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Abstract 

To account for natural variability in cognitive processing, it is 
standard practice to optimize the parameters of a model to 
account for behavioral data.  However, variability reflecting the 
information to which one has been exposed is usually ignored.  
Nevertheless, most language theories assign a large role to an 
individual’s experience with language.  We present a new way to 
fit language-based behavioral data that combines simple learning 
and processing mechanisms using optimization of language 
materials.   We demonstrate that benchmark fits on multiple 
linguistic tasks can be achieved using this method and will argue 
that one must account not only for the internal parameters of a 
model but also the external experience that people receive when 
theorizing about human behavior. 

Keywords: Cognitive modeling; Model optimization; 

Language processing; Corpus-based models. 

Introduction 

Models of cognition often have to deal with troublesome 

sources of variance that other fields (e.g., physical systems) 

do not. For example, no two individuals process a stimulus in 

the same way, and the same individual rarely processes the 

same stimulus identically at multiple times. In addition to 

individual differences and temporal stability, there is true 

random and measurement variance. While many of the 

sources of variance can be represented by free parameters, 

much of what may be systematic variance ends up being 

encapsulated by an overall noise parameter, often thought to 

reflect the inherent stochastic nature of the response process 

(Shiffrin, Lee, Kim, & Wagenmakers, 2008).  

Almost every cognitive model contains free parameters, 

coefficients that are initially unknown, but are estimated from 

the observable data. The exact values for free parameters do 

not change the model’s architecture—the theory that the 

model formalizes should be independent of its parameter 

values—but the settings do change a model’s behavior. 

Hence, researchers use estimation methods to find the set of 

parameters that maximize a model’s fit to data, and those 

parameter estimates are often allowed to vary across different 

data sets to which the model is applied. 

A tacit assumption in cognitive models is that behavioral 

differences across individuals or tasks can be explained by 

differences in process parameters. But an alternative source 

of variance, often ignored, comes from differences in the 

subject’s individual learning history or variance in memory 

representations selected for a task, independent of changes in 

the process parameters. 

Theories of cognition commonly assume that aspects of the 

external world are stored internally. The storage assumption 

applies to memory (Anderson & Schooler, 1991), perception 

(Barsalou, 1999), and linguistic organization (Landauer & 

Dumais, 1997).  In effect, the assumption acknowledges that 

human beings are embedded in a structured physical 

environmental that informs learning and that constrains 

behavior. As Simon (1969; p. 53) makes clear, “The apparent 

complexity of our behavior over time is largely a reflection 

of the complexity of the environment in which we find 

ourselves”.    

Although we acknowledge natural variation in processing 

mechanisms, we explore in this paper the other source of 

variation—the environmental information to which people 

have been exposed—on lexical tasks.  Subjects differ in what 

they know, and the differences should cause a corresponding 

change in behavior.  Of course, the effect of variable 

knowledge depends on the specific task.  For example, 

accumulated linguistic knowledge likely affects a lexical 

decision experiment more than a non-verbal perceptual 

identification task, so including linguistic knowledge when 

modeling lexical decision makes a good deal of sense.  

One way to build linguistic information into a model is to 

use a representation of word meaning constructed from a 

standard corpus, such as the TASA corpus (introduced by 

Landauer & Dumais, 1997).  The TASA corpus includes 

paragraphs from textbooks, from grades 1 to 12 and has been 

used as the gold standard in tests of co-occurrence models 

(e.g., Landauer & Dumais, 1997; Jones & Mewhort, 2007); it 

has frequently been integrated into processing models in 

cognate areas (e.g., Johns, Jones, & Mewhort, 2012).  

Although the TASA corpus is likely representative of the 

linguistic experiences that subjects have experienced, it is not 

intended to map exactly onto the experiences of specific 

individuals.  Indeed different groups of subjects may have 

had exposure to wildly different linguistic sources, depending 

on culture, geography, educational system, and so forth.  

Hence, for any group of subjects, there is a natural variation 

in their knowledge, variation that should impact the behavior 

of those subjects on specific laboratory tasks.  

Paradoxically, most theorists recognize that knowledge is 

central to performance in standard laboratory tasks but rely 

on a single corpus to model cognition.  By relying on a single 

corpus, they ignore an important source of variability, namely 

the different knowledge that individuals bring to the task.  If 

one could estimate a group of subjects’ average linguistic 

experience, it should be possible to account for behavioral 

data at a more refined level.   

The present article describes a new method for taking into 

account both the internal parameters of a model as well as the 

environmental information that defines a subject’s unique 
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experience.  Unfortunately, one cannot track a subject’s 

linguistic history.  As a proxy of that history, however, we 

collected a very large diverse set of language materials and 

combined it with a simple mechanism to uncover the most 

informative texts for a specific set of data.   

To demonstrate the generality of our method, it was applied 

to both lexical organization and lexical semantic data.  

Modelling each of these tasks requires information to be 

accumulated into the mental lexicon, after which it will be 

acted upon to accomplish a specific task. The aim is to show 

that, by combining experiential fitting with realistic cognitive 

models across multiple areas, benchmark accounts of 

language-based behaviors can be attained. 

Corpora and Data Fitting Methodology 

To estimate the type of linguistic information used in a 

certain behavioral task, we use a wide variety of large 

language sources. These sources are then split into smaller 

sections, and it is iteratively determined which sections 

maximized the fit of a model to a set of data. At the end of 

the iterative process, the algorithm will have determined the 

most informative set of texts needed to explain performance 

on the task.  Here, we describe the training materials and 

specifics of the method used to fit the models. 

Training Materials 

The texts come from five different sources: (a) Wikipedia 

(Shaoul & Westbury, 2010), (b) Amazon product 

descriptions (attained from McAuley & Leskovec, 2013), (c) 

1,000 fiction books, (d) 1,050 non-fiction books, and (e) 

1,500 young-adult books. All of the books were attained from 

e-books, and the vast majority were written in the last 50 

years by popular authors.  The set of sources—from an online 

encyclopedia to books targeted at young adults, to marketing 

materials for a large range of products—was designed to 

represent a broad set of possible experiences that an 

individual might have with written language.  It is impossible, 

of course, to span the entire range of possible linguistic 

information, but the present materials represent a substantial 

range of texts, one that should give experiential fitting a fair 

test.  To equate each source’s contribution, each was trimmed 

to six million sentences, for a total of 30 million sentences 

across all texts (approximately 400 million words). 

The data-fitting method will determine which set of texts is 

the most informative for fitting a particular experiment, just 

as statistical methods are used to estimate the optimal free 

parameters of a model.  The corpora were split into small 

sections of 50,000 sentences yielding 120 sections for each 

corpus, for a total of 600 different sections across the corpora.  

Each section is large enough to allow for a measure of how 

much linguistic information the section contains, but is small 

enough that the different sections can still be combined to 

determine an optimal set of language. 

Data Fitting Methodology 

The goal of the data-fitting algorithm is to determine the 

combination of the sources that gives the best fit for a specific 

model to a set of data.  To do so, we used a hill-climbing 

algorithm iteratively to select the sections that maximize the 

model’s likelihood of generating various behavioral datasets. 

A hill-climbing algorithm is an iterative local search 

algorithm, where a model is fit by incrementally improving 

its fit to a set of data. Once an increase in fit is no longer 

possible, the algorithm terminates. For experiential fitting, 

the first iteration selects the section that provides the best fit.  

Subsequent iterations add additional sets on top of the 

previously selected sections, to construct an overall training 

corpus.  Once a section has been selected, it can no longer be 

used (sampling without replacement).  Hence, the training 

materials increase their resolution continuously, in 

correspondence with the structure of the set of data 

attempting to be modeled.  Fitting ends when the addition of 

a further section into the overall corpus does not increase the 

fit of the model to the data. To avoid getting stuck on local 

maxima, 10 unique starting points were made, in a rank order 

of the best fitting sections.  The best fit will be displayed in 

the below simulations. 

Discussion 

To explore the power of experiential fitting, a large amount 

of text was assembled across a number of different sources.  

To determine the optimal set of linguistic data to explain a set 

of data, the texts were split into smaller pieces, and a hill-

climbing algorithm was used iteratively to find the selection 

of text that maximally increased the fit of a model to a set of 

data.  One could think of the process as a kind of parameter 

fitting (see Shiffrin, et al., 2008), but instead of optimizing 

the internal parameters to explain a set of behavioral data, the 

procedure optimized the structure of the external world (i.e. 

linguistic information).  Optimizing the linguistic 

information allows us to determine the power gained by 

accounting for the variance in linguistic experience to an 

explanation of human behavior. That is, if linguistic behavior 

is related to the structure of linguistic experience, 

determining the optimal set of language materials with which 

to train a model should provide a substantial increase in the 

fit of the model.  

Lexical Semantics 

Models of semantic memory, particularly Latent Semantic 

Analysis (Landauer & Dumais, 1997), have strongly 

influenced studies of the effect of linguistic experience. LSA 

showed that a simple averaging mechanism, when combined 

with sufficient amounts of language information (derived 

from a large text corpus), can construct a representation of 

the meaning of words that is closely matches how people use 

language.   

The model used here is derived from BEAGLE (Jones & 

Mewhort, 2007), a random vector accumulation model.  The 

BEAGLE model is based on using sentential information in 

the learning process.  In this model, words are represented by 

two vector types: a static environmental vector, that 

represents the perceptual (visual/auditory) aspects of a word, 

and dynamic context/order vectors, which mark both co-
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occurrence and simple syntactic usages of a word.  Each time 

a word is seen in a corpus of text, the dynamic vectors are 

updated.  For context information, updating is done by 

summing the environmental vectors of the other words that 

occurred in the sentence with it (with high frequency function 

words removed).  Accordingly, the context representation 

accumulates pure co-occurrence information.  Order vectors, 

by contrast, accumulate rudimentary syntactic information, 

by recording the position of words that surround the usage of 

a word.  The original BEAGLE model used circular 

convolution to form an n-gram representations of a sentence.  

Here, we will use a simplified form of the model (see 

Recchia, Sahlgren, Kanerva, & Jones, 2015), because the 

simplified form is less computationally expensive. We refer 

the reader to Recchia, et al. (2015) for a complete description 

of the simplified form of BEAGLE. In the following 

simulations, order, context, and the complete (the sum of the 

order and context vectors) representations were used. 

The model was tested using two different data types: (a) 

synonym tests, and (b) item-level semantic priming.  

Following Landauer and Dumais (1997), synonym tests have 

become a standard test for models of semantic representation.  

In the synonym test, subjects are required to pick the word 

from a set of four that is most similar in meaning to a target 

word.  A real-world example is the Test of English as a 

Foreign Language (TOEFL).  Landauer & Dumais used 80 

questions from the TOEFL and reported that LSA achieved 

an accuracy of 55% on this test. 

Semantic priming will also be analyzed, a type of data that 

semantic space models have had success in accounting for 

(Jones, Kintsch, & Mewhort, 2006). In behavioral 

experiments, subjects are asked to perform simple tasks, such 

as lexical decision, but the target word is preceded by a prime.  

The prime can be semantically related or not, and the benefit 

provided by the prime is measured in terms of the speedup 

seen when the target is preceded by a semantically related 

item versus a semantically unrelated word. 

Hutchison, Balota, Cortese, & Watson (2008) have shown 

that models of semantic representation may succeed at the 

mean level across items but fail at the individual word level. 

They examined priming in lexical decision for 300 different 

items and found that semantic variables offered minimal fits 

to the data, with forward association strength having the best 

correlation to overall levels of priming at r = 0.164, p < 0.01, 

while LSA had a non-significant correlation of r = 0.053. 

Clearly semantic priming data are difficulty to account for at 

an item level; hence, the data provide an excellent test for the 

power of experiential fitting. 

Data Fitting Methodology 

As noted earlier, all corpora were split into sections of 50,000 

sentences and vector sets were generated for all the three 

types of information created by BEAGLE (context, order, 

and complete). The hill-climbing algorithm selected semantic 

vectors to maximize the model’s performance on the TOEFL 

test, and rank correlation in semantic priming. That is, the 

necessary semantic information was refined iteratively to 

maximize the fit to the data.  Iterative refinement halted when 

adding new material failed to increase the quality of the fit.  

To minimize the chance of falling into a local minimum 

during the fit, 10 random starts were used.  To form a 

comparison, 50 resamples of the full corpus (of 30 million 

sentences), and the average performance increase across each 

50,000 section of this corpus was recorded. This will provide 

a measure of how successful the model is independent of 

experiential optimization. 

Results 

The top panel of Figure 1 shows accuracy on the TOEFL test 

as a function of the number of sentences included in the fit; it 

shows results for the three kinds of information (item, order, 

and complete) along with a control condition in which the 

sections of text were assembled randomly.  For the random 

corpora, the results were concatenated at 10 million sentences 

in order to aid in visualization.  The complete model achieved 

the best performance at 97% accurate at only 1.1 million 

sentences.  The context representation maximized at 92% 

accurate at 3 million sentences, while the order representation 

maximized at 82% accurate at 2.1 million sentences. For the 

random corpora, the average maximum performance was 

57%, consistent with the past results (Jones & Mewhort, 

2007).  The complete representation is essentially performing 

at the same level as a native English speaker, an impressive 

level of performance for a rather simple model.    

 

We also examined Hutchison, et al.’s (2008) item-level 

semantic priming results.  Recall that it has been challenging 

for semantic-space models to account for item-level results. 

Figure 3 shows the fitted correlation as a function of the 

number of sentences for item, order, complete (combined) 

and random controls.  As is shown in the bottom panel of 

Figure 1, all three representation types (item, order, and 

combined) provided a good fit to the item-level data in 

semantic priming. There was not a great deal of difference 

among the non-random representations, the complete model 

did offer the best fit at r = 0.412, p < 0.001.  Note that the 

complete model provided a better fit than all the semantic 

Figure 1. Results of BEAGLE and experiential optimization. 
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variables tested by Hutchison, et al. (2008).  Indeed, it 

approached the fit of their 18-variable regression (r = 0.5).   

Discussion 

Semantic space models have been fundamental in exploring 

the influence of the linguistic environment on human 

behavior. This section explored the power that comes from 

combining a simplified form of a popular semantic space 

model (Jones & Mewhort, 2007) with experiential fitting, 

with the result being benchmark fits for every dataset 

analyzed. What this suggests is that the representations that 

people form in semantic memory are heavily influenced by 

the content of experience, and by constructing corpora that 

reflects this experience, better representations can be 

constructed.  

However, one question about this method that needs to be 

determined is what source of variance is exploited in these 

simulations. It needs to be shown that the method is sensitive 

to group characteristics, where groups of subjects who have 

likely had different linguistic experiences, are found to have 

different corpora statistics by the experiential fitting method. 

That is, the method does not just exploit noise in the different 

datasets, but is actually approximates the type of experiences 

a group of subjects may have had.  

Lexical Organization 

A prominent area in the study of word recognition has 

focused on examining the influence of environmental 

variables on the retrieval of words from the mental lexicon. 

Classically, word frequency has been the most important 

lexical variable used to examine lexical retrieval, based on 

findings that higher frequency words are processed more 

efficiently. This has led to word frequency to be considered a 

central information type to models of lexical retrieval. 

The exact nature of frequency effects has recently been 

questioned on several grounds.  In one line of research, 

Adelman, Brown, and Quesada (2006) demonstrated that a 

measure that builds a word’s strength in memory by counting 

the number of contexts that a word occurs in (operationalized 

as the number of document occurrences across a corpus) 

provides a superior fit to retrieval times than word frequency; 

this finding has been replicated across different corpora and 

datasets (Adelman, et al., 2006; Brysbaert & New, 2009). 

This measure is commonly referred to as a word’s contextual 

diversity (CD).  

However, Adelman et al.’s (2006) document count measure 

ignores the semantic diversity of the contexts that a word 

occurs in. To examine this possibility more closely, Jones, 

Johns, and Recchia (2012) conducted an artificial language 

learning experiment that manipulated word frequency and 

contextual diversity, such that certain words occurred with 

different sets of words (high semantic diversity), while others 

repeatedly occurred with the same set (low semantic 

diversity). Although there was no effect of diversity for low-

frequency words, high frequency words were retrieved more 

quickly when they had been learned across multiple diverse 

contexts, indicating that processing savings occurred only 

with a change in context. On the basis of these results, and a 

corpus analysis, Jones, et al. (2012) proposed a new model 

that builds a more accurate measure of a word’s strength in 

memory, entitled the semantic distinctiveness memory 

(SDM) model.  

The SDM builds a word’s strength in memory by weighting 

each new context by how much unique information that 

context provides about the meaning of the word. Across 

various corpora, this model was able to account for a larger 

amount of variance to a mega dataset of lexical decision and 

naming times over word frequency and a document count.  

Additionally, Johns, et al. (2012) demonstrated that the 

advantage for a semantic diversity count extends to spoken 

word recognition performance. Johns, Dye, and Jones (2016) 

have extended the results of the artificial language 

experiment of Jones, et al. (2012) with natural language 

materials and found similar results. 

The simulations in this section will compare WF, CD, and 

SDM magnitudes, in combination with experiential fitting. 

The main source of data is 40,000 lexical decision times 

attained from the English Lexical Project (ELP; Balota, Yap, 

Cortese, Hutchison, Kessler, Loftis, Neely, Nelson, Simpson, 

& Treiman, 2007). This is a standard dataset that has been 

used to differentiate different lexical information sources 

(Brysbaert & New, 2009; Jones, et al., 2012). Additionally, a 

set of 2,900 lexical decisions times for young and old adults 

attained from Balota, Cortese, and Pilotti (1999) was used to 

test the sensitivity of the experiential fitting method to 

different subject groups. 

Data Fitting Methodology 

Because the SDM uses paragraphs, the fitting method split 

each corpora into 3,000 paragraphs/documents (roughly 

equivalent to 50,000 sentences). For the Wikipedia corpus, 

this was a single document in the encyclopedia. For the 

Amazon product descriptions, one product description was 

considered a separate document. For the books, due to how 

they are formatted, there was no simple method to split them 

into paragraphs. Instead a moving window, with a size of 15 

sentences, was used to assemble paragraph-like units. 

Typically, the SDM is trained on a whole corpus, as the 

model is dynamic: previously experienced information is 

used to determine what should be stored for any new context. 

However, the model is quite computationally complex, so 

magnitudes were derived separately for each section. Overall 

magnitudes were then the sum of the different selected 

sections, which was also done for the WF and CD variables. 

These variables were transformed with a natural logarithm 

before assessing the correlation to the data. 

Results 

The results of the experiential fitting method on the z-

transformed ELP lexical decision time data are displayed in 

the top panel of Figure 2. Only the results of the SDM are 

displayed in this figure, because all three measures produce 

similar results (explored further below). This result is 

contrasted with the fit that CD values from the SUBTLEX 

corpus (Brysbaert & New, 2009) provides for this data set, as 
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it provides the best fits to this data currently available. The 

figure demonstrates that the use of experiential fitting allows 

for a large increase in fit for retrieval latencies, even when 

compared against a very well-constructed corpus, as it 

outperformed SUBTLEX by a large margin. Additionally, 

the randomized corpora also achieved a correlation that 

equaled the SUBTLEX corpus (Brysbaert & New, 2009), 

demonstrating that the source materials that the experiential 

fitting method was using was of very high quality. 

 
Figure 2. Results of SDM with experiential optimization. 

 

As has been pretty previously shown, magnitudes from the 

SD model had the highest correlation, with an r =-0.708, 

p<0.001, compared with an r =-0.702, p<0.001 for contextual 

diversity, and r =-0.701, p<0.001 for word frequency. As a 

comparison, the correlation for CD values from SUBTLEX 

is an r=-0.666, p<0.001. The SDM model providing the 

superior fit is consistent with past results (Jones, et al., 2012; 

Johns, et al., 2012), but the interesting aspect of this 

simulation is the power that experiential fitting provided to 

all three variables. 

As noted previously, there is still a question of what the 

source of variance that the method is capitalizing on, as it is 

possible that it is not capitalizing on group or individual 

characteristics, but instead random noise within the different 

datasets. As a test of this, 2,900 lexical decision times were 

attained from Balota, et al. (1999) for younger and older 

adults. The bottom panel of Figure 2 displays the fits to 

Balota et al.’s data for the SD model, and demonstrates that a 

high level of fit was attained for both subject groups, but with 

a higher fit to younger than older subjects, a standard finding. 

However, a more interesting analysis is to examine the 

composition of the resulting corpora for the two subject 

groups. To do this, the proportion of the different sources that 

was selected was recorded across 20 runs of the hill-climbing 

algorithm. These runs were done by removing the previously 

selected first section for the current run, so that each run 

begins differently. The results of this analysis are contained 

in Figure 3.  

There was no difference in proportions selected for the non-

fiction, Wikipedia, and Amazon sections, but there was a 

highly significant difference for the young adult sections 

[F(1,39)=203.51, p<0.001] and the fiction sections 

[F(1,39)=219.45, p<0.001]. These differences emerge 

because the young subject group had a higher proportion of 

young adult sections, while older adults were better described 

by the fiction sections. Given the composition of the different 

corpora, this suggests that the retrieval time data of these 

different groups are sensitive to the statistics of different 

linguistic sources that the subjects have experienced: young 

adults are better described by simpler examples of language 

as encoded in young adult books, but older adults are better 

accounted for by more linguistically diverse fiction and 

literature books.  At least anecdotally, this is consistent with 

the type of linguistic experiences these subjects likely had. 

 

Discussion 

This section demonstrates that the use of experiential fitting 

can be expanded easily to examine lexical retrieval. There is 

a rich history of using environment variables (i.e. word 

frequency) to examine word retrieval patterns, with recent 

research pointing to the importance of contextual and 

semantic variables in the construction of a word’s strength in 

the mental lexicon (Adelman, et al., 2006; Jones, et al., 2012). 

It was found that the SDM model, previously shown to 

provide a superior fit to large scale lexical decision data than 

word frequency or a document count, when combined with 

experiential fitting, provides a better accounting than 

previously published norms. Additionally, in an examination 

of young and older adult lexical decision data (Balota, et al., 

1999), it was found that the method was sensitive to group 

characteristics, suggesting that the method is fitting to the 

experiences that a group of subjects may have had with 

language. 

General Discussion 

The current article describes a new method for optimizing 

cognitive models through experiential fitting, where the 

Figure 3. Proportion of different sections selected for young 

and old subjects. 
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information that a model “knows” is manipulated to provide 

the best fit to a set of data. The manipulation was done by 

assembling very large sets of texts spanning multiples areas, 

including an online encyclopedia, product descriptions from 

Amazon, and sets of fiction, non-fiction, and young adult 

books. These corpora were split into small sections, and a 

hill-climbing algorithm was used to determine the best 

combination of these materials for a specific model and set of 

data. It was demonstrated that this method, combined with 

experience-based cognitive models, provided benchmark fits 

to multiple types of lexical information. 

The underlying philosophy of our method is similar to 

standard parameter fitting methods (Shiffrin, et al., 2008), 

which assume that there is natural variability in the 

parameters that define the cognitive processes that underlie 

behavior. Similarly, experiential fitting is designed around 

the idea that there is natural variability in the knowledge 

bases that different subjects groups have (and also in 

individual subjects) that leads to variability in behavior.  

One of the exciting aspects of this technique is that it 

provides a mechanism by which to discriminate the varying 

contributions of internal cognitive mechanisms and external 

information, an old goal in the cognitive sciences (Anderson 

& Schooler, 1991; Simon, 1969). If one accepts that language 

is dictated by a complex interaction of biological and cultural 

evolution (Christiansen & Chater, 2008), then it is necessary 

to determine how much of the complexity in human behavior 

is derived from evolved mechanisms in the brain and how 

much is provided by the heavily structured environment in 

which humans are embedded. The simulations reported here 

provide substantial evidence that the information used to train 

a model is very important to a model’s behavior, just as 

human behavior is sensitive to the knowledge that a person 

has gained. The simulation reported in Figure 3, where the 

experiential fitting method found different corpus 

constructions to explain younger and older adult’s lexical 

decision data is a promising first step that group-level 

experiences can be estimated with this method.  

More generally, this work points to the usefulness of 

building cognitive models around a learning mechanism that 

is capable of extracting information from large text-bases, an 

issue that has been explored in greater detail elsewhere (e.g. 

Johns, Jones, & Mewhort, 2012). By basing a model’s 

performance in the learning of large-scale environmental 

information, it provides a stronger case for the plausibility of 

a model, as it is capable of scaling to levels of data input that 

a typical person may receive.  

As Simon (1969) described, in order to provide a complete 

account of behavior, it is necessary to understand both the 

internal mechanisms and the environmental information that 

people use to behave.  This is especially important in the 

study of language, as the vast majority of psycholinguistic 

theories have focused on the internal mechanisms that are 

responsible for linguistic behavior, while the influence of 

environmental information has been downplayed. 

Downplaying environment information was necessary in 

early work because we lacked both large amount of texts and 

computational resources, but neither of these factors are 

limitations anymore. It is readily possible to examine the 

impact of linguistic information on human behavior, and by 

optimizing the linguistic information to which a model is 

exposed, it provides a powerful test of a model’s ability to 

account for behavioral data. 

References 
Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual 

diversity, not word frequency, determines word-naming and lexical 

decision time. Psychological Science, 17, 814-823. 
Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in 

memory. Psychological Science, 2, 396–408. 

Balota, D.A., Cortese, M.J., & Pilotti, M. (1999).  Item-level analyses of 
lexical decision performance:  Results from a mega-study. In Abstracts 

of the 40th Annual Meeting of the Psychonomics Society (p. 44). Los 

Angeles, CA: Psychonomic Society. 
Balota, D. A., Yap, M J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, 

B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). 

The English lexicon project. Behavior Research Methods, 39, 445-459. 
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain 

Sciences, 22, 577-660. 

Brysbaert, M., & New, B. (2009). Moving beyond Kucèra and Francis: A 
critical evaluation of current word frequency norms and the introduction 

of a new and improved word frequency measure for American English. 
Behavior Research Methods, 41, 977-990. 

Christiansen, M., & Chater, N. (2008). Language as shaped by the brain. 

Behavioral and Brain Sciences, 31, 489-558. 
Hutchison, K. A., Balota, D. A., Cortese, M. J., & Watson, J. M. (2008). 

Predicting semantic priming at the item level. The Quarterly Journal of 

Experimental Psychology, 61, 1036-1066. 
Johns, B. T., Jones, M. N., & Mewhort, D. J. K. (2012). A synchronization 

account of false recognition. Cognitive Psychology, 65, 486-518. 

Johns, B. T., Gruenenfelder, T. M., Pisoni, D. B., & Jones, M. N. (2012). 
Effects of word frequency, contextual diversity, and semantic 

distinctiveness on spoken word recognition. Journal of the Acoustical 

Society of America, 132, EL74-EL80. 
Johns, B. T., Dye, M., Jones, M. N. (2016). The influence of contextual 

variability on word learning. Psychonomic Bulletin and Review. 

Jones, M. N., Kintsch, W., & Mewhort, D. J. K. (2006). High-dimensional 
semantic space accounts of priming. Journal of Memory and Language, 

55, 534-552. 

Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and 
order information in a composite holographic lexicon. Psychological 

Review, 114, 1-37. 

Jones, M. N., Johns, B. T., & Recchia, G. (2012). The role of semantic 
diversity in lexical organization. Canadian Journal of Experimental 

Psychology, 66, 115-124. 

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The 
latent semantic analysis theory of the acquisition, induction, and 

representation of knowledge. Psychological Review, 104, 211-240. 

McAuley, J., and Leskovec, J. (2013). Hidden factors and hidden topics: 
understanding rating dimensions with review text. In Proceedings of the 

7th ACM Conference on Recommender Systems (RecSys), 165–172. 

Recchia, G. L., Sahlgren, M., Kanerva, P., & Jones, M. N. (2015). Encoding 
sequential information in vector space models of semantics: Comparing 

holographic reduced representation and random permutation. 

Computational Intelligence & Neuroscience. 
doi.org/10.1155/2015/986574 

Shaoul, C., & Westbury, C. (2010). Exploring lexical co-occurrence space 

using HiDEx. Behavior Research Methods, 42, 393–413. 
Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E. J. (2008). A 

survey of model evaluation approaches with a tutorial on hierarchical 

Bayesian methods. Cognitive Science, 32, 1248-1284. 
Simon, H. A. (1969). The Sciences of the Artificial. Cambridge, MA: MIT 

Press. 

2296




