
Lawrence Berkeley National Laboratory
LBL Publications

Title
Extreme Scale Plasma Turbulence Simulations on Top Supercomputers Worldwide

Permalink
https://escholarship.org/uc/item/9ww312ch

ISBN
978-1-4673-8815-3

Authors
Tang, William
Wang, Bei
Ethier, Stephane
et al.

Publication Date
2016-11-01

DOI
10.1109/sc.2016.42

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9ww312ch
https://escholarship.org/uc/item/9ww312ch#author
https://escholarship.org
http://www.cdlib.org/

Extreme Scale Plasma Turbulence Simulations
on Top Supercomputers Worldwide

William Tang1,2, Bei Wang1, Stephane Ethier2,
Grzegorz Kwasniewski3, Torsten Hoefler3, Khaled Z. Ibrahim4,

Kamesh Madduri5, Samuel Williams4, Leonid Oliker4,
Carlos Rosales-Fernandez6, Tim Williams7

1Princeton University, Princeton Institute for Computational Science and Engineering, Princeton, NJ, USA
2Princeton Plasma Physics Laboratory, Princeton, NJ, USA
3ETH, Computer Science Department, Zürich, Switzerland

4Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA, USA
5The Pennsylvania State University, Computer Science and Engineering Department, University Park, PA, USA

6The University of Texas, Texas Advanced Computing Center, Austin, TX, USA
7Argonne National Laboratory, Argonne Leadership Computing Facility, Argonne, IL, USA

Abstract—The goal of the extreme scale plasma turbulence
studies described in this paper is to expedite the delivery of
reliable predictions on confinement physics in large magnetic
fusion systems by using world-class supercomputers to carry
out simulations with unprecedented resolution and temporal
duration. This has involved architecture-dependent optimizations
of performance scaling and addressing code portability and
energy issues, with the metrics for multi-platform comparisons
being “time-to-solution” and “energy-to-solution”. Realistic
results addressing how confinement losses caused by plasma
turbulence scale from present-day devices to the much larger $25
billion international ITER fusion facility have been enabled by
innovative advances in the GTC-P code including (i) implemen-
tation of one-sided communication from MPI 3.0 standard; (ii)
creative optimization techniques on Xeon Phi processors; and (iii)
development of a novel performance model for the key kernels
of the PIC code. Results show that modeling data movement
is sufficient to predict performance on modern supercomputer
platforms.

I. FUSION PLASMA TURBULENCE SIMULATIONS: GRAND
SCIENTIFIC CHALLENGE AND RELEVANCE TO SOCIETY

As the global energy economy makes the transition from
fossil fuels toward cleaner alternatives, fusion becomes an
attractive potential solution for satisfying the growing needs.
Fusion energy, which is the power source for the sun, can
be generated on earth, for example, in magnetically-confined
laboratory plasma experiments (called tokamaks) when the
isotopes of hydrogen (e.g., deuterium and tritium) combine to
produce an energetic helium alpha particle and a fast neutron
with an overall energy multiplication factor of 450:1. Building
the scientific foundations needed to develop fusion power
demands high-physics-fidelity predictive simulation capability
for magnetically-confined fusion energy (MFE) plasmas. To
do so in a timely way requires utilizing the power of modern
supercomputers to simulate the complex dynamics governing

Fig. 1. Density fluctuations during the non-linear phase of an ITER-
size GTC-P simulation of plasma microturbulence.

MFE systems, including ITER, a multi-billion dollar interna-
tional burning plasma experiment supported by 7 governments
representing over half of the world’s population. Given the
increasingly dangerous consequences for air pollution caused,
for example by dependence on energy produced from fossil
fuels, the temporal urgency for accelerated progress in this
critical grand challenge mission is very clear [1].

Unavoidable spatial variations in fusion systems produce
micro-turbulence, fluctuating electric and magnetic fields,
which can grow to levels that significantly increase the
transport rate of heat, particles, and momentum across the
confining magnetic field in tokamak devices. Since the balance
between these energy losses and the self-heating rates of the
actual fusion reactions will ultimately determine the size and
cost of an actual fusion reactor, understanding the underlying
physical processes is key to achieving the efficiency needed
to help ensure the practicality of future fusion reactors. The
associated motivation drives the pursuit of realistic high-
resolution calculations of turbulent transport at scale, an MFE
scientific grand challenge that can be rapidly advanced only
by making effective use of top supercomputing systems. For
example, the long time behavior of turbulent transport inSC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16/$31.00 c©2016 IEEE

ITER-scale plasmas can now be studied using simulations
with unprecedented phase-space resolution to address the
reliability/realism of the influence of increasing plasma size
on confinement in tokamaks (see Figure 1 for visualization
of density fluctuations at high resolution for an ITER-size
fusion system). ITER is in fact the largest MFE experiment
to be constructed by a huge margin. Since it is a factor of
8 times bigger in volume than the largest tokamak ever built,
we have no experimental knowledge of fusion at that level and
accordingly require reliable simulations.

The major challenge addressed in this paper is the devel-
opment of modern software capable of using the most power-
ful supercomputers to carry out reliable first-principles-based
simulations of multi-scale tokamak plasmas. In particular, a
key fusion physics task is to significantly improve the decade-
long MFE estimates of confinement scaling with device size
(the so-called “Bohm to Gyro-Bohm” rollover trend caused
by the ion temperature gradient instability). This demands
much higher resolution to be reliable. The problem becomes
significantly more demanding when the complex electron
dynamics associated with the trapped-electron instability is
also taken into account. This is a proto-typical increasing
problem size issue which is discussed in [2] with more details
of the advances achieved provided in §VI.

II. COMPUTATIONAL APPROACH

A. Current State of The Art for GTC-P code

The scientific application software developed and exercised
in this paper is the GTC-Princeton (GTC-P) code, a highly
scalable Particle-in-Cell (PIC) code used for studying micro-
turbulent transport in tokamaks. Micro-turbulent transport in
tokamaks is mathematically described using the nonlinear
gyro-phase-averaged Vlasov-Poisson equations (or “gyroki-
netic equations”) and the PIC methodology can be applied
to solve these high-dimensional equations. We use discrete,
charged rings to represent the fast cyclotron motion of the
ions in a strong magnetic field averaged over several periods.
The rings or particles interact with each other through a self-
consistent field evaluated on a grid that covers the entire 3D
simulation domain. The charge of each ring is deposited on
the grid by selecting four points on the ring and interpolating
each to its nearest grid points. The resulting charge densities
are then used in the evaluation of the field by solving the
Poisson equation [3]. The field is then evaluated at the position
of each of the four points, again by interpolation, and used in
the equations of motion to advance the particles. Achieving
high parallel and architectural efficiency is very challenging
for the standard PIC method due to potential fine-grained data
hazards, irregular data access, and low arithmetic intensity.
In addition, gyrokinetic PIC codes are confronted by major
pressure on the memory sub-system caused by poor spatial and
temporal locality in the requisite gather and scatter operations.
This is due to the fact each ion ring needs to access up
to 32 individual grid points. Such issues can become more
formidable as the HPC community moves into the future to

address even more radical changes in computer architectures
as the multi-core and many-core revolution progresses.

Prior research involving large-scale PIC simulations, both
standard PIC and gyrokinetic PIC, on leading supercomputer
systems includes, for example, VPIC on Roadrunner [4],
OSIRIS on Sequoia [5], PIConGPU on Titan [6], GTC-P on
Mira and Sequoia [7], GTC on Tianhe-1A [8] and XGC1 on
Titan [9]. The research carried out in this paper using the
latest version of GTC-P—the fastest gyrokinetic PIC code
worldwide with respect to time-to-solution of large problem
size physics challenges—is the first to explore the portability,
optimizations, and scalability across a wide range of multi-
petaflop platforms at the full or near-full capability, includ-
ing both homogeneous and heterogeneous systems involving
GPUs and Intel Xeon Phis. In addition, motivated by the most
relevant modern HPC issues, we focus on time-to-solution
(seconds) and energy-to-solution (KWh) as the performance
metrics of interest that are guided by a novel performance
model that is described in detail in §III-A. Note that metrics
such as flop/s or percentage-of-peak are less relevant for the
predominantly memory-bound gyrokinetic PIC methods, as
modern architectures require 10 flops per byte moved from
DRAM in order to be compute-limited.

Prior to the work presented in the current paper, the GTC-P
code had included all of the important physics associated with
ion temperature gradient driven turbulence captured in numer-
ous global PIC simulation studies of plasma size scaling over
the years that had concentrated on comprehensive inclusion of
ion dynamics and the electrons treated using a simple adiabatic
model [2, 10, 11]. In this model, the biggest impediments
to performance are the data hazards and the lack of data
locality in charge deposition (charge) and field interpolation
(push). As such, the associated optimizations were focused
on reducing data hazards and improving locality for multicore
and manycore architectures [12–14]. The GTC-P code has now
been significantly upgraded with a more complete electron
drift-kinetic dynamics capability that has been verified with
systematic benchmarks against the comprehensive electromag-
netic GTC code [15, 16] at UC-Irvine. The introduction of
kinetic electron dynamics has shifted the emphasis of time
consuming kernels to field interpolation (push) and particle
communication (shift) because of electron subcycling where
each ion step includes the calling of these two kernels 60
times. Besides the data locality challenge, the performance of
the code is also largely influenced by the network performance
and the specific implementation of the communication. In this
paper, we have developed a performance model to evaluate
the most time consuming subroutines, push and shift (along
with particle sort to improve data locality). To leverage
the capabilities of hardware enabled Remote Direct Memory
Access (RDMA), we have implemented the shift with MPI-
3 One-sided communication (see §III-D). It is expected that
“lessons learned” achieved from such research that focuses
on operations fundamental to all gyrokinetic PIC codes will
prove most valuable to ongoing and future efforts in advancing
the more comprehensive and complex fusion micro-turbulence

codes such as GTC to the multi-petaflop range on the path to
exascale and beyond.

B. Parallelization

In an earlier version of GTC-P, the 3D tokamak mesh was
partitioned uniformly along the toroidal dimension, leading
to a 1D domain decomposition. Within each of the toroidal
domains, particle decomposition was introduced to distribute
particle-related work among multiple processors. This ap-
proach was shown to lead to nearly-perfect scaling with respect
to the number of particles [17]. However, simple 1D do-
main decomposition causes replication of the toroidal domain
across particle domains, and the increased memory footprint
due to this replication hinders simulations of large fusion
devices, or small-size devices with a higher grid resolution.
To address this problem, an additional decomposition in the
radial dimension [18, 19] was introduced. As a result, particle-
and grid-based routines are distributed across all processes.
We further exploit multicore parallelism using shared-memory
multithreading which provides an additional multiplicative
source of speedup [7].

The multilevel particle and domain decompositions also pro-
vide significant flexibility in distributed-memory task creation
and layout. While the ranks in the toroidal dimension are
usually fixed as 32 or 64 due to Landau damping physics,
we can choose any combination of process partitioning along
the radial and particle dimensions. For scaling with a fixed
problem size, we first partition along the radial direction and
then switch to particle decomposition for additional scalability.
The decompositions were implemented with three individual
communicators in MPI (toroidal, radial, and particle com-
municator), and we further provide tuning options to change
the order of MPI rank placement. A gyrokinetic simulation
typically has highly anisotropic behavior, with the velocity
parallel to the magnetic field being an order of magnitude
larger than that in the perpendicular direction. Consequently,
the message sizes in the toroidal dimension can be 10×
larger than those in the radial dimension at each time step.
On Blue Gene systems with explicit process mapping, we
group processes to favor the MPI communicator in the toroidal
dimension [7]. For other systems, assigning consecutive ranks
for processes within each toroidal communicator generally
leads to improved performance.

III. PERFORMANCE OPTIMIZATION ON
MODERN COMPUTING PLATFORMS

We now discuss highlights of the various strategies em-
ployed to optimize performance, maximize parallelism, lever-
age accelerator technology, and enable portability across one
of the broadest sets of evaluated supercomputers in recent
literature. Like all PIC methods, GTC-P includes two types
of subroutines: grid-based and particle-based. The grid-based
subroutines, poisson, field and smooth, solve the gyrokinetic
Poisson equation, compute the electric field, and smooth the
charge and potential, respectively. The number of floating-
point operations and memory used for these routines roughly

Electrons Ions

Fig. 2. Particle-Grid Interpolation: An electron is bounded in a cell
and interacts with exactly 8 grid points in three dimensions (4 points
in two dimensions, as shown in the figure), whereas an ion, modeled
as a charged ring and approximated by four points on the ring, may
interact with 8-32 grid points (4-16 points in 2D).

scale linearly with the grid size (number of grid points). The
particle-based subroutines are charge, push, sort, and shift,
with charge and push performing particle-grid interpolation,
sort used to improve data locality and performance of the
particle-grid interpolation, and shift moving particles between
processes. It is important to highlight that the particle-grid
interpolation for electrons follow the approach in standard
particle-in-cell methods, where each particle is interpolated
only to the the nearest neighboring points. Unlike the gy-
rokinetic particle-in-cell method for ions, where each particle
represents four points on a ring and thus accesses up to
32 grid points, each electron particle only interacts with up
to 8 individual grid points in 3D (see Figure 2 for a 2D
representation).

All the particle-processing routines have costs linearly pro-
portional to the number of particles. The ratio of the number of
particles to the number of grid points is 100 or higher. As such,
particle-based routines tend to dominate per-timestep running
time. For kinetic electron simulations, since each ion time
step includes 10 electron sub-cycling steps, where electron
push and shift are called 60 times, these two subroutines have
dominated the total computational time.

A. GTC-P performance model

To prove the scalability of the GTC-P application and guide
the optimizations, we have constructed a rigorous performance
model. The increasing gap between computation and com-
munication capabilities in current architectures often leads
to compute units starving for data. However, analyzing data
movement through caches is far more challenging than com-
paring peak and achieved flop/s performance. Nevertheless,
we argue that modeling the former is crucial for performance
analysis. In the following, we demonstrate a detailed analysis
of the GTC-P code and compute architectures which lead to
a precise model for its performance.

Most of GTC-P’s execution time is spent detecting, moving
and reordering particles. Moreover, particle-grid interactions
and conditional statements generate many unavoidable random
accesses to the memory, which restrain the effective use
of prefetchers and transfers of large blocks. Therefore, to
correctly model the performance of the application, we need
to model various properties of data movements: size, access

TABLE I
MACHINE PARAMETERS USED IN THE MODEL. THE TOPOLOGIES EXPAND
TO FAT TREE (FT), DRAGONFLY (DF) AND 3D/5D TORUS (3DT, 5DT).

machine parameters
Machine Daint Stampede Titan Mira
CPU E5-2670 2x E5-2680 AMD 6274 PowerPC A2
accelerator K20X KNC K20X -
Topology DF FT 3DT 5DT
Net BW [GB/s] 14 18 7 12

architecture parameters
Architecture E5-26* AMD 6274 PowerPCA2 KNC K20X
LLC [MB] 20 16 32 32 -
Vec width[B] 32 32 32 64 64
Peak BW [GB/s] 51.2 51.2 42.7 320 250
Msr BW [GB/s] 41 30 34 121 190
CacheBW[GB/s] 576 450 480 288 -
RandBW[GB/s] 11 12 9 15 10

pattern, source, and destination. Our analysis considers both
vertical (between the memory hierarchy levels) and horizontal
(between the processes) bandwidth. For intra-node accesses,
we model the number of cache lines transferred between the
memory levels. For inter-node communication, we analyze the
amount of data transferred over the network. This systematic
approach yields very high accuracy execution time predictions
(93% in the worst case). The benefits of our model are
threefold: (i) it confirms the high scalability of GTC-P beyond
our measurements; (ii) it allows us to guide the optimization
of data movement in the system; and (iii) it demonstrates that
just modeling the data movement is necessary and sufficient
to predict the performance of GTC-P.

1) Architecture: Architectural parameters greatly impact
the performance of data movements. We have analyzed each
of the machines separately and modeled the cost of local and
remote data movement. For local computation, we capture how
many cache misses are caused by the code. Another important
aspect is the memory bandwidth for random access patterns.
For example, accelerator architectures (such as Xeon Phi or
GPU) are very sensitive to data alignment and continuity.

We measured the observable bandwidths by evaluating the
representative kernels of the GTC-P code. The third loop of
the sort routine performs a contiguous memory copy, therefore
its performance reflects the achievable memory bandwidth.
For the random access pattern and cache performance, we
evaluated the first and second loop of the sort routine, as
they exploit both random accesses and memory reuse. Network
bandwidth was based on the performance of particle shifts in
toroidal and radial directions.

For the inter-node communication, we estimate the cost of
point to point and collective data transfer and synchroniza-
tion. All machine parameters that determine the runtime and
scalability of the GTC-P code are listed in Table I.

2) Kernel analysis: We analyze the main two aspects (local
and remote memory movement) also on the algorithm level.
We first extract the execution kernels from the interested
subroutines, which determine the granularity at which we
analyze the code. For each kernel, we find the modeled
execution time based on core program parameters listed in

TABLE II
PROGRAM PARAMETERS INCLUDED IN THE PERFORMANCE MODEL

param. formula description
m m = total electron

ntoroidal·nradial
part. (electrons) / node

e e = 3 · (mgrid−mpsi)
nradial

· 16 # elem. of E field / node
f f = 5 # radial discretization
p p = mpsi+ 1 # radial grid
t t # threads
st st =

m·ntoroidal
250

≈ part. sent in toroid. dir.

sr sr = m·
√
nradial

490000
≈ part. sent in radial dir.

l1 l1 = 240 # iterations
l2 l2 = 24 # sorts performed

machine specific parameters
Machine c1 c2 c3 c4 c5 c6 c7 c8
Piz Daint 6 6 5 16 3 3 6 0.00058 s
Mira 9 6 12 19 6 2 3 0.00002 s
Titan 4 6 1 13 3 3 2 0.0016 s
Stampede 6 6 6 11 3 2 6 0.0048 s

Table II. A static code analysis refined by the runtime profiling
was used to find the exact values of those parameters. For
example, the machine specific parameters are estimated using
statistical curve fitting from the code analysis.

All the heavy kernels (the 7 most time consuming kernels
whose net execution time corresponds to over 95% of the
total execution time) execute intra-node communication loops
over the whole particle array. The efficient vectorization and
data locality optimizations are crucial for proper utilization of
memory bandwidth. We discuss chosen optimizations applied
in §III.

The communication part consists of two stages: toroidal
and radial. In the toroidal stage, particles are sent to the
neighboring processes in a sweep. As a result, the toroidal
stage execution time scales linearly with regard to the size of
the toroidal decomposition (with a possible overhead from the
network bandwidth saturation). In the radial decomposition,
however, the particles are transferred in multiple steps, which
implies the use of collective reduction operations. The radial
stage scalability is determined by the performance of collective
operations on a given topology. Due to large message sizes, the
communication cost is bandwidth-limited: the message latency
is negligible. Different topologies affect the ratio between
the bandwidth in toroidal and radial direction For example,
on Mira’s high-dimensional 5D torus topology with highly
optimized collectives, GTC-P scales almost linearly. On Titan,
on the other hand, the lower-dimensional 3D torus causes
scalability issues.

B. Data Layout Optimization

GTC-P extensively uses dynamically-allocated arrays for
storing particle and mesh information. Most of these arrays are
allocated in the initialization phase and do not need to be re-
sized during the actual simulation. Thus, memory management
costs are insignificant. The majority of the multidimensional
mesh-related arrays are flattened and 0-indexed to simplify in-
dexing, inter-process communication, and also permit memory
access locality optimizations. Each MPI task maintains nearly
100 arrays of various dimensions. The majority of these arrays

are read-only during every time step. However, the larger ion
and electron arrays are updated frequently.

For storing some of the frequently-accessed particle and grid
arrays, we have a choice between using an Array-of-Structures
(AoS) layout and a Structure-of-Arrays (SoA) layout. For an
illustration of implications of the data layout choice on locality,
consider the particle-processing push kernel. Here, 12 double-
precision values per particle are either read or modified, and
3 double-precision values per grid point (representing the
electric field) are accessed. The toroidal followed by radial
domain decomposition implies that each MPI task is assigned
a poloidal grid partition. The grid points within this poloidal
partition are further linearized, and indexing begins from the
innermost circle to the outermost one. In order to maximize the
data reuse when reading the electric field for grid-to-particle
interpolation, we use AoS for storing the electric field. This
guarantees that the field read on eight individual grid points
(192 bytes) for each particle will be complete by loading up
to four cache lines. Further, particles are periodically sorted
according to their toroidal and radial position in the sort
subroutine, and this improves reuse of the electric field cache
lines fetched.

For particle data, we provide both AoS and SoA data
layout implementations, as the choice might lead to significant
performance variation on diverse architectures. To facilitate
code generation and portability, each code version is deter-
mined at compilation time by using pre-compiler directives.
Generally, SoA is the option for maximizing spatial locality for
streaming access and for enabling SIMD instructions, and thus
is widely used for GPUs. An AoS particle layout simplifies
packing and unpacking of communication buffers in the shift
subroutine. We notice that an AoS layout for electrons leads
to better overall performance on CPU systems. To ensure data
alignment, for AoS layout, we use padding so that each particle
takes 16 double-precision values (rather than 12).

C. Improving vectorization

The adiabatic electron (ion dynamics only) model and
the first implementation of kinetic electrons of GTC-P use
“holes” to represent the invalid particles, i.e., in a distributed
environment, at every time step, the particles that are being
moved to other processes are marked as holes and considered
to be invalid in the local particle array. These invalid particles
are then removed from the array periodically to empty memory
space for new incoming particles during sort. In this imple-
mentation, two particles in consecutive memory locations may
have different operations in charge and push depending on if
they belong to the same type of particles (valid or invalid)
or not, which brings difficulty for automatic vectorization.
To maximize the usage of vector units, for kinetic electron
simulations, we remove the holes completely for charge and
push, similarly as we do on GPUs. Specifically, the holes are
filled at the end of shift by the new incoming particles sent
from neighboring processors at every time step. If a process
has sent more particles than received, then the remaining holes
are filled with the last particles in the array.

D. One-Sided Communication

To leverage the capabilities of hardware enabled Remote
Direct Memory Access (RDMA), we have implemented the
code version that uses MPI-3 One-sided communication [20]
for transferring particles between processes. One-sided com-
munication enables direct access to the remote buffers and
reduces the communication overhead by avoiding message
matching and complex communication protocols. Additionally,
explicit separation of communication and synchronization al-
lows better computation overlap.

In the shift phase, we transfer the outgoing particles directly
to the neighboring processes particle array using MPI Put().
To coordinate concurrent access to the particle array at the
target process, source processes use MPI Fetch and op() to
reserve buffer space in the array. Remote put operations are
overlapped with packing the particles locally to the transmis-
sion buffer.

While MPI-3 One-sided performance should be better than
the traditional message passing model on all architectures
supporting RDMA in hardware (all considered machines in
our study), not all MPI libraries implement the relatively new
specification in a high-performance manner [21]. We observed
that on Mira, the One-sided version improved application
performance between 5-7% for large runs. On the other
architectures, however, our measurements reported a slight
performance degradation or no significant difference due to
the suboptimal implementation (often one-sided libraries are
not implemented using RDMA but instead using normal MPI-
1 messages). We expect that future MPI libraries will allow the
one-sided communication to utilize the full hardware potential.

E. Leveraging GPU and Xeon Phi Accelerators

To exploit heterogeneous systems accelerated by
throughput-oriented processors such as GPUs, we need
to identify routines with high compute intensity and low
memory and data movement costs, and then refactor the code
to exploit the accelerators. We thus migrate the particle-based
routines (charge, push, as well as sort) to the accelerator,
while leaving the grid-based routines on the CPUs. The shift
routine is split between the CPU and the GPU.

The GPU implementation benefits from the SoA layout
because this layout maximizes spatial locality on streaming
accesses. We exploit low-overhead scheduling on the GPUs
by using fine-grained parallelism to tackle load imbalance. We
leverage the high throughput cores to redundantly compute
values rather than precompute and load data from memory.
We also use cooperative scheduling [22] to optimally use the
limited locality-capturing hardware structure (cache and shared
memory) in GPUs. Additionally, we fuse compute loops to
further reduce memory usage for auxiliary arrays. Finally, we
keep the main data structures persistently allocated in GPU
memory to reduce the stress on the PCIe bus transfer time, as
this is known to be a major bottleneck for the use of accelerator
technologies in HPC. All optimization choices were driven
by performance modeling as well as empirical measurements
from different design strategies [14, 22].

Intel’s Xeon Phi promises ultimate software portability:
standard MPI, OpenMP, or hybrid applications can just be
recompiled and run in Xeon Phi’s native or symmetric mode.
In native mode, an application runs on a distributed system
consisting of multiple Xeon Phi cards. Furthermore, Xeon Phi
offers the option to run an MPI-parallel application on the host
CPU and offload parts of it using a pragma-based approach
similar to OpenACC or the OpenMP 4.0 accelerator directives.

Xeon Phi’s architecture is quite different from standard x86
CPUs and GPUs which requires special care when tuning for
highest performance. Cores have been simplified to in-order
execution but offer an extended 512-bit vector instruction set
that is crucial for application tuning. Thus, special care must
be taken for a data alignment, code vectorization, utilization
of streaming stores, and occupancy of both the data and
instruction pipelines.

We first tune the single-socket performance of GTC-P as this
will form the basis for our large-scale parallel performance.
GTC-P on a single Xeon Phi with 240 threads in native
mode spends most of the execution time in two kernels, push
and sort. We first exploit thread affinity mapping as Xeon
Phi implements 4-way hyperthreading which makes thread
placement crucial for data locality. Both routines rely heavily
on caching and data reuse. Using all four threads per core
helps hide the in order execution latency, but forces the threads
to share a cache. Changing affinity from scatter to compact
results in up to a 40% speedup. To ensure data alignment,
each particle is padded two additional elements so that each
then uses 128 bytes of memory. The optimized implementation
takes full advantage of streaming store instructions.

IV. EXPERIMENTAL SETUP

A. Systems

In the last decade, processor architectures have diversified
to maximize energy efficiency. Many systems still rely on
superscalar out-of-order processors like the Intel Xeon (Sandy
Bridge and Ivy Bridge) and AMD’s Opteron. Systems such as
Argonne National Lab’s Mira [23] rely on energy-efficient in-
order core to minimize wasted energy. Alternately, systems
like the Oak Ridge National Lab’s Titan [24], the Swiss
National Supercomputing Center’s (CSCS) Cray XC30 Piz
Daint [25], the Texas Advanced Computing Center’s (TACC)
Stampede [26], and the Chinese National Supercomputer
Center in Guangzhou’s (NSCC-GZ) Tianhe-2 [27] rely on
accelerators for the bulk of their computing performance.
While the former use one NVIDIA Kepler K20x GPU per
node, Stampede and TH2 use the Xeon Phi (Knights Corner)
coprocessor. In the case of Stampede, there is one per node,
while there are 3 per node on TH2.

Concurrent with the development and deployment of novel
architectures designed to maximize on-node performance and
efficiency, has been the development of high-radix, high-
performance networks. Whereas some machines use more
conventional 3D torii and fat trees (Titan, Stampede, TH2),
other systems have leveraged 5D torii (Mira) and Dragonfly
(Piz Daint) topologies. A Dragonfly can be viewed as a

TABLE III
GTC-P NUMERICAL SETTINGS FOR KINETIC ELECTRON

SIMULATIONS. mpsi IS THE NUMBER OF GRID POINTS IN THE
RADIAL DIMENSION. mthetamax IS THE MAXIMUM NUMBER OF

GRID POINTS IN THE POLOIDAL DIMENSION. mgrid IS THE
NUMBER OF GRID POINTS PER TOROIDAL PLANE. ntoroidal IS THE

TOTAL NUMBER OF TOROIDAL PLANES. micell/mecell IS THE
NUMBER OF IONS OR ELECTRONS PER GRID POINT. total
ion/electron = mgrid×ntoroidal×micell/mecell. FOR ALL

SIMULATIONS, WE SET micell = mecell = 100.

Grid Size
A2 B2 C2 D2

mpsi 200 400 800 1600
mthetamax 784 1568 3136 6272
mgrid 157785 629169 2512737 10043073
ntoroidal 32 32 32 32

total ion 504271872 2012060672 8038195200 32132710400
total electron 504271872 2012060672 8038195200 32132710400

hierarchical network in which each rank of the network is fully
connected. Thus in rank-0 of Cray’s Aries network, 64 nodes
are fully connected, while in the rank-1, six groups of 64 nodes
are fully connected at the group level [28]. As a result, the
Dragonfly can provide very high bisection bandwidth coupled
with very low latency.

B. Programming Models

Unfortunately, one must use three different programming
models in order to target the diversity of today’s multicore and
accelerated supercomputers. MPI is ubiquitous across systems
for handling distributed memory parallelism. Conversely, when
targeting CPU architectures (including host-only experiments
on accelerated supercomputers), NUMA-optimized OpenMP
is appropriate. Conversely, when targeting NVIDIA GPUs,
CUDA still delivers superior performance to OpenACC. Hence
one is required to mix OpenMP for the cpu cores with CUDA
for the GPU cores. When attempting to exploit the Xeon Phi
coprocessor, Stampede enables both symmetric mode, in which
one may run one Xeon process (16 threads) and one Xeon Phi
process (240 threads) per node (both MPI+OpenMP), as well
as offload mode in which one must mix MPI, OpenMP, and
the Intel-specific offload directives.

C. Problem Specifications and Execution

This paper uses a kinetic electron model in which we
simulate the motion of both ions and electrons for four
problem sizes (Table III). The electrons are subcycled. Or-
thogonal to these physical simulation parameters, we perform
both weak and strong scaling experiments. For strong scaling
experiments, we define a problem of 80.38M grid points with
100 ions and 100 electrons per grid point and strong scale
from 512 nodes. For weak scaling experiments, we define a
maximum problem size at the full machine of 321.3M grid
points with 100 ions and 100 electrons per grid point, and
cut this problem down to 80.38M, 20.14M, and 5.024M grid
points running on 25%, 6.3%, and 1.6% of each system. We
also perform weak scaling experiments with a fixed problem

TABLE IV
PERFORMANCE MODEL OF THE GTC-P APPLICATION. PRESENTED COMPARISON BETWEEN THE BEST FITTING MODEL (PIZ DAINT) AND THE WORST

(TITAN). EXAMPLE SCENARIO SHOWN FOR 1024 NODES WEAK SCALING. Bmc , Bmr , Bc , Bnt AND Bnr REFER TO MEASURED BANDWIDTH PER CACHE
LINE FOR CONTINUOUS MEMORY ACCESS, RANDOM MEMORY ACCESS, CACHE, NETWORK COMMUNICATION IN TOROIDAL AND RADIAL DIRECTION.

Piz Daint Titan
subroutine kernel model %time pred. measured %time pred. measured

intra-node data transfers

push loop1 l1(
c1m
Bmc

+ c2e+c3f
Bmr

+ c2(m−e)+c3(m−f)
Bc

) 23 3.82 3.77 (1.01) 14 3.33 3.47 (0.95)
loop2 l1(

c4m
Bmc

+ c5p
Bmr

+ c5(m−p)
Bc

) 36 6.13 5.76 (1.06) 28 6.61 6.77 (0.97)

sort
loop1 l2(

c6m
Bmc

+ c7p
Bmr

+ c7(m−p)
Bc

) 0.8 0.14 0.13 (1.04) 0.6 0.13 0.12 (1.13)
loop2 l2(

9m
Bmc

+ 5m
Bc

) 2.1 0.35 0.34 (1.03) 2 0.46 0.49 (0.95)
loop3 l2(

8m
Bmc

) 1.9 0.31 0.32 (0.98) 1.8 0.41 0.41 (0.99)

shift detect part. l1(
3m
Bmc

+ st+sr
Bmr

) 9.1 1.53 1.65 (0.94) 11 2.55 2.53 (1.01)
pack part. l1(

4(st+sr)
Bmc

) 5.8 0.97 0.93 (1.03) 3.8 0.89 0.88 (1.01)
inter-node data transfers

shift toroidal l1(
st

Bnt
) 10.6 1.86 2.14 (0.87) 20.3 4.83 5.2 (0.93)

radial l1(
sr

Bnr
+ c8log2(r)) 7.3 1.04 0.99 (1.05) 9.5 2.27 2.83 (0.8)

total 96.6 16.9 16.8 (1.006) 91 22.4 23.7 (0.94)

size per node and simply scale the number of nodes from 256
to 16K on each system.

V. PERFORMANCE RESULTS

All simulations and scaling experiments were run with
shared access to each system in order to highlight their realistic
potential, i.e., GTC-P simulations using half or one quarter
of the machine run concurrently with other jobs contending
for the network. For each data point, we perform multiple
experiments, collecting average time for each and reporting
the best.

A. Performance and Energy Metrics

Although PIC models are computationally efficient, they
embody little data locality. As such, metrics like flop/s
or percentage-of-peak are irrelevant on today’s architectures
which require 10 flops per byte moved from DRAM in order
to be compute-limited. Concurrently, energy is becoming a
ever larger fraction of total system cost. To that end, we focus
on time-to-solution (seconds), energy-to-solution (KWh) as the
relevant performance metrics. Our code is executed in a bulk
synchronous manner on key phases (push, shift, etc...) via
MPI barriers. We use MPI’s MPI_Wtime() to time these key
phases on process 0. Through interaction with the computing
centers, we were able to measure energy consumed on a rack
by rack basis (perfectly acceptable for simulations spanning
the entire system).

B. Model evaluation

Large runs are hard to reproduce and generate a small
number of data points. However, due to the iterative nature
of the GTC-P code, we were able to establish a statistically
sound model. During each run, most of the functions are called
240 times. The only exception is the sorting procedure, which
is executed 24 times. We have instrumented the code with
the libLSB library [29] which collects hardware timers and
PAPI counters [30] to not only enable a statistically sound

analysis of the execution time, but also of issued load and
store instructions and cache misses.

We observe that the runtime of all kernels (except for
radial communication) depends solely on the local number
of particles and is independent of total problem size and
number of nodes. This guarantees constant execution time for
weak scaling. We also see that the parallel scaling is mainly
determined by the network topology. Yet, in all scenarios the
radial shift subroutine accounted for up to 30% for the largest
number of nodes (30% on Stampede, 20% on Titan, 13% on
Piz Daint and 10% on Mira).

In Table IV we illustrate the performance model for Piz
Daint and Titan. The differences between the machines apply
only to push and loop1 of sort. The push function performs
random accesses to 5 auxiliary arrays of varying length.
Analysis of PAPI counters confirmed that Piz Daint, having
the smallest L3 cache, suffers from the largest number of
cache misses. Therefore, this number is adjusted for each
architecture. Loop1 of sort simply performs a comparison of
the particles positions. The efficiency of loop vectorization
with conditional assignments depends on the compiler and
architecture specification. In Table IV we can observe a
different time distribution among the kernels for the best fitting
model (Piz Daint) and the worst (Titan).

The measurements show little variation in the execution
time. The coefficient of variation is below 0.015 for all heavy
kernels. However, as we cannot assume the normal distribution
of the data, we use the median of measurements for validating
the model. The accuracy of the model varies from 93% for
Titan and Mira, 94% for Stampede to 99% for Piz Daint.

C. Model Uses and Predictions

The model helps pinpoint the most critical architectural
parameters. Subroutines that rely heavily on streaming,
vectorized accesses (push and local part of shift) benefit
greatly from high memory bandwidth. Moreover, large cache
size and high cache bandwidth is important to leverage

2

4

8

16

32

64

512 1024 2048 4096 8192 16384 32768

Number of Nodes

W
al

lc
lo

ck
 t

im
e

p
er

 io
n

 s
te

p
 (

s)

Mira Titan Piz Daint Stampede

Fig. 3. GTC-P (kinetic electron) strong scaling for the 80 million
grid points, 8 billion ion and 8 billion electron case on Titan
(GPU), Mira, Piz Daint (GPU) and Stampede (host only). Note
the log-log axes. Solid line indicates model-predicted running
time.

A2 B2 C2 D2

A2 B2 C2
D2

B2

C2 D2

A2 B2 C2 D2

0

10

20

30

40

50

60

64 128 256 512 1024 2048 4096 16384 49162

Number of Nodes

W
al

lc
lo

ck
 t

im
e

p
er

 io
n

 s
te

p
 (

s)

Mira Titan Piz Daint Stampede

Fig. 4. GTC-P (kinetic electron) weak scaling time-to-solution.
On each system, we run four problems (5M, 20M, 80M, and
321M grid points) each using 100 ions and 100 electrons per
grid point. These four configurations are run at 1.6%, 6.3%,
25%, and 100% of the maximum nodes we use for each system.
Solid line indicates model-predicted running time.

spatial and temporal data locality (push). On the other
hand, subroutines that perform many random accesses and
conditional assignments (sort) are limited by random access
memory bandwidth. Architecturally, we observe that GPUs
deliver the best Bmc, as shown in Table I. This suggests
that the model could have easily predicted the potential
performance benefit of using GPUs before making the
development efforts. As we scale, GPUs do not see an
advantage for random access Bmr. As such, for problem
configuration, where the performance is limited by Bmr, the
model predicts that using GPUs would be less advantageous.

For future architectures, especially with heterogeneous com-
pute engines, the model can predict the profitability or speedup
of porting specific routines to a target compute engine. More-
over, optimizations such as reducing energy to solution based
on DVFS, discussed in §V-F, relies on the estimating the con-
tribution of communication time to the total execution time.
An accurate model for performance obviates the dependence
on exhaustive exploration of the optimization space. Another
important use of such models is to help procurement decisions
by estimating the performance impact on applications of
architectural tradeoffs. HPC vendors could offer a wide variety
of designs that trades streaming bandwidth with random access
bandwidth, especially with the emergence of new memory
technologies such as HMC and HBM [31]. Hence, having
accurate performance models allows predicting the impact on
the applications of making a particular procurement choice.

D. Strong Scaling

Figure 3 presents strong scaling for the kinetic electron
version of GTC-P. Initially, the entire 80M grid point, 16B
particle (8B ion plus 8B electron) simulation is spread over
only 768 nodes on Mira (1K on Titan and Piz Daint due
to insufficient GPU memory). Although the computation of

ion dynamics is the same as that for the adiabatic electron
model, in the kinetic electron configuration, electrons are
subcycled (pushe, shifte) 60 times per ion time step. We
observe the effect of smaller problems and electron subcy-
cling strongly differentiates Titan and Piz Daint performance.
Specifically, scalability of Titan is moderately impaired beyond
8K nodes (falling to 46% parallel efficiency at 16k nodes),
while scalability is impaired on Mira scaling only beyond
24K nodes (falling to 68% parallel efficiency at 49k nodes
). Carrying out a full-scale strong scaling run on Piz Daint
(4096 nodes) results in additional bottlenecks that are not
observed in any other configuration. This may be due to
several factors, including, e.g., additional full system extensive
network contention and/or OS noise. Stampede falls to 84%
parallel efficiency at 2K nodes. Overall, Mira delivers twice
the application performance of Titan despite having less than
half of the peak performance.

E. Weak Scaling

Figure 4 presents weak-scaled performance where we max-
imize the number of nodes used. On each system, we run
four problems (5.024M, 20.14M, 80.38M, and 321.3M grid
points) each using 100 ions and 100 electrons per grid point.
These four configurations are run at 1.6%, 6.3%, 25%, and
100% of the maximum nodes we use for each system. We
observe good scalability for Mira (5D Torus) and Piz Daint
(Dragonfly) with Titan (3D Torus) showing reduced scalability
beyond 1K nodes. For the maximum problem size (common
across all machines) at the full concurrency on each machine,
we observe that Mira delivers more than 2× the performance
of Titan and 4× the performance of Piz Daint — clearly a
testament to both efficiency and scale.

In order to fully understand the weak-scaled performance
with kinetic electrons, we run GTC-P with a fixed problem size
per node (5.024M grid points, 504M ions, 504M electrons),

A2 B2 C2

D2

5

10

15

256 1024 4096 16384

Number of Nodes

W
al

lc
lo

ck
 t

im
e

p
er

 io
n

 s
te

p
 (

s)
Mira

TH−2

Titan

Titan (CPU)

Piz Daint

Piz Daint (CPU)

Stampede

Stampede (OFLD)

Fig. 5. GTC-P (kinetic electron) weak scaling performance
using a fixed problem size per node across all systems allows
comparisons of node performance. Solid lines indicate model-
predicted running times (shown for Mira, Titan (CPU), Piz Daint
(CPU), Stampede), dashed line joins actual running times.

0

2

4

6

8

10

12

14

16

18

20

TH2 Mira Titan Piz Daint Titan Piz Daint

CPU-only CPU+GPU

W
al

lc
oc

k
tim

e
pe

r i
on

 s
te

p
(s

)

smooth
field
poisson
charge
sort
shift (PCIe)
shift
push

Fig. 6. Operational breakdown of time per step when using 80M
grid points, 8B ions, and 8B kinetic electrons on 4K nodes of
TH2, Mira, Titan, and Piz Daint.

and simply scale the number of nodes from 256 to 16K on
each system by quadrupling grid points and nodes at each
stage. Figure 5 highlights the performance differences in the
processor and GPU architectures at 256 nodes. We see that
performance on Piz Daint is very good, attaining a 60%
improvement over Titan despite the same GPU, and more
than a 2.2× improvement over BGQ on a node-by-node basis.
Whereas BGQ and Piz Daint deliver greater than 85% parallel
efficiency, Titan suffers beyond 4K nodes with both CPU
and GPU-accelerated implementations falling to roughly 50%
parallel efficiency. We see the TH2 (Ivy Bridge-only) and
Stampede (Sandy Bridge-only) deliver similar performance
(expected given the similarities in processor, memory, and
network), and similar performance to the GPU-accelerated
Piz Daint — replacing an Ivy Bridge with a GPU provided
little net performance gain. Conversely, there was a 1.8× per-
formance penalty when attempting to offload (via directives)
work to the Xeon Phi on Stampede. Generally, speaking, the
3D torus, Dragonfly, and Fat Tree deliver similar scalability
at small scale (less than 4K nodes). Conversely, networks
are differentiated beyond 4K nodes with BGQ’s 5D torus
continuing to deliver good scalability. We note that Stampede
(Sandy Bridge) performs slightly better than TH2 (Ivy Bridge)
because the code running on TH2 is an earlier version without
a few key optimizations described in §III (due to the time
frame we were allowed to access the system). For example, the
earlier version will require sort to be called more frequently to
empty the space for new incoming particles. Future work will
include running the new version of the code on TH2 involving
multiple Xeon Phis.

A key question arising from this comparison is why the
GPU-accelerated systems do not deliver far superior perfor-
mance compared to the BGQ architecture. Figure 6 shows
the breakdown of wall clock time when running a problem

of 80M grid points, 8B ions, and 8B electrons on 4K nodes
of Mira, Titan, and Piz Daint with or without offloading to
the GPUs. Note, push, shift include 60 calls to the electron
variant and 1 call to the ion variant and are hence dominated
by operations on electrons. Interestingly, we observe relatively
little difference in push performance on the three different
CPU architectures (Interlagos, BGQ, and Sandy Bridge). Con-
versely, there is a huge boost in performance when running
push on the GPUs due to their superior memory bandwidths
and flop rates. Given that roughly 14% of the electrons leave
each process’s domain each time step, coupled with the fact
that electron push uses a simplified interpolation, the relative
cost of shift is large. Unfortunately, shift is heavily influenced
by PCIe and MPI performance. Since the desire for locality
demands all particles remain on the GPU, one cannot exploit
functional heterogeneity. As such, much of the performance
benefits from the GPU are lost and the net performance of
the GPU-accelerated Piz Daint is only twice Mira. Note, as
described in §III-E, the electron charge, push, as well as sort
are running on GPU, while leaving the poisson, smooth and
field on the CPUs. The shift routine is split between the CPU
and the GPU.

F. Time-to-Solution and Energy-to-Solution Comparative
Studies

Energy is becoming an increasingly large impediment to
supercomputing. The net energy efficiency of large scientific
simulations can be particularly non-intuitive as one moves
from one processor or network architecture to the next as the
interplay between performance and power is highly dependent
on algorithm and architecture.

Using power measured under actual load via system instru-
mentation, Table V shows the energy per time step on 4K
nodes of Mira, Titan, and Piz Daint when using 80M grid
points, 8B ions, and 8B electrons. We observe that although

TABLE V
ENERGY PER ION TIME STEP (KWh) BY PLATFORM FOR THE

WEAK-SCALED, KINETIC ELECTRON CONFIGURATION AT 4096
NODES. POWER IS OBTAINED VIA SYSTEM INSTRUMENTATION
INCLUDING COMPUTE NODE, NETWORK, BLADES, AC TO DC

CONVERSION.

CPU-Only CPU+GPU
Mira Titan Piz Daint Titan Piz Daint

Nodes 4096 4096 4096 4096 4096
Power/node (W) 69.7 254.1 204.9 269.4 246.5
Time/step (s) 13.77 15.46 10 10.11 6.56

Energy (KWh) 1.09 4.47 2.33 3.10 1.84

Mira required the most wall clock time per time step, it
also required the least power per node. When combined,
this ensured Mira required the least energy per time step of
all platforms. Conversely, using the host-only configurations
on Titan and Piz Daint required between 2× and 4× the
energy with the difference largely attributable to the lack of
scalability on Titan. Interestingly, although accelerating the
code on these platforms significantly reduces wall clock time
per time step, it only slightly increased power. As such the
energy required for the GPU-accelerated systems was reduced
nearly proportionally with run time.

Optimizing for energy-to-solution could be at odds with
time-to-solution when we use technologies such as DVFS [32].
When inter-node communication dominates the execution
time, by scaling down the CPU frequency we observed up to
25% reduction in energy consumption for the C problem size
with an increase in the execution time by 28%. We conducted
such an experiment on an Intel Haswell-based Cray XC40
system. Although supported by many hardware architectures,
DVFS control is not enabled on most of the studied systems.
As such, we could not explore such optimization on all
systems. Another impediment for adopting such technology is
the policy adopted for resource allocation by HPC compute
facilities, which is based on cpu-hours rather than energy
consumption. This policy accordingly makes the “time-to-
solution” the best metric from the user perspective.

VI. NEW ITER-SCALE PHYSICS RESULTS ENABLED BY
SOFTWARE ADVANCES

Deployment of new extreme scale computing capabilities
have produced important new fusion physics findings, includ-
ing: (i) the rollover trend highlighted in size scaling studies
of the ion temperature gradient instability for more than a
decade is much more gradual than established previously in
far lower resolution, shorter duration studies, with the actual
magnitude of the transport level now found to be reduced
by a factor of two; and (ii) the more complex size-scaling
study up to an ITER-sized plasma for the trapped-electron
instability at sufficient phase-space resolution has been carried
out for the first time. The successful introduction of drift-
kinetic electron dynamics [16] into GTC-P with associated
verification and validation of the software has resulted in sig-
nificant advances from physics perspectives. More specifically,

 0

 1

 2

 3

 4

 5

 100 200 300 400 500 600 700 800 900 1000

χ i
(c

sρ
s2 /a

)

a/ρi

Fig. 7. Global tokamak size-scaling study of trapped-electron-mode
turbulence showing the plateauing of the radial electron heat flux
(toward the device wall) as the size of the tokamak increases.

we have delivered for the first time new results for the Bohm-
to-GyroBohm size scaling investigations with unprecedented
resolution and temporal duration (illustrated in Figure 7).
Compared to the most prominent earlier publications on this
problem, it has now been found that under conditions when
the electron dynamics dominate over that of the ions, realistic
new results can be obtained at the largest problem size.
Specifically, extending the size scaling studies to ITER-scale
plasmas have firmly established the plateauing confinement
trend, an accomplishment that was previously unachievable
for such a large problem size with the associated phase-space
requirements to ensure the physics fidelity of the simulations.

VII. FUTURE IMPLICATIONS

A. Demands for Increased Physics Fidelity

At the forefront of outstanding fusion energy computa-
tional challenges is the development of higher fidelity kinetic
simulations of key instabilities that limit burning plasma
performance and threaten device integrity in magnetically-
confined fusion energy (MFE) systems. Insights gained from
the present studies can be expected to significantly advance
such progress, as illustrated by the demonstrated ability to
carry out with efficiency and speed the ITER-scale production
runs at the spatial resolution and temporal duration demanded,
including electron dynamics. Extending these capabilities in
the future to encompass electromagnetic physics will introduce
new requirements for faster and more portable geometric or
algebraic multigrid Poisson solvers, which place much higher
demands on interconnect performance than a Jacobi solver.
The ultimate goal is to develop a first-principles global sim-
ulation encompassing long-time-scale macroscopic dynamics
with the fidelity of a microscopic kinetic simulation.

B. Node and Network Architecture

For simulations with kinetic electrons, perhaps the biggest
impediments to performance on-node are memory bandwidth
(application flop:byte ≈ 1) and the inability to maintain a
large shared working set in cache. Recently, multicore, many-
core, and accelerated architectures have pushed the machine

balance (flops:bytes) to extreme values in order to maximize
peak performance. Unfortunately, many science codes cannot
exploit these extra flops and can be challenged by rigid SIMD
architectures. Today, processor architectures are beginning to
integrate multiple types of memory into a single platform and
address space, low-capacity fast memory, and high-capacity
slow memory. GTC-P can already exploit the smaller fast
memories as evidenced by our GPU runs.

The lack of scalability observed today on some platforms is
concerning as their networks act as impediments to realizing
the full potential of improvements in process and memory
technology. Although proprietary high dimensional (5D, 6D)
meshes and tori, as well as high-radix networks like the Cray’s
Aries Dragonfly can be expensive, they provide the requisite
scalability for real science codes and can reduce overall system
cost per unit of performance substantially.

Heterogeneity promises the best of both worlds, through-
put optimized performance on some routines, and latency-
optimized performance on others. In this paper, we explored
the performance of four heterogeneous systems, Titan, Piz
Daint, Stampede, and TH-2. Unfortunately, all of these sys-
tems express heterogeneity at the node-level with very limited
PCIe bandwidth between host and device. As GTC-P’s data
cannot be easily partitioned between host and device, exploit-
ing heterogeneity via function specialization is impractical. As
a result, some functions (e.g. push) were accelerated while
others (e.g. shift) suffered. Future heterogeneous systems need
to be architected to avoid these pitfalls for PIC applications.

C. Energy-efficient Scientific Computing

Today, instrumenting scientific applications to measure en-
ergy when running on large supercomputing installations can
be cumbersome and obtrusive requiring significant interaction
with experts at each center. As such, most applications have
little or no information on energy-to-solution across the ar-
chitecture design space spectrum. In order to affect energy-
efficient co-design of supercomputers, energy measurement
must be “always-on” by default with, at a minimum, total
energy and average power reported to the user at the end
of an application. Reporting energy by component (memory,
processor, network, storage, etc...) would enable scientists and
vendors to co-design their applications and systems to avoid
energy hotspots and produce more energy-efficient computing
systems.

VIII. ACKNOWLEDGMENTS

We gratefully acknowledge the excellent computational and
technical support from HPC Centers including ALCF (Mira),
OLCF (Titan), CSCS (Piz Daint), TACC (Stampede), and
to Professor Yutong Lu and colleagues at the Guangzhou
SC Center (TH-2). The efforts from Dr. Chuanfu Xu and
Guang Suo of the NUDT/TH-2 team were especially helpful
in carrying out runs on TH-2. We would like to acknowledge
the assistance of Dr. Lei Huang at TACC, who provided
support for the reported offload runs in Stampede. For the
key energy to solution measurements, the dedicated efforts

and clear explanations of methodology deployed by Venkat
Vishwanath of the ALCF, Gilles Fourestey of the CSCS,
and Don Maxwell and James Rogers of the OLCF were
very much appreciated. We are also grateful to Eliot Feibush
of PPPL and Zachary Kaplan for their expert visualization
support and to Prof. Zhihong Lin and his colleagues at UC
Irvine for the greatly beneficial code verification support in
the implementation of the fast electron dynamics feature in
GTC-P. The authors express their gratitude for the support
provided for our team’s research efforts by: the DOE-SC
contract DEAC02-06CH11357 at the ANL, the DOE contract
DE-AC02-09CH11466 at the PPPL, the DOE-SC contract
number DE-AC02-05CH11231 at the LBNL, and the DOE-
SC contract DE-AC05-00OR22725 at the ORNL. This work
has been supported by the Argonne National Laboratory
project “Performance Evaluation for PIC Algorithms on the
ALCF BG/Q System” at Princeton University and the Intel
Parallel Computing Center project “CliPhi: Towards Optimal
Performance for Climate Codes on Intel Xeon Phi” at ETH
Zurich.

REFERENCES

[1] W. Tang and D. Keyes, “Scientific grand challenges:
Fusion energy science and the role of computing at the
extreme scale,” in PNNL-19404, 2009, p. 212.

[2] W. Tang, B. Wang, and S. Ethier, “Scientific discovery in
fusion plasma turbulence simulations at extreme scale,”
Computing in Science Engineering, vol. 16, no. 5, pp.
44–52, Sept 2014.

[3] W. Lee, “Gyrokinetic particle simulation model,” Journal
of Computational Physics, vol. 72, no. 1, pp. 243–269,
1987.

[4] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J.
Barker, and D. J. Kerbyson, “0.374 pflop/s trillion-
particle kinetic modeling of laser plasma interaction on
roadrunner,” in 2008 SC - International Conference for
High Performance Computing, Networking, Storage and
Analysis, Nov 2008, pp. 1–11.

[5] F. Fiuza and et al., “Record simulations
conducted on lawrence livermore supercomputer,”
https://www.llnl.gov/news/record-simulations-
conducted-lawrence-livermore-supercomputer.

[6] M. Bussmann, H. Burau, T. E. Cowan, A. Debus,
A. Huebl, G. Juckeland, T. Kluge, W. E. Nagel,
R. Pausch, F. Schmitt, U. Schramm, J. Schuchart,
and R. Widera, “Radiative signatures of the relativistic
kelvin-helmholtz instability,” in Proceedings of the Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. New
York, NY, USA: ACM, 2013, pp. 5:1–5:12.

[7] B. Wang, S. Ethier, W. Tang, T. Williams, K. Z. Ibrahim,
K. Madduri, S. Williams, and L. Oliker, “Kinetic tur-
bulence simulations at extreme scale on leadership-class
systems,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage

and Analysis, ser. SC ’13. New York, NY, USA: ACM,
2013, pp. 82:1–82:12.

[8] X. Meng, X. Zhu, P. Wang, Y. Zhao, X. Liu, B. Zhang,
Y. Xiao, W. Zhang, and Z. Lin, “Heterogeneous pro-
gramming and optimization of gyrokinetic toroidal code
and large-scale performance test on th-1a,” in Super-
computing, ser. Lecture Notes in Computer Science,
J. Kunkel, T. Ludwig, and H. Meuer, Eds. Springer
Berlin Heidelberg, 2013, vol. 7905, pp. 81–96.

[9] E. F. D’Azevedo, J. Lang, P. H. Worley, S. A.
Ethier, S.-H. Ku, and C.-S. Chang, “Poster: Hybrid
mpi/openmp/gpu parallelization of xgc1 fusion simula-
tion code,” in High Performance Computing, Networking,
Storage and Analysis (SCC), 2013 SC Companion:, 2013,
pp. 1441–1441.

[10] Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, “Size
scaling of turbulent transport in magnetically confined
plasmas,” Phys. Rev. Lett., vol. 88, p. 195004, Apr 2002.

[11] B. F. McMillan, X. Lapillonne, S. Brunner, L. Villard,
S. Jolliet, A. Bottino, T. Görler, and F. Jenko, “System
size effects on gyrokinetic turbulence,” Phys. Rev. Lett.,
vol. 105, p. 155001, Oct 2010.

[12] K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf,
E. Strohmaier, and K. Yelick, “Memory-efficient opti-
mization of gyrokinetic particle-to-grid interpolation for
multicore processors,” in Proc. ACM/IEEE Conf. on
Supercomputing (SC 2009), Nov. 2009, pp. 48:1–48:12.

[13] K. Madduri, K. Z. Ibrahim, S. Williams, E.-J. Im,
S. Ethier, J. Shalf, and L. Oliker, “Gyrokinetic toroidal
simulations on leading multi- and manycore HPC sys-
tems,” in Proc. Int’l. Conf. for High Performance Com-
puting, Networking, Storage and Analysis (SC ’11). New
York, NY, USA: ACM, 2011, pp. 23:1–23:12.

[14] K. Z. Ibrahim, K. Madduri, S. Williams, B. Wang,
S. Ethier, and L. Oliker, “Analysis and optimization
of gyrokinetic toroidal simulations on homogenous and
heterogenous platforms,” International Journal of High
Performance Computing Applications, 2013.

[15] “GTC-Irvine,” http://phoenix.ps.uci.edu/GTC/.
[16] Y. Xiao and Z. Lin, “Turbulent transport of trapped-

electron modes in collisionless plasmas,” Phys. Rev. Lett.,
vol. 103, p. 085004, Aug 2009.

[17] S. Ethier, W. M. Tang, and Z. Lin, “Gyrokinetic particle-
in-cell simulations of plasma microturbulence on ad-
vanced computing platforms,” Journal of Physics: Con-
ference Series, vol. 16, pp. 1–15, 2005.

[18] M. F. Adams, S. Ethier, and N. Wichmann, “Performance
of particle in cell methods on highly concurrent compu-
tational architectures,” Journal of Physics: Conference
Series, vol. 78, no. 1, p. 012001, 2007.

[19] S. Ethier, M. Adams, J. Carter, and L. Oliker, “Petascale
parallelization of the Gyrokinetic Toroidal Code,” in
Proc. High Performance Computing for Computational
Science (VECPAR’10), 2010.

[20] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji,
W. Gropp, and K. Underwood, “Remote Memory Access

Programming in MPI-3,” ACM Transactions on Parallel
Computing (TOPC), Jan. 2015, accepted for publication
on Dec. 4th.

[21] R. Gerstenberger, M. Besta, and T. Hoefler, “Enabling
Highly-Scalable Remote Memory Access Programming
with MPI-3 One Sided,” in Proceedings of the Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis. ACM, Nov. 2013,
pp. 53:1–53:12.

[22] K. Madduri, E. J. Im, K. Ibrahim, S. Williams, S. Ethier,
and L. Oliker, “Gyrokinetic particle-in-cell optimization
on emerging multi- and manycore platforms,” Parallel
Computing, vol. 37, no. 9, pp. 501–520, 2011.

[23] “Mira IBM BlueGene/Q,” http://www.alcf.anl.gov/mira.
[24] “Titan Cray XK7,” https://www.olcf.ornl.gov/support/

system-user-guides/titan-user-guide/.
[25] “Piz Daint Cray XC30,” http://www.cscs.ch/computers/

piz daint/index.html.
[26] “Stampede,” https://portal.tacc.utexas.edu/user-guides/

stampede.
[27] “NSCC-GZ,” http://www.nscc-gz.cn.
[28] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese,

B. Alverson, T. Johnson, J. Kopnick, M. Higgins, and
J. Reinhard, “Cray Cascade: a scalable HPC system
based on a Dragonfly network,” in Proc. Int’l. Conf.
on High Performance Computing, Networking, Storage
and Analysis (SC ’12). Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 103:1–103:9.

[29] T. Hoefler and R. Belli, “Scientific benchmarking of par-
allel computing systems: Twelve ways to tell the masses
when reporting performance results,” in Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC
’15. New York, NY, USA: ACM, 2015, pp. 73:1–73:12.

[30] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A
portable interface to hardware performance counters,” in
In Proceedings of the Department of Defense HPCMP
Users Group Conference, 1999, pp. 7–10.

[31] A. Suresh, P. Cicotti, and L. Carrington, “Evaluation of
emerging memory technologies for HPC, data intensive
applications,” The 2014 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 239–247, Sept
2014.

[32] D. Hackenberg, R. Schne, T. Ilsche, D. Molka,
J. Schuchart, and R. Geyer, “An energy efficiency feature
survey of the intel haswell processor,” The IEEE Inter-
national Parallel and Distributed Processing Symposium
Workshop (IPDPSW), pp. 896–904, May 2015.

http://phoenix.ps.uci.edu/GTC/
http://www.alcf.anl.gov/mira
https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/
https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/
http://www.cscs.ch/computers/piz_daint/index.html
http://www.cscs.ch/computers/piz_daint/index.html
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
http://www.nscc-gz.cn

	Fusion Plasma Turbulence Simulations: Grand Scientific Challenge and Relevance to Society
	Computational Approach
	Current State of The Art for GTC-P code
	Parallelization

	Performance Optimization on Modern Computing Platforms
	GTC-P performance model
	Architecture
	Kernel analysis

	Data Layout Optimization
	Improving vectorization
	One-Sided Communication
	Leveraging GPU and Xeon Phi Accelerators

	Experimental Setup
	Systems
	Programming Models
	Problem Specifications and Execution

	Performance Results
	Performance and Energy Metrics
	Model evaluation
	Model Uses and Predictions
	Strong Scaling
	Weak Scaling
	Time-to-Solution and Energy-to-Solution Comparative Studies

	New ITER-Scale Physics Results Enabled by Software Advances
	Future Implications
	Demands for Increased Physics Fidelity
	Node and Network Architecture
	Energy-efficient Scientific Computing

	Acknowledgments

