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1Université Paris-Saclay, Institut d’Optique Graduate School,
CNRS, Laboratoire Charles Fabry, 91127 Palaiseau Cedex, France

2Department of Physics, University of California, Berkeley, California 94720 USA
3PASQAL SAS, 7 Rue Leonard de Vinci, 91300 Massy, France
4California Institute of Technology, Pasadena, CA 91125, USA

5Nanomaterials and Nanotechnology Research Center (CINN-CSIC),
Universidad de Oviedo (UO), Principado de Asturias, 33940 El Entrego, Spain

6Department of Physics, Technical University of Munich, 85748 Garching, Germany
7Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany

8Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
9Laboratory for Theoretical and Computational Physics, Paul Scherrer Institute, 5232 Villigen, Switzerland

10Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
11Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

12Department of Physics, Harvard University, Cambridge, Massachusetts 02138 USA
(Dated: February 20, 2023)

Spontaneous symmetry breaking underlies much of our
classification of phases of matter and their associated tran-
sitions [1–3]. The nature of the underlying symmetry be-
ing broken determines many of the qualitative proper-
ties of the phase; this is illustrated by the case of dis-
crete versus continuous symmetry breaking. Indeed, in
contrast to the discrete case, the breaking of a continu-
ous symmetry leads to the emergence of gapless Goldstone
modes controlling, for instance, the thermodynamic sta-
bility of the ordered phase [4, 5]. Here, we realize a two-
dimensional dipolar XY model – which exhibits a continu-
ous spin-rotational symmetry – utilizing a programmable
Rydberg quantum simulator. We demonstrate the adia-
batic preparation of correlated low-temperature states of
both the XY ferromagnet and the XY antiferromagnet.
In the ferromagnetic case, we characterize the presence
of long-range XY order, a feature prohibited in the ab-
sence of long-range dipolar interaction. Our exploration
of the many-body physics of XY interactions complements
recent works utilizing the Rydberg-blockade mechanism
to realize Ising-type interactions exhibiting discrete spin
rotation symmetry [6–9].

Constraints on when and how symmetries can be bro-
ken in many-particle systems abound. For example, long-
wavelength fluctuations preclude the breaking of continuous
symmetries in low-dimensional systems with short-range in-
teractions [10–14]. The presence of long-range interactions
qualitatively alters this picture [15]. On the one hand, they
can stabilize certain forms of finite-temperature order, which
would otherwise be forbidden [16–19]. On the other hand,
they can also lead to frustration, where interactions compete
with one another, preventing the formation of order [20–24].
Even when order persists in both the short- and long-range
cases, the nature of this order, including the dispersion of ex-
citations or the decay of correlation functions, can be funda-
mentally distinct [18, 25–27].

Synthetic quantum systems are ideally suited to study these

features. While ultra-cold atoms in optical lattices have in-
vestigated continuous symmetry breaking with contact inter-
action [28], dipolar molecules in lattices [29–32] or trapped
ions [33–36] are promising platforms to realize the long-range
case. Here, we use a Rydberg quantum simulator to realize a
long-range interacting, two-dimensional XY spin system with
either ferromagnetic (FM) or antiferromagnetic (AFM) cou-
plings. We arrange up to N = 100 dipolar interacting Ryd-
berg atoms into a defect-free square lattice, so that the many-
body ground state in either the FM or AFM case is in a contin-
uous symmetry breaking phase characterized by off-diagonal
long-range order [37]. For the dipolar XY FM, theory predicts
that this continuous symmetry breaking order persists in the
presence of thermal fluctuations [17, 18, 27]. On the contrary,
dipolar interactions are insufficient to stabilize finite temper-
ature, long-range order in the antiferromagnet [14]. Rather,
one expects power-law decaying, algebraic long-range order
due to Berezinskii-Kosterlitz-Thouless physics [38–42].

Our main results are threefold. First, leveraging single-
site addressing, we adiabatically prepare correlated low-
temperature states of both the XY FM and the XY AFM start-
ing from a classical staggered spin configuration. Second, we
characterize the prepared states by measuring the full spatial
profile of correlation functions. In the ferromagnet, the sys-
tem exhibits correlations consistent with the presence of long-
range order – a feature prohibited in conventional short-range-
interacting, two-dimensional magnets [12, 13]. Meanwhile,
in the antiferromagnet, correlations vanish at long distances,
consistent with the decay expected from algebraic long-range
order. We also show that the states produced are not classical
FM or AFM. Third, by introducing a partial quench into the
adiabatic ramp, we study the robustness of the magnetic order
with respect to an excess energy akin to an effective tempera-
ture. This allows us to probe the phase diagram of the dipolar
XY model (Fig. 1).

The experimental setup (Fig. 1a) consists of a two-
dimensional square lattice of 87Rb atoms trapped in an op-
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Figure 1. Dipolar XY model in a Rydberg quantum simulator and experimental phase diagram. a, Schematic depicting the long-range
dipolar XY model. An effective spin is encoded in a pair of Rydberg states which exhibit dipolar flip-flop interactions. b, A spatially dependent
light-shift is used to prepare the system in a Néel spin configuration. c, The amplitude δ of the light-shift is decreased as a function of time to
a final value, δf . To study the robustness of the magnetic order with respect to an excess energy, we introduce a diabatic quench of magnitude
δq . d, Energy spectrum of Htot as a function of δ, for N = 2× 3. When starting in the ground state for ~δ/J � 1, the system is adiabatically
ramped to the ferromagnetic XY state, pictured by the colored fluctuating arrows correlated in directions. When starting in the highest excited
state for ~δ/J � −1, the system is adiabatically ramped to the antiferromagnetic XY state, portrayed by the anticorrelated fluctuating arrows.
e, Ferromagnetic phase diagram depicting the magnetization squared as a function of the final staggered field strength, δf and the diabatic
quench magnitude, δq . Symmetry breaking is expected in a lobe about (δf = 0, δq = 0) and is destroyed by either quantum (δf ) or thermal
(δq) fluctuations. On a 6 × 7 system, a crossover between ordered and disordered behavior is observed. f, Analogous phase diagram for the
antiferromagnet. Note that at finite temperature, only algebraic long-range order is expected.

tical tweezer array [8]. We encode an effective spin 1/2 in
a pair of opposite-parity Rydberg states, |↑〉 = |60S1/2〉 and
|↓〉 = |60P1/2〉. Resonant dipole-dipole interactions between
the spins naturally realize the dipolar XY model [43],

HXY = −J
2

∑
i<j

a3

r3
ij

(σxi σ
x
j + σyi σ

y
j ), (1)

where σαi are Pauli matrices, rij is the distance between spins
i and j, J/h = 0.77 MHz is the dipolar interaction strength,

and a = 12.5 µm is the lattice spacing; here, the quantiza-
tion axis is defined by an external magnetic field perpendic-
ular to the lattice plane, which ensures that the dipolar inter-
actions are isotropic. The Hamiltonian exhibits a continuous
U(1) symmetry corresponding to the conservation of total z-
magnetization, Mz =

∑
i σ

z
i (see Methods Sec. C 1).

The starting point of our experiments is a classical Néel
spin configuration, i.e. a staggered arrangement of spins |↓〉
and |↑〉 with Mz = 0, prepared in the following way (see
Methods Sec. A 2): after initializing all the atoms in |↑〉,
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Figure 2. Adiabatic preparation of dipolar XY ferro- and antiferromagnets. a, Sublattice-resolved magnetization 〈σz
i 〉 as the staggered

field δ(t) is reduced. At t = 0, the state is prepared in a classical Néel state along the z-axis, as indicated by the opposing magnetization
of atoms in the A (red) and B (blue) sublattices. As the staggered field δ(t) is turned off, either adiabatically or via a sudden quench, the
Néel magnetization decays towards zero. (inset) Comparison of the z-magnetizations decay as a function of δ for a 6 × 7 versus a 10 × 10
lattice. The gray vertical line indicates the value δFM

c where the phase transition occurs, inferred from the theory (Methods C 2). b, The
formation of a low-energy XY-ferromagnet is detected via the in-plane two-point correlation function, Cx

i,j . Data is shown for i, j averaged
over either nearest or next-nearest pairs. The sudden quench produces additional energy which destroys the XY order and leads to correlations
near zero. (inset) Nearest and next-nearest correlations for two different adiabatic ramp rates. c, xx correlations as a function of displacement,
Cx(~d ) ≡ 〈Cx

~r,~r+~d
〉~r , measured at time, t = 2 µs (with dx and dy in units of lattice spacing a). d-f, Analogous results for the antiferromagnetic

case. Crucially (e,f), we observe staggered correlations.

we apply focused laser beams to produce spatially dependent
light-shifts, implementing the Hamiltonian HZ = ~δ

∑
i ni.

The ni form a staggered pattern with ni = 0 on the A-
sublattice and ni = (1 + σzi )/2 on the B-sublattice (Fig. 1b).
We then sweep a global microwave pulse across the resonance
of the atoms in the A-sublattice that flips their spin to |↓〉. This
leads to the Néel configuration, which is a good approxima-
tion of the ground state (for δ > 0) or highest excited state
(for δ < 0) of the total Hamiltonian Htot = HXY + HZ for
~|δ| � J .

Starting from this configuration, we dynamically prepare
highly-correlated, quantum many-body states by ramping
down as a function of time the laser field producing the stag-
gered light-shifts, either abruptly or adiabatically (Fig. 1c) (for
a discussion of an alternative preparation approach, see Meth-
ods Sec. D 1). In the adiabatic case, for δ(t) > 0, the ramp
connects the Néel configuration to the low-temperature ferro-
magnetic states of HXY, as shown in Fig. 1d. Meanwhile, for

δ(t) < 0, the adiabatic ramp prepares negative temperature
states of HXY or equivalently, low-temperature antiferromag-
netic states of −HXY (Fig. 1d) [44]. In the thermodynamic
limit of both cases, a quantum phase transition is expected to
occur at some critical δFM/AFM

c , between the Néel configura-
tion and the XY order (Methods C 3).

To investigate the XY ferromagnet, we begin with a 6 ×
7 lattice and utilize an exponential ramp profile, δ(t) ≈
δ0e
−t/τ , with δ0 = 2π×15 MHz and τ = 0.3 µs. As depicted

in Fig. 2a, for both sublattices, the on-site z-magnetization,
2
∑
i∈A/B〈σzi 〉/N , obtained by averaging over many realiza-

tions of the experiment, decreases toward zero, with a resid-
ual late-time offset arising from experimental imperfections
(see Methods Sec. B 2). This is consistent with the XY fer-
romagnet, which orders in the equatorial plane, but by itself,
is insufficient to diagnose the phase. Indeed, quenching the
staggered light-shifts (in less than 100 ns) leads to a near in-
finite temperature state, which also exhibits a magnetization
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that rapidly relaxes to zero (lighter curves, Fig. 2a).

The key characteristic of the XY ferromagnet is only
revealed upon measuring the correlation function, Cxij =
〈σxi σxj 〉 − 〈σxi 〉〈σxj 〉 (Methods C 1). For the quenched state,
the correlation functions remain near zero for all times,
consistent with high-temperature behavior (lighter curves,
Fig. 2b). The dynamics of the adiabatic protocol are markedly
distinct – both nearest-neighbor and next-nearest-neighbor
correlations grow to a stable non-zero value at late times, in-
dicative of order [37]. By switching the sign of δ0, we also
investigate the XY antiferromagnet. Both the z-magnetization
(Fig. 2d) and the correlation functions (Fig. 2e) exhibit quali-
tatively similar dynamics as the ferromagnetic case. One no-
table difference is that Cx < 0 for nearest-neighbor correla-
tions, indicating that neighboring spins have anti-aligned.

A few remarks are in order. First, to explore the adiabatic-
ity of our protocol, we vary the time-constant of the exponen-
tial ramp. As shown in the insets of Fig. 2b,e, the dynamics
of the correlation function agree between τ = 0.15 µs and
τ = 0.3 µs, indicating that diabatic errors are not a limit-
ing factor. We confirm this by numerical simulation of the
many-body dynamics (see Methods Fig. 11). Second, while
the long-range tail of the dipolar interaction reinforces the XY
FM order, it is weakly frustrating for the AFM [15]. As a
consequence, the phase transition between the Néel config-
uration and the XY AFM is expected to occur at a smaller
value of the staggered light-shift as compared to the XY FM,
i.e. |δAFM

c | < |δFM
c | (see also Methods Sec. D). This is indeed

borne out by the data where we observe that the magnetization
decays to zero faster as a function of δ for the FM case than
for the AFM. Third, we increase the system size to a 10× 10
lattice and perform the analogous adiabatic preparation pro-
tocols. We find the same behavior for all observables (insets,
Fig. 2a,d), indicating that our results are robust to finite-size
effects [45]. Finally, we observe that at the latest times, the
correlations in both the FM and AFM cases exhibit a slow de-
cay; we conjecture that this decay arises from a combination
of residual atomic motion and the finite lifetime of the Ryd-
berg states (more details in Methods B 2).

Our measurements of the local correlations suggest we have
dynamically prepared low-temperature states of the XY FM
and AFM – but are these states truly long-range ordered? To
investigate this, we measure the long-distance spin-spin cor-
relations of the system after adiabatic preparation. In Fig. 2c,f
[6 × 7] and Fig. 3a [10 × 10] we show the correlations as a
function of the displacement ~d, averaging over initial posi-
tions: Cx(~d ) ≡ 〈Cx

~r,~r+~d
〉~r. The FM correlations are of con-

stant sign and appear to plateau at long distances, indicative
of long-range order, while the AFM correlations are staggered
and exhibit a decay. For a more quantitative assessment, we
focus on the 10 × 10 array and plot Cx(d), averaging over
displacements of the same distance d = |~d |. In the XY AFM,
correlations decay to zero at large distances, indicating the
absence of long-range order. By contrast, the XY FM indeed
exhibits a plateau, Cx∞ ∼ 0.13, which establishes it as a mag-
netically ordered state with an effective magnetization density
meff ≡

√
2Cx∞ = 0.51 (Methods C 1).

For additional insight, in Fig. 3b we compare the measured
Cx(d) against the exact ground-state prediction obtained from
density matrix renormalization group (DMRG) calculations
(see Methods Sec. C 2) [46, 47]. In the DMRG ground state,
Cx(d) does plateau in the FM, but slowly decays in the AFM
due to finite-size effects – in the thermodynamic limit, both
the FM and AFM ground states are expected to be long-range
ordered at zero temperature. While the qualitative structure
of the measured Cx(d) (e.g. sign structure in the AFM case)
is consistent with theory, the experimental correlations are
weaker. A number of effects could contribute to this. For
example, the finite fidelity of the initial Néel state introduces
an entropy density (i.e. an effective finite temperature). This
is especially destructive to the AFM, for which finite tempera-
ture long-range order is forbidden [14, 15], in agreement with
our observation. Other experimental imperfections including
readout errors are discussed in the Methods, Sec. B; includ-
ing these errors in our numerical simulations leads to excel-
lent agreement with the data for the 6×7 lattice (see Methods
Fig. 10). However, we also observe that running the adiabatic
preparation protocol to longer timescales leads to additional
decoherence which adversely affects the ferromagnetic mag-
netization plateau in a non-trivial fashion; in particular, cor-
relations at the largest distances begin to decay before their
shorter-distance counterparts (see Methods B 2).

As a final characterization of the prepared states, we inves-
tigate whether each realization of the experiment produces a
classical magnet pointing in a random direction θ in the xy-
plane or a genuinely quantum many-body state (see Methods
C 1). To do so, we analyze the statistical distribution of Mz ,
which is conserved during the adiabatic ramp. For a clas-
sical FM or AFM, each spin, aligned or anti-aligned along
θ, is an equal superposition of |↑〉 and |↓〉, so that Mz fol-
lows a binomial distribution. By contrast, the ground state
of HXY is an eigenstate of Mz , and its variance should be
zero. Figure 4a,b shows experimental histograms of the z-
magnetization at t = 2µs for the FM and AFM. Figure 4c
presents the variance for various times t. We find that the
states have a variance smaller than that of a binomial distribu-
tion, indicating that we do not prepare classical magnets. In
fact, the measured non-zero variances can be fully explained
by the state preparation and measurement errors applied to the
ideal distribution (see Methods B 1). We have also checked
the rotation invariance of the state around z by measuring the
magnetization along y and finding the same as along x. Al-
together, our measurements suggest a state which is a coher-
ent quantum superposition over a continuous family of clas-
sical configurations (see Methods C 1). For such a state, the
defining signature of continuous symmetry breaking order is
a long-distance plateau in the correlation function Cx(d) – as
we observed in the XY FM [5].

As mentioned earlier, the long-range order observed in the
FM case should persist at finite temperature. We therefore
investigate the stability of the prepared magnetic orders as a
function of an effective temperature. To do so, we insert a
partial quench of amplitude δq into the ramp, followed by an
equilibration time of at least 1 µs at a final value δf of the
staggered field (Fig. 1d): the variable quench introduces ex-
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Figure 3. Observing long-range XY order in a 10×10 lattice. a, xx correlations averaging over displacements of the same distance, Cx(d).
The XY ferromagnet exhibits a plateau consistent with long-range order, while the XY antiferromagnet exhibits a decay to zero. (inset) Spatial
correlations as a function of displacement, measured at time t = 1 µs. b, Comparison of the experimental data shown in a with the ground-state
results obtained from DMRG.
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only preparation errors (42)

classical mixture

quantum superposition

SPAM errors (100)
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Figure 4. Analysis of the z-magnetization during the adiabatic
ramp. Experimental histograms of the z-magnetization Mz (N =
42) for a, the FM and b, AFM case together with the ideal case (pur-
ple), and the expected distribution including state preparation and
measurement errors (grey bars). The orange line is the binomial dis-
tribution corresponding to a classical magnet (see text). c, normal-
ized variance (∆Mz)2/N as a function of time during the ramp,
for the experiment (circles for N = 42, triangles for N = 100), the
classical magnet (orange line) and a perfect XY-magnet (purple line).
Grey continuous and dashed lines: ideal case including state prepa-
ration and measurement errors. Dotted line: ideal case (N = 42)
including only state preparation errors.

cess energy into the system, and we observe a relaxation of the
magnetization and correlations during the equilibration time.
We will use the amplitude of the quench, δq , as a proxy for
the final effective temperature (see Methods Sec. E). After
each {δf , δq} ramp, we measure the in-plane magnetization
squared, m2

FM/AFM =
∑
ij(±1)i+jCxij/N

2 and construct the
phase diagram shown in Figs. 1e,f. Starting with the ferro-
magnet, for small values of δf and δq (corresponding to low
effective temperatures), the magnetization per site is of O(1),
consistent with the ordered phase (Fig. 1e). As either δf or
δq increases, the magnetization density decreases toward zero
indicating melting into a disordered phase. This is consis-

tent with theoretical expectations, where δq drives the transi-
tion via thermal fluctuations [17], while δf tunes across the
quantum phase transition. We perform the same analysis for
the antiferromagnet (Fig. 1f). Compared to the XY ferromag-
net, we find that a much smaller region of the {δf , δq} phase
space exhibits significant AFM correlations, consistent with
the frustration induced by the long-range interactions which
destabilizes the phase.

Outlook – Looking forward, our work opens the door to
a number of future directions. First, it would be interest-
ing to investigate the nature of the phase transition between
the disordered and XY-ordered phases; this will require over-
coming a number of technical challenges including scaling to
larger system sizes. Second, the ability to directly prepare
low-temperature states in different Mz magnetization sectors
suggests the possibility of directly observing the so-called An-
derson tower of states, which underlies continuous symme-
try breaking in finite quantum systems [48–51]; the structure
of these states has led to recent predictions for scalable spin
squeezing by quenching in the ferromagnetic XY phase [52].
Finally, combining optical tweezer geometries which exhibit
frustration (i.e. triangular or kagome lattices) with antiferro-
magnetic interactions leads to a rich landscape for exploring
frustrated magnetism and spin liquid physics [20, 22].
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[61] de Léséleuc, S. et al. Observation of a symmetry-protected
topological phase of interacting bosons with Rydberg atoms.
Science 365, 775–780 (2019).

[62] Jensen, P. J., Bennemann, K. H., Morr, D. K. & Dreyssé, H.
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METHODS

A. Experimental methods

The realization of the dipolar XY model relies on our
87Rb Rydberg-atom tweezer array setup, described in pre-
vious works [8, 53]. The pseudo-spin states are |↑〉 =
|60S1/2,mJ = 1/2〉 and |↓〉 = |60P1/2,mJ = −1/2〉. We
manipulate them using resonant microwaves at 16.7 GHz. A
∼ 50-G magnetic field, perpendicular to the array, defines the
quantization axis (Fig. 5a) and shifts away the irrelevant Zee-
man states of the 60S1/2 and 60P1/2 manifolds.

1. Addressability in the tweezer array

The addressing laser pattern used to prepare the initial clas-
sical Néel configuration is generated by a 1013-nm laser beam
detuned from the transition between the intermediate state
6P3/2 and |↑〉 (Fig. 5b). The sign of the detuning sets the
one of the light-shift: in the FM (resp. AFM) case, the fre-
quency of the addressing laser is tuned below (resp. above)
the resonance by ∼ 250 MHz.

We use a dedicated spatial light modulator to produce the
pattern of addressing beams. Each beam is focused on a 1/e2

radius of about 1.5 µm, for a typical power of 60 mW. We
measure the light-shift for each addressed atom by microwave
spectroscopy on the |↑〉−|↓〉 transition. The average light-shift
is |δ0| = 2π × 15 MHz over the 42-atom array (21 addressed
atoms), and |δ0| = 2π × 9 MHz over the 100-atom array (50
addressed atoms). These values are dictated by available laser
power. For both arrays, the rms dispersion of δ0 across the
addressing beams is 2.4%.

2. Experimental sequence

The experimental sequence is shown in Fig. 5. After assem-
bling the array [53] we use Raman sideband cooling along
the radial directions of the tweezers, and reach a tempera-
ture of 10µK. We then optically pump the atoms in |g〉 =
|5S1/2, F = 2,mF = 2〉 before adiabatically ramping down
the tweezer depth by a factor ∼ 40. Following this, we switch
off the tweezers, and excite the atoms to |↑〉 using a two-
photon stimulated Raman adiabatic passage (STIRAP) with
421-nm and 1013-nm lasers (∼ 2 µs duration).

To generate the classical Néel configuration along z, we
first transfer all the atoms from |↑〉 to |↓〉 using a 54 ns mi-
crowave π-pulse. Subsequently, the addressing beams are ap-
plied to the atoms in sublattice B. We then transfer the atoms
A from |↓〉 back to |↑〉 by an adiabatic microwave sweep while
the atoms B remain in |↓〉, as illustrated in Fig. 5b. In this pro-
cedure, exciting first the atoms in |↓〉 has the advantage of
minimizing the depumping of the |↑〉 atoms by the addressing
light (see Sec. B 2 below). An example of perfect Néel con-
figuration obtained at the end of the preparation is shown in
Fig. 5c.

The experimental sequence (including the detection part
detailed in the next Section) is repeated typically over 1000
defect-free assembled arrays. This allows us to calculate the
magnetization and the spin correlations by averaging over
these realizations.

3. State detection procedure

At the end of the sequence, we read out the state of each
atom in the natural z-basis. To do so, we deexcite the atoms
from |↑〉 to the 5S1/2 manifold where they are recaptured in
the tweezers and imaged. Thus, the |↑〉 (resp. |↓〉) state is
mapped to the presence (resp. absence) of the correspond-
ing atom. In order to avoid the detrimental effects of the
|↑〉 − |↓〉 interaction-induced dynamics during the deexcita-
tion, we freeze out the system by shelving the |↓〉 atoms to
|D〉 = |59D3/2,mj = −1/2〉 where they hardly interact with
the ones in |↑〉. This is achieved by using a 48 ns microwave π-
pulse at 10.6 GHz. The subsequent deexcitation is performed
by applying a 2.5 µs light pulse resonant with the transition
between |↑〉 and the short-lived intermediate state 6P3/2 from
which the atoms decay back to 5S1/2. Additionally, when we
want to measure the spins along x we rotate them by applying
a 27 ns microwave π/2-pulse on the |↑〉 − |↓〉 transition prior
to the detection. However, this procedure is efficient only for
light-shifts |δ(t)| much smaller than the microwave Rabi fre-
quency, i.e. for times larger than ∼ 0.5 µs during an adiabatic
preparation.

B. Experimental imperfections

The sequences described above are affected by experimen-
tal imperfections. As taking all of them into account is in-
tractable, we estimate here the effect of the main imperfec-
tions on the quantities we measure. We first analyse the state
preparation and measurement (SPAM) errors and then discuss
decoherence in the system.

1. SPAM errors

In order to estimate the SPAM errors, we break down the
sequence into a series of steps i, each having a small but fi-
nite failure probability ηi. In the following, we keep only the
contributions of imperfections to first order in the ηi’s.

As an example, we show in Fig. 6 the discretized sequence
corresponding to the preparation and measurement of the clas-
sical Néel configuration (corresponding to the time t = 0 in
Fig. 2a of the main text). Table I gives the corresponding val-
ues of the probabilities ηi for 42 atoms, that are either inferred
from a series of dedicated experiments, or estimated from nu-
merical simulations. The table also mentions the physical ori-
gin of these imperfections.

For atoms in sublattice A (non-addressed), the error tree
leads to the probability to recapture the atoms at the end of
the sequence, which reads (to first order):
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Figure 5. Experimental procedures and sequence. a, Fluorescence image of the atoms in a fully assembled 6 × 7 array. b, Scheme for the
preparation of the initial staggered state. c, Detected staggered state, corresponding to the situation for which all the atoms in sublattice A are
in |↑〉, and all the atoms in sublattice B are in |↓〉. d, Schematics of the atomic level diagram. e, Experimental sequence.
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Figure 6. Simplified error tree associated to the preparation of the initial Néel state, for a the atoms in sublattice A (non-addressed), and
b in sublattice B (addressed). For simplicity, the events with a probability of order 2 or higher in the ηi, ε, ε

′
are disregarded.

PA
z ≈ 1− ηMW − ηA − ηdx − ε . (2)

Similarly, the calculation for sublattice B (addressed atoms)
yields:

PB
z ≈ ηSTIRAP + ηB + ε′ . (3)

Using the values reported in Table I, we obtain PA
z = 0.90,

PB
z = 0.15. From these probabilities, we compute an ini-

tial magnetization along z, σA
z = 2PA

z − 1 = 0.8 and
σB
z = 2PB

z − 1 = −0.70. We checked that theses values
agree with measured magnetizations at t = 0, which are used
as a calibration of the errors, for both the FM and the AFM
(Fig. 2a,d). Finally the error tree allows us to infer the prob-
ability of successful initial preparation per spin. We find 0.87
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Stage Step Symbol Value Main physical origin

Classical Néel state preparation

Rydberg excitation ηSTIRAP 5%

Imperfect optical pumping,

Laser phase noise,

Spontaneous emission from 6P3/2 [54]

MW π- pulse ηMW 2% Effect of HXY during pulse

MW sweep ηA, ηB 4%, 5% Effect of HXY and finite value of |δ0|

Readout

Freezing ηfrz < 1% Effect of HXY during pulse

Deexcitation ηdx 3% Mechanical effect of deexcitation laser beam

False |↓〉 ε 1% Background gas collisions [54]

False |↑〉 ε′ 5% Rydberg state radiative lifetime [54]

Table I. Summary of the experimental errors defined in Fig. 6, together with their main physical origin.

for the atoms in sublattice A and 0.92 for the ones in B. Us-
ing the preparation part of the error tree (Fig. 6), we find
1− ηSTIRAP − ηMW − ηA = 0.89 for the atoms in sublattice A
and 1− ηSTIRAP − ηMW − ηB = 0.88 for the ones in B. These
values are very similar to the ones including detection errors,
indicating that this experiment is dominated by preparation
errors.

2. Decoherence during the adiabatic ramp

Besides the SPAM errors described previously, additional
imperfections lead to decoherence.

First, we focus on the long-time behaviour of the magneti-
zations for the 10 × 10 arrays. In Fig. 2a, one observes that,
in the FM case, the z-magnetizations of sublattices A and B
do not vanish at late times, but reach a constant finite value
of a few percent. In contrast, this does not occur in the AFM
case (Fig. 2d). We qualitatively explain this effect by the fol-
lowing observations. First, due to off-resonant scattering by
the addressing beam, atoms in |↑〉 are slowly depumped to
the ground state |g〉; we have measured the effective lifetime
of an addressed |↑〉 atom to be ∼ 4 µs, whether the light-
shift is 2π × 15 or −2π × 15 MHz (so that this alone, can-
not explain the difference between the FM and AFM cases).
However, during our adiabatic ramp down of light-shift δ(t),
the addressed atoms are initially in |↓〉 (and thus cannot be
depumped). Depumping sets in only when the system enters
the ordered phase, where an addressed atom has a significant
probability to be in |↑〉. Since δAFM

c < δFM
c , the addressing

beam intensity (and thus the depumping rate) is at this stage
much smaller for the AFM case than for the FM case, and thus
has a negligible effect in the former case.

Second, we investigate the role of decoherence on the ap-
pearance of long-range order along x in the FM case, for the
10 × 10 array. Figure 7a shows the time evolution of the
nearest-neighbour correlations as we ramp down the light-
shift, all the way up to 8 µs (in contrast with Fig. 2b of the
main text where the evolution is shown only up to 3 µs, and
for 42 atoms). Two timescales appear: first, correlations build

time (μs)

xx
 c

or
re

la
tio

ns
 

Nearest neighbours

a b
0.0 μs 0.5 μs 1.0 μs

2.0 μs 8.0 μs

Figure 7. Time dependence of the correlations along x in the FM
case for a 10×10 lattice. a, Time evolution of the nearest-neighbour
correlations along x (different colors correspond to different times).
b, Spatial correlations as a function of distance, measured at different
times t = {0.0, 0.5, 1.0, 2.0, 8.0} µs indicated by dashed lines in
a.

up until t ' 1 µs as the FM state is adiabatically prepared ;
then, they slowly decay and lose 25 % of their value in 7 µs.
This decay is not expected, since the system should be ideally
in steady state once it has reached the ferromagnetic phase.
We conjecture that the experimental system is affected by de-
coherence arising from a combination of the residual atomic
motion and spontaneous emission from the Rydberg states.

To further analyse the evolution of the ferromagnetic order,
we probe the full spatial structure of the correlations at dif-
ferent times. Figure 7b summarizes the results. We observe
that for a given distance d all the correlations feature a similar
time evolution: a fast increase followed by a slow decay, with
a turning point around 1 µs. For this particular point, the data
reveal a plateau for distances of more than 6 sites – the signa-
ture of the long range order mentioned in the main text – that
disappears for t & 2 µs. This suggests that despite the deco-
herence present in the system, we are able to observe the long
range ordering expected from the dipolar interactions over a
substantial time window.
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C. Ground state properties of the XY model

We study here the ground states of the Hamiltonians HXY

and HXY +HZ. We define them as in the main text. First:

HXY = −J
2

∑
i<j

a3

r3
ij

[
σxi σ

x
j + σyi σ

y
j

]
(4)

= − J

~2

∑
i<j

a3

r3
ij

[
S+
i S
−
j + S+

j S
−
i

]
(5)

where S±i = Sxi ± iS
y
i = ~(σxi ± iσ

y
i )/2 are the ladder opera-

tors for spin-1/2 degrees of freedom on a square lattice withN
sites, rij is the distance between sites i, j and a is the lattice
spacing. Second, the on-site Hamiltonian is:

HZ = ~δ
∑
i∈B

σzi + 1

2
(6)

where the magnitude of the light-shift δ depends on the inten-
sity of the addressing laser.

The experimental implementation has a ferromagnetic cou-
pling, J/h = 0.77 MHz, and to study antiferromagnetism one
must prepare negative temperature states. For theoretical pur-
poses, however, we treat J as a free parameter and frame the
discussion in terms of the ground state physics of HXY with
either ferromagnetic (J > 0) or antiferromagnetic (J < 0)
coupling. We refer to them as HFM

XY and HAFM
XY .

It is natural to compare the dipolar HXY to the nearest-
neighbor XY model on the square lattice,

Hnn = −J
2

∑
〈ij〉

σxi σ
x
j + σyi σ

y
j , (7)

where 〈ij〉 are pairs of neighboring sites, with i < j. ForHnn,
the sign of the coupling J is unimportant, as UAHnnU

†
A =

−Hnn, with UA =
∏
j∈A e

−iπSz
j . In 1988, Kennedy, Lieb,

and Shastry rigorously proved that the unique ground state of
Hnn has long-range XY order (LRO) [55].

For models with long-range interactions, there are anal-
ogous mathematical theorems for classical systems at finite
temperature, and for quantum systems in which the interaction
strength depends on the Manhattan distance ‖ri − rj‖1 [19].
In a recent work, Björnberg and Ueltschi addressed quantum
spin-S models with interactions depending on the Euclidean
distance ‖ri − rj‖2, although their results require large S
and spatial dimension three or higher [56]. Absent a rigorous
proof of LRO for the two-dimensional, spin-1/2, dipolar XY
model, one can study it using semi-analytic spin wave theory
and various numerical methods [18, 22, 27]. In a companion
paper [57], we investigate the ground-states of HXY on vari-
ous geometries, such as tori and infinite cylinders, with an eye
towards the thermodynamic limit, N → ∞. Here, we restrict
our focus to finite rectangular arrays as probed in the experi-
ment, and use Hnn as a reliable benchmark for comparison.

1. Symmetries, magnetization sectors, and order

As emphasized in the main text, HXY possesses the contin-
uous symmetry: Uz(θ)HXYUz(−θ) = HXY with

Uz(θ) = exp(−i
∑
j

θSzj /~) = exp(−iθMz/2) (8)

This operator is generated by the total magnetization, Mz =∑
i σ

z
i , and represents the Lie group U(1) ∼= SO(2). Ad-

ditionally, HXY is invariant under the Z2 Ising symmetry,
α2 : (σx, σy, σz) → (σx,−σy,−σz), as well as any spa-
tial symmetries of the lattice, such as translation or rota-
tion. This model is also time-reversal-symmetric, as repre-
sented by the anti-unitary operator T = C, where C applies
complex conjugation. Here T differs from the usual SU(2)
time-reversal symmetry, which applies the unitary spin rota-
tion Uy(π) = exp(−iπMy/2) in addition to C. Our atypical
choice of T = C allows it to remain a symmetry in the pres-
ence of the on-site perturbation, HZ.

In a finite, closed quantum system, all eigenstates |ψn〉 of
HXY can be chosen to be simultaneous eigenstates of all of
these symmetry operators. In particular, they are eigenstates
of the total magnetization, Mz |ψn〉 = λzn |ψn〉, and so can be
collected into magnetization sectors, conventionally labeled
by Sz = Mz/2. As a consequence, all Mz-non-conserving
operators such as σxi and σyi have identically vanishing ex-
pectation values, 〈σxi 〉 = 〈σyi 〉 = 0, in any energy eigenstate
|ψn〉, or in any superposition of eigenstates within the same
magnetization sector.

In the experiment, systematic errors in the measurement
process lead to a small, nonzero 〈σxi 〉 6= 0. This value is
not a consequence of the physics we are interested in. When
analyzing the experimental data, we thus choose to nullify any
single-spin contributions by using the connected correlator,

Cx(i, j) = 〈σxi σxj 〉 − 〈σxi 〉〈σxj 〉 (9)

In the special case of Mz eigenstates with 〈σx〉 = 0,
Cx(i, j) = 〈σxi σxj 〉. This correlation function is not gener-
ically zero. If |Cx(i, j)| approaches a constant Cx∞ > 0
for distantly separated spins i, j, then the corresponding state
is said to possess long-range XY order or off-diagonal long-
range order (LRO) [37]. Such LRO is the defining feature of
continuous symmetry breaking in finite quantum systems.

Rather than the long-distance plateau, an equally good or-
der parameter for U(1) symmetry breaking is given by the
in-plane magnetization squared

m2
FM/AFM =

1

N2

∑
i,j

(±1)(rxi +ryi )/aCx(i, j) (10)

where a is the lattice spacing, and the sign is taken +1 for
m2

FM, and−1 for m2
AFM. In the N →∞ limit, any state with

a correlation plateau Cx∞ 6= 0 will also have a finite magneti-
zation m2

FM/AFM, and vice versa [50].
When continuous symmetry breaking occurs in the thermo-

dynamic limit, then at finite size the lowest energy state in
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each Sz sector will be approximately,

|ΓFM/AFM
s 〉 =

1

Ns

∫ 2π

0

dθ

2π
eisθ |θFM/AFM〉 (11)

where |θFM/AFM〉 is the classical, symmetry-breaking prod-
uct state where each spin points at angle θ or −θ in the xy-
plane, s is an integer specifying the Sz sector, and Ns is a
normalization factor. Known either as the Anderson tower or
Dicke states, |Γs〉 are angular momentum eigenstates of an
emergent rigid rotor degree of freedom describing the collec-
tive orientation of all the spins in the system [48–51]. The true
ground states in each Sz sector are also dressed by quantum
spin wave fluctuations, which weaken the magnetic order [48].
For the ideal case of a uniform superposition over fully spin-
polarized states |θFM/AFM〉, the correlations in |Γ0〉 lead to
Cx∞ = m2 = 0.5, plus 1/N corrections. The effective in-
plane magnetization of a U(1)-symmetric state should thus
be identified as meff ≡

√
2Cx∞. That is, if one were to add

a small symmetry-breaking field, then the corresponding non-
symmetric ground state would have an average magnetization
〈σx〉 = meff .

2. DMRG calculations

For a numerical investigation of the ground states, we ap-
ply the density matrix renormalization group (DMRG) algo-
rithm [46]. We employ the general matrix product state (MPS)
framework implemented in the TeNPy software library [47].
While MPS are best-representative of one-dimensional quan-
tum systems, it is now routine to apply DMRG to two-
dimensional models under certain geometric restrictions [58].
We always work with charge-conserving tensors that respect
the U(1) symmetry of the Hamiltonian.

To begin, we use DMRG to compute the ground state of
HXY and Hnn on L × L square clusters with open boundary
conditions, for L = 4, 6, 8, and 10. With all-to-all interactions
included, we reliably obtain well-converged states at relatively
low MPS bond dimensions, χ, as quantified by the truncation
error of the discarded Schmidt states, εtrunc. The most diffi-
cult finite system we study isHAFM

XY on the 10×10 lattice, for
which εtrunc < 10−5 at χ = 2048. All other cases achieve the
same or better convergence by χ = 1024, or even χ < 200 on
the smaller systems.

All DMRG ground states feature the strong 〈σxσx〉 cor-
relations expected in an XY LRO state. In Fig. 8a, we
show the real-space correlation profile Cx(d), which averages
Cx(i, j) = 〈σxi σxj 〉 over all spins i, j separated by a displace-
ment vector ~dij with length d. The long-range-interacting fer-
romagnet, HFM

XY , exhibits a clear plateau in Cx(d) at long dis-
tances for all system sizes. Such a plateau is less apparent for
HAFM

XY andHnn, although for either model Cx(d) is still quite
large at the longest distances. Furthermore, Cx(d) increases
with L in both models, suggesting the spatial decay of Cx(d)
is amplified by finite-size effects.

We also look for a finite squared magnetization,m2
FM/AFM.

We plot the finite-size dependence of this quantity in Fig. 8b,

which is consistent with m2
FM/AFM > 0 as L → ∞. To

further test the effects of the long-range interactions, we in-
troduce a cutoff radius Rmax, and only include interactions
between spins i, j separated by distance dij < Rmax. We find
that ground state properties converge quickly with respect to
this approximation parameter; the long-range interactions do
not induce a quantum phase transition in either model. In Fig.
8c, we show the dependence of m2

FM/AFM on Rmax, find-
ing that, at fixed system size, it is not strongly dependent on
Rmax > 4. This is not too surprising: with the moderately
fast 1/r3 decay, the interaction strength beyond this point is
on the order of 0.01 J or less.

Overall, HFM
XY is clearly XY LRO, while HAFM

XY and Hnn

exhibit stronger finite-size effects. Given that Hnn is rigor-
ously known to be LRO in the thermodynamic limit, the sim-
ilar behavior observed for HAFM

XY is a strong indication that it
is as well.

3. Quantum phase diagram of HXY +HZ

We now investigate the ground state phase diagram in the
presence of the externally applied light-shift δ, described by
HZ (Eq. 6). This perturbation preserves the U(1) symmetry
of HXY, as well as the anti-unitary time-reversal symmetry.
On the other hand, HZ breaks the Ising symmetry σzi → −σzi ,
and reduces the spatial rotation and translation symmetries.
For sufficiently large δ, the lowest energy state of HXY +HZ

has Mz 6= 0, but such states are dynamically decoupled from
the Sz = 0 sector in which the adiabatic preparation protocol
takes place. Henceforth, we always consider the ground states
within the Sz = 0 sector, as these are the ones most relevant
to the experiment.

Because the perturbation HZ is U(1) symmetric, the XY
LRO phase of HXY may be stable to a sufficiently small stag-
gered field. Microscopically, the dominant effect of a small δ
should be to slightly cant the spins towards the z-axis. This
will in turn modify the spin stiffness and the spin wave veloc-
ity, but not destroy the underlying order. By contrast, when δ
is very large, the ground state must be a gapped, trivial para-
magnet, in which 〈σxσx〉 correlations decay to zero at long
distances [59]. Between these two limits, we expect a quan-
tum phase transition (QPT) at some critical value, δc, of the
applied field. In a companion paper [57], we investigate this
QPT in detail, finding that, in the thermodynamic limit, it is
likely a continuous, second-order transition. For Hnn + HZ,
the transition is in the 3D XY universality class. For the 1/r3

models, the standard theory expectation is that the AFM QPT
is in the same universality class as the short-range model (i.e.
3D XY), while the FM QPT is in a different universality class
with mean-field-like critical exponents [15].

Here, we focus our attention on the 6×7 and 10×10 arrays
studied in the experiment. We calculate the Sz = 0 ground
state of HXY +HZ at various light-shifts δ using DMRG. At
these system sizes, the sharp QPT expected in the thermody-
namic limit is smoothed to a broad crossover between the XY-
ordered phase for small δ, and a trivial paramagnet for large
δ. Three features of this crossover are shown in Fig. 8d-f.
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Figure 8. DMRG ground state calculations. a, Real-space correlation profile |Cx(d)| on L × L square clusters with open boundary
conditions. The ground state of HFM

XY clearly exhibits XY LRO at all system sizes. For HAFM
XY and Hnn, the correlations decrease at long

distances, but this decay is reduced as L increases. b, Finite-size scaling of the magnetization m2
FM/AFM. All three models are consistent

with m2
FM/AFM > 0 as L→∞. c, Dependence of m2

FM/AFM on the interaction distance cutoff Rmax. At each system size, the ground state
correlations are well-converged byRmax ≈ 4. d-f, Ground state properties ofHXY +HZ as a function of δ. There is a smooth crossover from
the XY ordered state at δ = 0 to the staggered paramagnet as δ → ∞. The −dm2/dδ peaks (f) are finite-size incarnations of the quantum
phase transition expected in the thermodynamic limit; we use their centers to define the crossover point ~δc/J .

First, in Fig. 8d, we plot the staggered σz polarization,

Pz =
1

N

∑
i∈A
〈σzi 〉 −

1

N

∑
i∈B
〈σzi 〉 (12)

which measures the alignment with the staggered field HZ .
For large δ � δc, the ground state approaches the staggered
product state used to initialize the adiabatic ramp in the exper-
iment, and the polarization saturates to Pz = 1. For δ = 0,
Pz = 0 due to the Ising symmetry of HXY, which enforces
〈σzi 〉 = 0. We emphasize that Pz = 0 is not a generic feature
of the XY-ordered phase. Indeed, for small δ < δc, the spins
partially align with the applied field, yielding Pz > 0.

Figure 8e displays the complementary behavior for the
magnetization, m2

FM/AFM. At small δ, the field-induced cant-
ing of the spins towards the z-axis causes m2

FM/AFM to de-
crease proportionally to δ2. At large δ, the ground state ap-
proaches the (staggered) z-aligned product state, in which
m2

FM/AFM = 0. The magnetization changes most rapidly at
the crossover, giving rise to the clear peaks in dm2

FM/AFM/dδ

shown in Fig. 8f. We take the center of these peaks as our defi-
nition of the crossover point, δFM/AFM

c . For theN = 42 clus-
ter, the values are ~δFM

c /J = 7.1(3), ~δAFM
c /J = 0.8(1),

and ~δnn
c /J = 2.4(1). For the N = 100 cluster, we find

~δFM
c /J = 9.5(3), ~δAFM

c /J = 0.9(1), and ~δnn
c /J =

2.5(9). As N → ∞, the smooth crossover is expected to
sharpen into a bona fide QPT, and m2

FM/AFM(δ) will be non-
analytic at the critical point.

D. Adiabatic preparation - theory and numerics

We now provide theoretical and numerical analyses of the
adiabatic preparation protocol used in the experiment. As
mentioned above, we study both the FM and AFM cases
considering HAFM

XY = −HFM
XY . Additionally, for a time-

reversal-symmetric Hamiltonian such as H = HXY + HZ ,
the dynamics under H(t) and −H(t) are identical (as long
as the initial state is also time-reversal-symmetric) [44]. So
for a finite-time (quasi-adiabatic) ramp, the diabatic errors in-
curred attempting to follow the topmost state of HFM

XY + HZ

are the same as for a ground-state protocol with H(t) =
HAFM

XY −HZ(t).

1. Excitation gaps and an alternative protocol

The success of any finite-duration adiabatic protocol de-
pends crucially on the low-energy spectrum of the system. In
particular, as the smallest excitation gap encountered along
the chosen path through parameter space decreases, the time
required to obtain a final, high-fidelity ground state increases.
To this end, we computed the minimal energy gaps, ∆min,
using exact diagonalization on finite clusters with periodic
boundary conditions.

In Fig. 9a, we plot the instantaneous gap ∆min of
H

FM/AFM
XY + HZ, in the Sz = 0 sector, as a function of the

light-shift ~δ/J . We expect the gap for either case to be small-
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Figure 9. Excitation gap for two adiabatic preparation protocols.
a, Minimal energy gaps of HAFM(FM)

XY + HZ to the lowest excited
state in the Mz = 0 sector as a function of ~δ/J . We here only
consider gaps among states with momentum ~k = 0 and fully sym-
metric under the lattice point-group, which reflects the setup in the
(ideal) experiment. Blue (red) curves show the results for the AFM
(FM) model. Darker colors correspond to larger system sizes. The
inset shows a sketch of the expected phase diagram. b, Same as a,
but for the protocol with Hamiltonian HAFM(FM)

XY + HX. Here we
cannot restrict the analysis to a single Mz sector since it is not con-
served. c, Cumulatively integrated 1/∆2

min [starting from the largest
value ~δ/J = 24] for the gaps shown in a. The values at ~δ/J = 0

measure how difficult it is to prepare the ground state of HAFM(FM)
XY

by sweeping δ. d, Same as c but for the gaps along Ω, as shown
in b. The inset shows a sketch of the expected phase diagrams for
H

AFM(FM)
XY +HX.

est near the quantum phase transition (Methods C 3): for the
FM, this dip is seen at ~δ/J ≈ 12, while in the AFM the gap
is minimal when ~δ/J . 2. The size of the minimal gaps de-
creases with increasing system size N (darker colors), as one
would expect at a QPT. However, we find the minimal finite-
size gaps for the FM model are always larger than the ones for
the AFM model. This indicates that for the dipolar XY model,
the FM requires less total ramp time to prepare than the AFM.

Besides the staggered light-shift ramp demonstrated in the
main text, one can conceive a different route for preparing
XY-ordered states: tune down a spatially uniform field in the
x direction from large values ~Ω� J to zero. This is similar
to what is done in Rydberg quantum simulations of the two-
dimensional Ising model [8, 9, 60], and was used in a prior
experiment to prepare the topological ground state of a one-
dimensional XY model [61]. The corresponding Hamiltonian
is HAFM(FM)

XY +HX(t), with HX(t) = ~Ω(t)
∑
i σ

x
i /2. Note

that Mz is no longer conserved in the presence of HX.
Figure 9b shows the smallest energy gap for this alterna-

tive protocol. The behaviour is very different from the one
for the δ sweep discussed above. For FM interactions, the

gap does not show any local minimum and remains large un-
til the end of the sweep, where it finally narrows. By con-
trast, the gap for the XY AFM is small in the whole re-
gion ~Ω/J . 10. Based on previous studies of the nearest-
neighbor XY model [62, 63], both of these results are likely a
consequence of the expected phase diagram for HFM/AFM

XY +
HX, which we sketch in the inset of Fig. 9d. For the XY FM,
HX is a relevant perturbation to the ordered phase: any non-
zero Ω breaks the U(1) symmetry and, in the thermodynamic
limit, immediately destroys the LRO, resulting in a paramag-
netic (PM) phase. The AFM is also XY-ordered only at the
U(1)-symmetric point Ω = 0, but a small Ω instead “cants”
the AFM order towards the y-direction by a spin-flop pro-
cess [62, 63]. The ground state is then still an antiferromagnet,
but one ordered along the y-direction, i.e. it spontaneously
breaks the remaining Z2 symmetry σy → −σy ofHXY +HX.
This “canted” antiferromagnet (CAFy) is stable up to a critical
value ~Ωc/J where it finally undergoes a 2 + 1D Ising QPT
to the PM phase [63].

Comparing the gap landscapes in Fig. 9a,b suggests that
preparing the XY AFM requires less time when using δ
sweeps instead of the Ω sweeps. To quantify this, we inte-
grate the squared inverse gaps and define

S∆(λ) =

∫ λ

λ0

1

∆min(λ′)2
dλ′ (13)

where λ = ~δ/J or ~Ω/J is the dimensionless parameter
for either protocol. As one motivation for this quantity, we
consider the fidelity susceptibility, χF , which is the lead-
ing term in the expansion of the fidelity F (λ, λ + δλ) =
|〈ψ0(λ)|ψ0(λ+ δλ)〉| of the ground states |ψ0(λ)〉 between
two close points λ and λ+ δλ in parameter space [64],

F (λ+ δλ) = 1− δλ2

2
χF + . . . (14)

The coefficient χF characterizes how quickly the ground state
changes with λ. For a ramp protocol of the form H(λ) =
HXY + λHI , one can show

χF =
∑
n 6=0

|〈ψn(λ)|HI |ψn(λ)〉|
(En(λ)− E0(λ))2

(15)

where |ψn(λ)〉 is the n-th eigenstate of H(λ) and En(λ) is
the corresponding energy [64]. If we assume that the n = 1
term is dominant, and the numerator is nearly constant, we get
the relationship χF ∼ 1/(E1(λ) − E0(λ))2 = 1/∆min(λ)2.
The integral S∆ therefore estimates the total difficulty of adi-
abatically preparing the ground state of H(λ), starting from
the ground state of H(λ0).

In Fig. 9c,d, we plot S∆(λ) for the two protocols. The ini-
tial point λ0 is taken to be in the paramagnetic phase: λ0 = 12
for the δ sweep and λ0 = 24 for the Ω sweep. In either
case, S∆ for the AFM (blue curve) exceeds that of the FM
as λ → 0, indicating that the AFM is more difficult to pre-
pare. Most importantly, comparing Fig. 9c,d, one sees that the
HZ(t) protocol is much more efficient at preparing the XY
ordered state (λ = 0) than the HX(t) protocol, especially for
the AFM.
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2. Time-dependent MPO-MPS simulation

To ensure that we have a good understanding of the ex-
periment and its imperfections, we also perform numerical
simulations of the full many-body quantum dynamics for the
N = 42 adiabatic ramp. We simulate the dynamics in the
spin-1/2 subspace, taking into account the error tree in Fig. 6
by sampling the state preparation errors with Ndis = 20 inde-
pendent simulations.

Atoms that were not excited in the STIRAP with
ηSTIRAP = 0.03 correspond to missing sites in the square lat-
tice not taking part in the dynamics. On the remaining sites,
we prepare an initial MPS as product state, flipping individ-
ual spins according to the probabilities of the microwave π-
pulse, ηMW = 0.003, and the subsequent microwave sweep
of the addressed atoms, ηA = 0.10, ηB = 0.03. These values
are slightly different from those reported in Table I, reflect-
ing an earlier calibration of the experiment. We further update
the atom distances rij in HXY to account for positional dis-
order: we first take a normal-distributed initial displacement
from the square lattice with variance σr = 0.2µm, followed
by a movement during the dynamics with normal-distributed
(time-independent) velocity of variance σv = 0.05µm/µs
corresponding to the temperature of the atoms.

We then time-evolve the states under the time-dependent
Hamiltonian,

H(t) = −J
∑
i<j

a3

r3
ij(t)

[
S+
i S
−
j + S−i S

+
j

]
+HvdW

+ δ(t)εAFM

∑
i∈B

1 + σzi
2

(16)

where J/h = 0.77 MHz, δ(t) is the ramp shown in Fig. 10a,c
(insets), and εAFM = −1 for the antiferromagnet (+1 for the
ferromagnet). The additional term, HvdW, accounts for the
van der Waals interactions between the Rydberg atoms, and
takes the form

HvdW =
∑
i<j

a6

r6
ij(t)

[
UPP6 P ↑i P

↑
j + USS6 P ↓i P

↓
j

+ USP6 (P ↑i P
↓
j + P ↓i P

↑
j )
]

(17)

where P ↑/↓i = Szi ± 1/2 are single-spin projectors. The
values of the U6 coefficients are UPP6 /h = −0.008 MHz,
USS6 /h = 0.037 MHz, and USP6 /h = −0.0007 MHz. For the
purposes of this simulation, we restrict the interaction range
of HXY and HvdW to Rmax < 3.7. We use the WII method
[65] to approximate the evolution operator e−i(H/~)dt as a ma-
trix product operator (MPO), in combination with standard
variational MPO-MPS compression methods. Our scheme is
correct to first order in the time step dt = 0.01µs/2π. Since
the evolution is sufficiently adiabatic, a moderate bond dimen-
sion of χ = 128 is enough to capture the correlations. In the
DMRG ground state, the truncation error at this bond dimen-
sion is 6 × 10−7 for the ferromagnet, and 3 × 10−5 for the
antiferromagnet.

When evaluating expectation values and correlation func-
tions from the time-evolved MPS (t-MPS), we further account
for the measurement errors ηfrz = 0.01, ηdx = 0.03, ε =
0.01, ε′ = 0.07 of the error tree. This can be done exactly
(without another sampling procedure), since the MPS gives
full access to the probabilities of the individual measurement
outcomes.

There are two notable experimental imperfections that we
do not take into account in these simulations. First, there are
further sources of decoherence in the experiment as discussed
in B 2. Second, in our numerical simulations, we assume that
all errors in the error tree occur independently for each atom
and result in an initial product state of up or down spins or va-
cant holes. Yet, the STIRAP and microwave pulses leave the
atoms in coherent superpositions of the relevant atom levels.

3. Simulation results for N = 42

The results of the t-MPS simulations are shown in Fig. 10,
which also includes direct comparisons to the experimental
measurements, and to the DMRG ground state. For our en-
semble of Ndis = 20 independent t-MPS simulations, we
show the average values of these simulations with solid lines,
while the shaded region indicates the standard deviation.

Our first observable (Fig. 10a,c) is the staggered polariza-
tion Pz =

∑
(±)A,B〈σzi 〉. For the antiferromagnet, the agree-

ment between the t-MPS simulations and experiment is essen-
tially perfect for all values of δ. This is a strong indication that
most dominant sources of error in the experiment have been
accurately accounted for. For the ferromagnet, there is a small
offset between the t-MPS calculation and the experimental re-
sult at late times (small δ). In particular, Pz → 0 as δ → 0 for
the t-MPS calculation, while Pz → −0.06 in the experiment.
This discrepancy is due to the sublattice-dependent depump-
ing from the light-shift discussed in Sec. B 2, which we do
not account for in the t-MPS simulations.

As the state loses its initial σz polarization, it concomitantly
develops XY order. This is tracked by the order parameter
m2

FM (m2
AFM for the antiferromagnet), shown in Fig. 10b,d.

We obtain again a good agreement between the t-MPS simu-
lation and the experiment at early times (large δ), although we
caution that the initial positive value of m2

FM/AFM = 1/42 is
inherent to any σzi -product state. On top of the smooth adia-
batic envelope, the t-MPS simulations reveal coherent oscilla-
tions in P z andm2

FM/AFM. These oscillations are a feature of
the large-δ paramagnetic phase, and are essentially Rabi oscil-
lations between the classical Néel ground state and the 42-fold
degenerate manifold of states with one spin-flip excitation.

At small δ, the experimental measurements of m2
FM/AFM

fall below the t-MPS predictions. This deficit likely arises
from a combination of decoherence and unmodeled system-
atic errors, such as experimental imperfections in the π/2-
pulse rotation to the x basis. Regarding the latter, an imper-
fect basis rotation means that the operator measured in the ex-
periment is not exactly σxi but some small modification of it,
σ̃xi = Uσxi U

†. In XY-ordered states, 〈σxσx〉 = 〈σyσy〉 cor-
relations are typically much larger than any other two-body
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Figure 10. Numerical simulation of the adiabatic preparation for the 6×7 lattice. We compare the predictions from the t-MPS simulations
(disorder ensemble average in dark teal, standard deviation in light teal) to the experimental data (gray), as measured at light-shift δ(t) = δ.
We also show the ground-state expectation value from DMRG (purple) a, The staggered polarization Pz of the FM. Theory and experiment
agree remarkably well, except for an offset at small δ, due to the light-shift-induced depumping. Inset: ramp δ(t) used for the FM simulation.
b, The ferromagnetic magnetization m2

FM(δ). We find excellent agreement between experiment and numerics for δ > 2, including near
the phase transition at δFM

c = 5.5 (red dashed line). The two diverge somewhat at smaller δ (later times), likely due to decoherence and
unmodeled systematic measurement errors. c, d, Corresponding results for the AFM. For Pz , the t-MPS simulation accurately reproduces
the experimental data across the whole δ(t) sweep. For δ far above δAFM

c = 0.6 (blue dashed line), there are many-body Rabi oscillations
characteristic of the paramagnetic phase. c, Inset: ramp δ(t) used for the AFM simulation. d, Inset: zoom-in of lower left corner. At small δ
(late times), the magnetization m2

AFM measured in experiment is below that predicted from the simulations.

operators, especially at long distances. Measuring any modi-
fied σ̃xi will then generically reduce the value of the inferred
magnetization, m̃2

FM = 2
∑
i,j〈σ̃xi σ̃xj 〉.

We also use the t-MPS simulation to assess the quality of
the adiabatic preparation. In particular, we are interested in
how close the unitary dynamics comes to preparing the tar-
get ground state of HXY. We measure this via the XY energy
EXY = 〈HXY〉, which corresponds to the amount of energy
the many-body state stores within the dipolar interaction. The
ideal endpoint of the ramp is a state that maximizes |EXY|, i.e.
the ground state of HXY (or, the topmost state in the case of
the negative-temperature preparation for the antiferromagnet).
We do not include measurement errors for this analysis, as we
want to directly compare the adiabatically prepared state to
the ideal one. As a minor technical point, the ensemble of lat-
tices used in the t-MPS simulation occasionally have missing
sites (representing an absence of Rydberg-excited atoms), and
always have some position disorder which modifies the cou-
plings, Ja3/r3

ij , and hence the spectrum of HXY. To treat the
different lattices on even footing, when measuring EXY we
compute the expectation value of HXY without position dis-
order in the couplings, and normalize by the total number of
active sites, N̄ , before taking the ensemble average.

Figures 11a,b show EXY(δ)/JN̄ in the DMRG ground
state (purple), the ensemble-averaged t-MPS simulation
(teal), and a single state within the t-MPS ensemble (pink)
that had a nearly perfect initial configuration: one missing
site at the corner, and all remaining spins properly aligned
with the staggered field. Initially, the system is in a classical
ensemble of σzi -aligned product states, so EXY(t = 0) = 0.
The dynamics generated by H(t) produce the desired corre-

lations among the spins; the oscillations in EXY at large δ
are the paramagnetic Rabi oscillations also observed in Pz
and m2

x. At the end of the ramp, the ensemble averages are
EFM

XY /(N̄J) = −1.41(8) and EAFM
XY /(N̄J) = −0.64(3),

which respectively correspond to 94±5% and 89±4% of the
N = 42 ground state value. Remarkably, the near-ideal initial
state produces a near-ideal final state, achieving 99.7% (FM)
and 98.2% (AFM) of the ground state energy density. This in-
dicates that any diabatic errors during the ramp are negligible
compared to the initialization errors.

As discussed in Sec. D 1, the quality of a finite-time adi-
abatic ramp crucially depends on the size of the many-body
energy gap. For the U(1)-symmetric ramp at hand, the quan-
tity is the (spin-)neutral gap, ∆0 = E1(Sz = 0) − E0(Sz =
0). In the paramagnetic phase, ∆0 ∼ δ, while in the XY-
ordered phase one expects ∆FM

0 ∼ 1/
√
N and ∆AFM

0 ∼
1/N [18, 27]. The numerical value of ∆0 on finite-size sys-
tems can be computed in DMRG by solving for the lowest-
energy state orthogonal to the previously obtained ground
state, in the same Sz = 0 sector. We plot ∆0(δ) in Fig. 11c,d
for both the N = 42 and N = 100 clusters. The behavior of
∆0(δ) differs somewhat from that seen in Sec. D 1, due to a
difference in boundary conditions (open instead of periodic).
Across the phase diagram, ∆0(δ) is fairly large, which helps
to explain the success of the adiabatic preparation: the ramp
decay time scale, τ = 1.45 ~/J , is slower than (FM) or ap-
proximately equal to (AFM) the inverse gap, ∆−1

0 = 0.45/J
(FM), 1.47/J (AFM). The smaller gap for the antiferromag-
net is a manifestation of its frustration, and makes adiabat-
ically preparing its ground state more difficult compared to
HFM

XY . Comparing ∆0 to the excess energy the end of the
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Figure 11. Energetics of the simulated adiabatic preparation. a,
b, Interaction energy density EXY/N̄(δ) in the t-MPS simulations
of the 6×7 lattice. The teal line and envelope are the disorder ensem-
ble average and standard deviation, respectively. Following a single
state with minimal initialization errors (pink line), we see that EXY

tightly follows the DMRG ground state value (purple), confirming
that diabatic errors are negligible. c, d, Energy gaps ∆0 between the
ground state and the first excited state in the Sz = 0 sector, obtained
from DMRG. For the near-ideal initial state, the final energy density
(pink dotted line) falls below the gap in both the FM and AFM case.

ramp, we find that the near-ideal initial state ends up with a
total effective energy, E = NEXY/N̄ , below the many-body
gap. The difference is remarkably large for the ferromagnet
(E/∆FM

0 = 0.06), implying a near-flawless adiabatic sweep,
while the margin for the antiferromagnet is much narrower
(E/∆AFM

0 = 0.81).

E. Thermal phase diagram

We conclude by discussing the phase diagram ofHXY+HZ

at finite temperature, T (measured in unit of kB). While
two-dimensional, U(1)-symmetric systems can have XY LRO
ground states, for short-range interacting models such as Hnn

this order does not persist to finite temperature [12, 13, 66,
67]. Physically, this is because spin-wave excitations (i.e.
Goldstone modes) proliferate at finite temperature and de-
stroy the XY order. Instead, most two-dimensional XY mod-
els have an algebraic long-range ordered phase at low tem-
peratures, separated from the high-T disordered phase by a
Berezinskii-Kosterlitz-Thouless (BKT) transition at a critical
temperature TBKT [38–41]. The low-T phase is characterized
by power-law-decaying correlations, Cx(d) ∼ d−1/(2πK),
with a temperature-dependent exponentK that attains the uni-

versal value KBKT = 2/π at TBKT. For the classical nearest-
neighbor XY model, T cl

BKT/(2J) = 0.892943(2) [68, 69],
while in the quantum spin-1/2 Hnn the transition is lowered
to T nn

BKT/(2J) = 0.353(3) [70, 71].
Long-range ferromagnetic interactions can suppress the

proliferation of spin-waves and thus renew the possibility for
XY LRO at finite temperature [18, 19, 27]. With 1/rα fer-
romagnetic couplings, extensively large fluctuations of the
spin orientation come at an energy cost proportional to L4−α,
with L the linear system size, so two-dimensional XY LRO
can be thermodynamically stable when α ≤ 4. Indeed, in
1976, Kunz and Pfister proved that the classical version of
HFM

XY exhibits a finite-temperature phase transition between
the high-T disordered phase and a low-T XY LRO phase [17].
Subsequent Monte Carlo simulations located this transition
at TFM

c /(2J) = 3.96(4), and suggested it was weakly first-
order [72, 73]. We note this is contrary to the general ex-
pectation of a second-order symmetry-breaking transition, in
a mean-field-like universality class when α ≤ 3 [15, 74, 75].
Finally, 1/rα antiferromagnetic interactions do not essentially
modify the energy of long-wavelength fluctuations, so one
expects the low-T physics of HAFM

XY to be similar to that of
Hnn [14].

1. Numerical phase diagram for N = 42

For a quantitative understanding of the thermal physics ac-
cessible in the experiment, we numerically investigate the fi-
nite temperature phase diagram for both the FM and the AFM
on the 6 × 7 lattice. While HFM

XY is amenable to Quantum
Monte Carlo techniques, these are not an option for HAFM

XY ,
which exhibits a sign problem. Instead, for both we employ
the Minimally Entangled Typical Thermal States (METTS) al-
gorithm [76]. This is a Markov chain Monte Carlo (MCMC)
approach that alternates between evolving a state in imagi-
nary time to inverse temperature β/2, and then taking a pro-
jective measurement as the initialization for the next imagi-
nary time evolution. The result is an ensemble of pure states,
{|ψMETTS〉}, that approximates the thermal density matrix
ρ ∝ e−βH : for any operator O, the ensemble average of
〈ψMETTS| O |ψMETTS〉 approaches the thermal equilibrium
value Tr[ρO].

Due to the U(1) symmetry, the thermal density matrix fac-
torizes into a direct sum over the different magnetization sec-
tors, ρ =

⊕N
m=−N ρm. Here, we sample only from the

m = 0 sector, as this is the most relevant one for the par-
tial quench experiment. For numerical convenience, we also
truncate the long-range interactions to Rmax < 3.7, and omit
the van der Waals coupling, position disorder, and the pos-
sibility of holes. We perform the imaginary time evolution
using the sameWII MPO-MPS method as in Sec. D 3, taking
an MPS bond dimension of χ = 256. We found very similar
results using χ = 128 (not shown), albeit with some small
quantitative shifts near the finite-temperature phase transition.
To reduce sample autocorrelations, each projective measure-
ment is made in a random basis determined by a depth-two,
U(1)-conserving random unitary circuit [77]. By a standard
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Figure 12. Finite-temperature properties ofHXY +HZ. a, Phase diagram ofHFM
XY +HZ at finite temperature T and light-shift δ, computed

from METTS on a 6 × 7 array in the Mz = 0 sector. We also include T = 0 points calculated from DMRG. The region with large
magnetization m2

FM at small δ and small T should correspond to the LRO phase in the thermodynamic limit. The colorbar is chosen so that
dark red corresponds to the final m2

FM calculated in the t-MPS simulation, absent measurement errors. Thin black lines are equal-magnitude
contours to guide the eye. b,c, Estimated temperature of a quench experiment with final light-shift δf and quench magnitude δq , taking the
pre-quench configuration to be either the DMRG ground state (b) or the t-MPS ramp simulation ensemble (c). The oscillatory behavior
seen in c stems from the paramagnetic Rabi oscillations discussed in Sec. D 3. d, e Corresponding magnetization m2

FM of the system at
temperature Teff(δf , δq). f-j Analogous results for the antiferromagnet. The region with finite magnetization m2

AFM is expected to become an
algebraic-ordered (BKT) phase in the thermodynamic limit.
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blocking analysis, we estimate the resulting autocorrelation
time to be about 10 MCMC steps [78]. We therefore allow a
warm-up time of 20 steps, and then generate 100-300 samples
for each value of δ and β.

In Fig. 12a,f, we show 2D color plots of the squared mag-
netization m2

FM/AFM at finite T and δ. For the ferromagnet
(Fig. 12a), we observe a lobe around (T, δ) = (0, 0) that cor-
responds to the XY-ordered phase. The order begins to dis-
appear around T/J = 1.5 (for the thermal phase transition)
and δ/J = 5 (for the quantum phase transition). Examining
m2

AFM for the AFM case (Fig. 12b), we observe a smaller lobe
with apparent XY order. Although HAFM

XY is not predicted to
host true long range order at T > 0, obtaining m2

AFM > 0 is
still possible on finite-size systems.

Owing to the small system size, there is a smooth crossover
between the ordered and disordered regimes for both mod-
els, and it is difficult to ascertain what the nature of the phase
transition may be in the thermodynamic limit. It should be
possible to study larger system sizes for HFM

XY using Quan-
tum Monte Carlo methods [79], which is beyond the scope of
this work. For now, we cautiously estimate TFM

XY /J ≈ 1.5
and TAFM

XY /J ≈ 0.5, as the δ = 0 crossover tempera-
ture into the high-T phase. Compared to Hnn, for which
T nn

BKT/J = 0.706(6) [70, 71], the dipolar ferromagnet ap-
pears to have a higher transition temperature (although not as
high as the classical model [72, 73]), while the antiferromag-
net may have a slightly lower one.

2. Temperature estimate of the final state

With our METTS representation of the thermal density ma-
trix, we also determine the temperature and δ dependence of
the internal energy, E(T ) = Tr[ρH]. The inverse function
T (E) defines a temperature calibration: we estimate the ef-
fective temperature of a state from its energy density. In-
putting the mean final energy density of our t-MPS simu-
lations (Sec. D), we estimate the effective temperatures at
the end of the adiabatic ramp to be TFM

MPS/J = 0.95 and
TAFM

MPS /J = 0.53. The t-MPS disorder ensemble results in a
spread of energies EXY ± σE ; the corresponding temperature
intervals are TFM

MPS ∈ [0.46, 1.17] and TAFM
MPS ∈ [0.45, 0.60].

These intervals are asymmetric about the mean value due to
the nonlinearity of T (E). The obtained TFM

MPS appears to be
below the estimated crossover temperature TFM

XY , while for
the antiferromagnet TAFM

MPS is very close to the phase transi-
tion. This is consistent with the wide spread in magnetizations
m2

AFM over the t-MPS ensemble, shown in Fig. 10d.

3. Temperature calibration of quantum quenches

Performing an analogous T (E) calibration at finite δ, we
also estimate the effective temperatures produced by the quan-
tum quench experiments (main text Fig. 1c,e,f), with final
light-shift δf and quench magnitude δq . We assume that, fol-
lowing the quench, the system equilibrates to a thermal state;
extensively testing this assumption with numerical quench

simulations is challenging, but may be interesting to explore
in the future. Barring the possibility of a nonthermal equilib-
rium, our basic expectation is that the quench affects the XY
order by a mechanism not unlike a finite-temperature bath. In
particular, the excess energy added into the system should ex-
cite the low-energy, symmetry-restoring spin waves [80]. If
the resulting population density of spin waves at equilibrium
is not too different from a true thermal distribution, then in the
thermodynamic limit it will destabilize the XY AFM order but
not the XY FM order at low temperature.

We first calculate the effective temperature assuming per-
fect adiabatic preparation up to the pre-quench point δf + δq ,
i.e. by evaluating the energy 〈HXY +HZ (δf )〉 in the DMRG
ground state of HXY + HZ (δf + δq) and then converting it
to a temperature. Figure 12b,g shows the effective tempera-
ture Teff(δf , δq)/J for the FM and the AFM. In the FM, mod-
est quenches δq/2π < 4 MHz uniformly increase the effec-
tive temperature as a function of δf over the range δf/2π ∈
[0, 3.5] MHz probed in the experiment. With larger quenches,
the effective temperature increases rapidly for small values
of δf and slows down at larger values of δf . In the AFM,
the effective temperature produced by even small quenches δq
has a strong dependence on δf , again being much more effec-
tive at raising the temperature as δf → 0 (i.e. the isotherms
are steeply sloped at small δf ). Figure 12d,i show the corre-
sponding magnetization m2

FM/AFM expected at Teff(δf , δq).
Notably, in the AFM the large variation in Teff(δf ) at a fixed
δq leads to a “tilted Matterhorn” shape for the ordered region.

Finally, we estimate the effective temperature of the full ex-
perimental protocol by using the states produced in the t-MPS
ramp simulation as the pre-quench configuration. We show
Teff(δf , δq)/J for the FM and AFM in Fig. 12c,h. As a con-
sequence of the paramagnetic Rabi oscillations discussed pre-
viously in Sec., D 3, Teff is also oscillatory. For the FM, these
oscillations only manifest at large δq (corresponding to pre-
quench states taken very early in the ramp), while for the AFM
they are relevant across the phase diagram. The latter behav-
ior ultimately stems from the fact that δAFM

c /2π ≈ 0.7 MHz,
so most pre-quench states are in the paramagnetic phase.

The corresponding magnetization m2
FM/AFM(Teff) is

shown in Fig. 12e,j. Comparing to the experimental results in
Fig. 1e,f, we see that some qualitative features are reproduced
by this calculation, especially for the AFM. For instance, the
sloped phased boundary seen in the experiment at small δf
is due to the diagonal isotherms. The calculation seems to
differ from the experiment in the region with large δf (i.e.
δf/2π > 2(1) MHz for the FM (AFM) ) and small δq . In
particular, the order-disorder crossover appears to happen at
larger δf than seen in the experiment, and the observed non-
monotonic behavior of m2

FM/AFM(δq) is also less apparent.
These differences may come from the same unmodeled im-
perfections that led to a discrepancy in the absence of any
quench (see Sec., D 3). Another possibility is that the ther-
mal density matrix ρ(Teff) in the Mz = 0 sector may be an
inadequate approximation of the post-quench state, either due
to nonthermal equilibration or neglected contributions from
different magnetization sectors.
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