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ABSTRACT 

In this work we present CitiSense, a new kind RI� ³FLWL]HQ�

LQIUDVWUXFWXUH´ for the monitoring of pollution and 

environmental conditions that users are exposed to. By 

utilizing mobile phones and affordable, small sensors 

placed in the environment and carried by users, data about 

pollutants such as ozone and carbon monoxide is collected 

and used to provide real-time feedback to users and enable 

them to make healthy changes in their behavior. Results can 

be reported to a back-end server for further processing and 

learning, allowing other stakeholders to better understand 

how diseases such as asthma develop and to help coordinate 

efforts within a user's community to improve conditions. 

What differentiates CitiSense from previous projects of this 

sort is the design of a complete system that addresses issues 

of mobile power management, data security, privacy, 

inference with commodity sensors, and integration into a 

highly extensible and adaptive infrastructure comprising of 

Open Rich Services (ORS). We discuss the design goals of 

the CitiSense project, our progress towards the vision of 

ubiquitous environmental sensing in San Diego, and 

preliminary results for energy management policies for 

sensor nodes and mobile phones.   

Categories and Subject Descriptors 

J.3 [Life and Medical Sciences]: Health; C.3 [Special 

Purpose and Application-based Systems]: Real-time and 

embedded systems; D.2.11 [Software Engineering]: 

Domain-specific architectures, Software architectures; I.5.1 

[Pattern Recognition]: Statistical Models. 

General Terms 

Algorithms, measurement, Design, Security, Human 

Factors. 

Keywords 

Mobile sensor; air quality; energy management; rich 

services; service-oriented architecture; real-time feedback. 

1. INTRODUCTION 
In our daily activities, we encounter many environmental 

hazards that are invisible to us, such as pollutants from 

automobile exhaust, ozone, and methane from landfills and 

industrial sites. These threats are not isolated to a specific 

area. According to EPA, 158.5 million people in the US 

lived in counties that had worse conditions than the national 

ambient air quality standard in 2007 [22]. In Chula Vista, 

CA, the incremental cancer risk is 140 cases per million 

residents, mostly due to diesel exhaust, which is a source of 

over 40 harmful gasses and cancer-causing substances [23]. 

The SDAPCD maintains only five air contaminant sampling 

sites for all of San Diego County, which is 4225 square 

miles and has 3.1 million residents. The pollutants, such as 

diesel exhaust, are not uniformly distributed across the 

county and in time, and the residents of the county are 

neither equally active at all times nor at equal risk for 

asthma or other harmful consequences of air pollution. 

What if everyday people could be given real-time feedback 

about the pollutants they were being exposed to during the 

course of their day?  A recent PALMS project study found 

that overweight patients that were given feedback through 

their mobile phones about their daily physical activity lost 

significantly more weight than other patients [1].  Would 

feedback about pollution exposure lead to people making 

healthier choices about where they live, work, and play? 
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In this work we present CitiSense, which is a new kind of 
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environmental conditions that users are exposed to in their 

daily lives. The system includes mobile phones and 

affordable, small sensors placed in the environment and 

carried by users, to collect data about pollutants such as 

ozone and carbon monoxide. The data is then used to 

provide real-time feedback to users and allow them to 

change their behavior for increased health and life quality. 

The data can be shared with the back-end cyber-

infrastructure for further processing, modeling and learning, 

helping other stakeholders of the system better understand 

how diseases such as asthma develop and coordinate efforts 

within a user's community to improve conditions. CitiSense 

is different from previous projects of this sort in that it 

includes the design of a complete system that addresses 

issues of mobile power management, data security, privacy, 

inference with commodity sensors, and integration into a 

highly extensible and adaptive infrastructure comprising of 

Open Rich Services (ORS). PALMS [1] is a similar project 

that has used such an architecture successfully. CitiSense 

uses the same core as PALMS and builds on top of it to 

address more cross-cutting concerns such as power 

efficiency and immediate user-feedback based on sensed 

data. 

We discuss the design goals of the CitiSense project, our 

progress towards the vision of ubiquitous environmental 

sensing through San Diego, and early results for energy 

management policies for sensor nodes and mobile phones. 

The paper is organized as follows.  In section two, we 

discuss related air pollution monitoring projects and in 

section three we explain why such systems are important to 

the future of our health.  Section four first provides an 

overview of the complete system and then delves into the 

details about each sub-system.  In section five we conclude 

with a discussion of future work for the project. 

2. RELATED WORK 
PALMS-CI [1] is a cyber-infrastructure built at the 

University of California, San Diego to support the research 

of a worldwide community of exposure biologists. This 

community is represented by a number of principal 

investigators (PIs) that monitor and study human health as a 

function of geographical location and ambient conditions. 

Each PI may conduct one or more studies, which typically 

involves collecting data from sensors (e.g., heart rate, 

accelerometer, and GPS) worn by scores or hundreds of 

human subjects for periods of a week or more. Once the 

data is collected, either the PI or a research assistant (RA) 

uploads it into a PALMS repository, where it remains 

available for analysis and visualization. Additionally, the PI 

may agree to share raw or processed data with other 

investigators. 

The PALMS-CI is a Service Oriented Architecture based 

on a Rich Services [13] pattern. PALMS-CI services 

implement the functionality of major domain entities (e.g., 

calculations, visualization) and services are connected via a 

message bus. The PALMS-CI presents itself as a single 

component that exposes its services via Web Services-

based API calls using a request/reply pattern. 

CitiSense builds on top of the core of PALMS-CI to 

provide the design and implementation of more cross-

cutting concerns such as power management, dynamic 

computation scheduling, privacy and security. It also 

provides the infrastructure for real-time filtering, 

computation and feedback to users. 

PEIR [23] is a system that tracks a user locations 

throughout the day via GPS data collected by their mobile 

phone and predicts exposure levels based on weather and 

traffic conditions at those locations. iMAP [24] is a similar 

system to PEIR, and uses population data in addition to the 

other sources of pollution data to create exposure 

predictions. Both solutions are limited in that the only 

location positional data is gathered from a user and 

exposure is predicted using previously developed models. 

In addition, all analysis is done on a back-end server, thus 

limiting real-time feedback available to a user. In contrast, 

projects like MobGeoSen [25] gather readings directly from 

Bluetooth enabled sensors and allow users to tag data with 

their location and store it until it can later be uploaded to a 

PC and visualized. 0RVW� SURMHFWV� HLWKHU� WUDFN� D� XVHU¶V�

location and make predictions or they track pollutants 

directly, however an opportunity exists to bring together 

both sources of data to provide more accurate feedback to 

users as well to create new and more accurate models about 

pollution in our communities. In addition, energy efficiency 

is often an afterthought during the development of wireless 

health systems and often leads to a system with an 

impractically short battery life. 

3. AIR POLLUTION AND HEALTH 
Important causes of morbidity and mortality are associated 

with exposure to both indoor and outdoor air pollution. 

Outdoor air pollution is estimated to be responsible for 

1.4% of total mortality (800,000 deaths), 0.5% of all 

disability adjusted life years (DALYs), and 2% 

cardiopulmonary disease [6].  Disability adjusted life years 

(DALYs) represent the sum of years of potential life lost 

due to premature mortality and the years of productive life 

lost due to disability.  

World Health Organization (WHO) estimates indicate that 

the majority of mortality is among the elderly with 81% of 

attributable deaths and 49% of attributable DALYs 

occurring in those aged 60 and older [6].  Further, while 

children under the age of 5 years represent only 3% of total 

attributable deaths, they are responsible for 12% of total 

DALYs attributable to poor air quality [6].  It is important 



to note that these estimates are likely under representative 

of the true burden of air pollution.  Further, in order to fully 

understand and address the impact of air pollution on 

human health, it is first necessary to adequately characterize 

personal exposure for the general population as well as 

populations at increased risk of adverse outcomes.  

Populations at increased risk may include the elderly, 

children, or those with pre-existing medical conditions such 

as asthma. 

Asthma is an inflammatory disorder of the lungs that affects 

approximately 300 million people worldwide and results in 

significant individual as well as societal costs [4].  The 

prevalence of asthma is increasing [4] with concomitant 

increases in the individual and societal burden associated 

with the disease.  Asthmatic symptoms in specific 

populations, primarily children, can be exacerbated by 

exposure to components of air pollution such as ozone and 

particulate matter [7].  Thus, in order to reduce the burden 

of suffering from asthma, exacerbating factors such as air 

pollution must be considered.  Research in this area 

includes studies addressing the relationships between air 

pollution and the incidence of new cases of asthma as well 

as the severity of existing asthma. This research will benefit 

from improved methods of exposure modeling that can 

more accurately characterize personal exposure in time and 

by location. 

Health Effects 

The US Environmental Protection Agency (EPA) has set 

National Ambient Air Quality Standards (NAAQS) for 

various components of air pollution with demonstrable 

detrimental effects on human health and the environment.  

The following are tKH� VL[� ³FULWHULD´� SROOXWDQWV� IRU� ZKLFK�

there are NAAQS: carbon monoxide, ozone, particulate 

matter, nitrogen dioxide, sulfur dioxide, and lead [2].   

There are numerous health effects of these pollutants 

including increased morbidity and mortality.   

Exposure to ozone and particulate matter has been shown to 

worsen asthma symptoms [7].  Further associations between 

particulate matter exposure and negative health outcomes 

include: increased mortality, increased urgent care visits, 

and increased hospital admissions for cardiovascular and 

respiratory disease [6].  Similarly, epidemiologic studies 

demonstrate associations between exposure to sulfur 

dioxide, nitrogen dioxide, and carbon monoxide and 

increased cardiopulmonary mortality and hospital 

admissions [5].  Despite evidence regarding the negative 

health effects of air pollution, more research is necessary to 

fully understand the impact of air pollution on health and 

disease outcomes.  Further, improved understanding of 

individual exposures to air pollutants can help characterize 

risk for adverse events in specific populations such as the 

elderly and those with pre-existing medical conditions. 

Real-time Assessment and Feedback on Air Quality 

Data from wearable, mobile or environmentally embedded 

wireless devices yield the potential to understand and 

influence human behavior within the context of real world 

social and environmental interactions. Most research 

involving these devices to date has focused on ecological 

momentary assessment (EMA) that leverages the ability of 

wireless devices to capture data points with little 

interference in the daily life of the person [19]. While EMA 

systems that can gather, process, and analyze multiple 

streams of data will be in high demand as sensing 

technology improves, there is a concurrent demand 

emerging for systems that also support ecological 

momentary intervention (EMI) ± the use of one or more 

types of data collected in real-time from free-living 

individuals to elicit a desired health outcome, such as a 

prompt for a health behavior or to use a health device (e.g. 

preventive use of an asthma inhaler in the presence of toxic 

air pollutants) [20].  The CitiSense system aims to cater to 

these demands. 

4. SYSTEM OVERVIEW 

 

Figure 1. A simple overview of the CitiSense system. 

CitiSense encompasses the collection, filtering, analysis, 

and presentation of air quality data while providing real-

time feedback and suggestions to users. For the collection 

of pollution exposure data, we have built a sensor equipped 

embedded platform, designed to be worn by users, that we 

call the SEEnsor node�� 7KLV� GDWD� LV� UHSRUWHG� WR� D� XVHU¶V�

mobile phone through a Bluetooth connection, where it is 

filtered and briefly analyzed to provide real-time feedback, 

warnings, and suggestions to users to help limit their 

exposure to pollutants. The amount of processing that 

should happen at the sensor node, mobile phone, and back-



end server is dynamically adjusted to maximize system 

battery life through the use of energy efficient task 

allocation. Users can report data and request additional 

analysis and predictive models through the use of services 

provided by the back-end infrastructure. 

In this section, we present details about each sub-system 

that makes up the CitiSense project, starting with a 

discussion of the cyber infrastructure and service oriented 

architecture, followed by details about our wearable 

embedded sensor node, filtering and real-time feedback 

provided by mobile phones, and algorithms for energy 

efficient task assignment. 

4.1 Cyber-Infrastructure 
A cyber-infrastructure (CI) is an Internet-based collection 

of computing services dedicated to providing data storage, 

computations, and visualizations to a stakeholder 

ecosystem. A major CI function is to execute workflows on 

behalf of stakeholders. 

As an emerging class of large scale computing systems, 

cyber-infrastructures (CIs) are poised to become important 

enablers of community-based computational and 

information processing in academia, government, and 

commerce. As an Internet-based distributed collection of 

data storage, computation, and visualization resources, CIs 

provide a substrate on which stakeholder communities can 

build and deliver value by organizing CI resource access 

through automated processes called workflows. They also 

provide an infrastructure through which communities can 

create significant additional value via cooperation and 

exchange. 

An important approach to realize CIs is Service-Oriented 

Architectures (SOA), which, at its core, represents 

computing activities as patterns of interaction between 

computing components where information is exchanged via 

messages. By specifying interactions between components 

representing CI resources, a SOA can be used to model CI 

workflows. A critical feature of SOA systems is the ability 

to intercept messages traveling between components ± thus 

enabling message transformations and additional message 

routing that can respond to stakeholder requirements by 

altering or augmenting workflows without compromising 

existing functionality. 

Service Oriented Architecture 

Our approach to the design of CitiSense includes the 

analysis of the producers of data, the consumers of data, 

and the operations services on that data in a Service 

Oriented Architecture (SOA). 

The term service is often used for Web Services, and the 

term Service Oriented Architecture for the use of Web 

Services to create applications that are based on the Internet 

and leverage existing standards-based interaction 

technologies (such as HTTP/SOAP, XML, WSDL etc) 

between different entities. These technologies enable the 

construction of distributed and loosely coupled systems. 

However, they do not address the broader problems of 

understanding the relationships between those entities, 

Figure 2. Rich Services architectural pattern as applied to CitiSense. 



addressing cross-cutting concerns that relate to all of those 

entities on different levels, and designing systems that 

leverage the relationships and the cross-cutting concerns on 

the entities at the same time. 

In CitiSense, we use these terms on a more basic and 

generic level. A service is a choreography of the 

interactions between entities [14]. Services are independent 

of any particular implementation technology [15]. The 

description of a service is focused on the identification of 

the roles played by the entities, the interactions between 

those roles, and the cross-cutting properties important for 

the system. A Service Oriented Architecture is one that 

models the roles and their interactions. Creating a SOA 

involves identifying roles and the services that they are 

involved. A SOA can then be a model of either the logical 

level, or the deployment level or both of the system. 

On the logical level, a SOA models roles and their 

interactions independent of the technology that will be used 

to realize them. It decomposes the system into services that 

are well-defined and encapsulated. These services provide 

the immediate and long term business goals of the system. 

Each of these services can be composed of other services, 

can act as a proxy for other services, or can be a stub for 

another service. Service oriented analysis provides 

identification of services as well as cross-cutting concerns 

of the system, which provides reliability, extensibility and 

maintainability for the system in the long run. An example 

of a cross-cutting concern in CitiSense is power efficiency, 

which exists on sensor, cell-phone and cloud levels, with 

different characteristics, but with a common goal of 

optimizing the power efficiency of the overall system. 

On the deployment level, a SOA models services as 

interactions of self-contained, loosely coupled, standards 

based components to implement the roles modeled earlier 

on the logical level. Such components, similar to the logical 

level, can be composed of other components, can act as 

proxies for other components or can be a stub for another 

component. In CitiSense, the interaction of components 

occurs via messaging. 

At both the logical and the deployment levels, SOAs 

encourage manageability, maintainability, scalability, 

interoperability, composition, incremental development and 

testability. 

Open Rich Services 

We based the design of CitiSense on Open Rich Services 

architectural pattern and development model. This 

architectural pattern leverages the composite pattern [12] 

and the messaging and routing patterns [13] to create a 

system of systems. The development model of Open Rich 

Services provides the means to identify roles based on 

application requirements, and services that involve the 

interactions of those roles, thus leading to both logical and 

deployment level SOAs. It also provides an effective 

process to identify cross-cutting concerns early in the 

development, and incorporate necessary components for 

those concerns early in the development. 

A Rich Services architecture organizes systems-of-systems 

into a hierarchically decomposed structure that supports 
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horizontal integration involves managing the interaction of 

application services and cross-cutting concerns on the same 

level. On the other hand, vertical integration involves the 

hierarchical decomposition of an application service into a 

set of sub-services. The environment of the sub-services, 

their composition and interaction, and their 

structural/behavioral complexity are covered inside the 

application service, and hidden from the other application 

services on the same level (see figure 2). 

There are three main entities in a Rich Services 

architecture: Rich Services, Messenger and 

Router/Interceptor, and Behavioral/Control Connectors. A 

Rich Service provides the application and infrastructure 

functionality. A Rich Service can be composed of other 

Rich Services. The Messenger and the Router/Interceptor 

provide the infrastructure for the communication of Rich 

Services at the same level internally. The 

Behavioral/Control Connector serves as the means for a 

Rich Service to communicate with its environment. 

A Rich Service can be a simple functionality block such as 

a Commercial Off The Shelf (COTS) system or a Web 

Service, or it could be hierarchically decomposed of other 

Rich Services. We distinguish between Rich Application 

Services (RAS) and Rich Infrastructure Services (RIS). 

RASs are directly connected to the Messenger, and they 

provide core application functionality, such as data storage 

and environmental sensing. RISs are directly connected to 

the Router/Interceptor, and provide common infrastructure 

and cross-cutting concerns functionality, such as power 

efficiency management and authorization. 

The Messenger and Router/Interceptor provide horizontal 

integration. They route messages between Rich Services on 

the same level (RASs and RISs). 

The Messenger layer supports decoupling between services 

by providing a messaging medium for services to 

communicate. 

The Router/Interceptor leverages the interceptor pattern 

[16], and intercepts messages carried by the Messenger and 

reroutes them appropriately. This provides the facility to 

inject dynamic behavior onto the interactions between Rich 

Services on the same horizontal level, such as the cross-

cutting behaviors. 

The Behavioral/Control Connectors are the means by which 

a Rich Service connects to and interacts with its 

environment. They encapsulate and hide the internals of the 



Rich Service, and allow the exporting of only the interface 

that the Rich Service would like to expose and provide. 

They allow identifying the interfaces provided by each Rich 

Service, and help to simplify the systems-of-systems 

integration challenge. 

The Behavioral Connector allows the Rich Service to 

expose what service it provides, thus opening the way for 

data manipulations. 

The Control Connector allows the Rich Service to expose 

how it provides its service, thus providing the means for 

changing its settings. 

In this architecture, each Rich Service can be a simple 

block or decomposed down into other Rich Services, while 

the Behavioral/Control Connector is the only mechanism 

that makes routing messages between different vertical 

levels possible. In addition to this, the use of the Messenger 

and Router/Interceptor layers removes the hard dependency 

of services on each other, while abstracting away the 

relative locations of each service in the logical hierarchy. 

This way, services from different hierarchy levels can 

interact with each other seamlessly, without being aware of 

HDFK�RWKHU¶V�ORFDWLRQV�DQG�GHSHQGHQFLHV� 

4.2 Air Quality Sensing 

4.2.1 The SEEnsor Node 
The System Energy Efficiency sensor Node (SEEnsor 

Node) is a flexible platform developed for the rapid 

prototyping of wireless sensor network applications. This 

system has a modular architecture made up of a set of 2x2 

inches layers that can be independently replaced in order to 

quickly test and compare different solutions for a specific 

application. The current platform is a prototype and will 

eventually be shrunk down to a smaller size. By combining 

different layers, developers can easily explore the design 

space to find the optimal trade-off between a variety of 

metrics, such as energy consumption, computational power, 

communication throughput, and communication latency. 

Figure 3 presents the node architecture. 

 

Figure 3. The SEEnsor node architecture. 

At the current stage of development, the communication 

layer includes a Bluetooth transceiver, the microcontroller 

layer an 8-bit microcontroller and the sensor layer all the 

necessary electronics to interface with a carbon monoxide 

and ozone sensor board. 

 

Figure 4. The current SEEnsor prototype. 

4.2.1.1 Communication Layer 
The communication layer is responsible for the forwarding 

of collected data from the sensor node to an external 

system.  Our current design uses the WT12 Bluetooth 

transceiver from Bluegiga [9]. This module is a complete 

Bluetooth solution and includes a system on chip 

(microcontroller and transceiver on the same die), a ceramic 

antenna and all the necessary circuitry to interface them. 

Bluetooth was selected as the wireless technology as it pairs 

with most modern mobile phones and is approved for 

patient trials. The microcontroller is loading the iWRAP 

firmware that is used to easily interface the module to 

another host microcontroller through a set of string based 

commands issued through the UART interface.  This masks 

all the complexity of the Bluetooth protocol from the 

developer. 

While Bluetooth is a power hungry protocol, the module 

can operate in low power states when it is not connected to 

a piconet, significantly reducing the average power 

consumption of the system. Table 1 presents the power 

consumption characteristics of the WT12 transceiver. 

Table 1. Power consumption characteristics of the 

Bluetooth radio. 

State Power consumption 

Transmit/Receive (avg.) 30 mA 

Transmit/Receive (max) 70 mA 

Transmit (low power) 20 mA 

Idle (no connection) 1.2 mA 

4.2.1.2 Microcontroller Layer 
The microcontroller layer is the core of the SEEnsor node.  

The current implementation includes the 8-bit 

ATMEGA1281 microcontroller from ATMEL and a 

7.3728MHz crystal [8]. This low power, yet powerful, 



microcontroller features 128kB of built-in Flash for both 

code and data, 8kB of RAM and 4kB of EEPROM.  This 

MCU features a RISC architecture that can work at up to 

16MHz while achieving low power consumption.  For 

example, at 8MHz the power consumption at 3.3V is about 

7mA. The ATMEGA1281 can operate in several reduced 

power states to save energy when possible. These sleep 

modes present current consumption of several degrees of 

magnitude lower than in the while in the active state. Table 

2 presents the typical current consumption rates for the 

ATMEGA1281. 

Table 2. Typical current consumption in different sleep 

modalities and speeds when the MCU is powered at 

3.3V. 

Frequency Active mode Idle mode Sleep mode 

1 MHz 1 mA 0.25 mA 6 uA 

4 MHz 4 mA 0.8 mA 6 uA 

8 MHz 7 mA 1.5 mA 6 uA 

4.2.1.3 Power Layer 
The power layer is responsible for regulating the input 

source of energy and to power the other layers of the node. 

At the current stage of development, the sensor node is 

powered by a 3.7V, 1800mAH Li-ion battery or a USB 

cable. 

This layer includes the LTC3553 battery manager from 

Linear Technology [10]. The task of this low power (12 uA 

stand by quiescent current), low cost device is two-fold.  It 

not only regulates the power coming either from a USB 

connection or the battery to produce two distinct voltage 

levels, but it also manages the battery charge. 

The LTC3553 includes a buck regulator and a LDO 

regulator, each providing a 3.3V output.  Due to its higher 

efficiency and maximum output current (200 mA), the buck 

regulator output is meant to be used to power most of the 

circuit.  On the other hand, due to the lower level of output 

noise, the LDO is meant to power modules that require 

higher noise rejection on the power line, such as a wireless 

transceiver.  

In addition to the regulated outputs, one pin in the 

connector is reserved to forward 3.7V from the battery in 

case different voltages are needed by the other layers.  This 

line can be used instead of a regulated one to feed 

additional voltage regulators to improve system energy 

efficiency.  

The control signals that enable the outputs of the LTC3553 

are also available to the microcontroller to reduce power 

consumption when parts of the node can be powered down. 

4.2.1.4 Sensor Layer 
Currently, the sensor layer includes all the circuitry needed 

to interface evaluation boards for two toxic gases: Carbon 

Monoxide (CO) and Ozone (O3). 

For our initial studies, we plan to monitor low level 

pollutants typical of open air environment that should 

(hopefully) be lower than the safe exposure limits defined 

by the Environmental Protection Agency [2]. Our system 

uses the 3E/F electrochemical carbon monoxide sensor 

from City Technologies [11] and is able to detect CO 

concentrations as low as 0.5 ppm (parts per million).  The 

O3 3E1 electrochemical ozone sensor, also from City 

Technologies, is able to sense O3 concentrations as low as 

20 ppb (parts per billion).  By comparison, the EPA air 

quality standard for carbon monoxide is 9 ppm, while the 

standard for ozone exposure is 75 ppb. 

4.2.2 Real-time Feedback 
$�XVHU¶V�PRELOH�SKRQH�LV�SDLUHG�WR�D�FDUULHG�6((QVRU�QRGH�

and is streamed sensor readings for the pollutants of 

interest. The data is first filtered to remove any possibly 

faulty or useless values, and is then aggregated. The data is 

quickly analyzed as it arrives to identify any patterns or 

readings of concern, such as a prolonged exposure to high 

levels of carbon monoxide. The patterns and warning signs 

that are watched for may be specific to a patient with a 

certain condition (an asthmatic will be more sensitive to 

ozone and should therefore be alerted at lower levels of 

exposure) or common to all participants. Detecting unsafe 

conditions must happen in real-time to be helpful, therefore 

some level of analysis and filtering of the data must happen 

at the mobile phone. In most cases, users will be exposed to 

pollutants at levels that are deemed safe.  This data is still 

useful for learning models and identifying patterns, so it is 

beneficial to share it and compare it to readings of other 

users in the region. Data is uploaded from the mobile phone 

to the cyber-infrastructure and stored, tracking where the 

reading is from (using GPS data) and at what time the 

reading was taken. By first aggregating the data and 

providing some filtering and analysis before transmitting 

the data to the back-end, the amount of data to be 

transmitted can be significantly reduced and drastically 

improve battery life. After the data has been analyzed and 

shared with the back-HQG��LW�FDQ�EH�FOHDUHG�IURP�WKH�XVHU¶V�

phone. A user is able to fetch previous exposure data in the 

future from the cyber-infrastructure through its provided 

services. 

A significant contribution of our project will be its focus on 

providing real-time feedback to users about the amount of 

pollution they are exposed to and providing suggestions to 

promote healthy behavioral change. To do so, finding new 

ways of presenting and visualizing pollution data will be 

very important. An application targeting users that run 

outdoors often will use collected samples and computed 



models to determine the running path from point A to point 

B that minimizes the amount of exposure to air pollution.  If 

the user is carrying a pollution sensor, the path can be 

updated and feedback can be given to a user in real-time, 

suggesting changes to how and where a user runs based on 

sensed pollutants. For young patients, exploring the use 

mobile phone games may present new ways of making 

health data interesting to children. The collected pollution 

data will only be as useful to users if it is presented in a 

clear and interesting fashion. 

4.3 Power Management 
Mobile healthcare systems have a heterogeneous and tiered 

architecture consisting of a set of wireless sensors, single 

wireless local aggregator (often a mobile phone) for each 

user and a backend server. The main mode of operation is 

to sense levels of various pollutants in the environment and 

gather it on a mobile phone, where the aggregated data can 

be sent to the back end or decide to process it locally 

depending upon its processing power. All of these 

components use different wireless radios for 

communication and have varying processing power. 

Sensors and mobile phones are battery powered, while the 

back-end has unlimited power. Conserving battery energy 

on sensors and cellphone in such wireless healthcare system 

is a big challenge. Thus, in this project we also try to 

address this challenge of energy management by designing 

dynamic algorithms to maximize system battery life. 

We plan to leverage the increased processing ability of 

WRGD\¶V�VHQVRUV�DQG�FHOOSKRQHV�WR�UHGXFH�WKH�HQHUJ\�FRVW�RI�

wireless transmission. Thus, it would address the tradeoff 

between local processing and communication by deciding 

how much processing to do on which component of the 

system. This decision depends on various factors like the 

processing capability of the device, the wireless 

connectivity between devices and, above all, the battery 

charge of the devices. In other words, the goal of our 

algorithm is to determine an energy efficient task 

assignment that would maximize the system battery life. We 

define system life as the time from the start of the system 

until the time the first battery operated device dies. We will 

use a static integer linear program solution as a baseline for 

comparison with our dynamic solution.  The ILP solution 

provides optimal results for a known set of tasks assuming 

the workload and system characteristics do not change at 

run time. In the static case, optimal assignment of tasks to 

heterogeneous nodes in the system significantly affects the 

performance and battery life of the system. The system 

characteristics like wireless channel characteristics typically 

change at runtime, differing system response to the sensed 

data, the depletion of the battery of some components may 

change the dynamics. Thus, we need a dynamic algorithm 

that adapts to such changes at runtime. 

Efficient Task Assignment 

We model the mobile healthcare application as a directed 

acyclic task graph (DAG): G = (T, E) in which each vertex 

represents a task Ti�T.  Each edge in the graph Eij�E 

shows that task Tj is dependent on Ti in order to perform 

computation. The weights Wij on edge Eij represent the 

amount of data to be communicated from task Ti to Tj. In 

order to maximize system life our goal is to map these tasks 

onto the three tier architecture such that the system would 

last longest. As a baseline for comparison we will formulate 

an integer linear program (ILP) similar to one done by P. 

Aghera et.al in [21]. In simulation results of the DynAHeal 

algorithm running on a mobile phone with dynamic 

workloads, battery life was improved by up to ~35% in 

comparison to the design time task assignment given by the 

ILP. 

4.4 Statistical Modeling of Pollution Data 
For studying the effects of pollution in a given community, 

it is necessary to have an accurate pollution map of the area. 

The principal goal of producing this map is to understand 

how pollutant levels vary across different regions, and how 

the pollution map as a whole evolves over time. 

Consider, for instance, a private citizen Jane who has a 

history of asthma planning to take a trip visiting different 

parts of the city during the day. Having a system capable of 

predicting potentially hazardous pollutant levels could help 

Jane, plotting out a route that minimizes her exposure to the 

pollutants. She may even consider visiting certain parts of 

the city at specific times when she knows that the pollution 

level is relatively less. Due to these specific needs, we 

require a model that can not only be able to interpolate the 

measured pollutant values from noisy sensors (both 

stationary as well as mobile) but also has the capability for 

predicting the value at some future time instance. We thus 

propose to model the system as a spatio-temporal process.  

4.4.1 Pollution Modeling Using a Spatio-Temporal 

Process  
Given a specific region of interest, the basic idea is to 

model the pollutant level in the region as a Gaussian 

Process using a technique called Gaussian Process 

Regression (GPR) [3]. This gives us the ability to 

effectively interpolate the data measured from various 

sensors at a particular time instance. GPR alone, however, 

falls short in accurately predicting pollutant levels at some 

future instance in time. We thus augment our GPR model 

by adding an auto-regressive (AR) time-series process that 

can effectively model the daily and seasonal cycles in 

pollutant levels at a particular location. Since pollutants 

levels in different locations can evolve differently, we add 

different AR processes at different locations. 

Learning the Model Parameters 

The sensed pollution data is first interpolated spatially 

using the GPR model. Once we have an estimate for each 

location, it is used in training the temporal AR processes 



(each temporal process corresponding to a different 

location).  

Predicting Pollutant Levels from Learnt Model 

Given a specific query location at some future time, we 

extract the AR process corresponding to that location and 

make the prediction according to the pollutant level 

predicted by that process at the future time.  

4.5 Security Issues 
The data streams generated by individual users have serious 

privacy implications, even if explicit location info is 

removed. Consider that some places may have unusual or 

even unique combinations of readings for various pollutants 

such as houses with an unusual mold or fields near a 

factory.  In sucK�FDVHV�� LW�PD\�EH�SRVVLEOH�WR�LQIHU�D�XVHU¶V�

ORFDWLRQ� IURP� WKH� µVHQVRU� VLJQDWXUH¶� RI� KLV� ORFDWLRQ�� � ,I� DQ�

attacker simply wishes to confirm that his target was in a 

particular (known) place, his task might be even easier.  Or 

he might intentionally release particulates into the air at a 

certain place to create a pollutant signature for it; every user 

who passes by can now be identified. 

One way to balance the privacy needs of individuals and the 

data analysis needs of public health officials is to collect 

readings into a database and then aggregate and perturb the 

readings; the hope is that enough information can be 

obscured that individual privacy is not compromised, but 

not so much that the data analysis is inaccurate.  Much 

recent work in theoretical cryptography has focused on the 

possibility for such privacy-preserving data mining [17]. 

At the same time, practical data anonymization techniques 

are often found lacking.  In two recent examples, 

researchers were able to identify individuals in supposedly 

anonymized search logs released by AOL and a movie-

rating database released by Netflix [18]. 

4.6 Overview of System Operation 
To make things clearer on how using the Open Rich 

Services architecture provides application services and 

cross-cutting concerns interact on different levels, we can 

consider how privacy and power are managed within the 

system across the hierarchical levels in figure 2. The figure 

shows the backend infrastructure labeled as "CitiSense", 

and one of the many cell phones connected to it with 

"Phone_i". The phone is the component that contains the 

interaction of sensors with the environment. The 

environment is sensed by the sensors at the bottom in figure 

1. The sensor data is put onto the Messenger wrapped 

inside a message to be stored by another service that 

handles storage tasks. The message on the Messenger 

component is intercepted by the Router/Interceptor 

component, which passes it onto the Security/Privacy and 

Power Management services. The Security/Privacy service 

first decides whether to allow the storage of the sensed data, 

which is a decision depending on the preferences of the user 

carrying the sensor. If the user chooses not to do that, the 

data is either dropped or stored locally for a limited amount 

of time for local processing (eg. to provide feedback to the 

user). Assuming the user allows this data to be shared with 

the backend infrastructure, the Power Management service 

gets its turn to decide on where the data should be stored: 

locally or in the backend infrastructure, based on the 

current remaining battery life on the cell phone. The data 

can either be sent to the backend server immediately, 

consuming more power, if the remaining battery is more 

than a certain threshold; or data can be buffered until it 

reaches a certain total amount, after which it is sent to the 

backend infrastructure in a batch so as to consume less 

battery. These are all decisions that are made on the phone 

level. If the data is sent to the CitiSense backend 

infrastructure, similar decisions need to be made on that 

level as well. The data might be stored after anonymization 

due to privacy concerns, or it might be stored in a nearby 

data storage facility initially and moved to a common 

storage space afterwards to use less power in the backend 

infrastructure. Although these cross-cutting concerns exist 

with different parameters on different levels, the Open Rich 

Services architecture provides a hierarchical, extensible, 

scalable, manageable framework to handle the challenges 

that come with the CitiSense system. 

5. CONCLUSION 
Going forward, the SEEnsor node will eventually be 

modified and adapted to long term deployments in the 

environment as a stationary sensor node, with larger and 

more sensitive sensors, long range radio, and solar panels to 

harvest energy. As the number and types of sensors grows 

with the project, we will be able to develop new energy 

management policies for our sensors and new predictive 

models for pollution levels. As we collect more data, we 

will be able to validate our models and ensure that they 

scale well to large data sets. Online learning techniques will 

be critical to dynamically update our models as the system 

grows. 

In this paper, we presented our vision for and progress 

towards a "citizen infrastructure" for monitoring air 

pollution.  In the coming months, a complete end-to-end 

prototype will be completed and tested in the field. This 

prototype will include wearable SEEnsor nodes, a mobile 

phone with applications for reporting sensed values and 

giving feedback and suggestions to users, and the cyber-

infrastructure to store and process the incoming data. We 

are currently planning a study where users that cross daily 

at the U.S.-Mexico border near San Diego will carry a 

SEEnsor node and not only collect valuable data about the 

levels of pollution that commuters are exposed to, but will 

also provide valuable feedback regarding how to best 

present this information to users to make the system 

informative and helpful. 
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