Lawrence Berkeley National Laboratory
Recent Work

Title

High Performance Computing, High Speed Networks, and Configurable Computing
Environments

Permalink

https://escholarship.org/uc/item/9x09k47y

Authors

Johnston, W.E.
Jacobson, V.L.
Loken, S.C.

Publication Date
1992

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9x09k47v
https://escholarship.org/uc/item/9x09k47v#author
https://escholarship.org
http://www.cdlib.org/

LBL-32161
UC-405

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Tor

b Information and Computing
v Sciences Division

To be published as a chapter in High Performance Computing
in Biomedical Research, T.C. Pilkington, editor, CRC Press Inc.,
Boca Raton, FL, 1992

High Performance Computing, High Speed Networks,
and Configurable Computing Environments: Progress
Toward Fully Distributed Computing

W.E. Johnston, V.L. Jacobsen, S.C. Loken, D.W. Robertson,
and B.L. Tierney

April 1992

p—
H Q
o eI
90
o >
s £ =
[
£ 0 Q
' . D &0
‘ D D T
N <
w
: 8.
‘%’.’)
3 \ 5 . .\ 1 g
et o . \ ¢ : - 5
e %‘:\Qf - o - .,\,‘ lﬁ. . ' o -
o O i
55 R
Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 : ~< g
. N -

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-32161

High Performance Computing, High Speed Networks,
and Configurable Computing Environments:
Progress Toward Fully Distributed Computing

William E. Johnston ", Van L. Jacobson, |
Stewart C. Loken, David W. Robertson, and Brian L. Tierney

Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

- Contents -
1 INEPOAUCLION ...t eaeesere st et st tsesssssnassasanstsasonssssnsasnsnssessassos 2
2 The Research Imaging Paradigmiinncncanns - 3
3 Anatomy of a Distributed Applicationimneencsecssnreeeeeniesnes 7
3.1 Interprocess Communication MEChaniSIScocevereiceririncsssnsnsscsasecscssenssssssssssonsssssssassssnes 7
3.2 NEIWOTKINE c.covirriirreiecneseisenicresnesisaresessssesmtesesassresssssssssssassseasstrsanssasasess sossssssstonnases sorarssare 11
3.2.1 Models Of NEtWOTKINEccirurrecieeriiiiestiniecneressesescsestossstosmssessorcosssssosessssassmorsesssssens 13
3.2.2 NetWOrKiNE OVEIVIEW ...cccciviieiiirecenrirncresnnesiassessecssesssssassssrasssessensontssasassssessassasassness 16
3.2.3 Networking and Distributed Computingccccerveereens reevenens 17
4 Configurable Systems............ccccceouerveenrneee 19
4.1 Distributed System Software Construction Paradigms and Interfacescommerccnneccensennens 19
4.1.1 The PVM SYSLEINcceeeeeeernriersetescssrsssscssssnrsssentossssssseasssesssssssessasasaness sasssnssnssssnssssssanss 21
412 AVS and Khoroscccevevene. - ceeessssassanasnsesesesnnaersssnes ‘ 22
42 Network Based Computing System Elements 22
5 A Case Studyeeeeeercererenesieerenens 25
5.1 The APPHCALONccvveriieirierisneisisisinesassssssssinessasssssssssessssassissessassssssassssssssesasssansasassnassisass 27
5.2 The Software Architecture of the APPlICAONucceeriveercreceerreorereresersnsnsaesssnsssseassssssansesses 27
5.3 MENOMA ...t ree e eseneas e e senssssssssesesesesusanasass sessassess s senssssasasessessassastuassasssenansse 29
5.4 Issues in Mixed Computer Architecture Distributed COMPULINGc.ccoveecnriecssvrcesrarnescsssaens 31
5.4.1 Connection Maching ISSUESccceieveninisnsesarnreessneassmacssocssesens 33
5.4.2 HiPPI Channel ISSUEScoevverermerreenne et eneesees e s e be e s raaa e 33
5.4.3 CrAY ISSUES ..oeeceeireecrieccesereerrecreessssesaneaesstoesosssessessessasssssusonsassssssssssassss sonsebssasssnassaaseass 33
5.4.4 Local WOrKStation ISSUESccceccinereiecesssrennnassnsessnesssessnsssnsassescscesenssssssasnsnssosesnsnen 34
5.4.5 Network ProtoCol ISSUEScc.cvcceverveenmrncsrsroenreisacnscsesasesessssassssssssessesssssesasscsasassssesasses 36
5.5 ADALYSIS oot ctcciereereente e rensssssrasesses seststeseans st astenttasesssese st ntasasasansananns roraerenaeneasens 36
6 CONCIUSIONS ...ttt sttt ssssns st ss s s e sae s sbessasssss s sasassssassastsssanens 39
7 Appendix A: Internet ROULING ...t sissensseieceeecssensssseseasesssess 39
8 Appendix B: The OSI Model of Networkingcooommrceecvnernenreunersessseenens 42
9 Appendix C: Common - Carrier SErVICeSoeommemesssesosnssssiessenssoses 45

*For further information please contact johnston@george.lbl.gov (tel: 510-486-5014, fax: 510-
486-6363). This work is supported by the U. S. Department of Energy, Office of Energy Research,:
Scientific Computing Staf¥, under contract DE-AC03-76SF00098. ‘Any opinions are solely those of the an-
thors and not necessarily those of The Regents of the University of California, the Lawrence Berkeley La-
boratory, or the U.S. Department of Energy. Trademarks are acknowledged by t. This paper is available
from Lawrence Berkeley Laboratory, Berkeley, CA 94720, as report LBL-32161.

10 Acknowledgements

11 References

ii

LBL-32161

.................................... 47
..................................... 47

Abstract

The next several years will see the maturing of a collection of technologies that
will enable fully and transparently distributed computing environments. Networks will
be used to configure independent computing, storage, and 1/O elements into ‘‘virtual
systems’’ that are optimal for solving a particular problem. This environment will
make the most powerful computing systems those that are logically assembled from
network based components, and will also make those systems available to a
widespread audience. '

Anticipating that the necessary technology and communications infrastructure will
be available in the next three to five years, we are developing and demonstrating pro-
totype applications that test and exercise the currently available elements of this
configurable computing environment. The Lawrence Berkeley Laboratory (LBL)
Information and Computing Sciences and Research Medicine Divisions have colla-
borated with the Pittsburgh Supercomputer Center (PSC) to demonstrate one distri-
buted application that illuminates the issues and potential of using networks to
configure virtual systems. This application allows the interactive visualization of large
3D scalar fields (voxel data sets) by using a network based configuration of hetero-
geneous supercomputers and workstations. The specific test case is visualization of 3D
magnetic resonance imaging (MRI) data. The virtual system architecture consists of a
Connection Machine -2t (CM-2) that performs surface reconstruction from the voxel
data, a Cray Y-MP? that renders the resulting geometric data into an image, and a
workstation that provides the display of the image and the user interface for specifying
the parameters for the geometry generation and 3D viewing. These three elements are
configured into a virtual system by using several different network technologies.

This paper reviews the current status of the software, hardware, and communica- -
tions technologies that are needed to enable this configurable environment. These
interdependent technologies include: (1) user interface and application program con- -
struction methodologies; (2) the interprocess communication (IPC) mechanisms used to
connect the software modules of the application; (3) the network protocols and inter-
face hardware used by the IPC for communicating between modules running on
separate and independent computing system elements; (4) the telecommunications
infrastructure that provides the low level data transfer functions for the networks that
connect the geographically distributed elements used by the application; and (5) the
nature of the functional elements that will be connected to form virtual systems.

1. Imtroduction

Advances in software paradigms, computing systems, and communications tech-
nology and bandwidth over the next few years will help enable an information analysis
environment in which scientists have uniform and unimpeded access to computing and
data resources regardless of their geographic location. This environment will provide a
‘‘just in time’’ approach to assembling the resources needed to solve specific instances
of problems in computational simulation and data acquisition, analysis, and archiving.
It will allow us to design optimal architectures for the solution of specific problems,
and then, by using network based resources, to logically assemble and use the required
elements only for the time during which they are needed. The environment will also
allow us to quickly reconfigure these virtual systems for the purpose of adapting to a
changing scientific experiment configuration, or the refinement of computational pro-
cedures. The resources will consist of (1) computing elements (workstations, parallel
and vector processors, and specialized processors for graphics rendering, compression,
and encryption), (2) data handling elements (large, high speed data ‘‘buffers’’, and dis-
tributed mass storage systems), data collection/experiment control devices, sensor sys-
tem input elements, etc., (3) graphics/image display user front end systems, and (4)
the software systems to easily interconnect these elements. Not only will the ability to
build network based configurations of these resources allow powerful capabilities to be
brought to bear on large problems, it will also allow access to these capabilities by a
much wider community of people than is presently possible due to the inherently dis-
tributed access. No longer, for example, will a very expensive graphics workstation be
required to interactively explore large data sets. Instead, a network based configuration
of shared computing elements can provide this functionality. A graphics rendering
system that is capable of dealing with very large data sets may be built up of network
based computational elements, and may be easily shared among collections of
researchers, educators, and students who then display the resulting images on low cost
workstations located in their own work areas. This environment will qualitatively
improve our ability to address the hard and large scale problems typified by the HPCC
Grand Challenges [FCCSET], and will provide wider access to large scale computing.
This environment will be enabled through advances in several areas:

(1) Improvements in user workstation performance and architecture that will give us
an order of magnitude increase in the critical areas of I/O and memory
bandwidth, and the routine incorporation of co-processors that will provide
practical encryption and video - like image stream compression - decompression.

(2) The national commitment to widely available, high bandwidth networking

through the implementation of the NREN !, the resulting increased involvement
of the telecommunications industry, and advances in network protocols and

security architectures will move distributed access to resources, data, and infor-
mation into the mainstream.

(3) Hardware and software improvements will permit multiple heterogeneous com-
puting systems to be easily configured to routinely cooperate on diverse prob-
lems.

(4) Easy access to massive unique data archives will be enabled through advances in
data management and mass storage systems, e.g. [Sequoia].

(5) User interface paradigms will evolve to allow non-computer specialists to easily
assemble the computing and data handling elements into effective tools to work
on scientific problems.

To promote this environment, we are collaborating with several groups to design
and implement prototype applications that incorporate several of the critical elements
listed above. The purpose of this work is twofold. First, we will make early use of
the technology in order to provide concrete experience in identifying and solving vari-
ous integration problems. Second, we will make the fullest use of current technology
to provide useful solutions to problems like the visualization of very large data sets
arising from 3D imaging scenarios such as high resolution MRIL.

2. The Research Imaging Paradigm

Configurable systems are essential to many scientific endeavors. For example the
research imaging environment (illustrated in Figure 1) is characterized by three ele-
ments that are typically geographically dispersed. These elements are:

(1) The imaging device and its associated control system;

(2) Computing and data storage elements to provide the processing speed, large
memory, high speed data handling, etc., needed to capture and interpret the
data; '

(3) Workstations for user guidance of the operation of the imaging device, control of
the modeling and simulation processes, display of the images resulting from the
-visualization of the data from imaging device, and for incorporation of remotely
located expertise.

The leading edge research in scientific imaging will always involve separation of
these components by their very nature. The source of image data is typically a large,
unique facility at a scientific/ medical research institution. The physical constraints of
many advanced imaging systems, such as LBL’s Advanced Light Source (a 60 meter

! The NREN (National Research and Education Network) is a component of the President’s High
Performance Computing and Communications initiative.

The Research Imaging Paradigm
' /

Imaging Device Data Storage Elements

\\ ‘T (Control | Heart Scan Data
and —

data (150 mblt/sec) B

collection

}

J

User Feedback to

I —
I Modeling and Data
! Simulation Modeling
Patient | Processes _y» ~—
Feedback to _ - >)
Imaging , -
Device : _- - .- - | geometry
(- -
(Computing Elements
——————— -
W User Images Rendering
orkstation(s) 7\ (100 mbits/sec) .
\ - 7 ' L)

Figure 1

w

diameter, 1.5 GeV synchrotron ring producing high brilliance, near - coherent X - rays

in a large research complex)? or NASA’s Hubble telescope, are such that it is not pos-
sible to place the imaging system geographically close to the computing resources.

Adequate computing resources are also frequently not. available at the imaging
device. The data generated for a single ‘‘unit of interest’” (either in time, or space, or
both) for this class of imaging devices is large: typically of the order of 1000 MBytes
(megabytes). The computation required to convert the data collected by the imaging
device to viewable images (e.g. MRI reconstruction), or to do the simulations that are
needed to otherwise interpret or utilize the data, require a supercomputer - equivalent
capability. The supercomputer is needed for its large memory (gigabytes), or its high
processor speed (hundreds of millions of floating point operations per second
(megaflops)), and usually both. The experimental nature of the research imaging situa-
tion also makes configurable systems advantageous because the algorithms for the data
analysis, and therefore the optimal computing environment needed to implement them,
may not be well understood. A-configurable computing environment is needed during
the research stages to allow data sources and experimental, expensive ‘‘super’” com-
puting and high speed data storage elements (which will not be located at the research
site) to be flexibly and temporarily combined into optimal systems.

The human participants (the application or experiment scientists, the imaging dev-
ice design scientists and engineers, and even the operators) may not be conveniently or
continuously close to the facility. The research staff must have access to an analysis
and visualization workstation in order to interpret the -highly complex image data, to
guide the operation of the imaging device, and for medical study, diagnosis, and treat-
ment planning during the operation of the imaging device. This workstation must pro-
vide interactive visualization of the results of the reconstruction and simulation done
on the supercomputer, and provide for interactive feedback to the imaging device, and
the object being imaged (a patient in the case of a medical physics facility).

A versatile, easily used, and distributed suite of software is necessary to couple
the elements of this environment in order to do the imaging, image reconstruction,
image analysis and simulation, and imaging device control; and to allow for algorithm
development. This last is a very important step. The imaging devices in question are
research facilities, and the data always requires substantial transformation before it is
meaningful for human interaction and analysis. The ability to easily and quickly pro-
totype and modify software algorithms for this image reconstruction is crucial.

All of the above components are resources that an ‘‘information age’’ environ-
ment will have to smoothly integrate, regardless of location, in order to realize the

2 See, for example: ““The ALS Life Sciences Center’’, Lawrence Berkeley Laboratory, PUB - 5234,
1989, Berkeley, CA, 94720

potential benefit to a broad based audience.

The challenge facing us over the next few years is to address the key issues, and
remove the bottlenecks that inhibit a configurable environment. The current problems
for widely distributed elements are: (1) the sources of data are either isolated from the
supercomputers, or communicate over low speed networks; (2) the supercomputers are
at best connected to the graphics and analysis workstations via low to medium speed
networks; (3) adequately fast and economical workstations are just barely available, (4)
the current software environment is not well enough integrated to permit the flexible
development and experimentation needed for the various software algorithms that are
at the heart of the imaging and visualization; and (5) the mechanisms of communica-
tions are not fast enough.

To solve these problems we need the following:

(1) Adequate network connectivity and bandwidth between the three geographically
dispersed components described above. This entails not only networks and net-
work access techniques, but network management, high speed protocols and
routing algorithms, and high speed network gateways.

(20 When the network bandwidth is adequate, the next bottleneck will be the
computer/network interface. Interfaces and interprocess communication
mechanisms must be improved in order to permit computer systems to utilize
high speed data paths without so much overhead that all of the CPU resources
are consumed just getting data from the network, into computer memory, to the
user process, and back.

(3) Once the data paths operate at high speed, the next problem will be that of pro-
viding faster processing through interconnection of various computer architec-
tures that are optimal for various parts of the problem (for example through the
use of both coarse and fine grained parallel systems).

(4) Finally, when all of the components are in place we must have a software
environment that will permit the integration of these components into a system

that will provide the distributed control, data management, modeling and simu-

lation, and visualization and analysis that are needed to solve the problem. 3

The solution to the first three of the above problems involve eliminating a set of
bottlenecks. As each bottleneck is relieved, another will emerge as the problem to
solve next. Most of the issues are understood at this point (or at least currently the

3 See, for example:
‘“The Software Bus: A Vision for Scientific Software Development’’, D. Hall, W. Greiman, W. Johns-
ton, A. Merola, S. Loken, Computer Physics Communication, 1989.

ity

topic of active research efforts), and the solutions are, for the most part, computer
communications or software engineering problems. There are no conceptual barriers to
implementing the configurable systems architecture described above. The solution of
each of these problems will lead to an immediate increase in the ability of the comput-
ing environment to support new scientific and medical physics imaging techniques.
The solution of all of these problems will enable new areas of scientific and medical
investigation.

3. Anatomy of a Distributed Applicaﬁon

Most of the technologies that will enable the environment described above are
involved in building distributed applications. In this section we will describe the tech-
nologies that support distributed computing: networking, interprocess communication,
and the tools to construct and manage distributed programs. We will also explore how
distributed computing 1s done by describing the architecture of a hypothetical applica-
tion which is similar to the case study presented in the last part of this paper.

The hypothetical application (see Figure 2) consists of a client process that han-

dles the user interaction and a graphics front end, and two server (worker) processes*
that operate independently to carry out the computations invoked by user interactions,
and then return the results. The exact nature of the application is not significant, but
for the purposes of discussion assume that one server operates on a data set to produce
a geometric representation, and the other server operates on the geometric data to pro-
duce a raster (image) representation.

Many distributed applications are written using the client- server model in which
one process (the client) requests service of another process (the server). This relation-
ship implies an asymmetry in the sense that the server responds to client requests, and
while this is true for the example (and the case study) it is not terribly significant. The
servers can (and do in the case study) communicate among themselves as peers in the
course of accomplishing work for the client.

Our exploration of the distributed application will be done by tracing the data
flow between the modules (the front end client, server one, and server two). We will
briefly describe the software and hardware of services needed to accomplish the data
exchange, including the operating system services, and the network and telecommuni-

-4 A process is the basic unit of executing software in a modern computer system. User programs
execute as processes, as do many utility functions like print servers, file servers, data base servers, etc.
The operating system is the software (not usnally considered a process) that manages the physical
resources of the computer system and coordinates all of the processes running on the system. Due to
software and bardware limitations traditional microprocessor operating systems like DOS and MacOS
do not provide for multiple processes in the flexible way that, for example, Unix does.

Case Study Software Architecture

Volume data

(Voxels)
Segment
(generate
surface rver 2
geometry)
Segmentation
Control
Viewing -
Server 1
‘Rendering
Viewing
Control
displa
Pay Client

interaction

Figure 2

cation facilities. The descriptions are give in terms of a Unix environment®, but the
principles are broadly based and found in many operating system environments.

3.1. Interprocess Communication Mechanisms

Probably the most important architectural element of distributed computing is the
one that provides for processes communicating with each other. There are a number
-of paradigms in use, and we will describe three of them, but concentrate on one. The
first two are streams and messages, and the third is remote procedure call. These all
provide interprocess communication (IPC), which involves collecting data in one pro-
cess, identifying the process that is to receive the data, and managing the actual
transfer of the data between the processes. The data movement is done between end-
points of communication and involves moving data into and out of a data marshaling
area (buffer) in a process (program) on a particular host (computer system). There
may be numerous such endpoints in a process that communicates with many other
processes. IPC provides the mechanisms of establishing the endpoints, sending data
between them, and managing multiple endpoints.

Streams in Unix are reliable data flows between two endpoints of communication.
The data is transferred without structure (e.g. records) or interpretation (i.e. no unit of
data - a collection of bits or bytes - has significance in the transfer process) between
one process and another. The semantics of the data are entirely up to the processes at
each end.

 Datagrams are (usually) unreliable messages. They are unreliable in that neither
the order of delivery, nor even delivery itself, are guaranteed. Datagrams can be faster
than reliable streams in an environment where errors are infrequent (e.g. local area net-
works); however, the application process has to take the responsibility for error detec-
tion and correction when using datagrams, and the mechanisms for this are usually
expensive when they actually have to be used. (Datagram error detection does not
include worrying about data corruption (bit loss or transformation) because this is
detected at a lower level, and results in the packet being discarded.) Like streams, the
datagram mechanism does no interpretation or translation of the data.

Remote procedure calls (RPC) are (at least to programmers) perhaps the most
intuitive IPC. RPC allows a client process to contact a server process and invoke a
procedure (subroutine) on the server for solving a specific task. RPC provides facili-
ties for moving data to and from the server, in much the same way that the functions
in a local subroutine library are used. For example, in the same way that procedure
calls allow the communication of complex data structures through their argument list,
so do RPCs. This capability is typically accomplished by using a data definition

5 For a beginning user’s guide to Unix see [Bims). A concise engineering overview of the Unix

language that allows one to describe the structure of the data on the client in such a
way that it can be serialized for transmission across the network to the server. This is
done by defining routines to encode (serialize) and decode the data (recreate the origi-
nal data structure). For the basic data types (e.g. different types of numeric representa-
tions - floating point, integer, bit, etc.) known to the serialization language there is also
a mechanism provided for converting from the internal representation of one computer
system to that of another. An example of a data definition language is Sun
Microsystem’s XDR (eXternal Data Representation). (See, for example, the first 20 or
so pages of [Corbin].) Some of the issues with RPCs include the overhead of using
this data encoding when moving large amounts of data, and the fact that, in following
the semantics of conventional procedure calls, RPCs typically block (stop) the client
while the server performs its task (though this behavior is not hard to avoid.) The
underlying transport for RPC can be either reliable streams or unreliable datagrams.

Interprocess communication is more than transport. It has to deal with all of the
issues that are necessary to allow versatile communication between processes. This
includes (potentially) resource discovery, server instantiation, establishment of the
communication end points and connections, and management of multiple connections
to multiple servers. '

Resource discovery is necessary to gain access to already existing servers. It can
be accomplished by: (1) tables describing well known services (e.g. mail, file transfer
(e.g. ftp), remote terminal service (e.g. telnet)); (2) broadcasting a request for service
and then using anyone who responds in the affirmative (many Sun RPC based services
use a variation of this approach), or; (3) a directory service can be contacted for a list
of servers. In all of these cases, the server (or its proxy) is assumed to be running (i.e.
available to be contacted).

In the case of a user created server, typically the client process will explicitly start
the server. One mechanism commonly used to accomplish this is for the user to have
an account on the target host(s) where the server is to execute, and then to use a
remote execution service to start the server when it is needed. Let us assume that the
compiled server program is in a known location on the remote host, and is executable
by the user. On BSD Unix® systems the rsh program provides the remote execution
service. rsh starts up a shell (command interpreter) on the remote host, and then uses
this shell to start the server which is specified as a command line argument to rsh.
For an rsh of the form:

operating system may be found in [Sun85].

6 «‘Berkeley Standard Distribution’’ (BSD) Unix is the variant developed at U. C. Berkeley in the
1980s that defined and incorporated the functionality needed for distributed computing. Most of the in-
novative features of BSD Unix are now provided in all Unix implementations. See [Libes] for a history
of Unix. ‘

10

rsh remote_hostmame -l username server_name server_options
an example of starting a server might look like:
rsh example.lbl.gov -l johnston "isosurf -d -port 6001"

Once the server is rurining the next step is to establish communication between
the client and the server. When servers are started they typically go into a waiting
state for an incoming connection request. Servers may have several communication
endpoints corresponding to different sources of data or different functions. Each end-
point for incoming connections is uniquely identified, and the client knows the identi-
ties (perhaps because the servers always use the same endpoint identifiers, or because
the identifiers are given to the server by the client when the server is started as in the
example above). Now that the server is running there are a lot of variations of how it
might function. The server has access to all of the resources of the remote machine,
and it might, for example, access databases that are already (or permanently) on the
remote system. The server might be given data from the client that it then stores on
the remote host for the lifetime of the server, and then operate on that data in different
ways according to requests from the client. In any event, once the servers are started
they wait for the client to send a request to do work. Once that request is received,
the servers perform the requested task, and then commence sending the results back to
the client. At this point, the outgoing data transfer from the server will typically block
until the client initiates the receive. The sending and receiving are done over already
established connections, and the blocking is like any other sort of I/ O wait.

In our hypothetical example, after passing a request to the server the client does
not wait for the results, but rather continues to process local requests and manage the
user interface. When the server is ready to start returning the results of a previously

initiated request, the client must recognize this and take action to accept the results.
 Asan ekample of this see Figure 3. Consider that the client is managing the visualiza-
tion of a large voxel data set. The representation of the data is as a rendered version of
the whole data set, and as a low resolution rendering, perhaps surrounded by a wire
frame shape to assist in establishing the 3D geometric relationships in the display. The
full resolution rendering might take several seconds to generate on the server, but the
low resolution version, and the wire frame geometry can be very quickly generated on
the client system. In this example, the user requests a change in the view, the client
contacts the server to redo the high resolution rendering, and then locally generates
and quickly displays the low resolution view. While the server is working on rendering
the high resolution version, the client will continue to process user requests. When the
server is finished rendering it will send the new image back to the client. In order to
get the newly rendered view the client must recognize (1) that the server is trying to
contact it, and (2) interrupt what it is doing in order to receive the new image and
display it.

11

Client Architecture

User Interaction/Display

Client Process

F---z===== ; B
Client . cont‘l;ol
Start up graphical an
Functions results interface state
feedback selyng
injtiali

rsh server_1 host_ 1
rsh server_2 host_ 2

Connection Establishment

s2id=socket()

completeJ l__-
 J

process user
interface functions

'

Connection Management
select(input_from_servi_flag, s1id,
input_from serv/2_flag,s2id)

I |
| |
| I
| I
I I
I |
|| stid=socket() 1 1
| |
| I
| |
I |
| I
I I

____________ , process reques:t action
information from the servers
returned from -
- the servers l
' A - write (s1id) - don't wait
A ‘ - write (s2id) - don't wait
to server_1 to server_2 »

Asynchronous Al

incoming data processing

— on "input_from_serv1_flag" on "input from_serv2_flag*
receive geometry from serv1 receive image data from serv2
g 2
2 . . . 5
= local graphics processing & display loca! generation of raster display 3
|]
Asynchronous Asynchrpnous .
notification mechanism notification mechanism
y
server_1 server_2
Figure 3

12

This circumstance illustrates the problem of connection management. In our BSD
Unix based example, signal-driven I/0 is the key to connection management. Basi-
cally, there is one signal that notifies the client process that one of the connections is
waiting to deliver data from a server. The notification is in the form of an interrupt
that causes control to be passed from the current execution thread in the client to an
interrupt handler routine. Within the interrupt handler the select function can be used
to determine which of the several possible connections (corresponding to the several
active servers) is waiting to deliver data. Once the connection has been identified, then
the client routine can perform the appropriate tasks. The ‘‘asynchronous incoming
data processing’’ routines (Figure 3) perform the local part of the server specific
action, for example receiving an image that was computed on the server and displaying
it in a window on the local workstation. When the processing of the incoming data is
complete the signal handler passes control back to the client process where it was ori-
ginally interrupted.

3.2. Networking

Geographically distributed computing is built on networking. The potential today
for any reasonably skilled programmer to design and implement a distributed applica-
tion can be traced directly to the decision of the DoD’s Advanced Research Projects
Agency (now DARPA) in the late 1970s and early 1980s to fund first ARPANet (the
direct ancestor of today’s Internet), and then Berkeley Unix (which integrated network-
ing in a fundamental way into the computing scenario). (See, for example, [Stevens]).
There is currently an enormous amount of energy going into networking because of its
potential for connecting people and distributing information in ways never before pos-
sible. The current ‘‘era’” in networking can probably be said to have started with the
institutionalization of general purpose scientific and educational networking through the
construction of the NSFNet (the backbone, the regional networks, campus connections,
etc.), and all that this has led to. The NSFNet has experienced exponential growth for
several years, leading to widespread recognition of the potential of computer network-
ing technology. The next paradigm shift will come through the integration of the pub-
lic telephony network with the computer data networks. This merging is being fostered
explicitly through the vision of people like Bob Kahn and Vint Cerf of Corporation for
National Research Initiatives (CNRI), Ira Richer, formerly of DARPA, and Steve
Wolff and Darlene Fischer of NSF. These people, as well as many others,
hypothesized that the way to affordable high speed networking was to get the common
carriers (commercial telecommunications providers) involved in computer networking
in a much more intimate way than just providing wires (or fiber) as they do now. The
current gigabit network testbeds (organized by CNRI, with funding from NSF and
DARPA) all involve partnerships with regional or long haul telephone companies. (See
[IEEE] for an overview of the testbed activity, also see [Markoff] for a popular

13

exposition of the vision for high speed networking described above.)

The following sections introduce the computer network and telecommunications
technologies that are the basis for the networking that we use to build distributed
applications.

3.2.1. Models of Networking

There are currently four or five models of networking in common use: IBM’s
SNA, DEC’s DECNet, a collection of PC networks (many based on the Xerox’s XNS),
Apple’s AppleTalk, ISO’s X.25 (et al), and the Internet’s IP. Arguments can be made
that the ISO, Open System Interconnection (OSI) model is acting as a focus for the
convergence of these different models (see [Cysper]), but in the scientific and educa-
tional communities IP networking is still by far the dominant factor. It is useful, how-
ever, to look at the OSI model for networking for several reasons: The terminology is
being retrofitted to most of the network models, and it is the networking language of
the telephony community.

We briefly discuss the OSI model because is provides a convenient point of refer-
ence, but the work in this paper is all based on the IP model of networking. It is
worth noting that there are significant differences in approach in OSI and IP network-
ing. (See [Comer], Section 10.6 *‘Differences Between X.25 and Internet Layering’’.)

The Internet Model of Networking

Briefly stated, the Internet model has all services built on top of unreliable
datagrams that are routed through the network on a best effort basis. End-to-end
reliable data transfer is the responsibility of the network software in the end hosts.
When we say that TCP provides reliable data streams, this is accomplished by the host
TCP software, not by any other part of the network. When using TCP, data from the
application is fragmented and placed in IP packets. These packets are routed through
the Internet by store and forward packet routers. At any point, if for example a router
is congested, some of these packets may be lost. Further, there is no guarantee (nor
even presumption) that all of the packets that contain the data of the TCP stream will
take the same route through the network (which means that the packets may not arrive
in the same order in which they were sent). The routers typically connect many
different types of link level subnets (the low level networks like Ethernet, FDDI, and
point - to - point links that provide the actual data transfer) which implies that the origi-
nal IP packet may be further fragmented at any point in the network (all of the
reassembly is left to the receiving host.) This use of heterogeneous link level networks
is called ‘‘internetworking’’ (networking among networks).

At the receiver end, the TCP code checks for corrupted data, lost packets, and out
of order packets. Packets are reordered, lost or damaged packets are requested to be

14

resent, and eventually a buffer containing information identical to that which was sent
is presented to the application for reading. We will talk about the interaction of IPC
with network data transport below. We infer that, but say little about the details of
how, TCP accomplishes reliable data transfer (see [Comer]}for details); and we briefly
discuss how packets are transferred (routed) from the sending host, through an intermnet,
to the receiving host in Appendix A.

The OSI Model of Networking

The OSI architectural model of networking is useful both for the standard termi-
nology that it makes available, and because, at the lower layers, it provides a point of
‘commonality with the telecommunications industry. The model is based on functional
layering, and the notion (like the Internet model) that there are points in the hierarchy
where elements of the information are the same on both sides of a connection. (This
is essentially the same as saying that on every participating host there are certain well
- defined interfaces in the IPC mechanism, independent of any part of the underlying
implementation, where everything is constant and well understood.) There are many
places in the OSI hierarchy where network services can be obtained. In particular, the
notion of reliable data transfer extends all the way down to level two (the subnets).
This is different from the Internet model which leaves reliability to the end nodes
(under the assumption - so far correct- that more efficient implementation is possible by
not replicating services at many layers.) Appendix B contains a brief introduction to
the OSI terminology that is used by both the computing and telecommunications indus-
try. In outline form, the OSI model can be represented as:

- Applications and applications support (Level 7)
- Presentation (representation of data in a common format) (Level 6)
- Session (dialogue coordination) (Level 5)
- Transport (data transfer) (Level 4)
= Networking (addreésing and routing) (Level 3)
- Data Link (subnet access) (Level 2)
- Physical (Level 1)
Common Carrier Technology

The signal carrying facilities in the Internet have traditionally been the only part
of computer networking provided by the common carriers. While this continues to be
true, increasingly the common carrier services are moving up the OSI architectural
hierarchy as deregulation allows the offering of more value added services. In particu-
lar, very high speed networks will almost certainly be provided as broadband

15

Integrated Services Data Network (B - ISDN) services (mostly through the ATM packet
network mechanism described below). This is at least in part due to the increased
cooperation between the computing and telecommunications industry, and in part
because high speed networks are so expensive that a cooperative effort is required.
The services provided by the common carriers are outlined here, and briefly described
in Appendix C. '

= T - Carrier Systems (OSI Level 1)
Digital point-to-point links, e.g. T1 (" 1.5 Mbits/sec) and T3 ("45 Mbits/ sec)

- SONET (OSI Level 1)
Optical fiber based synchronous transmission systems, e.g. OC-3 (155
Mbits/ sec), OC-12 (622 Mbits/sec), and OC-48 (2.4 Gbits/sec)

- Frame Relay (OSI Level 2)
A new service that will provide an upgrade path from X.25

- SMDS (OSI Level 2)
Switched Multi - megabit Data Service is a metropolitan area network service

- ATM and B-ISDN (OSI Level 2)

Given the probable importance of ATM networks to the future of high speed
computer networking, we offer the following comments. Today’s telephony networks
are built from components that switch and multiplex synchronous streams of informa-
tion, both analogue and digital. The analogue parts of the network are voice circuits,
and the digital parts are the data circuits mentioned above. The circuits can only be
switched to paths with similar electrical and bandwidth characteristics, except that cir-
cuits can be multiplexed into and out of higher bandwidth circuits.

Computer communications networks, like the Internet, are packet switched net-
works. On entering the network, the data is broken down into packets that have source
and destination addresses, and these packets are sent through dissimilar, asynchronous
networks as independent units of data. Since there is no synchronization (each packet
is, from the point of view of the network, independent of every other packet) the
switches. (routers) that move packets around the network can interconnect physically
very different types of networks. All that has to be done is that the packet be
transformed from the format of one network to another. This is called ‘‘internetwork-
ing’’ (networking among networks). The problem with computer data networking is
that when you need synchronous services (e.g. voice and video), the relatively large
packets that traverse heterogeneous networks make synchronization difficult to accom-
plish.

The next generation of telephony networks have been designed to accommodate

16

both the requirements of synchronous and asynchronous services. This work is being
done in the international telecommunications standards organization (CCITT), with
increasing participation of the international computer standards organization (ISO).
One result of this cooperative effort is a network technology that is called Asynchro-
nous Transfer Mode (ATM). ATM packets are very small compared to traditional data
network packets (53 bytes as opposed to 500-1000 bytes), and the switches are
designed to be very fast. The combination of small and fast is intended to permit syn-
chronous services to be provided over ATM networks. (The Broadband Integrated Data
Services Networks (B-ISDN) are a collection of services that will be provided on
ATM networks.) ATM networks are also rapidly emerging as the most important high
bandwidth computer networks (currently 0.6 to 2.4 gigabits/second is typical). Several
joint experiment and development ventures are underway between the computing and
communications communities in the national gigabit testbeds, where the ATM technol-
ogy is being used for experimental high speed computer networks. (See [IEEE]).

3.2.2. Networking Overview

Figure 4 summarizes some of the interrelationships of the technologies described
in the previous section. At the top we have the aspects of the technology that are
closest to the application: the IPC interface, followed by connection management and
the transport protocols. Below transport is the internetworking protocol that deals with
routing between (probably heterogeneous) subnets. For the IEEE 802.xx standardized,
non- ATM subnets, the 802.2 link encapsulation provides a mechanism for a measure
of standardized interface to these link layer protocols, though in many current IP
implementations this encapsulation is not used. The adaptation layer of ATM provides
assistance for preserving information from the higher levels (for example, the IP
packet boundaries) that are needed for efficient segmentation (breaking data units down
into packets) and reassembly. In the case of direct use of ATM by IP, ATM is the
link layer. Many other protocols are, and will be, mapped to ATM because ATM will
be providing the high speed packet (cell) switched data communication mechanism in
the future, replacing (in many cases) the current ad hoc collection of subnets (e.g. T-
carrier lines). The left side of Figure 4 indicates a collection of currently used link
level protocols that can be (and probably will be) mapped to ATM. The right side
shows a collection of newer protocols that have been designed to map to ATM. The
horizontal bars are intended to indicate (roughly) the use of one layer by another. Fig-
ure 5 illustrates how these technologies might look in the (not too far distant) future
network.

3.2.3. Networking and Distributed Computing

To see how the networking technologies fit together, it is useful to look at a
hypothetical network implementation in the context of the current example. This

17

Network Technologies

—— —— —_—

-

i

| Fibre Channel
(bit serial, circuit
switched,
800 Mb/sec)

i

HiPPI
(32/64 bit parallel,
800/1600 Mb/s,
Circuit switched)

|
I Ethernet (802.3)
(10 Mb/s)

FDDI (802.2)
(duatl token
ring,100 Mb/s)

|-
ol

Yy

»

non-network services

remote procedurs calls, messages, and streams |
| O
connection management | &
- — |
. TCP/AP | =
}
l
802.2 (link encapsulation)

}
other |
proprietary
ATM like LANs 2

’ o
| £
ISO - PISN B
(]
51
Q.
£
[=]
O
}
FFOL sFDDI -Follow-on LAN) |
dual token ring,
1.25-Gb/s)

1
SMDS (802.6) |
(Dual bus
MAN, 150 Mb/s)

. }
isochronous services I
(video & audio)
|
AAL (ATM adaption layer) !
[22]
Q2
4t r e e eer 1l g
rrrirrrrrerrerrrerirrrribi £l
B-ISDN / ATM (Asynchronous Transfer Mode) lowest level "packets® 3
54 Bytes/packet (call) @

IS

£

Q.

Sonet (Synchronous Optical Network) I %
(lowest level framing protocol) L

Figure 4

18

%

network (illustrated as ‘‘Customer Site 2’’, in the lower left comer of Figure 5) is
somewhat unusual in that it is an all ATM network; that is the local network is ATM
as well as the wide area network. Local ATM networks are different from conven-
tional LANSs in that there is a point to point connection from every host to the local
ATM switch. Broadcasting on an ATM network will probably also work somewhat
differently, with the switch performing this function. We will analyze our hypothetical
architecture by following data going out of a server process, through the network, and
then back up through the network hardware and software on the client host, to the
client process. |

The key concepts follow closely with the layering ideas above, and one of the
important concepts is that at comparable places in the architecture the format of the
data is the same. Let us also elaborate on the concept of an ‘‘endpoint” of communi-
cation. The fixed part of the network addressing (that is the Internet part which is
seen unchanged at both ends of a connection, as opposed to various link layer
addresses that come and go as the IP packets make their way through the Internet)
consists of the source and destination Internet address, the transport protocol type (e.g.
TCP or UDP), and an identifier, called a port, that is process specific. In the case of
TCP, a connection is identified by the five tuple {transport protocol; source port
number; source IP address; destination IP address; destination port number}. The
communications endpoint establishment process associates an I/0O descriptor with the
connection (i.e. an identifier that can be used by the process to send and receive data).
It is this I/O descriptor that is used in the connection management in order to tell
what connection is waiting for I/ 0.

Data from the memory of the server process is sent to the TCP connection using,
for example, the write function (in BSD Unix this is the same write function that is
used for file I/0). This stream of data is fragmented into TCP ‘‘segments’’, and the
transport type, and source and destination port numbers added. These segments are
then (logically) passed to the IP layer, which adds the source and destination Internet
address. The IP packet is now passed to the link layer, to go through a process of
‘‘adaptation’’. This involves formatting the IP packet into a ‘‘frame’’, which consists
of the IP packet, plus padding to guarantee that the length is a multiple of 48 bytes,
and a checksum. An ATM cell (i.e. small packets) header containing the ATM virtual
circuit identifier for this connection is constructed, and the frame is then fragmented
into ATM cell payloads. The ATM cells (header plus payload) are then sent to the
ATM interface on the host, and from there to the first ATM switch. Regardless of how
it is determined, the routing in an ATM network is represented as tables in the
switches that say where to send the cells for each virtual circuit that the switch knows
about.

Unlike most IP packet routers, ATM routers (switches) carry the notion of a

19

Next Generation High Speed Networks
(Common Carrier Based)

Terminal I:I:lsynchronous services (video)y—p— |
| ocal
Adapter = ps1/ps3 »{ PBX [~ telephone
FDDI (B-ISDN) | system
Ethernet L _1LANs (Ethernet, FDDI)
LAN L Frame Relay =¥
Computer local ATM
Systems [1SMDS (802.6) Switch
< L
Customer Site router —1 ATM |
"""""""" 1 —LF —
- omputer
\ ; ATM over SONET Systems

77 ‘ e
__________ Z /
local ATM| ATM Switch /'
Switch T y
| “ /
I - Computer
| ‘ i] Systems
Csomputer ; ATM Switch } -I:J?;?ea:-l
ystems : 77 NN | :
|

Customer Site Customer Site

connection all the way through the network. In an IP network, routers do not know of
the existence of circuits, but ATM switches deal primarily with circuits. Real circuit
switches set up ‘‘electronic’’ circuits to connect two points (that is, the switch sets up
a connection between an input port and an output port). The connection is essentially
‘‘hard-wired’’ and the switch just directs a digital data stream from one port to another
(this is the case for HiPPI and Fibre Channel switches). A circuit switch does not see
packets on the circuit. ATM switches are called virtual circuit switches because while
they do switch circuits, they do so by the mechanism of routing packets (cells). A vir-
tual circuit is set up by an entry in a routing table in the switch, and cells are routed
by a (relatively small) ‘‘route identifier’’ in the header. The global addressing (e.g. IP
addresses or telephone numbers) are dealt with by the software that sets up the circuit
(represented as a table entry in the switch.)

At the other end of the network (illustrated in Figure 6), the cells start showing
up at the interface of the client system. The progress up through the layers of the
receiver can be characterized as a series of de-multiplexing steps. In other words, at
each point where a new piece of information about the packet is exposed, it must be
acted on. Referring to Figure 6, ATM cells are first separated (1) on the basis of
whether they have arrived on a data carrying virtual circuit, or a special virtual circuit
that carries control and ATM network information. Next, (2) the frame is reassembled
from the ATM cells of the virtual circuit corresponding to our connection. The proto-
col type of the frame is determined, and the protocol packet is handed to (in our case)
the IP network layer (3). We now have recovered the same IP packet that was sent
from the other end, and it is identified by the TCP connection ‘‘S-tuple’’. The next
layer of de - multiplexing (4) is to determine the transport protocol (TCP in this case).
Now the data is extracted from the TCP segment, and placed in a buffer. Since the
client is not waiting to read the data, but has enabled an asynchronous notification
mechanism (5) for this connection, that mechanism is invoked, and the client process
is notified that data is ready to read. When the client gets around to executing a read
on this connection (6), the data is transferred into the memory of the client process,
and the interprocess communication is complete. The client now has available the
results of the work of the server.

4. Configurable Systems

We have now examined the IPC and network technology that will allow us to
make process - to - process and system - to - system connections. The remaining techno-
logies needed to make configurable systems practical are user level software to specify
and use the configured system, and the functional elements themselves.

21

Interprocess Communication

(hOSt - . j
application
- process @
session layer module stream_1 I
for subnet advise
1 user process
operating system
| RPC
"read” : 1 interface
interface process
notification

5 4 of active
/ steam
Zz

stream buffer @

mechanism

EGP
@ TCP (routing)

~ [| - & P

Fibre L
h Channel . P osli
demux
protocol
control / type
information

packet 4

@ frame reassembly based

vel1 i
@ demux versle, on ATM adaption layer
VeI 3
I N
packet integrity check [hetwork
interface
hardware]
_ optical to electrical Y,
s
ATM Cells switch <
Figure 6

22

4.1. Distributed System Software Construction Paradigms and Interfaces

In constructing distributed systems much of the effort goes into the management
and communications between the distributed software modules. PVM is a good exam-
ple of a tool for assisting in this effort [Sunderam]. PVM is designed to facilitate the
configuration of collections of computing elements into a parallel computing environ-
ment, but the step from that to handling a more diverse collection of configurable sys-
tem elements is small.

Finally, once virtual systems are technically possible, in order for them to be use-
ful in practice they must be easy for the information analyst to use. In the past several
years ‘‘iconic’’ programming systems (e.g. AVS and Khoros) have demonstrated suc-
cess in providing a high level programming ‘‘language’” for non-programmers that
can be used to specify data flows and interrelationships between functions graphically
(in much the same way that the data flow diagramming CASE tools do).

4.1.1. The PVM System

PVM (Parallel Virtual Machine) is a publicly available software package that
allows the utilization of a heterogeneous network of parallel and serial computers as a
single computational resource. It provides facilities for initiation, communication, and
synchronization of processes over a network of heterogeneous machines.

- PVM may be implemented on a hardware base consisting of different machine
architectures, including single CPU systems, vector machines, and multiprocessor
‘machines. These computing elements may be interconnected by networks, and the
hosts that are utilized may be varied dynamically. The PVM software essentially con-
sists of a collection of parallel programming constructs to transfer data and synchron-
ize the parallel operation of tasks. The support software interprets requests generated
by the user-level constructs and carries out the necessary actions in a machine
independent manner.

Application programs are composed of ‘‘components’’ that are subtasks at a
moderately large level of granularity. During execution, multiple ‘‘instances’” of each
component may be initiated. These application programs view the PVM system as a
general and flexible parallel computing resource that supports shared memory, message
passing, and hybrid models of computation. Resources may be accessed at three
different levels: the ‘“‘transparent’ mode in which component instances are automati-
cally executed on the most appropriate hosts; the ‘‘architecture - dependent’” mode in
which the user may indicate specific architectures on which particular components are
to execute; and the ‘‘low-level’”” mode in which a particular machine may be
specified. Such layering permits flexibility while retaining the ability to exploit particu-
lar strengths of individual machines or architectures on the network. This provides a

23

method for executing components on the host with an architecture (serial, parallel, vec-
tor, etc.) most suitable for a given algorithm.

HeNCE (Heterogeneous Network Computing Environment) [Beguelin] is an X-
windows based software environment implemented on top of PVM, and is designed to
assist in developing PVM applications. In HeNCE the program is specified as a graph,
where the nodes in the graph represent procedures and the edges represent dependen-
cies. These program graphs are entered using a graphical interface. The procedures
represented by the nodes of the graph are written in C or Fortran, and in many cases
these procedures can be taken from existing code. HeNCE provides facilities for edit-
ing and compiling these procedures on the various architectures of the user’s defined
virtual machine and then monitoring their operation. While PVM provides the low
level tools for implementing parallel programs, HeNCE provides the programmer with
a higher level abstraction for specifying parallelism.

4.1.2. AVS and Khoros

The Application Visualization System (AVSt) (a commercial product of AVS
Inc., see. [Upson]) and Khorost (from the University of New Mexico) [Rasure] are
examples of user interface paradigms designed to let non - programmers specify flexible
data analysis and visualization ‘‘programs’’. These systems provide (1) a ‘‘visual pro-
gramming’> paradigm based on iconic (‘‘picture block’’) construction of executable
networks of predefined program ‘‘modules’’, (2) a software bus of sufficient sophisti-
cation to transport a wide range of scientific data between these modules, and (3) a
general interaction mechanism that allows easy, interactive control over the operation
of the data transformation and visualization aspects of these modules. Modules are
combined into ‘‘networks’’ to perform a particular task. Networks of modules are
easily modified via an X - windows interface. Data flow between modules is indicated
by simply drawing a line between the module icons.

AVS contains a suite of modules for filtering, mapping, surface and volume
rendering, animation, and data analysis. The AVS “‘flow executive’ is the component
that determines when to run various modules, provides both upstream and downstream
data flow, and shared memory support. Khoros components include a visual program-
ming language, code generators for extending the visual language and adding new
application packages to the system, an interactive user interface editor, an interactive
image display package, an extensive library of image processing, numerical analysis
and signal processing routines, and 2D/ 3D plotting packages. Figure 7 shows a typical
data analysis ‘‘program’’ put together with the AVS interface. Both AVS and Khoros
contain the ability to distribute modules to various heterogeneous machines. Users can
select the machine with the optimal architecture for each particular module.

24

25

4.2. Network Based Computing System Elements

Given the mechanisms for interconnecting the computing and data handling ele-
ments that will provide us with our *‘virtual computer system’’ (or ‘‘meta - computer’’
as some people call it) we should consider what are the available elements. Figure 8
indicates the kind of elements that will be useful, and that we can expect to see in the
next few years.

One of the important uses for configurable systems will be the remote siting of
experiments. In order for this to be possible we will need to develop high speed
instrumentation sub - systems that also have high speed network interfaces. This work
is in progress in the form of prototype systems that handle certain aspects of physics

particle-detector data analysis. Currently this work is focused on Fibre Channel’ tech-
nology, but as ATM become better understood, it will undoubtedly also be used. In
any event there is work in several of the gigabit testbeds to build adapters that will

interface both Fibre Channel and HiPPI® to ATM.

Live video input devices (that is, network interfaces to analogue video sources)
will also be important in the realm of experimental science. Video can provide for
high speed image capture, for monitoring aspects of experimental apparatus that are
difficult to monitor otherwise, and to provide backup for other monitoring systems. In
the environment that we envision, video cameras will be scattered around the network
as needed, and controlled remotely to enable video streams to the workstation.

‘

When high speed (or ‘‘real time’’) data collection is necessary, it will almost
always be necessary to buffer that data in order to decouple it from real time. This
decoupling will be needed to allow time for processing and/or entry into a mass
storage system. The likely candidate for this ‘‘network buffer’” will be the new genera-
tion of RAID technology. RAID (Redundant Arrays of Inexpensive Disks) couples
many disks together in a parallel fashion, providing for both high speed I/O and
access through the mechanism of striping data across many disk units. RAID-1II [Lee]
is a network disk controller in which the ‘‘file system’’ information is maintained on
an associated processor, but the data transfers take place directly between the disk
array controller and a high speed network interface (currently HiPPI). Large RAID
systems will be expensive, but being attached to a high speed network will permit
sharing among multiple users and experiment data sources.

7 Fibre Channel is a relatively recent effort that seeks to overcome some of the disadvantages of
HiPPI. Fibre Channel is a serial line protocol (unlike HiPPI which has a 32 or 64 bit parallel physical
implementation.) Like HiPPI, Fibre Channel is also a circuit switched technology, but both the switch
and the host interface implementations are capable of switching fast enough to appear like a packet
switch to the host. This makes it easier to do IP style, packet based networking using Fibre Channel,
than it is with HiPPI.

26

Virtual System Elements

Function Element Network data bandwidth
FB+
3 800 mbit/sec

g;gp“efi"r’r?;f’t = ™ (HiPPI/Fiber channel)
device I/O e

. - 200 mbit/sec
Live video input o} ®= (Fiber channel)
high speed ~100 Gby
data buffers —» 640 mbit/sec
(e.g. RAID-II) ~——— (HiPPI)

display, user interaction, =~ Workstation
and video I/0

T

T e > 100-150 mbit/sec

multiple architecture
compute servers

vector — L i
() Q 800-1000 mbit/sec

— % 240-800 mbit/sec
(parallel) S

BB . 000 AL w Y
co-processors, e.g. graphics, encryption,
compression, data conversion)

fast, high)
capacity, ——» 600 mbit/sec
distributed < 300 mbit/sec
tertiary storage

DOO

Figure 8

27

Workstations must also be connected into our virtual systems, typically as the
support mechanism for the user interface. However workstations are also increasingly
participating as computing elements of the virtual system through systems like PVM.

Supercomputer processing elements already participate in configurable systems,
and an experiment in this area is described later in this paper.

Special purpose processors for graphics rendering, data conversion, data encryp-
tion, etc. will also likely participate in configurable systems. The ability to share these
resources should also promote their development as a wider community of users will
be able to access the hardware.

Finally, when all is said and done, data at various stages of collection and
analysis must be archived. Widely connected high speed networks will again make
possible the sharing of an expensive resource. However in the case of mass storage
systems, networks will also enable a new generation of fully distributed storage sys-
tems (as envisioned in the IEEE Mass Storage System reference model, see [IEEE-
MSS]). Further, these networks will permit the construction of higher speed mass
storage systems by using the network to provide parallel access to multiple storage
servers so that data can be striped across servers without a lot of special interconnect
hardware. This approach is being explored in the MAGIC gigabit testbed. See
[Catlett].

5. A Case Study

We now describe a test case application that is designed to exercise the various
distributed computing mechanisms that will enable the assembly of virtual systems.
The point of this test application is to illustrate the concepts, to help analyze the poten-
tial of currently available components that might be used in configurable systems, and
to act as a tool for exploring the issues that inhibit the sort of routine, high speed
interconnection that is needed to explore this environment. This application is designed
to be useful in its own right, and demonstrates a fairly unique capability, but its pri-
mary purpose is as a tool to test the limits of configurable systems.

The prototype application is designed to achieve real-time distributed visualiza-
tion of large data sets, and takes into account parts two and three of the imaging
scenario described in Section 2 (connecting multiple remote computing elements and

8 HiPPI (High Performance Parallel Interface) is a technology that is in relatively common use as
a high speed local interconnect in the supercomputer environment. HiPPI ‘“‘extenders’” and Sonet inter-
faces are also being used to achieve very long distance (thousands of kilometers) point- to - point HiPPI
links. Locally HiPPI is routed using circuit switches, and while the switches can switch circuits very
quickly, the HiPPI host adaptors and software is generally very slow for connection set up and tear
down. HiPPI is generally used to provide relatively long lived connections between supercomputers and
their peripheral devices.

28

workstations), but not part one (on-line data sources), since the data set had already
been generated and resides on storage local to one of the computing elements. The
current T-3 NSF and DoE network environment allows sending images that have been
rendered on a supercomputer to a local workstation at rates sufficient for visualization
of complex 3D geometry (e.g., typically 10 320x320, eight-bit per pixel,
uncompressed images per second). The full capability, which envisions real time
transmission of data from imaging devices to a supercomputer, requires substantially
higher bandwidth networks than available in T-3 based networks and is being investi-
gated in several of the national gigabit testbeds.

The computational part of the application is partitioned into two pieces, one
optimal for a massively parallel architecture, and one optimal for a vector processor.
For this experiment the first part is run on a Thinking Machinest CM-2, and the
second on a Crayf, Y-MP. The two compute elements are located at the Pittsburgh
Supercomputer Center (PSC), and communicate with each other over a HiPPI, 800
Mbits/sec communications channel, while the remote workstations are connected to
PSC via the usual variety of local, regional, and wide area networks (NSFNet and
ESNet). (See Figure 9).

This application uses a virtual system configured from three elements, and demon-
strates the use of wide area networks to enable access to high performance visualiza-
tion by any remotely located scientist with a color X workstation. It also demonstrates
the concept of using networks to assemble multiple computing elements whose
different architectures optimize the solution of a specific problem.

5.1. The Application

The prototype application chosen to demonstrate the use of high speed networks
with multiple supercomputers is the interactive display of MRI data of the human
brain. ‘‘Interactive’’ here is taken to mean the ability to generate and display images
at a rate of at least 3-5 frames per second as a result of changing the segmentation
(region of interest) and at a rate of at least 10 frames/sec when changing the 3D view-
ing parameters for the resulting geometry (e.g. rotating). A typical MRI data set is
256 x 256 x 128 x 1 byte voxels, or 8.4 MByte of data. A

The motivation for this particular use of the application is that a medical
researcher would like to be able to interactively segment (isolate and identify) regions
of interest, remove portions of the 3D data in order to ‘‘see’’ the resulting surface (i.e.,
dissection), view the results from various angles, and continuously rotate the results to
generate 3D depth cues. The computational requirements necessary to accomplish this
are still considerably beyond the ability of current scientific workstations, and in any
event, one goal is to permit the end user to access the results from a low cost worksta-
tion. In previous experiments, we have found that the required performance is also

29

Case Study "Virtual System"

N
Pittsburgh Supercomputer Center

CM-2

HiPPI Y-MP

_ i,
Internet (ESNet
i \/ Supercomputing 1991)
Albuquerque, NM
X Workstation
\ Y,

Figure 9

30

beyond the capability of a single Cray Y - MP processor. Our current goal is to show
that interactive speeds can be achieved by distributing the computations across a col-
lection of architecturally optimal supercomputers.

Figure 10 shows a screen dump of the operating application. The display is being
generated on, and sent from the Cray, and the various control panels provide for
interactive control of the servers on the CM -2 and the Cray.

5.2. The Software Architecture of the Application

The prototype application is an example of the quantitative analysis and visualiza-
tion of large 3D scalar fields. This process involves: (1) locating a region of interest (a
contour surface and/or its enclosed volume); (2) representing that surface as geometry
(a triangular tessellation, or 3D points on the surface), and; (3) the conversion of the
geometry to a viewable image (viewing and rendering). (See Figure 2.)

A surface (rather than volume) rendering method is used for visualizing the region
of interest. Surface rendering methods create a representation of an object surface
using graphics primitives, such as polygons, which are then displayed through a tradi-
tional graphics pipeline. The idea is to ‘‘tile’” the surface of the 3D object using
thousands of small polygons or 3D point primitives. The first step in the creation of a
geometric representation during surface rendering is to determine the location of the
boundaries of the object of interest. This step is non - trivial due to the lack of distinct
boundaries between various soft tissues represented in MRI data, and this makes it
impossible to extract soft tissue features using simple thresholding. For example, the
surface of the brain has an MRI value which is very similar to the skull and the mem-
branes surrounding the brain. Our approach for this application was to have a human
expert create a ‘‘mask’ (outline) image of the surface of the brain. The mask image
is a 3D binary data set, where a ‘‘1’’ indicates that a given location may be used in
constructing the geometric representation of the brain. The process is semi-automated:
the user inputs a small set of data points for each slice of the MRI data, and then a
program running on a workstation performs local feature detection to generate an
approximation to the desired mask. The user must then correct any problems in this
mask by hand. Even with this partial automation the process is tedious, and more
work is necessary to speed up mask generation.

Given the mask, simple thresholding is then used within the region of data
defined by that mask. This ensures that no objects outside the surface defined by con-
sidering the masks of every slice (e.g. the surface of the brain) are ever part of the
segmented object.

Marching cubes and dividing cubes [Cline] are two algorithms which are used to

31

igure 10

F

32

&

create a 3D surface representation from a 3D volume dataset. In these algorithms, the
volume of the voxel data is divided into ‘‘cubes’’, where each of the eight comers of a
cube represents a voxel that is either inside or outside the surface representing the
object to be rendered. If the voxel values of at least one, but not all, of the corners of
a cube are greater than the surface threshold value, then that cube intersects the sur-
face. In marching cubes, the surface intersecting the cube is represented by using up
to four triangles. The algorithm computes the triangles for one cube, then ‘‘marches’’
to the next cube. The dividing cubes algorithm is similar to marching cubes, except
that the output is 3D points with normals (‘‘directed points’’) instead of triangles.
Dividing cubes subdivides each surface voxel into small cubes that match the display
pixel size, resampling the voxel to increase the apparent resolution. This approach
eliminates the need for scan conversion of the triangles.

5.3. Method

The application is partitioned among three processes: a client and two servers
(Figure 11). The client runs on a local workstation, and controls the operation of the
three processes via an X - window interface. User input of parameters drives the com-
putation performed on the servers. One server runs on the front end control system of
the CM-2 (CM-FE). This server instructs the CM-2 to read the MRI data that has
been placed on the Connection Machines’ high speed file system (the Data Vault).
The CM -2 performs the dividing cubes algorithm to generate a surface representation
of the data. The resulting surface data is sent across a HiPPI channel to the second
server, which runs on a Cray Y-MP. The Cray renders the 3D geometry into an
image, which is sent across the network to the local workstation.

An analysis of the computing and communication involved is as follows. (The
numeric annotation refers to Figure 12.) Greater detail on issues involved with each
component of the application architecture is given in the following sections.

At client start-up time, the client establishes connections with the two servers,
which are already running. After this initial connection, both servers then go into
blocking reads until further data is received. Then,

(1) The user (U) specifies the file name of a data set that resides in the CM Data
Vault. The CM-FE server causes the CM-2 to read in that file (1a) and per-
forms preliminary computations (1b), returns data set information to the client,
and then goes into a blocking read again.

(2) The user (U) inputs parameters that control surface generation (e.g., the isosur-
face value) and the view of the resulting surface (e.g., rotation about the x, y,
and/or z axes). Once these are chosen, the user clicks a button to begin the
process of computation. The client sends the viewing parameters to the

33

Case Study Application Architecture

r N)
CM-2 CM - FE
1b prelims
i 3a geometry
3b lighting sefver
'l p
Pl v
Ll ;| | J
\ u;f/ f - J

*?+, (3c)send
,'/{// (x),y,i,l

REFN
a 477/ Y-MP)
¥
server (1) send
voxel
filename
(4a) render
A\ J
(4b)
display
image

(2) viewing
parameters

(" userworkstation |)

display &
interaction
\~ client :/
_ J
—- command and/or data
- = CM data
Figure 11

(2) segmentation
parameters

CM
SYSTEM

34

o

rendering server on the Cray. After receiving the parameters, the Cray goes
into a blocking read on the HiPPI channel. The client also sends tessellation
parameters to the server on the CM front end.

(3) On receipt of the tessellation parameters, the CM -2 generates the geometry (3a)
(x, y, and z location of the surface) and then performs lighting calculations
(3b), which generate an gray -level intensity for each point, and then sends the
resulting four - byte quantity for every point over the HiPPI channel to the Cray
(3c).

@ Once the CM -2 has sent the data, then.the Cray performs an orthographic pro-
jection (4a) (based on the current viewing parameters) and hidden surface
removal (using a z buffer). The resulting image is then sent (4b) via TCP/IP
to the client.

If the user had selected parameters to generate a single image, both servers have
now gone back into blocking reads and are awaiting further parameter changes.

The user can also specify parameters that generate a sequence of images, e.g.
gradually changing the viewpoint of the object. In this case, for the first image in the
sequence steps 1 through 3 are followed as before. However, after sending the
geometry and lighting data to the Cray (step 3c), the CM -2 server immediately starts
calculations for the next image. Since the geometry is unchanged by resetting the
viewpoint, all that the CM-2 need calculate are the new lighting values for the next
image. At the same time, the Cray is rendering the current image and transmitting it
to the workstation for display (see Figure 12). If the CM-2 finishes its computation
before the Cray, it goes into a blocking write on the HiPPI channel. Thus in this
mode computations for the CM -2 and Cray are parallel.

5.4. Issues in Mixed Computer Architecture Distributed Computing

In this section we analyze some of the issues that arise for the virtual system.
The timings mentioned are for a data set of 8.4 million voxels.

5.4.1. Connection Machine Issues

Dividing cubes is a data - parallel algorithm, and hence maps very well to a large
SIMD computer like the CM -2. Normal vectors must be found for selected voxels in
order to do lighting calculations, and the calculations for finding the normal vector of
every data point are performed in parallel immediately after the data is loaded into
memory. This computation takes a few seconds, and only needs to be done once, since
the CM -2 has sufficient memory to store all normals.

Determining which cubes intersect the surface can also be done in parallel, and
takes about 0.11 seconds. The CM-2 processors can communicate with their

35

T Application Synchronization legend
':1 Worksltatign CM-2 System ‘ Y-MP = biock
- - ock-
e C % —,-,-—s— 5 read
. d4d it h ' ready
n v
* (I gﬁa nan.a,tea au : I s command
(not ! ' and/or data
1o | 1a @ read voxels \ _
scale)) 1b } compute normals . = E CM data
et 1
. = : C clent
|l
1 . ' S server
2 send view params 1
U, E = user
I'2 send 1 U action
1 segmentation 3a Y compute geometry |
' params compute lighting [
' csend F S S S o 2 === = = !
! E SSx=z=z=z=:2=:
i -
I =T
! '
. " 4a compute view and
, ! render '
! I
! | gy T L2222 4h send image
1 AT S A A A e isaien II ra _rr__‘:' .
'ﬁz) K
U 2 send movie params : >|
L P =
. 3a | compute geometry '
(multi- . !
view : 3b, _cc_)m_puie lighting :
request) 30159ndv::::5552:::
1 .
! < parallel > 4a_ compute view and
] compute lighting { 3b, operation render
]
, | ——rrrrz2, 4D, send image
display B o oo e o ==
image caw "
11 3cseNd b = w m e e e e ool .
! 4a, compute view and
i render
compute lighting | 3b,
I
: — 1 4b, send image
dispIaY| gy //,_,,;///////1/ _.:_
'mggel 3cgsend & = =~ = = oL L L _al
numbers refer to steps described in section 4.3 ' 3b4 ? 483
subscripts refer to movie frame numbers
Figure 12

36

neighboring processors very quickly, and this is the only type of communication
needed to compute normals and surface locations. However the results are scattered
across many processors, and must be gathered together before they can be sent to the
Cray. This is done using a ‘‘send’” operation, which takes about 0.7 seconds. After
the results are gathered, the data is converted to Cray format and sent to the Cray
server over the HiPPI channel.

5.4.2. HiPPI Channel Issues

Data is transmitted over the HiPPI channel utilizing a HiPPI specific protocol for
high - speed parallel data transfer. The CM-2 is connected to the HiPPI channel via
the CM 1/0 bus, a direct connection to the CM -2 supporting data rates of up to 240
Mbits/sec. Outbound data from the CM-2 is received from the CM 1/0 bus by the
CM HiPPI station manager, a Sun-4t with special hardware for fast data movement,
and is then placed on the HiPPI channel.

Because of the radical differences in machine architectures, data conversion
“between the CM-2 and the Y-MP is a non-trivial problem. On the Connection
Machine, which uses many bit parallel processors, there is no straightforward relation-
ship between the internal ordering of the data and the serial data ordering used on the
Cray. The bits are ordered according to what Thinking Machines calls the *‘‘twiddle
shuffle,”” a complicated geometrical reordering of data based on the underlying hyper-
cube architecture of the CM-2. OQOur application must perform a conversion to serial
data form for each block of data transferred. This conversion takes approximately 0.06
seconds for the 1.8 MByte of data typically transferred in one server operation. To
simplify the use of the HiPPI channel, PSC has written a library of routines to hide
both the networking and data conversion issues from the user. [Schneider]

5.4.3. Cray Issues

The main issues in using the Cray in an optimal manner are the amount of
memory available to store the incoming data, and vectorizing as many of the calcula-
tions as possible. The Cray Y-MP at PSC has eight processors and 32 megawords of
memory. This application uses only one of the eight processors, and a single user pro-
cess only has access to four megawords of memory. This is not enough memory to
store incoming X, y, z and normals vectors as 64 -bit floating point numbers. Because
of this, the lighting calculations are performed on the CM-2 instead of the Cray to
reduce the amount of data to be transferred and stored. This approach eliminates the
need to store the x, y, and z components of the normal for each point (each component
would need at least 16 bits of resolution). Using the normals to perform the lighting
calculation on the CM -2, all that need be sent is a resulting 8-bit intensity value, a
6-fold reduction in data volume. (Transferring an 8-bit value also reduces the
amount of data conversion necessary.)

37,

Using an 8-bit data type brings up the problem that that the Cray is a word-
oriented rather than a byte - oriented architecture, and the use of character data types in
a loop inhibits vectorization. To circumvent this problem, the data is read off the
HiPPI channel in integer format and the data for two points are placed in one Cray
word. Floating point conversion using bit shifting operations to ‘‘unpack’ the stored
data vectorize readily, and take up a negligible portion of the total calculation time.
Calculations are performed on groups of points that have been converted into floating
point format. This conversion must take place for every frame, since as noted above,
there is insufficient memory to store all points in floating point format.

Since the lighting has been performed on the Connection Machine, the portion of
the rendering that the Cray must perform is projection and hidden-surface removal.
The projection calculation vectorizes trivially. Vectorizing the hidden-surface removal
is more difficult, and we have implemented two hidden-surface removal methods as a
result. One, using a z-buffer approach [Foley], is very general. Any view of the data
can be taken, and the data can arrive from the Connection Machine in any order.
However, to achieve this generality, it is almost impossible to safely vectorize the code
implementing this method.

We have also implemented a much faster but less general method for viewing the
data, using the painter’s algorithm [Foley]. Rotation may only be around one axis, and
the data must be pre-sorted on the Connection Machine in order for this method to be
accurate. This pre-sort takes several seconds, but only needs to be done once for a
particular surface. Using this technique, rendering is more than ten times faster than
when using the z-buffer. For a typical data set of several hundred thousand points, the
maximum viewing rate using the z-buffer is around three frames per second, but using
the painter’s algorithm we can render over 30 frames per second. (This speed is not
achieved at the workstation because of network bandwidth restrictions between the dis-
tributed components in this application).

5.4.4. Local Workstation Issues

One of the main reasons for performing the visualization on supercomputers
instead of a local workstation is to demonstrate that scientists can use a configurable
environment to assemble available computing elements in order to do sophisticated
visualization of large data sets, and then display the results on an inexpensive color
workstation.

For this experiment to be successful it is necessary to send raster images between
the rendering server (the Cray) and the image display device (the workstation) fast
enough to achieve motion/rotation visual queuing (5- 10 frames/second, minimum).
This experiment is designed to test the new 45 Mbits/sec wide area networks and 100
Mbits/sec (FDDI) LAN’s and workstation interfaces.

38

Another workstation issue arises from the display of images using the X protocol
when those images are coming in at interactive rates. This demonstration uses an X-
Window server, together with with Sun’s XViewt toolkit (to handle the user interface)
and a proprietary direct graphics access library (Sun Microsystems’ XGL) in order to
display the images at a fast enough rate. (For displaying images the overhead of the
standard X protocol causes a noticeable degradation in image display speed.) This
image display issue was made even more critical because typically images need to be
zoomed by a factor of two or three for display. (In our implementation of dividing
cubes, we do not perform voxel subdivision. Thus, image resolution is chosen so as to
~match voxel resolution. This typically results in images that are on the order of only
300x300 pixels.) The approach of using direct access to the workstation frame buffer
through a low level interface that coordinates with the window system to set up the
screen display area, but does not use the window system image display mechanism, is
fairly common, and most workstation vendors provide similar mechanisms.

5.4.5. Network Protocol Issues

One of the issues encountered early on was the problem of using TCP in a high
speed, wide area network environment. The problem was that as network speeds
increase, the throughput became limited by the speed-of-light propagation time
between the communicating computers coupled with peculiarities in the TCP imple-
mentation. The standard version of TCP/IP can send at most 64KB of data per
round - trip - time (twice the propagation time) and, in practice, the sustained throughput
was at most half this theoretical maximum because of the packet acknowledgement
scheme.

Working closely with Cray Research and Sun Microsystems, Van Jacobson has
implemented the TCP/IP extensions described in RFC1072 [Jacobson88] and
RFC1185 [Jacobson90]. These extensions remove the 64KB per round - trip - time limit
and allow TCP/IP to run at the full speed of the underlying network, independent of
‘the end-to-end propagation time. The issues and techniques for this situation are
described in [Jacobson88a]. These modifications are essential to achieving fast image
display on the workstation.

5.5. Analysis

The analysis of the operation of this distributed system is summarized in Figure
13 and Table 1. Typically, 480,000 3D points are generated for the particular data set
used. This process takes approximately 0.8 seconds on the CM-2 (time for surface
generation plus time to gather results). From there, it takes 0.06 seconds for the data
conversion, 0.1 seconds for the HiPPI transfer, and 0.3 seconds for the Cray to render
the image (using the z-buffer approach). Over a 45 Mbits/sec network, it takes about
0.1 seconds to transfer the resulting 320x320x 1Byte (100 KByte) image to the local

39

Reydsip
pue abew 9|edS

oasw ‘aswi

002t
|

gl aunbi4
%2} [»)] (=)
o 8 o c @
a 3 2 2 =
-
S 8 3l 5 I B S
3 2 a = | 2
s | S ! o 7} @
= _S - 2] | o ! @
1 73 _E_ = = I >
T S XL el S ! 3
g | & =131 = Il 8 | 7
> = _l_w_) bs o5
004} 10001 006 o | ! 00L 009 005 ooy oo l." 00z 100} 0

19S BIEP lIANCE ¥

Jas elep IAN 91 @

UONEISHIOM M
Romeu d| Z

loselepllan 8 |

_{"IQJ

."I‘J

=-- 08

UL UL

(=]
w0
-

- 002

T

]

)11
T

00S / Sliqu ‘ajel ejep

a

TIME BUDGET: CM-2/HIPPI/Y-MP/Inet/Display

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \ Wmmm \‘
§ 256 x 256 x 61 28 MRI data \Q \\ 2\\\§ 2 sequencers, 16k processors §
\ (8 x 0\\\\v\2\§3\l\s\l\\\\\\\\\\\ \\\\\ %\\\\\\\\\\\?\O\Q\M\E\!\m&g\‘\g\r\y\\\\\\\\\\\\%
__ _Calculatenormals | 195 _ _ _ _ | initializaion
"Dividing Cubes" 0.11 --rotation
gather 0.5x 106, 3D points 0.7 2::%8 gather is a function of the number
o of processors that have data
lighting 0.01 0.01 selected
convert to serial data 0.06 0.02
send 2 x 10° Bytes 0.1 0.05 in rotation only mode send 0.5 Mbytes
over the HiPP! channel
CM total 0.98 0.08
AN \\ * Y \\
\ .5 x 108 oint+ Inten \\\\\ \\\\\ rocessor 4 \
R \\\\\\\\ DN \ N \\\\\\\\\
unpack & convert to
floating point 0.01 0.01
viewing & projection 0.35 0.3 z buffer algorithm
hidden surface removal (0.03) painter's algorithm
Cray total 0.36 0.3
send 320 x 320 image 0.1 45 mbit w/Jacobson TCP

(100 KBytes) over T3 link

0.1

write image to display window 0 03 0 03 X + Sun's XGL
Grand Total 1.47 0.52
movie mode: CM, Cray, & net 0.3 z buffer algorithm
I/O occurs in parallel (0.1) painter's algorithm
TABLE 1

41

workstation. Therefore the total time is around 1.3 seconds. Several tests were run
varying the size of the input data set. Figure 13 shows the results for the cases of 8,
16, and 32 Mbit data sets, in terms of the ‘‘bandwidth’’ of each major operation. As is
to be expected, the time for the data parallel operations on the CM -2 were indepen-
dent of the amount of data being processed (within the mémory size limit), and the
vector operations on the Cray increased in throughput and required somewhat more
time (though not nearly linear increase, since the longer vectors took better advantage
of the processor). The case of the 64 Mbit data set continued the trend, but was not
included in Figure 13 in order to make the graph easier to interpret.

In the general case the current performance does not yet meet our goal of five
frames per second, but it is fast enough to be useful. Rotation of the geometric model
representing the surface of the brain is faster because the geometry does not need to be
recomputed. Rotation also requires only new lighting intensity values, which are only
one - fourth the amount of data of the general case. In this case the CM-2 uses 0.01
seconds, data conversion takes 0.02 seconds, the HiPPI transfer takes 0.05 seconds,
and the same amount of time as above for the Cray rendering and the image transfer.
The total time in this case should be around 0.5 seconds. However, the application can
be run in ‘“‘movie’’ mode, where several images are generated from one set of parame-
ters. In this case the CM-2 and Y -MP are working simultaneously, and can rotate
images at a rate of about three frames per second.

The speed of rotation can be further increased, at the cost of generality, by using
the painter’s algorithm for hidden-surface removal as described in section 5.4.3.
Rendering in this case takes 0.03 seconds. Thus in movie mode, network bandwidth
becomes the limiting factor, and the maximum speed of rotation is ten frames per
second.

One issue that has not yet been addressed is whether the use of supercomputer
resources in this example is an efficient one. For example, would it be better to avoid
the complexity and expense of using both the Connection Machine and the Cray, and
perform all calculations on only one of these machines. In both of these alternative
cases we would have had to use a larger portion of that resource than was utilized in
our application to be able to achieve the same performance. In our implementation we
use one Cray Y-MP processor that has essentially been dedicated to our use (our pro-
cess is given the highest priority). This is necessary because, depending on the load of
the Cray, it may take four seconds for a typical process to get swapped in, significantly
reducing the speed of this application. Alternatively, we would have had to use more
than one non-dedicated processor to get the same performance, but again, running the
application interactively would be difficult, and there would be additional overhead. It
can of course be argued that the typical user is not going to get highest priority on a
process, but it is more of an administrative issue as to whether one dedicated

42

4

processor, or more than one undedicated processors are more expensive for one user.

Alternatively, we could have performed all of the calculations on the Connection
Machine. In our approach, we used two out of the four sequencers available. We
could probably achieve the same or better performance using all four sequencers and

-performing all of the operations on the CM, but again, it is not feasible for a single

user to use an entire supercomputer at a busy supercomputer center.

Another issue to be addressed in heterogeneous supercomputing is the amount of
programming skill necessary to take full advantage of it. The current application made
use of IPC socket-level programming to handle the communication between the com-
ponents, but the need for low-level handling of communications should be eliminated
as systems such as PVM become available.

The difficulty in writing parallel code is also an issue. Portions of the code that
would be roughly equivalent in speed on both the CM and the Cray, but which are
difficult to code using the SIMD model, were implemented on the Cray. Thus it was
actually easier to program the application using both vector and massively parallel
supercomputers.

6. Conclusions

We have presented a collection of technologies that, taken together, will provide
the possibility for: (1) partitioning problems between heterogeneous supercomputers;
(2) doing remote siting of data intensive scientific experiments; (3) providing access to
capabilities that could previously only be obtained at a small number of sites due to
the size, cost, or experimental nature of the implementation, and; (4) providing new
capability enabled by the nature of the networks themselves.

The example application demonstrates that wide - area networks are no longer the
bottleneck to the type of distributed imaging applications envisioned above. Of the
many scientific imaging scenarios that require the described architecture, medical
research can provide a clear and immediate focus to drive and justify the computing
development, and demonstrate the utility and importance of an integrated, distributed,
high speed computing environment. High speed network testbeds and associated pro-
totype applications are the first step in the process of enabling this technology.

Widely deployed gigabit-per-second wide-area networks and the associated
interconnecting hardware and software promise to alter the way that many large scale
problems are approached. These networks will allow the creation of ‘‘network’ or
“‘virtual’” supercomputers- computing systems comprised of geographically distributed
components communicating with each other at high speeds, and configured on demand
into virtual systems that exist only as long as necessary to solve a particular problem,

or until a better combination of elements to solve the problem becomes apparent, at

43

which point the virtual system is reconfigured.

7. Appendix A: Internet Routing

When the sending and receiving hosts are not on the same subnet (LAN), then the
key to the functioning of the Internet is routing. (See Figure Al for a typical Internet
situation, and see [Narten] for a very readable account of routing and routing issues.)
In figuring out how to get data from one system to another, the problem can be
divided into two cases. The first is where two systems are connected to the same
*“link -level”” network (i.e. a local area network, or ‘‘subnet’” in ISO terminology).
When packets are moved across a physical medium from one system to another there
are always at least two levels of addressing involved: the globally known Internet
address of the destination hosts, and its physical, or interface address. When packets
are sent, they go from one host interface to another, and at the lowest level the sender
must know the hardware address of the receiver’s interface in order to do the sending.
In this case the routing is typically accomplished by a table lookup that just returns the
physical address corresponding to the Internet (IP) address of the destination. In this
case the problem is to find the interface address of the target host. On most LANs the
Internet mechanism for this is a special protocol called the address resolution protocol
(ARP). ARP is an example of the resource discovery problem. When host A wishes to
talk to host B (which is on the same LAN), A discovers B’s physical address by
broadcasting a link - layer packet that contains the IP address of the intended receiver
and that of the sender. Since the packet is broadcast, all systems attached to the LAN
receive the packet. Every system examines the packet, and upon finding that it is an
ARP request, looks at the IP address of the intended receiver. If the current system is
not the intended receiver, the packet is discarded, and no further action is taken. On
the one system that is the intended receiver, the packet is updated to contain the physi-
cal address of the receiver, and sent back to the sender (the sender’s physical address
is also contained in the packet.) From this the sender makes an entry in its ARP table
that maps the IP address of the target host to its physical address, and data communi-
cation at the IP subnetwork level can commence.

In the second case, the target system (say host F) is not on the local network. In
this case the sender has to have a ‘‘route’’, or proxy destination, to send the packet to.
In the simplest case, there will be a single ‘‘default’’ route for all hosts not on the
local subnet. This route is really the address of a system on the local network that all
non-local IP packets can be sent to, and this “‘router’> will worry about how to get
them to their destination. The router, of course, will typically have interfaces on
several networks. If the target host is on one of the networks attached to the router (as
might be the case in going from one campus department to another) then the process
described above repeats itself, with the router acting as the proxy for the original sys-
tem. Once the router knows the physical address of the target host, it sends the packets

4

Sv

Networks and Routing

AEEATALEAALATATTLLEALAR R LAAAAATIATELLITTTLLTLAATARLALLTA LT TARARARLAR XA VR RRRRRL NN RN Y

Campus

Host A

IP_addr_A net interface,

Router B T |subnet5, addr_A
net interface, §
subnet 1, addr_A LAN -1 &I
net interface, net interface, IP_addr_J IP_addr_H
subnet 1, addr_B subnet 1, addr_C
IP_addr_C net interface, net interface, net interface,

Host B
|P_addr_B Router A

IP_addr_E

subnet3,

subnet 3, addr_B subnet 4, addr_A
addr_A

LAN -3

IP_addr_ D

net interface,
subnet 2, addr_A

Host F
IP_addr_F point-to-point

T-Carrler sevices

net interface,
subnet 2, addr_C

LAN-2

net interface,
subnet 2, addr_B

Router / Gateway

Host G

IP_addr_G

VYV YV I IIIII PP I IV VI VI IV VIV IIIIVIVVIVIIPYVIIVIFFFVIVIIIY/IIVIFIIII Iy FFFEFEYFEFEN L e i L e i L et s

Router / Gateway S

CrPINIOILPELLIPLLPLIIIIIPITISIPTLIILIISI SIS OO S ETIISLISEL IS PGS ES LIPSO PIIS IS ELIS OSSO II PSS TS ETIIEEEISES 5SS,

TATTTTTRLTTILTLTTTTLARLTXRRLTIZETTRTTTRLRTLRLATHTRATTLHIRTHLALTRRRRRLRRRRRRRNRRRR NN vy

Figure A1

to that system. For all future packets, the router just picks up the packets incoming
from A from the router’s network interface on A’s subnet (LAN-1), and sends them
out through the interface of the subnet (LAN-2) that B is connected to, and hence to F.
Now assume that the target host (say host H1 on LAN-3) is not on any of the subnets
directly connected to the router. In this case the router has to forward the packet to
another router (presumably one ‘‘closer’’ to the destination), the second router for-
wards to another router even closer to the destination, and so forth until the packet
arrives at a router that does have an interface on the subnet of the target host. The
trick is how do the intermediate routers know what to do with the packets that cannot
be delivered on one of their subnets. In other words, how does one router find the
next router that is closer to the destination? The answer is that there has to be coopera-
tion among the routers to determine how to move a packet through the Internet so that
it eventually reaches its destination. Furthermore, the routes (the tables in each inter-
mediate system that say how to get a packet closer to its destination) should (ideally)
be determined so that the time to go from A to H1 is minimized. Routes should also
be dynamic so that conditions in the Internet such as failed or congested paths are
avoided. This is all further complicated by the circumstance of administrative policy.
For example, certain paths may only be available to transport packets that originate or
are destined for subnets of certain organizations (because the governing bodies of those
organizations own the links). The problem of discovering the optimal routes through a
large and non-isotropic network has been studied for a long time, and will be for a
long time to come. There are routing protocols that provide mechanisms to go out and
explore the network to determine the state of connectivity and traffic distribution, and
then put together routing configurations and send them around the network for the
routers to use. It is worth noting that one of the details that has been ignored in this
brief discussion is that the LANSs attached to a router are frequently not the same tech-
nology (e.g. FDDI and Ethernet), and may not carry the same amount of data in their
(link level) packets. This can cause the original IP packets to be fragmented several
times in the course of their transit through the Internet.

In slight variance to what was said above, routing protocols actually occur at two
levels. The level described above (intra-domain routing) operates within a collection
of routers that are within a single ‘‘administrative domain’’ (AD) (like a campus, or a
regional network). A different set of protocols operates between ADs.

Administrative Domains (ADs) are the logical entities responsible for organizing
routing for a collection of networks. Usually, an AD is organized around some other
unit of organization, such as a university campus or an agency network such as DOE’s
ESNet. Within the Internet today there are at least 1000 ADs. The AD abstraction
simplifies the problem of routing in the Internet to the problem of routing within each
AD (intra-domain routing), and then routing between ADs (inter-domain routing).
Within an AD, an organization runs at least one (often many) Interior Gateway routing

protocols (IGP) to determine optimal paths through the network. Examples of IGPs are
the Gateway - Gateway protocol (GGP), Routing Information Protocol (RIP), and
HELLO, just to mention some of the names. IGPs allow routers inside an AD to cal-
culate the routing tables for the AD’s hosts and routers. ADs use at least one (often
more) Inter Domain Routing Protocol (IDRP) to communicate between the ADs. The
Exterior Gateway Protocol (EGP) is an example of an IDRP. See [Comer] and [Nar-
ten] for more information on this topic. :

8. Appendix B: The OSI Model of Networking

The OSI model of networking is useful both for the standard terminology that it
makes available, and because, at the lower layers, it provides a point of commonality
with the telecommunications industry. The model is based on functional layering, and
the notion (like the Internet model) that there are points in the hierarchy where ele-
ments of the information are the same on both sides of a connection. (This is essen-
tially the same as saying that on every participating host there are certain well defined
interfaces in the IPC mechanism, independent of any part of the underlying implemen-
tation, where everything is constant and well understood. It is, however, an interesting
feature of internetworking that there may be many transformations as data works its
way from one system to another, and that at intermediate points (typically in gateways)
this situation may not hold.)

This section introduces terminology that is used by the telecommunications indus-
try, and as the computing and telecommunications industries are drawn together (e.g.
in the gigabit testbeds), is increasingly showing up in the world of distributed comput-
ing applications. The OSI model consists of seven layers (and is sometimes jokingly
referred to as the seven layer cake).

Application (Level 7):
This layer can be user level software, but it is usually considered to represent
the high level services that a user application is built on. Examples include
data management and access mechanisms, directory (data lookup or dictionary)
services, the authentication aspects of security, resource management and
recovery, program instantiation (command interpreters), etc. Each of these will
have a standard application programming interface (API).

The next two layers provide a core set of services for end-to-end data exchange.
These services allow machine independent data exchange between heterogeneous sys-
tems. They are sometimes referred to as syntax independent data exchange services.

Presentation (Level 6):
This layer permits a common understanding of data representation formats, and
structured data exchange. An integer is an integer and a floating point number

47

is a floating point number at this interface, regardless of how differently the
host systems at each end of a conversion might choose for the binary represen-
tations. The ISO, ASN.1 (Abstract Syntax Notation 1), and Sun’s eXternal Data
Representation (XDR) are both examples of facilities providing these services.
These services not only have to do data conversion, but provide for serializing
data structures for transmission across a network and reconstruction at the
receiver. It is not uncommon for these operations to be by far the most expen-
sive parts of IPC. The encryption aspects of security are also handled at this
layer.

Session (Level 5):
This layer handles the coordination of dialogue between communicating appli-
cations. This can include things like full duplex messaging protocols and
remote procedure calls. This layer also performs some connection manage-
ment, and in the future might include the interfaces for communicating with
network management facilities of the type envisioned in ATM networks for
requesting quality of service, informing the network of upcoming usage, etc.

The boundary between layers four and five (sometimes called the transport service
boundary) is the point at which network independent data exchange occurs. This is
typically the lowest level in the architecture that user level processes (as opposed to
operating system functions) have access to networking.

Transport (Level 4):
This layer does end-to-end message transfer, error control, fragmentation, and
flow control. At this layer we find things like IBM’s SNA (Systems Network
Architecture), the OSI TPc (Transport Protocol classes), the Internet TCP
(transmission control protocol), and the IBM PC’s NetBIOS.

Networking (Level 3):

Network routing and addressing occur here. For example IP routes messages
across multiple subnets in connectionless fashion. It uses the services of each
subnet that it routes through to actually move the data, which may entail further
fragmenting the data in order to meet the constraints of the subnet. Subnet rout-
ing in the form of protocols like ARP and ICMP also show up in this layer.
The ISO, X.25 connection oriented protocol encompasses everything from this
layer down.

Data Link (Level 2):
The link layer provides subnet access services to the network layer. The IEEE
802.x type LANs are examples of link level services. 802.2 (logical link
control - LLC) provides common link layer control functions to the media
access (MAC) layer. The LLC functions provide for multiple concurrent logical

48

links via connectionless, connection oriented, or acknowledged connectionless
transport. TCP/IP does not use 802.2 because, in the view of the Internet
model, these services are redundant with functions provided higher in the proto-
col stack. The lower part of level two provides the physical link access. The
functions are frame delimiting and error checking. Examples of MAC protocols
are 802.3 (Ethernet), 802.4 (token bus), 802.5 (token ring), X3T9.5 (FDDI), and
recently 802.6 (SMDS - a metropolitan area network).

Physical (Level 1): This layer defines the physical and mechanical connections to
the signaling media.

There are a large number of terms associated with the OSI model of networking.
It is useful to introduce a few of these:

Peer entity is unit that sends information to and from the same places in the archi-
tectural hierarchy.

Service Access Point is the place or means by which an entity accesses the services
of a layer. Common examples are PSAPs (access to the presentation layer,
TSAPs (access to the transport layer), NSAPs (the network layer) and LSAPs
(the link layer).

Logical Link is a connection between a pair of network layer peer entities. LLs usu-
ally link peer entities in hosts on the same subnet, but can extend across link
level bridges. LLs are the lower level equivalent of the upper level end - to -end
connections.

Having covered the ISO model very briefly, the interested reader is referred to
[Cysper] for more information about this, and the relationship between OSI, SNA, and
TCP/1IP networking.

9. Appendix C: Common - Carrier Services

The signal carrying facilities in the Internet have traditionally been the only part
of computer networking provided by the common carriers. While this continues to be
true, increasingly the common carrier services are moving up the OSI architectural
hierarchy as deregulation allows the offering of more value added services. In particu-
lar, very high speed networks will almost certainly be provided as broadband
Integrated Services Data Network (B -ISDN) services (mostly through the ATM packet
network mechanism described below). This is at least in part due to the increased
cooperation between the computing and telecommunications industry, and in part
because the capability is so expensive that a cooperative effort is required. We now

49

briefly describe the common carrier services.
T - Carrier Systems (OSI Level 1)

The original common carrier interoffice digital transmission systems were called
T - Carrier Systems, some of which were eventually offered to end -users on a tariffed
basis. The most common of these offerings are best known by their T - Carrier desig-
nations of T1 (*1.5 Mbits/sec) and T3 (45 Mbits/sec). They are also commonly
called by their digital signaling number representing their respective bit rate, i.e., DS1
and DS3. Note that DSO refers to 56 Kbits/sec service as an incremental sub - unit of
DS1 service. "

These circuit services provide a synchronous transmission service between two
points for almost any distance, as long as there are T-Carrier services available
between the points. Most of the connections between routers at geographically distinct
sites in the Internet are provided by T-Carrier services. In the past several years
there has been a marked increase in the availability of, and a marked decrease in the
costs for T1 circuits nationwide. This has helped to fuel the rapid expansion of the
Internet national backbone networks as well as the regional/mid - level networks. Due
to this, almost all communication equipment vendors now support T1 interfaces.
Many local network environments are now routinely expanded through common car-
riers with T1 circuits using commercially available termination equipment. This class
of equipment and circuits, considered quite exotic just two to three years ago, is now
in routine use and is no longer considered operationally complex.

T3 circuits are now beginning to become available on a more widespread basis as
the fiber optic backbone and local drop capability of the common carriers has
increased. It is anticipated that the cost reductions for T3 services will eventually fol-
low that of T1 services.

SONET (OSI Level 1)

The next generation of synchronous transmission systems to be offered world-
wide will be fiber optic based. SONET (the Synchronous Optical NETwork) network
standards are now in place with widespread agreement between European and North
American common carriers for deployment starting in 1991.

The SONET standards, much like the T-Carrier standards, provide a signal
hierarchy (SDH - Synchronous Digital Hierarchy) of synchronous transmission services
(STS), including STS -1 at 51.84 Mbits/sec, STS-3 at 155.52 Mbits/sec and STS - 12
at 622.08 Mbits/sec. Other higher rates at least to STS-48, at 2.488 Gbits/sec, will
eventually be provided.

These SONET services can be provided over either fiber or copper interfaces.

50

When provided over fiber these services are commonly referred to by their OC-n opti-
cal interface standard nomenclature. For example, OC-3, OC- 12 and OC -48 refer to
155.52 Mbits/sec, 622.08 Mbits/sec and 2.488 Gbits/sec interfaces respectively.

, In the United States, it is unlikely that STS-1 service will be widely available or
used, if at all, as T3 is rapidly filling that speed niche. However, at rates above T3,
e.g., STS-3c, SONET will be the primary common carrier service available. -

Note that STS - Nc services mean that all the circuit bandwidth is delivered in a
concatenated fashion, as opposed to an aggregation of the individual STS-1 units of
51.84 Mbits/sec being delivered over different paths, possibly at different times. This
guarantees that a higher-speed application, such as a 2.4 Gbits/sec path over an
STS - 24¢ service, will see all of its bandwidth in proper sequence and time relation-
ship.

B-ISDN and SMDS high speed data services will rely on SONET for deploy-
ment, as SONET becomes available (note that SMDS will first be delivered over DS1
and DS3 services).

Frame Relay (OSI Level 2)

Frame Relay is a new common carrier service that will provide a reasonable
upgrade path from X.25 packet services. It appears that it will be offered in speeds up
to 1.5 Mbits/sec. Frame relay is a virtual circuit based service, i.e., at least a semi-
permanent virtual circuit must be established for each host- pair connection.

It seems clear that this offering has limitations for higher - speed backbone use, at
least in its initial offerings. The target audience for Frame Relay does not appear to

. be higher performance networks; SMDS is slated for this.

SMDS (OSI Level 2)

Switched Multi - megabit Data Service (SMDS) is a recent common carrier

offering developed by ~Bellcore %, Though initially based on the IEEE 802.6 MAN pro-
tocol, Bellcore emphasizes SMDS as a service, not a technology; i.e., they will intro-
duce other access protocols for the user, as well as other long-haul protocols as
appropriate in the future. Bellcore proposes supporting SMDS services over ATM
when it becomes available.

SMDS uses cell based switching (to be compatible with ATM) and delivers pack-
ets up to 9188 bytes long for its level two function. SMDS is now just beginning

° Bell Communications Research (Bellcdre) is the organization that was set up after the AT&T
divestiture to provide research services to the regional Bell operating companies (RBOCs or ‘‘Baby
Bells’’). It plays the same role for the RBOCs that Bell Laboratories does for AT&T.

51

deployment, with several trials underway, including one centered at Temple University,
and another centered at Stanford University.

ATM and B -ISDN (OSI Level 2)

B-ISDN, or Broadband-ISDN is a collection of services that will be provided via
ATM (Asynchronous Transfer Mode) use of SONET networks, and will be the
common-carrier wide-area high-performance network for the future. ATM is cell
based, i.e., its atomic transmission unit is very small (48 bytes plus 5 byte header), and
will offer datagram as well as virtual circuit services, ATM will carry digitized voice,
video and data.

ATM will initially operate over SONET links at speeds of 150 Mbits/ sec and 600
Mbits/sec, with the expectation of higher SONET rates in the longer term.

10. Acknowledgements

The authors would like to thank Van Jacobson of LBL for his ongoing support in
providing access to systems running his latest TCP/IP protocol implementations;
Wendy Huntoon, Jamshid Mahdavi, and Ralph Roskies of the Pittsburgh Supercom-
puter Center for their cooperation and collaboration with the case study; R. L. Fink of
the LBL network and telecommunications group for providing much of the material in
Appendix C; and Peter Schroder, formerly of Thinking Machines Corporation, Carl
Crawford of General Electric Company, and Mark Roos of the LBL Research Medi-
cine Division for their support and/ or help with this project.

11. References

[Beguelin]
Beguelin, A., J. Dongarra, G. Geist, R. Manchek, and V. Sunderam, Graphical
Development Tools for Network- Based Concurrent Supercomputing, Proceed-
ings from Supercomputing 91 Conference Proceedings, pp. 435 - 444.

[Bims]
Bims, P., P. Brown, J. Muster, UNIX for People, (book), Prentice - Hall, 1984

[Catlett]
Catlett, C., In Search of Gigabit Applications, IEEE Communications Maga-
zine, April 1992,

[Cline]
Cline, H., W. Lorensen, S. Ludke, C. Crawford, and B. Teeter, Two Algorithms
for the Three - Dimensional Reconstruction of Tomograms, Medical Physics,

52

May 1988.

[Comer]
Comer, D., Internetworking with TCP/IP, 2ed., (book), Prentice - Hall, 1991

[Corbin]
Corbin, J., The Art of Distributed Applications: Programming Techniques for
Remote Procedure Calls, (book), Springer - Verlag, 1990

[Cysper]
Cysper, R., Communications for Cooperating Systems: OSI, SNA, and TCP/ IP,
(book), Addison - Wesley, 1991

[FCCSET]
Grand Challenges: High Performance Computing and Communications - The
FY 1992 U. S. Research and Development Program, A Report by the Commit-
tee on Physical, Mathematical, and Engineering Sciences; Federal Coordinating
Council for Science, Engineering, and Technology, and; Office of Science and
Technology Policy

[Foley]
Foley, J., A. van Dam, S. Feiner, J. Highes, Computer Graphics: Principles

and Practice, 2 Ed., (book), Addison - Wesley, 1990

[IEEE]
Gigabit Network Testbeds, IEEE Computer 23(9), September, 1990.

[IEEE-MSS]
Mass Storage System Reference Model: Version 4 (May, 1990), S. Coleman
and S. Miller, Eds. (Developed by the IEEE Technical Committee on Mass
Storage Systems and Technology.)

[Lee]
Lee, E., P. Chen, J. Hartman, A. Chervenak Drapeau, E. Miller, R. Katz, G.
Gibson, D. Patterson, RAID-II: A Scalable Storage Architecture for High-
Bandwidth Network File Service, Report No. UCB/CSD 92/672, February
1992; Computer Science Division (EECS), University of California, Berkeley;
Berkeley, CA, 94720.

[Jacobson88]
Jacobson, V. and R. Braden, Proposed Standard TCP extensions for long - delay
paths, ARPANet Working Group Requests for Comment RFC1072, DDN Net-

53

work Information Center, Menlo Park, CA. October, 1988.

[Jacobson88a]
Jacobson, V., Congestion Avoidance and Control, Proceedings of the ACM
SIGCOMM ‘88 Workshop, Stanford, CA., August 1988

[Jacobson90]
Jacobson, V., R. Braden and L. Zhang, Proposed Standard TCP extension for
high - speed paths, ARPANet Working Group Requests for Comment RFC1185,
DDN Network Information Center, Menlo Park, CA. October, 1990.

[Libes]
Libes, D., S. Ressler, Life With Unix, (book), Prentice - Hall, 1989
[Markoff] ®

Markoff, J., "Creating a Giant Computer Highway - Robert Kahn’s vision of a
national network of information begins to take hold, New York Times (Busi-
ness Section), Sunday, Sept 2, 1990.

[Narten}
Narten, T., Internet Routing, Computer Communications Review, v19, n4, 1989
(Proceedings of the ACM SIGCOMM ‘89 Workshop, Sept. 1989)

[Rasure]
Rasure, J.,, C. Williams, An Integrated Data Flow Visual Language and
Software Development Environment, Journal of Visual Languages and Comput-
ing, Vol. 2, No. 3, pp. 217-46, September, 1991. (For more information send
e-mail to khoros - request@chama.eece.unm.edu)

[Schneider]
Schneider, M., Pittsburgh’s Not-So-Odd Couple, Supercomputing Review,
August, 1991.

[Stevens]
Stevens, W., Unix Network Programming, (book), Prentice - Hall, 1990

[Sun85]
The Unix System: A Sun Technical Report, Sun Microsystems, 1985 (part
number 800-1419-02)

[Sequoia]
Sequoia 2000: A Multimedia Large Capacity Object Server, M. Stonebraker,
Computer Science Division, University of California, Berkeley, and J. Dozier,
Center for Remote Sensing and Environmental Optics, University of California,

54

Santa Barbara, Project Directors

[Sunderam]
Sunderam, V., PVM: A framework for parallel distributed computing. Con-
currency: Practice and Experience, 2(4):315-339, December, 1990. (For more
information send the following message by e-mail, to netlib@oml.gov. Mes-
sage: ‘‘send index from pvm’’ , or send e-mail to pvm@msr.epm.ornl.gov)

[Upson]
Upson, C., et. al., The Application Visualization System: A Computational
Environment for Scientific Visualization, IEEE Computer Graphics and Applica-
tions, July, 1989, 30-42. (For more information contact Advanced Visualiza-
tion Systems, Inc. at 617 - 890 - 4300.)

55

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

