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Abstract

On Sannikov’s Continuous-Time Principal-Agent Problem

by

Sin Man Choi

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

The principal-agent problem is a classic problem in economics, in which
the principal seeks an optimal way to delegate a task to an agent that has
private information or hidden action. A general continuous-time stochastic
control problem based on the moral hazard problem in Sannikov (2008) is
considered, with more general retirement cost and structure. In the problem,
a risk-neutral principal tries to determine an optimal contract to compensate
a risk-averse agent for exerting costly and hidden effort over an infinite time
horizon. The compensation is based on observable output, which has a drift
component equal to the hidden effort and a noise component driven by a
Brownian motion.

In this thesis, a rigorous mathematical formulation is posed for the prob-
lem, which is modeled as a combined optimal stopping and control problem.
Conditions are given on how a solution to the control problem could be imple-
mented as a contract in the principal-agent framework with moral hazard.
Our formulation allows for general continuous retirement profit functions,
subject to an upper bound by the first-best profit. The optimal profit func-
tion is studied and proved to be concave and continuous. It is shown that
the optimal profit function is the unique viscosity solution of the Hamilton-
Jacobi-Bellman (HJB) equation.
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Chapter 1

Introduction

1.1 Principal-agent problem

A principal-agent problem arises when a principal delegates a task to an
agent, often with private information known only to the agent. The goal for
the principal is to identify an optimal contract that is based on the observable
output rather than the unobservable private types or actions.

Specifically, we are interested in the case where the principal’s payoff is
affected by the private actions of the agent and some noise. It is the noise
that makes the agent’s private actions unobservable to the principal. In
the economic literature, this class of principal-agent problems (where the
agent has a private action) is known as moral hazard, whereas the case of an
agent with private type is known as adverse selection. The case with perfect
information, usually used as a benchmark for comparison, is referred as risk-
sharing. A comprehensive introduction to the motivation and the broader
literature of principal-agent problems can be found in Laffont and Martimort
(2002) and Bolton and Dewatripont (2005).

For the case of a moral hazard problem, the goal is usually to maximize
the principal’s profit, and the contract is designed to induce the agent to take
the actions preferred by principal.

1.1.1 Moral hazard problems in real life

One of the earliest example of principal-agent problems is that of sharecrop-
ping, where a landlord (as the principal) is to have the landlord’s tenant
perform agricultural work on his land. The tenant’s effort in farming is not
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perfectly reflected in the harvest because of variability in the climate and
other factors. To give the tenant incentives to work hard, the tenant often
receives a portion of the crop as his reward.

In the modern-day society, examples of principal-agent problem arise fre-
quently in management. An intuitive example is the relationship between
a manager and his or her worker. The manager, due to time or technology
constraint, cannot observe the actual effort exerted by the worker, and can
only pay the worker based on some practical measure of productivity, usu-
ally the number of output units produced or the quantity of tasks performed.
This performance measure is only a noisy outcome of the effort exerted and
does not perfectly reflect the effort. In the literature, some studies have
focussed on the optimal compensation package for a CEO of a company
(Edmans et al., 2011), where the principal and agent are respectively the
shareholders and the CEO.

Another example, closer to the financial industry, is the management of
investor’s portfolio by an investment manager. Investors may not have the
time or expertise to find out whether the manager has been managing their
portfolio in their best interests, as the actual return of the portfolio is again
only a noisy signal of the effort of the manager, subject to variable market
conditions and uncertainty in stock returns. It is then important to determine
an appropriate compensation scheme to induce effort from the manager.

Other examples include financial contracting, where banks lend money
to businesses that may be misreporting the potential return and risk of
their projects (DeMarzo and Fishman, 2007), and retailer selection, where
the buyer needs to choose retailers for sale of products.

1.2 An example of moral hazard

In this section, we illustrate the idea of moral hazard in an example with
a binary effort and only two possible levels of production output. The rel-
atively simple mathematical setting allows us to focus on some important
economic concepts commonly found in moral hazard problems, as well as
common ideas in formulating such problems. This example originally came
from the example in Chapter 4 of Laffont and Martimort (2002) and has
been rewritten and simplified to suit our later discussion.

In this example, the principal delegates a task to the agent. The output
of the task takes two possible values q̄ and

¯
q, with q̄ >

¯
q.
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The output is stochastic and its distribution is affected by the agent’s
effort. The agent can choose between two possible levels of effort, 0 and 1,
corresponding to no effort and a positive effort. The actual action of the
agent is not observable to the principal. The output is q̄ with probability
p0 if the agent makes zero effort, and p1 if the agent makes effort 1, with
p0 < p1. The agent incurs a cost of c0 if he makes no effort, and a cost of c1
if he makes effort, where c0 < c1. We normalized c0 to be zero but retain the
notation for convenience.

high output q̄ low output
¯
q

no effort p0 1− p0
effort p1 1− p1

Figure 1.1: Probability of different output levels given the effort level

The principal would like to design a contract that pays the agent and
induces him to work hard. Since the principal cannot observe the agent’s
actual effort, the compensation can only depend on the output. Specifically,
the principal can decide on a contract (m̄,

¯
m), where m̄ is paid to the agent

if the output is q̄ and
¯
m is paid to the agent if the output is

¯
q.

At the beginning, the principal decides on the contract and announces it
to the agent. The agent then decides whether to accept or reject the contract.
Next, the agent chooses to make effort or not. Finally, the output is realized
and the agent is paid correspondingly.

The agent’s utility from the compensation is represented by a utility
function u. If the agent receives an amount of m for compensation, his utility
from the compensation is u(m). We assume u is increasing and concave,
where the concavity reflects the agent’s risk aversion.

Given a contract (m̄,
¯
m), the agent compares his expected payoffs from

the contract while making zero or positive effort, to decide if he should enter
the contract and if so, whether to make positive effort.

If he enters the contract and makes no effort, he gets p0u(m̄) + (1 −
p0)u(

¯
m), while if he enters the contract and makes positive effort, he gets

p1u(m̄)+(1−p1)u(
¯
m)−c1. If the agent chooses not to enter the contract, he

gets his reservation utility, the value of his outside opportunities when not
participating in the contract. We normalize the reservation utility to zero.

Obviously, if the agent will earn less than his reservation utility whether
or not he makes effort, then he will not enter the contract. Therefore, for the
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agent to enter the contract and make an effort, we need

p1u(m̄) + (1− p1)u(
¯
m) ≥ c1, (1.1)

which ensures that his expected payoff is at least as good as not entering the
contract, and

p1u(m̄) + (1− p1)u(
¯
m)− c1 ≥ p0u(m̄) + (1− p0)u(

¯
m),

i.e.
(p1 − p0)(u(m̄)− u(

¯
m)) ≥ c1. (1.2)

The second constraint ensures that the agent is at least as good to make
positive effort than to make no effort. This gives him the incentives to
make effort. We call (1.1) the individual-rationality constraint and (1.2)
the incentive-compatibility constraint. Note that when equality holds in a
constraint, the agent is indifferent between the two options and it is common
in the literature to assume that the agent will do choose an action preferred
by the principal in that case.

Now that we know what is required to induce effort from the agent, we
look at the principal’s problem. If the principal induces an effort from the
agent via a contract (m̄,

¯
m), she would receive p1(q̄ − m̄) + (1− p1)(

¯
q −

¯
m).

Thus, the principal’s optimal profit from a contract inducing positive
effort from the agent is given by

V1 = max
(m̄,

¯
m)∈R2

p1(q̄ − m̄) + (1− p1)(
¯
q −

¯
m) (1.3)

such that (1.1) and (1.2) holds.
While a positive effort from the agent improves production output, the

principal does not necessarily benefit from choosing a contract that induces
positive effort from the agent over one that does not, because it is costly to
induce effort from the agent. If the principal wishes not to induce effort from
the agent, she can set m̄ =

¯
m = 0 to give the agent his reservation utility

and the principal will receive p0q̄ + (1− p0)
¯
q.

Combining the two cases, the principal will choose to induce an effort,
with a contract that gives the maximum in (1.3) and receive V1 if V1 ≥
p0q̄ + (1 − p0)

¯
q. Otherwise, the principal will not induce an effort from the

agent, and she will receive p0q̄ + (1− p0)
¯
q.

Before we go to the solution for the problem in (1.3), we look at the
complete information case for a benchmark for comparison.
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1.2.1 First-best case

A common benchmark for the moral hazard is to consider the first-best case
where the principal can perfectly observes, and therefore directly contracts
on, the effort of the agent. Let e the effort chosen by the principal and
(m̄,

¯
m) be the compensation given to the agent when the output is q̄ and

¯
q

respectively. The first-best problem is written as

VFB = max
e∈{0,1}(m̄,

¯
m)∈R2

pe(q̄ − m̄) + (1− pe)(
¯
q −

¯
m)

s.t.
peu(m̄) + (1− pe)u(

¯
m)− ce ≥ 0.

It is easy to see that the constraint will be binding by the monotonicity
of u.

To solve the complete information problem when the principal chooses to
induce effort, i.e. e = 1, we let λ be the Lagrange multiplier of the constraint,
and the first-order condition gives

−p1 + λp1u
′(m̄) = 0

(1− p1) + λ(1− p1)u
′(
¯
m) = 0,

which implies that u′(m̄) = u′(
¯
m) = 1/λ. This means that the payment to

the agent does not depend on the production output level, i.e. the agent
obtains full insurance from the principal. This is because the agent is risk-
averse, i.e. u is concave, and it is more costly for the principal to provide the
same utility with a payment that varies with the production level. Together
with the constraint

p1u(m̄) + (1− p1)u(
¯
m) = c1,

we have m̄ =
¯
m = u−1(c1). If the principal does not induce effort, he pays

m̄ =
¯
m = u−1(c0) = 0 to the agent.

The principal gets

peq̄ + (1− pe)
¯
q − u−1(ce)

if she chooses e ∈ {0, 1} for the agent. Therefore, the principal will choose
to induce effort if and only if

(p1 − p0)(q̄ −
¯
q) ≥ u−1(c1), (1.4)

i.e. if and only if the expected gain from the effort is not less than the
first-best cost of inducing effort.
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1.2.2 Second-best case and inefficiency from risk-aversion

Going back to the moral hazard case, the solution to the problem in (1.3)
can be obtained by rewriting the optimization problem as a convex one and
applying the Karush-Kuhn-Tucker (KKT) conditions. The details can be
found in Laffont and Martimort (2002, Section 4.4.1) and we simply state
the solution here:

m̄ = u−1

(

c1 + (1− p1)
c1

p1 − p0

)

¯
m = u−1

(

c1 − p1
c1

p1 − p0

)

. (1.5)

We call this the second-best solution.
Compared to the first-best case, where the agent is paid u−1(c1) regardless

of the production output level, in this case with moral hazard, the agent is
rewarded (by getting paid more than u−1(c1)) when the output is high, and
is punished when the output is low. By Jensen’s inequality and the concavity
of u, the expected payment to the agent is

p1u
−1

(

c1 + (1− p1)
c1

p1 − p0

)

+ (1− p1)u
−1

(

c1 − p1
c1

p1 − p0

)

≥ u−1

(

p1

(

c1 + (1− p1)
c1

p1 − p0

)

+ (1− p1)

(

c1 − p1
c1

p1 − p0

))

= u−1(c1).

(1.6)

This implies that the principal is paying a risk premium to the risk-averse
agent compared to the first-best case, to compensate him for bearing the
risk.

Regarding the optimal effort level, the principal will choose to induce
effort if and only if

(p1 − p0)(q̄ −
¯
q)

≥ p1u
−1

(

c1 + (1− p1)
c1

p1 − p0

)

+ (1− p1)u
−1

(

c1 − p1
c1

p1 − p0

)
.

Noting (1.6) again and comparing to condition (1.4), for which the prin-
cipal induces effort under complete information, we see that the first-best
effort is always at least as good as the second-best effort. If the agent is risk-
neutral, i.e. u is linear, then the two conditions coincide. Otherwise, there
would be cases where the principal would prefer not to induce effort under
moral hazard while the first-best solution is to induce effort. This shows the
inefficiency caused by moral hazard and the risk-aversion of the agent.
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1.2.3 Limited liability

In the second-best solution in (1.5), the agent’s punishment in case the pro-
duction level is low could be negative, meaning that the principal would fine
the agent in that case. In reality, the agent may have a limited liability that
prohibits the principal to fine him, or at least limits the amount that he could
be fined to some l > 0. In such case, we would have additional constraints

m̄ ≥ −l,
¯
m ≥ −l.

This limited liability creates inefficiency in the solution even when the
agent is risk-neutral. A detailed analysis can be found in Laffont and Martimort
(2002), but the main idea we learn here is that limited liability may cause
efficiency and is interesting to consider in models.

1.3 Continuous-time principal-agent problems

1.3.1 Single-period, multi-period and continuous-time

models

The moral hazard example in Section 1.2 has two possible levels of production
and a binary effort, but a model could become much more complex to reflect
real-world settings. Both the possible levels of production and that of effort
can become more than two, or even to be picked from a continuum. For
example, Grossman and Hart (1983) posed a single-period principal-agent
problem with finite number of possible production levels, where the agent can
chooses his effort from a compact subset of a finite dimensional Euclidean
space.

An additional dimension that we have not yet considered is the time
horizon of a contract. It is possible that an agent works for the principal for
multiple periods and the possibility of a long-term contract may be consid-
ered. In particular, in a long-term contract, the compensation in a certain
period could depend on the production level of the current periods as well as
the historical production levels. Radner (1985) studies a repeated principal-
agent games with discounting, which is extend the one-period problem to
multiple time periods. Fudenberg et al. (1990) considered a multi-period
principal-agent model and discussed the advantages of long-term contracts
over short-term contracts. They gave conditions for which efficient long-term
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contracts could be implemented as a sequence of short-term contracts when
the agent can save and borrow. These multi-period studies are considered
the study of dynamic contracting in discrete time.

1.3.2 Literature review in continuous-time models

As the frequency of compensation and measurement of output level increases,
the situation would become closer and closer to measuring the output and
paying the agent continuously. This gives rise to the idea of continuous-time
principal-agent problems. In continuous-time principal-agent problems, as
its name suggests, time takes value from a continuum instead of discrete
periods.

On one hand, this moves the long-term contracting problem to the realm
of optimization problems over stochastic processes instead of finite-dimensional
vectors and makes the problem more mathematically challenging. On the
other hand, continuous-time principal-agent framework has an advantage
over discrete-time multi-period ones in that there are well-developed mathe-
matical techniques in stochastic analysis and control that allow us to char-
acterize optimal contracts by differential equations.

The theoretical literature in continuous-time principal-agent problem started
with the seminal paper of Holmstrom and Milgrom (1987) (HM hereafter).
In the paper, they proposed a continuous-time principal-agent problem with
moral hazard, first motivated by an approximation of a discrete-time multi-
period model. In their model, both the principal and the agent have ex-
ponential utilities and it was found that the optimal contract is linear. In
the following, we use the HM model to illustrate the common components of
continuous-time principal-agent problems.

A key part of the principal-agent problem is the relationship between the
output and the controls of the agent. In HM, the dynamics of the output
process is

dXt = utdt+ dBt,

where the noise Bt is a standard n-dimensional Brownian motion, and the
drift of the process ut, is controlled by the agent. The process ut could
depend on the path of X up to time t. The control ut is usually interpreted
as the agent’s action or effort. In more general models, the drift could be a
more function of the control ut and the path of X up to time t. The time
horizon of the problem is the unit time interval, i.e. t ∈ [0, 1].
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In order to exert the control, the agent would incur a cost for the con-
trol ut, the rate of which is given by a function c(ut). The agent is then
compensated for his effort.

The difference in a risk-sharing and a moral hazard problem lies in the
information asymmetry. In the risk-sharing setting, the principal can observe
the control ut of the agent, making the control contractible and allowing the
principal to choose explicitly what control the agent use. In the moral hazard
case, i.e. the case of HM, the principal cannot observe what ut is, and can
only specify a contract that pays depending on the output process X .

In HM’s model, the agent receives s(X.|[0,1]) at time 1. The agent has an
exponential utility function

UA(y) = − exp(−ry), r > 0

which gives him expected payoff

E

[

UA(s(X.|[0,1])−

∫ 1

0

c(ut)dt

]

.

The principal also has an exponential utility function

UP (y) = − exp(−Ry), R > 0

that gives her expected payoff

E

[

UP (

n∑

i=1

X i
1 − s(X.|[0,1]))

]

.

The principal’s problem involves choosing the recommended action {ut}0≤t≤1

for the agent and a incentive-compatible sharing rule s to maximize her ex-
pected payoffs. HM showed that the solution corresponds to the solution of
a static problem where the principal is constrained to choose the sharing rule
to be a linear function of the Zi(1)’s and the agent can choose a constant µ
once and for all at time zero. In other words, they showed the optimality of
a linear contract in the setting.

1.3.3 Risk-sharing

The setting with complete information, i.e. the principal and the agent
share the same information, is called risk-sharing in the literature. This is

9



relevant because such models usually serve as a benchmark for understand-
ing and comparing the moral hazard models. Risk-sharing models are also
directly applicable, for example in the case of portfolio management (see
Cvitanič et al., 2006, Example 2.1).

Following Holmstrom and Milgrom (1987)’s moral hazard model, Müller
(1998) considered the first-best case with no hidden action. The model has
exponential utilities and the optimality contract was also linear. Another
paper of his (Müller, 2000) showed how this can be approximated by revising
the control at discrete times. Duffie et al. (1994) considered multiple-agent
continuous-time setting with stochastic differential utility and characterized
the Pareto-efficient allocations. Dumas et al. (2000) studied efficient allo-
cations with multiple agents who have recursive, non-time-additive utility
functions.

Cadenillas et al. (2007) considers a first-best problem with control affect-
ing both the drift and volatility of the output process linearly. The work was
then followed up by Cvitanič et al. (2006), which considers a similar problem
with more general dynamics in the output process. The agent is compensated
at a terminal time. The controlled output process has the dynamics

dXt = f(t, Xt, ut, vt)dt+ vtdZt, (1.7)

where {Zt}t≥0 is a d-dimensional Brownian Motion on a probability space
(Ω,F , P ) and F := {Ft}t≤T is its augmented filtration on the interval [0, T ].
(X, u, v) take values in R×Rm ×Rd, and f is a function taking values in R,
possibly random and is F-adapted.

Their model for the dynamics is quite general and the goal is to determine
the compensation CT = F (ω,X) given to the agent at time T . The paper uses
the stochastic maximum principle for analysis and gives necessary conditions
for optimality. They found that the optimal contract is proportional to the
difference between the terminal output value and some stochastic benchmark,
thus justifying the use of linear contracts in practical cases.

1.3.4 Moral hazard

The moral hazard problem, as we have already seen in Section 1.2, describes
the scenario when the actual effort of the agent cannot be observed. In prac-
tice, this is due to the principal’s lack of expertise or a high cost in monitoring
the actual effort. The information asymmetry lies in the principal’s inability
to observe the agent’s actions.
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As already mentioned, Holmstrom and Milgrom (1987) posed a contract-
ing problem with moral hazard in continuous-time with exponential utilities
and the optimal contract is found to be linear. The model was later extended
by Schättler and Sung (1993) using martingale methods from stochastic con-
trol, still having exponential utilities.

More recent literature in continuous-time principal-agent problems varies
in the generality of models and the methodologies are roughly divided into
those using the stochastic maximum principle, and the others using the
dynamic programming and the Hamilton-Jacobi-Bellman (HJB) equation.
General models with a lump-sum payment have been studied in Cvitanič et al.
(2009, 2008), Cadenillas et al. (2007), Cvitanič and Zhang (2007).

The study in Cvitanič et al. (2009) gives a general model for moral haz-
ard problem where the agent is compensated by a lump-sum payment at
the terminal time. Their model allows the noise of the output process to be
driven by a one-dimensional Brownian motion, and allows more general util-
ity functions and cost functions. Mathematically, let {Zt}t≥0 be a standard
Brownian Motion on a probability space (Ω,F , P ) and FW = {FW

t }t≤T be
its augmented filtration on the interval [0, T ]. The dynamics of the output
process X is then given by

dXt = utvtdt+ vtdZt,

where u and v are FW -adapted processes that may be controlled by the agent.
For example, in the portfolio management example, ut and vt could represent
the excess return and volatility of the portfolio respectively.

The information asymmetry lies in that the principal cannot observe u
or the underlying Brownian motion Z. The agent is compensated by CT =
F (X.) at the terminal time T . This is a lump sum payment, as opposed to
the alternative of having a continuous stream of payments, or a combination
of both. (In Section 1.4, we will look at another model that incorporates
continuous compensation.)

Since v can be verified by the principal, a contract is given in the form of
(F, v). The agent chooses the control u to maximize his expected utility

E[UA(F (X
u,v), Gu,v

T )]

where the accumulated cost of the agent is

Gu,v
t =

∫ t

0

g(s,Xs, us, vs)ds.
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The principal maximizes her utility

E[UP (X
u,v
T − F (X.))]

over all implementable contracts (F, v) and corresponding agent’s optimal
efforts u, such that the participation constraint holds:

V1(F, v) ≥ R.

With certain smoothness assumptions and concave utility functions, the
study in Cvitanič et al. (2009) gives the necessary conditions for optimality
of the problem via the stochastic maximum principle. They also solve fully
the case of quadratic cost and separable utility functions, giving the optimal
contract as the solution of a deterministic equation and the optimal effort of
the agent as a linear backward stochastic differential equation (BSDE).

Along the same line of research is the study of Cvitanič et al. (2008),
which consider the second-best problem with exit options, where the payment
time is a stopping time instead of a fixed time.

There are also models where compensation is not limited to a lump-sum
payment at the terminal time. The model in Williams (2009) studies com-
pensation with both continuous consumption and a terminal compensation
with drift control. On the other hand, a particularly interesting model is
that of Sannikov (2008) (henceforth simply referred as “Sannikov”), which
considers an infinite-horizon moral hazard problem with a stream of con-
sumption as compensation and effort possibly varying over time and taking
values from a continuum. This model will be a main focus of my research
and the Section 1.4 reviews Sannikov’s model and results. Cvitanič et al.
(2013) extended Sannikov’s model by considering a principal-agent problem
with both moral hazard and adverse selection.

Williams (2009) considered a dynamic moral hazard models with hidden
actions and possibly hidden states. DeMarzo and Sannikov (2006) considered
a similar optimal contracting problem with binary action and a no-shirking
condition. The work is followed by Zhu (2013) which relaxed the no-shirking
condition, resulting in contracts with shirking phases, both for relaxation as
reward and suspension as punishment.

Other related studies include He (2009) where the size of a firm follows
a geometric Brownian motion with the drift controlled by the agent, tak-
ing again two possible values, with a liquidation time in the model, and
Biais et al. (2010), where a risk-neutral agent acts to reduce the likelihood
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of large but relatively infrequent losses, and the agent is incentivized by a
contract consisting of downsizing, investment and liquidation decisions de-
pendent on the agent’s performance. There is also the work of He (2011)
which addresses a model that allow the agent to have privates savings, under
output process with Poisson noises. Sannikov (2013) also discusses discrete
and continuous-time approaches to optimal contracts, with reference to the
results in Sannikov (2008) and discussion on approximately optimal contracts
and applications to corporate finance.

1.4 Sannikov’s model

In this section, we describe the framework in Sannikov (2008) and his results.
The significance of Sannikov’s model lies in the fact that his framework

gave an almost-explicit solution while maintaining generality of the model.
While some other general models (Cvitanič et al., 2006, 2009, 2008) have
characterized solutions by the stochastic maximum principle and consider
only lump-sum payment at the terminal time, Sannikov’s model considered
consumption payment over an infinite horizon and characterized the opti-
mal value function as a solution to an ordinary differential equation with a
smooth-pasting condition. There are also other studies (DeMarzo and Sannikov,
2006, Zhu, 2013) that employ a framework and methodology similar to San-
nikov’s model to study models with more specific assumptions. In compari-
son, Sannikov’s model allows for flexibility in the cost and utility functions,
requiring only mild conditions on them, and considers a consumption pro-
cess as compensation instead of a lump-sum payment. It also allows the set
of possible effort to be a continuum instead of restricting to binary action.
There is also technical significance in his work, as he gave an almost-explicit
solution to a highly non-trivial control problem. The control problem for
his principal-agent problem is essentially a two-stage optimization problem
(carried out by the principal and the agent) and he reduces it to a single
optimization problem with the incentive-compatibility constraint, which is
still a highly non-trivial problem to solve.

In the following, we describe Sannikov’s framework. Afterwards, we will
point out what is missing in the model and why it is worth further investi-
gation.
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1.4.1 The model

The benchmark model in Sannikov’s paper considers a setting where a risk-
averse agent works for a risk-neutral principal for an infinite time horizon.
The principal and the agent discount future utility at a common rate r.
The agent chooses action {At}t≥0, which affects the output {Xt}t≥0 for the
principal with dynamics

dXt = Atdt+ σdZt, (1.8)

where Z = {Zt,Ft; 0 ≤ t < ∞} is a standard Brownian Motion that drives
the noise in the output process. The agent’s choice of At is understood in a
weak sense, i.e. the agent chooses the distribution of the output in the sense
of selecting the drift process At, with which Girsanov theorem is applied for
a change of measure to PA. We show more details in Section 3.1 when we
introduce the formulation of the problem studied in this thesis.

The action {At}t≥0 to be chosen by the agent is progressively measurable
with respect to the filtration Ft = σ(Xs, 0 ≤ s ≤ t) 1. For action {At}t≥0,
the agent incurs a cost of effort at rate h(At) at each time t ≥ 0, in the
same unit as his utility of consumption. The set A is compact with smallest
element 0. The function h : A → R is assumed to be continuous, increasing
and convex. It is also normalized so that h(0) = 0 and we assume that there
is γ0 > 0 such that h(a) ≥ γ0a for all a ∈ A.

The principal compensates the agent by a stream of consumption {Ct}.
The consumption needs to be nonnegative, and thus Ct takes value in [0,∞).
This reflects the limited liability of the agent. The value of Ct can depend
on the path of {Xs} up to time t. The agent cannot save and his utility
function u : [0,∞) → [0,∞) is assumed to be increasing and concave. u(0)
is normalized to zero and u ∈ C2. Moreover, it is assumed that u′(c) → 0 as
c → ∞. This assumption creates the income effect that causes permanent
retirement in the optimal case (see Sannikov, 2008, P.965).

1The action process can intuitively be chosen to be progressively measurable with
respect to {FZ

t }. However, in order to use the weak formulation, where the choice of effort
is understood as a choice of distribution of the output, we need to invoke the Girsanov
theorem, which requires the drift to be progressively measurable with respect to {FX

t }.
This agrees with the setting and methodology used in Sannikov’s proofs in the appendix
of Sannikov (2008). The remarks in (Cvitanič et al., 2008, Remark 2.3) discuss some
difference between the strong and weak formulation
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The agent seeks to maximize

EA

[∫ ∞

0

e−rt(u(Ct)− h(At))dt

]

,

over all possible effort A, where EA denotes expectation under the proba-
bility measure PA. The principal is assumed to be risk-neutral, and so he
maximizes

EA

[∫ ∞

0

e−rtdXt −

∫ ∞

0

e−rtCtdt

]

= EA

[∫ ∞

0

e−rt(At − Ct)dt

]

,

over all possible compensation contracts, with A being chosen by the agent.

time

b

The principal pro-
poses a contract
C = {Ct(Xs, s ≤
t)}

b

The agent decides
to enter the con-
tract or not.

0

The contract
starts if the agent
has accepted it.

b

t

At each time t, the agent’s effort At

is based on the contract C and all
information up to time t. The out-
put Xt is observed and the agent is
compensated according to the con-
tract C.

Figure 1.2: Sequence of events

The sequence of events are as follows: The principal first determines a
contract C = {Ct(Xs, s ≤ t)} and proposes it to the agent. The agent then
decides whether he should enter the contract or not. If the agent accepts the
contract, then it starts at time 0. At each time t > 0, the agent’s effort At

could be based on his information up to time t as well as the contract C, i.e.
how the compensation depends on the output. The output Xt is observed
and the agent is compensated according to the contract C. This sequence
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of events is depicted in Figure 1.2. Note that since the principal commits
to her contract and compensates the agent according to the contract and
the output path X , she makes no further decision after the contract starts.
The agent’s choice of At at each time t can therefore be viewed as a one-off
decision to choose a {Ft}-progressively measurable process A.

1.4.2 The compensation and recommended effort pair

Given the principal-agent setting, the intuitive formulation is that the princi-
pal will offer a compensation at time t depends solely on the path of X up to
time t, i.e. historical output up to time t. In other words, the compensation
process C is progressively measurable with respect to {FX

t }. For any such
compensation contract, the agent chooses some {FX

t }-progressively measur-
able process A that maximizes his expected utility. The principal does not
observe the choice of A directly. However, since the cost function and utility
function are common knowledge, the principal knows the set of all A that is
optimal for the agent given this compensation contract. In cases where the
process A is not uniquely determined, we assume that we can choose arbi-
trarily one such A. This is due to the common assumption in the literature
that the agent will choose what the principal prefers if there is more than
one optimal choice for the agent, since he will have no incentives to deviate
from that choice.

We summarize the idea as follows:

Formulation 1: Compensation based on output. The principal first chooses
and announces a contract that specifies the compensation depending
on the historical output path, i.e. the compensation C is progressively
measurable with respect to {FX

t }. Knowing this contract, the agent
chooses his action A which maximizes his expected payoff. The process
A is restricted to be progressively measurable with respect to {FX

t }.

This formulation is cast as a two-step sequential game. Sequential games
of simpler payoffs are frequently tackled by the means of backward induction.
However, in this case, this leads to a two-stage optimization problem, both
stages of which involves maximizing over a set of processes.

Sannikov elegantly transformed this two-stage problem into a single con-
trol problem that seeks to determine an optimal pair of compensation and
recommended effort, denoted by (C,A). The first step involves adding in
the recommended effort into the optimization problem. This is common
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in the principal-agent literature and, for example, has also appeared in the
discrete-time example in Section 1.2.

Mathematically, the compensation process C = {Ct}t≥0 is progressively
measurable with respect to {FX

t }. It specifies how the agent is compensated
based on the realized output process, and applies whether or not the agent
is following the recommended effort. The recommended effort A = {At}t≥0,
on the other hand, is the effort process that the principal recommends the
agent to choose. At is restricted to be progressively measurable with respect
to {FX

t }.
In words, we allow the principal to specify a recommended effort along

with the compensation contract, with the additional constraint that the pair
must be incentive-compatible, i.e. the recommended effort process maximizes
the agent’s payoffs under the compensation contract and so the agent has the
incentives to follow the recommended effort. It is important to note that the
compensation C in the pair, being progressively measurable with respect
to {FX

t }, not only prescribes the compensation when the agent follows the
recommended effort, but it also prescribes how the agent is compensated
when the agent deviates from the recommended effort. It is only then that
we can consider the incentive-compatibility. The incentive-compatibility of
the pair means that the agent will be no better if he chooses an alternative
action.

Since the agent has the freedom to chooses At in reality, and the set of
compensation-recommended-effort (C,A) pair that the principal can choose
is restricted by the incentive-compatibility constraint

EA

[∫ ∞

0

e−rt(u(Ct)− h(At))dt

]

≥ EA′

[∫ ∞

0

e−rt(u(Ct)− h(A′
t))dt

]

for any other effort {A′
t}. If this constraint holds, then the agent will indeed

be willing to follow the principal’s recommended effort.
To ensure that the agent will accept the contract in the first place, we

need an individual rationality constraint and give the agent, in expectation,
at least his reservation utility w0. Mathematically, it is easier to consider the
problem with exactly w0 given to the agent rather than at least w0.

This can be summarized as follows:

Formulation 2: Compensation along with recommended effort. The prin-
cipal chooses and announces a pair of “incentive-compatible” compen-
sation and recommended effort (C,A). Both the compensation C and
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recommended effort A are progressively measurable with respect to
{FX

t }. The pair (C,A) must satisfy the incentive-compatibility con-
straint (1.9c) and individual rationality constraint (1.9b).

The principal therefore has an optimization problem of the form

supEA

[∫ ∞

0

e−rt(At − Ct)dt

]

(1.9a)

over all (C,A) such that both C and A are progressively measurable with
respect to {FX

t } and

EA

[∫ ∞

0

e−rt(u(Ct)− h(At))dt

]

= w0 (1.9b)

EA

[∫ ∞

0

e−rt(u(Ct)− h(At))dt

]

≥ EA′

[∫ ∞

0

e−rt(u(Ct)− h(A′
t))dt

]

(1.9c)

for any other effort {A′
t}.

We remark that in the actual process of the principal proposing the con-
tract, announcing C alone is sufficient, unless there is a tie in the agent’s
choice of effort, so that at least two processes A and A′ are both optimal for
the agent and the principal wishes to specify which one she prefers. How-
ever, in formulating the optimization problem for the principal, since it is
needed to predict what the agent will choose, the effort process A neces-
sarily enters the formulation. The freedom of the agent in choosing A is
then reflected in the formulation by the incentive-compatibility constraint,
which mandates that the principal chooses only among the (C,A) pairs such
that the recommended effort must be optimal from the agent’s perspective
given the compensation contract. Therefore, while in the formulation above
it seems that the principal can optimize over various possible effort processes
A at her will, the incentive-compatibility constraint forbids her to choose any
effort process that, when paired with the choice of C, is against the interest
of the agent. This explains why the effort A enters the formulation of the
optimization problem even though it cannot be contracted nor observed.

1.4.3 The continuation value and incentive-compatibility

The optimization we formulated in (1.9) is not easy to solve. The difficulty
lies in that the expectations in both the objective function and the con-
straints are taken under a probability measure that depends on A, part of
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what we are optimizing over. Sannikov’s work is remarkable in that he re-
duced the problem to a stochastic control problem with the dynamics of the
continuation value of the agent. The resulting stochastic control problem re-
sembles standard stochastic control problems (see Section 2). In particular,
he rewrote the incentive-compatibility constraint by an additional process Yt.

To gain an understanding of the problem reduction Sannikov did, we
will review some of his definitions and results, along with explanation of the
motivation and arguments behind them.

In Sannikov’s paper, the continuation value of the agent at any time
t given a contract (C,A) refers to the agent’s expected future discounted
payoffs from the contract if he follows the recommended effort A. It reflects
the agent’s valuation of his average future payoff at time t. Mathematically,
given the compensation-recommended-effort pair (C,A), The continuation
value of the agent is defined to be

Wt(C,A) = EA

[∫ ∞

t

e−r(s−t)(u(Cs)− h(As))ds|Ft

]

, (1.10)

which represents the expected payoff for the agent given information at time
t and discounted to time t. In particular, W0 = w0 represents the initial
continuation value for the agent.

With any continuation value w at some time t, one way to give this value
to the agent is to permanently retire the agent from time t, i.e. to give the
agent a constant consumption of c such that u(c) = w and allow him to exert
zero effort. This gives the retirement profit F0(w) = −u−1(w).

Sannikov’s definition and use of the agent’s continuation value should
have been motivated by similar notions of promised future expected utility
in discrete-time models (see Spear and Srivastava, 1987). The continuation
value is a key variable in the problem because it is all that the agent cares
about. In fact, it is shown by Sannikov that under some conditions the
optimal compensation and effort are Markovian in the continuation value
process.

At this point, while Wt(C,A) is well-defined, it is not immediately clear
how it changes over time with the output process X . The first impor-
tant technical result from Sannikov, therefore, involves a representation of
Wt(C,A) to illustrate its dynamics. The proofs for Propositions 1.1 and 1.2
are in the appendix of Sannikov (2008) and are restated in our Appendix A
for reader’s reference, as these two propositions play an important role to
understanding the subject of this thesis.
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Proposition 1.1 (Representation). There exists a progressively measurable
process Y = {Yt,Ft; 0 ≤ t <∞} in L∗ 2 such that

Wt(C,A) = W0(C,A)+

∫ t

0

r(Ws(C,A)−u(Cs)+h(As))ds+

∫ t

0

rσYs(dXs−Asds)

(1.11)
for every t ∈ [0,∞).

There are a few points to note. First, Y = Y (C,A) depends on (C,A) and
it represents the sensitivity of the agent’s continuation value to the output.
Secondly, if the agent follows the recommended effort A, then dXs −Asds =
dZs and so the last integral is done with respect to dZs. This suggests the
consideration of {Wt} as a solution to a stochastic differential equation of
the form (1.11) but driven by a Brownian motion Zt, i.e.

dWt = r(Wt − u(Ct) + h(At))dt+ rσYtdZt. (1.12)

This is indeed what was done in his paper. Instead of considering all pairs of
(C,A) processes that are progressively measurable with respect to {FX

t }
and satisfy constraints (1.9b) and (1.9c), Sannikov recast the incentive-
compatibility constraint and made Y a decision variable that we can opti-
mize over as well, subject to a simpler constraint that is due to the following
proposition.

This proposition characterizes the incentive compatibility of a given con-
tract (C,A).

Proposition 1.2 (Incentive compatibility). For a given strategy A, let Yt
be the process from the Proposition 1.1 that represents Wt(C,A). Then A is
optimal (for the agent) if and only if

∀a ∈ A, YtAt − h(At) ≥ Yta− h(a), 0 ≤ t <∞ (1.13)

almost everywhere.

The elegance of Proposition 1.2 is that for (C,A) to be incentive-compatible,
the necessary and sufficient condition that the corresponding process Y =
Y (C,A) need to satisfy at each time t involves only quantities at time t. This
is called the one-shot deviation principle in Sannikov (2013).

2A process Yt is in L∗ if E
[∫ t

0
Y 2

s ds
]

< ∞ for t ∈ (0,∞)
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Sannikov also argued that it would be optimal for the principal to choose
contracts such that Yt(C,A) = γ(At). The argument is an economic one. The
process Yt can be understood as the sensitivity of the agent’s continuation
value to the output process, and therefore carries risk to the agent. Since
the agent is risk-averse, as characterized by his concave utility function, it
is costly for the risk-neutral principal to impose risk on the agent. In other
words, it is more costly for the principal to give the agent the same expected
utility if the payoffs were risky. From the principal’s perspective, therefore,
she should avoid imposing unnecessary risk to the agent and use only the
minimum risk level that is sufficient to induce the desired effort from the
agent. This suggests that the principal should set Yt to be minimum level
that induces the effort, i.e. γ(At).

1.4.4 Sannikov’s HJB equation and his results

After working on the continuation value and the condition for incentive-
compatibility, Sannikov proceeded to give the HJB equation that turns out
to characterize the optimal solution.

He first stated an HJB equation in the form

rF (W ) = max
a>0,c

r(a−c)+F ′(W )r(W−u(c)+h(a))+
F ′′(W )

2
r2γ(a)2σ2, (1.14)

but mostly worked with the rewritten equation in the form of

F ′′(W ) = min
a>0,c

F (W )− a + c− F ′(W )(W − u(c) + h(a))

rγ(a)2σ2/2
, (1.15)

which he described as “suitable for computation”. His existence and unique-
ness results were established based on the second form (1.15) rather than the
first one (1.14).

The additional boundary and smooth-pasting conditions that he used to
compute the optimal contract are

F (0) = 0, F (wgp) = F0(wgp) and F
′(wgp) = F ′

0(wgp), (1.16)

at some point wgp ≥ 0.
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Understanding Sannikov’s HJB equation

To understand how the HJB equation is related to the original problem, we
first note that the HJB equation (1.14) corresponds to an optimal control
problem of the form

sup
(C,A)

EA

[∫ τ

0

e−rt(At − Ct)dt+ F0(Wτ )

]

s.t.
dWt = r(Wt − u(Ct) + h(At))dt+ rσγ(At)dZt; W0 = w0

where τ is the first exit time of Wt from the interval (0, w∗
gp).

The appearance of γ in the problem is due to the economic argument that
asserts Yt = γ(At). To remove the effects of that heuristic, a related problem
would be an optimal stopping and control problem of the form

sup
(C,A),τ≤∞

EA

[∫ τ∧τ(0,w∗
gp)

0

e−rt(At − Ct)dt+ F0(Wτ∧τ(0,w∗
gp)

)

]

(1.17a)

s.t.

YtAt − h(At) ≥ Yta− h(a), ∀a ∈ A, 0 ≤ t <∞ (1.17b)

dWt = r(Wt − u(Ct) + h(At))dt+ rσYtdZt; W0 = w0 (1.17c)

where τ(0,w∗
gp) is the first exit time of Wt from the interval (0, w∗

gp).
There are two major conceptual changes from the previous problem in

(1.9) to this reduced problem. First, we now consider Wt as the controlled
process driven by a Brownian motion Zt. The individual rationality con-
straint becomes embedded in the initial value ofWt. Secondly, the incentive-
compatibility constraint has transformed into a restriction on Yt, the sensi-
tivity of the agent’s continuation value to the output, which has now become
part of the control as well.

How is a solution (C,A) of the original problem (1.9) related to the new
problem? Suppose (C,A) is a feasible solution of (1.9). By Proposition 1.1,
there is some Y (C,A) = {Yt(C,A)} as the representation of the martingale
such that the dynamics of Wt as stated in (1.11) holds for the continuation
value Wt = Wt(C,A). We write Yt = Yt(C,A).

Now, the individual rationality constraint (1.9b) implies that W0 = w0.
On the other hand, the incentive-compatibility condition in its original form
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(1.9c), as asserted in Proposition 1.2, ensures that the one-shot incentive-
compatibility condition (1.17b) holds. Moreover, Xt −

∫ t

0
Asds =: ZA

t is a
Brownian motion under PA. This almost gives a feasible solution to the new
problem (1.17), except for the difference in the filtration that these processes
are based on. If (C,A, Y ) are also progressively measurable with respect
to {FZA

t }, then we know that (Ω,F ,PA, ZA, (C,A, Y )) with τ = ∞, where
Ω = C[0,∞) and F = limt↑∞ FZA

t is a weak solution to the problem (1.17).
If, furthermore, such (C,A) invokes permanent retirement upon the con-

tinuation value hitting a particular point wgp or 0, then the objective value
evaluated for (C,A) in (1.9a) will also be the same as that evaluated in
(1.17a) for (C,A, Y ) and wgp.

On the other hand, more importantly, when can we build a solution to
the original problem (1.9) if we have a solution to problem (1.17)? Given a
solution (C,A, Y, τ) of the problem (1.17), we can define

C̃t =

{

Ct t ≤ τ ∧ τ(0,wgp)

−F0(Wτ∧τ(0,wgp )
) otherwise

At =

{

At t ≤ τ ∧ τ(0,wgp)

0 otherwise

and we can show thatWt(C,A) = Wt, and Yt(C,A) = Yt by the uniqueness of
SDE (1.12) and the uniqueness of Y in Proposition 1.1. However, such (C,A)
is progressively measurable with respect to {FZ

t }, and is not necessarily
progressively measurable with respect to {FX

t }. We would like to have some
Z that is progressively measurable with respect to {FX

t }, is a Brownian
motion under PA and satisfies

dXt = Atdt+ σdZt.

The reason that this is not trivial is because A above is progressively measur-
able with respect to {FZ

t } and depends on Z. As a result, the existence and
uniqueness of Z is not immediately clear. However, if the optimal control is
Markovian in Wt and satisfies certain Lipschitz conditions , then we know
such Z exists and is unique (see Proposition 3.1). This Z is understood as a
perceived noise process under recommended action A, and coincides with the
true noise process observable by the agent only if the agent actually follows
A. When such Z exists and is unique, then a solution in problem (1.17) will
indeed leads to a solution in problem (1.9).
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In this problem, the supremum is taken over the set of all (C,A, Y ) that
is progressively measurable with respect to {FZ

t } instead of {FX
t }, where

Z is understood as the perceived noise process Zt = Xt −
∫ t

0
Asds. On one

hand, this is great because the reduced problem is no longer dependent on the
dynamics ofX , and the controlled process therefore remains one-dimensional.
On the other hand, this is creating a gap between original problem and the
reduced problem, in that the control derived from the new problem, being
progressively measurable with respect to {FZ

t }, may not be progressively
measurable with respect to {FX

t } and hence is not always implementable in
Formulation 1.

If we further include the restriction that the principal will only use impose
the minimum risk needed to the agent to induce any effort, i.e. Yt must be
equal to γ(At), we get the following formulation:

Formulation 3: Compensation and recommended effort, until retirement
based on continuation value. The principal chooses and announces a
pair of “incentive-compatible” compensation and recommended effort
(C,A) (until τ), both of which are progressively measurable with re-
spect to {FZ

t }, as well as a high retirement point w̄gp. The continuation
value process of the agent is defined according to (1.12) with Yt = γ(At).
This ensures incentive-compatibility of the contract. When the contin-
uation value hits 0 or w̄gp at time τ , the agent is retired permanently
with a consumption −F0(w) corresponding to the continuation value
w at retirement.

Sannikov’s result

After giving the HJB equation, Sannikov first proved existence and unique-
ness of a smooth solution to equation (1.15) with a point wgp as determined
by the smooth-pasting condition. He then proceeded to do verification and
showed that for initial value w ∈ [0, wgp], the optimal profit is equal to this
solution of the HJB equation. He showed that there is always an optimal
contract with permanent retirement (i.e. no temporary retirement), i.e. the
contract recommends the agent to take a nonzero action until the retirement
point, after which the agent always make zero effort.

It was also showed separately that, for w > w∗
gp (where w∗

gp is such that
1/u′(u−1(w∗

gp)) = 1/h′(0)), permanent retirement with constant payment is
the optimal contract for the principal with profit F0(W ). Figure 1.3 illus-
trates Sannikov’s results.
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Figure 1.3: Illustration of Sannikov’s result

1.4.5 Motivation for further investigation

Sannikov’s work in his principal-agent problem has been significant. In par-
ticular, there is a remarkable problem reduction, as we explained earlier, from
Formulation 1, to his final results, which is most closely related to Formula-
tion 3. This was the key to his elegant representation of the optimal function
as the solution of the HJB equation. However, there are several unanswered
questions in his study that are worth further investigation.

First, in the last step of the problem reduction, the solution of the HJB
equation does not automatically give an incentive-compatible contract that
can be implemented. In particular, this requires the recommended effort
derived from the optimal solution of the control problem to be progressively
measurable with respect to {FX

t }, but this has not been proved in his paper.
Secondly, in terms of the optimal solution, Sannikov proved the existence

and uniqueness of a solution to the HJB equation, and verified that it is the
optimal value function when the continuation value w is less than the higher
retirement point w∗

gp. However, the optimality of the solution for all possible
w is incomplete. In fact, he proved optimality of his proposed contract when
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the continuation value is less than or equal to the high retirement point
wgp < w∗

gp, and the optimality of retirement when the continuation value is
greater than w∗

gp. However, in the region where w ∈ (wgp, w
∗
gp), the solution

in Sannikov was only shown to be an upper bound and the retirement profit
F0 a lower bound. Although economic intuition suggests that retirement may
be optimal in that region, he did not prove it and it is unclear whether it is
indeed so. This is because that it was not clear whether the HJB inequality
holds for F0 in that region. This gives us motivation to study the model with
a different methodology.

It is also worth noting that Sannikov’s HJB equation as in (1.15) is dif-
ferent from the ones we will use (see equation (4.1)). Sannikov’s HJB equa-
tion has been rewritten from (1.14) in a form “suitable for computation”
(Sannikov, 2008, p.963). However, the equivalence of the two equations de-
pends on two assumptions that were only proved in verification but not a
priori. The first is the concavity of the solution, which justified the choice of
Yt = γ(At). The second is the result that it is optimal to have no temporary
retirement (i.e. a > 0 before retirement), which explains the a > 0 condition
in the set of possible a in equation (1.15) and allowed for the rewriting from
the original form with maximization to minimization since γ(a) is nonzero
for a > 0. These results were not proved before verification in Sannikov,
and are dependent on the particular form of solution of the HJB equation.
Thus Sannikov’s HJB equation (1.15) is intrinsically different from the HJB
equation of the control problem, i.e. the one we use.

Other than the HJB equation, the methodology used in Sannikov is also
applicable only to their specific setting and cannot be extended easily upon
modifications of the model. The development of the results depended on
finding a smooth solution to the HJB equation, which succeeds only if the
optimal value function is indeed smooth. Moreover, finding the optimal profit
in the range (wgp, w

∗
gp) with this methodology is difficult, and has not been

done in his work. If we do believe that retirement is optimal for the interval,
the verification would amount to verifying that F0 satisfies

sup
a∈A,c≥0

{r(a− c) + rF ′
0(w)(w − u(c) + h(a)) +

1

2
F ′′
0 (w)r

2y2σ2} − rF0(w) ≤ 0

for all w ∈ (wgp, w
∗
gp). This is particularly difficult because wgp is implicitly

determined by the smooth-pasting condition.
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1.5 Outline of the thesis

Chapter 2 reviews some basics and background in stochastic control and the
notion of viscosity solutions. In Chapter 3, we give the formulation of our
problem and explain the problem reduction and conditions under which it
is valid. In Chapter 4, we study the viscosity solution of the HJB equa-
tion of our control problem and show that the optimal profit function is the
unique viscosity solution. Chapter 5 is focussed on the discussion of vari-
ous additional contractual possibilities and a comparison of our results to
Sannikov’s results on modeling additional contractual possibilities. Chapter
6 gives a summary of our contribution and discussions on applications and
future research.
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Chapter 2

Review of Stochastic Control

Stochastic control involves optimizing a given objective function by control-
ling the dynamics of a system over time subject to some random noise. In
continuous-time stochastic control, both the choice of control and the output
dynamics are in the form of stochastic processes, and the random noise is
often modeled by a Brownian motion.

In this chapter, we review some basics in stochastic control, which will
hopefully help the reader understand more on our approach in dealing with
our principal-agent problem. Yong and Zhou (1999) and Fleming and Soner
(2006) give comprehensive expositions of stochastic controls with multiple-
dimensional dynamics and the various approaches to tackle the problem. In
this section, we focus our review on a one-dimensional stochastic control
problem. - Consider the controlled stochastic differential equation

dXt = b(t, Xt, ut)dt+ σ(t, Xt, ut)dZt

X0 = x0 ∈ R,
(2.1)

where b : [0, T ]×R×U → R is the drift of the process, σ : [0, T ]×R×U → R

is the volatility of the process and Zt is a standard Brownian motion. The
terminal time T > 0 is fixed. We call u the control since it can be chosen by
the decision maker and influences the dynamics of the system. U is the set
of possible values of the control ut at each time t. As the decision maker can
choose the control at time t based only on the information up to time t, the
control u is restricted to be from the set

U [0, T ] := {u : [0, T ]× Ω → U |u is {Ft}-adapted}.

Any u ∈ U [0, T ] is then called a feasible control.
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The decision makers optimizes the choice of u to minimize cost. For the
finite-horizon problem, it is usual to have a cost functional of the form

J(u) = E

[∫ T

0

f(t, Xt, ut)dt+ h(XT )

]

,

where f represents the running cost component and h is the terminal cost.
In the strong formulation of the stochastic control problem, given a fil-

tered probability space (Ω,F , {Ft}t≥0,P) our goal is to find

inf
u∈U [0,T ]

J(u)

subject to the system dynamics (2.1).
There are two common ways to solve a stochastic control problem. One

approach is to obtain a set of necessary conditions for the optimal solution
via the stochastic maximum principle. The stochastic maximum principle is
a version of the Pontryagin’s maximum principle (Pontryagin et al., 1962),
and gives necessary conditions for the optimal solution of a control prob-
lem, where one is to find adapted solutions for the first-order and second-
order adjoint equations, which are backward stochastic differential equations
(BSDE). This approaches the strong formulation of the problem directly,
and details can be found in standard references, like Yong and Zhou (1999).
Many control problems have been studied using this methodology and it is es-
pecially common when the time horizon is finite. Some studies of continuous-
time principal problems have also been studied using the stochastic maxi-
mum principle (see for example Cvitanič et al., 2006, Cadenillas et al., 2007,
Cvitanič et al., 2008, 2009).

The other common and powerful approach to solving stochastic control
problems is the method of dynamic programming. This involves consider-
ing a family of stochastic control problems with the same drift and volatility
functions and cost functions, but different initial times and initial states, and
then relating the optimal value function of these problems by the dynamic
programming principle (DPP), from which the HJB equation is usually de-
rived to characterize the value function. To prepare for our discussion on
dynamic programming, we need to first consider the weak formulation of the
stochastic control problem. The definition below comes from Yong and Zhou
(1999).
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2.1 Weak formulation

Let T > 0 be the terminal time. For any initial time and state (s, y) ∈
[0, T )× R, the corresponding control problem has dynamics

dXt = b(t, Xt, ut)dt+ σ(t, Xt, ut)dZt t ∈ [s, T ],

Xs = y
(2.2)

with the cost functional

J(s, y; u) = E

[∫ T

s

f(t, xt, ut)dt+ h(xT ).

]

(2.3)

Then for fixed s ∈ [0, T ), the feasible control is denoted by the Uw[s, T ]
and consists of all 5-tuples (Ω,F ,P, Z, u) such that

1. (Ω,F ,P) is a complete probability space.

2. {Zt}t≥s is a standard Brownian motion defined on (Ω,F ,P) over [s, T ],
with Ws = 0 a.s., and the filtration F s

t = σ{Zr, s ≤ r ≤ t} augmented
by all the P-null sets in F .

3. u : [s, T ]× Ω → R → U is an {F s
t }t≥s-adapted process on (Ω,F ,P).

4. Under u, for any y ∈ R equation (2.2) admits a unique solution on
(Ω,F , {F s

t }t≥s). Denote this solution by {Xt(u, s, y)}t≥s.

5. f(., X, u) is {F s}t≥0-adapted with

E

∫ T

0

|f(t, Xt, ut)|dt <∞

and h(xT ) is {F
s
T}-measurable with

E|h(XT )| <∞.

The 5-tuple is called (weakly) admissible for the control problem. When the
probability space (Ω,F ,P) is clear, we just say u is (weakly) admissible. The
goal of the stochastic control problem with parameter (s, y) is to minimize
the cost (2.3) over all admissible 5-tuples (Ω,F ,P, Z, u).
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2.2 Dynamic programming principle and the

HJB equation

Now we look at the dynamic programming principle (DPP), which relates
the value function of the family of stochastic control problems with different
initial times and states. This is important in characterizing the value function
by the solution of the HJB equation.

The idea of dynamic programming principle, called Bellman’s principle of
optimality, first appeared in Bellman (1952), where he considered cases where
“the problem of determining an optimal sequence operations may be reduced
to that of determining an optimal first operation”. The idea was then applied
to deterministic control problems of multiple discrete time points. Bellman’s
principle of optimality was later used in continuous-time stochastic control
problems with a dynamics, probably first in Kushner (1962). The principle
states that for a small change in time ∆t, the optimal value from the control
problem is equivalent to that of the minimum of the running cost in the small
time period [t, t+∆t), plus the optimal value from time t+∆t onwards based
on the evolved state.

The dynamic programming principle we introduce below is a form of the
Bellman’s principle of optimality based on considering the optimal action
from the starting time s to a stopping time τ .

For the weak formulation of the problem we have defined, we let v(s, y)
the be optimal value function for the problem with initial time and state
(s, y), i.e.

v(s, y) = inf
(Ω,F ,P,Z,u)∈Uw[s,T ]

J(u; s, y). (2.4)

Then the dynamic programming principle (DPP) states that

v(s, y) = inf
u∈Uw[s,T ]

E

{∫ τ

s

f(t, Xt(u, s, y), ut)dt+ v(τ,Xτ (u, s, y))

}

for any stopping time τ ≥ s.
The idea behind the DPP is depicted in Figure 2.1, namely, for any

optimal policy starting with initial value y and time s, the remaining policy
beyond a stopping time τ must also be optimal for initial state Xτ (u, s, y) and
initial time τ . Otherwise, we could deviate to an optimal path after τ and
perform better than the original optimal path, contradicting its optimality.
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y

b

Xτ (u, s, y)
t = τ

t = s

t = T

Optimal path from
(τ,Xτ (u, s, y))

yields
∫ τ
0 f(t,Xt(u, s, y), ut)dt

yields
v(τ,Xτ (u, s, y))

Figure 2.1: Idea of the DPP: The part of an optimal path beyond a stopping
time τ must also be an optimal path.
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The DPP has two parts, the first part is

v(s, y) ≤ E

{∫ τ

s

f(t, Xt(u, s, y), ut)dt+ v(τ,Xτ (u, s, y))

}

.

for all u ∈ Uw[s, T ] and stopping time τ . This means that for any control
u, the objective value obtained by following u until τ and then following an
optimal policy from τ cannot be better than v(s, y), the optimal value at the
beginning.

The other part is to prove the existence of uǫ such that

v(s, y) + ǫ ≥ E

{∫ τ

s

f(t, Xt(u
ǫ, s, y), ut)dt+ v(τ,Xτ(u

ǫ, s, y))

}

for any ǫ > 0. This is basically the assertion that an optimal path must
have its subpath beyond τ being also optimal. In proving this rigorously,
one needs to take care of the technical details of measurability and that the
infimum may not be attainable in some cases. The usual way is therefore to
construct an ǫ-optimal contract and then take limit as ǫ goes to zero. Uniform
continuity of the value function is often used to simplify the construction by
using a countable selection argument.

Here we refer to two standard reference books in stochastic control for
the conditions under which the DPP is proved. Fleming and Soner (2006,
see Theorem IV.7.1) gave a proof for the DPP with the conditions that U is
compact, the terminal payoff h = 01, that b and σ are continuous, b(., ., u) and
σ(., ., u) are continuously differentiable for all u ∈ U , and that for suitable
C1, C2, C3, we have

|bt|+ |bx| ≤ C1, |σt|+ |σx| ≤ C1

|b(t, 0, u)|+ |σ(t, x, u)| ≤ C2,

|f(t, x, u)| ≤ C3(1 + |x|k).

A proof for the DPP with the stopping time τ being replaced by non-
random time t can also be found in Yong and Zhou (1999, see Section 3.2),
based on the following conditions:

1They also pointed out that this is not very restrictive because the problem can be
reformulated under the restriction h = 0 when the terminal payoff h is smooth enough
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(S1) (U, d) is a Polish space2.

(S2) The maps b, σ, f , h are uniformly continuous and Lipschitz in x,
and b(t, 0, u), σ(t, 0, u), f(t, 0, u) and h(0) are bounded by a positive
constant L.

We remark that in the two sets of conditions given above, the Lipschitz
conditions on b and σ are used to ensure that the SDE governing the process
{Xt} has unique weak solutions and so {Xt} is well-defined. The continuity
of b, σ and f are needed in constructing an ǫ-optimal control when proving
one direction of the DPP.

The DPP is the key in establishing the relationship between the value
function and the Hamilton-Jacobi-Bellman (HJB) equation, which has the
form

sup
u∈U

{−f(t, y, u) +Auv(t, y)} = 0, (2.5)

where

Auv =
∂v

∂t
(t, y) + b(y, u)

∂v

∂x
(t, y) +

1

2
σ2(y, u)

∂2v

∂x2
(t, y).

The HJB equation is in general a nonlinear second-order partial differential
equation. The boundary condition is given by h, the terminal cost function.

Formally, from the DPP, we have

inf
u∈Uw[s,T ]

E
{∫ τ

s
f(t, Xt(u, s, y), ut)dt+ v(τ,Xτ (u, s, y))

}
− v(s, y)

τ − s
= 0.

If v is smooth and we take τ ↓ s, then we have

inf
u∈U

{f(t, y, ut)−Auv(t, y)} = 0,

which is equivalent to (2.5). Then boundary conditions based on the terminal
payoff function h can be used together with the HJB equation to solve for
the value function v.

While this derivation is only formal, it can be made rigorous under as-
sumptions on the smoothness of v. This gives one of the common ways in
which the HJB equation is used: One first identifies a candidate for the value
function, usually to prove existence and uniqueness of a classical solution to
the HJB equation, and then proves that it is indeed the optimal solution to

2A Polish space is a complete separable metric space.

34



the control problem by establishing a verification theorem. The verification
part is usually done by first checking that the solution of the HJB equation
is an upper bound of the value function, and then finding optimal controls
that attains this upper bound. (see for example Fleming and Soner, 2006,
Section IV.3). This methodology requires C2 smoothness of the value func-
tion almost everywhere so that the classical solution to the HJB equation is
well-defined.

On the other hand, there are problems for which the HJB equation does
not have a classical solution. In those cases, the value function of the control
problem could still exist but lacks enough smoothness to satisfy the HJB
equation int he classical sense. It is then common to consider viscosity so-
lution of the HJB equation and links it to the value function of the control
problem. Viscosity solution is a notion of weak solutions to partial differential
equations, and is reviewed next in Section 2.3.

2.2.1 Remarks on the infinite horizon case

While the general problem given in (2.4) has a fixed finite time horizon,
it is also common to consider time-homogeneous problems with an infinite
time horizon. In that case, b, σ and f would be independent of time, and a
discounting factor is present in the payoff.

For an initial state of y, the dynamics becomes

dXt = b(Xt, ut)dt+ σ(Xt, ut)dZt

X0 = y ∈ R
(2.6)

where b : R × U → R, σ : R × U → R, Zt is a standard Brownian motion.
And the cost functional is

J(u; y) = E

[∫ ∞

0

e−rtf(Xt, ut)dt

]

,

where X0 = y. Fleming and Soner (2006, see Chapter 3.9, P.139) gives a
formulation specific to the infinite-horizon problem.

The methodology and results related to the infinite-horizon problem is
very similar to the finite-horizon case. The major difference is in the time
homogeneity of the new problem, as b, σ and f are all independent of time
and there is also no terminal time. Letting

v(y) = inf
u
J(u; y)
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be the optimal value function, the DPP would be

v(y) = inf
u
E

{∫ τ

0

e−rtf(Xt, ut)dt+ e−rτv(Xτ)

}

for any stopping time τ ≤ T .
Then the HJB equation has the form

inf
u∈U

{fu(y)−Luv(y)} = rv(y),

where

Luv = b(y, u)v′(y) +
1

2
σ2(y, u)v′′(y).

It is worth noting that the HJB equation changes from a parabolic equa-
tion to an elliptic one, i.e. there is no term on the derivative of v with respect
to t in this case. Instead, a term rv(y) is present because of the discounting
factor.

Together with boundary conditions specifying values of v at the boundary
of U , the HJB equation allows us to characterize the value function in a way
similar to the finite-horizon case.

2.2.2 Combined stochastic control and optimal stop-
ping

Stochastic control problems could come with a additional choice of stopping
time. In this case, we say that we have a combined stochastic control and
optimal stopping problem. The choice of the stopping time is often the choice
of a terminal or liquidation time. For example, an optimal consumption
problem where the wealth owner has the option of liquidating all the stocks
and retire permanently has been studied in Chancelier et al. (2002).These
combined problems are usually posed in a time-homogeneous setting.

Using the same dynamics for {Xt} in (2.6), the cost functional of the
combined stochastic control and optimal stopping problem would be

J(u, τ ; y) = E

[∫ τ

0

e−rtf(Xt, ut)dt+ 1τ<∞e
−rτh(Xτ )

]

,

where X0 = y and h(Xτ ) is the terminal payoff when you stop at state Xτ .
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The optimal value function would then be defined as

v(x0) = inf
u,τ
J(u, τ ; x0).

The optimal stopping part of the problem mandates the value function
to be at least that of the stopping payoffs, i.e.

v(x) ≥ h(x) for all x.

Because of that, the value function v is characterized by an Hamilton-
Jacobi-Bellman variational inequality rather than an equation, which can be
written as

max{rv(y)− inf
u∈U

{fu(y)− Luv(y)}, h(y)− v(y)} = 0,

where

Luv = b(y, u)v′(y) +
1

2
σ2(y, u)v′′(y).

This methodology has been used in previous studies Chancelier et al. (2002)
and the relationship between the HJB variational inequality and the com-
bined stochastic control and optimal stopping problem has been described in
Bensoussan and Lions (1982, see Section 4.4.2).

Similar to the cases without optimal stopping, in some cases, it is pos-
sible to establish a verification theorem and find smooth solutions to the
variational inequalities. In other cases, viscosity solutions are again used
to characterize the value function. For example, in Chancelier et al. (2002),
they have provided both a verification theorem and also proved that the value
function is a unique viscosity solutions.

2.3 Viscosity solutions

The notion of viscosity solution was first introduced by Crandall and Lions
(1984) for first-order partial differential equations and then in Lions (1983a,b)
for second-order partial differential equations. The comparison theorem for
fully nonlinear second order elliptic PDEs on bounded domains was proved
in Jensen et al. (1988).

The viscosity solution is a notion of weak solution for the partial differ-
ential equation that has a lower smoothness requirement than classical solu-
tions. This is particularly useful when the equation may have non-smooth
solutions.
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A detailed guide to viscosity solutions of second order PDE can be found
in Crandall et al. (1992). This serves as an important theoretical reference
to viscosity solution, with results on its uniqueness and comparison theo-
rems. Examples and theory of using viscosity solutions in stochastic control
problems can be found in Yong and Zhou (1999), Fleming and Soner (2006).

The following definition comes from Crandall et al. (1992).
Consider a partial differential equation of the form

F (x, u,Du,D2u) = 0

with F : RN × R × RN × S(N) → R, where S(N) is the set of symmetric
N ×N matrices.

Such an equation may or may not have a smooth solution and this gives
rise to the definition of a viscosity solution.

F is assumed to be proper, i.e.

F (x, r, p,X) ≤ F (x, s, p,X) whenever r ≤ s (2.7)

and
F (x, r, p,X) ≤ F (x, r, p, Y ) whenever Y ≤ X (2.8)

where r, s ∈ R, x, p ∈ RN , X, Y ∈ S(N). Condition (2.8) is called “degener-
ate elliptic”.

There are two definitions for viscosity solutions. The first uses superjets
and subjets, which is based on the following inequality regarding an estimate
of u:

u(x) ≤ u(x̂) + 〈p, x− x̂〉+
1

2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2) (2.9)

Definition 2.1. For u : O → R and x̂ ∈ O, the second-order superjet of u
at x̂ is

J2,+
O u(x̂) := {(p,X) : 2.9 holds as O ∋ x→ x̂}.

The second-order subjet of u at x̂ is J2,−
O u(x̂) = −J2,+

O (−u)(x̂).

Let USC(O) (resp. LSC(O)) denote the set of upper (resp. lower) con-
tinuous functions u : O → R.

Definition 2.2. Let F satisfy (2.7) and (2.8) and O ⊂ RN . A viscosity
subsolution of F = 0 on O is a function u ∈ USC(O) such that

F (x, u(x), p,X) ≤ 0 for all x ∈ O and (p,X) ∈ J2,+
O u(x).
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Similarly, a viscosity supersolution of F = 0 on O is a function u ∈ LSC(O)
such that

F (x, u(x), p,X) ≥ 0 for all x ∈ O and (p,X) ∈ J2,−
O u(x).

Finally, u is a viscosity solution of F = 0 in O if it is both a viscosity
subsolution and a viscosity supersolution of F = 0 in O.

Equivalently, we could also have (Crandall et al., 1992, P.11)

Definition 2.3. Let F satisfy (2.7) and (2.8) and O ⊂ RN . A viscosity
subsolution of F = 0 on O is a function u ∈ USC(O) such that for any
x̂ ∈ O and ϕ ∈ C2 such that u− ϕ has a local maximum at x̂,

F (x̂, u(x̂), Dϕ(x̂), D2ϕ(x̂)) ≤ 0.

Similarly, a viscosity supersolution of F = 0 on O is a function u ∈ LSC(O)
such that for any x̂ ∈ O and ϕ ∈ C2 such that u − ϕ has a local minimum
at x̂,

F (x̂, u(x̂), Dϕ(x̂), D2ϕ(x̂)) ≥ 0.

Finally, u is a viscosity solution of F = 0 in O if it is both a viscosity
subsolution and a viscosity supersolution of F = 0 in O.

We will use the second definition in this thesis.
The notion of viscosity solution is often used in stochastic control prob-

lems. In particular, they are used in studying HJB equations of control
problems, especially when the equation does not have a smooth solution or
when we do not know that a priori. The approach usually starts by proving
that the value function of the control problem is a viscosity solution, and
then establishes uniqueness of the viscosity solutions. This would mean the
equivalence of the viscosity solution of the HJB equation to the value function
of the problem. For the problem we stated in (2.4), we have the following:

Theorem 2.1 (Yong and Zhou (1999), Theorem 5.2). Let (S1) and (S2)
hold. The value function v is a viscosity solution of the HJB equation (2.5).

We will use the viscosity solution approach to study the HJB equation of
a continuous-time principal-agent problem based on Sannikov’s one. In par-
ticular, the uniqueness result of viscosity solutions will become useful in our
work. In the following, we restate a comparison theorem from Crandall et al.
(1992):
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Theorem 2.2 (Crandall et al. (1992), Theorem 3.3). Let Ω be a bounded
open subset of RN , F ∈ C(Ω × R × RN × S(N)) be proper and satisfy the
following: There exists γ > 0 such that

γ(r−s) ≤ F (x, r, p,X)−F (x, s, p,X) for r ≥ s, (x, p,X) ∈ Ω̄×RN×S(N)
(2.10)

and there is a function ω : [0,∞] → [0,∞] that satisfies ω(0+) = 0 such that

F (y, r, α(x− y), Y )− F (x, r, α(x− y), X) ≤ ω(α|x− y|2 + |x− y|) (2.11)

whenever
x, y ∈ Ω, r ∈ R, X, Y ∈ S(N)

and

−3α

(
I 0
0 I

)

≤

(
X 0
0 Y

)

≤ 3α

(
I −I
−I I

)

.

Let u, an upper semi-continuous function over Ω̄, be a viscosity subsolution
and v, a lower semi-continuous function over Ω̄, be a viscosity supersolution
of F = 0 in Ω and u ≤ v on ∂Ω. Then u ≤ v in Ω̄.
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Chapter 3

Our Formulation

3.1 Problem setting

In our principal-agent problem, the principal is concerned about a certain
output process that we will define as follows.

Consider (ΩX ,F , {FX
t },P0) be a filtered probability space such that

ΩX = C[0,∞),
Xt = σZt,

{Zt} is a standard Brownian motion on (P0, {Ft}), where {FX
t } is the fil-

tration generated by X augmented by all null sets in F . X is the output
process that the principal obtains benefits on, and P0 represents the proba-
bility measure of how the process evolves when the agent makes zero effort.

Now we consider the case when the agent makes effort, represented by
a stochastic process A. We require A to be progressively measurable with
respect to {FX

t } and that At takes values from A = [0, ā]. Given such A,
define

ZA
t =

Xt −
∫ t

0
Asds

σ
= Zt −

∫ t

0

As

σ
ds

for 0 ≤ t < ∞. We can apply a change of measure via Girsanov theorem.
By Karatzas and Shreve (1991, Corollary 3.5.2, P.192), there is a unique
probability measure PA such that {ZA

t ,F
X
t , t ≥ 0} is a standard Brownian

motion on (Ω,FX
∞,P

A). Since A is progressively measurable with respect to
{FX

t }, ZA is also progressively measurable with respect to {FX
t }. Therefore

FZA

t ⊂ FX
t for any t.
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We interpret ZA as the underlying noise process in the output. The
agent’s choice of effort is interpreted as a choice of the probability distribu-
tion of X . Thus, by changing the distribution of the output, the agent is
effectively choosing the drift of the output process X . Readers may want
to note that Cvitanič et al. (2009, see Section 2.2.2) also use this kind of
weak formulation, where the probability measure is being controlled, and
they made some remarks on the difference between a strong and weak for-
mulation.

The triple (X,ZA,PA) is therefore a weak solution to the SDE

dXt = Atdt+ σdZA
t .

The principal compensates the agent for his work by a flow of compensa-
tion C = {Ct}t≥0, which is progressively measurable with respect to {FX

t }.
The principal therefore obtains

EA

[∫ ∞

0

re−rt(dXt − Ctdt)

]

= EA

[∫ ∞

0

re−rt(At − Ct)dt

]

,

while the agent gets

EA

[∫ ∞

0

re−rt(u(Ct)− h(At))dt

]

from his compensation net of the disutility from the effort, where EA denotes
the expectation under probability measure PA. The payoffs are normalized
with the discount rate r to put the total payoffs in the same scale as the flow
payoffs1. It is important to note that the principal’s payoff depends on the
agent’s choice of A.

We impose assumptions on the set of possible effort, the utility function
and the cost function for the agent.

A1 The set of possible effort at each time is A = [0, ā], with 0 < ā <∞.

A2 The utility function u : [0, c̄] → R+ is strictly increasing and concave
with u(0) = 0 and a positive left-derivative of u at c̄, i.e. u′−(c̄) > 0.

1The same normalization has been done in Sannikov (2008). The benefits, for example,
include having the retirement profit equal to F0(w) = −u−1(w) instead of some constant
multiplied by u−1(w).
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A3 The cost function for the agent’s effort h : A → R is strictly increasing
and convex with h(0) = 0. Moreover, the right-derivative of h at 0,
denoted by γ0 := h′+(0), is positive. This implies h(a) ≥ γ0a for all
a ∈ A and γ0 > 0. The cost is a disutility measured in the same unit
as the agent’s utility.

3.2 Formulation of our optimal stopping and

control problem

In this section, we state our formulation of the control problem, which is
a combined stochastic control and optimal stopping problem based on the
one-dimensional dynamics of the agent’s continuation value process. Com-
pared to Sannikov’s formulation, we impose some additional restrictions on
the principal’s choice of contracts. In particular, we model explicitly the
permanent retirement time of the agent as a stopping time, and required
the sensitivity of the agent’s continuation value to be at least γ0 prior to
permanent retirement.

As reviewed in Section 1.4.4, Sannikov (2008) defined the agent’s contin-
uation value of a pair (C,A) at time t to be the expectation of his future
discounted utility from the compensation less the cost of effort, i.e.

EA

[∫ ∞

t

e−r(s−t)(u(Cs)− h(As))ds|F
X
t

]

.

He also provided a sufficient and necessary condition for the incentive-compatibility
in terms of the sensitivity of the continuation value to the output.

We follow a similar notion of continuation value, but will explicitly specify
the sensitivity process Y and retirement time τ . To do so, we first define the
set of incentive-compatible action-sensitivity pair to be

Γ := {(a, y) : a ∈ A, y ≥ γ0 and ∀a′ ∈ A ya− h(a) ≥ ya′ − h(a′)}.

Note that Γ is closed since h is continuous.
For initial continuation value w ∈ (0, w̄), let U(w) denote the set of 7-

tuple (Ω,F ,P, Z, C, A, Y, τ) such that

U1 (Ω,F ,P) is a complete probability space, with Ω = C([0,∞);R).
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U2 {Zt}t≥0 is the canonical process on Ω, i.e. Zt(ω) = ω(t), and a standard
Brownian motion under P. We let FZ

t = σ{Zs, 0 ≤ s ≤ t}.

U3 The compensation process C = {Ct}t≥0, the recommended effort process
A = {At}t≥0 and the sensitivity process Y = {Yt}t≥0 are progressively
measurable with respect to {FZ

t }.

U4 For all t, we have
Ct ∈ [0, c̄].

U5 We have
Yt = γ(At) 0 ≤ t ≤ ∞ almost everywhere,

where γ(a) = min{y : (a, y) ∈ Γ} 2 . This ensures incentive-compatibility
with the minimum risk posed to the agent.

U6 The retirement time τ is a {FZ
t }-stopping time taking values in [0,∞].

U7 The stochastic differential equation

dWt = r(Wt − u(Ct) + h(At))dt+ rσYtdZt; W0 = w (3.1)

admits a unique solution W such that

Wt ∈ (0, w̄) ∀t < τ,

where w̄ is

w̄ =

∫ ∞

0

re−rtu(c̄)dt = u(c̄).

We will call U(w) the set of admissible control in our problem with initial
value w. When there is no ambiguity on (Ω,F , P, Z), we will simply write
(C,A, Y, τ) ∈ U(w). The components in the quadruple (C,A, Y, τ) are inter-
preted as the following: C is the compensation process, A is the recommended
effort, Y is the sensitivity of the agent’s continuation value to the output,
and the stopping time τ represents the time when the agent is permanently
retired. Throughout this paper, we refer to the solution W above as Wt,
or Wt(C,A, Y ;w) when explicit references to the processes (C,A, Y ) or the

2Note that γ(0) = γ0 and our definition differs slightly from that in Sannikov (2008)
in that we restrict y to be at least γ0.
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initial value w is needed. The process W is the continuation value of the
agent.

It is important to note that we are using the filtration {FZ
t } instead of

{FX
t } in the above formulation. We address this gap in Section 3.3 and

explain how we construct a contract that can be implemented based on the
observation of {Xt} only, from the {FZ

t }-progressively measurable controls
we obtain from a solution of our control problem.

When an agent with continuation value w is permanently retired, it
is optimal for the principal to give him a constant flow of consumption
−F0(w) = u−1(c) to deliver the continuation value w. This delivers to the
agent a value of w with a minimum cost for the principal. In reality, there
could, however, as proposed in Sannikov (2008), be other contractual possi-
bilities that allow the principal to retire the agent with profit F̃0(w) when the
agent has continuation value. We therefore allow a more general retirement
function F̃0 in our formulation, and require F̃0 to satisfy:

A4 F̃0 is continuous over [0, w̄] and we have

F0(w) ≤ F̃0(w) ≤ F̄ (w),

for all w ∈ [0, w̄], where F̄ is defined3 as

F̄ (w) = max
u(c)−h(a)=w,
a∈A, c∈[0,c̄]

(a− c).

Assumption (A4) implies that F̃0(w̄) = F0(w̄) since the functions F0 and
F̄ coincide at w̄.

Suppose the agent is retired at a stopping time τ , then the principal’s
payoff can be written as

J(C,A, Y, τ ;w) = E

[∫ τ

0

re−rt(At − Ct)dt+ e−rτ F̃0(Wτ )

]

,

where Wt = Wt(C,A, Y ;w), and F̃0(w) is the retirement profit when the
continuation value is Wτ .

3The function F̄ is understood as the first-best profit and more discussion on F̄ can
be found in Section 4.3. We are requiring that F̃0(w) ≤ F̄ (w) because for continuation
value that violates this condition, it would be optimal to invoke immediate permanent
retirement.
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The optimal profit function is

F (w) = sup
(C,A,Y,τ)∈U(w)

J(C,A, Y, τ ;w). (3.2)

This is the maximal profit for the principal when the initial value for the
agent is w. In the usual terminology in stochastic control problems, this is
also called the value function.

If we take F̃0(w) = F0(w) = −u−1(w) for all w, this reduces to the bench-
mark case described in Sannikov (2008), where there are no other contractual
possibilities and the principal is tied to the agent forever.

3.3 Our problem reduction

At this point, we would like to compare our formulation with the initial
formulation of Sannikov’s problem in (1.9) to show the extent to which the
two problems are equivalent and the assumptions made in establishing the
equivalence.

In this section, we will consider the benchmark case of our formulation
where F̃0(w) = F0(w) = −u−1(w) for all w, i.e. there are no other contractual
possibilities, and compare it with the formulation in Sannikov (2008).

Conceptually, a few things have been done in the problem reduction:

1. The recommended effort was added as a decision process for the prin-
cipal and the incentive-compatibility constraint was added to ensure
that the agent would comply.

2. The continuation process Wt is represented as a stochastic differential
equation in terms of ZA, where ZA is a standard Brownian motion
when the agent chooses A (which is in turn enforced by the incentive-
compatibility constraints).

3. The compensation process can now equivalently be understood as a
process progressively measurable with respect to ZA. This is because
given A (which is progressively measurable with respect to X), we can
compute ZA from X or X from ZA.

4. The recommended effort process is changed from a decision process
progressively measurable with respect to {FX

t } to a decision process
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progressively measurable with respect to {FZA

t }. There is a gap in this
step and it is explained in Proposition 3.1. The dependence on the
dynamics of X is now dropped and is considered entirely through ZA.

5. We explicitly model the permanent retirement time as a stopping time
and prohibit temporary retirement, where the principal allows the agent
to suspend effort and be unaffected by the actual output for a period
of time. (However, we allow the effort to be zero if the sensitivity of
the agent’s continuation value to the output level, Yt, remains at least
γ0.)

In the five points above for our formulation, the first four steps have been
implicitly taken in Sannikov’s model as well, but have not be thoroughly
explained. The fifth point is what we added to our formulation to make the
analysis rigorous. A contract with an explicit permanent retirement time can
be rewritten into a contract in Sannikov’s model.

The reason that we prohibit temporary retirement is analytical. This
ensures that the control problem we have is nondegenerate and allows for
regularity results for the viscosity solution. In comparison, Sannikov (2008)
makes similar steps in his analysis by considering an HJB equation that
assumes a nonzero effort before permanent retirement, and argued after ob-
taining the solution that temporary retirement is not needed for the optimal
policy.

For the rest of this section, we will explain the conditions under which
the original problem and final formulation are equivalent.

3.3.1 Representation of stochastic processes

We will need a lemma concerning the representation of stochastic processes
as a function of the continuous process, when the former stochastic process
is progressively measurable to the filtration generated by the latter.

We look at a known result from Yong and Zhou (1999) regarding the
representation. We first define a few notations:

Wm[0, T ] := C([0, T ];Rm)

Wm
t [0, T ] := {ζ(. ∧ t)|ζ(.) ∈ Wm[0, T ]}, ∀t ∈ [0, T ],

Bt(W
m[0, T ]) := σ(B(Wm

t [0, T ])), ∀t ∈ [0, T ],

Bt+(W
m[0, T ]) := ∩s>tBs(W

m[0, T ]), ∀t ∈ [0, T ].
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Lemma 3.1 (Yong and Zhou (1999), Theorem 2.10). Let (Ω,F ,P) be a
complete probability space and (U, d) a Polish space. Let ξ : [0, T ]×Ω → Rm

be a continuous process and F ξ
t = σ(ξ(s) : 0 ≤ s ≤ t). Then ϕ : [0, T ] ×

Ω → U is progressively measurable with respect to {F ξ
t } if and only if there

exists an η : [0, T ]×Wm[0, T ] → U progressively measurable with respect to
{Bt+(W

m[0, T ])}t≥0 such that

ϕ(t, ω) = η(t, ξ(. ∧ t, ω)), P-a.s. ω ∈ Ω, ∀t ∈ [0, T ].

Since our control problem has an infinite time horizon, we need a modi-
fied version of Lemma 3.1 with the processes defined on the infinite horizon
instead. The idea and treatment is very similar to the finite-horizon case,
but the proofs are included for completeness since we have not been able to
find it elsewhere.

We define
Wm := C([0,∞);Rm)

and consider the metric

ρ̂(ζ, ζ̂) =
∑

j≥1

2−j[|ζ − ζ̂ |C([0,j];Rm) ∧ 1] ∀ζ, ζ̂ ∈ Wm,

with
|ζ − ζ̂ |C([0,j];Rm) = sup

t∈[0,j]

|ζ(t)− ζ̂(t)|.

We also define

Wm
t := {ζ(. ∧ t)|ζ(.) ∈ Wm}, ∀t ≥ 0,

Bt(W
m) := σ(B(Wm

t )), ∀t ≥ 0,

Bt+(W
m) := ∩s>tBs(W

m), ∀t ≥ 0.

We will adapt the proof of Lemma 3.1 to the case of infinite horizon. For
the “only if” direction, we will only show the case where U = R and Ω is the
canonical space for ξ.

Lemma 3.2. Let (Ω,F ,P) be a complete probability space and (U, d) a Polish
space. Let ξ : [0,∞) × Ω → Rm be a continuous process and F ξ

t = σ(ξ(s) :
0 ≤ s ≤ t). Then ϕ : [0,∞)×Ω → U is progressively measurable with respect
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to {F ξ
t } if there exists an η : [0,∞) × Wm → U progressively measurable

with respect to {Bt+(W
m)}t≥0 such that

ϕ(t, ω) = η(t, ξ(. ∧ t, ω)), P-a.s. ω ∈ Ω, ∀t ≥ 0. (3.3)

Proof. We would like to show that ϕ : [0,∞) × Ω → U is progressively
measurable with respect to {F ξ

t }. For each t > 0, we would like to show that
the map (s, ω) 7→ ϕ(s, ω) : [0, t] × Ω → U is F ξ

t -measurable. We consider
only s ∈ [0, t] below.

We know that η is a measurable map from ([0, t]×Wm,B[0, t]×Bt+(W
m))

to (U,B(U))-measurable and (s, ω) 7→ (s, ξ(.∧ s)) is a measurable map from
([0, t]×Ω,B[0, t]×F ξ

t ) to ([0, t]×Wm
t ,B[0, t]×Bt(W

m)). Since Wm
t ⊂ Wm

and Bt(W
m) ⊂ Bt+(W

m), for any set A ∈ Bt+(W
m),

(ξ(. ∧ s))−1(A) = (ξ(. ∧ s))−1(Wm
t ∩ A) ∈ F ξ

t ,

since Wm
t ∩ A ∈ Bt(W

m). Thus (s, ω) 7→ (s, ξ(. ∧ s)) is a measurable map
from ([0, t]×Ω,B[0, t]×Ft) to ([0, t]×Wm,B[0, t]×Bt+(W

m)) as well. Then
ϕ is a measurable map from (Ω,F ξ

t ) to (U,B(U)). Since this is true for any
t > 0, we have the desired result.

We only prove the converse for a canonical space with ξ being the canon-
ical process.

Lemma 3.3. Let (Ω,F ,P) be a complete probability space with Ω = Wm.
Let ξ : [0,∞)× Ω → Rm be the canonical process on Ω, i.e.

ξ(t, ω) = ω(t)

for all ω ∈ Ω, and F ξ
t = σ(ξ(s) : 0 ≤ s ≤ t). Then ϕ : [0,∞) × Ω → R

is progressively measurable with respect to {F ξ
t } only if there exists an η :

[0,∞) × Wm → R progressively measurable with respect to {Bt+(W
m)}t≥0

such that

ϕ(t, ω) = η(t, ξ(. ∧ t, ω)), P-a.s. ω ∈ Ω, ∀t ≥ 0. (3.3)
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To prove Lemma 3.3, we need two lemmas. These are similar to the
results in Yong and Zhou (1999, P.18–19, Lemma 2.11 and 2.12) except for
the time horizon. The first lemma is also related to Lemma 2.17 in the same
book.

For any s > 0, define Cs to be the set of all Borel cylinders in Wm
s , i.e.

all sets of the forms

B = {ζ ∈ Wm
s |(ζ(t1), ζ(t2), . . . , ζ(tj) ∈ E},

where 0 ≤ t1 < t2 < . . . < tj <∞ and E ∈ B(Rjm).

Lemma 3.4. For any s > 0, the σ-field σ(Cs) generated by Cs coincides
with the Borel σ-field Bs(W

m).

Proof. Let 0 ≤ t1 < t2 < . . . < tj < ∞ be given. Since we are concerned
with Borel cylinders in Wm

s , we can assume without loss of generality that
tj ≤ s. Define the map T : Wm

s → Rjm such that

T (ζ) = (ζ(t1), ζ(t2), . . . , ζ(tj)), ∀ζ ∈ Wm
s .

First we show that T is continuous. For any 0 < ǫ < 1 and ζ1, ζ2 ∈ Wm
s ,

ρ̂(ζ1, ζ2) ≤ 2−(⌈s⌉−1)ǫ =⇒ |ζ1 − ζ2|C([0,⌈s⌉];Rm) ∧ 1 ≤ ǫ

=⇒ |ζ1 − ζ2|C([0,⌈s⌉];Rm) ≤ ǫ

since ǫ < 1. That implies that

‖T (ζ1)− T (ζ2)‖∞ = sup
i=1,2,...,j

|ζ1(ti)− ζ2(ti)| ≤ |ζ1 − ζ2|C([0,⌈s⌉];Rm) ≤ ǫ.

Thus T is continuous. Consequently, for all E ∈ B(Rjm), we have

T −1(E) ∈ Bs(W
m).

Since Cs is the collection of all sets in the form of T −1(E) for some E ∈
B(Rjm), the above implies that Cs ⊂ Bs(W

m).
Now, we prove that Bs(W

m) ⊂ Cs. First we note that for any ζ ∈ Wm
s ,

we have
ζ(t) = ζ(s) ∀t ≥ s.

So, we would have

|ζ − ζ0|C([0,i];Rm) = |ζ − ζ0|C([0,⌈s⌉];Rm)
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for any integer i ≥ s. So for any ζ ∈ Wm
s , we have

ρ̂(ζ, ζ0) =

⌈s⌉−1
∑

j=1

2−j[|ζ − ζ0|C([0,j];Rm) ∧ 1] + 2−⌈s⌉−1[|ζ − ζ0|C([0,⌈s⌉];Rm) ∧ 1].

For any ζ0 ∈ Wm
s and ǫ > 0, let

E(ǫ) =






y ∈ R⌈s⌉ |

⌈s⌉−1
∑

j=1

2−j(yj ∧ 1) + 2−⌈s⌉−1(y⌈s⌉ ∧ 1) ≤ ǫ






∈ B(Rm).

we have

{ζ ∈ Wm
s | ρ̂(ζ, ζ0) ≤ ǫ} =
⋂

(r1,r2,...,r⌈s⌉)∈Q
⌈s⌉

ri∈[0,i]∀i∈{1,2,...,⌈s⌉}

{ζ ∈ Wm
s | (|ζ(r1)− ζ0(r1)|, . . . , |ζ(r⌈s⌉)− ζ0(r⌈s⌉)|) ∈ E(ǫ)}.

(3.4)

We then see that

{ζ ∈ Wm
s | ρ̂(ζ, ζ0) ≤ ǫ} ∈ σ(Cs),

because the set of all ⌈s⌉-tuples of rational numbers are countable and

{ζ ∈ Wm
s | (|ζ(r1)− ζ0(r1)|, . . . , |ζ(r⌈s⌉)− ζ0(r⌈s⌉)|) ∈ E(ǫ)}

is a Borel cylinder in Wm
s . Now all sets in the form of the left-hand-side of

(3.4), for all ζ0 ∈ Wm
s generates Bs(W

m), and so we have

Bs(W
m) ⊂ σ(Cs)

Lemma 3.5. Let (Ω,F ,P) be a complete probability space and ξ : [0,∞)×
Ω → Rm a continuous process. Then there exists an Ω0 ∈ F with P(Ω0) = 1
such that ξ : Ω0 → Wm and for any s ≥ 0,

Ω0 ∩ F ξ
s = Ω0 ∩ ξ

−1(Bs(W
m)).

If Ω = Wm, we can choose Ω0 = Ω.
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Proof. This proof is essentially the same as Lemma 2.12 in Yong and Zhou
(1999), except that the space changes from Wm[0, T ] to Wm.

Since ξ is a continuous process, there is a set N ∈ F with P (N) = 0 such
that ξ(., ω) ∈ Wm for all ω ∈ Ω\N . We take Ω0 = Ω\N ∈ F . If Ω = Wm, ξ
is continuous for all ω ∈ Ω, and so we can choose Ω0 = Ω.

Fix t ∈ [0, s] and E ∈ B(Rm), then

Bt := {ζ ∈ Wm|ζ(t) ∈ E} ∈ Cs.

For any ω ∈ Ω0, we have

ω ∈ ξ−1(Bt) ⇐⇒ ξ(., ω) ∈ Bt

⇐⇒ ξ(t, ω) ∈ E

⇐⇒ ω ∈ ξ−1(t, )(E).

Thus Ω0 ∩ ξ(t, .)
−1(E) = Ω0 ∩ ξ

−1(Bt). Now,

Ω0 ∩ F ξ
s = Ω0 ∩ σ({ξ(t, .)

−1(E) | t ∈ [0, s], E ∈ B(Rm)})

= Ω0 ∩ σ({ξ
−1(Bt) | t ∈ [0, s], E ∈ B(Rm)})

= Ω0 ∩ ξ
−1(σ(Bt) | t ∈ [0, s], E ∈ B(Rm)}))

= Ω0 ∩ ξ
−1(σ(Cs)).

On the other hand, by Lemma 3.4, we have

ξ−1(Bs(W
m)) = ξ−1(σ(Cs)).

The desired result then follows.

Proof of Lemma 3.3. For s ≥ 0, define

θs(t, ω) = (t ∧ s, ξ(. ∧ s, ω)) : [0,∞)× Ω → [0, s]×Wm
s .

By Lemma 3.4, by considering θs as a function from [0,∞) × Ω to Wm+1,
we know

B[0, s]×F ξ
s = σ(θs).

On the other hand, (t, ω) 7→ ϕ(t∧s, ω) is (B[0, s]×F ξ
s )/B(R)-measurable.

This means that the map (t, ω) 7→ ϕ(t∧ s, ω) is σ(θs)/B(R)-measurable. By
a Theorem 1.1.7 in Yong and Zhou (1999, P.5), there exists a measurable
map ηs : ([0, s]×Wm

s ,B[0, s]× Bs(W
m)) → R such that

ϕ(t ∧ s, ω) = ηs(θ
s(t, ω)) = ηs(t ∧ s, ξ(. ∧ s, ω)) ∀ω ∈ Ω, t ≥ 0.
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Now, for any i ≥ 1, let 0 = ti0 < ti1 < ti2 < . . . be a partition of [0,∞) with
maxj≥1(t

i
j − tij−1) → 0 as i→ ∞ and define

ηi(t, ζ) = η0(0, ζ(. ∧ 0))I{0}(t) +
∑

j≥1

ηtij (t, ζ(. ∧ t
i
j))I(tij−1,t

i
j ]
(t)

for all (t, ζ) ∈ [0,∞)×Wm. Note that the sum is finite because for fixed i,
the indicator I(tij−1,t

i
j ]
(t) is only nonzero for one value of j for each t.

Now, for any i and any t > 0, there is exactly one j such that tij−1 < t ≤ tij .
Then

ηi(t, ξ(. ∧ tij, ω)) = ηtij (t, ξ(. ∧ t
i
j, ω)) = ϕ(t, ω), (3.5)

for all ω ∈ Ω. Now, we define

η(t, ζ) = lim sup
i→∞

ηi(t, ζ). (3.6)

The limit superior is taken point-wise for each (t, ζ) ∈ [0,∞) × Wm. We
check that η is progressively measurable with respect to Bt+(W

m). To do
so, for fixed t ≥ 0, let ji,t be such that tiji,t−1 < t ≤ tiji,t . For all s ∈ [0, t],

ηi(s, ζ) = η0(0, ζ(. ∧ 0))I{0}(s) +

ji,t∑

j=1

ηtij (s, ζ(. ∧ t
i
j))I(tij−1,t

i
j ]
(s)

since s ≤ t ≤ tiji,t . This shows that ηi restricted to s ∈ [0, t] is B[0, t] ×
Btiji,t

(Wm)/B(R)-measurable.

For a ∈ R,

η−1([a,∞)) ={(t, ζ) ∈ [0,∞)×Wm | lim
i→∞

sup
k≥i

ηk(t, ζ) ≥ a}

= ∩i≥1 {(t, ζ) ∈ [0,∞)×Wm | sup
k≥i

ηk(t, ζ) ≥ a}.

Now, note that

sup
k≥i

ηk(t, ζ) ∈ B[0, t]× Br(i)(W
n)/B(R)

with r(i) = supk≥i t
k
jk,t

, and r(i) → t as i→ 0.

This implies that η−1([a,∞)) ∈ B[0, t]×Bt+(W
n). Since the collection of

all intervals in the form of [a,∞) generates B(R), the map (s, ω) 7→ η(s, ω) is
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B[0, t] × Bt+(W
m)/B(U)-measurable. As the argument holds for any t ≥ 0,

we see that η is progressively measurable with respect to Bt+(W
m).

Now we will show that η satisfies equation (3.3).
For fixed t and ω ∈ Ω, we know that ξ(. ∧ t, ω) ∈ Wm = ξ(Ω), so there

exist ω′ such that
ξ(., ω′) = ξ(. ∧ t, ω). (3.7)

We also know
ξ(., ω′) = ξ(. ∧ s, ω′) ∀s ≥ t, (3.8)

since ξ(., ω′) is constant over [t,∞).
Then if we consider again ji,t as defined above, we have by (3.5)

ηi(t, ξ(. ∧ tiji,t), ω
′)) = ϕ(t, ω′). (3.9)

Combining (3.7), (3.8) and (3.9), we have

ϕ(t, ω′) = ξ(. ∧ tiji,t , ω
′) = ξ(., ω′) = ηi(t, ξ(. ∧ t, ω)).

By the definition of ηi in (3.6), we have

η(t, ξ(. ∧ t, ω)) = lim sup
i→∞

ηi(t, ξ(. ∧ t, ω)) = ϕ(t, ω′). (3.10)

It remains to show that ϕ(t, ω) = ϕ(t, ω′). Since ϕ is progressively measurable
with respect to {F ξ

t }, we know that ϕ(t, .) is F ξ
t -measurable, where F ξ

t is
generated by sets of the form ξ(s, .)−1(E), for E ∈ B(Rm) and s ∈ [0, t].
Each of these sets must contain either both or none of ω and ω′ because we
have ξ(s, ω) = ξ(s, ω′) for all s ∈ [0, t]. This implies that for any A ∈ F ξ

t , we
have either

ω ∈ A, ω′ ∈ A,

or
ω 6∈ A, ω′ 6∈ A.

Now, let A = [ϕ(t, .)]−1({ϕ(t, ω)}). We see that A ∈ F ξ
t and ω ∈ A. It

follows that we must have

ω′ ∈ A = [ϕ(t, .)]−1({ϕ(t, ω)}).

This means that
ϕ(t, ω′) = ϕ(t, ω). (3.11)

Together with (3.10), this yields equation (3.3).
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3.3.2 Constructing a contract

Now we will explain the conditions under which a solution of our control
problem could be used to construct a contract for the original problem.

We first introduce a condition that will be used for the construction. The
following conditions says that, given the output process {Xt} and how the
recommended effort on Z, we could infer an perceived noise process {Ẑt}
such that the output process is the path resulting from the recommended
action (depending on {Ẑt} as if it were {Zt}) and the perceived noise process
{Ẑt}.

Condition 3.1. Given (Ω,F ,P, Z, C, A, Y, τ) ∈ U(w), let ϕA the represen-
tation, according to Lemma 3.3, such that

At(ω) = ϕA(t, Z(. ∧ t, ω)) P-a.s. ω ∈ Ω, ∀t ∈ [0,∞).

Then this condition requires that there is a unique {Ẑt} that is progressively
measurable with respect to {FX

t }, such that

Xt =

∫ t∧τ

0

ϕA(s, Ẑ.∧s)ds+ σẐt PA′

-a.s. (3.12)

for any A′ that is progressively measurable with respect to {FX
t } and A′

t

takes values from [0, ā] at each time t <∞.

Note that in the above condition, when A′ = 0, X is a P0-Brownian
motion and the process {Ẑt} is a strong solution to the stochastic differential
equation (3.12) with a non-Markovian drift and the Brownian motion X .

In the following, we try to construct a contract that is based on the output
{Xt}, from a solution of the control problem in our formulation. Suppose
(Ω,F , P, Z, C,A, Y, τ) ∈ U(w) satisfies Condition 3.1. Then we will construct
a compensation-effort pair (C̃, Ã), where both C̃ and Ã are progressively
measurable with respect to {FX

t }, such that under this contract it is optimal
for the agent to choose A. Also, we have Yt(C̃, Ã) = Yt and Ãt = 0, Ỹt = 0
for t ≥ τ . Note that PA′

is the unique probability measure defined at the
beginning of Section 3.1 corresponding to the process A′.

Construction of the contract
We are given that (Ω,F , P, Z, C,A, Y, τ) ∈ U(w) satisfies Condition 3.1. We
would like to find corresponding controls defined on the probability space
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(ΩX ,FX, {FX
t },P0). Let {Ẑt} be the process specified in Condition 3.1. By

Lemma 3.3, we have ϕC , ϕA and ϕY such that

At(ω) = ϕA(t, Z(. ∧ t, ω)) P-a.s. ω ∈ Ω, ∀t ∈ [0,∞),

Ct(ω) = ϕC(t, Z(. ∧ t, ω)) P-a.s. ω ∈ Ω, ∀t ∈ [0,∞).

Yt(ω) = ϕY (t, Z(. ∧ t, ω)) P-a.s. ω ∈ Ω, ∀t ∈ [0,∞).

and
1τ≤t(ω) = ϕτ (t, Z(. ∧ t, ω)) P-a.s. ω ∈ Ω, ∀t ∈ [0,∞).

Then we can define stopping time τ̃ to be a {FX
t }-stopping time by setting

1τ̃≤t(ω) = ϕτ (t, Z̃(. ∧ t, ω))

for all t > 0 and ω ∈ Ω. We can also define

C̃t =

{

ϕC(t, Ẑ(. ∧ t)), 0 ≤ t ≤ T ∧ τ̃

−F0(W̃τ̃ ), τ̃ < t ≤ T,

Ãt =

{

ϕA(t, Ẑ(. ∧ t)) 0 ≤ t ≤ T ∧ τ̃

0 τ̃ < t ≤ T,

and

Ỹt =

{

ϕY (t, Ẑ(. ∧ t)) 0 ≤ t ≤ T ∧ τ̃

0 τ̃ < t ≤ T,

where W̃t := Wt(C̃, Ã, Ỹ ;w). Since Ẑ is progressively measurable with re-
spect to {FX

t }, we see that, by Lemma 3.2, C̃, Ã and Ỹ are all progressively
measurable with respect to {FX

t }. Now that Ã is well-defined. We could
apply the change of probability measure as mentioned in Section 3.1 to get
the probability measure PÃ.

The agent’s utility from the contract
Obviously, (W̃, Z̃) is a weak solution to the stochastic differential equation

dW̃t = r(W̃t − u(C̃t) + h(Ãt))dt+ rσỸtdZ̃t; W̃0 = w.

The utility that the agent derives from the contract by choosing action Ã is

EÃ

[∫ τ

0

re−rt(u(C̃t)− h(Ãt))dt+ e−rτF0(W̃τ )

]

= w,
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where the equality is obtained by applying Ito’s lemma on W̃τ and noting
that {W̃t} is bounded.

Incentive-compatibility of the contract
From the fact that

dW̃t = r(W̃t − u(C̃t) + h(Ãt))dt+ rσỸtdZ̃t; W̃0 = w,

we can see immediately, by the uniqueness of the representation in Yt(C̃, Ã)
by Proposition 1.1, that Yt(C̃, Ã) = Ỹt for almost all t, almost surely. Our
construction of Ã and Ỹ was based on A, Y , where (At, Yt) takes values from
Γ. This ensures that (Ã, Ỹ ) ∈ Γ almost surely for t > 0 a.e. By Proposition
1.2, it follows that the contract (C̃, Ã) is incentive-compatible.

3.3.3 The perceived noise process for a Markovian con-

tract

The above shows that a solution in our formulation leads to a feasible contract
in the original setting in (1.9), under Condition 3.1. We are particularly
interested in checking the validity of this condition in Sannikov’s solution to
the problem, where the policy is Markovian in the continuation value Wt.

In the following, we show that if a policy is Markovian in the continuation
value Wt, then under some assumptions, we can find a unique corresponding
continuation value process {Wt} and perceived noise process {Ẑt} that is
progressively measurable with respect to FX

t .

Proposition 3.1. Given 0 < wgp ≤ w̄, a∗ : [0, wgp] → [0, ā], c∗ : [0, wgp] →
[0, c̄], with the assumptions

1. a(0) = a(w̄) = 0, c(0) = 0, c(wgp) = u−1(wgp).

2. h(a(.)), u(c(.)), γ(a(.)) and γ(a(.))a(.) are Lipschitz over [0, wgp].

Suppose Zt is a Brownian motion and given

Xt =

∫ t

0

Asds+ σZt, (3.13)

where At takes values from [0, ā] and is progressively measurable with respect
to {FX

t }. Then there is a unique pair (Wt, Ẑt), progressively measurable with
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respect to FX
t , such that

Xt =

∫ t∧τ

0

a∗(Ws)ds+ σẐt, (3.14)

Wt = w0 +

∫ t∧τ

0

r(Ws − u(c∗(Ws)) + h(a∗(Ws)))ds+

∫ t∧τ

0

rσγ(a∗(Ws))dẐs,

(3.15)

with τ = inf{t > 0 : Wt 6∈ (0, wgp)}.

Proof. Combining equations (3.13), (3.14) and (3.15), we have

Wt = w0 +

∫ t∧τ

0

r(Ws − u(c∗(Ws)) + h(a∗(Ws)))ds

+

∫ t∧τ

0

rγ(a∗(Ws))(Asds− a∗(Ws)ds+ σdZs).

(3.16)

Rearranging we have,

Wt = w0 +

∫ t∧τ

0

(b(Ws) + σ̂(Ws)As/σ)ds+

∫ t∧τ

0

σ̂(Ws)dZs, (3.17)

where we extend the drift and volatility such that

b(w) = r[w − u(c∗((w ∧ wgp)+))

+ h(a∗((w ∧ wgp)+))− γ(a∗((w ∧ wgp)+))a∗((w ∧ wgp)+)]

and
σ̂(w) = rσγ(a((w ∧ wgp)+)).

We can see that b and σ̂ are both Lipschitz and bounded due to our assump-
tions. Also, γ(a(.))a(.) is Lipschitz as

|γ(a(w1))a(w1)− γ(a(w2))a(w2)| ≤

|γ(a(w1))a(w1)− γ(a(w2))a(w1) + γ(a(w2))(a(w1)− a(w2)|

Fix T > 0. We then consider

Wt = w0 +

∫ t

0

(b(Ws) + σ̂(Ws)As/σ)ds+

∫ t

0

σ̂(Ws)dZs, (3.18)
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for all 0 ≤ t ≤ T .
Noting that As ∈ [0, ā], we obtain uniform Lipschitz condition on the

drift over all ω ∈ Ω, since

|b(w1)+σ̂(w1)As/σ − b(w2) + σ̂(w2)As/σ|

≤ |b(w1)− b(w2)|+ (ā/σ)|σ̂(w1)− σ̂(w2)| ≤ L|w1 − w2|

where L is independent of ω.
Then, applying Theorem 6.16 of Yong and Zhou (1999, P.49), equation

(3.18) admits a unique solution W up to time T .
Now that Wt is uniquely defined up to time T , we have for any t ≤ T ,

Wt∧τ =Wt1t≤τ +Wτ1t≥τ

is well-defined. Since T is arbitrary, together with the uniqueness of W , we
see that Wt∧τ is in fact uniquely defined for any 0 ≤ t < ∞. (Note that
we do not require Wt∧τ to converge as t approaches infinity.) Once {Wt} is
well-defined, {Ẑt} is also well-defined by equation (3.14).

Note that the first condition in Proposition 3.1 means permanent retire-
ment at the points 0 and wgp.

While the proof above makes use of the unobserved processes A and Z,
the processes W and Ẑ can be obtained without observing A and Z since
equation (3.14) and (3.15) only involve X directly but not A and Z. This
means that after setting the recommended effort and the compensation based
on some Z, the principal can indeed infer a perceived noise process Ẑ, on
which the compensation to the agent is based. In particular, the principal can
do this by an equidistant discrete-time Euler approximation of the equation

Wt = w0 +

∫ t

0

b(Ws)ds+

∫ t

0

σ̂(Ws)/σ dXs. (3.19)

It should be noted that this Ẑ will not coincide with the real noise process Z
that the agent observes if the agent chooses not to follow the recommended
effort. However, this process is well-defined and so is the agreed compensation
under the policy designated by a∗(.) and c∗(.).

The following proposition shows the convergence of the Euler approxi-
mation scheme, and therefore also shows that the principal can implement
the contract without actually observing the hidden effort A and real noise
process Z:
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Proposition 3.2. For any fixed time T > 0, for all 0 ≤ t ≤ T , define
Ŵ δ

t = W δ
⌊t/δ⌋, where

W δ
n+1 = W δ

n + b(W δ
n)δ + σ̂(W δ

n)(Xnδ −X(n−1)δ)/σ, W δ
0 = w0, (3.20)

which does not require the observation of A and Z. For any fixed T > 0, the
process {Ŵ δ

t }0≤t≤T converges to {Wt}0≤t≤T strongly as δ goes to zero, i.e.

lim
δ↓0

E(|WT − Ŵ δ
T |) = 0.

Note that the approximation is limited to a finite time horizon, because
a principal will only be able to use an approximation at a time T and would
only have the information up to time T to approximate the perceived noise
process Ẑt (also only up to time T ).

Proof. Our proof is similar to the proof of Theorem 9.6.2 in Kloeden and Platen
(1992, P.324–326), but adapted to the fact that we do not directly observe
the Brownian motion.

For 0 ≤ t ≤ T , we set

Zt = sup
0≤s≤t

E(|Ŵ δ
s −Ws|

2)
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and note that, letting ns = ⌊s/δ⌋ for all s,

Zt = sup
0≤s≤t

E





∣
∣
∣
∣
∣

ns−1∑

n=0

(W δ
n+1 −W δ

n)−

∫ s

0

b(Wr)dr −

∫ s

0

σ̂(Wr)/σdXr

∣
∣
∣
∣
∣

2




= sup
0≤s≤t

E

(∣
∣
∣
∣

∫ nsδ

0

(b(W δ
nr
)− b(Wr))dr +

∫ nsδ

0

(σ̂(W δ
nr
)− σ̂(Wr))/σdXr

−

∫ s

nsδ

b(Wr)dr −

∫ s

nsδ

σ̂(Wr)/σdXr

∣
∣
∣
∣

2
)

≤ C sup
0≤s≤t

{

E

(∣
∣
∣
∣

∫ nsδ

0

(b(W δ
nr
)− b(Wr))dr

∣
∣
∣
∣

2
)

+ E

(∣
∣
∣
∣

∫ nsδ

0

(σ̂(W δ
nr
)− σ̂(Wr))/σdXr

∣
∣
∣
∣

2
)

+E

(∣
∣
∣
∣

∫ s

nsδ

b(Wr)dr

∣
∣
∣
∣

2
)

+ E

(∣
∣
∣
∣

∫ s

nsδ

σ̂(Wr)/σdXr

∣
∣
∣
∣

2
)}

Now, looking at the individual terms, we have the first term being

E

(∣
∣
∣
∣

∫ nsδ

0

(b(W δ
nr
)− b(Wr))dr

∣
∣
∣
∣

2
)

≤E

(∣
∣
∣
∣

∫ nsδ

0

K(W δ
nr

−Wr)dr

∣
∣
∣
∣

2
)

≤TE

(∫ nsδ

0

K2(W δ
nr

−Wr)
2dr

)

≤K2T

∫ nsδ

0

Zrdr.

(3.21)
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The second term is

E

(∣
∣
∣
∣

∫ nsδ

0

(σ̂(W δ
nr
)− σ̂(Wr))/σdXr

∣
∣
∣
∣

2
)

≤E

(∣
∣
∣
∣

∫ nsδ

0

K|W δ
nr

− σ̂(Wr)|dXr

∣
∣
∣
∣

2
)

≤2E

(∣
∣
∣
∣

∫ nsδ

0

K|W δ
nr

− σ̂(Wr)|ādr

∣
∣
∣
∣

2
)

+ 2E

(∣
∣
∣
∣

∫ nsδ

0

K|W δ
nr

− σ̂(Wr)|σdZr

∣
∣
∣
∣

2
)

≤2sE

(∫ nsδ

0

K2|W δ
nr

− σ̂(Wr)|
2ā2dr

)

+ 2E

(∫ nsδ

0

K2|W δ
nr

− σ̂(Wr)|
2σ2dr

)

≤K ′(1 + T )

∫ nsδ

0

Zrdr.

(3.22)

The third term is

E

(∣
∣
∣
∣

∫ s

nsδ

b(Wr)dr

∣
∣
∣
∣

2
)

≤ δ(r(w̄ − u(c̄) + h(ā)− γ(ā)ā)2 ≤ K2
1δ. (3.23)

The fourth term is

E

(∣
∣
∣
∣

∫ s

nsδ

σ̂(Wr)/σdXr

∣
∣
∣
∣

2
)

≤E

(∣
∣
∣
∣

∫ s

nsδ

σ̂(Wr)Ardr +

∫ s

nsδ

σ̂(Wr)dZr

∣
∣
∣
∣

2
)

≤2(δ sup
w∈[0,w̄]

σ̂(w)ā)2 + 2E

[∫ s

nsδ

(σ̂(Wr))
2dr

]

≤2(δ sup
w∈[0,w̄]

σ̂(w)ā)2 + 2δ

(

sup
w∈[0,w̄]

σ̂(w)

)2

≤K ′(δ2 + δ).

(3.24)

Combining equations (3.21) – (3.24), we have

Zt ≤ C1 sup
0≤s≤t

{(K ′(1 + T ) +K2T )

∫ nsδ

0

Zrdr +K2
1δ +K ′(δ2 + δ)}

= C2

∫ t

0

Zrdr + C3(δ + δ2).
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By Gronwall’s inequality, we have

Zt ≤ C4(δ + δ2).

Finally,

E(|Ŵ δ
T −WT |) ≤

√

E(|Ŵ δ
T −WT |2) =

√

ZT ≤
√

C4(δ + δ2),

which goes to zero as δ ↓ 0.
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Chapter 4

Our Viscosity Solution
Approach

In this chapter, we look at the HJB equation of our control problem and
consider its viscosity solution. The goal is characterize the optimal profit
of our control problem as the viscosity solution of the HJB equation. The
motivation of our approach, as compared to the work in Sannikov (2008), is
to develop a methodology to study the problem that does not rely on the
solution being C2 almost everywhere and thus is more easily extensible to
other cases. We will first state the HJB equation and its boundary conditions,
and then define viscosity solutions for the equation.

To simplify our notations and allow easy reference to existing theorems,
define

Ha,c,y(w, p, α) = r(a− c) + rp(w − u(c) + h(a)) +
α

2
r2y2σ2

H(w, p, α) = sup
a∈A,c

Ha,c,γ(a)(w, p, α).

Now consider the HJB equation

max{H(w, F ′(w), F ′′(w))− rF (w), F̃0(w)− F (w)} = 0, w ∈ [0, w̄] (4.1)

with
F (0) = F̃0(0) and F (w̄) = F̃0(w̄). (4.2)

Our HJB equation differs from the HJB equation proposed in Sannikov
(2008) in a few aspects. First, recall that as reviewed in Section 1.4, the HJB
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equation first proposed by Sannikov was

rF (W ) = max
a>0,c

r(a−c)+F ′(W )r(W−u(c)+h(a))+
F ′′(W )

2
r2γ(a)2σ2, (1.14)

which is equivalent to saying H(w, F ′(w), F ′′(w)) = 0 for w ∈ [0, wgp]. This
is the same as the first part of our equation (4.1). However, Sannikov mostly
worked with the equation

F ′′(W ) = min
a>0,c

F (W )− a + c− F ′(W )(W − u(c) + h(a))

rγ(a)2σ2/2
, (1.15)

which is equivalent to (1.14) because γ(a) > 0 for a > 0. In comparison, while
we do not require that the effort is always nonzero, we impose a minimum
sensitivity γ(0) = γ0 to avoid degeneracy in the problem.

A greater difference between our HJB equation and Sannikov’s one lies
in the boundary conditions. Sannikov’s boundary and smooth-pasting con-
ditions were:

F (0) = 0, F (wgp) = F0(wgp) and F
′(wgp) = F ′

0(wgp). (1.16)

This imposes a structural assumption on the solution that the continuation
region of w, i.e. the set of continuation value where it is not optimal for the
principal to permanently retire the agent, is an interval (0, wgp). With the
benchmark model in Sannikov (2008), this is plausible in an economic sense,
but was not proved a priori to the setup of the framework and the verification
of the solution to the ODE as the optimal profit function. When we allow
the retirement function F̃0 to be something other than F0(w) = −u−1(w), it
becomes possible that the continuation region is not connected. See Section
5.2.1 for more discussion.

In comparison, the approach we have in setting up our HJB equation is
that we require (formally) H(w, F ′(w), F ′′(w)) ≤ 0 and F̃0(w) ≤ F (w) at all
times, and that one of the two inequalities holds with equality. This loosely
translates to requiring that either the principal continues in an optimal way,
or she retires the agent permanently, and she must choose the better of the
two. We do require permanent retirement at continuation value 0 and w̄, be-
cause those are the minimum and maximum continuation value attainable for
the agent, and can only be attained by subjecting the agent to no more risk.
Our HJB equation would potentially allow for cases where the continuation
region of w may not be in the form of one open interval (0, wgp).
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Sannikov’s proof of optimality of the solution of the HJB equation as the
optimal profit relied on the fact that the solution is C1 over these regions
and C2 in the interior of each of these. In general, however, if the model
is changed slightly with addition of other elements, solutions may not have
enough smoothness and Sannikov’s methodology may not be extensible, so
we introduce the notion of viscosity solutions to our problem. (See Section
2.3 for a review of viscosity solutions.) In the following, we give the definition
for viscosity subsolution, supersolution and solution for our problem. These
are consistent with the definitions we have reviewed, but additionally requires
the boundary conditions to hold.

Definition 4.1. We say that an upper-semicontinuous function F : [0, w̄] →
R is a viscosity subsolution of equations (4.1)–(4.2) if

(i) F (0) = F̃0(0) and F (w̄) = F̃0(w̄), and

(ii) for every ϕ ∈ C2((0, w̄)) and w0 ∈ (0, w̄) such that ϕ − F attains a
local minimum at w0 with ϕ(w0) = F (w0), we have

max{H(w0, ϕ
′(w0), ϕ

′′(w0))− rϕ(w0), F̃0(w0)− ϕ(w0)} ≥ 0. (4.3)

Definition 4.2. We say that a lower-semicontinuous function F : [0, w̄] → R

is a viscosity supersolution of equations (4.1)–(4.2) if

(i) F (0) = F̃0(0) and F (w̄) = F̃0(w̄), and

(ii) for every ϕ ∈ C2((0, w̄)) and w0 ∈ (0, w̄) such that ϕ − F attains a
local maximum at w0 with ϕ(w0) = F (w0), we have

max{H(w0, ϕ
′(w0), ϕ

′′(w0))− rϕ(w0), F̃0(w0)− ϕ(w0)} ≤ 0. (4.4)

Definition 4.3. We say that a continuous function F : [0, w̄] → R is a
viscosity solution of equations (4.1)–(4.2) if F is both a viscosity subsolution
and supersolution.

4.1 Main theorem

Recall that F is defined in (3.2) as

F (w) = sup
(C,A,Y,τ)∈U(w)

J(C,A, Y, τ ;w),
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where U(w) is the set of admissible control satisfying (U1) – (U7).
Under assumptions (A1)–(A4) (stated in Sections 3.1 and 3.2), we prove

that F is concave and continuous in [0, w̄]. More importantly, we have:

Theorem 4.1. F is a viscosity solution of (4.1)–(4.2).

Theorem 4.2. The viscosity solution to (4.1)–(4.2) is unique.

The rest of the chapter is dedicated to the development and proof of these
results.

4.2 Preliminary

First, we look at the boundedness of F . Note that

F (W ) = sup
(C,A,τ,Y )∈U(w)

E

[∫ τ

0

re−rt(At − Ct) + e−rτ F̃0(Wτ )

]

≤ E

[∫ ∞

0

re−rt(ā− 0)

]

+ sup
w∈[0,w̄]

F̃0(w) = ā+ sup
w∈[0,w̄]

F̃0(w)

as At ≤ ā, Ct ≥ 0 and supw∈[0,w̄] F̃0(w) < ∞ as F̃0 is continuous. On the
other hand, by setting τ = 0, we see

F (w) ≥ F̃0(w) ≥ F0(w) ≥ F0(w̄) = −c̄.

Thus F is bounded.

4.3 First-best profit

The first-best profit represents the maximum expected profit that can be
achieved if the principal can control directly the consumption and effort of
the agent. This has also been considered briefly in Section 5 of Sannikov
(2008). This function is useful as it provides an upper bound for the optimal
profit and helps us obtain concavity of the optimal profit function F .

This is also where we need the assumption that A = [0, ā] here.
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For −h(ā) ≤ w ≤ u(c̄), define

F̄ (w) = max
u(c)−h(a)=w,
a∈A, c∈[0,c̄]

(a− c)

= max
υ−η=w,

h−1(η)∈A, υ∈[0,w̄]

(h−1(η)− u−1(υ)).

Note that F̄ is well-defined for any w ∈ [−h(ā), u(c̄)] because the feasible
set is nonempty (e.g. c = u−1(w) and a = 0 is feasible for nonnegative
w, while c = 0 and a = h−1(−w) is feasible for negative w). The second
representation is the maximization of a continuous function over a compact
set, which ensures that the supremum exists and is attainable. Note that
F̄ (w̄) = −c̄, and we see that F̄ (w) ≥ F0(w) for w ∈ [0, w̄] by considering
a = 0 and c = u−1(w). This implies that F̄ (0) ≥ 0.

We call F̄ the first-best profit, because F̄ (w) represents the profit of the
principal when she can perfectly control the agent’s consumption and effort
and decides to give the agent initial value w. This is not immediate from the
definition of F ; however, the fact that F̄ is concave (as we show in Lemma
4.2) proves so. It is worth noting that F̄ (0) could be positive, reflecting that
the difference in the utility function of the agent and principal can create
positive profit for principal even when the agent receives nothing, in the case
when the principal can control the agent’s actions directly.

Lemma 4.1. F̄ is decreasing.

Proof. Consider some fixed−h(ā) < w ≤ u(c̄) and a, c such that F̄ (w) = a−c
with u(c)− h(a) = w. Now consider any w′ such that −h(ā) ≤ w′ < w, and
would like to show that F̄ (w′) > F̄ (w). If u(0) − h(a) = −h(a) ≤ w′, then
we could let c′ be such that

u(c′) = u(c)− (w − w′),

and so a− c′ > a− c. This implies

F̄ (w′) = max
u(c)−h(a)=w′,a∈A,c∈[0,c̄]

(a− c) ≥ a− c′ > a− c = F̄ (w).

If −h(a) > w′, we could set c = 0 and a′ = h−1(−w′) > h−1(u(c)− w) = a.
So a− c > a′ − c. This implies

F̄ (w′) = max
u(c)−h(a)=w′,a∈A,c∈[0,c̄]

(a− c) ≥ a′ − c > a− c = F̄ (w).
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Lemma 4.2. F̄ is concave over [−h(ā), u(c̄)].

The proof explicitly makes use of the assumption that A = [0, ā], which
implies that A is a convex set.

Proof. Recall that

F̄ (w) = max
υ−η=w,

h−1(η)∈A, υ∈[0,w̄]

(h−1(η)− u−1(υ)).

Suppose F̄ (w1) = h−1(η1)−u
−1(υ1) with υ1−η1 = w1 and F̄ (w2) = h−1(η2)−

u−1(υ2) with υ2 − η2 = w2.
Then, for w = λw1+(1−λ)w2 with λ ∈ (0, 1), consider υ = λυ1+(1−λ)υ2

and η = λη1 + (1 − λ)η2. Obviously υ − η = λw1 + (1 − λ)w2 = w, and
h−1(η) ∈ A and υ ∈ [0, w̄]. And so

F̄ (w) ≥ h−1(η)− u−1(υ)

= h−1(λη1 + (1− λ)η2)− u−1(λυ1 + (1− λ)υ2)

≥ λh−1(η1) + (1− λ)h−1(η2)− λu−1(υ1)− (1− λ)u−1(υ2)

= λF̄ (w1) + (1− λ)F̄ (w2),

where the last inequality follows from concavity of h−1 and −u−1. Thus F̄ is
concave over [−h(ā), u(c̄)].

The next proposition shows that the F̄ is an upper bound for F .

Proposition 4.1. We have F (w) ≤ F̄ (w) for all w ∈ [0, w̄].

Proof. First note that

J(C,A, Y, τ ;w) = E

[∫ τ

0

re−rt(At − Ct)dt+ e−rτ F̃0(Wτ )

]

.

We define

ξt =

{

u(Ct)− h(At) t < τ

Wτ t ≥ τ.
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Note that ξt is bounded in the interval [−h(ā), w̄]. We have

J(C,A, Y, τ ;w) ≤ E

[∫ τ

0

re−rtF̄ (ξt)dt+ e−rτ F̃0(ξt)

]

≤ E

[∫ τ

0

re−rtF̄ (ξt)dt+ e−rτ F̄ (ξt)

]

= E

[∫ ∞

0

re−rtF̄ (ξt)dt

]

.

Then noting that F̄ is concave, we have

J(C,A, Y, τ ;w) ≤ E

[∫ ∞

0

re−rtF̄ (ξt)dt

]

=

∫ ∞

0

re−rtE
[
F̄ (ξt)

]
dt by Fubini’s Theorem

≤

∫ ∞

0

re−rtF̄ (E [ξt])dt by Jensen’s inequality

≤ F̄

(∫ ∞

0

re−rtE [ξt] dt

)

by Jensen’s inequality

= F̄

(

E

[∫ ∞

0

re−rtξtdt

])

= F̄ (w).

The last equality comes from the fact that

e−rτWτ = w −

∫ τ

0

e−rt(u(Ct)− h(At))dt+

∫ τ

0

e−rtrσYtdZt,

which implies that

E

[∫ ∞

0

re−rtξtdt

]

= w.

Taking supremum over all (C,A, τ, w) ∈ U(w), we have F (w) ≤ F̄ (w).

4.4 Concavity and continuity

In this section, we will establish the concavity and continuity of F over[0, w̄].
To simplify our notation, we will use the operator θt defined as follows:
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Definition 4.4. For each t ∈ [0,∞), θt : C[0,∞) → C[0,∞) is defined as

θt(x.) = (x.|[t,∞) − xt).

We will first establish concavity of F over [0, w̄].

Lemma 4.3. F is concave over [0, w̄].

We first need the following lemma:

Lemma 4.4. For fixed 0 ≤ w1 < w < w2 ≤ w̄, suppose we are given a
bounded function Ŷ : (w1, w2) → [γ0,∞) and a process Wt such that

dWt = rσŶ (Wt)dZt; W0 = w,

where Zt is a standard Brownian motion. Let

τ = inf{t > 0 : Wt 6∈ (w1, w2)}.

Define

Gt = ert
[∫ τ

t

e−ruF̄ (Wu)du+ e−rτF (Wτ )

]

.

Then E [Gt|Ft] is a supermartingale with respect to {Ft}t≥0.

Proof of Lemma 4.4. First, note that we can write

Gt = ert
∫ ∞

t

e−ruF̃ (Wu∧τ)du,

where
F̃ (w) = F̄ (w)1w∈(w1,w2) + F (w)1w 6∈(w1,w2).

Note that F̃ is concave over [w1, w2] since F̄ is concave and F ≤ F̄ at w1 and
w2. Now

E[Gt|Ft] ≤ E[ert
∫ ∞

t

F̄ (Wu)du|Ft] ≤ F̄ (Wt).

Since F̄ (W ) is continuous over [0, w̄] and thus bounded, we have E[|E[Gt|Ft]|] <
∞. Next we show the supermartingale property. By Ito’s Lemma, we have

dGt =

[

rert ·

∫ ∞

t

e−ruF̃ (Wu∧τ )du− ert · e−rtF̃ (Wt∧τ )

]

dt

= ert
[∫ ∞

t

re−ruF̃ (Wu∧τ )du− e−rtF̃ (Wt∧τ )

]

dt.
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So

Gs′ −Gs =

∫ s′

s

ert
[∫ ∞

t

re−ruF̃ (Wu∧τ)du− e−rtF̃ (Wt∧τ )

]

dt

E[Gs′ −Gs|Fs] =E

[
∫ s′

s

ert
[∫ ∞

t

re−ruF̃ (Wu∧τ )du− e−rtF̃ (Wt∧τ )

]

dt|Fs

]

=

∫ s′

s

ertE

[∫ ∞

t

re−ruF̃ (Wu∧τ)du− F̃ (Wt∧τ )

∣
∣
∣
∣
Fs

]

dt

=

∫ s′

s

ertE

[

e−rtE

[∫ ∞

0

re−ruF̃ (Wu∧τ )du− F̃ (Wt∧τ )

∣
∣
∣
∣
Ft

]

|Fs

]

dt

≤0.

The last inequality follows becauseWt∧τ is a martingale and F̃ is concave over
[w1, w2]. Finally, the supermartingale property follows because for s < s′,

E[E[Gs′|Fs′]|Fs]−Gs = E[Gs′ −Gs|Fs] ≤ 0.

Proof of Lemma 4.3. Consider fixed 0 ≤ w1 < w < w2 ≤ w̄ such that w =
λw1 + (1− λ)w2, λ ∈ (0, 1). Let â(w) and ĉ(w) be such that

F̄ (w) = â(w)− ĉ(w)

with u(ĉ(w))− h(â(w)) = w, â(w) ∈ A and ĉ(w) ∈ [0, c̄].
Now starting with initial continuation value w, we consider the control

that uses At = â(Wt), Ct = ĉ(Wt) and Yt = Ŷ (Wt) = γ(â(Wt)) ≥ γ0 > 0 until
we hit w1 or w2 at τ , after which we adopt an ǫ-optimal strategy at w1 and w2

respectively. Mathematically, for i = 1, 2, we select (C i, Ai, Y i, τ i) ∈ U(wi)
such that

J(C i, Ai, Y i, τ i;wi) ≥ F (wi)− ǫ.

Then we define

τ = inf{t > 0 : Wt 6∈ (w1, w2)},

where

dWt = r(Wt − u(ĉ(Wt))− h(â(Wt))
︸ ︷︷ ︸

=0

)dt+ rσŶt(Wt)dZt = rσŶt(Wt)dZt.
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Note that Ŷ (w) = γ(â(w)) ∈ [γ0, γ(ā)] with γ0 > 0 for all w ∈ [0, w̄].
Consider

(C̃s, Ãs, Ỹs) =

{

(ĉ(Ws), â(Ws), Ŷ (Ws)) s < τ

(C i, Ai, Y i) ◦ θτ s ≥ τ and Wτ = wi.

and τ̃ = τ + 1Wτ=w1τ
1 ◦ θτ +1Wτ=w2τ

2 ◦ θτ . The existence of a weak solution
{Wt, Zt}t≥0 is guaranteed by nondegeneracy and local integrability condition
as the volatility is bounded below by a positive constant and bounded above
as well (see Karatzas and Shreve, 1991, Theorem 5.15). Thus we see that
(C̃, Ã, Ỹ, τ̃) ∈ U(w). The profit is

F (w) ≥ J(C̃, Ã, Ỹ, τ̃ ;w) = E

[∫ τ

0

e−ruF̄ (Wu)du+ e−rτ (F (Wτ )− ǫ)

]

.

Since F̄ and F are both bounded, we can let ǫ ↓ 0 and see that

F (w) ≥ E

[∫ τ

0

e−ruF̄ (Wu)du+ e−rτF (Wτ )

]

= E[G0], (4.5)

where Gt is as defined in Lemma 4.4, and {E[Gt|Ft]}t≥0 is a supermartin-

gale with respect to {Ft}t≥0. Since Ŷ (Wt) is bounded below by γ0 > 0,
P (τ <∞) = 1. Moreover, |Gτ | ≤ max(|F (w1)|, |F (w2)|) is bounded. By the
optional sampling theorem, we obtain

E[G0] ≥ E[Gτ ]. (4.6)

Since Wt∧τ is a martingale and P (τ <∞) = 1, we have

w = E[W0] = E[Wτ ] = P (Wτ = w1)w1 + (1− P (Wτ = w1))w2,

giving

P (Wτ = w1) =
w2 − w

w2 − w1
= λ.

So
E[Gτ ] = λF (w1) + (1− λ)F (w2). (4.7)

Finally, combining (4.5), (4.6) and (4.7),

F (w) ≥ E[G0] ≥ E[Gτ ] = λF (w1) + (1− λ)F (w2).
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The concavity of F over [0, w̄] immediately leads to the continuity over
the interior of the interval, i.e. (0, w̄). To see left-continuity at the right
end-point w̄, recall that

F0(w) ≤ F̃0(w) ≤ F (w) ≤ F̄ (w)

for all w ∈ (0, w̄). Noting that F0(w̄) = F̄ (w̄) and taking limit as w ↑ w̄
shows that

lim
w↑w̄

F (w) = F0(w̄) = F (w̄) = F̄ (w̄).

For 0 < x < w̄, we define

β+(x) := inf
k≥1,w∈[0,w̄−kx]

F̃0(w)− F̃0(w + kx)

k

and

β−(x) := inf
k≥1,w∈[kx,w̄]

F̃0(w)− F̃0(w − kx)

k
.

Both infimums are well-defined because F̃0 is bounded.

Lemma 4.5. We have limx↓0 β
+(x) = 0 and limx↓0 β

−(x) = 0.

Proof. For 0 < x < 1, we have

∣
∣
∣
∣
∣
∣
∣

inf
k>x−1/2,

w∈[0,w̄−kx]

F̃0(w)− F̃0(w + kx)

k

∣
∣
∣
∣
∣
∣
∣

≤x1/2 sup
k′>1,

w∈[0,w̄−k′x1/2]

|F̃0(w)− F̃0(w + k′x1/2)|

≤x1/2 sup
w,w′∈[0,w̄]

|F̃0(w)− F̃0(w
′)|,

while
∣
∣
∣
∣
∣
∣
∣

inf
1≤k≤x−1/2,
w∈[0,w̄−kx]

F̃0(w)− F̃0(w + kx)

k

∣
∣
∣
∣
∣
∣
∣

≤ sup
x1/2≤k′≤1,

w∈[0,w̄−k′x1/2]

|F̃0(w)− F̃0(w + k′x1/2)|

≤ sup
w,w′∈[0,w̄],

w′−w<x1/2

|F̃0(w)− F̃0(w
′)|.
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So

|β+(x)|

≤max




x

1/2 sup
w,w′∈[0,w̄]

|F̃0(w)− F̃0(w
′)|, sup

w,w′∈[0,w̄],

w′−w<x1/2

|F̃0(w)− F̃0(w
′)|






→ 0 as x ↓ 0,

noting that F̃0 is continuous and bounded. The same argument applied to
the function F̃0(w̄ − .) can be used to show β−(x) → 0 as x ↓ 0.

Now we prove the following lemma, which is used multiple times in prov-
ing right-continuity, establishing uniform continuity and in proving the DPP.

Lemma 4.6. For w1, w2 ∈ (0, w̄) and w1 6= w2, and (C,A, Y, τ) ∈
U(w2), let

τw1 = inf{t > 0 :Wt(C,A, Y ;w1) 6∈ (0, w̄)}.

Then we have (C,A, Y, τw1 ∧ τ) ∈ U(w1). We also have

(a). If w1 < w2, then

J(C,A, Y, τw1 ∧ τ ;w1) ≥ J(C,A, Y, τ ;w2)

+ min(F (0)− F (w2 − w1), β
+(w2 − w1)).

(4.8)

(b). If w2 < w1, then

J(C,A, Y, τw1 ∧ τ ;w1) ≥ J(C,A, Y, τ ;w2)

+ min(F (w̄)− F (w̄ − (w1 − w2)), β
−(w1 − w2)).

(4.9)

Remark 4.1. If F̃0 is concave, then we know that the second term in the
minimum in (4.8) and (4.9) can be dropped for simplicity. This is because
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for w2 > w1,

β+(w2 − w1) = inf
k≥1,w∈[0,w̄]

[F̃0(w)− F̃0(w + k(w2 − w1))]/k

= inf
k≥1,w∈[0,w̄]

[F̃0(w)− F̃0(w) · (k − 1)/k − F̃0(w + k(w2 − w1))/k]

= inf
w∈[0,w̄]

[F̃0(w)− F̃0(w − (w2 − w1))]

=F̃0(0)− F̃0(w2 − w1)

≥F (0)− F (w2 − w1),

where the third and the fourth equalities follow from the concavity of F ; for
w1 < w2,

β−(w1 − w2) = inf
k≥1,w∈[0,w̄]

[F̃0(w)− F̃0(w − k(w1 − w2))]/k

= inf
k≥1,w∈[0,w̄]

[F̃0(w)− F̃0(w) · (k − 1)/k − F̃0(w − k(w1 − w2))/k]

= inf
w∈[0,w̄]

[F̃0(w)− F̃0(w − (w1 − w2))]

≥F̃0(w̄)− F̃0(w̄ − (w1 − w2))

≥F (w̄)− F (w̄ − (w1 − w2)),

where the third and fourth equalities follow again from the concavity of F .

Proof of Lemma 4.6. For simplicity write τ̃ = τw1 ∧ τ . We are given that
(C,A, Y, τ) ∈ U(w2). For i = 1, 2, let W i

t := Wt(C,A, Y ;wi), i.e.

dW i
t = r(W i

t − u(Ct) + h(At))dt+ rσYtdZt; W i
0 = wi.

Notice that we let the processes W 1
t andW 2

t be driven by the same Brownian
motion Zt.

First we see for t ≤ τ̃ ,

e−rtW i
t =W i

0 −

∫ t

0

re−rs(u(Cs)− h(As))ds+

∫ t

0

rσYsdZs. (4.10)

Considering the difference of the above equation with i = 1, 2, we see that

W 2
t −W 1

t = ert(w2 − w1) (4.11)
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for t ≤ τ̃ . The definition of τ̃ guarantees that W 1
t ∈ (0, w̄) for t < τ̃ , and

the existence of weak solution {W 1
t , Zt}t≥0 follows immediately from (4.11).

Thus (C,A, Y, τ̃) ∈ U(w1). For the profit,

J(C,A, Y, τ̃ ;w1)− J(C,A, Y, τ ;w2)

=E[

∫ τ̃

0

re−rt(At − Ct)dt+ e−rτ̃ F̃0(W
1
τ̃ )]−E[

∫ τ

0

re−rt(At − Ct)dt+ e−rτ F̃0(W
2
τ )]

=E

[

e−rτ̃ F̃0(W
1
τ̃ )−

∫ τ

τ̃

re−rt(At − Ct)dt− e−rτ F̃0(W
2
τ )

]

=E

[

e−rτ̃1τ̃<τ [F̃0(W
1
τ̃ )−

∫ τ

τ̃

re−rt(At − Ct)dt− e−rτ F̃0(W
2
τ )]

+e−rτ̃1τ̃=τ [F̃0(W
1
τ̃ )− F̃0(W

2
τ̃ )]
]

≥E
[

e−rτ̃1τ̃<τ [F (W
1
τ̃ )− F (W 2

τ̃ )] + e−rτ̃1τ̃=τ [F̃0(W
1
τ̃ )− F̃0(W

2
τ̃ )]
]

=E
[
e−rτ̃1τ̃<τ [F (W

1
τ̃ )− F (W 1

τ̃ + erτ̃ (w2 − w1))]

+e−rτ̃1τ̃=τ [F̃0(W
1
τ̃ )− F̃0(W

1
τ̃ + erτ̃ (w2 − w1))]

]

.

If w2 − w1 > 0, we have W 1
τ̃ = 0 whenever τ̃ < τ , and so

J(C,A, Y, τ̃ ;w1)− J(C,A, Y, τ ;w2)

≥ E
[
e−rτ̃1τ̃<τ [F (0)− F (erτ̃ (w2 − w1))]

+e−rτ̃1τ̃=τ [F̃0(W
1
τ̃ )− F̃0(W

1
τ̃ + erτ̃ (w2 − w1))]

]

≥ min(F (0)− F (w2 − w1),

inf
t>0,w∈[0,w̄]

e−rt[F̃0(w)− F̃0(w + ert(w2 − w1))])

= min(F (0)− F (w2 − w1), β
+(w2 − w1)).
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If w2 − w1 < 0, we have W 1
τ̃ = w̄ whenever τ̃ < τ , and so

J(C,A, Y, τ̃ ;w1)− J(C,A, Y, τ ;w2)

≥ E
[
e−rτ̃1τ̃<τ [F (w̄)− F (w̄ − erτ̃ (w1 − w2))]

+e−rτ̃1τ̃=τ [F̃0(W
1
τ̃ )− F̃0(W

1
τ̃ − erτ̃ (w1 − w2))]

]

≥ min(F (w̄)− F (w̄ − (w1 − w2)),

inf
t>0,w∈[0,w̄]

e−rt[F̃0(w)− F̃0(w − ert(w1 − w2))])

= min(F (w̄)− F (w̄ − (w1 − w2)), β
−(w1 − w2)).

The second inequalities in both cases follow from the fact that F is concave.
This proves the desired result.

Taking the supremum over all (C,A, Y, τ) in U(w2), we obtain the follow-
ing corollary.

Corollary 4.1. (a). For 0 < w1 < w2 < w̄, we have

F (w1) ≥ F (w2) + min(F (0)− F (w2 − w1), β
+(w2 − w1)).

(b). For 0 < w2 < w1 < w̄, we have

F (w1) ≥ F (w2) + min(F (w̄)− F (w̄ − (w1 − w2)), β
−(w1 − w2)).

Now, to show the right-continuity at zero, we first quote a result from
Borodin and Salminen (2002), P.310, formulae 3.2.8 (1), which can be rewrit-
ten as:

Lemma 4.7. Let a ≤ x ≤ b, µ > 0, B
(µ)
t = µt+ Bt, where Bt is a standard

Brownian motion with B0 = x, and define

τ = inf{t > 0 : B
(µ)
t 6∈ (a, b)}.

Then for any r > 0, we have

E
[

e−rτ1
B

(µ)
τ =a

]

= eµ(a−x) sinh(−
√

µ2 + 2r2(b− x))

sinh(−
√

µ2 + 2r2(b− a))
. (4.12)
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Lemma 4.8. F is right-continuous at zero.

Proof. Since we know F is concave and continuous over (0, w̄], we know that
the right-hand-side limit of F at 0 exists and is at least F̃0(0) ≥ 0 (as F ≥ F̃0

and F̃0(0) ≥ F0(0) = 0), i.e.

F̃0(0) ≤ lim
w↓0

F (w) <∞.

By way of contradiction, suppose F is not right-continuous at 0, i.e. for some
η

lim
w↓0

F (w) = F̃0(0) + η > F̃0(0) = F (0).

Let ζ = η/4. By the continuity of F and F̃0 over (0, w̄), we can pick w0 < w̄/2
such that

F̃0(0) + η + ζ ≥ F (w) ≥ F̃0(0) + η − ζ ∀w ∈ (0, 2w0)

and
F̃0(0)− ζ ≤ F̃0(w) ≤ F̃0(0) + ζ ∀w ∈ (0, 2w0).

Fix ǫ > 0 and take δ > 0 such that

|F (w)− F (w0)| < ǫ for all w ∈ [w0 − δ, w0].

Let (C,A, Y, τ) ∈ U(w0 − δ) be an ǫ-optimal contract at w0 − δ, i.e.

J(C,A, Y, τ ;w0 − δ) ≥ F (w0 − δ)− ǫ ≥ F (w0)− 2ǫ.

Define τw0 = inf{t > 0 : Wt(C,A, Y, w0) 6∈ (0, w̄)}. By Lemma 4.6, we know
that (C,A, Y, τ ∧ τw0) ∈ U(w0) and

J(C,A, Y, τ ∧τw0 ;w0) ≥ J(C,A, Y, τ ;w0−δ)+min(F (w̄)−F (w̄−δ), β−(δ)).

We can next modify this contract in a way so that, in cases where τ <
τw0 and Wτ ≤ 2w0, instead of retiring the agent, we follow some ǫ-optimal
contract after τ .

Mathematically, let Dj be disjoint intervals such that

∪jDj = (0, 2w0]

wj := inf{Dj} > 0 and wj ∈ Dj
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|Dj | < ǫ.

For each j, let (Cj, Aj , Y j, τ j) ∈ U(wj) such that

J(Cj, Aj , Y j, τ j ;wj) ≥ F̃0(0) + η − 2ζ.

Defining τw,j = inf{t > 0 : Wt(C
j, Aj , Y j, w) 6∈ (0, w̄)} and using again

Lemma 4.6, we have

J(Cj , Aj, Y j , τ j ;w) ≥ η − 2ζ +min(F (w̄)− F (w̄ − (w − wj)), β
−(w − wj)).

Then we define

(C̃t, Ãt, Ỹt) =

{

(Ct, At, Yt) t < τ or Wτ > 2w0

(Cj
t−τ , A

j
t−τ , Y

j
t−τ) ◦ θ

τ t ≥ τ and Wτ ∈ Dj

τ̃ = 1τw0<τ or Wτ>2w0(τ
w0∧τ)+1τw0>τ

(
∑

j

1Wτ∈Dj
[τ + [(τ j ∧ τWτ ,j) ◦ θτ ]]

)

.

Then we can see

J(C̃, Ã, Ỹ, τ̃ ;w0)

= J(C,A, Y, τw0 ∧ τ ;w0)

+ E

[

1τw0>τe
−rτ
∑

j

1Wτ∈Dj
[J(Cj, Aj , Y j, τ j ∧ τWτ ,j;Wτ )− F̃0(Wτ )]

]

≥ J(C,A, Y, τw0 ∧ τ ;w0)

+ E

[

1τw0>τe
−rτ
∑

j

1Wτ∈Dj
·
(

F̃0(0) + η − 2ζ

+min(F (w̄)− F (w̄ − (Wτ − wj)), β
−(Wτ − wj))− F̃0(0)− ζ

)]

since F̃0(w) ≤ F̃0(0) + ζ for w ∈ (0, 2w0)

≥ F (w0)− 2ǫ+min(F (w̄)− F (w̄ − δ), β−(δ))

+ (η − 3ζ)E
[
1τw0>τe

−rτ1Wτ≤2w0

]
+ inf

w∈[0,ǫ]
{min(F (w̄)− F (w̄ − w), β−(w))}]

which implies

F (w0) ≥F (w0)− 2ǫ+min(F (w̄)− F (w̄ − δ), β−(δ))

+ (η − 3ζ) · E
[
1τ<τw0 e−rτ1Wτ≤2w0

]

+ inf
w∈[0,ǫ]

{min(F (w̄)− F (w̄ − w), β−(w))}.
(4.13)
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We would like to show that as we take the limit of (4.13) as ǫ goes to
zero, and the term with expectation is uniformly bounded below by a positive
constant. If that is true, since ǫ is arbitrary, this would imply that

F (w0) ≥ F (w0) + (η − 3ζ) · k(w0),

where k(w0) > 0, which leads to a contradiction.
Now we want to show the existence of k(w0) > 0 such that

E
[

1τ≤τw0 e−rτ1Wτ≤2w0

]

≥ k(w0).

First, we apply a time-change (see Karatzas and Shreve, 1991, Theorem
3.4.6).

Let Mt =
∫ t

0
rσYtdZt. Note that 〈M〉t =

∫ t

0
r2σ2Y 2

t dt ≥ r2σ2γ20t and
limt→∞〈M〉t = ∞. Define, for each 0 ≤ s ≤ ∞, the stopping time

T (s) = inf{t ≥ 0 : 〈Mt〉 > s} ≤ s/(r2σ2γ20). (4.14)

The time-changed process Z̄t := MT (s) is a standard Brownian motion and
we have a.s. Mt = Z̄〈Mt〉 for 0 ≤ t <∞.

Next, consider

W̄t = w0 +
r(w̄ + h(ā))t

r2σ2γ20
+ Z̄t, t > 0.

In comparison,

Wt = w0 +

∫ t

0

r(Ws − u(Cs) + h(As))ds+

∫ t

0

rσYsdZs

= w0 +

∫ t

0

r(Ws − u(Cs) + h(As))ds+Mt

≤ w0 +

∫ t

0

r(w̄ + h(ā))ds+ Z̄〈Mt〉 a.s.

And so,

WT (t) ≤ w0 +

∫ T (t)

0

r(w̄ + h(ā))ds+ Z̄t

≤ w0 +

∫ t/(r2σ2γ2
0 )

0

r(w̄ + h(ā))ds+ Z̄t

≤ w0 +
r(w̄ + h(ā))t

r2σ2γ20
+ Z̄t ≤ W̄t a.s..

81



Thus we have
WT (t) ≤ W̄t (4.15)

a.s. for all t.
Let

ν2w0 = inf{t > 0 : W̄t ≥ 2w0} and τ2w0 = inf{t > 0 : Wt ≥ 2w0}.

Likewise, define

νδ = inf{t > 0 : W̄t ≤ δ} and τδ = inf{t > 0 : Wt ≤ δ}.

Recall that W0 = W̄0 and by (4.15), we have WT (t) ≤ W̄t. Therefore,

{τ2w0 ≤ t} =⇒ Ws ≥ 2w0 for some s ≤ t

=⇒ W̄〈M〉s ≥ 2w0 for some s ≤ t

=⇒ ν2w0 ≤ 〈M〉t

=⇒ T (ν2w0) ≤ t,

which means
τ2w0 ≥ T (ν2w0). (4.16)

Similarly, we have
τδ ≤ T (νδ). (4.17)

Also, we must have τ ≤ τδ. This is because we have (C,A, Y, τ) ∈ U((w0−δ))
and therefore

Wt(C,A, Y, w0 − δ) ∈ (0, w̄) for t ≤ τ,

and so as in the proof of Lemma 4.6

Wt(C,A, Y, w0)−Wt(C,A, Y, w0 − δ) = ertδ.

If τ > τδ, it would mean that Wt(C,A, Y, w0) ≤ δ for some t < τ , which in
turn implies Wt(C,A, Y, w0 − δ) ≤ δ − ert(δ) ≤ 0, giving a contradiction.

We take the following steps to derive the bound we needed. First, since
the process must hit 2w0 first before hitting w̄, we have

τδ ≤ τ2w0 =⇒ τδ ≤ τw0 ,

and moreover

τδ < τ2w0 =⇒ Wτ < 2w0 since τ ≤ τδ.
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These together give

E
[

1τ≤τw0 e−rτ1Wτ≤2w0

]

≥ E
[
e−rτδ1τδ≤τ2w0

]
.

Applying (4.16) and (4.17), and then applying (4.14), we have further

E
[
e−rτδ1τδ≤τ2w0

]
≥E

[
e−rT (νδ)1νδ≤ν2w0

]

≥E
[
e−rT (ν0)1ν0≤ν2w0

]

≥E
[

e−rν0/(r2σ2γ2
0 )1ν0≤ν2w0

]

.

This gives

E
[

1τ≤τw0e−rτ1Wτ≤2w0

]

≥ E
[

e−rν0/(r2σ2γ2
0 )1ν0≤ν2w0

]

.

Letting r′ = r
r2σ2γ2

0
> 0 and applying Lemma 4.7 with a = δ, x = w0, b =

2w0 and µ = r′(w̄+ h(ā)), we know that E[e−r′ν01v0≤ν2w0
] is positive number

that depends only on w0, independent of w0 − δ, C, A, Y and τ . We write
k(w0) = E[e−r′ν01v0≤ν2w0

] > 0.
Finally, we take limit of (4.13) as δ goes to zero. This would imply

F (w0) ≥ F (w0)− 2ǫ+ (η − 3ζ) · k(w0)− sup
w∈[0,ǫ]

{F (w̄ − w)− F (w̄))].

Since ǫ > 0 is arbitrary and F is left-continuous at w̄, we have

F (w0) ≥ F (w0) + (η − 3ζ) · k(w0),

which leads to a contradiction. This implies that F is right-continuous at
zero.

Corollary 4.2. F is uniformly continuous in [0, w̄].

This follows immediately from Corollary 4.1 and Lemma 4.8 since the
last term on the right-hand-side of both inequalities represents the difference
in F for a interval from 0 and w̄.
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4.5 Dynamic programming principle

Proposition 4.2 (Dynamic programming principle). For any {FZ
t }-stopping

time τ , we have

F (w) = sup
(C,A,Y,ν)∈U(w)

E[

∫ τ∧ν

0

re−rs(As − Cs)ds+

1τ≤νe
−r(τ∧ν)F (Wτ∧ν) + 1ν<τe

−r(τ∧ν)F̃0(Wτ∧ν)],

(4.18)

where Wt = Wt(C,A, Y, w).

It should be noted that, since F̃0 ≤ F , the DPP also implies

F (w) = sup
(C,A,Y,ν)∈U(w)

E[

∫ τ∧ν

0

re−rs(As − Cs)ds+ e−r(τ∧ν)F (Wτ∧ν)] (4.19)

for any stopping time τ . It is obvious that the left-hand-side is less than
the right-hand-side given equation (4.18). For the other direction, it can be
proved by taking τ ′ = min(τ, ν) and then applying the DPP.

Our proof of the DPP is very similar to standard proofs except that we
need to consider incentive-compatibility of the contracts. If you agree with
the standard DPP, then this one is similar with a trick. The idea is that we
can take some ǫ-optimal contract from time t onwards based on the value
of Wt (which evolves according to (C,A) in time 0 ≤ s < t). The standard
way (see for example Yong and Zhou, 1999, Theorem 4.3.3) is to consider
partition Dj of [0, w̄] such that length of each Dj < δ. For each Dj , we pick
a wj in Dj and let (Cj, Aj) be the corresponding ǫ-optimal control. The
problem here is that (Cj , Aj, Y j, τ j) may not be feasible for other w ∈ Dj .
However, we can make use of Lemma 4.6 to build feasible contracts for each
point w ∈ Dj and provide bounds for the profit.

We need the following definition and lemma:

Definition 4.5. For fixed t > 0 and (y.) ∈ C[0,∞), define the mapping
Λt,y. : C[0,∞) → C[0,∞) as

Λt,y.(x.) = (x(.∨t)−t − x0 + y.∧t)
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Lemma 4.9. For any (C,A, Y, ν) ∈ U(w) for some w ∈ [0, w̄] and stopping
time τ ≤ ν, we have

J(C,A, Y, ν;w) = E

[∫ τ

0

re−rt(At − Ct)dt+ e−rτJ(Cω, Aω, Y ω, νω;Wτ (ω))

]

(4.20)
where (Cω, Aω, Y ω, νω) are defined as follows. For t > 0 and (y.) ∈ C[0,∞),

Ct,y.
s (z.) = Cs+t(Λ

t,y.(z.)),

At,y.
s (z.) = As+t(Λ

t,y.(z.)),

Y t,y.
s (z.) = Ys+t(Λ

t,y.(z.)),

νt,y.(z.) = ν(Λt,y.(z.))− t

And for ω ∈ Ω,

Cω = Cτ(ω),Z(.,ω), Aω = Aτ(ω),Z(.,ω),

Y ω = Y τ(ω),Z(.,ω), νω = ντ(ω),Z(.,ω),

and we have
(Cω, Aω, Y ω, νω) ∈ U(Wτ (ω)),

where Wt = Wt(C,A, Y ;w).

Proof of lemma. We have

J(C,A, Y, ν;w)

=E

[∫ ν

0

re−rs(As − Cs)ds+ e−rνF̃0(Wν)

]

=E

[∫ τ

0

re−rs(As − Cs)ds+

∫ ν

τ

re−rs(As − Cs)ds+ e−rνF̃0(Wν)

]

=E

[∫ τ

0

re−rs(As − Cs)ds

+e−rτ

(∫ ν

τ

re−r(s−τ)(As − Cs)ds+ e−r(ν−τ)F̃0(Wν)

)]

=E

[∫ τ

0

re−rs(As − Cs)ds

+e−rτE

[∫ ν−τ

0

re−rs(Aτ+s − Cτ+s)ds+ e−r(ν−τ)F̃0(Wν−τ )|Fτ

]]

.
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In order to establish (4.20), we would like to show that (P |Fτ)− a.s., we
have

E

[∫ ν−τ

0

re−rs(Aτ+s − Cτ+s)ds+ e−r(ν−τ)F̃0(Wν−τ )

∣
∣
∣
∣
Fτ

]

(ω)

= J(Cω, Aω, Y ω, νω;Wτ (ω))

By Theorem 1.3.4 of Stroock and Varadhan (1979), we know that under
the regular conditional probability distribution of P given Fτ , i.e. P |Fτ ,
Zs, 0 ≤ s ≤ τ is the same with probability one, i.e. there is z̃(., ω) such that

P ({ω : Zs = z̃(s, ω) ∀ 0 ≤ s ≤ τ}|Fτ ) = 1,

and also θτ (Z(., ω) − Zτ (ω)) is a Brownian motion under P |Fτ . By the
uniqueness of the weak solution to (3.1) guaranteed by assumption (U7), we
know Wτ |Fτ is with probability one equal to a constant as well, i.e.

P (Wτ = w̃(ω)|Fτ) = 1

for some w̃(.) for all ω. Note that τ(ω) and Zτ (ω) are both Fτ -measurable.
Since Zτ (ω) is with probability one constant under P |Fτ , we have (C

ω, Aω, Y ω, νω) ∈
U(w̃(ω)) = U(Wτ (ω)) for almost all ω. Moreover,

E

[∫ ν−τ

0

re−rs(Aτ+s − Cτ+s)ds+ e−r(ν−τ)F̃0(Wν−τ )|Fτ

]

(ω)

=E

[∫ ν−τ

0

re−rs[Aτ+s(Z(. ∧ (τ + s), ω))− Cτ+s(Z(. ∧ (τ + s), ω))]ds

+e−r(ν−τ)F̃0(Wν−τ (ω))|Fτ

]

=E

[
∫ ντ(ω),Z(.∧τ,ω)

0

re−rs[Aτ(ω),Z(.∧τ,ω)
s − Cτ(ω),Z(.∧τ,ω)

s ]ds

+e−r(ντ(ω),Z(.∧τ,ω))F̃0(Wντ(ω),Z(.∧τ,ω))|Fτ

]

=E

[
∫ νt,z.

0

re−rs(At,z.
s − Ct,z.

s )ds+ e−rνF̃0(Wνt,z.(C
t,z., At,z., Y t,z.;w))

]∣
∣
∣
∣
∣
t=τ(ω),z.=Z(.,ω)

=J(Cτ(ω),Z(.,ω), Aτ(ω),Z(.,ω), Y τ(ω),Z(.,ω), ντ(ω),Z(.,ω);Wτ (ω))

=J(Cω, Aω, Y ω, νω;Wτ (ω)).

This establishes (4.20) and completes the proof.
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Proof of DPP. First, we would like to show

F (w) ≤ sup
(C,A,Y,ν)∈U(w)

E[

∫ τ∧ν

0

re−rs(As − Cs)ds+

1τ≤νe
−r(τ∧ν)F (Wτ∧ν) + 1ν<τe

−r(τ∧ν)F̃0(Wτ∧ν)],

(4.21)

For any (C,A, Y, ν) ∈ U(w), since τ ∧ ν ≤ ν, by Lemma 4.9 we have

J(C,A, Y, ν;w)

= E

[∫ τ∧ν

0

re−rt(At − Ct)dt+ e−r(τ∧ν)J(Cω, Aω, Y ω, νω;Wτ∧ν)

]

≤ E

[∫ τ∧ν

0

re−rt(At − Ct)dt+ 1τ≤νe
−r(τ∧ν)F (Wτ∧ν) + 1ν<τe

−r(τ∧ν)F̃0(Wτ∧ν)

]

.

We then obtain (4.21) by taking supremum over U(w).
Now, we would like to show

F (w) ≥ sup
(C,A,Y,ν)∈U(w)

E

[∫ τ∧ν

0

re−rs(As − Cs)ds+ e−r(τ∧ν)F (Wτ∧ν)

]

,

which would imply our desired inequality since F ≥ F̃0.
For ǫ > 0, we pick δ > 0 such that |β−(x)| < ǫ and |F (w̄)−F (w̄−x)| < ǫ

for x ∈ [0, δ]. We let Dj (j ≥ 1) be disjoint intervals such that ∪jDj = [0, w̄]
and

diam(Dj) < δ (4.22)

F (w)− F (ŵ) < ǫ ∀w, ŵ ∈ Dj (4.23)

inf{Dj} > 0 unless Dj = {0}, and inf{Dj} ∈ Dj (4.24)

and
Dj = {0} whenever 0 ∈ Dj

Dj = {w̄} whenever w̄ ∈ Dj

so that the endpoints 0 and w̄ are in intervals of their own. We can always
choose such Dj ’s because F is continuous, concave and bounded over (0, w̄).
To do so, we can consider

w1
i = iδ, i = 0, 1, 2, . . . , n := ⌊w̄/δ⌋; w1

n+1 = w̄.
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w2
0 = w̄, w2

i = inf{w ∈ (0, w̄) : |F (w)− F (w2
i−1)| ≤ ǫ/2} for i = 1, 2, 3, . . .

w3
0 = w̄, w3

i = w̄/2i, i = 1, 2, 3, . . .

Note that w2
i ’s are well-defined because the left-derivative at w̄ is finite as

0 ≥ F ′
−(w̄) ≥ F̄ ′

−(w̄) > min(−h′(0),−1/u′(c̄)).

Then we can let w̄ = w0 > w1 > w2 > w3 > . . . , wi ∈ (0, w̄] such that

{wi}i≥0 = ({w1
i }i=1,2,...,n ∪ {w2

i }i≤0 ∪ {w3
i }i≤0)\{0}.

Then the intervals Dj can be defined as Dj = [wj+1, wj). Adding the sets
{0} and {w̄} completes our construction. The definition of w1

i , w
2
i and w3

i

ensures, respectively, that conditions (4.22), (4.23) and (4.24) hold for the
constructed Dj ’s.

For each j, define wj = inf{Dj} ∈ Dj, and then there is an ǫ-optimal
control (Cj, Aj, Y j , νj) ∈ U(wj) such that

J(Cj , Aj, Y j , νj;wj) ≥ F (wj)− ǫ.

Given the stopping time τ and the initial continuation value w with a
contract (C,A, Y, ν) ∈ U(w), with Wt := Wt(C,A, Y ;w), we consider the
contract (C̃, Ã, Ỹ, ν̃) where

(C̃s, Ãs, Ỹs) =

{

(Cs, As, Ys) 0 ≤ s ≤ τ ∧ ν

((Cj, Aj, Y j)s−tj ◦ θ
τ∧ν Wτ∧ν ∈ Dj, s ≥ tj

ν̃ = (τ ∧ ν) +

(
∑

j

1Wτ∧ν∈Dj
(νj ∧ τWτ∧ν ,j) ◦ θτ∧ν

)

,

where
τw

′,j = inf{t > 0 :Wt(C
j , Aj, Y j, w′) 6∈ (0, w̄)}.

Note that (C̃, Ã, Ỹ ) is progressively measurable with respect to Ft and
ν̃ is a {Ft}-stopping time. Furthermore, we can construct a weak solution
(Wt, Zt) given (C̃, Ã, Ỹ ), similar to the argument given in Borkar (1989, P.57).
This ensures (C̃, Ã, Ỹ, ν̃) ∈ U(w).
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Recall that for any w′ ∈ Dj, Lemma 4.6 states that we have (Cj, Aj , Y j, νj∧
τw

′,j) ∈ U(w′) and provides bounds for the corresponding profit. In par-
ticular, if w′ = wj, then the profit is identical; otherwise w′ > wj and
wj = inf{Dj} by the construction of Dj , and the profit is

J(Cj, Aj , Y j,νj ∧ τw
′,j;w′)

≥J(Cj , Aj, Y j , νj;wj)− [F (w̄ − (w − wj))− F (w̄)]

≥F (wj)− ǫ+min(F (w̄)− F (w̄ − (w′ − wj)), β
−(w′ − wj))

≥F (wj)− 2ǫ. (4.25)

We then have

F (w) ≥ J(C̃, Ã, Ỹ, ν̃ ∧ τ)

= E

[∫ τ∧ν

0

re−rs(As − Cs)ds

+e−r(τ∧ν)
∑

j

1Wν∧τ∈Dj
J(Cj, Aj , Y j, ν ∧ τWν∧τ ,j;Wν∧τ )

]

≥ E

[
∫ τ∧ν

0

re−rs(As − Cs)ds+ e−r(τ∧ν)
∑

j

1Wν∧τ∈Dj
(F (wj)− 2ǫ)

]

by (4.25)

≥ E

[∫ τ∧ν

0

re−rs(As − Cs)ds+ e−r(τ∧ν)(F (Wτ∧ν)− 3ǫ)

]

by (4.23).

Letting ǫ ↓ 0 and noting that F ≥ F̃0, we get the desired result.

4.6 Optimal profit as the viscosity solution

In this section, we will prove Theorem 4.1, which states that the optimal
profit function to our principal-agent problem is a viscosity solution of (4.1)–
(4.2).

Proof of Theorem 4.1. Viscosity supersolution:
To show that F is a viscosity supersolution, consider ϕ ∈ C2((0, w̄)), w0 ∈
(0, w̄) such that ϕ− F attains a local maximum at w0 with ϕ(w0) = F (w0).

Setting τ = 0, we have

F (w0) ≥ J(C,A, Y, 0) = F̃0(w0) = ϕ(w0),
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i.e. F̃0(w0)− ϕ(w0) ≤ 0. Next we want to show that

H(w0, ϕ
′(w0), ϕ

′′(w0))− rϕ(w0) ≤ 0. (4.26)

Let ǫ be such that 0 < ǫ < min(w0, w̄ − w0) and

ϕ(w) ≤ F (w) ∀w ∈ [w0 − ǫ, w0 + ǫ].

For each a ∈ A and c ∈ [0, c̄], we consider the contract (C,A, Y, τ) ∈ U(w0)
with

Ct = c, At = a, Yt = γ(At)

and
τ = inf{t > 0 :Wt 6∈ (w0 − ǫ, w0 + ǫ)},

with
Wt =Wt(C,A, Y, w0).

Note that E[τ ] > 0 since w0 ∈ (w0 − ǫ, w0 + ǫ). Then for any t > 0, we must
have by Proposition 4.2 and equation (4.19),

F (w0) ≥ E

[∫ t∧τ

0

e−rs(As − Cs)ds+ e−r(t∧τ)F (Wt∧τ )

]

i.e.

E[F (w0)− e−r(t∧τ)F (Wt∧τ )] ≥ E

[∫ t∧τ

0

e−rs(As − Cs)ds

]

. (4.27)

For s > 0 small enough,

0 ≥
E{F (w0)− ϕ(w0)− e−r(s∧τ)[F (Ws∧τ )− ϕ(Ws∧τ)]}

E[s ∧ τ ]

since F (w0) − ϕ(w0) = 0 and F ≥ ϕ for all w ∈ (w0 − ǫ, w0 + ǫ). Then
together with (4.27)

0 ≥
E{
∫ s∧τ

0
e−rt(At − Ct)dt− ϕ(w0) + e−r(s∧τ)ϕ(Ws∧τ )}

E[s ∧ τ ]
.

Taking limit as s→ 0 we have

(a− c)− rϕ(w0) + rϕ′(w0)(w0 − u(c) + h(a)) +
1

2
ϕ′′(w0)r

2γ(a)2σ2 ≤ 0.
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This holds for all 0 ≤ c ≤ c̄, a ∈ A and so taking supremum we have

H(w, ϕ′(w0), ϕ
′′(w0))− rϕ(w0) ≤ 0.

Viscosity subsolution:
Suppose F is not a viscosity subsolution. Then there is w0 ∈ (0, w̄), 0 <
ǫ < min(w0, w̄ − w0), ϕ ∈ C2 with ϕ(w0) = F (w0), ϕ ≥ F s.t. for all
w ∈ [w0 − ǫ, w0 + ǫ], by continuity

H(w, ϕ′(w), ϕ′′(w))− rϕ(w) ≤ −v (4.28)

F̃0(w) ≤ ϕ(w)− v (4.29)

where v > 0.
In the following, we write

L(a,c,y)ϕ(w) = rϕ′(w)(w − u(c) + h(a)) +
ϕ′′(w)

2
r2σ2y2

= Ha,c,y(w, ϕ
′(w), ϕ′′(w))− r(a− c).

(4.30)

Now, for any contract (C,A, Y, τ) ∈ U(w0), let

τǫ = inf{t > 0 : Wt 6∈ (w0 − ǫ, w0 + ǫ)}.

Applying Ito’s Lemma to e−rtϕ(Wt), we have

E[e−r(τǫ∧τ)ϕ(Wτǫ∧τ )]

=ϕ(w0) + E

[∫ τǫ∧τ

0

e−rt(−rϕ(Wt) + L(At,Ct,γ(At))ϕ(Wt))dt

]

≤ϕ(w0) + E

[∫ τǫ∧τ

0

e−rt(−r(At − Ct)− v)dt

]

by (4.28) and (4.30)

=ϕ(w0)− rE[

∫ τǫ∧τ

0

e−rt(At − Ct)dt]− vE[

∫ τǫ∧τ

0

e−rtdt]

where At ∈ A for each t and ω. Rearranging this and noting that ϕ(w0) =
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F (w0), ϕ ≥ F in [w0 − ǫ, w0 + ǫ] and (4.29) gives

E[1τ<τǫe
−r(τǫ∧τ)F̃0(Wτǫ∧τ )] + E[1τǫ≤τe

−r(τǫ∧τ)F (Wτǫ∧τ )]

+ rE[

∫ τǫ∧τ

0

e−rt(At − Ct)dt]

≤F (w0)− vE[

∫ τǫ∧τ

0

e−rtdt]− vE[1τ<τǫe
−r(τǫ∧τ)]

=F (w0)− vE[

∫ τǫ

0

e−rtdt]− vE[1τ<τǫe
−r(τǫ∨τ)]

≤F (w0)− vE[

∫ τǫ

0

e−rtdt].

Next we claim thatE[
∫ τǫ
0
e−rtdt] = (1−E[e−rτǫ ])/r > g0 > 0 for (C,A, Y, ν) ∈

U(w0). To do this we consider the function

ψ(w) = G0 · ((w − w0)
2 − ǫ2)

where G0 > 0. Note that ψ ∈ C2, ψ(w0) = −G0ǫ
2 and ψ(w0 − ǫ) = ψ(w0 +

ǫ) = 0. Applying Ito’s lemma to e−rtψ(Wt), we have

E[e−rτǫψ(Wτǫ)] = ψ(w0) + E[

∫ τǫ

0

e−rt(−rψ + L(Ct,At,Yt)ψ)(Wt)dt]. (4.31)

Note that Ct takes values in [0, c̄] and that Yt = γ(At) is bounded so
that 0 ≤ γ(At) ≤ ȳ. Next we want to show that there is G0 > 0 such
that the second term on the right-hand side is at most E[

∫ τǫ
0
e−rtdt] for all

(C,A, Y, τ) ∈ U(w). Indeed, we claim the existence of G0 > 0 such that

−rψ + L(c,a,y)ψ ≤ 1

for all c ∈ [0, c̄], a ∈ A. For w ∈ (w0 − ǫ, w0 + ǫ),

− rψ(w) + L(c,a,y)ψ(w)

=
[
−r + 2r(w − w0)(G0((w − w0)

2 − ǫ2)− u(c) + h(a)) + r2y2σ2
]

= G0

[
−r((w − w0)

2 − ǫ2) + 2r(w − w0)[G0((w − w0)
2 − ǫ2)− u(c) + h(a)]

+r2y2σ2
]

≤ G0

[
rǫ2 + 2r(w − w0)[G0((w − w0)

2 − ǫ2)− u(c) + h(a)] + r2ȳ2σ2
]

≤ G0[rǫ
2 +max

(
2rǫh(ā),−2rǫ[G0(−ǫ

2)− u(c̄)]
)
+ r2ȳ2σ2]

= G0[rǫ
2 + 2rǫmax

(
h(ā), G0ǫ

2 + u(c̄)
)
+ r2ȳ2σ2]

≤ 1
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for sufficiently small G0 > 0. This, together with (4.31), gives

E

[∫ τǫ

0

e−rtdt

]

≥ E[e−rτǫψ(Wτǫ)]− ψ(w0) = G0ǫ
2 =: g0 > 0.

Finally, taking supremum in (??) and using Proposition 4.2, we have

F (w0) ≤ F (w0)− vg0,

which leads to a contradiction.

4.7 Uniqueness of viscosity solution

We have proved that the optimal profit function is a viscosity solution for
(4.1) – (4.2). This would not be very helpful if the equations actually have
multiple viscosity solutions. Therefore, we proceed to show the uniqueness
of the viscosity solution.

In the following, we will appeal to Theorem 2.2 to obtain uniqueness of
the viscosity solution for (4.1).

Lemma 4.10. Let G(w, z, p, α) = −max{H(w, p, α)− rz, F̃0(w)− z}. Then
G satisfies the requirement of F in Theorem 2.2, i.e.

1. G is proper, i.e. it satisfies (2.7) and (2.8).

2. There exists γ > 0 such that (2.10) is satisfied, i.e.

γ(z′ − z) ≤ G(w, z′, p, α)−G(w, z, p, α)

for z′ ≥ z, (w, p, α) ∈ Ω̄× R× (R+ ∪ {0}).

3. There is a function ω : [0,∞] → [0,∞] that satisfies ω(0+) = 0 such
that (2.11) is satisfied, i.e.

G(w2, r, α(w1 − w2), β2)−G(w1, r, α(w1 − w2), β1)

≤ ω(α|w1 − w2|
2 + |w1 − w2|)

(4.32)

for every w1, w2 ∈ [0, w̄], r ∈ R, α ∈ R, β1 ≥ 0, β2 ≥ 0 such that

−3α

(
I 0
0 I

)

≤

(
β1 0
0 −β2

)

≤ 3α

(
I −I
−I I

)

.
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Proof. First we note that

G(w, z, p, α)−G(w, z′, p, α)

=

{

G(w, z, p, α) +H(w, p, α)− rz′ H(w, p, α)− rz′ ≥ F̃0(w)− z′

G(w, z, p, α) + F̃0(w)− z′ otherwise

≤

{

−H(w, p, α)− rz +H(w, p, α)− rz′ H(w, p, α)− rz′ ≥ F̃0(w)− z′

−F̃0(w) + z + F̃0(w)− z′ otherwise

≤min(1, r)(z − z′).

This shows (2.7). Setting γ = min(1, r) > 0, condition 2 is also satisfied.
Second, we note that if H(w, p, α′)− rz < F̃0(w)− z,

G(w, z, p, α)−G(w, z, p, α′) =G(w, z, p, α) + F̃0(w)− z

≤− F̃0(w) + z + F̃0(w)− z′ = 0.

Alternatively, if H(w, p, α′)− rz ≥ F̃0(w)− z,

G(w, z, p, α)−G(w, z, p, α′) =G(w, z, p, α) +H(w, p, α′)− rz

≤−H(w, p, α)− rz +H(w, p, α′)− rz′

=−H(w, p, α) +H(w, p, α′)

But selecting a ∈ A, c ∈ [0, c̄] such that

H(w, p, α′) = Ha,c,γ(a)(w, p, α
′),

we have

−H(w, p, α) +H(w, p, α′) = −H(w, p, α) +Ha,c,γ(a)(w, p, α
′)

≤ −Ha,c,γ(a)(w, p, α) +Ha,c,γ(a)(w, p, α
′)

= −
α− α′

2
r2γ(a)2σ2

≤ 0

whenever α′ ≤ α. This proves (2.8).
To show condition 3, we consider two cases.
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Case 1: H(w1, α(w1 − w2), β1)− rz ≥ F̃0(w1)− z. We have

G(w2, z, α(w1 − w2), β2)−G(w1, z, α(w1 − w2), β1)

=G(w2, z, α(w1 − w2), β2) +H(w1, α(w1 − w2), β1)− rz

≤−H(w2, α(w1 − w2), β2) + rz +H(w1, α(w1 − w2), β1)− rz

=−H(w2, α(w1 − w2), β2) +H(w1, α(w1 − w2), β1)

Recall

H(w, p, β) = sup
a∈A,c

Ha,c,γ(a)(w, p, β)

= sup
a∈A,c

{

r(a− c) + rp(w − u(c) + h(a)) +
β

2
r2γ(a)2σ2

}

.

Then we have

H(w1, α(w1 − w2), β1)−H(w2, α(w1 − w2), β2)

≤ sup
a∈A,c

{
Ha,c,γ(a)(w1, α(w1 − w2), β1)−Ha,c,γ(a)(w2, α(w1 − w2), β2)

}

= sup
a∈A,c

{

rα(w1 − w2)(w1 − w2) +
β1
2
r2γ(a)2σ2 −

β2
2
r2γ(a)2σ2

}

= rα|w1 − w1|
2 + sup

a∈A,c

{
β1
2
r2γ(a)2σ2 −

β2
2
r2γ(a)2σ2

}

≤ rα|w2 − w1|
2 + 0

since (
β1 0
0 −β2

)

≤ 3α

(
I −I
−I I

)

implies
β1z

2 − β2z
2 ≤ 3α(z2 + z2 − 2z2) = 0.

Case 2: H(w1, α(w1 − w2), β1)− rz < F̃0(w1)− z. We have

G(w2, z, α(w1 − w2), β2)−G(w1, z, α(w1 − w2), β1)

=G(w2, z, α(w1 − w2), β2) + F̃0(w1)− z

≤− F̃0(w2) + z + F̃0(w1)− z

=F̃0(w1)− F̃0(w2)
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At this point, we recall the assumption that F̃0 is continuous over the closed
and bounded interval [0, w̄]. This implies that F̃0 is also uniformly con-
tinuous, and there is an increasing function ω̃ : [0,∞] → [0,∞] such that
ω̃(0+) = 0 and

F̃0(w1)− F̃0(w2) ≤ ω̃(|w1 − w2|).

Combining the two cases, we can set ω(v) = rv + ω̃(v) and have the desired
result.

The following proposition then follows immediately from Theorem 2.2
and Lemma 4.10.

Proposition 4.3 (Comparison). Suppose r > 0 and
¯
F a viscosity subsolution

and F̄ a viscosity supersolution to (4.1)–(4.2) with
¯
F ≤ F̄ at 0 and w̄. Then

we have
¯
F ≤ F̄ in [0, w̄].

At this point, Theorem 4.2, i.e. the uniqueness of viscosity solutions
for the equations (4.1)–(4.2), follows immediately. If we have two viscosity
solutions F and F̂ that satisfy (4.2), they are both supersolutions and sub-
solutions, and we also have F (0) = F̂ (0) and F (w̄) = F̂ (w̄). Applying the
above proposition twice proves that F = F̂ in [0, w̄].

4.8 Smoothness of the profit function

Proposition 4.4. Suppose F̃0 is C1. Then the optimal profit function, F , is
C1.

Proof. Since we have proved in Lemma 4.3 that F is concave, we know that
the left-derivative F ′

−(w0) and the right-derivative F ′
+(w0) exist at each point

w0 ∈ (0, w̄) with F ′
+(w0) ≤ F ′

−(w0).
By way of contradiction, suppose that F is not C1 and so at some point

w0 ∈ (0, w̄), we have F ′
+(w0) < F ′

−(w0).

If F (w0) = F̃0(w), the requirement that F̃0(w) ≤ F (w) for all w ∈ [0, w̄]
would imply that F̃0, a C

1 function, touches F at w0 from below. That would
mean F ′

+(w0) = F ′
−(w0) = F̃ ′

0(w0) and therefore a contradiction.

Next, we consider the case when F (w0) > F̃0(w). We fix some q in
(F ′

+(w0), F
′
−(w0)) and consider the function

ϕǫ(w) = F (w0) + q(w − w0)−
1

2ǫ
(w − w0)

2
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for ǫ > 0. We can see that

ϕǫ ∈ C2, ϕǫ(w0) = F (w0), ϕ′
ǫ(w0) = q, ϕ′′

ǫ (w0) = −1/ǫ,

Since F ′
+(w0) < q < F ′

−(w0), ϕǫ − F attains a local minimum at w0. By
Theorem 4.1, we have

max{H(w0, ϕ
′
ǫ(w0), ϕ

′′
ǫ (w0))− rϕǫ(w0), F̃0(w0)− ϕǫ(w0)} ≥ 0.

Since we are considering the case F̃0(w0) < F (w0) = ϕǫ(w0), the above
implies that H(w0, ϕ

′
ǫ(w0), ϕ

′′
ǫ (w0))− rϕǫ(w0) ≥ 0, i.e.

sup
a∈A,c∈[0,c̄]

y=γ(a)

{

r(a− c) + rq(w0 − u(c) + h(a))−
1

ǫ
r2y2σ2 − F (w0)

}

≥ 0.

However, note that q is fixed, and we know

r(a− c) + rq(w0 − u(c) + h(a))− F (w0) ≤ r(ā) + rq(w0 − 0 + h(ā))− F (w0)

is finite. Since y ≥ γ0 > 0, taking ǫ→ ∞ leads to a contradiction.
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Chapter 5

Additional Contractual
Possibilities

Sannikov (2008) considered some additional contractual possibilities, where
an agent could be retired in a different way, that gives the principal a higher
retirement profit than F0. This includes the case where the agent could
choose to quit, could be replaced, or could be promoted. The effect is mod-
elled is the modified retirement function, as well as a modified range for the
continuation value.

In our formulation in Chapter 3, we have explicitly allowed for a retire-
ment function F̃0 ≥ F0 that could be different from F0, but we have required
in assumption (A4) that such functions be a continuous function over [0, w̄]
and that F̃0 ≤ F̄ , where F̄ is the first-best profit (ignoring the retirement
function).

In this chapter, we will review some examples of F̃0 in these additional
contractual possibilities, compare our technical results with Sannikov’s re-
sults in these cases, and discuss possible relaxation of our requirements on
F̃0.

5.1 Sannikov’s results

We begin by reviewing Sannikov (2008)’s results on additional contractual
possibilities and the three examples given in his work.

Sannikov modeled the additional contractual possibilities by adding a
choice of stopping time τ when the agent is retired and he receives the con-
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tinuation value Wτ , giving the principal a profit of F̃0(Wτ ). His problem
essentially becomes a combined stochastic control and optimal stopping prob-
lem, which is also the basis of our formulation in Chapter 3. The function
F̃0 is assumed to an upper semi-continuous function that satisfies F̃0(w̃) = 0,
and F̃0(w) ≥ F0(w) for all w ∈ [w̃,∞), with equality when w is sufficiently
large.

Sannikov then considered the cases where the continuation region is con-
nected and can be represented as (wL, wH), where wL and wH are the low
and high retirement points respectively. The same HJB equation (1.15) with
modified boundary conditions and smooth-pasting conditions based on F̃0

are considered. He established a verification theorem for the case when a
concave solution satisfying these conditions and the equation exists. In those
cases, the corresponding optimal controls are identified, and the solution of
the HJB equation is shown to be equal to the optimal profit function in the
continuation region. However, he did not provide conditions nor results on
the existence of the solution to the HJB equation in this case. This is prob-
ably due to the technical difficulty arising from a possibly complicated form
of F̃0.

Three particular forms of F̃0 was considered in Sannikov’s work, and we
briefly summarize them as follows:

Quitting: When the agent can choose to quit working and receive a value
of w̃ ≥ 0 from the new employment, this can be modelled as:

F̃0(w) =

{

0 w = w̃

F0(w) w ≥ w̃
.

Note that w is at least w̃ because the agent will not stay in the em-
ployment when his continuation value falls below w̃. Moreover, this F̃0

is discontinuous at w̃.

Replacement: When the principal has the option of replacing the agent
and she obtains a value D from the new agent (which depends on the
negotiation of the new employment and search cost), then the principal
has a profit of F̃0(w) = F0(w) +D for all w > 0.

Promotion: In this case, the principal has a choice to promote the agent
to a higher position by providing training of cost K ≥ 0 to him. The
training will increase his productivity from a to θa, for θ > 1, and
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his outside option from 0 to Wp ≥ 0. With this modified cost of
effort and outside option, the principal’s profit function from a trained
agent, denoted Fp(w) can be considered as the solution for the case
with quitting. Then, for an untrained agent, the principal could decide
on training (as a means to retire the current stage of the agent and
take him to the new stage of his career) with F̃0 representing the profit
from promotion or retiring the agent. Then we would have F̃0(w) =
max(F0(w), Fp(w)−K). When the stopping time τ is hit, the agent is
promoted if Fp(Wτ )−K ≥ F0(w), and retired otherwise.

5.2 Our results for additional contractual pos-

sibilities

Our formulation in Chapter 3 explicitly allows for a retirement function F̃0

that is continuous over [0, w̄] and satisfies F0 ≤ F̃0 ≤ F̄ , where F̄ is the
first-best profit of the benchmark model.

As explained, the advantage of our methodology is that we character-
ize the optimal profit function as the unique viscosity solution of the HJB
equation (4.1) without assuming, a priori, the existence of a smooth solu-
tion to the HJB equation or that the continuation region is connected. In
comparison, since F̃0 could take many different forms, it would be hard to
establish the existence of smooth solutions to the HJB equation to apply the
verification theorem in Sannikov (2008).

5.2.1 Disconnected continuation region

While the form of the continuation region [0, wgp] is intuitive under the bench-
mark model, there are indeed cases of a disconnected continuation region for
general F̃0. In the following, we will illustrate how the continuation region
for the principal could be disconnected.

Our example comes from the results and insights from Chakrabarty and Guo
(2012). In their paper, it was shown that for an optimal stopping problem
with stopping payoff g and value function V , the optimal stopping problem
with stopping payoff h satisfying g ≤ h ≤ V will have the same value func-
tion. In particular, they gave an example where h is constructed to be the
maximum of n ≥ 2 tangents of V .
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Proposition 5.1. Let F be the optimal profit function of our problem with
retirement function F̃0. Let F

G0 be the optimal profit function of our problem
with retirement function G0 that satisfies assumption (A4) (and all other
parameters, utility function and cost function being the same). Suppose F̃0 ≤
G0 ≤ F . Then we have FG0 = F.

Proof. First, we see that F ≤ FG0 because for (C,A, Y, τ) ∈ U(w) (noting
that the admissible set of control is independent of the retirement function
F̃0), we have

J(C,A, Y, τ ;w) = E

[∫ τ

0

re−rt(At − Ct)dt+ e−rτ F̃0(Wτ )

]

= E

[∫ τ

0

re−rt(At − Ct)dt+ e−rτ G̃0(Wτ )

]

≤ FG0(w).

Taking supremum over all (C,A, Y, τ) ∈ U(w) yields F ≤ FG0.
Next, we apply the DPP for the problem with F̃0 and see that for any

(C,A, Y, ν) ∈ U(w) and stopping time τ , we have by the DPP

F (w) ≥ E[

∫ τ∧ν

0

re−rs(As − Cs)ds+ e−r(τ∧ν)F (Wτ∧ν)]

≥ E[

∫ τ∧ν

0

re−rs(As − Cs)ds+ e−r(τ∧ν)G0(Wτ∧ν)].

since G0 ≤ F . Now, we could simply take τ = ν, and this will lead to

F (w) ≥ E[

∫ ν

0

re−rs(As − Cs)ds+ e−rνG0(Wν)].

Taking supremum over all (C,A, Y, ν) ∈ U(w), we obtain F (w) ≥ FG0(w)
for all w ∈ [0, w̄].

Now, suppose we have a retirement function F̃0 with optimal profit func-
tion F such that F > F̃0 for w ∈ [0, wgp]. Then we could find another
retirement function such that the continuation region is disconnected.

Let 0 = w0 < w1 < w2 < . . . < w3n+1 = wgp, we could define G as
follows: For w ∈ [w3j , w3j+1], j = 1, 2, . . . , n, we let G(w) = F (w); for
w ∈ [w3j+1, w3j+2], j = 1, 2, . . . , n− 1, we let

G(w) =
w3j+2 − w

w3j+2 − w3j+1
F (w3j+1) +

w − w3j+1

w3j+2 − w3j+1
F̃0(w3j+2);
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G0(w)
F (w)

F̃0(w)

w0 = 0 w1 w2 w3 w4 w5 w6

w7 = wgp
w

Figure 5.1: Illustration of the example with disconnected continuation region.
In this case, the continuation region for the problem with retirement function
G0 is (w1, w3) ∪ (w4, w6), which is disconnected.
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for w ∈ [w3j+2, w3j+3], j = 1, 2, . . . , n− 1, we let

G(w) =
w3j+3 − w

w3j+3 − w3j+2

F̃0(w3j+2) +
w − w3j+2

w3j+3 − w3j+2

F (w3j+3).

So we see that G coincides with F in every one of the three intervals, and
is linear in each of the two next intervals such that G coincides with F̃0 at
the point connecting the two intervals. Since F is concave and F̃0 < F in
(0, wgp), we know that any lines connecting F and F̃0 in [0, wgp] lies below
F . So F ≥ G.

Now, we let G0(w) = max(G(w), F̃0(w)) for each w ∈ [0, wgp]. We would
have

F ≥ G0 ≥ F̃0(w)

over [0, wgp]. Then F
G0 = F by Proposition 5.1. See Figure 5.1 for a graphical

illustration of G0 (in a case where G ≥ F̃0 and so G = G0).
Now, since FG0 = F = G0 for all w3j ≤ w ≤ w3j+1, j = 1, 2, . . . , n−1, it is

optimal to retire the agent at those points. On the other hand, FG0 = F > G0

for all w3j+1 ≤ w ≤ w3j+3, j = 1, 2, 3, . . . , n−1, making it optimal to continue
at those points. We then see that the continuation region is disconnected.

While our example has been specifically constructed to show a case of a
disconnected continuation region and seems unrealistic, the example suggests
that there could be cases where a more naturally-arising retirement function
could give a disconnected region. This is true especially because we do not
restrict the retirement function F̃0 to be concave. For example, suppose
the principal has two mutually exclusive promotion opportunities for the
agent. Then the retirement function is a maximum of the profit from the
two opportunities and F0. This could give rise to a retirement function of a
similar shape as a smoothed version of G0 in Figure 5.1.

5.2.2 A modified range for the continuation value

We have set up the range of continuation value to be [0, w̄] in our problem.
At both of the endpoints, permanent retirement is the only way to deliver the
corresponding value. It is possible consider the range of continuation value
[wL, wH] respectively, with 0 < wL < wH < w̄, and mandate permanent
retirement at these points. In this case, we will require that F̃0 : [wL, wH] →
R satisfies

F0(w) ≤ F̃0(w) ≤ F̄ (w)
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for all w ∈ [wL, wH ]. We will also require F̃0(wH) = F̄ (wH) for the right-
continuity argument to go through.

Our analysis does not depend on the fact that F0(0) = 0, and so similar
results follow for the case with the range [wL, wH ]. This is, for example,
useful in the case of quitting that we reviewed in Section 5.1.

5.2.3 Upper-semicontinuous retirement function

If we relax the continuity requirement of F̃0, and instead require that F̄ ≥
F̃0 ≥ F0 and F̃0 is upper-semicontinuous. We will still have the result that
the corresponding optimal profit function F is concave (as in Lemma 4.3),
but the result on right-continuity at 0 and our work on the HJB equation
and its viscosity solution do not follow immediately.

Instead, since we know that F is concave, we could consider the minimum
concave function that is greater than F̃0, i.e.

G0(w) = inf{G(w) | G is continuous and concave and G ≥ F̃0 over [0, w̄]}.

Note that G0(w) is continuous and concave and G0 ≥ F̃0 over [0, w̄]. Since
F is also a concave function that is greater than F̃0, we know that F ≥ G0.

If we consider the control problem with retirement function G0 and denote
the corresponding optimal profit function by FG0, then we can argue that
the two problems have the same optimal profit function:

Proposition 5.2. FG0 = F for all w ∈ [0, w̄].

Proof. The fact that F ≤ FG0 is proved in the same way as Proposition 5.1,
since the argument does not require continuity of G0.

To proceed to prove F ≥ FG0 , we first note that, since we know that
G0 ≤ F ≤ FG0 and that G0 and F

G0 coincides and are both right-continuous
at w = 0, we know that F is also right-continuous at zero. Then the DPP
will be valid for the control problem with G0 as well, because our proof does
not depend on the continuity of F0, as long as we have the uniform continuity
of F . Then the same argument used in Proposition 5.1 can be applied. So
we have F = FG0 .

5.2.4 Retirement profit exceeding the first-best bound

We provide some discussion on the case where the retirement profit is not
upper-bounded by the first-best profit function.
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Our analysis relies on the assumption that F̃0 ≤ F̄ . In an economic
sense, this assumption means that the principal could potentially profit more
from the production output from the agent’s work, than from retiring the
agent. Technically, our proof of concavity of F , and therefore its continuity,
depended on this assumption. Without this assumption, it is unclear whether
the optimal profit function F is concave.

However, that could be cases where a retirement function F̃ violating the
assumption, i.e. F̃0(w) could be potentially greater than F̄ within [0, w̄, be
appropriate in modeling the real-world. In particular, the case of potential
promotion in Sannikov (2008) gives us such an example. When the agent
is promoted, its productivity increases. It therefore makes sense that the
principal could profit more from promoting the agent (which means “retiring”
in our model) than from working with the agent at the lower productivity.

To generalize our analysis, we would need to establish a proof of conti-
nuity of F over [0, w] in order to establish the DPP and apply the viscosity
approach. This could potentially be interesting in studying multiple sequen-
tial promotions of an agent.
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Chapter 6

Concluding remarks

In this thesis, we have posed a rigorous formulation of a combined optimal
stopping and control problem for a continuous-time principal-agent problem
first proposed by Sannikov (2008). We provide conditions under which a
solution of the formulated problem could be implemented as a contract in the
original setting. Our formulation also allows for general retirement functions
that are continuous and bounded by the first-best profit.

We study the optimal profit function via the notion of viscosity solutions.
We show that the optimal profit function is the unique viscosity solution
of the HJB equation associated with the combined optimal stopping and
stochastic control problem. It is also shown that the optimal profit function
is continuous and concave, and is C1 when the retirement function F̃0 is C

1.
The main contribution of the work in this thesis is that we provide a

rigorous formulation of the problem and the viscosity solution approach that
we use is easily extensible. Our analysis of the problem does not, a priori,
assume smoothness and concavity of the optimal profit function, nor impose
any structure on the retirement policy (like assuming only one low- and
one high-retirement points). The analysis therefore applies to cases where
the HJB equation does not have a smooth solution. Moreover, our analysis
applies to the general continuous retirement function F̃0 that are bounded
by the first-best profit F̄ . The case where F̃0 is upper-semicontinuous can be
studied similarly by considering the minimum concave function greater than
F̃0.

Our model is generally applicable to cases where dynamic contracting is
needed with private actions on the agent’s side. This includes, for example,
the compensation for an executive with expertise, where it is costly to moni-
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tor the actions of the executive. Also, our model could tackle cases where an
agent has multiple termination options, like retirement, quitting for another
job and multiple promotion prospects. These options could be modeled in
the retirement function F̃0 in our model, and our analysis holds even in cases
where the HJB equation has a smooth solution. The multiple termination
options possible could result in a complicated form of retirement function F̃0.
Our model then has a relative advantage in handling this, because our ap-
proach does not require an assumption on the HJB equation having a smooth
solution nor a retirement structure with only one low- and high-retirement
points.

One possible direction for future research is to look at retirement functions
F̃0 that are not bounded by the first-best profit F̄ . In such cases, it is not
clear whether the optimal profit function F will be concave and this poses
challenges to our analysis. Such cases will allow us to study, for example,
cases with multiple levels of promotions where the promoted agent could
bring in profit that is potentially higher than the first-best profit at the
agent’s original productivity.

It would also be interesting to look into different models for the dynamics
of the output process of the principal-agent problem. For example, the output
process could incorporate Poisson jumps, with the rate of the jumps also
controlled by the agent. Alternatively, the constant volatility in the output
process could be replaced by a regime-switching volatility. Our current model
does not apply directly to these cases, but our methodology and approach
could possibly be extended. This is especially because our approach does not
rely on a priori assumptions on the smoothness and concavity of the optimal
profit function.
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Appendix A

Proofs of Sannikov’s
propositions

Since the two propositions from Sannikov (2008) play an important role in
understanding our formulation and model, the proofs are extracted from
his paper for the readers’ reference, with a minor change in notations1 and
additional comments to assist reading.

A.1 Representation of the agent’s continua-

tion value

Recall that the continuation value in Sannikov (2008) is defined as

Wt(C,A) = EA

[∫ ∞

t

e−r(s−t)(u(Cs)− h(As))ds|Ft

]

. (1.10)

The following is the proof for Sannikov’s proposition on representing the
dynamics of the agent’s continuation value in the form of a stochastic differ-
ential equation.

Proof of Proposition 1.1. The agent’s total payoff from a compensation-effort
pair (C,A) given the information at time t is

Vt = r

∫ t

0

e−rs(u(Cs)− h(As))ds+ e−rtWt(C,A), (A.1)

1The most visible change is that we use PA for the probability measure induced by the
agent’s action A
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which is a PA-martingale. Assuming the filtration {Ft} satisfies the usual
conditions, thePA-martingale V must have a right-continuous with left limits
modification by Theorem 1.3.13 in Karatzas and Shreve (1991, P.16). Then
by the martingale representation theorem (Karatzas and Shreve, 1991, P.182,
Theorem 3.4.15), we get the representation2

Vt = V0 + r

∫ t

0

e−rsσYsdZ
A
s , 0 ≤ t <∞, (A.2)

where

ZA
t =

1

σ

(

Xt −

∫ t

0

Asds

)

is a PA-Brownian motion and the factor re−rtσ that multipies Yt is a con-
venient rescaling. Differentiating (A.1) and (A.2) with respect to t, we find
that

dVt = re−rtσYtdZ
A
t

= re−rt(u(Ct)− h(At))dt+ d(e−rtWt(C,A))

= re−rt(u(Ct)− h(At))dt− re−rtWt(C,A)dt+ e−rtdWt(C,A),

which impiles

dWt(C,A) = r(Wt(C,A)− u(Ct) + h(At))dt+ rσYtdZ
A
t .

This proves Proposition 1.1.

A.2 Incentive compatibility

The following is the proof for Sannikov’s proposition on the condition for
incentive-compatibility of (C,A).

Proof of Proposition 1.2. Consider an arbitrary alternative strategy A∗. De-
fine3

V̂t = r

∫ t

0

e−rs(u(Cs)− h(A∗
s))ds+ e−rtWt(C,A),

2This martingale representation theorem requires that the martingale is square-
integrable. In this proposition, this will be satisfied, for example, when C takes value
from a bounded set [0, c̄]. The theorem also guarantees that, in this context, that if any
other Ỹt satisfies the same representation, then

∫
∞

0
e−rt|Yt − Ỹt|

2dt = 0 a.s.
3It is useful at this point to remember that Wt(C,A) does not depend on the value of

A from 0 to t.
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to be the expected total payoff for the agent given the information at time t,
if he has incurred the cost of effort from strategy A∗ up to time t, and plans
to follow the strategy A after time t. To identify the drift of the process V̂t
under the probability measure PA∗

, we note that

dV̂t = re−rt(u(Ct)− h(A∗
t ))dt+ d(e−rtWt(C,A))

= re−rt(u(Ct)− h(A∗
t ))dt− re−rt(u(Ct)− h(At))dt+ re−rtYtdZ

A
t

= re−rt(h(At)− h(A∗
t ) + Yt(A

∗
t −At))dt+ re−rtYtσdZ

A∗

t ,

where the Brownian motion under PA and PA∗
are related by

σZA
t = σZA

t +

∫ t

0

(A∗
s −As)ds.

If (1.13) does not hold on a positive measure, choose A∗
t that maximizes

YtA
∗
t − h(A∗

t ) for all t ≥ 0. Then the drift of V̂ (under PA∗
) is non-negative

and positive on a set of positive measure. Thus, there exists a time t > 0
such that

EA∗

[V̂t] > V̂0 = W0(C,A).

Since the agent gets utility EA∗
[V̂t] if he follows A∗ until time t and then

switches to A, the strategy A is suboptimal.
Suppose (1.13) holds for the strategy A. Then V̂t is aP

A∗
-supermartingale

for any alternative strategy A∗. Moreover, since the process is {Wt(C,A)} is
bounded from below, we can add

V̂∞ = r

∫ ∞

0

e−rs(u(Cs)− h(A∗
s))ds

as the last element of the supermartingale V̂ . Therefore,

W0(C,A) = V̂0 ≥ EA∗

[V̂∞] = W0(C,A
∗),

so the strategy A is at least as good as any alternative strategy A∗.
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