ` 〈σ, cs, i〉  〈σ′′, cs, i+1〉S

Memory Action - Error
cmd(p, cs, i) = x := α(e)

σ.evale (−) v σ.α(v) (σ′, v′)r

r 6= S o = (if r = E then E else M)

p ` 〈σ, cs, i〉  〈σ′, cs, i〉o(v
′)

Fig. 1: GIL Execution Semantics: Memory Actions

AS = {setVarx}x∈X∪{setStore, getStore}∪{evale}e∈Expr∪{assume, uSym, iSym}
address store management, expression evaluation, branching, and allocation.

Definition 1 (State Model). A state model, S(V, A) , 〈|S|, ea〉, comprises: a
set of states σ = 〈µ, ρ, π〉 ∈ |S|, containing a memory µ, a variable store ρ, and
a (satisfiable) context π4; and an action execution function, ea : (A ] AS) →
|S| → V ⇀ P(|S| × V ×R), with the result r ∈ R = {S, E ,M} denoting success,
non-correctible error, or missing information error, pretty-printed σ.α(v) →
{(σi, vi)ri |i∈I} for all outcomes and σ.α(v)  (µi, σi)

ri for a specific outcome,
with countable I. The value set of concrete state models is the set of GIL values,
Val5; the value set of symbolic state models is the set of symbolic expressions, Êxpr .

Definition 2 (GIL Execution Semantics). Given a state model S, the GIL
execution semantics has judgements of the form:

p ` 〈σ, cs, i〉o  S 〈σ′, cs ′, j〉o
′

with: call stacks, cs ∈ CallS; command indexes, i, j ∈ N; and outcomes, o ∈ O.

The GIL execution semantics is standard for a goto language, except that it is
parametrised by the memory actions. Call stacks capture function-related control
flow, with cmd(p, cs, i) denoting the i-th command of the currently executing
function (cf. [33] for details). Outcomes, o ∈ O , S | N(v) | E(v) | M(v), indicate
how the execution is to proceed: S states that it can continue; N(v) states that it
terminated normally with return value v; and E(v) and M(v) state that it failed
with either a non-correctible or missing information error described by v. We
give the rules for memory action execution in Figure 1; all can be found in [33].

Compositional Memory Models. We move from whole-program memory
models [19] to compositional memory models by introducing memory core predi-
cates, γ ∈ Γ , which represent the fundamental units of the TL memory model
(e.g., a memory cell). Core predicates take two lists of parameters, in-parameters
(or ins), denoted vi, and out-parameters (or outs), denoted vo, such that from the
ins we can learn the outs. This concept is similar to predicate parameter modes

4 States also include allocators (cf. [33] for details), elided to limit clutter.
5 Note that the only satisfiable concrete context is true, meaning that concrete contexts
can be elided and concrete states can be viewed as memory-store pairs, 〈µ, ρ〉.
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of [37] and we use it to implement a parametric spatial entailment engine. An
example of a core predicate is the cell assertion, x 7→ v, which captures a cell in
memory at address x having value v. Its in-parameter is x, and its out-parameter
is v, because, if we know x, we can find v by looking it up in the memory.

With each core predicate γ ∈ Γ , we associate a consumer and a producer
memory action, denoted by consγ and prodγ respectively, to obtain the set of
predicate actions AΓ =

⋃
γ∈Γ {consγ , prodγ}, whose meaning is discussed shortly.

Definition 3 (Compositional Memory Model). Given value set V and core
predicate set Γ , a compositional memory model, M(V, Γ ) , 〈|M |,Wf , eaΓ 〉,
comprises: (1) a partial commutative monoid (PCM)6, |M | = (|M |, •,0), where
0 denotes the (indivisible) empty memory; (2) a well-formedness relation, Wf ⊆
|M | ×Π, with Wfπ(µ) denoting that memory µ is well-formed in (satisfiable)
context π; and (3) a predicate action execution function, ea Γ : AΓ×|M |×V×Π ⇀
P(|M | × V ×Π ×R), pretty-printed µ.α(v)π →

{
(µi, vi)

ri
πi |i∈I

}
for all outcomes

and µ.α(v)π  (µi, vi)
ri
πi for a specific outcome, with countable I. The value set

of concrete memory models is the set of GIL values, Val ; the value set of symbolic
memory models is the set of symbolic expressions, Êxpr .

We discuss the most important properties that the components of compo-
sitional memory models must satisfy; a full list is available in [33]. The PCM
requirement is well-known from separation logic [40,11]. Well-formedness holds
only for satisfiable contexts, and describes the separation of symbolic resource and
any further TL-specific well-formedness criteria (cf. §3). It must be monotonic
with respect to context strengthening, compatible with the PCM composition,
and the empty memory must be well-formed in any satisfiable context. The action
execution function, µ.α(v)π →

{
(µi, vi)

ri
πi |i∈I

}
, denotes that, in a memory µ that

is well-formed in the context π, executing action α with parameter v yields a
countable number of branches characterised by the non-overlapping7, satisfiable
contexts πi, each of which implies π and makes the corresponding memory µi well-
formed, and all of which together cover π (i.e., π ⇒

∨
i∈I πi). This last property

means that memory actions do not drop paths, which is essential for verification.
The intuition behind consumers and producers is that consumers frame off

the core predicate resource (CPR), uniquely determined by the core predicate ins,
and the producers frame it on. The following properties capture this intuition.
First, we define the CPR of a core predicate γ〈vi · vo〉 as the memory resulting
from its production in 0, which must succeed in any satisfiable context:

π SAT =⇒ 0.prodγ(vi · vo)π  (γ〈vi · vo〉, true)Sπ ∧ γ〈vi · vo〉 6= 0.

overloading notation for the core predicate and its resource. Moreover, we require
that any successful production frames on the CPR:

µ.prodγ(vi · vo)π  (µ′, true)Sπ′ =⇒ µ′ = µ • γ〈vi · vo〉
6 A PCM, X = 〈X, •,0〉, comprises a carrier set X (overloaded for simplicity), a partial,
associative, and commutative composition operator •, and unit element 0.

7 Note that this requirement makes concrete memory actions deterministic.
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and also that producers cannot return missing information errors, as they are
meant to succeed precisely when the CPR is missing. The consumers, on the
other hand, must succeed if and only if the CPR is present in memory:

µ.consγ(vi)π  (µ′, vo)
S
π′ =⇒ π′ ` µ = µ′ • γ〈vi · vo〉

π ` µ = µ′ • γ〈vi · vo〉 ∧ Wfπ(µ) =⇒ µ.consγ(vi)π  (µ′, vo)
S
π

with the resulting context π′ having enough information to isolate the CPR8.
Interestingly, erroneous executions cannot be fully characterised in terms of
CPR presence or absence, because of TL-specific error cases: for example, in C,
attempting to either get or set the value of a block cell that is beyond the block
bound raises an out-of-bounds error (cf. §3). What we require instead is that
consumed CPR can always be re-produced, that producers fail in a memory in
which consumers succeed, and that producers succeed in a memory in which
consumers return a missing information error (and vice versa for the latter):

µ.consγ(vi)π  (µ′, vo)
S
π′ =⇒ µ′.prodγ(vi · v′o)π′  (µ′′, true)Sπ′

µ.consγ(vi)π  (µ′, vo)
S
π′ =⇒ µ.prodγ(vi · −)π  (µ, false)Eπ′

µ.consγ(vi)π  (µ, false)Mπ′ ⇐⇒ µ.prodγ(vi · vo)π  (µ • γ〈vi · vo〉, true)Sπ′

The properties given so far allow us, for example, to prove that well-formed
memories cannot contain duplicated CPR. The final property below requires that
non-missing executions of consumers and erroneous executions of producers must
be frame-preserving, with the former formulated as follows:

µ.consγ(vi)π  (µ′, vo)
r
π′ ∧ r 6=M ∧ (π′′ ⇒ π′) ∧ Wfπ′′(µ • µf )

=⇒ (µ • µf ).consγ(vi)π′′  (µ′ • µf , vo)rπ′′

where π′′ effectively maintains well-formedness constraints for µ, adds on further
ones required for µ • µf to be defined and also isolates the consumed CPR.
Note that neither missing executions of consumers nor successful executions of
producers can be frame preserving, as framing on the appropriate CPR could
result in success for the former, and a duplicated resource error for the latter.

Using the consumers and producers, we are able to derive getter and setter
actions, A , {getγ , setγ : γ ∈ Γ}, which perform frame-preserving CPR lookup
and mutation, as given below. We discuss getters and setters further in §3, in the
context of our JS and C instantiations.

Getter: Success
µ.consγ(vi)π  (µ′, vo)

S
π′

µ′.prodγ(vi · vo)π′  (µ′′, true)Sπ′

µ.getγ(vi)π  (µ′′, vo)
S
π′

Setter: Success
µ.consγ(vi)π  (µ′,−)Sπ′

µ′.prodγ(vi · vo)π′  (µ′′, true)Sπ′

µ.setγ(vi · vo)π  (µ′′, true)Sπ′

Getter: Non-Success
µ.consγ(vi)π  (µ, false)rπ′ r 6= S

µ.getγ(vi)π  (µ, false)rπ′

Setter: Non-Success
µ.consγ(vi)π  (µ, false)rπ′ r 6= S

µ.setγ(vi · vo)π  (µ, false)rπ′

8 The π ` . . . denotes reasoning under context π. In the concrete case, it can be ignored.
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Compositional State Models. Compositional memory models lift to compo-
sitional state models, in a similar way to the lifting of the complete memory
models illustrated in [19]; see [33] for details. Here, we focus on memory action
execution, which is lifted as follows to state action execution, given a memory
model M(V, Γ ) and α ∈ AΓ ]A:

ea(α, 〈µ, ρ, π〉, v) , {(〈µ′, ρ, π′〉, v′)r | µ.α(v)π  (µ′, v′)rπ′}.

Observe how the context of the state is passed to the memory execution function,
which may then strengthen it before passing it back to the resulting state. We
can show that the PCM and well-formedness relation on memories lift to a PCM
and well-formedness relation on states, and that state action execution maintains
properties analogous to those given for memory models.

2.2 GIL Verification

We give an overview of Gillian verification based on separation logic (SL); see [33]
for details. We describe GIL assertions, parameterised by the core predicates
of the TL, define assertion satisfiability in a novel, parametric way using the
core predicate producers, and provide a mechanism for using verified function
specifications in GIL execution. GIL Assertion Syntax

p, q ∈ A , emp | p ∗ q | γ〈êi · êo〉 | δ〈êi · êo〉
P,Q ∈ Asrt , {p ∧ π | p ∈ A, π ∈ Π}
pred ∈ Pred , pred δ〈x̂i · x̂o〉 := P1; ... ;Pn;

A compositional memory model
with core predicates Γ induces
an SL-assertion language given on
the right. GIL memory assertions,
p, q ∈ A, are formed using the
empty assertion, the separating conjunction, the core predicates, and user-defined
predicates, whose names come from a dedicated set, ∆ 3 δ. The empty assertion
and the separating conjunction are standard. Core predicate assertions are lifted
from memory core predicates. User-defined predicates, introduced by example in
§3 and §4, are used by tool developers to characterise the interface of the TL, and
by code developers to describe the data structures in their programs. They have
in- and out-parameters like core predicates, and can have multiple definitions,
separated by a semi-colon. Assertions, P,Q ∈ Asrt , extend memory assertions
with pure first-order assertions, π, conflated with Boolean symbolic expressions.

Satisfiability. To define assertion satisfiability, we lift memory consumers and
producers from core predicates to memory assertions, denoted by µ.consθ(p) and
µ.prodθ(p), and then to states and arbitrary assertions, denoted by σ.consθ(P )
and σ.prodθ(P ), using substitutions θ : X̂ 7→ V (extended to symbolic expres-
sions inductively, in the standard way) to map core predicate assertions, with
parameters given by symbolic expressions, to the core predicates of the memory
model, with parameters given by values. We highlight the successful base case
of the memory assertion consumers, where the returned context requires the
out-parameters of the assertion to match the ones found in memory:

µ.consγ(θ(êi))π  (µ′, v′o)
S
π′ π′′ = (π′ ∧ v′o = θ(êo))) π′′ SAT

µ.consθ(γ〈êi · êo〉)π  (µ′, true)Sπ′′
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and the successful consumption of an arbitrary assertion P = p ∧ π:

µ′.consθ(p)π′  (µ′′, true)Sπ′′ π′′ ` θ(π)
〈µ′, ρ, π′〉.consθ(p ∧ π)  (〈µ′′, ρ, π′′〉, true)S

Definition 4 (Satisfiability). The satisfiability relation, stating that memory
µ′ and context π′ satisfy assertion p ∧ π under substitution θ, is defined by:

µ′, π′, θ |= p ∧ π ⇐⇒ 0.prodθ(p)true  (µp, true)
S
πp ∧ π

′ ` (µ′ = µp ∧ πp ∧ θ(π))

and is lifted to states as: 〈µ′, ρ, π′〉, θ |= p ∧ π if and only if µ′, π′, θ |= p ∧ π.

In Definition 4, the production, when successful, creates the (unique) memory
µp that corresponds to the resource of the assertion p, with its (unique) well-
formedness constraints, πp. In the concrete case, as the only allowed context is true,
the formulation simplifies to the more intuitive 0.prodθ(p) → (µ′, true)S ∧ θ(π).

Specifications. Gillian function specifications have the form {x̂, P}f(x){Q}ê,
where f is the function identifier, x is the function parameter, x̂ is the symbolic
variable holding the value of x, P is the pre-condition, Q is the post-condition, and
ê is the return value of the function, with the following, well-known, constraints:

1. program variables do not appear in the pre- or the post-condition, and the
function parameter x is accessed using the symbolic variable x̂;

2. symbolic variables that appear in a pre-condition are implicitly universally
quantified, and can be re-used in the corresponding post-condition; and

3. symbolic variables that appear only in a post-condition are implicitly exis-
tentially quantified.

We extend GIL programs with function specifications, accessible via p.specs,
and the GIL execution semantics with rules for folding and unfolding user-defined
predicates, as well as with a rule for calling function specifications, the success
case of which is given below. Gillian verifies a specification {x̂, P}f(x){Q}ê if,
given the identity substitution θ̂ and a symbolic state σ̂ with store {x 7→ θ̂(x̂)}
such that σ̂, θ̂ |= P , the symbolic execution of f starting from σ̂ always terminates,
for all final symbolic states σ̂i there exists some θ̂i ≥ θ̂ such that σ̂i, θ̂i |= Q, and
the corresponding return value equals θ̂i(ê) under the context of σ̂i. We can prove
that if Gillian verifies a specification, then its standard SL interpretation holds.

Spec Call - Success
cmd(p, cs, i) = y := e(e′) with θ function call with substitution θ
σ.evale (−) f σ.evale′ (−) v′ get function id and parameter value
{x̂, P}f(x){Q}ê ∈ p.specs get one of the function specifications
θ′ = θ[x̂ 7→ v′] extend substitution with parameter value
σ.consθ′(P ) → {(σj , true)S |j∈J} consume pre-condition
j ∈ J select a branch
σj .prodθ′ (Q) (σ′

j , true)
S produce post-condition

σ′
j .setVary (θ

′(ê)) σ′ assign return value
p ` 〈σ, cs, i〉  〈σ′, cs, i+1〉
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Note that for this rule to succeed, the consumption of P must succeed. The rule
is slightly simplified for presentation. First, it assumes to have the substitution
upfront; in the implementation, we have a unification algorithm that, starting
from the function parameter and using the consumers, learns the substitution.
Second, it assumes that the post-condition does not introduce fresh symbolic
variables; these are handled using allocators and added to the substitution.

Remark. Due to space constraints, we have not been able to give the full tech-
nical details of Gillian verification. These are available in the Gillian technical
report [33], where we demonstrate that the overall GIL execution using composi-
tional memory models is frame-preserving (up to the usual renaming of allocated
memory locations) and prove a standard verification soundness result.

3 Compositional Memory Models: JavaScript and C

We present the compositional memory models of JS and C, giving the basic
actions and core predicates, and some of the user-defined predicates that capture
the intuitive interfaces of these languages. The key ideas behind compositional
JS memory models were introduced in the JaVerT project [21,20,22]; we transfer
them to Gillian. We introduce the compositional C memory models, building
on the concrete block-offset memory model of CompCert [31], simplifying the
presentation.9 In doing so, we highlight a striking similarity between the JS and
C models that is the result of our emphasis on negative resource.

The JS and C concrete compositional memory models are made up of
building blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocks that are assigned a unique location (or identifier) from a set
of uninterpreted symbols, L ⊂ U : for JS, the building blocks are the extensible
objects; for C, they are the blocks of linear memory of a given size. Each building
block is divided into at least one componentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponent. For JS, each object has three
components: a property table, h : S ⇀ Val , partially mapping property names
(strings) to values; a domain, d : P(S), discussed shortly; and metadata, m : Val ,
which keeps track of internal JS properties for that object [22]. For C, each block
has two components: the block contents k : N⇀ Val , partially mapping offsets
(natural numbers) to values; and a bound, n : N, discussed shortly. Finally, the
memory unitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunits are, intuitively, the parts of the memory components that cannot
be separated further: for JS, these are single object properties, domains, and
metadata; for C, these are single block cells and bounds. These memory units
directly correspond to the core predicates given in Definitions 6 and 7.

Compositional memory models must keep track of negative resource, which
can come from two sources: allocation and deallocation. For JS and C, the
negative information originating from allocation has infinite representation: in
JS, a freshly created object is known to not have any properties; in C, a freshly
allocated block of a given size in C is known not to have offsets beyond that size.
This infinite information is captured, for JS, by the object domain whose meaning
9 We assume that values have the same size in memory and omit permissions. Gillian-C
implements the full models, eliding the concurrency-related aspects of permissions.
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is that any property not in the domain is absent, and, for C, by the block bound
whose meaning is that any accesses beyond that bound result in a buffer overrun
error. The negative information originating from deallocation is easier to handle,
tracked by a dedicated uninterpreted symbol, ∅ ∈ U . In JS, deallocation is at the
unit level: only object properties are deleted. This is captured by extending the
co-domain of property tables with ∅: that is, h : S ⇀ Val∅. In C, deallocation is
at the building-block level: only entire blocks can be deleted. This is captured by
extending the co-domain of blocks with ∅, indicating that a block has been freed.

Due to compositionality, any building block, component or unit can be missingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissing.
In the theory, we capture this either implicitly, via absence from the domain of a
mapping (e.g., a missing object property for JS or a missing block cell for C), or
explicitly, using the symbol ⊥ (e.g. a missing domain, metadata, or bound).

Definition 5 (Compositional JS and CMemories). The PCMs of composi-
tional concrete JS and C memories, |MJS| and |MC|, are given by the sets

µ ∈ |MJS| : L⇀ ((S ⇀ Val∅)× P(S)⊥ × Val⊥),
µ ∈ |MC| : L⇀ ((N⇀ Val)× N⊥)∅,

composition defined as disjoint union, and empty memory ∅. The PCMs of
compositional symbolic JS and C memories, |M̂JS| and |M̂C|, are given by the sets

µ̂ ∈ |M̂JS| : Êxpr ⇀ ((Êxpr ⇀ Êxpr)× Êxpr⊥ × Êxpr⊥),
µ̂ ∈ |M̂C| : Êxpr ⇀ ((Êxpr ⇀ Êxpr)× Êxpr⊥)∅,

with composition defined as (syntactic) disjoint union, and empty memory ∅.

In the above definition, symbolic memory models are simple liftings of the
concrete ones. In the implementation, we employ heavy optimisation: for example,
in Gillian-C, we have developed a complex tree representation of symbolic blocks
inspired by [29], enabling tractable reasoning about arrays of symbolic size.

Well-formedness of concrete memories addresses the relationship between
positive and negative information, given for JS and C below:

Wf JS(µ) , ∀(h, d,−) ∈ codom(µ). d 6= ⊥ =⇒ dom(h) ⊆ d
Wf C(µ) , ∀(k, n) ∈ codom(µ). n 6= ⊥ =⇒ dom(k) ⊆ [0, n)

Well-formedness of symbolic memories additionally has to address separation
of locations and separation in any other mappings with symbolic expressions
in its domain (e.g. object properties for JS and offsets for C). We give the
well-formedness criterion for the symbolic C memory:

Ŵf C
π(µ̂) , π `

∧
l̂,l̂′∈dom(µ̂)

l̂ 6≡l̂′

l̂ 6= l̂′ ∧
∧

(k̂,−)∈codom(µ̂)

ô,ô′∈dom(k̂),ô 6≡ô′

ô 6= ô′ ∧
∧

(k̂,n̂)∈codom(µ̂)

ô∈dom(k̂),n̂ 6=⊥

ô < n̂

For our JS and C instantiations, the core predicates follow straightforwardly
from the units of their memory models.
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CConsCell - Found
µ(l) = (k, n) k(o) = v

k′ = k \ {o} µ′ = µ[l 7→ (k′, n)]

µ.consCell([l, o]) (µ′, v)S

SConsCell - Use After Free
µ̂(l̂′) = ∅ π′ = (l̂ = l̂′) (π ∧ π′) SAT

µ̂.consCell ([l̂, ô])π  (µ̂, false)Eπ∧π′

SConsCell - Found
µ̂(l̂′) = (k̂, n̂) k̂(ô′) = v̂

π′ = ([l̂, ô] = [l̂′, ô′]) (π ∧ π′) SAT
k̂′ = k̂ \ {ô′} µ̂′ = µ̂[l̂′ 7→ (k̂′, n̂)]

µ̂.consCell ([l̂, ô])π  (µ̂′, v̂)Sπ∧π′

SConsCell - Missing Cell
µ̂(l̂′) = (k̂, n̂)

πk = (l̂ = l̂′) ∧ ô /∈ dom(k̂)
πn = (n̂ = ⊥) ∨ (n̂ ≥ ô) (π ∧ πk ∧ πn) SAT
µ̂.consCell ([l̂, ô])π  (µ̂, false)Mπ∧πk∧πn

Fig. 2: Selected rules for the consCell consumer.

Definition 6 (JS Core Predicates). JS has three core predicates, γJS ∈ ΓJS:
– the object-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-property predicate, (l̂, p̂) 7→ v̂, which states that property p̂ of object
at location l̂ contains value v̂ (including ∅ denoting property absence);

– the domaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomain predicate, domain(l̂, d̂), which states that object at location l̂ has
no properties outside the finite set d̂;

– the metadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadata predicate, metadata(l̂, m̂), which states that object at location l̂
has metadata m̂.

Definition 7 (C Core Predicates). C has three core predicates, γC ∈ ΓC
10:

– the cell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicate, (l̂, ô) 7→ v̂, which states that the cell at offset ô in the block
at location l̂ contains value v̂ (which, this time, does not include ∅);

– the bounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicate, bound(l̂, n̂) , which states that any cell beyond offset n̂
in block at location l̂ is not there;

– the freed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicate, l̂ 7→ ∅, which states that block at location l̂ has been freed.

We illustrate the C predicate action execution functions, ea C and êa C, respec-
tively, with a selection of rules for the C cell-predicate consumer, consCell, given in
Figure 2. The remaining rules, as well as the rules for their JS counterparts, ea JS

and êa JS, can be found in the Gillian technical report [33]. With this information,
we can define the compositional concrete and symbolic JS and C memory models.

Definition 8 (JS Memory Models). The compositional concrete and symbolic
JS memory models are defined, respectively, as MJS(Val , ΓJS) = 〈|MJS|,Wf JS, ea JS〉
and M̂JS(Êxpr , ΓJS) = 〈|M̂JS|, Ŵf JS, êa JS〉.

Definition 9 (C Memory Models). The compositional concrete and symbolic
C memory models are defined, respectively, as MC(Val , ΓJS) = 〈|MC|,Wf C, ea C〉
and M̂C(Êxpr , ΓJS) = 〈|M̂C|, Ŵf C, êa C〉.
10 In full C and the Gillian-C implementation, memory values may be of different sizes,

and holes may exist between these values due to alignment restrictions. To address
this, the implemented cell assertion carries additional information related to, e.g.,
size and type, similarly to that of [4], and there also exists a hole core predicate.
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The getters and setters for JS and C are defined using the methodology
described in §2. In particular, the JS getters and setters are given by AJS =
{getProp, setProp, getDomain, setDomain, getMetadata, setMetadata}, and the sum-
mary of the execution of the symbolic getProp(l̂, p̂) getter is illustrated below:

Similarly, the C getters and setters are given by AC = {getCell, setCell, getBound,
setBound, getFreed, setFreed} and the summary of the execution of the symbolic
getCell(l̂, ô) getter is illustrated below:

The similarities in the two diagrams are evident, with the main difference being
that JS getters do not throw errors, whereas C getters do.

User-defined JS and C Predicates. Core predicates describe fundamental
units of the TL memory model. On top, user-defined predicates build layers
of abstraction to describe memory components and building blocks, standard
library interfaces, all the way to complex data structures for particular code
such as the AWS message header. Using Gillian notation, we present some of the
JS and C user-defined predicates; in this notation: ∗ and ∧ are conflated to ∗,
with automatic differentiation between spatial and pure assertions11; predicate
definitions are separated with a semi-colon; and logical variables are prefixed with
the # symbol and are implicitly existentially quantified in predicate definitions.

Gillian-JS inherits many user-defined predicates from JaVerT [21], including
simple ones for describing JS objects and their properties, as well as advanced
ones for specifying scoping, function closures and prototype chains. We focus
here on the new FrozenObject(o, proto, pvs) predicate, which describes a frozen
object12 o with prototype proto and property-value pairs pvs. We first define the
predicate FrozenObjectProps(o, pvs) to grab the resource of the object properties:

pred FrozenObjectProps(o, pvs) : pvs = [ ];
pvs = [#p, #v] :: #rpvs * DataPropConst(o, #p, #v) *
FrozenObjectProps(o, #rpvs);

where DataPropConst(o,#p,#v) states that the object o has a non-writable prop-
erty #p with value #v. We then add information about the object prototype and
its non-extensibility using the JSObject(o, proto, ext) predicate, and also state
that the object has no properties other than pvs using the domain core predicate:
11 From the separation logic literature, the pure assertions can be regarded as dotted.
12 A JS object is frozen if it cannot be extended and all its properties are non-writable.
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pred FrozenObject(o, proto, pvs) :
JSObject(o, proto, false) * FrozenObjectProps(o, pvs) *
FirstProj(pvs, #ps) * ListToSet(#ps, #pss) * domain(o, #pss)

where FirstProj(pvs,#ps) means that the list #ps is the first projection of the
list of pairs pvs, and ListToSet(#ps,#pss) means that the elements of the list
#ps form the set #pss.

Gillian-C, on the other hand, comes with user-defined predicates capturing,
for example, arrays and blocks in memory, as well as automatically-generated
predicates describing C structs, with support for nested structs. In particular, the
array(b, off, c) predicate describes a contiguous fragment of a block b, starting
from offset off, with contents described by the mathematical list c:

array(b, off, c) : c = [];
(b, off) -> #c * array(b, off+1, #d) * c = #c :: #d

and the block(b, c) predicate captures an entire C block with contents c:

block(b, c) : array(b, 0, c) * bound(b, |c|)

In the implementation, arrays also exist as core predicates. This allows us to
reason about arrays automatically in the symbolic memory (e.g., to split an array
into sub-arrays), supported by our tree representation of symbolic blocks, instead
of requiring manual application of lemmas.

Finally, we illustrate automatically generated struct-related predicates us-
ing the aws_byte_cursor structure given below, which contains two fields: an
unsigned integer len; and a nullable pointer to an array of 8-bit unsigned inte-
gers buf. This struct is used for traversing the AWS message header (cf. §4), and
is intended to capture an array in memory that starts at buf and has length len.

struct aws_byte_cursor { pred struct_aws_byte_cursor(cur, len, buf) :
size_t len; (cur == [#b, #o]) * ((#b, #o) -int64-> len) *
uint8_t *buf; ((#b, #o +p 8) -int64-> buf) *

} is_ptr_or_null(buf)

The generated predicate describes the struct’s layout in memory and gives basic
typing information: it states that an aws_byte_cursor, starting from the position
given by the pointer cur, occupies 16 bytes in memory (8 + 8, given by the type
annotation int64), with the first 8 bytes taken by len, and the second 8 bytes
(note the pointer addition +p) taken by buf, which is either a pointer or null.

4 AWS Encryption SDK Message Header Specification

The encrypted data handled by the AWS Encryption SDK is stored within a
structure called a message [3]. The message format has two versions of similar
complexity: we verify version 1; version 2 was introduced very recently. Messages
consist of a header, a body, and a footer. Here, we describe only the structure of
the header, as we are verifying header deserialisation.
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The AWS Encryption SDK message header is a sequence of bytes (buffer)
divided into sections, as illustrated below; above each section is its length in bytes.

Our approach is to abstract the header contents into a list and formulate pure
predicates that describe its structure in a language-independent way. This allows
us to then use the same abstractions as part of further, language-dependent,
abstractions for both JS and C. Our design of the abstractions was informed by
existing code annotations found in the implementations, which describe simple
first-order properties of the code and, in the case of C, can also link to the
CBMC [30] bounded model checker. However, these annotations are limited by
the expressivity of JS and C, particularly when it comes to reflecting on the
memory contents. Our predicates have no such limitations.

We narrow down our exposition to the encryption context, as it illustrates well
the language-independent and language-dependent aspects of our specification,
and is also the section in which we discovered bugs in both implementations.

Pure Specification of the Encryption Context. The encryption context
(EC) is a sequence of bytes that describes a set of key-value pairs. Its structure
is given in the diagram below.

The first two bytes represent the number of key-value pairs, denoted by KC,
and the rest describe the KC key-value pairs themselves. Keys and values are
represented by sequences of bytes and, as they are of variable length, are serialised
by first having two bytes that represent the length, followed by that many bytes
of the actual key or value; we refer to this pattern as a field, and to a sequence of
n fields as an n-element. Then, a key-value pair is serialised as a 2-field element,
and all of the key-value pairs form a sequence of KC 2-field elements.

We specify the EC by building layers of abstraction, from fields to elements to
element sequences to the EC, each of which can either be complete, incomplete
(partial, but with correct structure), or malformed (with incorrect structure).
In the implementation, these are specified separately and are joined together in
appropriate over-arching abstractions. Here, we focus on complete variants only.

The Field(buf, pos, fld, len) predicate states that the buffer (list of bytes) buf,
at index pos, holds a field with contents fld (list of bytes) and total length len:
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pred Field(buf, pos, fld, len) :
(0 <= pos) * (#rFL = sub(buf, pos, 2)) *
UInt16(#rFL, #fL) *
(fld = sub(buf, pos+2, #fL)) *
(len = 2+#fL) * (pos+len <= |buf|)

This predicate uses the GIL operator sub(l, s, n), which returns the sublist of list l
starting from index s and of length n, and also the UInt16(rn, n) predicate, which
states that n is a 16-bit big-endian interpretation of the raw 2-byte list rn. The
Element(buf, pos, fC, elem, len) predicate states that buffer buf at index pos holds
a sequence of fC fields, with contents elem (a list of the appropriate field contents)
and total length len. It is defined similarly to a standard linked-list predicate,
with the ‘link’ being the fact that the list members are contiguous in memory:

pred Element(buf, pos, fC, elem, len) :
(fC = 0) * (0 <= pos) * (pos <= |buf|) * (elem = [ ]) * (len = 0);
(0 < fC) * Field(buf, pos, #fld, #fL) * Element(buf, pos+#fL, fC-1, #rFs,
#rL) * (elem = #fld :: #rFs) * (len = #fL+#rL)

Next, analogously to Element, we define the Elements(buf, pos, eC, fC, elems, len)

predicate, which states that the buffer buf, at index pos, holds a sequence of
eC elements, each with fC fields, with contents elems (a list of the appropriate
element contents) and of total length len. Finally, the EncryptionContext(buf, KVs)
predicate states that the entire buffer buf is an EC with key-value pairs KVs, with
all keys being unique:

pred EncryptionContext(buf, KVs) : (buf = [ ]) * (KVs = [ ]);
(#rKC = sub(buf, 0, 2)) * UInt16(#rKC, #KC) * (0 < #KC) *
Elements(buf, 2, #KC, 2, KVs, #len) *
FirstProj(KVs, #Ks) * Unique(#Ks) * (2+#len = |buf|)

Next, we show how this pure specification of the EC contents can be connected
without modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modification to both the JS and C memories.

Encryption Context in JS. In JS, the EC is serialised as an ArrayBuffer,
which is a raw binary data buffer in memory, and accessed using a Uint8Array,
which is a view on top of that ArrayBuffer starting from a given offset and of a
given length, treating the raw data underneath as 8-bit unsigned integers. This
Uint8Array view is similar in function to the aws_byte_cursor C structure (cf. §3).
Abstracting ArrayBuffer contents to lists, we connect these data structures in JS
memory to our pure EC specification (cf. Figure 3, top and centre):

pred JSSerEC(o, EC, KVs) :
Uint8Array(o, #aBuf, #off, #len) * ArrayBuffer(#aBuf, #data) *
(EC = sub(#data, #off, #len)) * EncryptionContext(EC, KVs)

In JS, the EC is deserialised into a frozen JS object with prototype null,
whose properties represent the keys and hold the values. This is done by converting
the keys and the values to UTF-8 strings, and is specified as follows:

pred JSDeserEC(o, KVs) : toUtf8(KVs, #sKVs) * FrozenObject(o, null, #sKVs)

where toUtf8 converts the list KVs point-wise to strings, obtaining #sKVs.
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Fig. 3: Serialised Encryption Context: language-independent pure part (red;
middle) and language-specific resource (green; JS above, C below)

{ JSSerEC(eEC, #EC, #KVs) }
function decodeEncryptionContext(eEC)

{ PRE-CONDITION * JSDeserEC(ret, #KVs) }

Finally, the specification of the
decodeEncryptionContext function
states that the EC deserialisation
is performed correctly.

Encryption Context in C. In C, the EC is serialised as a block in memory,
and is traversed using an AWS byte cursor. Using the auto-generated predicate
given in §3, we define the aws_byte_cursor(cur, buf, c) predicate, stating that
cur points to a byte cursor which has access to an array starting from buf, and
holding contents c, making the length implicit:

pred aws_byte_cursor(cur, buf, c) :
struct_aws_byte_cursor(cur, #len, buf) * (buf = [#b, #off]) *
array(#b, #off, c) * (#len = |c|)

A serialised EC can then be described as a valid byte cursor whose contents
represent the EC key-value pairs (cf. Figure 3, centre and bottom):

pred CSerEC(cur, buf, EC, KVs) :
aws_byte_cursor(cur, buf, EC) * EncryptionContext(EC, KVs)

In C, the EC is deserialised into an AWS hash table, whose keys and values
directly correspond to the key/value pairs of the EC, specified as follows, eliding
the internal structure of the hash tables due to space constraints:

pred CDeserEC(ht, KVs) : valid_hash_table(ht, KVs)

The specification of the EC deserialisation function is more complex than for
JS. In particular, the byte cursor that originally pointed to the EC ends up shifted
to the end of the byte buffer, exposing the array underneath the CSerEC predicate.

{ empty_hash_table(ec) * CSerEC(cur, #buf, #EC, #KVs) }
int aws_cryptosdk_enc_ctx_deserialize(

struct aws_hash_table *ec, struct aws_byte_cursor *cur)
{ (ret = 0) * CDeserEC(ec, #KVs) * (#buf = [#b, #off]) *

array(#b, #off, #EC) * aws_byte_cursor(cur, #buf +p |#EC|, [ ]) }
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5 AWS Encryption SDK Message Header Verification

Using Gillian-JS and Gillian-C, together with the specifications given in §4, we
verify full functional correctness of the header deserialisation module of the AWS
Encryption SDK JS [2] (~200loc) and C [1] (~950loc) implementations. In par-
ticular, we verify that the deserialisation of a complete header is correct, and the
deserialisation of an incomplete or a malformed header raises an appropriate error.

Verification Effort and Performance. The JS verification took 3 person-
months and the C verification took 2 person-months, with the latter taking
less time because a large part of the infrastructure developed for JS could be
re-used. We substantially improved the first-order solver of Gillian to reason
automatically about complex operations on lists of symbolic length, first used in
the modelling of JS ArrayBuffers and then for C dynamic arrays. We created a
collection of language-independent predicates and lemmas about their inductive
properties (~1.2kloc) that cover the project-specific AWS header, but also re-
usable first-order concepts such as list element uniqueness, projections of lists
of pairs, conversion from bytes to numbers, and conversion from raw bytes to
strings. Similarly, we also had to create language-dependent abstractions and
associated lemmas for the JS and C manipulation of the AWS message header
(~1.2kloc). Finally, we had to: annotate the code with specifications and loop
invariants, with the latter often having more than twenty components; manually
apply lemmas to prove numerous complex entailments; and manually unfold
user-defined predicates at times (the folding is automated) (~1.1kloc).

On a machine with an Intel Core i7-4980HQ CPU 2.80 GHz, DDR3 RAM
16GB, and a 256GB solid-state hard-drive running macOS, the JS verification
takes approximately 45 seconds and the C verification takes approximately six
minutes. The C time is longer, in part due to the larger codebase, but mainly due
to the complexity of the implementation of the full C memory model, which is
able to reason about arrays of symbolic size. This requires frequent satisfiability
checks and (for the moment) branching on non-zero array size. These times could
both be improved with the implementation of basic merging techniques.

JS Verification: Bugs/Improvements. We discovered two bugs and improved
one function implementation to link better with the underlying data structure.

– In the decodeEncryptionContext function, the object representing the de-
serialised EC originally had prototype Object.prototype which, in this case,
due to the prototype inheritance of JavaScript, meant that if an EC key
coincided with a property of Object.prototype, an error would be thrown
incorrectly. This bug was predicted theoretically in [21], and has since been
found in several real-world libraries [42], including cash and jQuery.

– In the same function, in one of the branches the deserialised EC was returned
non-frozen, which constituted a potential vulnerability in that third parties
could alter non-secret, but authenticated data.

– The readElements(eC, fC, buf, pos) function, which reads eC elements with
fC fields from buffer buf at index pos into a JS array of arrays, was misaligned
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with the underlying data structures. Its parameters were non-intuitive (it
received eC ·fC, buf, and pos), and used complex array operations to re-form
the final return value. We re-implemented this function to construct the
returned array of arrays efficiently, simplifying specification and verification,
and our implementation was integrated into the codebase.

JS Verification: Caveats. Our JS verification is correct up to the following
caveats. First, as the AWS SDK JS implementation is written in TypeScript,
we elide types to obtain JS; this could be automated, potentially generating
predicates from the types. Next, some ES6 features, such as patterns in function
parameters, are not yet supported by Gillian-JS; these we rewrite to ES5 Strict,
preserving their meaning. Next, we use axiomatic specifications of the ArrayBuffer,
DataView, and UInt8Array ES6 built-in libraries, as well as of the Object.freeze
and Array.prototype.map built-in functions. These would ideally be accompanied
with implementations, tested against the official Test262 test suite [16] and verified
against their specifications. Finally, as Gillian does not support higher-order
reasoning, we axiomatise the toUtf8 function, passed into the deserialisation
module as a parameter, as an injective function from raw bytes to JS strings.

C Verification: Bugs. We discovered three bugs: one logical error; one undefined
behaviour; and one over-allocation.

– The deserialisation of the EC mishandled the case when there is not enough
data to read it entirely, continuing to read the EDK instead of reporting an
error. This allows some malformed headers to be parsed as well-formed.

– The function aws_byte_cursor_advance, when called with a NULL cursor
and a length of 0, resulted in NULL+ 0 being computed, which is undefined
behaviour, although not problematic for most compilers.

– The deserialised EC was stored using aws_string, which extends C strings
with certain metadata. It is implemented using a structure that includes a
flexible array member. We discovered that string creation over-allocated this
array by 8 bytes, because our (correct) predicate describing aws_strings
was not allowing the verification to go through.

C Verification: Caveats. Our C verification is correct up to the following
caveats. First, we do not use the aws_byte_cursor_advance_nospec function,
which advances the byte cursor, but also uses complex computation to protect
against the Spectre bug. We instead use aws_byte_cursor_advance, which has
equivalent behaviour, as our specifications are not expressive enough to capture
this distinction. Next, we axiomatise the functions of the AWS hash tables and
array list libraries, as their verification is of comparable complexity to the entire
deserialisation module. Finally, the AWS allocators of the C implementation,
which are passed into some of the functions, contain pointers to memory man-
agement functions; this is higher-order in nature. In the verification, we assume
those functions are malloc, calloc, and realloc.
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6 Related Work

The literature explores many techniques and tools for verifying JS [44,18,22,21]
and C [23,26,28,13,7]. We describe: multi-language verification architectures; JS
and C verification tools based on separation logic; C memory models related to
our models; and other analyses applied to the AWS Encryption SDK.

Multi-Language Verification Architectures. The multi-language verifica-
tion architectures closest to Gillian are coreStar [6] and Viper [36,35]. Both of
these architectures were designed to serve as verification back-ends for TLs and
both have at their core a simple intermediate representation with a dedicated
symbolic execution engine13. However, they work with the TL in different ways.

In coreStar, TL core assertions are modelled as abstract predicates and
memory actions as function calls. The function specifications play the role of
our consumer and producer actions. The user also has to provide logical axioms,
describing properties of the abstract predicates. The Gillian equivalent of these
axioms are the implementations of the memory actions using consumers and
producers, which can be optimised, but require understanding of the inner
workings of Gillian. Like Gillian, coreStar’s symbolic execution engine is
parametric on the underlying logical theory and can thus be used to reason
about any memory model representable using abstract predicates. It is, however,
unclear how efficiently this can be done. coreStar has been used inside the tool
jStar [15], which has verified implementations of several Java design patterns
but was not pushed to more complex Java code. In [21], the authors observed
that coreStar was not able to handle tractably even simple JS programs.

Unlike Gillian and coreStar, Viper [35,36] comes with a fixed interme-
diate language, also called Viper. The user encodes their memory model and
corresponding core assertions into the memory model and assertion language of
Viper. A key advantage of Viper lies in its expressive permission model, which
includes fractional, recursive, and abstract read permissions, as well as in its
support for custom mathematical domains, which enable users to extend Viper
with their own first-order theories, tailored to the data structures at hand. Viper
has mechanisms similar to our consumer and producer actions, called inhale and
exhale. Viper can reason about both sequential and concurrent programs, and
has been used to verify programs written in Java, Go, Rust, and Python, but
not JS and C. In fact, it is not clear to us how difficult it would be to use Viper
to reason about JS objects and the linear memory of C, as neither can be simply
expressed using the static objects natively provided by Viper.

Semi-automatic JS and C Verification Tools. There are very few ver-
ification tools for JS based on separation logic. For example, JaVerT [21]
has been used to verify simple sequential data-structure algorithms. Its succes-
sor, JaVerT 2.0 [22], provides whole-program symbolic testing, verification
and bi-abductive reasoning [10], unified by a core symbolic execution engine.

13 Viper includes both a symbolic execution engine and a verification condition generator
based on Boogie [5] for its intermediate language.
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JaVerT 2.0 verification is more efficient than JaVerT verification, but has
still only been applied to simple data-structure algorithms. Gillian [19] builds on
JaVerT 2.0, taking the highly non-trivial step of designing the intermediate
language, correctness results, and implementation to be parametric on the TL
memory models. Despite this generalisation, Gillian substantially outperforms
JaVerT 2.0, both for symbolic testing [19] and for verification.

Verifast [26] and the tool in [7] are prominent examples of semi-automatic
tools that provide functionally-correct verification of C programs using separation-
logic specifications. These tools work with C fragments and simplified memory
models. While the tool in [7] has not been applied to real-world code, Verifast
has been used to verify, e.g., an implementation of a Policy Enforcement Point
(PEP) for Network Admission Control scenarios [38]. One difference between
these tools and Gillian is that Gillian specifications can express negative resource,
allowing us to differentiate missing resource errors from use-after-free errors.
However, Verifast, unlike Gillian, supports reasoning about concurrent programs.
There is also much work on using theorem provers to verify both sequential
and concurrent C code using separation logic: see, for example, the DeepSpec
project [45] and the Iris project [47], which we do not describe here.

Related Formal C Memory Models. Our compositional C memory models
were inspired by CompCert [32] and the CH20 formalisation of Krebbers [29].
In particular, our concrete C model is adapted from the complete model of
CompCert, which supports reasoning about programs that access in-memory
data representations. This feature is used by the AWS deserialisation algorithm,
which reads the buffer contents at the byte-granularity.

We present our compositional symbolic C memory model in this paper as a
simple lifting of the concrete one. Our implementation is more complex, however,
representing blocks as trees holding symbolic values and combining the concepts
of memory trees and abstract values from the concrete memory model of the
CH2O formalisation. Although not mentioned in [29], CH2O does keep track of
some negative resource in that it maintains freed locations, but not block bounds.

Analysis of the AWS Encryption SDK. Amazon has recently directed con-
siderable effort towards the formal analyses of their codebase, with a number of
tools incorporated into their CI pipeline. For example, the main cryptographic
algorithms of the AWS Encryption SDK have certified implementations in the
specification language Cryptol [17], underpinned by SAW [12]. These implemen-
tations, however, have not yet been proven equivalent to the corresponding C
implementation. In addition, the C implementation of the AWS Encryption SDK
includes a symbolic test suite run using CBMC [30]. This implementation makes
heavy use of the aws-c-common data-structure library, which is annotated with
first-order assertions checked by CBMC. CBMC is a mature, industrial-strength
tool, likely to outperform and have broader coverage than the symbolic test-
ing of Gillian-C, with substantially fewer annotations than Gillian verification.
However, as CBMC is a bounded model checker, it provides weaker correctness
guarantees and is not compositional. Its expressivity is also somewhat constrained
by the expressivity of the C runtime. For example, it does not allow reasoning
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about the size of allocated memory. Gillian specifications have this expressivity,
as highlighted by the discovered over-allocation bug. The subtle logical bug
found by Gillian also demonstrates the importance of being able to express full,
functionally-correct specifications. We believe there has been no previous analysis
of the JS implementation of AWS Encryption SDK.

7 Conclusions

We have introduced compositional verification to the Gillian platform. Our work
includes a methodology for designing compositional TL memory models, distin-
guishing negative resource from missing resource and using the JS and C memory
models as demonstrator examples. It also includes a novel, parametric approach
to assertion interpretation, independent of the TL, enabling compositional use
of function specifications in verification. We have been able to push the Gillian
verification to self-contained, critical, real-world AWS JS and C code. The bugs
and suggestions for code improvements that arose during this verification process
have all been accepted by the developers and incorporated into the codebase. To
our knowledge, this is the first time that industry-grade JS code has been fully
verified and the first time that, in one verification platform, the same abstractions
were used to verify industry code from languages as different as JS and C. The
artifact accompanying this paper can be found at [34], and the entire Gillian
development at [46]. In future, we will publish correctness results for Gillian
verification [33], as part of an in-depth theoretical study of program correctness
and incorrectness for symbolic testing, verification and bi-abductive reasoning
being developed in Gillian.
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Abstract. In this industrial case study we describe a new network
troubleshooting analysis used by VPC Reachability Analyzer, an
SMT-based network reachability analysis and debugging tool. Our trou-
bleshooting analysis uses a formal model of AWS Virtual Private Cloud
(VPC) semantics to identify whether a destination is reachable from a
source in a given VPC configuration. In the case where there is no feasi-
ble path, our analysis derives a blocked path: an infeasible but otherwise
complete path that would be feasible if a corresponding set of VPC con-
figuration settings were adjusted.

Our blocked path analysis differs from other academic and commercial
offerings that either rely on packet probing (e.g., tcptrace) or provide
only partial paths terminating at the first component that rejects the
packet. By providing a complete (but infeasible) path from the source to
destination, we identify for a user all the configuration settings they will
need to alter to admit that path (instead of requiring them to repeatedly
re-run the analysis after making partial changes). This allows users to
refine their query so that the blocked path is aligned with their intended
network behavior before making any changes to their VPC configuration.

1 Introduction

This paper describes a new network connectivity troubleshooting analysis used
by VPC Reachability Analyzer, a service that analyzes Amazon Web Ser-
vices’ (AWS) Virtual Private Cloud (VPC) configurations.

VPCs are user-configured networks of virtual compute devices and resources.
AWS VPC offers dozens of networking components and controls to give users
flexibility in configuring their networks. Access to these resources is logically
isolated within virtual networks configured by the users. As VPCs grow in size
and complexity, users can increasingly benefit from automation to identify and
resolve misconfigurations, as well as to validate that applications maintain secu-
rity and availability invariants through infrastructure changes.

VPC Reachability Analyzer uses the Tiros [2] formal model of AWS
VPC networking semantics to identify whether a destination is reachable from a
source in a given VPC configuration. If the destination is reachable, then Tiros

identifies a feasible path from the source to the destination, where a path is
c© The Author(s) 2021
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a sequence of network components associated with incoming and/or outgoing
packet header assignments (protocol, addresses, ports). The outgoing packet
header of one component is the incoming packet header of the next component.
Paths may also identify relevant VPC configuration details such as the specific
routes, firewall rules, or other settings admitting the packet at each step. Each
component in a VPC may accept or reject incoming and outgoing packet headers;
a feasible path is a path in which every component on the path accepts both its
incoming and outgoing packet header.

Tiros’s analysis is static, i.e., Tiros does not inject traffic into VPC con-
figurations, and is complete for the subset of AWS VPC semantics it supports:
if there exists a path connecting the source and destination, Tiros will find it.
Since 2018, Tiros has powered the commercially available Network Reachabil-
ity assessment in Amazon Inspector [1], statically identifying ports on EC2
Instances (virtual machines) accessible outside of their VPCs.

In this work, we extend Tiros by introducing a new diagnostic blocked path
analysis when there is not a feasible path, to help users understand why their
query is infeasible. A blocked path is a path as defined above, in which at least
one component rejects its incoming or outgoing packet, along with one or more
blocking reasons: elements of the VPC configuration preventing one or more
components on the path from accepting packets. The blocked path identifies a
sufficient set of blocking reasons, such that if each were addressed the query
would be satisfiable.

Previous tools for connectivity diagnosis typically provide a partial path,
up to the first component/rule that rejects the packet; in some cases those tools
also identify a single blocking reason. Remediations based on a partial path may
address that initial blocking reason only to discover that remediations are still
necessary, or that the remediation may be working towards a path that the
user ultimately will reject. Providing a complete blocked path connecting the
source and destination allows users to ensure that their intent is aligned with
our diagnosis before taking any corrective actions.

Our contributions in this work are:

1. Identifying the notion of a blocked path as a useful medium for conveying a
network diagnosis and aligning it with a user’s intent,

2. Demonstrating how blocked paths can be efficiently derived at scale,
3. Describing VPC Reachability Analyzer, a commercial tool based on

these insights.

2 Background

2.1 Related Works

Many previous works have proposed network reachability diagnosis tools, includ-
ing both widely-used industry tools and academic literature. These tools can be
broadly divided into model-based and non-model-based approaches.
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Non-model-based network diagnostic tools include system applications such
as iptrace and tcptrace, commercial tools such as Cisco Packet Tracer [7],
and academic works such as Tulip [12]. These tools trace live packets through
a network or routing device, identifying the sequence of addresses of devices
that accept the packet. Packet tracing tools lack visibility into the configuration
settings that block and route packets.

Model-based tools [2,5,6,13,16] statically analyze reachability between a
specified source and destination in a network or routing device. Rather than
transmitting live packets, these tools use formal methods such as constraint
solvers to rigorously identify feasible paths. Existing model-based tools provide
control-plane level information when there is a feasible path, but produce either
no information for unreachable paths, or identify only the first (out of potentially
many) reasons why a path is blocked.

Our blocked path analysis is based on deriving minimal correction subsets
(described below), which several previous works have proposed for general-
purpose SAT-based error diagnosis or repair [4,8,9,17].

2.2 Minimal Correction Subsets

The blocked path analysis we describe in Sect. 3 relies on two related concepts:
Maximal Satisfiable Subsets (MSS) and Minimal Correction Subsets (MCS),
which we define below. Following the definitions from [14]:

Definition 1 (MSS). S ⊆ F is a Maximal Satisfiable Subset of constraints F
iff S is satisfiable and ∀c ∈ F \ S,S ∪ {c} is unsatisfiable.

Definition 2 (MCS). C ⊆ F is a Minimal Correction Subset of constraints F
iff F \ C is satisfiable and ∀c ∈ C, (F \ C) ∪ {c} is unsatisfiable.

The complement of an MCS, F \ MCS(F), is guaranteed to be a maximal
satisfiable subset of F ; for this reason the MCS is sometimes called the coMSS.1

In general, the MCS and MSS are not guaranteed to be unique. There is
a close connection between the definition of a Maximal Satisfiable Subset and
MaxSAT [10]: The largest MSS (and therefore smallest MCS) corresponds to
a solution to MaxSAT. Indeed, one approach for computing the MCS is to
compute MaxSAT and take the complement. Efficient algorithms for directly
computing the (not necessarily smallest) MCS without computing MaxSAT are
available and are typically much faster than computing MaxSAT; a good survey
of MCS algorithms including an empirical evaluation can be found in [14].

In constraint optimization problems, it is common to consider hard and soft
constraints, in which only the soft constraints may be relaxed. Definition 2
assumes that all constraints are soft, but can be easily extended to support

1 Note that a minimal correction subset is a distinct concept from an unsatisfi-
able core [11]. An unsatisfiable core is always unsatisfiable, but its complement
F \ CORE(F) is not guaranteed to be satisfiable; in contrast, an MCS may or
may not be satisfiable, but its complement is guaranteed to be satisfiable.
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a mix of soft and hard constraints (where the MCS must contain only soft con-
straints). In this case, the MCS is only well defined if the hard constraints are
satisfiable.

In Sect. 4, we will use a function computeMCS(Soft ,Hard) that supports
both hard and soft constraints. computeMCS returns a minimal correction set
C = MCS(Soft ∪ Hard), with C ⊆ Soft . Our implementation of computeMCS

uses a simple binary search, similar to FastDiag [4], or Algorithm BFD from [14].
We add activation literals to the soft constraints to allow the underlying solver
instance to be re-used incrementally while testing different subsets of soft con-
straints for satisfiability.

2.3 Network Reachability

We use the SMT-encoding of AWS VPC network semantics previously described
in Tiros [2]. In this section, we briefly review this graph-based encoding; we refer
readers to [2] for more details.

We take as input a configuration describing one or more user VPCs, and a
user-specified reachability query, consisting of a source and destination compo-
nent in the VPC. For example, the source of the query may be an internet gate-
way, and the destination may be an EC2 Instance. A query may also optionally
specify additional constraints, such as the protocol, a range of source or destina-
tion addresses or ports for the packet, or an intermediate component that must
(or must not) be on the path.

Packet Header
protocol bv:8
srcAdr bv:32
dstAdr bv:32
srcPort bv:16
dstPort bv:16

((dstAdr �= 10.0.1.15) =⇒ ¬edge1)
((srcAdr �= 10.0.1.15) =⇒ ¬edge2)

Fig. 1. Simplified example symbolic graph representation of a VPC (left), with sym-
bolic packet header consisting of bitvectors (right). Edges in the graph are associated
with theory atoms, and are traversable only if those atoms are assigned true. Two
example constraints, enforcing that a network interface is only accessible if the packet
is addressed to/from that interface are shown. These constraints relate edge atoms in
the symbolic graph to the bitvectors in the symbolic packet header to enforce AWS
VPC semantics.
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We encode VPC configurations as constrained symbolic graphs using the
SMT solver MonoSAT [3], with fixed-width bitvectors representing the pro-
tocol, port, and addressing information in a symbolic packet header. Figure 1
shows a symbolic graph along with a packet header and example constraints.

VPC components are represented as a nodes in the symbolic graph. Each
component has semantics governing which packets it will accept; these seman-
tics are encoded as constraints that restrict which edges incident to that com-
ponent’s node are traversible, depending on the assignment of the packet header
variables. A satisfying assignment to the full set of constraints corresponds to a
feasible path. In such an assignment, the bitvector variable assignments provide
the packet header(s) and the graph theory model provides a path of network
component nodes connecting the source and destination of the user’s query.

Some components (such as NAT gateways) transform and retransmit packets.
Tiros supports this by unrolling the VPC configuration graph into multiple
copies with separate packet header variables. Edges from packet-transforming
components connect to their components in the next unrolled section of the
graph. Tiros unrolls the graph to a sufficient depth to model the behavior of
the components for each query.

Query source and destination reachability is enforced with a single graph
theory reachability predicate requiring a feasible path in the VPC configuration
graph from the source to the destination of the query. Query restrictions requir-
ing intermediate components are enforced using additional reachability predi-
cates. Query restrictions requiring that a given resource not occur on a path are
enforced by excluding that resource from the VPC configuration graph repre-
sentation. Packet header restrictions are enforced using bitvector constraints.

If the constraints are satisfiable, Tiros extracts a reachable path satisfying
the query from the satisfying assignment to the constraints. In the next section,
we will discuss how we extend Tiros to also provide diagnostic feedback in the
case where the constraints are unsatisfiable.

3 Blocked Paths for Network Configuration Diagnosis

We introduce the notion of blocked path for analyzing infeasible network connec-
tions. As shown in Fig. 2, a blocked path is an infeasible but otherwise complete
path from a source to a destination, in which one or more edges or nodes are
annotated with blocking reasons: configuration settings or network semantics
that explain why that transition in the path is infeasible.

Unlike a live packet trace, a blocked path continues past components that
reject or redirect the packet so as to reach the user’s intended destination, poten-
tially transiting through multiple infeasible steps along the way.

Definition 3 (Blocked path).

1. A blocked path is a complete (but infeasible) path from a source to a destina-
tion in a network, satisfying the user’s query.



856 S. Bayless et al.

2. A blocked path is actionable: it is a path that could, with the right control
plane configuration adjustments, be a feasible path.

3. A blocked path identifies a sufficient set of blocking reasons (network seman-
tics or control-plane settings) that would need to be addressed to admit the
packet along that blocked path. This may include multiple blocking reasons
along the path, as opposed to just the first blocking reason.

Fig. 2. Two alternative blocked paths from an EC2 instance to an internet gateway.
These blocked paths take different routes, and have different blocking reasons (shown
in red) that explain why those paths are infeasible. In the first blocked path, there
are two blocking reasons: the security group egress rule rejects packets destined for
the Internet, and the internet gateway requires that the source instance must have a
public IP address. Note that although the packet would be rejected by the security
group, the blocked path continues past the security group to identify a complete (but
infeasible) path to the internet gateway. The second blocked path transitions through
an intermediate NAT gateway, which satisfies the security group rule and also has a
public IP address. However, this path is still blocked, because the route table does not
have an applicable route to the NAT gateway.

Validating User Intent

Showing a complete path from the source to destination, along with all the rele-
vant configuration settings blocking that path, allows users to confirm that this
course of action matches their intended network behavior before making any
changes. However, in many cases there are multiple ways to adjust a configura-
tion to admit a path, resulting in different blocked paths.
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For example, Fig. 2 shows two example blocked paths to an internet gate-
way from an EC2 instance lacking a public IP address. Our analysis might ini-
tially produce for the user the shorter blocked path. Two remediation steps are
required to admit this shorter path: The user must adjust the security group
rule of the instance to admit egress packets to the public internet, and the user
must also associate a public IP address with the source instance. Upon seeing
the complete blocked path, the user may immediately determine that this would
be the wrong solution for their network.

If the proposed blocked path doesn’t match the user’s intent, we allow users
to submit a refined query so as to generate an alternative blocked path. For
instance, the user may specify allowed address or port ranges for the packet, or
specify components that must or must not appear on the path. Similarly, the
user may submit a refined query specifying that a NAT gateway must be an
intermediate component on the path. In this case, we might produce the longer
blocked path from Fig. 2.

Actionable Blocked Paths

In some cases, there may not exist any combination of VPC configuration adjust-
ments that would allow a query to be satisfied. For example, under typical con-
ditions in VPCs, route tables cannot be adjusted to redirect packets that are
destined for a local address within the VPC. It is possible for users to specify
queries that cannot be satisfied without violating this local route restriction.

In principle, it is possible to derive a blocked path with non-user-configurable
blocking reasons, however the resulting paths may behave in misleading or con-
fusing ways, and in general will not be possible for users to actually achieve
in any real configuration of their VPC. If possible, we want to ensure that the
path contains only user-configurable blocking reasons, so that we produce an
actionable finding for users. However, we still want to be able to provide useful
diagnostics in cases where no actionable blocked path is possible (e.g., to explain
to the user that the local route restriction will prevent their path).

In Sect. 4, we describe how we determine when it is not possible to produce a
blocked path without including non-configurable blocking reasons. In this case,
we produce a partial path up to that first non-configurable blocking reason.

Additionally, in some cases a user may specify a query that remains unsat-
isfiable even if all of the network semantics in our model are relaxed. This can
occur if the user specifies components that do not exist, or that are in isolated,
disconnected networks (for which no relaxation of the edge constraints will admit
a path). In this case, our blocked path analysis fails, and Tiros falls back on
other techniques to produce diagnostic information.

In Sect. 5 we show that in most cases, our analysis succeeds and produces an
actionable blocked path.
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4 Deriving Blocked Paths from Unsatisfiable Queries

We group VPC configuration semantics into three disjoint sets of constraints:
(U ∪ N ∪ H). Set U contains constraints that enforce user-configurable control-
plane settings (such as a user-defined route or firewall rule), while set N con-
tains non-configurable for user-visible network semantics (such as the local route
restriction).

Set H contains elements of the constraints that are either not user-visible
(such as internal implementation details) or that should never be relaxed (such
as the reachability predicate or any other constraints defined by the user’s query).
For example, many of our constraints involve containment comparisons between
CIDRs and bitvectors representing IP addresses. An individual CIDR compari-
son is encoded as a fresh literal represnting the truth value of the comparison,
along with multiple clauses that enforce the comparison semantics. The interme-
diate clauses that enforce the comparison semantics are implementation details
that we include in set H, ensuring they are not included in the blocking reasons.

When a query is unsatisfiable, we derive a blocked path and corresponding
blocking reasons from a Maximal Satisfiable Subset and Minimal Correction
Subset of (U ∪ N ∪ H), with set H being treated as hard constraints that must
not be included in the MCS.

If possible, we want to produce an MCS containing only configurable blocking
reasons from U . This ensures that the resulting blocked path is actionable. If we
directly compute the MCS of the full constraint set U ∪N ∪H, with both U and
N as soft constraints, non-configurable constraints from N may be included in
the MCS even in cases where there exists an MCS containing only constraints
from U . On the other hand, we still want to be able to produce an MCS in the
case where the non-configurable and hard constraints (N∪H) are, by themselves,
unsatisfiable.

In Algorithm 1, we resolve this by breaking the computation of the MCS into
two steps, initially computing an MCS of N ∪ H, and only allowing constraints
from N into the blocking reasons if MCS(N ∪ H) is non-empty.

When N ∪ H is satisfiable, Algorithm 1 produces a blocked path that only
contains the configurable blocking reasons from U .

Algorithm 1 constructs two correction sets, MCSN ⊆ N and MCSU ⊆ U ,
with MCSN∪MCSU a valid MCS of (U∪N∪H). We then extract a path p from a
satisfying assignment to the corresponding MSS (U∪N∪H)\(MCSN ∪MCSU ).
Finally, as shown below, we return either a complete or a partial blocked path,
by associating blocking reasons from the MCS with nodes on that path.

Algorithm 1 relies on two helper methods, ExtractPath and BuildPath.
ExtractPath retrieves the satisfying theory model (a sequence of edges) for
the query reachability predicate from a satifiable formula, using the graph theory
in the SMT-solver MonoSAT, and associates packet header assignments with
each step of that path from the corresponding bitvector assignments. BuildPath

maps the literals of the MCS to descriptive strings representing blocking reasons,
and associates those strings with steps on the blocked path.
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Algorithm 1. Blocked Path Analysis
1: function DeriveBlockedPath(U, N, H) � Precondition: U ∪ N ∪ H is UNSAT.
2: if UNSAT(H) then
3: throw Error: No blocked path can be produced.
4: else
5: // Note: If N ∪ H is SAT, then MCSN = ∅.
6: MCSN ← computeMCS(N, H)
7: // Note: (N ∪ H) \ MCSN is SAT; MCSU is well-defined.
8: MCSU ← computeMCS(U, (N ∪ H) \ MCSN )
9: p ← ExtractPath((U ∪ N ∪ H) \ (MCSN ∪ MCSU ))

10: return BuildPath(p, MCSN , MCSU )
11: end if
12: end function

We can see that MCSN ∪MCSU meets the definition of a minimal correction
set of U ∪ N ∪ H by observing that:

SAT((U ∪ N ∪ H \ (MCSN )) \ (MCSN ∪ MCSU )) line 8

=⇒ SAT((U ∪ N ∪ H) \ (MCSN ∪ MCSU )))

∀c ∈ MCSN ,UNSAT((N ∪ H) \ (MCSN \ {c}) line 6

∀c ∈ MCSU ,UNSAT((U ∪ N ∪ H) \ (MCSU \ {c})) line 8

=⇒ ∀c ∈ (MCSN ∪ MCSU ),UNSAT((U ∪ N ∪ H) \ ((MCSN ∪ MCSU ) \ {c}))

If N ∪ H is satisfiable, then MCSN is empty and MCSU , containing only
configurable constraints, is an MCS of (U ∪ N ∪ H). In this case, BuildPath

constructs a complete blocked path consisting entirely of configurable blocking
reasons.

If N ∪ H is unsatisfiable, then MCSN is non-empty and MCSN ∪ MCSU

contains at least one non-actionable constraints. In this case, the path p may
behave unexpectedly and may not be realizable in a VPC configuration after
adjustment. If MCSN is non-empty, BuildPath forms the blocked path as
above, but returns only the prefix of that blocked path up to and including the
first edge or node associated with a non-actionable setting.

Above, we discussed the cases where N ∪ H is satisfiable or unsatisfiable.
There is also a third possibility: The hard constraints H, representing the con-
straints enforcing the user’s query or implementation details of our model, may
by themselves be unsatisfiable. For example, H may be unsatisfiable if the user
specifies a source and destination that are in separate, disconnected networks.

If H is unsatisfiable, Algorithm 1 fails, and is unable to produce even a
partial blocked path. In this case, we fall back on other techniques to provide
useful diagnostic information for users. In practice, the typical reason that H is
unsatisfiable is that the source and destination are in disconnected VPCs (so the
reachability constraint is unsatisfiable). We use a static analysis pass to identify
this case and handle it separately in our service.
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In the case that Algorithm 1 produces a complete (resp. partial) blocked
path, the underlying MCS algorithm guarantees that the blocked path will have
the fewest possible number of blocking reasons from among all complete (resp.
partial) blocked paths. In general this blocked path is not unique.

In our implementation of Algorithm 1, the graph-based decision heuristic in
MonoSAT will prioritize finding shortest-length paths in most cases, but does
not guarantee that a shortest-length path is always found.

5 Evaluation

VPC Reachability Analyzer, a commercial offering available from AWS
since December 2020, uses the blocked path analysis we have described to derive
findings for queries between unreachable endpoints.

To demonstrate the practical impact of this blocked path analysis, we ran-
domly selected 1000 unreachable queries processed by VPC Reachability

Analyzer. We executed the blocked path analysis for those queries on an
‘m5.24xlarge’ EC2 instance using GNU Parallel [15], running Amazon Linux
2, using MonoSAT version 1.6.0.
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Fig. 3. Number of blocking reasons per blocked path (among the 63% of unreachable
queries for which the blocked path analysis produced a complete blocked path). 97%
percent of blocked paths have three or fewer blocking reasons; 60% have just a single
blocking reason.

Excluding the time to complete the blocked path analysis, the average time
required to initially determine satisfiability of the constraints was 2.1 s (P50:
1.7 s, P99: 7.4 s). The blocked path analysis was as fast or faster than the initial
solving time, requiring 0.3 s on average (P50: 0.05 s, P99: 6.6 s).

As described in Sect. 4, in some cases, the blocked path analysis can pro-
duce only a partial path, or no results at all. Of those 1000 unreachable queries,
63.2% resulted in complete blocked paths, 7.4% resulted in partial blocked paths,
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and the remainder (29.4%) produced no analysis (in which case VPC Reach-

ability Analyzer applies other techniques so that it can still provide useful
diagnostics).2

As can be seen in Fig. 3, most blocked paths have just one blocking reason,
and 97% have at most three. This demonstrates that our analysis produces
actionable, concise findings on real production data, a key requirement of a
useful diagnosis service.

6 Conclusion

The blocked path analysis we have introduced provides key advantages over
previous network diagnostic techniques. By showing users a blocked path from
a source to a destination, we allows users the opportunity to refine their query
such that their intended path is aligned with our analysis. Furthermore, showing
all blocking reasons on a blocked path allows users to understand the VPC
configuration adjustments necessary to realize a path for their query.

Our blocked path analysis is a fully static analysis (requiring no packets to be
injected into the network), can be computed efficiently using standard techniques
from the formal methods literature, and is now used successfully in production
by VPC Reachability Analyzer.
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17. Walter, R., Felfernig, A., Küchlin, W.: Constraint-based and sat-based diagnosis
of automotive configuration problems. J. Intell. Inf. Syst. 49(1), 87–118 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2018436.2018470
http://doi.acm.org/10.1145/2018436.2018470
http://doi.acm.org/10.1145/2018436.2018470
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.5281/zenodo.1146014
http://creativecommons.org/licenses/by/4.0/


Lower-Bound Synthesis Using Loop
Specialization and Max-SMT

Elvira Albert1,2 , Samir Genaim1,2 , Enrique Martin-Martin1 ,
Alicia Merayo1(B), and Albert Rubio1,2
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Abstract. This paper presents a new framework to synthesize lower-
bounds on the worst-case cost for non-deterministic integer loops. As
in previous approaches, the analysis searches for a metering function
that under-approximates the number of loop iterations. The key novelty
of our framework is the specialization of loops, which is achieved by
restricting their enabled transitions to a subset of the inputs combined
with the narrowing of their transition scopes. Specialization allows us
to find metering functions for complex loops that could not be handled
before or be more precise than previous approaches. Technically, it is
performed (1) by using quasi-invariants while searching for the metering
function, (2) by strengthening the loop guards, and (3) by narrowing the
space of non-deterministic choices. We also propose a Max-SMT encoding
that takes advantage of the use of soft constraints to force the solver look
for more accurate solutions. We show our accuracy gains on benchmarks
extracted from the 2020 Termination and Complexity Competition by
comparing our results to those obtained by the LoAT system.

1 Introduction

One of the most important problems in program analysis is to automatically –and
accurately– bound the cost of program’s executions. The first automated analy-
sis was developed in the 70s [24] for a strict functional language and, since then,
a plethora of techniques has been introduced to handle the peculiarities of the
different programming languages (see, e.g., for Integer programs [5], for Java-like
languages [2,19], for concurrent and distributed languages [16], for probabilistic
programs [15,18], etc.) and to increase their accuracy (see, e.g., [10,14,21,22]).
The vast majority of these techniques have focused on inferring upper bounds on
the worst-case cost, since having the assurance that none execution of the pro-
gram will exceed the inferred amount of resources (e.g., time, memory, etc.) has
crucial applications in safety-critical contexts. On the other hand, lower bounds
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on the best-case cost characterize the minimal cost of any program execution
and are useful in task parallelization (see, e.g., [3,9,10]). There are a third type
of important bounds which are the focus of this work: lower bounds on the worst-
case cost, they bound the worst-case cost from below. Their main application
is that, together with the upper bounds on worst-case, allow us to infer tighter
worst-case cost bounds (when they coincide ensuring that the inferred cost is
exact) what can be crucial in safety-critical contexts. Besides, lower bounds on
the worst-case cost will give us families of inputs that lead to an expensive cost,
what could be used to detect performance bugs. In what follows, we use the
acronyms LBw and LBb to refer to worst-case and best-case lower-bounds, resp.

State-of-the-Art in LBw. An important difference between LBw and LBb is
that, while the best-case must consider all program runs, LBw holds for (usually
infinite) families of the most expensive program executions. This is why the
techniques applicable to LBb inference (e.g., [3,9,10]) are not useful for LBw

in general, since they would provide too inaccurate (low) results. The state-of-
the-art in LBw inference is [12,13] (implemented in the LoAT system) which
introduces a variation of ranking functions, called metering functions, to under-
estimate the number of iterations of simple loops, i.e., loops without branching
nor nested loops. The core of this method is a simplification technique that allows
treating general loops (with branchings and nested loops) by using the so-called
acceleration: that replaces a transition representing one loop iteration by another
rule that collects the effect of applying several consecutive loop iterations using
the original rule. Asymptotic lower bounds are then deduced from the resulting
simplified programs using a special-purpose calculus and an SMT encoding.

Motivation. Our work is motivated by the limitation of state-of-the-art methods
when, by treating each simple loop separately, a LBw bound cannot be found
or it is too imprecise. For example, consider the interleaved loop in Fig. 1, that
is a simplification of the benchmark SimpleMultiple .koat from the Termination
and Complexity competition. Its transition system appears to the right (the
transition system is like a control-flow graph (CFG) in which the transitions τ
are labeled with the applicability conditions and with the updates for the vari-
ables, primed variables denote the updated values). In every iteration x or y can
decrease by one, and these behaviors can interleave. The worst case is obtained
for instance when x is decreased to 0 (x iterations) and then y is decreased to 0
(y iterations), resulting in x + y iterations, or when y is first decreased to 1 and
then x to −1, etc. The approach in [12,13] accelerates independently both τ1
and τ4, resulting in accelerated versions τa

1 = x ≥ −1 ∧ y > 0 ∧ x′ = −1 ∧ y′ = y
with cost x + 1 and τa

4 = x ≥ 0 ∧ y ≥ 0 ∧ x′ = x ∧ y′ = 0 with cost y. Applying
one accelerated version results in that the other accelerated version cannot be
applied because of the final values of the variables. Thus, the overall knowledge
extracted from the loop is that it can iterate x+1 or y times, whereas the precise
LBw is x+y iterations. Our challenge for inferring more precise LBw is to devise
a method that can handle all loop transitions simultaneously, as disconnecting
them leads to a semantics loss that cannot be recovered by acceleration.
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wh i l e ( x >= 0 && y > 0) {
i f (∗ ) {

x = x − 1 ;
} e l s e {

y = y − 1 ;
}

}

�0

�1

�e

τ0 : x′ = x ∧ y′ = y

τ1 : x ≥ 0 ∧ y > 0
∧ x′ = x − 1
∧ y′ = y

τ4 : x ≥ 0 ∧ y > 0
∧ x′ = x
∧ y′ = y − 1

τ3 : y ≤ 0
∧ x′ = x
∧ y′ = y

τ2 : x < 0
∧ x′ = x
∧ y′ = y

Fig. 1. Interleaved loop (left) and its representation as a transition system (right)

Non-Termination and LBw. Our work is inspired by [17], which introduces the
powerful concept of quasi-invariant to find witnesses for non-termination. A
quasi-invariant is an invariant which does not necessarily hold on initialization,
and can be found as in template-based verification [23]. Intuitively, when there
is a loop in the program that can be mapped to a quasi-invariant that forbids
executing any of the outgoing transitions of the loop, then the program is non-
terminating. This paper leverages such powerful use of quasi-invariants and Max-
SMT in non-termination analysis to the more difficult problem of LBw inference.
Non-termination and LBw are indeed related properties: in both cases we need
to find witnesses, resp., for non-terminating the loop and for executing at least
a certain number of iterations. For LBw, we additionally need to provide such
under-estimation for the number of iterations and search for LBw behaviors that
occur for a class of inputs rather than for a single input instantiation (since the
LBw for a single input is a concrete (i.e., constant) cost, rather than a parametric
LBw function as we are searching for). Instead, for non-termination, it is enough
to find a non-terminating input instantiation.

Our Approach. A fundamental idea of our approach is to specialize loops in
order to guide the search of the metering functions of complex loops, avoiding the
inaccuracy introduced by disconnecting them into simple loops. To this purpose,
we propose specializing loops by combining the addition of constraints to their
transitions with the restriction of the valid states by means of quasi-invariants.
For instance, for the loop in Fig. 1, our approach automatically narrows τ1 by
adding x > 0 (so that x is decreased until x = 0) and τ4 by adding x ≤ 0 (so that
τ4 can only be applied when x = 0). This specialized loop has lost many of the
possible interleavings of the original loop but keeps the worst case execution of
x+y iterations. These specialized guards do not guarantee that the loop executes
x + y iterations in every possible state, as the loop will finish immediately for
x < 0 or y ≤ 0, thus our approach also infers the quasi-invariant x ≥ 0 ∧ x ≤ y.
Combining the specialized guards and the quasi-invariant, we can assure that
when reaching the loop in a valid state according to the quasi-invariant, x + y
is a lower bound on the number of iterations of the loop, i.e., its cost. Using
quasi-invariants that include all (invariant) inequalities syntactically appearing
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in loop transitions might work for the case of loops with single path. However, for
the general case, the specialized guards usually lead to essential quasi-invariants
that do not appear in the original loop. The specialization achieved by adding
constraints could be also applied in the context of non-termination to increase
the accuracy of [17], as only quasi-invariants were used. Therefore, we argue that
our work avoids the precision loss caused by the simplification in [12,13] and,
besides, introduces a loop specialization technique that can also be applied to
gain precision in non-termination analysis [17].

Contributions. Briefly, our main theoretical and practical contributions are:

1. In Sect. 3 we introduce several semantic specializations of loops that enable
the inference of local metering functions for complex loops by: (1) restricting
the input space by means of automatically generated quasi-invariants, (2)
narrowing transition guards and (3) narrowing non-deterministic choices.

2. We propose a template-based method in Sect. 4 to automate our technique
which is effectively implemented by means of a Max-SMT encoding. Whereas
the use of templates is not new [6], our encoding has several novel aspects
that are devised to produce better lower-bounds, e.g., the addition of (soft)
constraints that force the solver look for larger lower-bound functions.

3. We implement our approach in the LOBER system and evaluate it on bench-
marks from the Integer Transition Systems category of the 2020 Termination
and Complexity Competition (see Sect. 5). Our experimental results when
compared to the existing system LoAT [12] are promising: they show further
accuracy of LOBER in challenging examples that contain complex loops.

2 Background

This section introduces some notation on the program representation and recalls
the notion of LBw we aim at inferring.

2.1 Program Representation

Our technique is applicable to sequential non-deterministic programs with inte-
ger variables and commands whose updates can be expressed in linear (inte-
ger) arithmetic. We assume that the non-determinism originates from non-
deterministic assignments of the form “x:=nondet();”, where x is a program
variable and nondet() can be represented by a fresh non-deterministic variable
u. This assumption allows us to also cover non-deterministic branching, e.g.,
“if (*){..} else {..}” as it can be expressed by introducing a non-deterministic
variable u and rewriting the code as “u:=nondet(); if (u≥0){..} else {..}”.

Our programs are represented using transition systems, in particular using
the formalization of [17] that simplifies the presentation of some formal aspects
of our work. A transition system (abbrev. TS) is a tuple S = 〈x̄, ū,L, T , Θ〉,
where x̄ is a tuple of n integer program variables, ū is a tuple of integer (non-
deterministic) variables, L is a set of locations, T is a set of transitions, and Θ is
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a formula that defines the valid input and is specified by a conjunction of linear
constraints of the form ā·x̄+b�0 where � ∈ {>,<,=,≥,≤}. A transition is of the
form (�, �′,R) ∈ T such that �, �′ ∈ L, and R is a formula over x̄, ū and x̄′ that is
specified by a conjunction of linear constraints of the form ā · x̄+ b̄ · ū+ c̄ · x̄′ +d�0
where � ∈ {>,<,=,≥,≤}, and primed variables x̄′ represent the values of the
unprimed corresponding variables after the transition. We sometimes write R as
R(x̄, ū, x̄′), use R(x̄) to refer to the constraints that involve only variables x̄ (i.e.,
the guard), and use R(x̄, ū) to refer to the constraints that involve only variables
ū and (possibly) x̄. W.l.o.g., we may assume that constraints involving primed
variables are of the form x′

i = ā · x̄ + b̄ · ū + c. This is because non-determinism
can be moved to R(x̄, ū) – if a primed variable x′

i appears in any expression that
is not of this form, we replace x′

i by a fresh non-deterministic variable ui in such
expressions and add the equality x′

i = ui. We require that for any x̄ satisfying
R(x̄), there are ū satisfying R(x̄, ū), formally

∀x̄.∃ū. R(x̄) → R(x̄, ū) (1)

This guarantees that for any state x̄ satisfying the condition, there are values for
the non-deterministic variables ū such that we can make progress. A transition
that does not satisfy this condition is called invalid. Note that (1) does not refer
to x̄′ since they are set in a deterministic way, once the values of x̄ and ū are
fixed. W.l.o.g., we assume that all coefficients and free constants, in all linear
constraints, are integer; and that there is a single initial location �0 ∈ L with no
incoming transitions, and a single final location �e with no outgoing transitions.

Example 1. The TS graphically presented in Fig. 1 is expressed as follows, con-
sidering that all inputs are valid (Θ = true):

S ≡ 〈 {x, y}, ∅, {�0, �1, �e},
{(�0, �1, x′ = x ∧ y′ = y),
(�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − 1 ∧ y′ = y),
(�1, �e, x < 0 ∧ x′ = x ∧ y′ = y),
(�1, �e, y ≤ 0 ∧ x′ = x ∧ y′ = y),
(�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x ∧ y′ = y − 1)}, true〉

A configuration C is a pair (�, σ) where � ∈ L and σ : x̄ �→ Z is a mapping
representing a state. We abuse notation and use σ to refer to ∧n

i=1xi = σ(xi),
and also write σ′ for the assignment obtained from σ by renaming the variables
to primed variables. There is a transition from (�, σ1) to (�′, σ2) iff there is
(�, �′,R) ∈ T such that ∃ū.σ1 ∧ σ′

2 |= R. A (valid) trace t is a (possibly infinite)
sequence of configurations (�0, σ0), (�1, σ1), . . . such that σ0 |= Θ, and for each i
there is a transition from (�i, σi) to (�i+1, σi+1). Traces that are infinite or end
in a configuration with location �e are called complete. A configuration (�, σ),
where � �= �e, is blocking iff

σ �|=
∨

(�,�′,R)∈T
R(x̄) (2)
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A TS is non-blocking if no trace includes a blocking configuration. We assume
that the TS under consideration is non-blocking, and thus any trace is a prefix
of a complete one. Throughout the paper, we represent a TS as a CFG, and
analyze its strongly connected components (SCC) one by one. An SCC is said
to be trivial if it has no edge.

2.2 Lower-Bounds

For simplicity, we assume that an execution step (a transition) costs 1. Under
this assumption, the cost of a trace t is simply its length len(t) where the length
of an infinite trace is ∞. In what follows, the set of all configurations is denoted
by C, the set of all valid complete traces (using a transition system S) when
starting from configuration C ∈ C is denoted by TracesS(C), and R≥0 = {k ∈
R | k ≥ 0} ∪ {∞}. For a non-empty set M ⊆ R≥0, sup M is the least upper
bound of M and inf M is the greatest lower bound of M . The worst-case cost
of an initial configuration C is the cost of the most expensive complete trace
starting from C and the best-case cost is the less expensive complete trace.

Definition 1 (worst- and best-case cost). Let S be a TS. Its worst-case
cost function wcS : C → R≥0 is wcS(C) = sup {len(t) | t ∈ TracesS(C)} and its
best-case cost function bcS : C → R≥0 is bcS(C) = inf {len(t) | t ∈ TracesS(C)}.

Clearly, wcS and bcS are not computable. Our goal in this paper is to auto-
matically find a lower-bound function ρ : Zn → R≥0 such that for any initial
configuration C = (�0, σ) we have wcS(C) ≥ ρ(σ(x̄)), i.e., it is an LBw. An LBb

would be a function ρ : Z
n → R≥0 that ensures that bcS(C) ≥ ρ(x̄) for any

initial configuration C = (�0, σ). In what follows, for a function ρ(x̄), we let
‖ρ(x̄)‖ = �max(0, ρ(x))� to map all negative valuations of ρ to zero.

Example 2. Consider the TS S = 〈{x}, {u}, {�0, �1, �e}, T , true〉 with transitions:

T ≡ { τ1 = (�0, �1, x ≥ 0),
τ2 = (�1, �1, x > 0 ∧ x′ = x − u ∧ u ≥ 1 ∧ u ≤ 2),
τ3 = (�1, �e, x ≤ 0 ∧ x′ = x) }

S contains a loop at �1 where variable x is non-deterministically decreased by 1
or 2. From any initial configuration C0 = (�0, σ0), the longest possible complete
trace decreases x by 1 in every iteration with τ2, therefore wcS(C0) = ‖σ0(x)‖+2
because of the ‖σ0(x)‖ iterations in �1 plus the cost of τ1 and τ3. The most precise
lower bound for wcS is ρ(x) = ‖x‖ + 2, although ρ(x) = ‖x‖ or ρ(x) = ‖x − 2‖
are also valid lower bounds. The shortest complete trace from C0 decreases x

by 2 in every iteration, so bcS(C0) = ‖σ0(x)
2 ‖ + 2. There are several valid lower

bounds for bcS(C0) like ρ(x) = ‖x
2‖ + 2, ρ(x) = ‖x

2‖, or ρ(x) = 2.

3 Local Lower-Bound Functions

Focus on Local Bounds. Existing techniques and tools for cost analysis (e.g., [1,
12]) work by inferring local (iteration) bounds for those parts of the TS that
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correspond to loops, and then combining these bounds by propagating them
“backwards” to the entry point in order to obtain a global bound. For example,
suppose that our program consists of the following two loops:

a s s e r t ( x>0 && z>0);
wh i l e ( z > 0) { x=x+z ; z−−; }
wh i l e ( x > 0) x−−;

where the second loop makes x iterations (when considering the value of x just
before executing the loop), and the first loop makes z iterations and increments
x by z in each iteration. We are interested in inferring a global function that
describes the total number of iterations of both loops, in terms of the input values
x0 and z0. While both loops have linear complexity locally, i.e., iteration bounds
z and x, the second one has quadratic complexity w.r.t the initial values. This
can be inferred automatically from the local bounds z and x by inferring how the
value of x changes in the first loop, and then rewriting x in terms of the initial
values to e = x0 + z0·(z0−1)

2 (e.g., by solving corresponding recurrence relations).
Now the global cost would be e plus the cost of the first loop z0. Rewriting the
loop bound x as above is done by propagating it backwards to the entry point,
and there are several techniques in the literature for this purpose that can be
directly adopted in our setting to produce global bounds. These techniques can
infer global bounds for nested-loops as well, given the iteration bounds of each
loop. Thus, we focus on inferring local lower-bounds on the number of iterations
that non-nested loops (more precisely, parts of the TS that correspond to loops)
can make, and assume that they can be rewritten to global bounds by adopting
the existing techniques of [1,12] (our implementation indeed could be used as a
black-box which provides local lower-bounds to these tools). Namely, we aim at
inferring, for each non-nested loop, a function ‖ρ(x̄)‖ = �max(0, ρ(x))� that is a
(local) LBw on its number of iterations, i.e., whenever the loop is reached with
values v̄ for the variables x̄, it is possible to make at least ‖ρ(v̄)‖ iterations.

Loops and TSs. For ease of presentation, we first consider a special case of TSs
in which all locations, except the initial and exit ones define loops, and Sect. 3.6
explains how the techniques can be used for the general case. In particular, we
consider that each non-trivial SCC consists of a single location � and at least one
transition, and we call it loop �. Transitions from � to � are called loop transitions
and their guards are called loop guards, and transitions from � to �′ �= � are called
exit transitions. The number of iterations of a loop � in a trace t is defined as the
number of transitions from � to �, which we refer to as the cost of loop � as well
(since we are assuming that the cost of transitions is always 1, see Sect. 2.2).
The notions of best-case and worst-case cost in Definition 1 naturally extend to
the cost of a loop �, i.e., we can ask what is the best-case and worst-case number
of iterations of a given loop.

Overview of the Section. The overall idea of our approach is to specialize each
loop �, by restricting the initial values and/or adding constraints to its tran-
sitions, such that it becomes possible to obtain a metering function for the
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specialized loop. A function that is a LBb of the specialized loop is by definition
a LBw of loop �, as it does not necessarily hold for all execution traces but rather
for the class of restricted ones. Technically, inferring a LBb of a (specialized) loop
is done by inferring a metering function ρ [13], such that whenever the (special-
ized) loop is reached with a state σ, it is guaranteed to make at least ‖ρ(σ(x̄))‖
iterations. Besides, specialization is done in such away that the TS obtained by
putting all specialized loops together is non-blocking, i.e., there is an execution
that is either non-terminating or reaches the exit location, and thus the cost of
this execution is, roughly, the sum of the costs of all (specialized) loops that are
traversed. The rest of this section is organized as follows. In Sect. 3.1 we general-
ize the basic definition of metering function for simple loops from [12] to general
types of loops and explore its limitations. Then, in the following 3 sections, we
explain how to overcome these limitations by means of the following special-
izations: using quasi-invariants to narrow the set of input values (Sect. 3.2);
narrowing loop guards to make loop transitions mutually exclusive and force
some execution order between them (Sect. 3.3); and narrowing the space of non-
deterministic choices to force longer executions (Sect. 3.4). Sect. 3.5 states the
conditions, to be satisfied when specializing loops, in order to guarantee that the
TS obtained by putting all specialized loops together is non-blocking.

3.1 Metering Functions

Metering functions were introduced by [13], as a tool for inferring a lower-bound
on the number of iterations that a given loop can make. The definition is analogue
to that of (linear) ranking function which is often used to infer upper-bounds on
the number of iterations. The definition as given in [13] considers a loop with
a single transition, and assumes that the exit condition is the negation of its
guard. We start by generalizing it to our notion of loop.

Definition 2 (Metering function). We say that a function ρ� is a metering
function for a loop � ∈ L, if the following conditions are satisfied

∀x̄, ū, x̄′. R → ρ�(x̄) − ρ�(x̄′) ≤ 1 for each (�, �,R) ∈ T (3)
∀x̄, ū, x̄′. R → ρ�(x̄) ≤ 0 for each (�, �′,R) ∈ T (4)

Intuitively, Condition (3) requires ρ� to decrease at most by 1 in each iteration,
and Condition (4) requires ρ� to be non-positive when leaving the loop.

Assuming (�, σ) is a reachable configuration in S, it is easy to see that loop
� will make at least ‖ρ�(σ(x̄))‖ iterations when starting from (�, σ). We require
(�, σ) to be reachable in S since we are interested only in non-blocking executions.
Typically, we are interested in linear metering functions, i.e., of the form ρ�(x̄) =
ā · x̄ + a0, since they are easier to infer and cover most loops in practice. Non-
linear lower-bound functions will be obtained when rewriting these local linear
lower-bounds in terms of the initial input at location �0 (see beginning of Sect. 3)
and by composing nested loops (see Sect. 3.6).
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Example 3 (Metering function). Consider the following loop on location �1 that
decreases x (τ1) until it takes non-positive values and exits to �2 (τ2):

τ1 = (�1, �1, x ≥ 0 ∧ x′ = x − 1) τ2 = (�1, �2, x < 0 ∧ x′ = x)

The function ρ�1(x) = x + 1 is a valid metering function because it decreases by
exactly 1 in τ1 and becomes non-positive when τ2 is applicable (x < 0 → x+1 ≤
0, Condition (3) of Definition 2). The function ρ′

�1
(x) = x

2 is also metering
because its value decreases by less than 1 when applying τ1 (x

2 − x−1
2 = 1

2 ≤ 1)
and becomes non-positive in τ2. Even a function as ρ′′

�1
(x) = 0 is trivially meter-

ing, as it satisfies (3) and (4). Although all of them are valid metering func-
tions, ρ�1(x) is preferable as it is more accurate (i.e., larger) and thus captures
more precisely the number of iterations of the loop. Note that functions like
ρ∗

�1
(x) = 2x or ρ∗∗

�1
(x) = x + 5 are not metering because they do not verify (3)

(because 2x − 2(x − 1) = 2 �≤ 1 for ρ∗
�1

) or (4) (because x < 0 �→ x + 5 ≤ 0 for
ρ∗∗

�1
).

3.2 Narrowing the Set of Input Values Using Quasi-Invariants

Metering functions typically exist for loops with simple loop guards. However,
when guards involve more than one inequality they usually do not exist in a
simple (linear) form. This is because such loops often include several exit transi-
tions with unrelated conditions, where each one corresponds to the negation of
an inequality of the guard. It is unlikely then that a non-trivial (linear) function
satisfies (4) for all exit transitions. This is illustrated in the next example.

Example 4. Consider the following loop that iterates on �1 if x ≥ 0 ∧ y > 0, and
exits when x < 0 or y ≤ 0:

τ1 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − 1 ∧ y′ = y)
τ2 = (�1, �2, x < 0 ∧ x′ = x ∧ y′ = y)
τ3 = (�1, �2, y ≤ 0 ∧ x′ = x ∧ y′ = y)

Intuitively, this loop executes x + 1 transitions, but ρ�1(x, y) = x + 1 is not a
valid metering function because it does not satisfy (4) for τ3: y ≤ 0 �→ x+1 ≤ 0.
Moreover, no other function depending on x (e.g., x

2 , x − 2, etc.) will be a valid
metering function, as it will be impossible to prove (4) for τ3 only from the
information y ≤ 0 on its guard. The only valid metering function for this loop
will be the trivial one ρ�1(x, y) = c with c ≤ 0, which does not provide any
information about the number of iterations of the loop.

Our proposal to overcome the imprecision discussed above is to consider
only a subset of the input values s.t. conditions (3,4) hold in the context of the
corresponding reachable states. For example, the reachable states might exclude
some of the exit transitions, i.e., it is guaranteed that they are never used, and
then (4) is not required to hold for them. A metering function in this context is a
LBb of the loop when starting from that specific input, and thus it is a LBw (i.e.,
not necessarily best-case) of the loop when the input values are not restricted.
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Technically, our analysis materializes the above idea by relying on quasi-
invariants [17]. A quasi-invariant for a loop � is a formula Q� over x̄ such that

∀x̄, ū, x̄′. Q�(x̄) ∧ R → Q�(x̄′) for each (�, �,R) ∈ T (5)
∃x̄. Q�(x̄) (6)

Intuitively, Q� is similar to an inductive invariant but without requiring it to
hold on the initial states, i.e., once Q� holds it will hold during all subsequent
visits to �. This also means that for executions that start in states within Q�, it
is guaranteed that Q� is an over-approximation of the reachable states. Condi-
tion (6) is used to avoid quasi-invariants that are false. Given a quasi-invariant
Q� for �, we say that ρ� is a metering function for � if the following holds

∀x̄, ū, x̄′. Q�(x̄) ∧ R → ρ�(x̄) − ρ�(x̄′) ≤ 1 for each (�, �,R) ∈ T (7)
∀x̄, ū, x̄′. Q�(x̄) ∧ R → ρ�(x̄) ≤ 0 for each (�, �′,R) ∈ T (8)

Intuitively, these conditions state that (3,4) hold in the context of the states
induced by Q�. Assuming that (�, σ) is reachable in S and that σ |= Q�, loop �
will make at least ‖ρ�(σ(x̄))‖ iterations in any execution that starts in (�, σ).

Example 5. Recall that the loop in Example 4 only admitted trivial metering
functions because of the exit transition τ3. It is easy to see that Q�1 ≡ x < y
verifies (5,6), because y is not modified in τ1 and x decreases, and thus it is a
quasi-invariant. In the context of Q�1 , function ρ�1(x, y) = x + 1 is metering
because when taking τ3 the value of x is guaranteed to be negative, i.e., τ3
satisfies (8) because x < y ∧ y ≤ 0 → x + 1 ≤ 0. Notice that ρ�1(x, y) = x + 1
will still be a valid metering function considering other quasi-invariants of the
form Q′

�1
≡ y > c with c ≥ 0, as they would completely disable transition τ3.

3.3 Narrowing Guards

The loops that we have considered so far consist of a single loop transition,
what makes easier to find a metering function. This is because there is only
one way to modify the program variables (with some degree of non-determinism
induced by the non-deterministic variables). However, when we allow several
loop transitions, we can have loops for which a non-trivial metering function
does not exist even when narrowing the set of input values.

Example 6. Consider the extension of the loop in Example 4 with a new transi-
tion τ4 that decrements y (it corresponds to the example in Sect. 1):

τ1 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − 1 ∧ y′ = y)
τ4 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x ∧ y′ = y − 1)
τ2 = (�1, �2, x < 0 ∧ x′ = x ∧ y′ = y)
τ3 = (�1, �2, y ≤ 0 ∧ x′ = x ∧ y′ = y)

The most precise LBw of this loop is ‖ρ�1(x, y)‖ where ρ�1(x, y) = x + y. As
mentioned, this corresponds, e.g., to an execution that uses τ1 until x = 0, i.e., x
times, and then τ4 until y = 0, i.e., y times. It is easy to see that if we start from
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a state that satisfies x ≥ 0∧x ≤ y, then it will be satisfied during the particular
execution that we just described. Moreover, assuming that Q�1 ≡ x ≥ 0 ∧ x ≤ y
is a quasi-invariant, it is easy to show that together with ρ�1 we can verify (7,8),
and thus ρ�1 will be a metering function. However, unfortunately, Q�1 is not
a quasi-invariant since the above loop can make executions other than the one
described above (e.g., decreasing y to 1 first and then x to 0).

Our idea to overcome this imprecision is to narrow the set of states for
which loop transitions are enabled, i.e., strengthening loop guards by additional
inequalities. This, in principle, reduces the number of possible executions, and
thus it is more likely to find a metering function (or a better quasi-invariant),
because now they have to be valid for fewer executions. For example, this might
force an execution order between the different paths, or even disable some tran-
sitions by narrowing their guard to false. Again, a metering function for the
specialized loop is not a valid LBb of the original loop, but rather its a valid
LBw that is what we are interested in. Next, we state the requirements that
such narrowing should satisfy. The choice of a narrowing that leads to longer
executions is discussed in Sect. 4.

A guard narrowing for a loop transition τ ∈ T is a formula Gτ (x̄), over
variables x̄. A specialization of a loop is obtained simply by adding these formulas
to the corresponding transitions. Conditions (5)-(8) can be specialized to hold
only for executions that use the specialized loop as follows. Suppose that for a
loop � ∈ L we are given a narrowing Gτ for each loop transition τ , then Q� and ρ�

are quasi-invariant and metering function resp. for the corresponding specialized
loop if the following conditions hold

∀x̄, ū, x̄′. Q�(x̄) ∧ Gτ (x̄) ∧ R → Q�(x̄
′) for each (�, �, R) ∈ T (9)

∃x̄. Q�(x̄) (10)
∀x̄, ū, x̄′. Q�(x̄) ∧ Gτ (x̄) ∧ R → ρ�(x̄) − ρ�(x̄

′) ≤ 1 for each (�, �, R) ∈ T (11)
∀x̄. Q�(x̄) ∧ R(x̄) → ρ�(x̄) ≤ 0 for each (�, �′, R) ∈ T (12)

Conditions (9,10) guarantee that Q� is a non-empty quasi-invariant for the spe-
cialized loop, and conditions (11,12) guarantee that ρ� is a metering function
for the specialized loop in the context of Q�. However, in this case, function ρ�

induces a lower-bound on the number of iterations only if the specialized loop is
non-blocking for states in Q�. This is illustrated in the following example.

Example 7. Consider the loop from Example 3 where we have specialized the
guard of τ1 by adding x ≥ 5:

τ1 = (�1, �1, x ≥ 0 ∧ x ≥ 5 ∧ x′ = x − 1) τ2 = (�1, �2, x < 0 ∧ x′ = x)

With this specialized guard and considering Q�1 ≡ true, the metering function
ρ�1(x) = x + 1 still satisfies (11,12), and Q�1 trivially satisfies (9,10). However,
ρ�1 is not a valid measure of the number of transitions executed because the loop
gets blocked whenever x takes values 0 ≤ x ≤ 5, and thus it will never execute
x + 1 transitions.
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To guarantee that the specialized loop is non-blocking for states in Q�, it is
enough to require the following condition to hold

∀x̄. Q�(x̄) →
∨

τ=(�,�,R)∈T
(R(x̄) ∧ Gτ (x̄))

∨

τ=(�,�′,R)∈T
R(x̄) (13)

Intuitively, it states that from any state in Q� we can make progress, either by
making a loop iteration or exiting the loop. Assuming that (�, σ) is reachable in
S and that σ |= Q�, the specialized loop � will make at least ‖ρ�(σ(x̄))‖ iterations
in any execution that starts in (�, σ). This also means that the original loop can
make at least ‖ρ�(σ(x̄))‖ iterations in any execution that starts in (�, σ).

Example 8. In Example 6, we have seen that if Q�1 ≡ x ≤ y ∧ x ≥ 0 was a
quasi-invariant, then function ρ�1(x, y) = x+ y becomes metering. We can make
Q�1 a quasi-invariant by specializing the guards of the loop in transitions τ1 and
τ4 to force the following execution with x + y iterations: first use τ1 until x = 0
(x iterations) and then use τ4 until y = 0 (y iterations). This behavior can be
forced by taking Gτ1 ≡ x > 0 and Gτ4 ≡ x ≤ 0. With Gτ1 we assure that x
stops decreasing when x = 0, and with Gτ4 we assure that τ4 is used only when
x = 0. Now, Q�1 ≡ x ≤ y ∧ x ≥ 0 and ρ�1(x, y) = x + y are valid quasi-invariant
and metering, resp. Function ρ�1 decreases by exactly 1 in τ1 and τ4, is trivially
non-positive in τ2 because that transition is indeed disabled (x ≥ 0 from Q�1

and x < 0 from the guard) and is non-positive in τ3 (x ≤ y∧y ≤ 0 → x+y ≤ 0).
Regarding Q�1 , it verifies (9,10), and more importantly, the loop in �1 is non-
blocking w.r.t Q�1 , Gτ1 , and Gτ4 , i.e., Condition (13) holds.

3.4 Narrowing Non-deterministic Choices

Loop transitions that involve non-deterministic variables, might give rise to exe-
cutions of different lengths when starting from the same input values. Since we
are interested in LBw, we are clearly searching for longer executions. However,
since our approach is based on inferring LBb, we have to take all executions into
account which might result in less precise, or even trivial, LBw.

Example 9. Consider a modification of the loop in Example 6 in which the vari-
able x in τ1 is decreased by a non-deterministic positive quantity u:

τ1 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − u ∧ u ≥ 1 ∧ y′ = y)

The effect of this non-deterministic variable u is that τ1 can be applied x times
if we always take u = 1, �x

2 � times if we always take u = 2 or even only once if
we take u > x. As a consequence, ρ�1(x, y) = x + y is no longer a valid metering
function because x can decrease by more than 1 in τ1. Moreover, Q�1 ≡ x ≤
y ∧ x ≥ 0 is not a quasi-invariant anymore since x′ = x − u ∧ u ≥ 1 does not
entail x′ ≥ 0. In fact, no metering function involving x will be valid in τ1 because
x can decrease by any positive amount.

To handle this complex situation, we propose narrowing the space of non-
deterministic choices, and thus metering functions should be valid wrt. fewer
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executions and more likely be found and be more precise. Next we state the
requirements that such narrowing should satisfy. The choice of a narrowing that
leads to longer executions is discussed in Sect. 4.

A non-deterministic variables narrowing for a loop transition τ ∈ T is a
formula Uτ (x̄, ū), over variables x̄ and ū, that is added to τ to restrict the choices
for variables ū. A specialized loop is now obtained by adding both Gτ and Uτ

to the corresponding transitions. Suppose that for loop � ∈ L, in addition to
Gτ , we are also given Uτ for each of its loop transitions τ . For Q� and ρ� to
be quasi-invariant and metering function for the specialized loop �, we require
conditions (9)-(13) to hold but after adding Uτ to the left-hand side of the
implications in (9) and (11). Besides, unlike narrowing of guards, narrowing of
non-deterministic choices might make a transition invalid, i.e., not satisfying
Condition (1), and thus ‖ρ�(x̄)‖ cannot be used as a lower-bound on the number
of iterations. To guarantee that specialized transitions are valid we require, in
addition, the following condition to hold

∀x̄∃ū. Q�(x̄) ∧ R(x̄) ∧ Gτ (x̄) → R(x̄, ū) ∧ Uτ (x̄, ū) for each (�, �, R) ∈ T (14)

This condition is basically (1) taking into account the inequalities introduced by
the corresponding narrowings. Assuming that (�, σ) is reachable in S and that
σ |= Q�, the specialized loop � will make at least ‖ρ�(σ(x̄))‖ iterations in any
execution that starts in (�, σ), which also means, as before, that the original loop
can make at least ‖ρ�(σ(x̄))‖ iterations in any execution that starts in (�, σ).

Example 10. To solve the problems shown in Example 9 we need to narrow
the non-deterministic variable u to take bounded values that reflect the worst-
case execution of the loop. Concretely, we need to take Uτ1 ≡ u ≤ 1, which
combined with u ≥ 1 entails u = 1 so x decreases by exactly 1 in τ1. Consider-
ing the narrowing Uτ1 , the resulting loop is equivalent to the one presented in
Example 8 so we could obtain the precise metering function ρ�1(x, y) = x + y
with the quasi-invariant Q�1 ≡ x ≤ y ∧ x ≥ 0. Note that (14) holds for
τ1 because u = 1 makes the consequent true for every value of x and y:
∀x̄∃ū. (x ≤ y ∧ x ≥ 0) ∧ (x ≥ 0 ∧ y > 0) ∧ x > 0 → u ≥ 1 ∧ u ≤ 1

3.5 Ensuring the Feasibility of the Specialized Loops

In order to enable the propagation of the local lower-bounds back to the input
location (as we have discussed at the beginning of Sect. 3), we have to ensure that
there is actually an execution that starts in �0 and passes through the specialized
loop. In other words, we have to guarantee that when putting all specialized loops
together, they still form a non-blocking TS for some set of input values. We
achieve this by requiring that the quasi-invariants of the preceding loops ensure
that the considered quasi-invariant for this loop also holds on initialization (i.e.,
it is an invariant for the considered context). Technically, we require, in addition
to (9)-(14), the following conditions to hold for each loop �:

∀x̄, ū, x̄′. Q�′(x̄) ∧ R → Q�(x̄′) for each (�′, �,R) ∈ T (15)
∀x̄. Q�0 → Θ (16)
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Condition (15) means that transitions entering loop �, strengthened with the
quasi-invariant of the preceding location �′, must lead to states within the quasi-
invariant Q�. Condition (16) guarantees that Q�0 defines valid input values, i.e.,
within the initial condition Θ.

Theorem 1 (soundness). Given Q� for each non-exit location � ∈ L, nar-
rowings Gτ and Uτ for each loop transition τ ∈ T , and function ρ� for each loop
location �, such that (9)-(16) are satisfied, it holds:

1. The TS S ′ obtained from S by adding Gτ and Uτ to the corresponding tran-
sitions, and changing the initial condition to Q�0 , is non-blocking.

2. For any complete trace t of S ′, if C = (�, σ) is a configuration in t, then t
includes at least ‖ρ�(σ(x̄))‖ visits to � after C (i.e., ‖ρ�(x̄)‖ is a lower-bound
function on the number of iterations of the loop defined by location �).

The proof of this soundness result is straightforward: it follows as a sequence of
facts using the definitions of the conditions (9)-(16) given in this section.

We note that when there is an unbounded overlap between the guards of the
loop transitions and the guards of exit transitions, it is likely that a non-trivial
metering function does not exist because it must be non-positive on the over-
lapping states. To overcome this limitation, instead of using the exit transitions
in (12), we can use ones that correspond to the negation of the guards of loop
transitions, and thus it is ensured that they do not overlap. However, we should
require (13) to hold for the original exit transitions as well in order to ensure
that the non-blocking property holds. Another way to overcome this limitation
is to simply strengthen the exit transitions by the negation of the guards.

As a final comment, we note that it is not needed to assume that the TS S
that we start with is non-blocking (even though we have done so in Sect. 2.1
for clarity). This is because our formalization above finds a subset of S (S ′ in
Theorem 1) that is non-blocking, which is enough to ensure the feasibility of the
local lower-bounds. This is useful not only for enlarging the set of TSs that we
accept as input, but also allows us to start the analysis from any subset of S
that includes a path from �0 to the exit location. For example, it can be used to
remove trivial execution paths from S, or concentrate on ones that include more
sequences of loops (since we are interested in LBw).

3.6 Handling General TSs

So far we have considered a special case of TSs in which all locations, except
the entry and exit ones, are multi-path loops. Next we explain how to handle
the general case. It is easy to see that we can allow locations that correspond to
trivial SCCs. These correspond to paths that connect loops and might include
branching as well. For such locations, there is no need to infer metering functions
or apply any specialization, we only need to assign them quasi-invariants that
satisfy (15) to guarantee that the overall specialized TS is non-blocking.

The more elaborated case is when the TS includes non-trivial SCCs that do
not form a multi-path loop. In such case, if a SCC has a single cut-point, we
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can unfold its edges and transform it into a multi-path following the techniques
of [1]. It is important to note that when merging two transitions, the cost of the
new one is the sum of their costs. In this case the number of iterations is still
a lower-bound on the cost of the loop, however, we might get a better one by
multiplying it by the minimal cost of its transitions.

If a SCC cannot be transformed into a multi-path loop by unfolding its
transitions, then it might correspond to a nested loop, and, in such case, we
can recover the nesting structure and consider them as separated TSs that are
“called” from the outer one using loop extraction techniques [25]. Each inner-loop
is then analyzed separately, and replaced (in the original TS, where is “called”)
by a single edge with its lower-bound as cost for that edge, and then the outer is
analyzed taking that cost into account. Besides, to guarantee that the specialized
program corresponds to a valid execution, we require the quasi-invariant of the
inner loop to hold in the context of the quasi-invariant of the outer loop. This
approach is rather standard in cost analysis of structured programs [1,3,12].

Another issue is how to compose the (local) lower-bounds of the specialized
loops into a global-lower bound. For this, we can rely on the techniques [1,3]
that rewrite the local lower-bounds in terms of the input values by relying on
invariant generation and recurrence relations solving.

4 Inference Using Max-SMT

This section presents how metering functions and narrowings can be inferred
automatically using Max-SMT, namely how to automatically infer all Gτ , Uτ ,
Q�, and ρ� such that (9)-(16) are satisfied. We do it in a modular way, i.e., we
seek Gτ , Uτ , Q�, and ρ� for one loop at a time following a (reversed) topological
order of the SCCs, as we describe next. Recall that (16) is required only for loops
connected directly to �0, and w.l.o.g. we assume there is only one such loop.

4.1 A Template-Based Verification Approach

We first show how the template-based approach of [6,17] can be used to find Gτ ,
Uτ , and Q� by representing them as template constraint systems, i.e., each is a
conjunction of linear constraints where coefficients and constants are unknowns.
Also, ρ� is represented as a linear template function ā · x̄ + a0 where (a0, ā) are
unknowns. Then, the problem is to find concrete values for the unknowns such
that all formulas generated by (9)-(16) are satisfied:

– Each ∀-formula generated by (9)-(16), except those of (14) that we handle
below, can be viewed as an ∃∀ problem where the ∃ is over the unknowns of the
templates and the ∀ is over (some of) the program variables. It is well-known
that solving such an ∃∀ problem, i.e., finding values for the unknowns, can be
done by translating it into a corresponding ∃ problem over the existentially
quantified variables (i.e., the unknowns) using Farkas’ lemma [20], which can
then be solved using an off-the-shelf SMT solver.
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– To handle (14) we follow [17], and eliminate ∃ū using the skolemization
ui = ā · x̄ + a0 where (a0, ā) are fresh unknowns (different for each ui).
This allows handling it using Farkas’ lemma as well. However, in addition,
when solving the corresponding ∃ problem we require all (a0, ā) to be integer.
This is because the domain of program variables is the integers, and picking
integer values for all (a0, ā) guarantees that the values of any x′

i that depends
on ū will be integer as well1.

The size of templates for Gτ , Uτ , and Q�, i.e., the number of inequalities, is
crucial for precision and performance. The larger the size is, the more likely
that we get a solution if one exists, but also the worse the performance is (as
the corresponding SMT problem will include more constraints and variables). In
practice, one typically starts with templates of size 1, and iteratively increases
it by 1 when failing to find values for the unknowns, until a solution is found or
the bound on the size is reached.

Alternatively, we can use the approach of [17] to construct Gτ , Uτ , and Q�

incrementally. This starts with templates of size 1, but instead of requiring all (9)-
(16) to hold, the conditions generated by (12) are marked as soft constraints
(i.e., we accept solutions in which they do not hold) and use Max-SMT to get
a solution that satisfies as many of such soft conditions as possible. If all are
satisfied, we are done, if not, we use the current solution to instantiate the
templates, and then add another template inequality to each of them and repeat
the process again. This means that at any given moment, each template will
include at most one inequality with unknowns. Finally, to guarantee progress
from one iteration to another, soft conditions that hold at some iteration are
required to hold at the next one, i.e., they become hard.

The use of (12) as soft constraint is based on the observation [12] that when
seeking a metering function, the problematic part is often to guarantee that
it is negative on exit transitions, which is normally achieved by adding quasi-
invariants that are incrementally inferred. By requiring (12) to be soft we handle
more exit transitions as the quasi-invariant gets stronger until all are covered.

4.2 Better Quality Solutions

The precision can also be affected by the quality of the solution picked by the
SMT solver for the corresponding ∃ problem. Since there might be many meter-
ing functions that satisfy (9)-(16), we are interested in narrowing the search
space of the SMT solver in order to find more accurate ones, i.e., lead to longer
executions. Next we present some techniques for this purpose.

Enabling More Loop Transitions. We are interested in guard narrowings that
keep as many loop transitions as possible, since such narrowings are more likely

1 Because we assumed that constraints involving primed variables are of the form
x′

i = ā · x̄ + b̄ · ū + c.
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to generate longer executions. This can be done by requiring the following to
hold

∃x̄.
∨

τ=(�,�,R)∈T
(Q�(x̄) ∧ R(x̄) ∧ Gτ (x̄)) (17)

We also use Max-SMT to require a solution that satisfies as many disjuncts as
possible and thus eliminating less loop transitions (if Q�(x̄) ∧ R(x̄) ∧ Gτ (x̄) is
false for a transition τ , then it is actually disabled). Note that this condition
can be used instead of (10) that requires the quasi-invariant to be non-empty.

Larger Metering Functions. We are interested in metering functions that lead
to longer executions. One way to achieve this is to require metering functions to
be ranking as well, i.e., in addition to (11) we require the following to hold

∀x̄, ū, x̄′.Q�(x̄)∧Gτ (x̄)∧Uτ (x̄, ū)∧R→ρ�(x̄)−ρ�(x̄
′) ≥ 1 for each (�, �, R) ∈ T (18)

∀x̄, ū.Q�(x̄) ∧ Gτ (x̄) ∧ R(x̄) → ρ�(x̄) ≥ 0 for each (�, �, R) ∈ T (19)

These new conditions are added as soft constraints, and we use Max-SMT to
ask for a solution that satisfies as many conditions as possible.

Unbounded Metric Functions. We are interested in metering functions that do
not have an upper bound, since otherwise they will lead to constant lower-bound
functions. For example, for a loop with a transition x ≥ 0 ∧ x′ = x − 1, we want
to avoid quasi-invariants like x ≤ 5 which would make the metering function x
bounded by 5. For this, we rely on the following lemma.

Lemma 1. A function ρ(x̄) = ā · x̄ + a0 is unbounded over a polyhedron P, iff
ā · ȳ is positive on at least one ray ȳ of the recession cone of P.

It is known that for a polyhedron P given in constraints representation, its
recession cone cone(P) is the set specified by the constraints of P after removing
all free constants. Now we can use the above lemma to require that the metering
function ρ�(x̄) = ā · x̄ + ā0 is unbounded in the quasi-invariant Q� by requiring
the following condition to hold

∃x̄. cone(Q�) ∧ ā · x̄ > 0 (20)

where cone(Q�) is obtained from the template of Q� by removing all (unknowns
corresponding to) free constants, i.e., it is the recession cone of Q�.

Note that all encodings discussed in this section generate non-linear SMT
problems, because they either correspond to ∃∀ problems that include templates
on the left-hand side of implications, or to ∃ problems over templates that include
both program variables and unknowns.

Finally, it is important to note that the optimizations described provide the-
oretical guarantees to get better lower bounds: the one that adds (18,19) leads to
a bound that corresponds exactly to the worst-case execution (of the specialized
program), and the one that uses (20) is essential to avoid constant bounds.
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5 Implementation and Experimental Evaluation

We have implemented a LOwer-Bound synthesizER, named LOBER, that can
be used from an online web interface at http://costa.fdi.ucm.es/lober. LOBER is
built as a pipeline with the following processes: (1) it first reads a KoAT file [5]
and generates a corresponding set of multi-path loops, by extracting parts of the
TS that correspond to loops [25], applying unfolding, and inferring loop sum-
maries to be used in the calling context of nested loops, as explained in Sect. 3.6;
(2) it then encodes in SMT the conditions (9)–(13) defined through the paper, for
each loop separately, by using template generation, a process that involves sev-
eral non-trivial implementations using Farkas’ lemma (this part is implemented
in Java and uses Z3 [8] for simple (linear) satisfiability checks when produc-
ing the Max-SMT encoding); (3) the problem is solved using the SMT solver
Barcelogic [4], as it allows us to use non-linear arithmetic and Max-SMT capa-
bilities in order to assert soft conditions and implement the solutions described
in Sect. 4; (4) in order to guarantee the correctness of our system results, we
have added to the pipeline an additional checker that proves that the obtained
metering function and quasi-invariants verify conditions (9)–(13) by using Z3. To
empirically evaluate the results of our approach, we have used benchmarks from
the Termination Problem Data Base (TPDB), namely those from the category
Complexity ITS that contains Integer Transition Systems. We have removed
non-terminating TSs and terminating TSs whose cost is unbounded (i.e., the
cost depends on some non-deterministic variables and can be arbitrarily high)
or non-linear, because they are outside the scope of our approach. In total, we
have considered a set of 473 multi-path loops from which we have excluded 13
that were non-linear. Analyzing these 473 programs took 199 min, an average of
25 sec by program, approximately. For 255 of them, it took less than 1 s.

Table 1 illustrates our results and compares them to those obtained by the
LoAT [12,13] system, which also outputs a pair (ρ,Q) of a lower-bound function
ρ and initial conditions Q on the input for which ρ is a valid lower-bound.
In order to automatically compare the results obtained by the two systems,
we have implemented a comparator that first expresses costs as functions f :
N → R≥0 over a single variable n and then checks which function is greater. To
obtain this unary cost function from the results (ρ, Q), we use convex polyhedra
manipulation libraries to maximize the obtained cost ρ wrt. Q ∧ −n ≤ xi ≤ n,
where xi are the TS variables, and express that maximized expressions in terms of
n. Therefore, f(n) represents the maximum cost when the variables are bounded
by |xi| ≤ n and satisfy the corresponding initial condition Q, a notion very
similar to the runtime complexity used in [12,13]. Once we have both unary
linear costs f1(n) = k1n + d1 and f2(n) = k2n + d2, we compare them in n ≥ 0
by inspecting k1 and k2.

Each row of the table contains the number of loops for which both tools
obtain the same result (=), the number of loops where LOBER is better than
LoAT (>) and the number of loops where LoAT is better than LOBER (<). The
subcategories are obtained directly from the name of the innermost folder, except
for the cases in which this folder contains too few examples that we merge them

http://costa.fdi.ucm.es/lober
https://github.com/TermCOMP/TPDB
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Table 1. Results of the experiments.

Benchmark set Total = > < Benchmark set Total = > <

Brockschmidt 16 FGPSF09/Misc 20 16 3 1

c-examples/ABC 33 33 0 0 KoAT-2013 10 10 0 0

c-examples/SPEED 29 25 4 0 KoAT-2014 14 14 0 0

c-examples/WTC 45 39 4 2 SAS10 46 40 1 5

c-examples/Misc 9 9 0 0 Flores-Montoya 16 176 158 16 2

costa 6 5 1 0 Hark 20

FGPSF09/Beerendonk 28 24 4 0 Ben Amram Genaim 10 7 2 1

FGPSF09/patrs 18 16 2 0 Nils 2019 16 16 0 0

all in a Misc folder in the parent directory. The total number of loops that are
considered in each subcategory appears in column Total. Brockschmidt 16

and Hark 20 have their first row empty as all their results are contained in their
subcategories. Globally, both tools behave the same in 412 programs (column
“=”), obtaining equivalent linear lower bounds in 376 of them and a constant
lower bound in the remaining ones. Our tool LOBER achieves a better accuracy in
37 programs (column “>”), while LoAT is more precise in 11 programs (column
“<”). Let us discuss the two sets of programs in which both tools differ. As
regards the 37 examples for which we get better results, we have that LoAT
crashes in 4 cases and it can only find a constant lower bound in 1 example
while our tool is able to find a path of linear length by introducing the necessary
quasi-invariants. For the remaining 32 loops, both tools get a linear bound,
but LOBER finds one that leads to an unboundedly longer execution: 18 of
these loops correspond to cases that have implicit relations between the different
execution paths (like our running examples) and require semantic reasoning; for
the remaining 14, we get a better set of quasi-invariants. The following techniques
have been needed to get such results in these 37 better cases (note that (i) is
not mutually exclusive with the others):

(i) 1 needs narrowing non-deterministic choices,
(ii) 5 do not need quasi-invariants nor guard narrowing,
(iii) 14 need quasi-invariants only,
(iv) 18 need both quasi-invariants and guard narrowing (in 3 of them this is

only used to disable transitions).

Therefore, this shows experimentally the relevance of all components within our
framework and its practical applicability thanks to the good performance of the
Max-SMT solver on non-linear arithmetic problems. In general, for all the set of
programs, we can solve 308 examples without quasi-invariants and 444 without
guard-narrowing. The intersection of these two sets is: 298 examples (63% of the
programs), that leaves 175 programs that need the use of some of the proposed
techniques to be solved.

As regards the 11 examples for which we get worse results than LoAT, we
have two situations: (1) In 6 cases, the SMT-solver is not able to find a solution.
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We noticed that too many quasi-invariants were required, what made the SMT
problem too hard. To improve our results, we could start, as a preprocessing step,
from a quasi-invariant that includes all invariant inequalities that syntactically
appear in the loop transitions, something similar to what is done by LoAT when
inferring what they call conditional metering function [12]. This is left for future
experimentation. (2) In the other 5 cases, our tool finds a linear bound but with a
worse set of quasi-invariants, which makes the LoAT bound provide unboundedly
longer executions. We are investigating whether this can be improved by adding
new soft constraints that guide the solver to find these better solutions. Finally,
let us mention that, for the 13 problems that LoAT gives a non-linear bound
and have been excluded from our benchmarks as justified above, we get a linear
bound for the 12 that have a polynomial bound (of degree 2 or more), and a
constant bound for the additional one that has a logarithmic lower bound. This
is the best we can obtain as our approach focuses on the inference of precise
local linear bounds, as they constitute the most common type of loops.

All in all, we argue that our experimental results are promising: we triple
LoAT in the number of benchmarks for which we get more accurate results
and, besides, many of those examples correspond to complex loops that lead to
worse results when disconnecting transitions. Besides, we see room for further
improvement, as most examples for which LoAT outperforms us could be handled
as accurately as them with better quasi-invariants (that is somehow a black-box
component in our framework). Syntactic strategies that use invariant inequalities
that appear in the transitions, like those used in LoAT, would help, as well as
further improvements in SMT non-linear arithmetic.

Application Domains. The accuracy gains obtained by LOBER have applications
in several domains in which knowing the precise cost can be fundamental. This is
the case for predicting the gas usage [26] of executing smart contracts, where gas
cost amounts to monetary fees. The caller of a transaction needs to include a gas
limit to run it. Giving a too low gas limit can end in an “out of gas” exception
and giving a too high gas limit can end in a “not enough eth (money)” error.
Therefore having a tighter prediction is needed to be safe on both sides. Also,
when the UB is equal to the LB, we have an exact estimation, e.g., we would know
precisely the runtime or memory consumption of the most costly executions. This
can be crucial in safety-critical applications and has been used as well to detect
potential vulnerabilities such as denial-of-service attacks. In https://apps.dtic.
mil/sti/pdfs/AD1097796.pdf, vulnerabilities are detected in situations in which
both bounds do not coincide. For instance, in password verification programs, if
the UB and LB differ due to a difference on the delays associated to how many
characters are right in the guessed password, this is identified as a potential
attack.

6 Related Work and Conclusions

We have proposed a novel approach to synthesize precise lower-bounds from
integer non-deterministic programs. The main novelties are on the use of loop

https://apps.dtic.mil/sti/pdfs/AD1097796.pdf
https://apps.dtic.mil/sti/pdfs/AD1097796.pdf
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specialization to facilitate the task of finding a (precise) metering function and
on the Max-SMT encoding to find larger (better) solutions. Our work is related
to two lines of research: (1) non-termination analysis and (2) LB inference.
In both kinds of analysis, one aims at finding classes of inputs for which the
program features a non-terminating behavior (1) or a cost-expensive behavior
(2). Therefore, techniques developed for non-termination might provide a good
basis for developing a LB analysis. In this sense, our work exploits ideas from
the Max-SMT approach to non-termination in [17]. The main idea borrowed
from [17] has been the use of quasi-invariants to specialize loops towards the
desired behavior: in our case towards the search of a metering function, while
in theirs towards the search of a non-termination proof. However, there are
fundamental differences since we have proposed other new forms of loop spe-
cialization (see a more detailed comparison in Sect. 1) and have been able to
adapt the use of Max-SMT to accurately solve our problem (i.e., find larger
bounds). As mentioned in Sect. 1, our loop specialization technique can be
used to gain precision in non-termination analysis [17]. For instance, in this
loop: “while (x>=0 and y>=0) {if (∗) {x++; y−−;} else {x−−;y++;}}” no sub
SCC (considering only one of the transitions) is non-terminating and no quasi-
invariant can be found to ensure we will stay in the loop (when considering both
transitions), hence cannot be handled by [17]. Instead if we narrow the transi-
tions by adding y >= x in the if-condition (and hence x > y in the else), we can
prove that x >= 0 ∧ y >= 0 ∧ x + y = 1 is quasi-invariant, which allow us to
prove non-termination in the way of [17] (as we will stay in the loop forever).

As regards LB inference, the current state-of-the-art is the work by Frohn et
al. [12,13] that introduces the notion of metering function and acceleration. Our
work indeed tries to recover the semantic loss in [12,13] due to defining metering
functions for simple loops and combining them in a later stage using accelera-
tion. Technically, we only share with this work the basic definition of metering
function in Sect. 3.1. Indeed, the definition in conditions (3) and (4) already
generalizes the one in [12,13] since it is not restricted to simple loops. This
definition is improved in the following sections with several loop specializations.
While [12,13] relies on pure SMT to solve the problem, we propose to gain preci-
sion using Max-SMT. We believe that similar ideas could be adapted by [12,13].
Due to the different technical approaches underlying both frameworks, their
accuracy and efficiency must be compared experimentally wrt. the LoAT system
that implements the ideas in [12,13]. We argue that the results in Sect. 5 justify
the important gains of using our new framework and prove experimentally that,
the fact that we do not lose semantic relations in the search of metering func-
tions is key to infer LB for challenging cases in which [12,13] fails. Originally,
the LoAT [12,13] system only accelerated simple loops by using metering func-
tions, so the overall precision of the lower bound relied on obtaining valid and
precise metering functions. However, the framework in [12,13] is independent of
the accelerating technique applied. In order to increase the number of simple
loops that can be accelerated, Frohn [11] proposes a calculus to combine differ-
ent conditional acceleration techniques (monotonic increase/decrease, eventual
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increase/decrease, and metering functions). These conditional acceleration tech-
niques assume that all the iterations of the loop verify some condition ϕ, and
the calculus applies the techniques in order and extract those conditions ϕ from
fragments of the loop guard. Although more precise and powerful, the combined
acceleration calculus considers only simple loops, so it does not solve the preci-
sion loss when the loop cost involves several interleaved transitions. Moreover,
the techniques in [11] are integrated into LoAT, so the experimental evaluation
in Sect. 5 compares our approach to the framework in [12,13] extended with
several techniques to accelerate loops (not only metering functions).

Finally, our approach presents similarities to the CTL* verification for ITS
in [7] as both extend transition guards of the original ITS. The difference is
that in [7] the added constraints only contain newly created prophecy vari-
ables and the transitions to modify are detected directly using graph algorithms;
whereas our SMT-based approach adds constraints only over existing variables
to satisfy the properties that characterize a good metering function. Addition-
ally, both approaches differ both in the goal (CTL* verification vs. inference of
lower-bounds) and the technologies applied (CTL model checkers vs. Max-SMT
solvers).
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Abstract. We introduce new algorithms for computing non-termination
sensitive control dependence (NTSCD) and decisive order dependence
(DOD). These relations on vertices of a control flow graph have many
applications including program slicing and compiler optimizations. Our
algorithms are asymptotically faster than the current algorithms. We
also show that the original algorithms for computing NTSCD and DOD
may produce incorrect results. We implemented the new as well as fixed
versions of the original algorithms for the computation of NTSCD and
DOD. Experimental evaluation shows that our algorithms dramatically
outperform the original ones.

1 Introduction

Control dependencies between program statements are studied since 70’s.
They have important applications in compiler optimizations [12,14,16], pro-
gram analysis [9,19,36], and program transformations, especially program slic-
ing [1,9,22,26,37]. Slicing is used in many areas including testing, debugging,
parallelization, reverse engineering, program analysis and verification [17,28].

Informally, two statements in a program are control dependent if one directly
controls the execution of the other in some way. This is typically the case for
if statements and their bodies. Control dependencies are nowadays classified as
weak (non-termination insensitive) if they assume that a given program always
terminates, or as strong (non-termination sensitive) if they do not have this
assumption [13]. We illustrate the difference on the control flow graph in Fig.
1. Node a controls whether b or c (and then d) is going to be executed, so b, c,
and d are control dependent on a (the convention is to display dependence as
edges in the “controls” direction). Similarly, b controls the execution of c and d,
as these nodes may be bypassed by going from b to e. Note also that d controls
whether d is going to be executed in the future and thus is control dependent on
itself. However, c does not control d as any path from c hits d. All dependencies
mentioned so far are weak, namely standard control dependencies as defined by
Ferrante et al. [16]. Weak control dependence assumes that the program always
terminates, in particular, that the loop over d cannot iterate forever. As a result,
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 887–910, 2021.
https://doi.org/10.1007/978-3-030-81688-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_41&domain=pdf
http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-030-81688-9_41


888 M. Chalupa et al.

a

b

c d

e

Fig. 1. An example of a control flow graph and control dependencies (red edges).
The dotted dependencies are additional non-termination sensitive control dependencies.
(Color figure online)

e is reached by all executions and thus it is not weakly control dependent on any
node. However, e is strongly control dependent on b and d. Indeed, if we assume
that some executions can loop over d forever, then reaching e is controlled clearly
by d and also by b as it can send the execution directly to e.

This paper is concerned with the computation of two prominent strong
control dependencies introduced by Ranganath et al. [32,33], namely non-
termination sensitive control dependence (NTSCD) and decisive order depen-
dence (DOD). NTSCD is studied in Sect. 3, which follows after preliminaries in
Sect. 2. We first recall the definition of NTSCD and the algorithm of Ranganath
et al. [33] for its computation. Then we show a flaw in the algorithm and suggest a
fix. Finally, we introduce a new algorithm for the computation of NTSCD. Given
a control flow graph with |V | nodes, the new algorithm runs in time O(|V |2),
while the algorithm of Ranganath et al. runs in time O(|V |4 · log |V |) and its
fixed version in time O(|V |5). We show a NTSCD relation of size Θ(|V |2), which
means that our algorithm is asymptotically optimal.

The DOD relation captures the cases when one node controls the execution
order of two other nodes. Roughly speaking, nodes {b, c} are DOD on a whenever
all executions passing through a eventually reach both b and c and a controls
which is reached first. Ranganath et al. [33] proved that the relation is empty
for reducible graphs [21], i.e., graphs where every cycle has a single entry point.
Control flow graphs of structured programs are reducible, but irreducible graphs
may arise for example in the following situations [11,33,35]:

– unstructured coding by a human, which is rather rare nowadays,
– compilation into unstructured code representation like JVM bytecode,
– tail call recursion optimization during compilation,
– when the control flow graph is interprocedural – in this case, irreducibility

may be introduced by recursion or exceptions handling,
– by reversing a control flow graph containing, for example, break statements
– when the control flow graph is not generated from program, but, e.g., from a

finite state machine.

The DOD relation is important (together with NTSCD) when we want to slice
possibly non-terminating programs with irreducible control flow graphs and pre-
serve their termination properties as well as data integrity [1,33]. This is a
common requirement when slicing is used as a preprocessing step before pro-
gram verification [9,23,26], worst-case execution time analysis [29], information
flow analysis [18,19], analysis of concurrent programs [18] with busy-waiting
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synchronization or synchronization where possible spurious wake-ups of threads
are guarded by loops (e.g., programs using the pthread library), and analysis of
reactive systems and generic state-based models [2,24,33].

The DOD relation is studied in Sect. 4, where we recall its definition, discuss
the Ranganath et al.’s algorithm for DOD [33], and show that this algorithm
also contains a flaw. Fortunately, this flaw can be easily fixed without changing
the complexity of the algorithm. Further, we develop a theory that underpins
our new algorithm for the computation of DOD. Due to the space limitations,
proofs of theorems can be found only in the extended version of this paper [8].
The new algorithm, presented at the end of the section, computes DOD in time
O(|V |3), while the original as well as the fixed version of the Ranganath et al.’s
algorithm runs in O(|V |5 · log |V |). We show a DOD relation of size Θ(|V |3),
which means that our algorithm is again asymptotically optimal.

Section 5 focuses on control closures (CC) introduced by Danicic et al. [33],
which generalize control dependence to arbitrary directed graphs. It is known
that the strong (i.e., non-termination sensitive) control closure for a set of nodes
containing the starting node is equivalent to the closure under NTSCD and DOD
relations. Hence, our algorithms for NTSCD and DOD can be used to compute
strong CC in time O(|V |3) on control flow graphs, while the original algorithm
by Danicic et al. [13] runs in O(|V |4).

Our theoretical contribution to computation of strong control dependencies
is summarized in Table 1. Section 6 presents experimental evaluation showing
that our algorithms are indeed dramatically faster than the original ones. The
paper is concluded with Sect. 7.

1.1 Related Work

The first paper concerned with control dependence is due to Denning and Den-
ning [15], who used control dependence to certify that flow of information in a
program is secure. Weiser [37], Ottenstein and Ottenstein [30], and Ferrante et
al. [16] used control dependence in program slicing, which is also the motivation
for the most of the latter research in this area. These “classical” papers study
control dependence in terminating programs with a unique exit node eventually
reached by every execution. These restrictions have been gradually removed.

Table 1. Overview of discussed algorithms and their complexities on CFGs

Relation/closure Algorithm Complexity

NTSCD Original algorithm by Ranganath et al. [33] O(|V |4 · log |V |)
(Sect. 3) Fixed algorithm by Ranganath et al. [33] O(|V |5)

New algorithm O(|V |2)
DOD Original algorithm by Ranganath et al. [33] O(|V |5 · log |V |)
(Sect. 4) Fixed algorithm by Ranganath et al. [33] O(|V |5 · log |V |)

New algorithm O(|V |3)
Strong CC Original algorithm by Danicic et al. [13] O(|V |4)
(Sect. 5) New NTSCD-and-DOD-based algorithm O(|V |3)
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Podgurski and Clarke [31] defined the first strong control dependence that
does not assume termination of the program.1 However, their definitions and
algorithms still require programs to have a unique exit node.

Bilardi and Pingal [5] introduced a framework that uses generalized domi-
nance relation on graphs. In their framework, they are able to compute Podgurski
and Clarke’s control dependence in O(|E|+|V |2) time for a directed graph (V,E)
with a unique exit node. In theory, NTSCD could be computed in their frame-
work. However, computing augmented post-dominator tree – the central data
structure of their framework – requires the unique exit node as it starts with
post-dominator tree and, mainly, is much more complicated compared to our
algorithm for NTSCD [5].

Chen and Rosu [10] introduced a parametric approach where loops can be
annotated with information about termination. The resulting control depen-
dence is somewhere between the classical and Podgurski and Clarke’s control
dependence, the two being the extremes.

The notion of NTSCD and DOD was founded in works of Ranganath et al.
[32,33] in order to slice reactive systems, e.g., operating systems or controllers of
embedded devices. They generalized also classical (non-termination insensitive)
control dependence to graphs without the unique exit point (further investigated,
e.g., by Androutsopoulos et al. [3]) and provided several relaxed versions of DOD.

Danicic et al. [13] introduced weak and strong control closures (CC) that
generalize weak and strong control dependence (thus also NTSCD) to arbitrary
graphs. They provide algorithms for the computation of minimal closures that
run in O(|V |3) (weak CC) and O(|V |4) (strong CC) on graph with |V | nodes.

An orthogonal study of control dependence that arises between statements
in different procedures (e.g., due to calls to exit()) was carried out by Loyall
and Mathisen [27], Harrold et al. [20], and Sinha et al. [34].

2 Preliminaries

A finite directed graph is a pair G = (V,E), where V is a finite set of nodes and
E ⊆ V × V is a set of edges. If there is an edge (m,n) ∈ E, then n is called
a successor of m, m is a predecessor of n, and the edge is an outgoing edge of
m. Given a node n, Successors(n) and Predecessors(n) denote the sets of all its
successors and predecessors, respectively. A path from a node n1 is a nonempty
finite or infinite sequence n1n2 . . . ∈ V +∪V ω of nodes such that there is an edge
(ni, ni+1) ∈ E for each pair ni, ni+1 of adjacent nodes in the sequence. A path
is called maximal if it cannot be prolonged, i.e., it is infinite or the last node of
the path has no outgoing edge. A node m is reachable from a node n if there
exists a finite path such that its first node is n and its last node is m.

We say that a graph is a cycle, if it is isomorphic to a graph (V,E) where
V = {n1, . . . , nk} for some k > 0 and E = {(n1, n2), (n2, n3), . . . , (nk−1, nk),
1 Podgurski and Clarke [31] called their control dependence weak control dependence

as it is a superset of classical control dependence. Nowadays, we use the terms weak
and strong precisely in the opposite meaning [13].
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(nk, n1)}. A cycle unfolding is a path in the cycle that contains each node pre-
cisely once.

In this paper, we consider programs represented by control flow graphs, where
nodes correspond to program statements and edges model the flow of control
between the statements. As control dependence reflects only the program struc-
ture, our definition of a control flow graph does not contain any statements.
Our definition also does not contain any start or exit nodes as these are not
important for the problems we study in this paper.

Definition 1 (Control flow graph, CFG). A control flow graph (CFG) is a
finite directed graph G = (V,E) where each node v ∈ V has at most two outgoing
edges. Nodes with exactly two outgoing edges are called predicate nodes or simply
predicates. The set of all predicates of a CFG G is denoted by Predicates(G).

3 Non-termination Sensitive Control Dependence

This section recalls the definition of NTSC by Ranganath et al. [32] and their
algorithm for computing NTSCD. Then we show that the algorithm can produce
incorrect results and introduce a new algorithm that is asymptotically faster.

Definition 2 (Non-termination sensitive control dependence,NTSCD).
Given a CFG G = (V,E), a node n ∈ V is non-termination sensitive control
dependent (NTSCD) on a predicate node p ∈ Predicates(G), written p NTSCD−−−→ n,
if p has two successors s1 and s2 such that

– all maximal paths from s1 contain n, and
– there exists a maximal path from s2 that does not contain n.

3.1 Algorithm of Ranganath et al. [33] for NTSCD

The algorithm is presented in Algorithm 1. Its central data structure is a two-
dimensional array S where for each node n and for each predicate node p with
successors r and s, S[n, p] always contains a subset of {tpr, tps}. Intuitively, tpr

should be added to S[n, p] if n appears on all maximal paths from p that start
with the prefix pr. The workbag holds the set of nodes n for which some S[n, p]
value has been changed and this change should be propagated. The first part of
the algorithm initializes the array S with the information that each successor
r of a predicate node p is on all maximal paths from p starting with pr. The
main part of the algorithm then spreads the information about the reachability
on all maximal paths in the forward manner. Finally, the last part computes the
NTSCD relation according to Definition 2 and with use of the information in S.

The algorithm runs in time O(|E| · |V |3 · log |V |) [33] for a CFG G = (V,E).
The log |V | factor comes from set operations. Since every node in CFG has at
most 2 outgoing edges, we can simplify the complexity to O(|V |4 · log |V |).

Although the correctness of the algorithm has been proved [32, Theorem 7],
Fig. 2 presents an example where the algorithm provides an incorrect answer.



892 M. Chalupa et al.

Algorithm 1: The NTSCD algorithm by Ranganath et al. [33]
Input: a CFG G = (V, E)
Output: a potentially incorrect NTSCD relation stored in ntscd

1 Set S[n, p] = ∅ for all n ∈ V and p ∈ Predicates(G) // Initialization

2 workbag ← ∅
3 for p ∈ Predicates(G) do
4 for r ∈ Successors(p) do
5 S[r, p] ← {tpr}
6 workbag ← workbag ∪ {r}
7

8 while workbag �= ∅ do // Computation of S
9 n ← pop from workbag

10 if Successors(n) = {s} for some s �= n then // One successor case

11 for p ∈ Predicates(G) do
12 if S[n, p] � S[s, p] �= ∅ then
13 S[s, p] ← S[s, p] ∪ S[n, p]
14 workbag ← workbag ∪ {s}
15 if |Successors(n)| > 1 then // Multiple successors case

16 for m ∈ V do
17 if |S[m, n]| = |Successors(n)| then
18 for p ∈ Predicates(G) � {n} do
19 if S[n, p] � S[m, p] �= ∅ then
20 S[m, p] ← S[m, p] ∪ S[n, p]
21 workbag ← workbag ∪ {m}
22

23 ntscd ← ∅ // Computation of NTSCD

24 for n ∈ V do
25 for p ∈ Predicates(G) do
26 if 0 < |S[n, p]| < |Successors(p)| then
27 ntscd ← ntscd ∪ {p NTSCD−−−→ n}

The first part of the algorithm initializes S as shown in the figure and sets
workbag to {2, 6, 3, 4}. Then any node from workbag can be popped and pro-
cessed. Let us apply the policy used for queues: always pop the oldest element in
workbag . Hence, we pop 2 and nothing happens as the condition on line 17 is not
satisfied for any m. This also means that the symbol t12 is not propagated any
further. Next we pop 6, which has no effect as 6 has no successor. By processing
3 and 4, t23 and t24 are propagated to S[5, 2] and 5 is added to the workbag .
Finally, we process 5 and set S[6, 2] to {t23, t24}. The final content of S is pro-
vided in the figure. Unfortunately, the information in S is sound but incomplete.
In other words, if tpr ∈ S[n, p], then n is indeed on all maximal paths from p
starting with pr, but the opposite implication does not hold. In particular, t12 is
missing in S[5, 1] and S[6, 1]. Consequently, the last part of the algorithm com-
putes an incorrect NTSCD relation: it correctly identifies 1 NTSCD−−−→ 2, 2 NTSCD−−−→ 3,
and 2 NTSCD−−−→ 4, but it also incorrectly produces 1 NTSCD−−−→ 6 and misses 1 NTSCD−−−→ 5.
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1

2

3 4

5

6

S after initialization
S[2, 1] = {t12}
S[6, 1] = {t16}
S[3, 2] = {t23}
S[4, 2] = {t24}

final S when nodes are popped in order
2, 6, 3, 4, 5 (oldest first) 3, 4, 2, 5, 6 (correct)
S[2, 1] = {t12} S[2, 1] = {t12}
S[6, 1] = {t16} S[3, 2] = {t23}
S[3, 2] = {t23} S[4, 2] = {t24}
S[5, 2] = {t23, t24} S[5, 1] = {t12}
S[6, 2] = {t23, t24} S[6, 1] = {t12, t16}

S[6, 2] = {t23, t24}

Fig. 2. An example that shows the incorrectness of the NTSCD algorithm by Ran-
ganath et al. [33]. Solid red edges depict the dependencies computed by the algorithm
when it always pops the oldest element in workbag . The crossed dependence is incorrect.
The dotted dependence is missing in the result.

A necessary condition to get the correct result is to process 2 only after 3, 4
are processed and S[5, 6] = {t23, t24}. For example, one obtains the correct S
(also shown in the figure) when the nodes are processed in the order 3, 4, 2, 5, 6.

The algorithm is clearly sensitive to the order of popping nodes from workbag .
We are currently not sure whether for each CFG there exists an order that
leads to the correct result. An easy way to fix the algorithm is to ignore the
workbag and repeatedly execute the body of the while loop (lines 10–21) for all
n ∈ V until the array S reaches a fixpoint. However, this modification would
slow down the algorithm substantially. Computing the fixpoint needs O(|V |3)
iterations over the loop body (lines 10–21 excluding lines 14 and 21 handling the
workbag) and one iteration of this loop body needs O(|V |2). Hence, the overall
time complexity of the fixed version is O(|V |5).

3.2 New Algorithm for NTSCD

We have designed and implemented a new algorithm computing NTSCD. Our
algorithm is correct, significantly simpler and asymptotically faster than the
original algorithm of Ranganath et al. [33].

The new algorithm calls for each node n a procedure that identifies all
NTSCD dependencies of n on predicate nodes. The procedure works in the fol-
lowing steps.

1. Color n red.
2. Pick an uncolored node such that it has some successors and they all are red.

Color the node red. Repeat this step until no such node exists.
3. For each predicate node p that has a red successor and an uncolored one,

output p NTSCD−−−→ n.
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Algorithm 2: The new NTSCD algorithm
Input: a CFG G = (V, E)
Output: the NTSCD relation stored in ntscd

1 Procedure visit(n) // Auxiliary procedure

2 n.counter ← n.counter − 1
3 if n.counter = 0 ∧ n.color �= red then
4 n.color ← red
5 for m ∈ Predecessors(n) do
6 visit(m)

7

8 Procedure compute(n) // Coloring the graph red for a given n
9 for m ∈ V do

10 m.color ← uncolored
11 m.counter ← |Successors(m)|
12 n.color ← red
13 for m ∈ Predecessors(n) do
14 visit(m)

15

16 ntscd ← ∅ // Computation of NTSCD

17 for n ∈ V do
18 compute(n)
19 for p ∈ Predicates(G) do
20 if p has a red successor and an uncolored successor then
21 ntscd ← ntscd ∪ {p NTSCD−−−→ n}

Unlike the Ranganath et al.’s algorithm which works in a forward manner, our
algorithm spreads the information about the reachability of n on all maximal
paths in the backward direction starting from n.

The algorithm is presented in Algorithm 2. The procedure compute(n)
implements the first two steps mentioned above. In the second step, it does
not search over all nodes to pick the next node to color. Instead, it maintains
the count of uncolored successors for each node. Once the count drops to 0 for a
node, the node is colored red and the search continues with predecessors of this
node. The third step is implemented directly in the main loop of the algorithm.

To prove that the algorithm is correct, we basically need to show that when
compute(n) finishes, a node m is red iff all maximal paths from m contain n.
We start with a simple observation.

Lemma 1. After compute(n) finishes, a node m is red if and only if m = n
or m has a positive number of successors and all of them are red.

Proof. For each node m, the counter is initialized to the number of its successors
and it is decreased by calls to visit(m) each time a successor of m gets red. When
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the counter drops to 0 (i.e., all successors of the node are red), the node is colored
red. Therefore, if m is red, it got red either on line 12 and m = n, or m �= n
and m is red because all its successors got red (it must have a positive number
of successors, otherwise the counter could not be 0 after its decrement). In the
other direction, if m = n, it gets red on line 12. If it has a positive number of
successors which all get red, the node is colored red by the argument above. ��
Theorem 1. After compute(n) finishes, for each node m it holds that m is
red if and only if all maximal paths from m contain n.

Proof. (“⇐=”) We prove this implication by contraposition. Assume that m is
an uncolored node. Lemma 1 implies that each uncolored node has an uncolored
successor (if it has any). Hence, we can construct a maximal path from m con-
taining only uncolored nodes simply by always going to an uncolored successor,
either up to infinity or up to a node with no successors. This uncolored maximal
path cannot contain n which is red.

(“=⇒”) For the sake of contradiction, assume that there is a red node m and
a maximal path from m that does not contain n. Lemma 1 implies that all nodes
on this path are red. If the maximal path is finite, it has to end with a node
without any successor. Lemma 1 says that such a node can be red if and only if
it is n, which is a contradiction. If the maximal path is infinite, it must contain
a cycle since the graph is finite. Let r be the node on this cycle that has been
colored red as the first one. Let s be the successor of r on the cycle. Recall that
r �= n as the maximal path does not contain n. Hence, node r could be colored
red only when all its successors including s were already red. This contradicts
the fact that r was colored red as the first node on the cycle. ��

To determine the complexity of our algorithm on a CFG (V,E), we first
analyze the complexity of one run of compute(n). The lines 9–11 iterate over
all nodes. The crucial observation is that the procedure visit is called at most
once for each edge (m,m′) ∈ E of the graph: to decrease the counter of m
when m′ gets red. Hence, the procedure compute(n) runs in O(|V |+ |E|). This
procedure is called on line 18 for each node n. Finally, lines 20–21 are executed
for each pair of node n and predicate node p. This gives us the overall complexity
O((|V | + |E|) · |V | + |V |2) = O((|V | + |E|) · |V |). Since in control flow graphs it
holds |E| ≤ 2|V |, the complexity can be simplified to O(|V |2).

Note that our algorithm is asymptotically optimal as there are CFGs with
NTSCD relations of size Θ(|V |2). For example, the CFG in Fig. 3 has |V | = 2k+1
nodes and the corresponding NTSCD relation

{ni
NTSCD−−−→ mj | i, j ∈ {1, . . . , k}} ∪ {ni

NTSCD−−−→ ni+1 | i ∈ {1, . . . , k − 1}}

is of size k2 + k − 1 ∈ Θ(|V |2).
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n1 n2 n3 . . . nk

m1 m2 m3 . . . mk

e

Fig. 3. A CFG with |V | nodes that has the NTSCD relation of size Θ(|V |2).

p

a b

Fig. 4. An example of an irreducible CFG. There are no NTSCD dependencies, but a
and b are DOD on p.

4 Decisive Order Dependence

There are control dependencies not captured by NTSCD. For example, consider
the CFG in Fig. 4. Nodes a and b are not NTSCD on p as they lie on all maximal
paths from p. However, p controls which of a and b is executed first. Ranganath
et al. [33] introduced the DOD relation to capture such dependencies.

Definition 3 (Decisive order dependence, DOD). Let G = (V,E) be a
CFG and p, a, b ∈ V be three distinct nodes such that p is a predicate node
with successors s1 and s2. Nodes a, b are decisive order-dependent (DOD) on p,
written p DOD−−→ {a, b}, if
– all maximal paths from p contain both a and b,
– all maximal paths from s1 contain a before any occurrence of b, and
– all maximal paths from s2 contain b before any occurrence of a.

The importance of DOD for slicing of irreducible programs is discussed in
the introduction.

4.1 Algorithm of Ranganath et al. [33] for DOD

Ranganath et al. provided an algorithm that computes the DOD relation for a
given CFG G = (V,E) in time O(|V |4 · |E| · log |V |) which amounts to O(|V |5 ·
log |V |) on CFGs [33, Fig. 7]. The algorithm contains one unclear point. For each
triple of nodes p, a, b ∈ V such that p ∈ Predicates(G) and a �= b, the algorithm
executes the following check and if it succeeds, then p DOD−−→ {a, b} is reported:

reachable(a, b,G) ∧ reachable(b, a,G) ∧ dependence(p, a, b,G) (1)
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p

a b c

Fig. 5. An example that shows the incorrectness of the DOD algorithm by Ranganath
et al. [33]

The procedure dependence(p, a, b,G) returns true iff a is on all maximal paths
from one successor of p before any occurrence of b and b is on all maximal
paths from the other successor of p before any occurrence of a. The procedure
reachable is specified only by words [33, description of Fig. 7] as follows:

reachable(a, b,G) returns true if b is reachable from a in the graph G.

Unfortunately, this algorithm can provide incorrect results. For example, con-
sider the CFG in Fig. 5. Nodes p, a, b satisfy the formula (1): a appears on all
maximal paths from one successor of p (namely a) before any occurrence of b,
and b appears on all maximal paths from the other successor of p (which is b)
before any occurrence of a. At the same time, a and b are reachable from each
other. However, it is not true that p DOD−−→ {a, b}, because a and b do not lie on
all maximal paths from p (the first condition of Definition 3 is violated).

The algorithm can be fixed by modifying the procedure reachable(a, b,G)
to return true if b is on all maximal paths from a. The modified procedure can
be implemented with use of the procedure compute(b) of Algorithm 2. As the
procedure compute(b) runs in O(|V | + |E|), the modification does not increase
the overall complexity of the algorithm. By comparing the fixed and the original
version of reachable(a, b,G), one can readily confirm that the original version
produces supersets of DOD relations.

4.2 New Algorithm for DOD: Crucial Observations

As in the case of NTSCD, we have designed a new algorithm for the computation
of DOD, which is relatively simple and asymptotically faster than the DOD
algorithm of Ranganath et al. [33].

Given a CFG, our algorithm first computes for each predicate p the set Vp of
nodes that are on all maximal paths from p. The definition of DOD implies that
only pairs of nodes in Vp can be DOD on p. For every predicate p we build an
auxiliary graph Ap with nodes Vp and from this graph we get all pairs of nodes
that are DOD on p. The graph Ap is defined as follows.

Definition 4 (V ′-interval [13]). Given a CFG G = (V,E) and a subset V ′ ⊆
V , a path n1 . . . nk such that k ≥ 2, n1, nk ∈ V ′, and ∀1 < i < k : ni �∈ V ′ is
called a V ′-interval from n1 to nk in G.

In other words, a V ′-interval is a finite path with at least one edge that has
the first and the last node in V ′ but no other node on the path is in V ′.
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Definition 5 (Graph Ap
2). Given a CFG G = (V,E), a predicate node p ∈

Predicates(G) and the subset Vp ⊆ V of nodes that are on all maximal paths
from p, the Ap = (Vp, Ep) is the graph where

Ep = {(x, y) | there exists a Vp -interval from x to y in G}.

In this subsection, we describe the connections between these graphs and
DOD that underpin our algorithm. The proofs of the theorems can be found in
the extended version of this paper [8].

Given a predicate p of a CFG G, the graph Ap does not have to be a CFG as
nodes in Ap can have more than two successors. However, Ap preserves exactly
all possible orders of the first occurrences of nodes in Vp on maximal paths in G
starting from p. More precisely, for each maximal path from p in G, there exists
a maximal path from p in Ap with the same order of the first occurrences of all
nodes in Vp, and vice versa. Further, it turns out that there are no nodes DOD
on p unless Ap has the right shape.

Definition 6 (Right shape of Ap ). Given a CFG G, a predicate node p ∈
Predicates(G) and the graph Ap = (Vp, Ep), we say that Ap has the right shape
if it consists only of a cycle and the node p with at least two edges going to some
nodes on the cycle (i.e., the nodes of Vp � {p} can be labeled n1, . . . , nk such
that Ep = {(n1, n2), (n2, n3), . . . , (nk−1, nk), (nk, n1)}∪{(p, ni) | i ∈ I} for some
I ⊆ {1, . . . , k} with |I| ≥ 2).

Figure 6 depicts an Ap which has the right shape. In the following text, we
work only with Ap graphs in the right shape.

Let s1 and s2 be the two successors of p in G. Note that s1 and s2 may, but
do not have to be in Ap. To compute the pairs of nodes that are DOD on p,
we need to know all possible orders of the first occurrences of nodes in Vp on
the maximal paths in G starting in s1 and s2. Hence, for each successor si we
compute the set Si of nodes that appear as the first node of Vp on some maximal
path from si in G. Formally, for i ∈ {1, 2}, we define

Si = {n ∈ Vp | there exists a path si . . . n ∈ (V � Vp)∗.Vp in G}.

The nodes in S1 ∪ S2 are exactly all the successors of p in Ap. Further, the
maximal paths from the nodes of Si in Ap reflect exactly all possible orders
of the first occurrences of nodes in Vp on maximal paths in G starting in si.
If S1 and S2 are not disjoint, then there exist two maximal paths in G, one
starting in s1 and the other in s2, that differ only in prefixes of nodes outside
Vp. The definition of DOD implies that there are no nodes DOD on p in this
case. Therefore we assume that S1 and S2 are disjoint.

The nodes in Si divide the cycle of Ap into si-strips, which are parts of the
cycle starting with a node from Si and ending before the next node of Si.

2 Graph Ap can be defined as the graph induced by Vp in terms of Danicic et al. [13].
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p

n1 n2 n3 n4

n5n6n7n8

s1-strips (blue):
n1n2n3n4n5n6

n7n8

s2-strips (red):
n2n3n4

n5n6n7n8n1

Fig. 6. An example of Ap in the right shape. Strips are computed for S1 = {n1, n7}
(blue nodes) and S2 = {n2, n5} (red nodes). (Color figure online)

Definition 7 (si-strip). Let i ∈ {1, 2}. An si-strip is a path n . . . m ∈ Si.(Vp �
Si)∗ in Ap such that the successor of m in Ap is a node in Si.

An example of Ap with si-strips is in Fig. 6. The si-strips directly say which
pairs of nodes of Vp are in the same order on all maximal paths from si in G.
In particular, a node a is before any occurrence of node b on all maximal paths
from a successor s of p in G if and only if there is an s-strip containing both a
and b where a is before b. As a corollary, we get the following theorem:

Theorem 2. Let p be a predicate with successors s1, s2 such that Ap has the
right shape and S1 ∩ S2 = ∅. Then nodes a, b ∈ Vp are DOD on p if and only if

– there exists an s1-strip in Ap that contains a before b and
– there exists an s2-strip in Ap that contains b before a.

Consider again the Ap in Fig. 6. The theorem implies that nodes n1, n5 are
DOD on p as they appear in s1-strip n1n2n3n4n5n6 and in s2-strip n5n6n7n8n1

in the opposite order. Nodes n1, n6 are DOD on p for the same reason.
With use of the previous theorem, we can find a regular language over Vp

such that there exist nodes a, b DOD on p iff some unfolding of the cycle in Ap

is in the language.

Theorem 3. Let p be a predicate with successors s1, s2 such that Ap has the
right shape and S1 ∩ S2 = ∅. Further, let U = Vp � (S1 ∪ S2). There are some
nodes a, b DOD on p if and only if the cycle in Ap has an unfolding of the form
S1.U

∗.(S2.U
∗)∗.S2.U

∗.(S1.U
∗)∗.

Finally, an unfolding of the mentioned form can be directly used for the
computation of nodes that are DOD on p.

Theorem 4. Let p be a predicate with successors s1, s2 such that Ap has the
right shape and S1 ∩ S2 = ∅. Further, let Ap have an unfolding of the form
S1.U

∗.(S2.U
∗)∗.S2.U

∗.(S1.U
∗)∗ where U = Vp � (S1 ∪ S2). Then there is exactly

one path m1 . . . mi ∈ S1.U
∗.S2 and exactly one path o1 . . . oj ∈ S2.U

∗.S1 on the
cycle. Moreover, p DOD−−→ {a, b} if and only if m1 . . . mi−1 contains a and o1 . . . oj−1

contains b (or the other way round).
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Algorithm 3: The algorithm computing Vn for all nodes n

Input: a CFG G = (V, E)
Output: Vn = {m ∈ V | m is on all maximal paths from n} for all n ∈ V

1 Procedure visit(n, r) // Auxiliary procedure

2 n.counter ← n.counter − 1
3 if n.counter = 0 ∧ r �∈ Vn then
4 Vn ← Vn ∪ {r}
5 for m ∈ Predecessors(n) do
6 visit(m, r)

7

8 Procedure compute(n) // ‘Coloring the graph red’ for a given n
9 for m ∈ V do

10 m.counter ← |Successors(m)|
11 Vn ← Vn ∪ {n}
12 for m ∈ Predecessors(n) do
13 visit(m, n)

14

15 Procedure computeVps // Computation of sets Vn for all nodes n
16 for n ∈ V do
17 Vn ← ∅
18 for n ∈ V do
19 compute(n)

4.3 New Algorithm for DOD: Pseudocode and Complexity

Our DOD algorithm is shown in Algorithms 3 and 4. As nearly all applications
of DOD need also NTSCD, we present the algorithm with a simple extension
(gray lines with asterisks) that simultaneously computes NTSCD.

The DOD algorithm starts at line 20 of Algorithm 4. The first step is to
compute the sets Vp for all predicate nodes p of a given CFG G. The computation
of predicate nodes can be found in Algorithm 3. It is a slightly modified version
of Algorithm 2. Recall that the procedure compute(n) of Algorithm 2 marks red
every node such that all maximal paths from the node contain n. The procedure
compute(n) of Algorithm 3 does in principle the same, but instead of the red
color it marks the nodes with the identifier of the node n. Every node m collects
these marks in set Vm. After we run compute(n) for all the nodes n in the
graph, each node m has in its set Vm precisely all nodes that are on all maximal
paths from m. For the computation of DOD, only the sets Vp for predicate nodes
p are needed, but the extension computing NTSCD may use all these sets.

When the sets Vp are calculated, we compute DOD (and NTSCD) depen-
dencies for each predicate node separately by procedures computeDOD(p)
and computeNTSCD(p). The procedure computeDOD(p) first constructs the
graph Ap with the use of buildAp(p). Nodes of the graph are these of Vp. To
compute edges, we trigger depth-first search in G from each n ∈ Vp. If we find
a node m ∈ Vp, we add the edge (n,m) to the graph Ap and stop the search on
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Algorithm 4: The new DOD algorithm which computes also
NTSCD if the gray lines are included (computeVps is given in Algo-
rithm 3)
Input: a CFG G = (V, E)
Output: the DOD relation stored in dod (and NTSCD stored in ntscd)

1 Procedure computeDOD(p) // Computation of DOD for predicate p
2 Ap ← buildAp(p) // Get the graph Ap

3 if Ap does not have the right shape then
4 return ∅
5 S1, S2 ← computeS1S2(p) // Get the sets S1, S2

6 if S1 ∩ S2 �= ∅ then
7 return ∅
8 n1n2 . . . nt ← unfoldCycle(Ap, S1) // Unfold the cycle of Ap

9 U ← Vp � (S1 ∪ S2)
10 if n1n2 . . . nt �∈ (S1.U

∗)+.(S2.U
∗)+.(S1.U

∗)∗ then // Apply Thm. 3

11 return ∅
12 m1 . . . mi ← extract(n1n2 . . . nt, S1.U

∗.S2) // Apply Thm. 4

13 o1 . . . oj ← extract(n1n2 . . . nt, S2.U
∗.S1)

14 return
{
p DOD−−→ {a, b} | a ∈ {m1, . . . , mi−1}, b ∈ {o1, . . . , oj−1}

}

15

*16 Procedure computeNTSCD(p) // Computation of NTSCD for

predicate p
*17 {s1, s2} ← Successors(p)
*18 return {p NTSCD−−−→ n | n ∈ (Vs1 � Vs2) ∪ (Vs2 � Vs1)}
19

20 computeVps // Computation of DOD and NTSCD for all nodes

21 dod ← ∅
*22 ntscd ← ∅
23 for p ∈ Predicates(G) do
24 dod ← dod ∪ computeDOD(p)

*25 ntscd ← ntscd ∪ computeNTSCD(p)

this path. When the graph Ap is constructed, we check whether it has the right
shape. If not, we return ∅ as there are no nodes DOD on p in this case.

The next step is to compute the sets S1 and S2. Again, we apply a similar
depth-first search as in the construction of Ap described above. If the sets S1, S2

are not disjoint, we return ∅ as there are no nodes DOD on p.
Then we unfold the cycle in Ap from an arbitrary node in S1, compute the

set U , and check whether the unfolding matches (S1.U
∗)+.(S2.U

∗)+.(S1.U
∗)∗.

Note that any unfolding starting in S1 matches this language iff the cycle has
an unfolding of the form S1.U

∗.(S2.U
∗)∗.S2.U

∗.(S1.U
∗)∗ of Theorem 3. Hence,

we return ∅ if the check fails.
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p1

p2

...

pk

q1

q2

...

qk

qk+1

n1

n2

...

nk

m1

m2

...

mk

Fig. 7. A CFG with |V | nodes that has the DOD relation of size Θ(|V |3).

Finally, we extract the paths of the form S1.U
∗.S2 and S2.U

∗.S1 from the
unfolding. Note that the last node of the latter path can be the first node of the
unfolding. Finally, we compute the DOD dependencies according to Theorem 4.

The procedure computeNTSCD(p) used for the computation of NTSCD
simply follows Definition 2: it makes dependent on p each node that is on all
maximal paths from the successor s1 but not on all maximal paths from the
successor s2 or symmetrically for s2 and s1.

As the correctness of our algorithm comes directly from the observations
made in the previous subsection, it remains only to analyze its complexity. The
procedure computeVps consists of two cycles in sequence. The first cycle runs
in O(|V |). The second cycle calls O(|V |)-times the procedure compute(n). This
procedure is essentially identical to the procedure of the same name in Algo-
rithm 2 and so is its time complexity, namely O(|V | + |E|). Note that sets can
be represented by bitvectors and therefore adding an element and checking the
presence of an element in a set are constant-time. Overall, the procedure com-

puteVps runs in O(|V | · (|V | + |E|)), which is O(|V |2) for CFGs.
Now we discuss the complexity of the procedure computeDOD(p). Creat-

ing the graph Ap requires calling depth-first search O(|V |) times, which yields
O(|V | · |E|) in total. Computation of S1, S2 requires another two calls of depth-
first search, which is in O(|E|). When sets are represented as bitvectors, checking
that S1 and S2 are disjoint is in O(|V |). Unfolding the cycle, matching the unfold-
ing to the language (line 10), and the procedure extract run also in O(|V |).
The construction of the DOD relation on line 14 is in O(|V |2). Altogether, com-
puteDOD(p) runs in O(|V | · |E| + |V |2) which simplifies to O(|V |2) for CFGs.

computeDOD is called O(|V |) times, so the overall complexity of computing
DOD for a CFG G = (V,E) is O(|V |3). If we compute also NTSCD, we make
O(|V |) extra calls to computeNTSCD(p), where one call takes O(|V |) time.
Therefore, the asymptotic complexity of computing NTSCD with DOD does not
change from computing DOD only.

Our algorithm running in time O(|V |3) is asymptotically optimal as there
exist graphs with DOD relations of size Θ(|V |3). For example, the CFG in Fig. 7
has |V | = 4k + 1 nodes and the corresponding DOD relation
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{qi
DOD−−→ {nj ,ml} | i ∈ {1, . . . , k + 1}, j, l ∈ {1, . . . , k}}

is of size k3 + k2 ∈ Θ(|V |3).

5 Comparison to Control Closures

In 2011, Danicic et al. [13] introduced control closures (CC) that generalize con-
trol dependence from CFGs to arbitrary graphs. In particular, strong control
closure, which is sensitive to non-termination, generalizes strong control depen-
dence including NTSCD and DOD.

Definition 8 (Strongly control-closed set). Let G = (V,E) be a CFG and
let U ⊆ V . The set U is strongly control-closed3 in G if and only if for every
node v ∈ V � U that is reachable in G from a node in U , one of these holds:

– there is no node in U reachable from v or
– there exists a node u ∈ U such that all maximal paths from v contain u and

it is the first node from U on all these paths.

In other words, whenever we leave a strongly control-closed set, we either
cannot return back or we have to return back to the set in a certain node.

Definition 9 (Strong control closure, strong CC). Let G = (V,E) be a
CFG and V ′ ⊆ V . A strong control closure (strong CC) of V ′ is a strongly
control-closed set U ⊇ V ′ such that there is no strongly control-closed set U ′

satisfying U � U ′ ⊇ V ′.

Danicic et al. present an algorithm for the computation of strong control
closures running in O(|V |4) [13, Theorem 66]. In fact, the algorithm uses a
procedure Γ that is very similar to our procedure compute(n) of Algorithm 2.

We can also define the closure of a set of nodes under NTSCD and DOD.

Definition 10 (NTSCD and DOD closure). Let G = (V,E) be a CFG. A
NTSCD and DOD closure of a set V ′ ⊆ V is the smallest set U ⊇ V ′ satisfying

(n ∈ U ∧ p NTSCD−−−→ n) =⇒ p ∈ U and (a, b ∈ U ∧ p DOD−−→ {a, b}) =⇒ p ∈ U.

Definition 10 directly provides an algorithm computing the NTSCD and DOD
closure of a given set V ′ ⊆ V . Roughly speaking, if we represent the NTSCD
relation with edges and the DOD relation with hyperedges in a directed hyper-
graph with nodes V , the closure computation amounts to gathering backward
reachable nodes from V ′.
3 We adjusted the definition to the fact that predicates in our CFGs always have two

outgoing edges (i.e., they are complete in terms of Danicic et al. [13]). The original
definition [13] works with CFGs where each predicate has at most two successors
and considers also paths that may end in a predicate with less than two successors.



904 M. Chalupa et al.

Danicic et al. [13, Lemmas 93 and 94] proved that for a CFG G = (V,E) with
a distinguished start node from which all nodes in V are reachable and a subset
U ⊆ V such that start ∈ U , the set U is strongly control-closed iff it is closed
under NTSCD and DOD. Hence, on graphs with such a start node, the strong
CC of a set V ′ containing the start node can be computed also by computing
its NTSCD and DOD closure. Computation of the NTSCD and DOD closure
runs in O(|V |3) as the backward reachability is dominated by the computation
of NTSCD and DOD relations.

A substantial difference between the algorithm for strong CC by Danicic et
al. [13] and our algorithm is that we are able to compute DOD and NTSCD
separately, whereas the former is not. Moreover, our algorithm for NTSCD and
DOD closure is asymptotically faster.

6 Experimental Evaluation

We implemented our algorithms for the computation of NTSCD, DOD, and the
NTSCD and DOD closure in C++ on top of the LLVM [25] infrastructure. The
implementation is a part of the library for program analysis and slicing called
DG [6], which is used for example in the verification and test generation tool
Symbiotic [7]. We also implemented the original Ranganath et al.’s algorithms
for NTSCD and DOD, the fixed versions of these algorithms from Subsects. 3.1
and 4.1, and the algorithm for the computation of strong CC by Danicic et al.

In the implementation of the strong CC algorithm by Danicic et al. [13], we
use our procedure compute(n) of Algorithm 2 to implement the function Γ .
This should have only a positive effect as this procedure is more efficient than
iterating over all edges in a copy of the graph and removing them [13].

In our experiments, we use CFGs of functions (where nodes of the CFG
represent basic blocks of the function) obtained in the following way. We took all
benchmarks from the Competition on Software Verification (SV-COMP) 2020.4

These benchmarks contain many artificial or generated code, but also a lot of
real-life code, e.g., from the Linux project. Each source code file was compiled
with clang into LLVM and preprocessed by the -lowerswitch pass to ensure
that every basic block has at most two successors. Then we extracted individual
functions and removed those with less than 100 basic blocks, as the computation
of control dependence runs swiftly on small graphs. Because it is possible that
one function is present in multiple benchmarks, the next step was to remove
these duplicate functions. For every function, we computed the number of nodes
and edges in its CFG, and performed DFS on the CFG to obtain the number
of tree, forward, cross and back edges, and the depth of the DFS tree. If two or
more functions shared the name and all the computed numbers, we kept only
one such function. Note that this process may have removed also a function that
was not a duplicate of some other, but only with a low probability. At the end,
we were left with 2440 functions. The biggest function has 27851 basic blocks.
Table 2 shows the distribution of the sizes of the generated CFGs.
4 https://github.com/sosy-lab/sv-benchmarks, tag svcomp20.

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks
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Table 2. The numbers of considered CFGs by their sizes. The size of a CFG is the
number of its nodes, which is the number of basic blocks of the corresponding function.

size number size number size number

100 – 199 1713 500 – 599 35 900 – 999 3

200 – 299 355 600 – 699 29 1000 – 1999 23

300 – 399 159 700 – 799 18 2000 – 9999 22

400 – 499 73 800 – 899 7 ≥ 10000 3

Fig. 8. Comparison of the running times of the new NTSCD algorithm and the incor-
rect (left) and the fixed (right) versions of the original NTSCD algorithm. TO stands
for timeout.

The experiments were run on machines with AMD EPYC CPU with the
frequency 3.1 GHz. Each benchmark run was constrained to 1 core and 8 GB
of RAM. We used the tool Benchexec [4] to enforce resources isolation and to
measure their usage. All presented times are CPU times. We set the timeout to
100 s for each algorithm run.

In the following, original algorithms refers to the algorithms of Ranganath
et al. (we distinguish between the incorrect and the fixed versions when needed)
and new algorithms refers to the algorithms introduced in this paper.

NTSCD Algorithms. In the first set of experiments, we compared the new
algorithm for NTSCD against the incorrect and the fixed version of the original
NTSCD algorithm. Although it seems that comparing to the incorrect version
is meaningless, we did not want to compare only to the fixed version as the
provided fix slows down the algorithm.

The results are depicted in Fig. 8. On the left scatter plot, there is the
comparison of the new algorithm to the incorrect original algorithm and on
the right scatter plot we compare to the fixed original algorithm. As we can see,
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Fig. 9. Comparison of the running times of the new and the (fixed) original DOD
algorithm. We use the considered benchmarks (left) and random graphs with 500 nodes
and the number of edges specified by the x-axis (right).

the new algorithm outperforms the original algorithm significantly. The incorrect
original algorithm produced a wrong NTSCD relation in 98.6 % of the considered
benchmarks. The fixed version of the original algorithm returned precisely the
same NTSCD relations as the new algorithm. We can also see that the scatter
plot on the right contains more timeouts of the original algorithm. It supports
the claim that the fix slows down the original algorithm.

DOD Algorithms. We compared the new DOD algorithm to the fixed version
of the original DOD algorithm. As the fix does not change the asymptotic com-
plexity of the original algorithm, we do not compare the new algorithm with the
incorrect version of the original algorithm. The results of the experiments are
displayed in Fig. 9 (left). We can see that the new algorithm is again very fast.
In fact, the results resemble the results of the pure NTSCD algorithm, which is
basically the part of the DOD algorithm that computes Vp sets. It benefits from
early checks that detect predicate nodes with no DOD dependencies.

As mentioned in the introduction, DOD is empty for structured programs
as their CFGs are reducible. We do not know precisely how many of the 2440
considered functions have irreducible CFGs, but we know that 2373 of them use
goto statements. DOD relations for 12 functions was non-empty, which means
that CFGs of these functions are irreducible. Note that there may have been
other irreducible CFGs with empty DOD relation.

Additionally, we tested the DOD algorithms on randomly generated graphs,
where we can expect that irreducible graphs emerge more often. Figure 9 (right)
shows the results for graphs that have 500 nodes and 50, 100, 150, . . . randomly
distributed edges (such that every node has at most two successors). Each pre-
sented running time is in fact an average of 10 measurements with different
random graphs. We can see that the new algorithm is agnostic to the number of
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Fig. 10. Comparison of the running times of the strong CC algorithm by Danicic et
al. [13] and our algorithm for the NTSCD and DOD closure.

edges. Its running time in this experiment ranges from 4.12 · 10−3 to 8.89 · 10−3

seconds. The original DOD algorithm does not scale well with the increasing
number of edges.

Strong CC Algorithm. We also compare the strong CC algorithm of Dani-
cic et al. [13] against our NTSCD and DOD closure algorithm on sets of nodes
containing a distinguished start node, where these two algorithms produce equiv-
alent results. For these experiments, we need a starting set that is going to be
closed. We decided to run these experiments on the considered functions that
have at least two exit points. The starting set consists of the node representing
the entry point and the node representing one of the exit points. The closure of
this set contains all nodes that may influence getting to the other exit points.
The results are shown on the scatter plot in Fig. 10. Our algorithm clearly out-
performs the strong CC algorithm.

7 Conclusion

We studied algorithms for the computation of strong control dependence,
namely non-termination sensitive control dependence (NTSCD) and decisive
order dependence (DOD) by Ranganath et al. [33] and strong control closures
(strong CC) by Danicic et al. [13] on control flow graphs where each branching
statement has two successors. We have demonstrated flaws in the original algo-
rithms for computation of NTSCD and DOD and we have suggested corrections.
Moreover, we have introduced new algorithms for NTSCD, DOD, and strong CC
that are asymptotically faster. All the mentioned algorithms have been imple-
mented and our experiments confirm dramatically better performance of the new
algorithms.
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Abstract. We present a novel verification technique to prove properties
of a class of array programs with a symbolic parameter N denoting the
size of arrays. The technique relies on constructing two slightly different
versions of the same program. It infers difference relations between the
corresponding variables at key control points of the joint control-flow
graph of the two program versions. The desired post-condition is then
proved by inducting on the program parameter N , wherein the differ-
ence invariants are crucially used in the inductive step. This contrasts
with classical techniques that rely on finding potentially complex loop
invaraints for each loop in the program. Our synergistic combination of
inductive reasoning and finding simple difference invariants helps prove
properties of programs that cannot be proved even by the winner of
Arrays sub-category in SV-COMP 2021. We have implemented a proto-
type tool called Diffy to demonstrate these ideas. We present results
comparing the performance of Diffy with that of state-of-the-art tools.

1 Introduction

Software used in a wide range of applications use arrays to store and update
data, often using loops to read and write arrays. Verifying correctness properties
of such array programs is important, yet challenging. A variety of techniques
have been proposed in the literature to address this problem, including inference
of quantified loop invariants [20]. However, it is often difficult to automatically
infer such invariants, especially when programs have loops that are sequentially
composed and/or nested within each other, and have complex control flows.
This has spurred recent interest in mathematical induction-based techniques for
verifying parametric properties of array manipulating programs [11,12,42,44].
While induction-based techniques are efficient and quite powerful, their Achilles
heel is the automation of the inductive argument. Indeed, this often becomes
the limiting step in applications of induction-based techniques. Automating the
induction step and expanding the class of array manipulating programs to which
induction-based techniques can be applied forms the primary motivation for our
work. Rather than being a stand-alone technique, we envisage our work being
used as part of a portfolio of techniques in a modern program verification tool.
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We propose a novel and practically efficient induction-based technique that
advances the state-of-the-art in automating the inductive step when reasoning
about array manipulating programs. This allows us to automatically verify inter-
esting properties of a large class of array manipulating programs that are beyond
the reach of state-of-the-art induction-based techniques, viz. [12,42]. The work
that comes closest to us is Vajra [12], which is part of the portfolio of tech-
niques in VeriAbs [1] – the winner of SV-COMP 2021 in the Arrays Reach
sub-category. Our work addresses several key limitations of the technique imple-
mented in Vajra, thereby making it possible to analyze a much larger class of
array manipulating programs than can be done by VeriAbs. Significantly, this
includes programs with nested loops that have hitherto been beyond the reach
of automated techniques that use mathematical induction [12,42,44].

A key innovation in our approach is the construction of two slightly differ-
ent versions of a given program that have identical control flow structures but
slightly different data operations. We automatically identify simple relations,
called difference invariants, between corresponding variables in the two versions
of a program at key control flow points. Interestingly, these relations often turn
out to be significantly simpler than inductive invariants required to prove the
property directly. This is not entirely surprising, since the difference invariants
depend less on what individual statements in the programs are doing, and more
on the difference between what they are doing in the two versions of the pro-
gram. We show how the two versions of a given program can be automatically
constructed, and how differences in individual statements can be analyzed to
infer simple difference invariants. Finally, we show how these difference invari-
ants can be used to simplify the reasoning in the inductive step of our technique.

We consider programs with (possibly nested) loops manipulating arrays,
where the size of each array is a symbolic integer parameter N (> 0)1. We
verify (a sub-class of) quantified and quantifier-free properties that may depend
on the symbolic parameter N . Like in [12], we view the verification problem as
one of proving the validity of a parameterized Hoare triple {ϕ(N)} PN {ψ(N)}
for all values of N (> 0), where arrays are of size N in the program PN , and N
is a free variable in ϕ(·) and ψ(·).

To illustrate the kind of programs that are amenable to our technique, con-
sider the program shown in Fig. 1(a), adapted from an SV-COMP benchmark.
This program has a couple of sequentially composed loops that update arrays
and scalars. The scalars S and F are initialized to 0 and 1 respectively before
the first loop starts iterating. Subsequently, the first loop computes a recurrence
in variable S and initializes elements of the array B to 1 if the corresponding
elements of array A have non-negative values, and to 0 otherwise. The outermost
branch condition in the body of the second loop evaluates to true only if the
program parameter N and the variable S have same values. The value of F is
reset based on some conditions depending on corresponding entries of arrays A
and B. The pre-condition of this program is true; the post-condition asserts that
F is never reset in the second loop.

1 For a more general class of programs supported by our technique, please see [13].
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// assume(true)
1. S = 0; F = 1;
2. for(i = 0; i< N; i++) {
3. S = S + 1;
4. if ( A[i] >= 0 ) B[i] = 1;
5. else B[i] = 0;
6. }
7. for(j = 0; j< N; j++) {
8. if(S == N) {
9. if ( A[j] >= 0 && !B[j] ) F = 0;
10. if ( A[j] < 0 && B[j] ) F = 0;
11. }
12.}
// assert(F == 1)

(a)

// assume(true)
1. S = 0;
2. for(i=0; i<N; i++) A[i] = 0;
3. for(j=0; j<N; j++) S = S + 1;
4. for(k=0; k<N; k++) {
5. for(l=0; l<N; l++) A[l] = A[l] + 1;
6. A[k] = A[k] + S;
7. }
// assert(forall x in [0,N), A[x]==2*N)

(b)

Fig. 1. Motivating examples

State-of-the-art techniques find it difficult to prove the assertion in this pro-
gram. Specifically, Vajra [12] is unable to prove the property, since it cannot
reason about the branch condition (in the second loop) whose value depends on
the program parameter N . VeriAbs [1], which employs a sequence of techniques
such as loop shrinking, loop pruning, and inductive reasoning using [12] is also
unable to verify the assertion shown in this program. Indeed, the loops in this
program cannot be merged as the final value of S computed by the first loop
is required in the second loop; hence loop shrinking does not help. Also, loop
pruning does not work due to the complex dependencies in the program and the
fact that the exact value of the recurrence variable S is required to verify the
program. Subsequent abstractions and techniques applied by VeriAbs from its
portfolio are also unable to verify the given post-condition. VIAP [42] translates
the program to a quantified first-order logic formula in the theory of equality
and uninterpreted functions [32]. It applies a sequence of tactics to simplify and
prove the generated formula. These tactics include computing closed forms of
recurrences, induction over array indices and the like to prove the property. How-
ever, its sequence of tactics is unable to verify this example within our time limit
of 1 min.

Benchmarks with nested loops are a long standing challenge for most veri-
fiers. Consider the program shown in Fig. 1(b) with a nested loop in addition
to sequentially composed loops. The first loop initializes entries in array A to
0. The second loop aggregates a constant value in the scalar S. The third loop
is a nested loop that updates array A based on the value of S. The entries of
A are updated in the inner as well as outer loop. The property asserts that on
termination, each array element equals twice the value of the parameter N .

While the inductive reasoning of Vajra and the tactics in VIAP do not sup-
port nested loops, the sequence of techniques used by VeriAbs is also unable to
prove the given post-condition in this program. In sharp contrast, our prototype
tool Diffy is able to verify the assertions in both these programs automati-
cally within a few seconds. This illustrates the power of the inductive technique
proposed in this paper.
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The technical contributions of the paper can be summarized as follows:

– We present a novel technique based on mathematical induction to prove inter-
esting properties of a class of programs that manipulate arrays. The crucial
inductive step in our technique uses difference invariants from two slightly
different versions of the same program, and differs significantly from other
induction-based techniques proposed in the literature [11,12,42,44].

– We describe algorithms to transform the input program for use in our induc-
tive verification technique. We also present techniques to infer simple dif-
ference invariants from the two slightly different program versions, and to
complete the inductive step using these difference invariants.

– We describe a prototype tool Diffy that implements our algorithms.
– We compare Diffy vis-a-vis state-of-the-art tools for verification of C pro-

grams that manipulate arrays on a large set of benchmarks. We demonstrate
that Diffy significantly outperforms the winners of SV-COMP 2019, 2020
and 2021 in the Array Reach sub-category.

2 Overview and Relation to Earlier Work

In this section, we provide an overview of the main ideas underlying our tech-
nique. We also highlight how our technique differs from [12], which comes closest
to our work. To keep the exposition simple, we consider the program PN , shown
in the first column of Fig. 2, where N is a symbolic parameter denoting the sizes
of arrays a and b. We assume that we are given a parameterized pre-condition
ϕ(N), and our goal is to establish the parameterized post-condition ψ(N), for
all N > 0. In [12,44], techniques based on mathematical induction (on N) were
proposed to solve this class of problems. As with any induction-based technique,
these approaches consist of three steps. First, they check if the base case holds,
i.e. if the Hoare triple {ϕ(N)} PN {ψ(N)} holds for small values of N , say
1 ≤ N ≤ M , for some M > 0. Next, they assume that the inductive hypoth-
esis {ϕ(N − 1)} PN−1 {ψ(N − 1)} holds for some N ≥ M + 1. Finally, in
the inductive step, they show that if the inductive hypothesis holds, so does
{ϕ(N)} PN {ψ(N)}. It is not hard to see that the inductive step is the most
crucial step in this style of reasoning. It is also often the limiting step, since not
all programs and properties allow for efficient inferencing of {ϕ(N)} PN {ψ(N)}
from {ϕ(N − 1)} PN−1 {ψ(N − 1)}.

Like in [12,44], our technique uses induction on N to prove the Hoare triple
{ϕ(N)} PN {ψ(N)} for all N > 0. Hence, our base case and inductive hypothesis
are the same as those in [12,44]. However, our reasoning in the crucial inductive
step is significantly different from that in [12,44], and this is where our primary
contribution lies. As we show later, not only does this allow a much larger class of
programs to be efficiently verified compared to [12,44], it also permits reasoning
about classes of programs with nested loops, that are beyond the reach of [12,44].
Since the work of [12] significantly generalizes that of [44], henceforth, we only
refer to [12] when talking of earlier work that uses induction on N .

In order to better understand our contribution and its difference vis-a-vis the
work of [12], a quick recap of the inductive step used in [12] is essential. The
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for(i=0; i<N; i++)

for(j=0; j<N; j++)

x = x + N*N;
a[i] = a[i] + N;

PN

b[j] = x + j;

for(i=0; i<N-1; i++)

for(j=0; j<N-1; j++)

x = x + N*N;
a[i] = a[i] + N ;

b[j] = x + j;

x = x + N*N;
a[N-1] = a[N-1]+N;

b[N-1] = x + N-1;

for(i=0; i<N-1; i++)

for(j=0; j<N-1; j++)

x = x + N*N;
a[i] = a[i] + N ;

b[j] = x+N*N+ j;

x = x + N*N ;
a[N-1] = a[N-1]+N;

b[N-1] = x + N-1;

QN−1

peel(PN )

for(i=0; i<N-1; i++)

for(j=0; j<N-1; j++)

x=x+(N-1)*(N-1);
a[i] = a[i] + N-1;

x = x + N*N;
a[N-1] = a[N-1]+N;

PN−1

∂PN

for(k=0; k<N-1; k++)
b[k] = b[k] +
(N-1)*(2*N-1)+N*N;

x = 0; x = 0; x = 0; x = 0;

b[j] = x + j;

for(i=0; i<N-1; i++)

x = x + 2*N-1;
a[i] = a[i] + 1;

b[N-1] = x + N-1;

// ϕ(N) = true

//ψ(N) =
(∀j. b[j] = j+ N3)

Fig. 2. Pictorial depiction of our program transformations

inductive step in [12] crucially relies on finding a “difference program” ∂PN and a
“difference pre-condition” ∂ϕ(N) such that: (i) PN is semantically equivalent to
PN−1; ∂PN , where ‘;’ denotes sequential composition of programs2, (ii) ϕ(N) ⇒
ϕ(N − 1) ∧ ∂ϕ(N), and (iii) no variable/array element in ∂ϕ(N) is modified by
PN−1. As shown in [12], once ∂PN and ∂ϕ(N) satisfying these conditions are
obtained, the problem of proving {ϕ(N)} PN {ψ(N)} can be reduced to that of
proving {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)}. This approach can be very effective
if (i) ∂PN is “simpler” (e.g. has fewer loops or strictly less deeply nested loops)
than PN and can be computed efficiently, and (ii) a formula ∂ϕ(N) satisfying
the conditions mentioned above exists and can be computed efficiently.

The requirement of PN being semantically equivalent to PN−1; ∂PN is a very
stringent one, and finding such a program ∂PN is non-trivial in general. In fact,
the authors of [12] simply provide a set of syntax-guided conditionally sound
heuristics for computing ∂PN . Unfortunately, when these conditions are violated
(we have found many simple programs where they are violated), there are no
known algorithmic techniques to generate ∂PN in a sound manner. Even if a pro-
gram ∂PN were to be found in an ad-hoc manner, it may be as “complex” as PN

itself. This makes the approach of [12] ineffective for analyzing such programs.
As an example, the fourth column of Fig. 2 shows PN−1 followed by one possible
∂PN that ensures PN (shown in the first column of the same figure) is semanti-
cally equivalent to PN−1; ∂PN . Notice that ∂PN in this example has two sequen-
tially composed loops, just like PN had. In addition, the assignment statement in
the body of the second loop uses a more complex expression than that present
in the corresponding loop of PN . Proving {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)}

2 Although the authors of [12] mention that it suffices to find a ∂PN that satisfies
{ϕ(N)} PN−1; ∂PN {ψ(N)}, they do not discuss any technique that takes ϕ(N) or
ψ(N) into account when generating ∂PN .
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may therefore not be any simpler (perhaps even more difficult) than proving
{ϕ(N)} PN {ψ(N)}.

In addition to the difficulty of computing ∂PN , it may be impossible to find
a formula ∂ϕ(N) such that ϕ(N) ⇒ ϕ(N −1) ∧ ∂ϕ(N), as required by [12]. This
can happen even for fairly routine pre-conditions, such as ϕ(N) ≡ (∧N−1

i=0 A[i] =
N

)
. Notice that there is no ∂ϕ(N) that satisfies ϕ(N) ⇒ ϕ(N − 1) ∧ ∂ϕ(N) in

this case. In such cases, the technique of [12] cannot be used at all, even if PN ,
ϕ(N) and ψ(N) are such that there exists a trivial proof of {ϕ(N)} PN {ψ(N)}.

The inductive step proposed in this paper largely mitigates the above prob-
lems, thereby making it possible to efficiently reason about a much larger class
of programs than that possible using the technique of [12]. Our inductive step
proceeds as follows. Given PN , we first algorithmically construct two programs
QN−1 and peel(PN ), such that PN is semantically equivalent to QN−1; peel(PN ).
Intuitively, QN−1 is the same as PN , but with all loop bounds that depend on N
now modified to depend on N −1 instead. Note that this is different from PN−1,
which is obtained by replacing all uses (not just in loop bounds) of N in PN by
N − 1. As we will see, this simple difference makes the generation of peel(PN )
significantly simpler than generation of ∂PN , as in [12]. While generating QN−1

and peel(PN ) may sound similar to generating PN−1 and ∂PN [12], there are fun-
damental differences between the two approaches. First, as noted above, PN−1

is semantically different from QN−1. Similarly, peel(PN ) is also semantically dif-
ferent from ∂PN . Second, we provide an algorithm for generating QN−1 and
peel(PN ) that works for a significantly larger class of programs than that for
which the technique of [12] works. Specifically, our algorithm works for all pro-
grams amenable to the technique of [12], and also for programs that violate
the restrictions imposed by the grammar and conditional heuristics in [12]. For
example, we can algorithmically generate QN−1 and peel(PN ) even for a class of
programs with arbitrarily nested loops – a program feature explicitly disallowed
by the grammar in [12]. Third, we guarantee that peel(PN ) is “simpler” than
PN in the sense that the maximum nesting depth of loops in peel(PN ) is strictly
less than that in PN . Thus, if PN has no nested loops (all programs amenable to
analysis by [12] belong to this class), peel(PN ) is guaranteed to be loop-free. As
demonstrated by the fourth column of Fig. 2, no such guarantees can be given
for ∂PN generated by the technique of [12]. This is a significant difference, since
it greatly simplifies the analysis of peel(PN ) vis-a-vis that of ∂PN .

We had mentioned earlier that some pre-conditions ϕ(N) do not admit any
∂ϕ(N) such that ϕ(N) ⇒ ϕ(N − 1) ∧ ∂ϕ(N). It is, however, often easy to
compute formulas ϕ′(N −1) and Δϕ′(N) in such cases such that ϕ(N) ⇒ ϕ′(N −
1) ∧ Δϕ′(N), and the variables/array elements in Δϕ′(N) are not modified by
either PN−1 or QN−1. For example, if we were to consider a (new) pre-condition
ϕ(N) ≡ ( ∧N−1

i=0 A[i] = N
)

for the program PN shown in the first column of
Fig. 2, then we have ϕ′(N − 1) ≡ ( ∧N−2

i=0 A[i] = N
)

and Δϕ′(N) ≡ (
A[N − 1] =

N
)
. We assume the availability of such a ϕ′(N − 1) and Δϕ′(N) for the given

ϕ(N). This significantly relaxes the requirement on pre-conditions and allows a
much larger class of Hoare triples to be proved using our technique vis-a-vis that
of [12].
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The third column of Fig. 2 shows QN−1 and peel(PN ) generated by our algo-
rithm for the program PN in the first column of the figure. It is illustrative to
compare these with PN−1 and ∂PN shown in the fourth column of Fig. 2. Notice
that QN−1 has the same control flow structure as PN−1, but is not semanti-
cally equivalent to PN−1. In fact, QN−1 and PN−1 may be viewed as closely
related versions of the same program. Let VQ and VP denote the set of vari-
ables of QN−1 and PN−1 respectively. We assume VQ is disjoint from VP, and
analyze the joint execution of QN−1 starting from a state satisfying the pre-
condition ϕ′(N − 1), and PN−1 starting from a state satisfying ϕ(N − 1). The
purpose of this analysis is to compute a difference predicate D(VQ, VP, N − 1)
that relates corresponding variables in QN−1 and PN−1 at the end of their joint
execution. The above problem is reminiscent of (yet, different from) translation
validation [4,17,24,40,46,48,49], and indeed, our calculation of D(VQ, VP, N −1)
is motivated by techniques from the translation validation literature. An impor-
tant finding of our study is that corresponding variables in QN−1 and PN−1

are often related by simple expressions on N , regardless of the complexity of
PN , ϕ(N) or ψ(N). Indeed, in all our experiments, we didn’t need to go beyond
quadratic expressions on N to compute D(VQ, VP, N − 1).

Once the steps described above are completed, we have Δϕ′(N), peel(PN )
and D(VQ, VP, N − 1). It can now be shown that if the inductive hypothesis,
i.e. {ϕ(N − 1)} PN−1 {ψ(N − 1)} holds, then proving {ϕ(N)} PN {ψ(N)}
reduces to proving {Δϕ′(N) ∧ ψ′(N −1)} peel(PN ) {ψ(N)}, where ψ′(N −1) ≡
∃VP

(
ψ(N − 1) ∧ D(VQ, VP, N − 1)

)
. A few points are worth emphasizing here.

First, if D(VQ, VP, N − 1) is obtained as a set of equalities, the existential quan-
tifier in the formula ψ′(N − 1) can often be eliminated simply by substitu-
tion. We can also use quantifier elimination capabilities of modern SMT solvers,
viz. Z3 [39], to eliminate the quantifier, if needed. Second, recall that unlike
∂PN generated by the technique of [12], peel(PN ) is guaranteed to be “sim-
pler” than PN , and is indeed loop-free if PN has no nested loops. Therefore,
proving {Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ψ(N)} is typically significantly sim-
pler than proving {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)}. Finally, it may hap-
pen that the pre-condition in {Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ψ(N)} is not
strong enough to yield a proof of the Hoare triple. In such cases, we need to
strengthen the existing pre-condition by a formula, say ξ′(N − 1), such that
the strengthened pre-condition implies the weakest pre-condition of ψ(N) under
peel(PN ). Having a simple structure for peel(PN ) (e.g., loop-free for the entire
class of programs for which [12] works) makes it significantly easier to com-
pute the weakest pre-condition. Note that ξ′(N − 1) is defined over the vari-
ables in VQ. In order to ensure that the inductive proof goes through, we need
to strengthen the post-condition of the original program by ξ(N) such that
ξ(N − 1) ∧ D(VQ, VP, N − 1) ⇒ ξ′(N − 1). Computing ξ(N − 1) requires a
special form of logical abduction that ensures that ξ(N − 1) refers only to vari-
ables in VP . However, if D(VQ, VP, N − 1) is given as a set of equalities (as
is often the case), ξ(N − 1) can be computed from ξ′(N − 1) simply by sub-
stitution. This process of strengthening the pre-condition and post-condition
may need to iterate a few times until a fixed point is reached, similar to what
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happens in the inductive step of [12]. Note that the fixed point iterations may
not always converge (verification is undecidable in general). However, in our
experiments, convergence always happened within a few iterations. If ξ′(N − 1)
denotes the formula obtained on reaching the fixed point, the final Hoare triple
to be proved is {ξ′(N − 1) ∧ Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ξ(N) ∧ ψ(N)},
where ψ′(N − 1) ≡ ∃VP

(
ψ(N − 1) ∧ D(VQ, VP, N − 1)

)
. Having a simple (often

loop-free) peel(PN ) significantly simplifies the above process.
We conclude this section by giving an overview of how QN−1 and peel(PN )

are computed for the program PN shown in the first column of Fig. 2. The second
column of this figure shows the program obtained from PN by peeling the last
iteration of each loop of the program. Clearly, the programs in the first and
second columns are semantically equivalent. Since there are no nested loops in
PN , the peels (shown in solid boxes) in the second column are loop-free program
fragments. For each such peel, we identify variables/array elements modified in
the peel and used in subsequent non-peeled parts of the program. For example,
the variable x is modified in the peel of the first loop and used in the body
of the second loop, as shown by the arrow in the second column of Fig. 2. We
replace all such uses (if needed, transitively) by expressions on the right-hand
side of assignments in the peel until no variable/array element modified in the
peel is used in any subsequent non-peeled part of the program. Thus, the use of
x in the body of the second loop is replaced by the expression x + N * N in the
third column of Fig. 2. The peeled iteration of the first loop can now be moved
to the end of the program, since the variables modified in this peel are no longer
used in any subsequent non-peeled part of the program. Repeating the above
steps for the peeled iteration of the second loop, we get the program shown in
the third column of Fig. 2. This effectively gives a transformed program that
can be divided into two parts: (i) a program QN−1 that differs from PN only
in that all loops are truncated to iterate N − 1 (instead of N) times, and (ii) a
program peel(PN ) that is obtained by concatenating the peels of loops in PN in
the same order in which the loops appeared in PN . It is not hard to see that PN ,
shown in the first column of Fig. 2, is semantically equivalent to QN−1; peel(PN ).
Notice that the construction of QN−1 and peel(PN ) was fairly straightforward,
and did not require any complex reasoning. In sharp contrast, construction of
∂PN , as shown in the bottom half of fourth column of Fig. 2, requires non-trivial
reasoning, and produces a program with two sequentially composed loops.

3 Preliminaries and Notation

We consider programs generated by the grammar shown below:

PB ::= St
St ::= St ; St | v := E | A[E] := E | if(BoolE) then St else St |

for (� := 0; � < UB; � := �+1) {St}
E ::= E op E | A[E] | v | � | c | N
op ::= + | - | * | /
UB ::= UB op UB | � | c | N

BoolE ::= E relop E | BoolE AND BoolE | NOT BoolE | BoolE OR BoolE
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Formally, we consider a program PN to be a tuple (V,L,A,PB, N), where V
is a set of scalar variables, L ⊆ V is a set of scalar loop counter variables, A
is a set of array variables, PB is the program body, and N is a special symbol
denoting a positive integer parameter of the program. In the grammar shown
above, we assume that A ∈ A, v ∈ V \ L, � ∈ L and c ∈ Z. We also assume
that each loop L has a unique loop counter variable � that is initialized at the
beginning of L and is incremented by 1 at the end of each iteration. We assume
that the assignments in the body of L do not update �. For each loop L with
termination condition � < UB, we require that UB is an expression in terms of
N , variables in L representing loop counters of loops that nest L, and constants
as shown in the grammar. Our grammar allows a large class of programs (with
nested loops) to be analyzed using our technique, and that are beyond the reach
of state-of-the-art tools like [1,12,42].

We verify Hoare triples of the form {ϕ(N)} PN {ψ(N)}, where the for-
mulas ϕ(N) and ψ(N) are either universally quantified formulas of the form
∀I (α(I,N) ⇒ β(A,V, I,N)) or quantifier-free formulas of the form η(A,V, N).
In these formulas, I is a sequence of array index variables, α is a quantifier-free
formula in the theory of arithmetic over integers, and β and η are quantifier-free
formulas in the combined theory of arrays and arithmetic over integers.

For technical reasons, we rename all scalar and array variables in the program
in a pre-processing step as follows. We rename each scalar variable using the well-
known Static Single Assignment (SSA) [43] technique, such that the variable
is written at (at most) one location in the program. We also rename arrays
in the program such that each loop updates its own version of an array and
multiple writes to an array element within the same loop are performed on
different versions of that array. We use techniques for array SSA [30] renaming
studied earlier in the context of compilers, for this purpose. In the subsequent
exposition, we assume that scalar and array variables in the program are already
SSA renamed, and that all array and scalar variables referred to in the pre- and
post-conditions are also expressed in terms of SSA renamed arrays and scalars.

4 Verification Using Difference Invariants

The key steps in the application of our technique, as discussed in Sect. 2, are

A1: Generation of QN−1 and peel(PN ) from a given PN .
A2: Generation of ϕ′(N − 1) and Δϕ′(N) from a given ϕ(N).
A3: Generation of the difference invariant D(VQ, VP, N − 1), given ϕ(N − 1),

ϕ′(N − 1), QN−1 and PN−1.
A4: Proving {Δϕ′(N) ∧ ∃VP

(
ψ(N −1) ∧ D(VQ, VP, N −1)

)} peel(PN ) {ψ(N)},
possibly by generation of ξ′(N − 1) and ξ(N) to strengthen the pre- and
post-conditions, respectively.

We now discuss techniques for solving each of these sub-problems.
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4.1 Generating QN −1 and peel(PN )

The procedure illustrated in Fig. 2 (going from the first column to the third
column) is fairly straightforward if none of the loops have any nested loops
within them. It is easy to extend this to arbitrary sequential compositions of
non-nested loops. Having all variables and arrays in SSA-renamed forms makes
it particularly easy to carry out the substitution exemplified by the arrow shown
in the second column of Fig. 2. Hence, we don’t discuss any further the generation
of QN−1 and peel(PN ) when all loops are non-nested.

for(�1=0; �1<N ; �1++)

for(�2=0; �2<N ; �2++)
L2L1

B1

B2

B3

Fig. 3. A generic nested loop

The case of nested loops is, how-
ever, challenging and requires addi-
tional discussion. Before we present
an algorithm for handling this case,
we discuss the intuition using an
abstract example. Consider a pair of
nested loops, L1 and L2, as shown in
Fig. 3. Suppose that B1 and B3 are
loop-free code fragments in the body
of L1 that precede and succeed the
nested loop L2. Suppose further that the loop body, B2, of L2 is loop-free. To
focus on the key aspects of computing peels of nested loops, we make two sim-
plifying assumptions: (i) no scalar variable or array element modified in B2 is
used subsequently (including transitively) in either B3 or B1, and (ii) every scalar
variable or array element that is modified in B1 and used subsequently in B2, is
not modified again in either B1, B2 or B3. Note that these assumptions are made
primarily to simplify the exposition. For a detailed discussion on how our tech-
nique can be used even with some relaxations of these assumptions, the reader
is referred to [13]. The peel of the abstract loops L1 and L2 is as shown in Fig. 4.
The first loop in the peel includes the last iteration of L2 in each of the N − 1
iterations of L1, that was missed in QN−1. The subsequent code includes the last
iteration of L1 that was missed in QN−1.

for(�1=0; �1<N − 1; �1++)

for(�2=0; �2<N ; �2++)

B2

B2

B1

B3

Fig. 4. Peel of the nested loop

Formally, we use the notation L1(N) to
denote a loop L1 that has no nested loops
within it, and its loop counter, say �1,
increases from 0 to an upper bound that is
given by an expression in N . Similarly, we use
L1(N, L2(N)) to denote a loop L1 that has
another loop L2 nested within it. The loop
counter �1 of L1 increases from 0 to an upper
bound expression in N , while the loop counter
�2 of L2 increases from 0 to an upper bound
expression in �1 and N . Using this notation,
L1(N, L2(N, L3(N))) represents three nested
loops, and so on. Notice that the upper bound expression for a nested loop can
depend not only on N but also on the loop counters of other loops nesting it.
For notational clarity, we also use LPeel(Li, a, b) to denote the peel of loop Li
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consisting of all iterations of Li where the value of �i ranges from a to b-1, both
inclusive. Note that if b-a is a constant, this corresponds to the concatenation
of (b-a) peels of Li.

for(�1=0; �1<UL1(N-1); �1++)
LPeel(L2, UL2(�1,N-1), UL2(�1,N))

LPeel(L1, UL1(N-1), UL1(N))

Fig. 5. Peel of L1(N, L2(N))

We will now try to see how we can
implement the transformation from the
first column to the second column of
Fig. 2 for a nested loop L1(N, L2(N)).
The first step is to truncate all loops
to use N − 1 instead of N in the upper
bound expressions. Using the notation introduced above, this gives the loop
L1(N-1, L2(N-1)). Note that all uses of N other than in loop upper bound
expressions stay unchanged as we go from L1(N, L2(N)) to L1(N-1, L2(N-1)).
We now ask: Which are the loop iterations of L1(N, L2(N)) that have been missed
(or skipped) in going to L1(N-1, L2(N-1))? Let the upper bound expression of
L1 in L1(N, L2(N)) be UL1(N), and that of L2 be UL2(�1, N). It is not hard to
see that in every iteration �1 of L1, where 0 ≤ �1 < UL1(N − 1), the iterations
corresponding to �2 ∈ {UL2(�1, N − 1), . . . , UL2(�1, N) − 1} have been missed. In
addition, all iterations of L1 corresponding to �1 ∈ {UL1(N −1), . . . , UL1(N)−1}
have also been missed. This implies that the “peel” of L1(N, L2(N)) must
include all the above missed iterations. This peel therefore is the program frag-
ment shown in Fig. 5.

for(�1=0; �1<UL1(N-1); �1++) {
for(�2=0; �2<UL2(�1,N-1); �2++)

LPeel(L3, UL3(�1,�2,N-1), UL3(�1,�2,N))
LPeel(L2, UL2(�1,N-1), UL2(�1,N))

}
LPeel(L1, UL1(N-1), UL1(N))

Fig. 6. Peel of L1(N, L2(N, L3(N)))

Notice that if UL2 (�1 ,N)
- UL2 (�1 ,N-1) is a constant
(as is the case if UL2(�1,N) is
any linear function of �1 and
N), then the peel does not have
any loop with nesting depth 2.
Hence, the maximum nesting
depth of loops in the peel is
strictly less than that in L1(N,
L2(N)), yielding a peel that is “simpler” than the original program. This argu-
ment can be easily generalized to loops with arbitrarily large nesting depths.
The peel of L1(N, L2(N, L3(N))) is as shown in Fig. 6.

for(i=0; i<N; i++)

for(j=0; j<N; j++)

A[i][j] = N;

(a)

for(i=0; i<N-1; i++)

A[i][N-1] = N;

for(j=0; j<N; j++)

A[N-1][j] = N;

(b)

Fig. 7. (a) Nested Loop & (b) Peel

As an illustrative example,
let us consider the program in
Fig. 7(a), and suppose we wish
to compute the peel of this pro-
gram containing nested loops.
In this case, the upper bounds
of the loops are UL1(N) =
UL2(N) = N . The peel is shown
in Fig. 7(b) and consists of two sequentially composed non-nested loops. The
first loop takes into account the missed iterations of the inner loop (a single
iteration in this example) that are executed in PN but are missed in QN−1. The
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Algorithm 1. GenQandPeel(PN : program)
1: Let sequentially composed loops in PN be in the order L1, L2, . . ., Lm;
2: for each loop Li ∈ TopLevelLoops(PN ) do
3: 〈QLi

,RLi
〉 ← GenQandPeelForLoop(Li);

4: while ∃v.use(v) ∈ QLi
∧ def(v) ∈ RLj

, for some 1 ≤ j < i ≤ N do � v is var/array element

5: Substitute rhs expression for v from RLj
in QLi

; � If RLj
is a loop, abort

6: QN−1 ← QL1 ;QL2 ; . . . ;QLm ;

7: peel(PN ) ← RL1 ;RL2 ; . . . ;RLm ;

8: return 〈QN−1, peel(PN )〉;
9: procedure GenQandPeelForLoop(L: loop)
10: Let UL(N) be the UB expression of loop L;
11: QL ← L with N − 1 substituted for N in all UB expressions (including for nested loops);
12: if L has subloops then
13: t ← nesting depth of inner-most nested loop in L;
14: Rt+1 ← empty program with no statements;
15: for k = t; k ≥ 2; k-- do
16: for each subloop SLj in Li at nesting depth k do � Ordered SL1, SL2, . . ., SLj

17: RSLj
← LPeel(SLj , USLj

(�1, . . . , �k−1, N − 1), USLj
(�1, . . . , �k−1, N));

18: Rk ← for (i=0; i<ULk−1(N − 1); i++) { Rk+1;RSL1;RSL2;...;RSLj
};

19: RL ← R2; LPeel(L, UL(N − 1), UL(N));
20: else
21: RL ← LPeel(L, UL(N − 1), UL(N));

22: return 〈QL,RL〉;

second loop takes into account the missed iterations of the outer loop in QN−1

compared to PN .
Generalizing the above intuition, Algorithm 1 presents function GenQand-

Peel for computing QN−1 and peel(PN ) for a given PN that has sequentially
composed loops with potentially nested loops. Due to the grammar of our pro-
grams, our loops are well nested. The method works by traversing over the
structure of loops in the program. In this algorithm QLi

and RLi
represent the

counterparts of QN−1 and peel(PN ) for loop Li. We create the program QN−1

by peeling each loop in the program and then propagating these peels across
subsequent loops. We identify the missed iterations of each loop in the pro-
gram PN from the upper bound expression UB. Recall that the upper bound
of each loop Lk at nesting depth k, denoted by ULk

is in terms of the loop
counters � of outer loops and the program parameter N . We need to peel
ULk

(�1, �2, . . . , �k−1, N) − ULk
(�1, �2, . . . , �k−1, N − 1) number of iterations from

each loop, where �1 ≤ �2 ≤ . . . ≤ �k−1 are counters of the outer nesting loops.
As discussed above, whenever this difference is a constant value, we are guaran-
teed that the loop nesting depth reduces by one. It may so happen that there
are multiple sequentially composed loops SLj at nesting depth k and not just
a single loop Lk. At line 2, we iterate over top level loops and call function
GenQandPeelForLoop(Li) for each sequentially composed loop Li in PN . At
line 11 we construct QL for loop L. If the loop L has no nested loops, then the
peel is the last iterations computed using the upper bound in line 21 For nested
loops, the loop at line 15 builds the peel for all loops inside L following the above
intuition. The peels of all sub-loops are collected and inserted in the peel of L
at line 19. Since all the peeled iterations are moved after QL of each loop, we
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need to repair expressions appearing in QL. The repairs are applied by the loop
at line 4. In the repair step, we identify the right hand side expressions for all
the variables and array elements assigned in the peeled iterations. Subsequently,
the uses of the variables and arrays in QLi

that are assigned in RLj
are replaced

with the assigned expressions whenever j < i. If RLj
is a loop, this step is more

involved and hence currently not considered. Finally at line 8, the peels and Qs
of all top level loops are stitched and returned.

Note that lines 4 and 5 of Algorithm 1 implement the substitution repre-
sented by the arrow in the second column of Fig. 2. This is necessary in order to
move the peel of a loop to the end of the program. If either of the loops Li or
Lj use array elements as index to other arrays then it can be difficult to identify
what expression to use in QLi

for the substitution. However, such scenarios are
observed less often, and hence, they hardly impact the effectiveness of the tech-
nique on programs seen in practice. The peel RLj

, from which the expression to
be substituted in QLi

has to be taken, itself may have a loop. In such cases, it
can be significantly more challenging to identify what expression to use in QLi

.
We use several optimizations to transform the peeled loop before trying to iden-
tify such an expression. If the modified values in the peel can be summarized
as closed form expressions, then we can replace the loop in the peel with its
summary. For example, consider the peeled loop, for ( �1 =0; �1 < N; �1 ++) {
S = S + 1; }. This loop is summarized as S = S + N; before it can be moved
across subsequent code. If the variables modified in the peel of a nested loop are
not used later, then the peel can be trivially moved. In many cases, the loop in
the peel can also be substituted with its conservative over-approximation. We
have implemented some of these optimizations in our tool and are able to verify
several benchmarks with sequentially composed nested loops. It may not always
be possible to move the peel of a nested loop across subsequent loops but we have
observed that these optimizations suffice for many programs seen in practice.

Theorem 1. Let QN−1 and peel(PN ) be generated by application of function
GenQandPeel from Algorithm 1 on program PN . Then PN is semantically
equivalent to QN−1; peel(PN ).

Lemma 1. Suppose the following conditions hold;

– Program PN satisfies our syntactic restrictions (see Sect. 3).
– The upper bound expressions of all loops are linear expressions in N and in

the loop counters of outer nesting loops.

Then, the max nesting depth of loops in peel(PN ) is strictly less than that in PN .

Proof. Let ULk
(�1, . . . , �k−1, N) be the upper bound expression of a loop

Lk at nesting depth k. Suppose ULk
= c1.�1 + · · · ck−1.�k−1 + C.N +

D, where c1, . . . ck−1, C and D are constants. Then ULk
(�1, . . . , �k−1, N) −

ULk
(�1, . . . �k−1, N − 1) = C, i.e. a constant. Now, recalling the discussion in

Sect. 4.1, we see that LPeel(Lk, Uk(�1, . . . ,�k−1, N − 1), Uk(�1, . . . ,�k−1, N))
simply results in concatenating a constant number of peels of the loop Lk. Hence,
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the maximum nesting depth of loops in LPeel( Lk, Uk(�1, . . . , �k−1, N − 1),
Uk(�1, . . . , �k−1, N)) is strictly less than the maximum nesting depth of loops
in Lk.

Suppose loop L with nested loops (having maximum nesting depth t) is passed
as the argument of function GenQandPeelForLoop (see Algorithm 1). In
line 15 of function GenQandPeelForLoop, we iterate over all loops at nesting
depth 2 and above within L. Let Lk be a loop at nesting depth k, where 2 ≤ k ≤ t.
Clearly, Lk can have at most t − k nested levels of loops within it. Therefore,
when LPeel is invoked on such a loop, the maximum nesting depth of loops
in the peel generated for Lk can be at most t − k − 1. From lines 18 and 19
of function GenQandPeelForLoop, we also know that this LPeel can itself
appear at nesting depth k of the overall peel RL. Hence, the maximum nesting
depth of loops in RL can be t − k − 1 + k, i.e. t − 1. This is strictly less than the
maximum nesting depth of loops in L. ��
Corollary 1. If PN has no nested loops, then peel(PN ) is loop-free.

4.2 Generating ϕ′(N − 1) and Δϕ′(N)

Given ϕ(N), we check if it is of the form
∧N−1

i=0 ρi, where ρi is a formula on
the ith elements of one or more arrays, and scalars used in PN . If so, we infer
ϕ′(N − 1) to be

∧N−2
i=0 ρi and Δϕ′(N) to be ρN−1 (assuming variables/array

elements in ρN−1 are not modified by QN−1). Note that all uses of N in ρi are
retained as is (i.e. not changed to N −1) in ϕ′(N −1). In general, when deriving
ϕ′(N − 1), we do not replace any use of N in ϕ(N) by N − 1 unless it is the
limit of an iterated conjunct as discussed above. Specifically, if ϕ(N) doesn’t
contain an iterated conjunct as above, then we consider ϕ′(N − 1) to be the
same as ϕ(N) and Δϕ′(N) to be True. Thus, our generation of ϕ′(N − 1) and
Δϕ′(N) differs from that of [12]. As discussed earlier, this makes it possible to
reason about a much larger class of pre-conditions than that admissible by the
technique of [12].

4.3 Inferring Inductive Difference Invariants

Once we have PN−1, QN−1, ϕ(N−1) and ϕ′(N−1), we infer difference invariants.
We construct the standard cross-product of programs QN−1 and PN−1, denoted
as QN−1 ×PN−1, and infer difference invariants at key control points. Note that
PN−1 and QN−1 are guaranteed to have synchronized iterations of correspond-
ing loops (both are obtained by restricting the upper bounds of all loops to use
N − 1 instead of N). However, the conditional statements within the loop body
may not be synchronized. Thus, whenever we can infer that the corresponding
conditions are equivalent, we synchronize the branches of the conditional state-
ment. Otherwise, we consider all four possibilities of the branch conditions. It
can be seen that the net effect of the cross-product is executing the programs
PN−1 and QN−1 one after the other.
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We run a dataflow analysis pass over the constructed product graph to infer
difference invariants at loop head, loop exit and at each branch condition. The
only dataflow values of interest are differences between corresponding variables
in QN−1 and PN−1. Indeed, since structure and variables of QN−1 and PN−1 are
similar, we can create the correspondence map between the variables. We start
the difference invariant generation by considering relations between correspond-
ing variables/array elements appearing in pre-conditions of the two programs.
We apply static analysis that can track equality expressions (including disjunc-
tions over equality expressions) over variables as we traverse the program. These
equality expressions are our difference invariants.

We observed in our experiments the most of the inferred equality expressions
are simple expressions of N (atmost quadratic in N). This not totally surprising
and similar observations have also been independently made in [4,15,24]. Note
that the difference invariants may not always be equalities. We can easily extend
our analysis to learn inequalities using interval domains in static analysis. We
can also use a library of expressions to infer difference invariants using a guess-
and-check framework. Moreover, guessing difference invariants can be easy as
in many cases the difference expressions may be independent of the program
constructs, for example, the equality expression v = v′ where v ∈ PN−1 and
v′ ∈ QN−1 does not depend on any other variable from the two programs.

For the example in Fig. 2, the difference invariant at the head of the
first loop of QN−1 × PN−1 is D(VQ, VP, N − 1) ≡ (x′ − x = i × (2 × N − 1)
∧ ∀i ∈ [0, N − 1), a′[i] − a[i] = 1), where x, a ∈ VP and x′, a′ ∈ VQ. Given
this, we easily get x′ − x = (N − 1) × (2 × N − 1) when the first loop termi-
nates. For the second loop, D(VQ, VP, N − 1) ≡ (∀j ∈ [0, N − 1), b′[j] − b[j] =
(x′ − x) + N2 = (N − 1)× (2 × N − 1) + N2).

Note that the difference invariants and its computation are agnostic of the
given post-condition. Hence, our technique does not need to re-run this analysis
for proving a different post-condition for the same program.

4.4 Verification Using Inductive Difference Invariants

We present our method Diffy for verification of programs using inductive dif-
ference invariants in Algorithm 2. It takes a Hoare triple {ϕ(N)} PN {ψ(N)}
as input, where ϕ(N) and ψ(N) are pre- and post-condition formulas. We check
the base in line 1 to verify the Hoare triple for N = 1. If this check fails,
we report a counterexample. Subsequently, we compute QN−1 and peel(PN ) as
described in Sect. 4.1 using the function GenQandPeel from Algorithm 1. At
line 4, we compute the formulas ϕ′(N −1) and Δϕ′(N) as described in Sect. 4.2.
For automation, we analyze the quantifiers appearing in ϕ(N) and modify the
quantifier ranges such that the conditions in Sect. 4.2 hold. We infer difference
invariants D(VQ, VP, N − 1) on line 5 using the method described in Sect. 4.3,
wherein VQ and VP are sets of variables from QN−1 and PN−1 respectively.
At line 6, we compute ψ′(N − 1) by eliminating variables VP from PN−1 from
ψ(N − 1) ∧ D(VQ, VP, N − 1). At line 7, we check the inductive step of our anal-
ysis. If the inductive step succeeds, then we conclude that the assertion holds.
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Algorithm 2. Diffy( {ϕ(N)} PN {ψ(N)} )
1: if {ϕ(1)} P1 {ψ(1)} fails then � Base case for N=1
2: return “Counterexample found!”;

3: 〈QN−1, peel(PN )〉 ← GenQandPeel(PN );
4: 〈ϕ′(N − 1), Δϕ′(N)〉 ← FormulaDiff(ϕ(N)); � ϕ(N) ⇒ ϕ′(N − 1) ∧ Δϕ′(N)
5: D(VQ, VP, N − 1) ← InferDiffInvs(QN−1,PN−1, ϕ′(N − 1), ϕ(N − 1));
6: ψ′(N − 1) ← QE(VP, ψ(N − 1) ∧ D(VQ, VP, N − 1));
7: if {ψ′(N − 1) ∧ Δϕ′(N)} peel(PN ) {ψ(N)} then
8: return True; � Verification Successful
9: else
10: return Strengthen(PN , peel(PN ), ϕ(N), ψ(N), ψ′(N − 1), Δϕ′(N), D(VQ, VP, N));

11: procedure Strengthen(PN , peel(PN ), ϕ(N), ψ(N), ψ′(N − 1), Δϕ′(N), D(VQ, VP, N))
12: χ(N) ← ψ(N);
13: ξ(N) ← True;
14: ξ′(N − 1) ← True;
15: repeat
16: χ′(N − 1) ← WP(χ(N), peel(PN )); � Dijkstra’s WP for loop free code
17: if χ′(N − 1) = ∅ then
18: if peel(PN ) has a loop then
19: return Diffy({ξ′(N − 1) ∧ Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ξ(N) ∧ ψ(N)});
20: else
21: return False; � Unable to prove

22: χ(N) ← QE(VQ, χ′(N) ∧ D(VQ, VP, N));
23: ξ(N) ← ξ(N) ∧ χ(N);
24: ξ′(N − 1) ← ξ′(N − 1) ∧ χ′(N − 1);
25: if {ϕ(1)} P1 {ξ(1)} fails then
26: return False; � Unable to prove

27: if {ξ′(N − 1) ∧ Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ξ(N) ∧ ψ(N)} holds then
28: return True; � Verification Successful

29: until timeout;
30: return False;

If that is not the case then, we try to iteratively strengthen both the pre- and
post-condition of peel(PN ) simultaneously by invoking Strengthen.

The function Strengthen first initializes the formula χ(N) with ψ(N) and
the formulas ξ(N) and ξ′(N − 1) to True. To strengthen the pre-condition of
peel(PN ), we infer a formula χ′(N − 1) using Dijkstra’s weakest pre-condition
computation of χ(N) over the peel(PN ) in line 16. It may happen that we are
unable to infer such a formula. In such a case, if the program peel(PN ) has
loops then we recursively invoke Diffy at line 19 to further simplify the pro-
gram. Otherwise, we abandon the verification effort (line 21). We use quantifier
elimination to infer χ(N − 1) from χ′(N − 1) and D(VQ, VP, N − 1)) at line 6.

The inferred pre-conditions χ(N) and χ′(N −1) are accumulated in ξ(N) and
ξ′(N −1), which strengthen the post-conditions of PN and QN−1 respectively in
lines 23–24. We again check the base case for the inferred formulas in ξ(N) at
line 25. If the check fails we abandon the verification attempt at line 26. If the
base case succeeds, we then proceed to the inductive step. When the inductive
step succeeds, we conclude that the assertion is verified. Otherwise, we continue
in the loop and try to infer more pre-conditions untill we run out of time.

The pre-condition in Fig. 2 is φ(N) ≡ True and the post-condition is ψ(N) ≡
∀j ∈ [0, N), b[j] = j + N3). At line 4, φ′(N − 1) and Δφ′(N − 1) are computed
to be True. D(VQ, VP, N − 1) is the formula computed in Sect. 4.3. At line 6,
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Table 1. Summary of the experimental results. S is successful result. U is inconclusive
result. TO is timeout.

Program Diffy Vajra VeriAbs VIAP

Category S U TO S U S TO S U TO

Safe C1 110 110 0 0 110 0 96 14 16 1 93

Safe C2 24 21 0 3 0 24 5 19 4 0 20

Safe C3 23 20 3 0 0 23 9 14 0 23 0

Total 157 151 3 3 110 47 110 47 20 24 113

Unsafe C1 99 98 1 0 98 1 84 15 98 0 1

Unsafe C2 24 24 0 0 17 7 19 5 22 0 2

Unsafe C3 23 20 3 0 0 23 22 1 0 23 0

Total 146 142 4 0 115 31 125 21 120 23 3

ψ′(N −1) ≡ (∀j ∈ [0, N − 1), b′[j] = j + (N − 1)3 + (N − 1) × (2 × N − 1) + N2 =
j + N3). The algortihm then invokes Strengthen at line 10 which infers the
formulas χ′(N − 1) ≡ (x′ = (N − 1)3) at line 16 and χ(N) ≡ (x = N3) at line 22.
These are accumulated in ξ′(N −1) and ξ(N), simultaneosuly strengthening the
pre- and post-condition. Verification succeeds after this strengthening iteration.

The following theorem guarantees the soundness of our technique.

Theorem 2. Suppose there exist formulas ξ′(N) and ξ(N) and an integer M >
0 such that the following hold

– {ϕ(N)} PN {ψ(N) ∧ ξ(N)} holds for 1 ≤ N ≤ M , for some M > 0.
– ξ(N) ∧ D(VQ, VP, N) ⇒ ξ′(N) for all N > 0.
– {ξ′(N − 1) ∧ Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ξ(N) ∧ ψ(N)} holds for all

N ≥ M , where ψ′(N − 1) ≡ ∃VP

(
ψ(N − 1) ∧ D(VQ, VP, N − 1)

)
.

Then {ϕ(N)} PN {ψ(N)} holds for all N > 0.

5 Experimental Evaluation

We have instantiated our technique in a prototype tool called Diffy. It is written
in C++ and is built using the LLVM(v6.0.0) [31] compiler. We use the SMT solver
Z3(v4.8.7) [39] for proving Hoare triples of loop-free programs. Diffy and the
supporting data to replicate the experiments are openly available at [14].

Setup. All experiments were performed on a machine with Intel i7-6500U CPU,
16 GB RAM, running at 2.5 GHz, and Ubuntu 18.04.5 LTS operating system.
We have compared the results obtained from Diffy with Vajra(v1.0) [12],
VIAP(v1.1) [42] and VeriAbs(v1.4.1-12) [1]. We choose Vajra which also
employs inductive reasoning for proving array programs and verify the bench-
marks in its test-suite. We compared with VeriAbs as it is the winner of the
arrays sub-category in SV-COMP 2020 [6] and 2021 [7]. VeriAbs applies a
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Fig. 8. Cactus Plots (a) All Safe Benchmarks (b) All Unsafe Benchmarks

sequence of techniques from its portfolio to verify array programs. We compared
with VIAP which was the winner in arrays sub-category in SV-COMP 2019 [5].
VIAP also employs a sequence of tactics, implemented for proving a variety of
array programs. Diffy does not use multiple techniques, however we choose to
compare it with these portfolio verifiers to show that it performs well on a class
of programs and can be a part of their portfolio. All tools take C programs in the
SV-COMP format as input. Timeout of 60 s was set for each tool. A summary
of the results is presented in Table 1.

Benchmarks. We have evaluated Diffy on a set of 303 array benchmarks,
comprising of the entire test-suite of [12], enhanced with challenging benchmarks
to test the efficacy of our approach. These benchmarks take a symbolic parameter
N which specifies the size of each array. Assertions are (in-)equalities over array
elements, scalars and (non-)linear polynomial terms over N . We have divided
both the safe and unsafe benchmarks in three categories. Benchmarks in C1
category have standard array operations such as min, max, init, copy, compare
as well as benchmarks that compute polynomials. In these benchmarks, branch
conditions are not affected by the value of N , operations such as modulo and
nested loops are not present. There are 110 safe and 99 unsafe programs in the
C1 category in our test-suite. In C2 category, the branch conditions are affected
by change in the program parameter N and operations such as modulo are used
in these benchmarks. These benchmarks do not have nested loops in them. There
are 24 safe and unsafe benchmarks in the C2 category. Benchmarks in category
C3 are programs with atleast one nested loop in them. There are 23 safe and
unsafe programs in category C3 in our test-suite. The test-suite has a total of
157 safe and 146 unsafe programs.

Analysis. Diffy verified 151 safe benchmarks, compared to 110 verified by
Vajra as well as VeriAbs and 20 verified by VIAP. Diffy was unable to
verify 6 safe benchmarks. In 3 cases, the smt solver timed out while trying to
prove the induction step since the formulated query had a modulus operation
and in 3 cases it was unable to compute the predicates needed to prove the
assertions. Vajra was unable to verify 47 programs from categories C2 and
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Fig. 9. Cactus plots (a) Safe C1 benchmarks (b) Unsafe C1 benchmarks

C3. These are programs with nested loops, branch conditions affected by N ,
and cases where it could not compute the difference program. The sequence
of techniques employed by VeriAbs, ran out of time on 47 programs while
trying to prove the given assertion. VeriAbs proved 2 benchmarks in category
C2 and 3 benchmarks in category C3 where Diffy was inconclusive or timed
out. VeriAbs spends considerable amount of time on different techniques in its
portfolio before it resorts to Vajra and hence it could not verify 14 programs
that Vajra was able to prove efficiently. VIAP was inconclusive on 24 programs
which had nested loops or constructs that could not be handled by the tool. It
ran out of time on 113 benchmarks as the initial tactics in its sequence took up
the allotted time but could not verify the benchmarks. Diffy was able to verify
all programs that VIAP and Vajra were able to verify within the specified time
limit.

The cactus plot in Fig. 8(a) shows the performance of each tool on all safe
benchmarks. Diffy was able to prove most of the programs within three sec-
onds. The cactus plot in Fig. 9(a) shows the performance of each tool on safe
benchmarks in C1 category. Vajra and Diffy perform equally well in the C1
category. This is due to the fact that both tools perform efficient inductive rea-
soning. Diffy outperforms VeriAbs and VIAP in this category. The cactus
plot in Fig. 10(a) shows the performance of each tool on safe benchmarks in the
combined categories C2 and C3, that are difficult for Vajra as most of these
programs are not within its scope. Diffy out performs all other tools in cate-
gories C2 and C3. VeriAbs was an order of magnitude slower on programs it
was able to verify, as compared to Diffy. VeriAbs spends significant amount
of time in trying techniques from its portfolio, including Vajra, before one of
them succeeds in verifying the assertion or takes up the entire time allotted to it.
VIAP took 70 seconds more on an average as compared to Diffy to verify the
given benchmark. VIAP also spends a large portion of time in trying different
tactics implemented in the tool and solving the recurrence relations in programs.

Our technique reports property violations when the base case of the analy-
sis fails for small fixed values of N . While the focus of our work is on proving
assertions, we report results on unsafe versions of the safe benchmarks from our
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test-suite. Diffy was able to detect a property violation in 142 unsafe programs
and was inconclusive on 4 benchmarks. Vajra detected violations in 115 pro-
grams and was inconclusive on 31 programs. VeriAbs reported 125 programs as
unsafe and ran out of time on 21 programs. VIAP reported property violation
in 120 programs, was inconclusive on 23 programs and timed out on 3 programs.

The cactus plot in Fig. 8(b) shows the performance of each tool on all unsafe
benchmarks. Diffy was able to detect a violation faster than all other tools and
on more benchmarks from the test-suite. Figure 9(b) and Fig. 10(b) give a finer
glimpse of the performance of these tools on the categories that we have defined.
In the C1 category, Diffy and Vajra have comparable performance and Diffy

disproves the same number of benchmarks as Vajra and VIAP. In C2 and C3
categories, we are able to detect property violations in more benchmarks than
other tools in less time.

To observe any changes in the performance of these, we also ran them with an
increased time out of 100 seconds (Fig. 11). Performance remains unchanged for
Diffy, Vajra and VeriAbs on both safe and unsafe benchmarks, and of VIAP

on unsafe benchmarks. VIAP was able to additionally verify 89 safe programs
in categories C1 and C2 with the increased time limit.
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6 Related Work

Techniques Based on Induction. Our work is related to several efforts that apply
inductive reasoning to verify properties of array programs. Our work subsumes
the full-program induction technique in [12] that works by inducting on the
entire program via a program parameter N . We propose a principled method
for computation and use of difference invariants, instead of computing difference
programs which is more challenging. An approach to construct safety proofs
by automatically synthesizing squeezing functions that shrink program traces is
proposed in [27]. Such functions are not easy to synthesize, whereas difference
invariants are relatively easy to infer. In [11], the post-condition is inductively
established by identifying a tiling relation between the loop counter and array
indices used in the program. Our technique can verify programs from [11], when
supplied with the tiling relation. [44] identifies recurrent program fragments for
induction using the loop counter. They require restrictive data dependencies,
called commutativity of statements, to move peeled iterations across subsequent
loops. Unfortunately, these restrictions are not satisfied by a large class of pro-
grams in practice, where our technique succeeds.

Difference Computation. Computing differences of program expressions has been
studied for incremental computation of expensive expressions [35,41], optimizing
programs with arrays [34], and checking data-structure invariants [45]. These
differences are not always well suited for verifying properties, in contrast with
the difference invariants which enable inductive reasoning in our case.

Logic Based Reasoning. In [21], trace logic that implicitly captures inductive
loop invariants is described. They use theorem provers to introduce and prove
lemmas at arbitrary control locations in the program. Unlike their technique, we
focus primarily on universally quantified and quantifier-free properties, although
a restricted class of existentially quantified properties can be handled by our
technique (see [13] for more details). VIAP [42] translates the program to an
quantified first-order logic formula using the scheme proposed in [32]. It uses
a portfolio of tactics to simplify and prove the generated formulas. Dedicated
solvers for recurrences are used whereas our technique adapts induction for han-
dling recurrences.

Invariant Generation. Several techniques generate invariants for array programs.
QUIC3 [25], FreqHorn [9,19] infer universally quantified invariants over arrays for
Constrained Horn Clauses (CHCs). Template-based techniques [8,23,47] search
for inductive quantified invariants by instantiating parameters of a fixed set
of templates. We generate relational invariants, which are often easier to infer
compared to inductive quantified invariants for each loop.

Abstraction-Based Techniques. Counterexample-guided abstraction refinement
using prophecy variables for programs with arrays is proposed in [36]. Veri-

Abs [1] uses a portfolio of techniques, specifically to identify loops that can
be soundly abstracted by a bounded number of iterations. Vaphor [38] trans-
forms array programs to array-free Horn formulas to track bounded number of
array cells. Booster [3] combines lazy abstraction based interpolation [2] and
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acceleration [10,28] for array programs. Abstractions in [16,18,22,26,29,33,37]
implicitly or explicitly partition the range array indices to infer and prove facts
on array segments. In contrast, our method does not rely on abstractions.

7 Conclusion

We presented a novel verification technique that combines generation of dif-
ference invariants and inductive reasoning. Difference invariants relate corre-
sponding variables and arrays from the two versions of a program and are often
easy to infer and prove. We have instantiated these techniques in our proto-
type Diffy. Experiments shows that Diffy out-performs the tools that won
the Arrays sub-category in SV-COMP 2019, 2020 and 2021. Although we have
focused on universal and quantifier-free properties in this paper, the technique
applies to some classes of existential properties as well. The interested reader
is referred to [13] for more details. Investigations in using synthesis techniques
for automatic generation of difference invariants to verify properties of array
manipulating programs is a part of future work.
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Roşu, Grigore II-477
Roux, Cody I-808
Rowe, Reuben N. S. I-110
Roy, Diptarko II-3
Rubio, Albert II-863
Ryou, Wonryong I-225

Šafránek, David I-505
Sagiv, Mooly I-317
Sakr, Mouhammad II-435
Salvia, Rocco II-626
Sánchez, César I-694
Santos, José Fragoso II-827
Schewe, Sven II-651
Schröer, Philipp II-524
Sergey, Ilya I-110
Seshia, Sanjit A. II-553, II-577, II-602
Sewell, Peter I-303
Shi, Xiaomu II-149
Shoukry, Yasser I-287
Shriver, David I-137
Sibai, Hussein I-580
Siber, Julian I-894
Simner, Ben I-303
Singh, Gagandeep I-225
Singher, Eytan II-125
Slobodova, Anna I-26
Solar-Lezama, Armando I-808
Somenzi, Fabio II-651
Song, Fu I-175
Stan, Daniel II-243
Stefanescu, Andrei I-645
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