UC Davis

Reports for the California Office of Statewide Health Planning and Development

Title

Second Report of the California Hospital Outcomes Project (1996): Acute Myocardial Infarction Volume Two: Technical Appendix-chatper010

Permalink

https://escholarship.org/uc/item/9wx1b9q3

Authors

Romano, Patrick S Remy, Linda L Luft, Harold S

Publication Date

1996-03-21

CHAPTERTEN: TESTINGINTERNALVALIDITYOFRISKADJUSTMENTMODELS

Forthisstudy, the internal validity of arisk adjustment model is defined as how well it controls for differences in patient characteristics that would otherwise confound out come comparisons across hospitals. A model that does not adequately control of for such differences may generate biased and misleading estimates of risk - adjusted out come rates. Internal validity of the risk-adjust ment models was assessed infour basic ways: content validity, construct validity, discrimination, and calibration.

CONTENTVALIDITY

ThemodelspresentedinChapterNinewerereviewedwithmembersofthe AMIclinicaladvisorypanelandoutsideconsultants. The advisorypanel includedseveralcardiologists, one nurse researcher, and one coding professionalwithspecializ edexpertiseinthetopic. They advised projects taff aboutwhetherthemodelsincludedappropriatecovariatesandwhetherthe parameterestimateswereconsistentwithpreviousresearchandexperience inthefield. Through this process, several variables w ithcounterintuitive parameterestimateswereeliminatedfromriskadjustmentmodels.For example, hyperlipidemiawasassociated with a decreased risk of AMI mortalityinanearlierriskmodel. Thisvariable waseliminated from the final modelbecausethe negativeparameterestimatewasnotconsistentwith previous research, and becauses elective under reporting of hyperlipidemia wasstronglysuspected. The clinical advisors and consultant sgenerally agreedthatthefinalmodelspresentedinChapterNinehav econtentvalidity.

DISCRIMINATION

Amodelthatdistinguisheswellbetweenindividualswhohavepooroutcomes andthosewhohavegoodoutcomeshasexcellentdiscrimination.Amodel withperfectdiscriminationwouldassigntoeverypatientanexpected probabilityofeitherzeroorone;allpersonswithanexpectedprobabilityof one,butnoonewithanexpectedprobabilityofzero,wouldexperiencethe outcomeofinterest.Nomodelhasperfectdiscriminationintherealworld,but goodmodelsshowsubstan tialspreadintheexpectedprobabilityofthe outcome(death)betweenthosewhoactuallyexperienceditandthosewho didnot. Themostcommonlyusedmeasureofdiscriminationisthecstatistic,which representstheproportionofallrandomlyselectedp airsofobservationswith differentoutcomes(e.g.,onedeathandonesurvivor)inwhichthepatient whodiedhadahigherexpectedprobabilityofdeaththanthesurvivor. ¹Thec statistictakesonvaluesbetween0and1.0;highervaluesindicategreater discriminationbutthereisnocutoffthatdistinguishes"adequate"from "inadequate"models.Avalueof0.5canbeobtainedbyrandomselection.

Table10.1showsthattheriskmodelsforAMImortalityhavecstatisticsof 0.774forcaseswithnoprioradm issionsand0.759forcaseswithoneor moreprioradmissions. ²ThesecstatisticsarebasedonModelA,which omitteddemographicandclinicalriskfactorsthatmaybeunreliableormay reflectqualityofcare.Asexpected,ModelBshowsgreaterdiscrimin ation thanModelA,withcstatisticsof0.860forcaseswithnoprioradmissionsand 0.830forcaseswithoneormoreprioradmissions.Thisdifferencebetween theresultsforModelAandModelBislargelyattributabletotwopowerful predictorsthatwer eusedonlyinModelB:shockandpulmonaryedema. ThesepredictorswereomittedfromModelAbecausetheymayrepresent eitherin -hospitalcomplicationsorassociatedconditionspresenton admission.

Itisdifficulttocomparetheperformanceoftheseri skmodelswiththatof modelsdevelopedbyotheragenciesevaluatinghospitaloutcomes.Onlya fewsuchagenciesreportmodelperformancemeasures.Pennsylvania's HealthCareCostContainmentCouncilreportedacstatisticof0.772,using MedisGroupsdata elementsinaspeciallydesignedmodeltopredict coronarybypassmortality. ³Ithasnotreportedcstatisticsforothersubsetsof patients.UsingclinicaldataoncoronarybypasspatientsfromNewYork's CardiacSurgeryReportingSystem,Hannanetalrep ortedacstatisticof 0.787.⁴Bycomparison,thebesthecouldachieveusingadministrativedata

³ThePennsylvaniaHealthCareCostContainmentCouncil. *CoronaryArteryBypassSurgery.A TechnicalReport*.Harrisburg,PA:November1992.

¹HanleyJA,McNeilBJ.Themeaninganduseoftheareaunderareceiveroperating characteristic(ROC)curve. *Radiology*1982;143:29 -36.Thecs tatisticisequivalenttothearea underareceiveroperatingcharacteristiccurve,whichrepresentsaplotofsensitivityversus1 specificityatvariouscutoffvaluesforthepredictedprobability.

²Thesestatisticsarebasedonthecomplete100%sample. Astrictertestofmodeldiscrimination comesfromapplyingaregressionequationestimatedusingonesampletoaset -aside,or validationsample. The resulting statistics are virtually identical to those reported herefor the "no-priors" models (0.774 for Model A; 0.860 for Model B), but slightly worse for the "priors" models (0.745 for Model A; 0.807 for Model B).

⁴HannanEL,KilburnH,RaczM,ShieldsE,ChassinMR.Improvingtheoutcomesofcoronary arterybypasssurgeryinNewYorkState. *JAMA*1994;271:761 -766.

forthesamepatientswasc=0.74. ⁵ClevelandHealthQualityChoicehasa verydetaileddatasetwithextensiveclinicaldata;itreportedcstatisticsof 0.85to0.92from5risk -adjustedmortalitymodels(including0.89forAMI cases).⁶UsingMedicareclaimsfrom84randomlyselectedUShospitalsto predict30 -daymortality,KrakaueretaIreportedacstatisticof0.84. ⁷This modelwassimilartothatused bytheHealthCareFinancingAdministration togenerateitsreportsonMedicarehospitalmortality.Nootheragencies usingadministrativedatatorisk -adjusthospitaloutcomeshavereportedc statistics.

Onerecentstudycomparedtheabilityofseverals everityindicestopredictin hospitalmortalityforAMIpatients. ⁸Among775patientstreatedeither medicallyorsurgically,thefollowingcstatisticswerereported:0.70for APACHEII,0.74forPatientManagementCategories(asystembasedon administrativedatabutdesignedtopredictresourceutilization),and0.73for MedisGroups.Byusingeachindexasanordinalmeasureinalogistic regressionmodel,theseauthorsmayhaveunderestimatedperformance. ResearchersatQueensUniversity ⁹usedvarious commercialriskadjustment systemstopredict30 -dayand60 -daymortalityamongMedicarebeneficiaries fromsixstates.Across23DRGclusters,severitymeasuresbasedonclinical data(MedisGroups,APACHEII,andComputerizedSeverityIndex)hadc statisticsbetween0.76and0.81.Severitymeasuresbasedonadministrative data(AcuityIndexMethod,DRGScalefromCodedStaging,andPatient ManagementCategories)hadcstatisticsbetween0.72and0.75.

Thissummarydemonstratesthattheriskmodelsdevelope daspartofthe CaliforniaHospitalOutcomesProjectcomparefavorablywithothersbasedon administrativedata,butareprobablyinferiortothosebasedonmoredetailed clinicaldata(e.g.,APACHEIII, ¹⁰ClevelandHealthQualityChoice).

⁵HannanEL,KilburnHJr,LindseyML,LewisR.Clinicalversusadministrativedatabasesfor CABGsurge ry:Doesitmatter? *MedicalCare* 1992;30:892 -907.

⁶QualityInformationManagementCorporation.Cleveland -AreaHospitalQualityOutcome MeasurementsandPatientSatisfactionReport.VolumeII.Cleveland,OH:Spring1994.

⁷KrakauerH,BaileyRC,SkellanKJ, etal.EvaluationoftheHCFAmodelfortheanalysisof mortalityfollowinghospitalization. *HealthServicesResearch* 1992;27:317 -335.

⁸AlemiF,RiceJ,HankinsR.Predictingin -hospitalsurvivalofmyocardialinfarction. *Medical Care*1990;28:762 -775.

⁹CaseMixResearch, QueensUniversity. *PatientClassificationSystems:AnEvaluationofthe StateoftheArt. VolumeI.* Springfield, VA:NationalTechnicalInformationService, 1991.

¹⁰KnausWA,WagnerDP,DraperEA,ZimmermanJE,BergnerM,BastosPG,etal .The APACHEIIIprognosticsystem.Riskpredictionofhospitalmortalityforcriticallyillhospitalized adults. *Chest*1991;100:1619 -1636.

CALIBRATIONAN DBIAS

Calibrationistheextenttowhichobservedoutcomeratescorrespondto predictedratesacrossasetofdefinedstrata.Awell -calibratedmodel demonstratesexcellentfitacrossabroadrangeofpatientcharacteristics. Calibrationmaybeamorere levantmeasurethandiscriminationwhenthe purposeofamodelistopredictoutcomeratesforgroupsofpersonswith similarcharacteristics(e.g.,inpatientsatthesamehospital).Bycontrast, discriminationismoreimportantifamodelisbeingusedto predictan individual'soutcomeandtomaketreatmentdecisions.Themostcommonly usedmeasureofcalibrationisHosmerandLemeshow'schisquaretest, whichcomparesobservedwithpredictedoutcomesacrossseveralstrata (e.g.,10)thataredefinedby increasinglevelsofrisk.

11

Table10.1showsthattheriskmodelsforAMImortalityhavemarginally significantHosmer -Lemeshowstatistics,bothamongcaseswithnoprior admissions(¹¹²=19.01,p=0.015)andamongcaseswithoneormoreprior admissions(Π^2 =14.92.p=0.061).Thesechi -squarestatisticsarebasedon ModelA.¹²ModelBshowsadeteriorationinthisrespect,astheHosmer Lemeshowstatisticsare65.22(p<0.0001)amo ngcaseswithnoprior admissionsand27.24(p<0.0001)amongcaseswithoneormoreprior admissions.¹³Thesemodelshaverelativelypoorcalibrationbecausethey overestimatetheprobabilityofdeathamongthelowest -riskandhighest -risk patients.Altho ughattemptsweremadetocorrectthisproblembytesting additionalinteractionterms, this effort had limited success. Indeveloping ModelB, the focus was on maximizing discrimination at the expense of other modelcharacteristics.

Thesetestsconfirmt hatmostAMIriskmodelsdevelopedaspartofthe CaliforniaHospitalOutcomesProjectmeetgenerallyacceptedstandardsof calibration.WiththeexceptionofAMIModelB,thesemodelsdonot demonstrateasignificant,consistentpatternofbiasacrossris kstrata.

Biastestsalsowereperformedforavarietyofotherpatientcharacteristics thatweredeliberatelyomittedfromtherisk -adjustmentmodelsorspecifiedin

¹¹HosmerDW,LemeshowS. *AppliedLogisticRegression* .NewYork:JohnWiley&Sons,1989.

 $^{^{12}}$ Thesestatisticsarebased onthecomplete100%sample.Abettertestofmodelcalibration comesfromapplyingaregressionequationestimatedusing60%ofthecasestotheremaining 40%validationsample.ThisproceduregeneratednonsignificantHosmer -Lemeshowstatistics, bothfor caseswithnoprioradmissions(Π^2 =6.58,p=0.58)andforcaseswithoneormore prioradmissions(Π^2 =10.01,p=0.26).

¹³Thesestatisticsarebasedonthecomplete100%sample,butsimilarresultswereobtained fromtheset -asidesample.Thisprocedu regeneratedHosmer -Lemeshowstatisticsof32.13for caseswithnoprioradmissions(p<0.0001)and21.94fortheremainingcases(p=0.005).

aparticularmanner.Noneofthesemodelsshowbiasrelatedtoage,race,or dateofadm ission.AMIModelAshowsbiasrelatedtothesourceandtypeof admission,duetothedeliberateomissionofthesevariablesfromModelA.

Biastestingthereforeconfirmedthattherisk -adjustmentmodelsdeveloped fortheCaliforniaHospitalOutcomesPr ojectarerelativelyfreefrombiasdue totemporalanddemographicfactors.Ofcourse,substantialbiasdueto unmeasuredclinicalfactorsislikely.

5

14

¹⁴ModelBeliminatesthesebiases,butmayimproperlyunderestimatetruedifferencesinrisk adjustedoutcomesac rosshospitalsbyadjustingforsourceandtypeofadmission.

Table10.1:Goodness -of-fittestsforAMImortalitymodels				
	<u>Priors</u>		<u>NoPriors</u>	
	ModelA	ModelB	ModelA	ModelB
Numberofcases	5,442	5,415	62,570	62,220
Numberofdeaths	1,044	1,039	7,803	7,763
Deathrate,%	19.18	19.19	12.47	12.48
Modelchisquare	721.73	1,276.49	6,775.57	13,630.56
df	13	25	24	44
p value	0.0001	0.0001	0.0001	0.0001
Cstatistic	0.759	0.830	0.774	0.860
HosmerLemeshowstatistic	14.92	27.24	19.01	65.22
df	8	8	8	8
pvalue	0.0607	0.0006	0.0148	0.0001