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Abstract
Gridded data products, for example interpolated daily measurements of precipitation from weather stations, are commonly 
used as a convenient substitute for direct observations because these products provide a spatially and temporally continuous 
and complete source of data. However, when the goal is to characterize climatological features of extreme precipitation over 
a spatial domain (e.g., a map of return values) at the native spatial scales of these phenomena, then gridded products may 
lead to incorrect conclusions because daily precipitation is a fractal field and hence any smoothing technique will dampen 
local extremes. To address this issue, we create a new “probabilistic” gridded product specifically designed to characterize 
the climatological properties of extreme precipitation by applying spatial statistical analysis to daily measurements of pre-
cipitation from the Global Historical Climatology Network over the contiguous United States. The essence of our method is 
to first estimate the climatology of extreme precipitation based on station data and then use a data-driven statistical approach 
to interpolate these estimates to a fine grid. We argue that our method yields an improved characterization of the climatology 
within a grid cell because the probabilistic behavior of extreme precipitation is much better behaved (i.e., smoother) than 
daily weather. Furthermore, the spatial smoothing innate to our approach significantly increases the signal-to-noise ratio in 
the estimated extreme statistics relative to an analysis without smoothing. Finally, by deriving a data-driven approach for 
translating extreme statistics to a spatially complete grid, the methodology outlined in this paper resolves the issue of how to 
properly compare station data with output from earth system models. We conclude the paper by comparing our probabilistic 
gridded product with a standard extreme value analysis of the Livneh gridded daily precipitation product. Our new data 
product is freely available on the Harvard Dataverse (https ://bit.ly/2CXdn uj).

Keywords Extreme value analysis · Precipitation · Spatial statistics · Nonparametric bootstrap · Global Historical 
Climatology Network · Gaussian processes · Gridded daily precipitation

1 Introduction

Gridded data products of precipitation are a popular substi-
tute for daily measurements of rainfall from weather stations. 
The products are generated by interpolating the station meas-
urements onto a uniform space-time grid to create a spatially 

and temporally complete, continuous, and homogeneous ver-
sion of the raw data. For this reason, gridded products are 
often used to summarize the climatological properties of 
extreme precipitation, for example maps of return values, 
and then to evaluate the performance of climate models with 
respect to extremes. In traditional analysis of precipitation 
extremes using gridded products (see, e.g., Wehner 2013; 
Sylla et al. 2013, and many others), the extreme climatology 
is estimated separately for each grid cell using a univari-
ate extreme value analysis. However, we assert that gridded 
daily precipitation products are problematic data sources 
for constructing these extreme climatologies because daily 
precipitation is well-known to exhibit fractal scaling (e.g., 
Lovejoy et al. 2008; Maskey et al. 2016, and numerous refer-
ences therein), and therefore any spatial smoothing or aver-
aging during the gridding process will diminish variability 
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and extreme values. Additionally, a recent thread of research 
(King et al. 2013; Gervais et al. 2014; Timmermans et al. 
2019) explicitly questions the appropriateness of using grid-
ded products as a substitute for observed extremes.

As an alternative to using gridded data products, irregu-
larly observed weather station measurements can be used 
to obtain spatially-complete summaries of extreme precipi-
tation by utilizing the diverse statistics literature on spatial 
extreme value analysis. These statistical tools collectively 
analyze extremes over space for processes such as precipita-
tion, specifically allowing one to estimate the distribution 
of extreme precipitation even for locations where no data 
is available. The methods broadly fall into one of four cat-
egories: max-stable processes (Haan 1984; Smith 1990; 
Schlather 2002; Kabluchko et al. 2009), which provide math-
ematically-founded models for characterizing spatial depend-
ence among extremes; copula-based approaches (Hüsler and 
Reiss 1989; Demarta and McNeil 2005; Sang and Gelfand 
2010; Fuentes et al. 2013; Krupskii et al. 2018), which con-
struct a joint multivariate distribution for spatial extremes via 
careful modeling of transformed marginal (univariate) dis-
tributions; Bayesian methods (Reich and Shaby 2012; Shaby 
and Reich 2012; Morris et al. 2017), which use a hierarchical 
framework to build numerically tractable models based upon 
the mathematics of max-stable processes; and nonparametric 
mixture models (Gelfand and Kottas 2002; Wang et al. 2011; 
Kottas et al. 2012), which simultaneously analyze both the 
average and extreme values of precipitation. See Davison 
et al. (2012) for an excellent review of these approaches.

In this paper, we seek to characterize the climatology 
of extreme precipitation based on measurements from 
approximately five thousand Global Historical Climatol-
ogy Network (GHCN) stations (see Sect. 2) over the con-
tiguous United States (CONUS). Unfortunately, practically 
speaking, many of the aforementioned statistical methods 
are only suitable for a small number of weather stations. 
For example, Davison et al. (2012) use a data set with just 
36 stations, Saunders et al. (2017) employ 173 stations to 
derive a max-stable process to model extreme precipitation 
in Australia, and Shaby and Reich (2012) analyze the largest 
data set considered to date (to our knowledge) comprised 
of approximately one thousand stations. Regardless of the 
number of weather stations of interest, a second limitation 
of the aforementioned methods is that they are only appro-
priate for homogeneous spatial domains. CONUS, on the 
other hand, is a highly heterogeneous spatial domain with 
variable topography interacting with a diverse set of physi-
cal phenomena that produce extreme precipitation. These 
phenomena include atmospheric rivers on the west coast, 
tropical cyclones on the east coast, and mesoscale convective 
systems in the Great Plains.

In light of these shortcomings in existing methodologies 
for spatial extremes, note that we do not need to simulate 

realistic fields of seasonal maxima, which is a complicat-
ing factor in the aforementioned max-stable and Bayesian 
approaches to spatial extreme value analysis (furthermore, 
note that we do not intend to model the full space-time dis-
tribution of daily precipitation, as in Serinaldi and Kilsby 
2014). Instead, we simply wish to characterize the statis-
tics of extreme precipitation over CONUS. In this case, one 
apparently viable option would be to employ latent variable 
or conditional independence models (Cooley et al. 2007; 
Craigmile and Guttorp 2013; Mannshardt et al. 2013), which 
provide flexible methodologies suitable for larger data sets 
and heterogeneous spatial domains. These methods assume 
that daily precipitation totals over space occur independently 
of one another and are conditional on latent processes that 
characterize spatial dependence in extremes. The assump-
tion of independence invalidates the application of latent 
variable methods to modeling extremes of an atmospheric 
process such as precipitation because daily precipitation 
measurements at nearby stations are certainly not independ-
ent. This dependence is induced by the spatial coherence of 
storm systems so that if one weather station experiences an 
extreme on a specific day it is more likely that a nearby sta-
tion will also experience an extreme on the same day. Failing 
to account for this so-called “storm dependence” means that 
the resulting maps of extreme statistics will be misleading 
since the true spatial signals will be commingled with noise.

In order to create a viable alternative analytical technique, 
we first conduct an extreme value analysis to estimate the 
extreme statistics of precipitation for each station and then 
interpolate these statistics to a fine grid. In order to account 
for spatial coherence in these extreme statistics, we use sec-
ond-order nonstationary spatial Gaussian process models that 
account for heterogeneities in the climatology of extreme 
precipitation and enable statistical inference at locations 
where we do not have observations of daily precipitation. 
By construction, this framework accounts for both first-order 
heterogeneities in the expected values due to topography and 
second-order heterogeneities in the co-variability. Then, we 
use a nonparametric, or “block”, bootstrap approach to char-
acterize uncertainty in the extreme statistics of precipita-
tion while accounting for storm dependence. Intuitively, our 
approach can be seen as commuting the order of operations 
relative to existing analytical methods that in general first 
apply spatial and temporal interpolation to station data onto 
a regular grid and then calculate extreme statistics from that 
gridded product. We demonstrate that our method yields a 
larger signal-to-noise ratio in estimates of extreme statistics 
relative to the ratios yielded by more traditional analytical 
methods that do not borrow strength spatially.

Focusing on daily measurements of precipitation from 
the Global Historical Climatology Network (GHCN) over 
the contiguous United States (CONUS), the result of our 
analysis is a probabilistic gridded product that describes the 
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spatial climatological distribution of extreme precipitation. To 
illustrate why our methodology provides an improved char-
acterization of extreme precipitation statistics, consider two 
nearby towns in a homogeneous region, e.g., the Great Plains. 
While these two towns might experience different storms for 
any given day or month, our general hypothesis is that these 
two towns will exhibit similar statistics of extreme precipita-
tion because of their similar climatology. The same argument 
holds over the rest of CONUS, especially after correcting for 
the effects of elevation. As a result, it makes more sense to 
borrow strength over space and conduct smoothing on the 
statistics of extremes rather than daily weather itself. A tra-
ditional extreme value analysis using gridded daily products 
does not incorporate this important borrowing of strength over 
space.

Two threads of research should be mentioned in relation 
to the novel methodology described in this paper. The first 
is Diaconescu et al. (2015) and references therein, which 
explores the order of operations when regridding data prod-
ucts and climate model output for comparison. In this paper, 
they compare a “first-step” procedure (which first interpo-
lates daily weather fields and then computes a derived index 
on the common grid) and a “last-step” procedure (which first 
computes the derived index and then interpolates to a com-
mon grid), finding that the last-step procedure yields much 
smaller errors from the regridding process (a result that is 
robust to the interpolation method). The intuition for our 
approach supports a preference for the last-step procedure 
and is indeed quite similar, except that (1) we propose re-
gridding station data instead of preprocessed data products, 
and (2) we interpolate parameters from a statistical model 
instead of data summaries (e.g., the largest seasonal daily 
precipitation total): hence, our results immediately yield a 
variety of gridded climatological summaries (e.g., return 
levels or return probabilities for any return period) instead 
of requiring a separate interpolation scheme for each desired 
summary. Second, our methodology is related to regional 
frequency analysis (RFA) (Wallis et al. 2007; see also Norbi-
ato et al. 2007; Yang et al. 2010) which, as with the work at 
hand, seeks to provide spatially-complete maps of the clima-
tology of extreme precipitation based on the interpolation of 
pointwise summary statistics calculated for each of a set of 
weather stations. However, the methodologies are quite dif-
ferent: the cornerstone of RFA is that “data from sites within 
a homogeneous region can be pooled to improve the reli-
ability of the magnitude-frequency estimates” (Wallis et al. 
2007), and hence RFA requires the specification of such 
regions. This is a nontrivial task, particularly for a large, 
heterogeneous domain such as CONUS. Our approach, on 
the other hand, allows the data itself to determine the degree 
of local homogeneity in the climatology of extreme precipi-
tation across a set of weather stations, and is hence more 
easily applied to a generic spatial domain.

Finally, we note that the methodology outlined in this 
paper resolves an outstanding problem for evaluation of 
Earth System Models (ESMs) with respect to extremes: 
namely, how to properly compare irregularly observed sta-
tion data with output from ESMs. Comparison of ESMs 
against station data poses several major challenges. First, 
the volume of the atmosphere sampled by station data is 
typically orders of magnitude smaller than the volumes 
represented by a typical ESM grid cell. While ESM sub-
grid parameterizations are designed to emulate the parent 
distributions of measurable quantities and to report aver-
ages across these distributions, stations can record samples 
from any part of the parent distribution of their measurable 
quantities, including the “tails”. Second, the typical integra-
tions of ESMs forced just with external boundary condi-
tions are designed to mimic the climatological statistics of 
typical weather conditions for each surface station, but not 
the precise deterministic time-series of the weather actually 
recorded by those stations. Thus, the question is how best 
to compare deterministic time series of point measurements 
against a statistical characterization of the mesoscale cli-
mate conditions consistent with those measurements. The 
methodology developed in this paper addresses this ques-
tion by framing the model-data intercomparison in terms of 
the extreme statistics from the outset, and by developing a 
method for interpolating statistical properties between sta-
tions that produces mesoscale and synoptic-scale statistics 
directly comparable to those from an ESM.

The paper proceeds as follows: in Sect. 2 we introduce the 
GHCN data used to create our probabilistic gridded prod-
uct, and in Sect. 3 we describe the extreme value analysis, 
spatial smoothing, and block bootstrap approach. In Sect. 4, 
we present the results of our analysis and give a summary 
of the probabilistic gridded product, and in Sect. 4.3 we 
conduct a comparative analysis using the Livneh gridded 
daily precipitation product. Section 5 concludes the paper.

2  Data

The data used for the following analysis consist of daily meas-
urements of total precipitation (in millimeters) obtained from 
the Global Historical Climatology Network (GHCN; Menne 
et al. 2012a, b) over the contiguous United States (CONUS). 
The GHCN is quite extensive over CONUS, consisting of 
over twenty thousand weather stations with measurements 
dating back to the late nineteenth century, although of course 
the length and quality of individual records are highly vari-
able. In addition to daily precipitation measurements, the 
database includes three quality control flags, providing for 
each day an indication of the data quality (“QFLAG”), source 
quality (“SFLAG”), and measurement quality (“MFLAG”). 
Quality control for the raw (nonmissing) daily data values 
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involved the following criteria: (1) values were kept only if 
the QFLAG field was blank, meaning the measurement did 
not fail any quality assurance checks; (2) values were kept 
only if the SFLAG field was not equal to “S” (which implies 
that the measurement may differ significantly from “true” 
daily data); (3) any values with MFLAG equal to “T” were 
set to a measurement of 0 mm (“T” indicates a “trace of 
precipitation”). After processing the daily values based on 
the quality control flags, we selected the subset of stations 
that had a minimum of 66.7% nonmissing daily precipitation 
measurements over December 1, 1949 through November 30, 
2017. This procedure resulted in a high-quality set of daily 
precipitation measurements for n = 5202 stations (see Sup-
plementary Figure D.1) covering 68 years.

To establish some notation, define Ztk(�i) to be the pre-
cipitation measurement, in mm, for day k = 1,… ,mt in 
a fixed 3-month season (e.g., December, January, and 
February or DJF) of year t = 1950,… , 2017 at station 
�i ∈  = {�1,… , �n} ⊂ G , where mt is the number of daily 
observations in a fixed season of year t,  denotes the 
n = 5202 stations shown in Supplementary Figure D.1, and 
G denotes the contiguous United States. Note that the year 
represents a “season year” such that, for example, the 1950 
DJF is defined as December, 1949 to February, 1950.

3  Statistical methods

Recall from Sect. 1 that the essence of our method is to first 
obtain estimates of the climatological features of extreme 
precipitation based on station data (Sect. 3.1) and then use a 
spatial statistical approach to infer the true underlying clima-
tology over a fine grid (Sect. 3.2), accounting for uncertainty 
and storm dependence using a nonparametric block boot-
strap approach (Sect. 3.3). We now provide specific details 
on each step of this analysis.

3.1  Stage 1: extreme value analysis for individual 
stations

The following provides a framework for modeling extreme 
value statistics of daily precipitation in a fixed 3-month season 
(i.e., DJF, MAM, JJA, or SON) over CONUS, first consider-
ing each station individually. While there are several different 
ways to characterize the extreme values of a stochastic pro-
cess (see, e.g., Coles 2001), we opt for the generalized extreme 
value (GEV) family of distributions, which is a modeling 
framework for the maxima of a process over a pre-specified 
“block”, here, each 3-month season. For an arbitrary station 
� , define the seasonal maximum in year t as Yt(�) , that is, 
Yt(�) = maxk{Ztk(�) ∶ k = 1,… ,mt} . Coles (2001) (Theo-
rem 3.1.1, page 48) shows that (for large mt ) the cumulative 

distribution function (CDF) of Yt(�) is a member of the GEV 
family

defined for {y ∶ 1 + 𝜉t(�)(y − 𝜇t(�))∕𝜎t(�) > 0} . The GEV 
family of distributions (1) is characterized by three space-
time specific parameters: the location parameter �t(�) ∈  
(which describes the center of the distribution), the scale 
parameter 𝜎t(�) > 0 (which describes the spread of the dis-
tribution), and the shape parameter �t(�) ∈  . The shape 
parameter �t(�) is the most important in terms of determining 
the qualitative behavior of the distribution of daily rainfall 
at a given location: if 𝜉t(�) < 0 , the distribution has a finite 
upper bound; if 𝜉t(�) > 0 , the distribution has no upper limit; 
if �t(�) = 0 , the distribution is again unbounded and the 
CDF (1) is interpreted as the limit �t(�) → 0 (Coles 2001).

The GEV framework is commonly referred to as the “block 
maxima” approach to extreme value analysis. The point pro-
cess or “peaks over threshold” (POT) approach is often pre-
ferred to the block maxima approach because, as in the thresh-
old excess model, estimates of the climatological coefficients 
are obtained from all extreme values (i.e., those that exceed a 
high threshold) instead of the single maximum over a block 
of time. But, as discussed in Coles (2001) Section 4.3.1, the 
main challenge is identifying a threshold for what is consid-
ered “extreme”: too small a threshold violates the mathemati-
cal (asymptotic) basis of the POT approach, leading to biased 
coefficient estimates, while too large a threshold results in a 
very small number of exceedances, yielding large variance. 
Also, in practice, when conducting station-specific extreme 
value analysis, the POT approach resulted in a larger number 
of numerical optimization errors. Finally, in this case where we 
wish to characterize trends in extremes over time, it is not clear 
that a temporally-constant threshold is appropriate. Therefore, 
we opted to use the GEV framework for this analysis. How-
ever, as a sensitivity analysis we also conducted the full analy-
sis using the POT approach and found that results were similar 
(see Supplementary Figure D.9 for a comparison).

As the notation in (1) suggests, we can specify flexible 
time-varying models for the spatially-varying climatological 
coefficients. For the analysis in this paper, we use a simple 
temporal trend, where the location parameter varies linearly 
with time and the other coefficients are constant in time:

(following, e.g., Westra et al. 2013 and others). We hence-
forth refer to �0(�) , �1(�) , �(�) , and �(�) as the climatological 
coefficients for location � , as these values describe the clima-
tological distribution of extreme precipitation in each year. 
Note that the trend model (2) averages over both inter-annual 
variability (e.g., the El Ni no/Southern Oscillation or ENSO) 

(1)

G�,t(y) ≡ ℙ(Yt(�) ≤ y) = exp

{
−

[
1 + �t(�)

(
y − �t(�)

�t(�)

)]−1∕�t(�)}
,

(2)�t(�) = �0(�) + �1(�)t, �t(�) ≡ �(�), �t(�) ≡ �(�),
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and lower frequency modes of variability (e.g., the Pacific 
Decadal Oscillation or PDO), such that we only attempt to 
characterize temporally smooth trends in extremes. Some 
authors (e.g., Cooley et al. 2007; Risser and Wehner 2017) 
have also permitted the scale parameter to contain covari-
ates allowing the width of the GEV distribution to co-vary. 
Uncertainty in the magnitude of the shape parameter is gen-
erally quite large, negating any benefits of allowing it to co-
vary. In this paper, however, we consider only (2) because in 

a statistical sense it performed as well as more sophisticated 
trend models for individual stations.

Considering all years, the statistical model (or log-likeli-
hood) for all of the observed seasonal maxima at station � , 
defined as �(�) = {yt(�) ∶ t = 1950,… , 2017} , conditional 
on the climatological coefficients �0(�) , �1(�) , �(�) , and �(�) , 
is

The fact that (3) involves a sum indicates that we assume 
independence across years, which is a reasonable assump-
tion given the time-varying statistical model in (2).

While the spatially-varying climatological coefficients 
in (2) are of interest themselves, we are often more interested 
in a summary of the climatological coefficients known as the 
r-year return value (sometimes called the return level). The 
r-year return value, denoted �(r)

t (�) , is defined as the seasonal 
maximum daily precipitation total (i.e., Yt(�) = maxk{Ztk(�)} ) 
that is expected to be exceeded on average once every 
r years. In other words, �(r)

t (�) is an estimate of the 1 − 1

r
 

quantile of the distribution of seasonal maximum daily pre-
cipitation in year t at station � , i.e., P(Yt(�) > 𝜙

(r)
t (�)) = 1∕r . 

Because of how the year-specific distribution (1) has been 
defined, �(r)

t (�) can be written in closed form in terms of the 
climatological coefficients:

(3)

(�0(�),�1(�), �(�), �(�);�(�)) = −

2017∑

t=1950

log�(�)

− [1 + 1∕�(�)]

2017∑

t=1950

log

[
1 + �(�)

(
yt(�) − [�0(�) + �1(�)t]

�(�)

)]

−

2017∑

t=1950

[
1 + �(�)

(
yt(�) − [�0(�) + �1(�)t]

�(�)

)]−1∕�(�)
.

(4)�
(r)
t (�) =

{
[�0(�) + �1(�)t] −

�(�)

�(�)
[1 − {− log(1 − 1∕r)}−�(�)], �(�) ≠ 0

[�0(�) + �1(�)t] − �(�) log{− log(1 − 1∕r)}, �(�) = 0

(Coles 2001). Furthermore, while the return value is the 
extreme quantile of the extreme value distribution in each 
year, we can equivalently calculate the return period for a 
particular magnitude event x in year t, denoted �(x)t (�) , which 
indicates that there is a one in �(x)t (�) chance that an event 
at least as large as x will occur in year t at location � . In 
other words, �(x)t (�) is the inverse probability of the seasonal 
maximum daily precipitation total in year t exceeding x, 
i.e.,P(Yt(�) > x) = 1∕𝜌

(x)
t (�) . The return period is available 

in closed form by inverting (4):

(Coles 2001).
In summary, this first stage of our method involves 

applying the GEV analysis defined by (2) and (3) to the 
observed seasonal maxima, independently for each station. 
For this step, we use the climextRemes software pack-
age (Paciorek 2016), which is an R/Python package for con-
ducting extreme value analysis with climate data. We use 

climextRemes functionality to obtain maximum likeli-
hood estimates of the climatological coefficients, denoted 
{�̂�0(�), �̂�1(�), �̂�(�), 𝜉(�)} for � ∈  , which are estimates of the 
true climatological coefficients {�0(�),�1(�), �(�), �(�)}.

3.2  Stage 2: spatial statistical modeling 
for the climatological coefficients

In order to account for dependence across the climatological 
coefficients over the spatial domain G, we use second-order 
nonstationary spatial Gaussian process models for each of the 
spatially-varying climatological coefficients in (2). Gaussian 
processes (GPs) are an extremely popular tool in statistical 
modeling, and are broadly applied in spatial and environmental 
statistics as well as machine learning and emulation of com-
plex mathematical models. GPs are a form of “nonparametric” 

(5)�
(x)
t (�) =

{(
1 − exp

{
−[1 − �(�)([�0(�) + �1(�)t] − x)∕�(�)]−1∕�(�)

})−1
, �(�) ≠ 0(

1 − exp
{
− exp{([�0(�) + �1(�)t] − x)∕�(�)}

})−1
, �(�) = 0
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or nonlinear regression, as they characterize a nonlinear rela-
tionship between a set of inputs and an output: in our applica-
tion, the inputs are geographic coordinates and the output (or 
response) is one of the estimated climatological coefficients 
{�0,�1, log �, �} . Intuitively, GPs interpolate or smooth the 
output variable to infer a nonlinear relationship with the inputs.

The GP is a popular choice for modeling point-referenced, 
continuously-indexed spatial processes like the climatologi-
cal coefficients because all finite-dimensional distributions 
are known to be Gaussian (see Eq. 7 below), and because the 
GP is completely specified by a characterization of its first- 
and second-order properties. Furthermore, the second-order 
properties can be specified using any valid spatial covari-
ance function to describe the degree and nature of spatial 
dependence (or smoothness) in the environmental process of 
interest. For example, define {u(�) ∶ � ∈ G} to be a general 
process defined over a spatial domain G ⊂ ℝ

2 ; without loss 
of generality, suppose u(⋅) is mean-zero. The spatial covari-
ance function of u(⋅) is defined as

for all �, �� ∈ G , where E[⋅] is the expected value with respect 
to the distribution of u(⋅) . The covariance function is always 
symmetric (i.e., C(�, ��) = C(��, �) ) and must be a nonnega-
tive definite function. In practice, C is often assumed to 
be second-order stationary, meaning that the covariance is 
fully defined by the separation vector � − �� . However, for the 
application at hand, this is a highly restrictive assumption, 
because the spatial covariance for environmental processes 
likely varies across the domain. Therefore, we use a nonsta-
tionary covariance function, which allows the covariance to 
depend on location and can account for second-order het-
erogeneities over the spatial domain of interest. A GP that 
uses a nonstationary covariance function is often referred 
to simply as a nonstationary GP. For further details on this 
subject, we refer the interested reader to Risser (2016).

A nonstationary Gaussian process can be used in a statis-
tical model for the climatological coefficients over CONUS 
as follows. Let � represent an arbitrary coefficient, i.e., 
� ∈ {�0,�1, log �, �} (we model the scale parameter � on the 
logarithmic scale because � must be positive); the Gaussian 
process model for each �(�) can be framed as the statistical 
linear model

In (6), ��(�) ≡ E[�(�)] represents the expected or average 
behavior of �(�) and u�(�) represents a mean-zero residual 
process that characterizes deviations between �(�) and ��(�) . 
In a more traditional linear regression setting (i.e., ordinary 
least squares), u�(�) is assumed to be (spatially) independ-
ent, but here we instead model u�(�) as a spatially corre-
lated nonstationary Gaussian process with a mean fixed at 

C(�, ��) ≡ Cov[u(�), u(��)] = E[u(�)u(��)]

(6)�(�) = ��(�) + u�(�), � ∈ G.

zero and covariance function C� . For a fixed set of locations 
 = {�1,… , �n} ⊂ G, (6) implies that

where Nd(�,�) denotes a d-variate Gaussian distribu-
tion with mean vector � and covariance matrix � . In (7), 
�� =

(
��(�1),… , ��(�n)

)
 and the i, j element of �� is C�(�i, �j).

To complete the model specification in (6), we must spec-
ify the form of ��(�) as well as the covariance function C� ; 
for full details, see Appendix 2. In short, the mean function 
��(�) will be linear in an elevation-based covariate with a 
spatially-varying effect, and the covariance function for C� is 
second-order nonstationary such that C�(�, �

�) ≠ C�(� − ��) . 
Again, intuitively, using a nonstationary covariance func-
tion allows the second order properties of u�(⋅) to vary 
over space, including both variance and the magnitude and 
direction of the spatial extent of the smoothing. A statisti-
cal treatment of (7) uses a likelihood-based approach (e.g., 
maximum likelihood estimation) to estimate the statistical 
parameters associated with the mean and covariance.

3.3  Nonparametric bootstrap for uncertainty 
quantification

Finally, we specify a systematic framework for combining 
the GEV likelihood in (3) and the Gaussian process priors 
for the coefficient fields. However, note that we have not 
yet specified how to interrelate the likelihood (3) across 
stations, and these relationships are a critical component 
of a statistical model for daily precipitation extremes over 
space. As mentioned in Sect. 1, the simplest approach is 
the conditional independence or latent variable approach 
(see, e.g., Cooley et al. 2007; Craigmile and Guttorp 2013; 
Mannshardt et  al. 2013), which assumes independence 
across stations in the likelihood and relies on the Gaussian 
process priors to capture dependence in extremes. However, 
while this approach is somewhat feasible for large data sets 
and heterogeneous spatial domains, the fact that it does not 
account for storm dependence makes it theoretically incor-
rect. And, as mentioned in Sect. 1, existing approaches for 
more appropriately modeling extremes over space are insuf-
ficient for daily precipitation measurements from a large net-
work like GHCN over CONUS.

Alternatively, we propose a hierarchical framework 
that combines the practical benefits of the conditional 
independence approach with a more appropriate charac-
terization of the uncertainty in the resulting estimates of 
the climatological coefficients. First, recall from Sect. 3.1 
that we have maximum likelihood estimates of the coef-
ficients, denoted �̂� =

(
�̂�(�1),… , �̂�(�n)

)
 (where again 

� ∈ {�0,�1, log �, �} ). This vector is an estimate of the true 
underlying spatial field � =

(
�(�1),… , �(�n)

)
 . However, 

(7)� ≡
(
�(�1),… , �(�n)

)
∼ Nn(��,��),
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because these estimates are obtained independently for 
each station, �̂ includes true spatial signal, spatial noise 
from storm dependence, and any additional measurement 
noise. The following hierarchical model links the estimates 
�̂ with �:

following, e.g., Holland et  al. (2000), Tye and Cooley 
(2015), and Russell et al. (2016). This model specifies that 
the estimates of �̂ conditional on the true field � are unbi-
ased with covariance ��

 , and that the true signal � follows a 
Gaussian process as defined in Sect. 3.2. In (8), ��

 quanti-
fies the discrepancy between �̂ and � , which we model as a 
diagonal matrix. In other words, we assume that the error 
in �̂ is spatially-independent. The spatial covariance �� , on 
the other hand, is a non-diagonal matrix that characterizes 
spatial coherence in � . Estimates of the process mean �̂𝜃 , 
spatial covariance �̂𝜃 , and spatially-independent error �̂

�
 are 

obtained via local likelihood techniques (Risser and Calder 
2017; for more details see Appendix 2) using the marginal-
ized model

where we have integrated out the process � from the joint 
distribution implied by (8).

The Gaussian process assumption allows us to recover 
an estimate of the true process �(⋅) at the station locations, 
denoted �̃ =

(
𝜃(�1),… , 𝜃(�n)

)
 . Conditional on �̂ as well as 

maximum likelihood estimates �̂𝜃 , �̂𝜃 , and �̂
�
 , our best 

estimate of the true climatological coefficient process is

which is also known as the kriging predictor in a traditional 
geostatistical framework. Here, �̂�

[
�̂� + �̂�

]−1 is the matrix 
version of [signal]/[signal + noise], so we can see that best 
estimate �̃ is the sum of the spatial mean ( ̂�� ) and a spatial 
residual term ( ̂� − �̂� ) that is re-scaled based on the relative 
magnitude of the signal and noise. In fact, this relationship 
can be generalized to a generic location �� ∈ G for which 
we do not have observations of daily precipitation (e.g., on 
a fine grid). Similar to (10), our best estimate of the true 
climatological coefficient at �′ is

In  (11), 𝛿𝜃(��) is the estimated mean at �′ and 
��⊤
�,𝜃(��)

=
(
�C𝜃(�1, �

�),… , �C𝜃(�n, �
�)
)
 is the estimated covari-

ance between �(⋅) at �′ and values at the station locations. 
After obtaining best estimates for each of the climatological 
coefficients, we can then calculate best estimates of the 

(8)
�̂||� ∼ Nn(�,��)

� ∼ Nn

(
�𝜃 ,�𝜃

)

(9)�̂ ∼ Nn(�𝜃 ,�𝜃 + ��),

(10)�̃ = �̂� + �̂�

[
�̂� + �̂�

]−1(
�̂ − �̂�

)
,

(11)�𝜃(��) = �𝛿𝜃(�
�) + ��⊤

�,𝜃(��)

[
��𝜃 +

���

]−1(�� − ��𝜃
)
.

return values �̃�(r)
t (��) using (4) and the return periods �̃(x)t (��) 

using (5).
However, assuming that ��

 is spatially-independent (i.e., 
diagonal) implies that the spatial covariance �� describes 
both the true spatial signal as well as any spatially-correlated 
error from storm dependence. Therefore, our best estimates 
of the climatological coefficients �̃(�) from (11) contain both 
real spatial signal and spatially-correlated noise from the 
storm dependence. To account for this issue, we use the 
nonparametric or “block” bootstrap to characterize uncer-
tainty in our estimates of the climatological coefficients as 
well as return values/periods. The block bootstrap requires 
no assumptions of independence within each year of data 
and preserves the spatial and temporal features of the data 
by re-sampling entire years of data, using the same resa-
mpled years for all station locations. We rely on the boot-
strapping procedure to address storm dependence, since 
any real spatial signal will show up in most of the bootstrap 
data sets. The block bootstrap approach proceeds as fol-
lows: define �(�i) = {yt(�i) ∶ t = 1950,… , 2017} to be the 
observed vector of the seasonal maxima for station i. Then, 
for b = 1,… ,B , the bootstrap sample is obtained by drawing 
T = 68 years from {1950,… , 2017} , denoted {a∗

1
, a∗

2
,… , a∗

T
} , 

so that the bth bootstrap sample for station i is

For each bootstrap sample, we use the multi-stage procedure 
outlined in Sects. 3.1 and 3.2 with (11) to obtain the best 
estimates of the coefficients �̃b(�) , return values �̃(r)

b,t
(�) , and 

return periods �̃(x)
b,t
(�) . The resulting field of bootstrap stand-

ard errors for any quantity of interest, e.g., the r-return value 
estimate in year t, is calculated as

A potentially cleaner way to handle the storm dependence 
would be to include spatially-correlated error in �� , allowing 
us to explicitly separate the true spatial signal from the error. 
Exploratory analysis (see Appendix 1) reveal the presence 
of spatially-correlated error in the coefficient estimates �̂ at 
non-negligible scales due to storm dependence. As such, 
we considered using a correlated (non-diagonal) empirical 
estimate for the covariance ��

 in (8) (for example, Holland 
et al. 2000 use a bootstrap-based estimate). However, this 
approach resulted in several problems. First, it is extremely 
difficult to estimate a high-dimensional covariance matrix 
(here, a 5202 × 5202 matrix) based on bootstrap sampling 
from a limited temporal record. Second, in this case we 
found that the signal and noise have similar spatial scales 
(again see Appendix 1), making it difficult to appropriately 

�∗
bi
= (ya∗

1
(�i), ya∗

2
(�i),… , ya∗

T
(�i)).

v
(r)

j
(�) =

√√√√√ 1

B − 1

B∑

b=1

(
�̃
(r)

b,t
(�) −

1

B

B∑

b=1

�̃
(r)

b,t
(�)

)2

.
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separate signal from noise. Third, we were not confident that 
including correlated error resulted in the correct amount of 
shrinkage, because the resulting uncertainty estimates from 
a test case were unrealistic.

4  Results

4.1  Spatial statistics and uncertainty quantification

While the original goal of this analysis was to create an 
improved probabilistic gridded product, the methodology 
yields an additional benefit of giving increased confi-
dence in the extreme statistics of precipitation at the sta-
tions. To illustrate this concept, we first present maps of 
the estimated 20-year return value for DJF in 2010 at the 
GHCN station locations (Fig. 1; estimated return values 

for the other seasons are shown in Supplementary Fig-
ure D.2). The year 2010 was somewhat arbitrarily cho-
sen, although importantly 2010 can be directly compared 
with existing data products (e.g., Livneh; see Sect. 4.3). 
For comparison, we present results from a “traditional” 
extreme value analysis, where the return values are esti-
mated independently for each station, i.e., without spatial 
smoothing, alongside estimates obtained from our new 
method. Figure 1 also shows the bootstrap standard errors 
in the estimated return values, again with and without 
spatial smoothing, as well as a direct comparison of the 
difference in return values and ratio of standard errors. 
The two approaches yield similar return values (i.e., the 
“signal”), with differences of less than several millimeters 
(except in areas with large return values, e.g., the south-
east US). However, when considering the bootstrap stand-
ard errors (an estimate of the “noise”), our new approach 

Fig. 1  Comparison of 20-year return values for DJF in 2017 (mm; 
panel a) and bootstrap standard errors (mm; panel b) for a traditional 
analysis with no spatial smoothing versus our approach with spatial 

smoothing. An explicit comparison of the return values and standard 
errors are shown in panel c, d, respectively
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with smoothing yields much smaller standard errors across 
much of the domain. In other words, spatial smoothing 
yields approximately the same signal but reduced noise. 
The bottom right panel of Fig. 1 explicitly highlights this 
reduction in noise by plotting the ratio of standard errors 
with and without smoothing: for DJF, smoothing results 
in uncertainty estimates that are on average approximately 
half as large, with as much as a three-fold reduction in the 
upper Great Plains. The results are similar for the other 
seasons (see Supplementary Figure D.3), with the largest 
reduction in uncertainty occurring in JJA.

In addition to the increased signal-to-noise ratio, the 
use of spatial statistics in our novel approach yields insight 
into the behavior of extreme precipitation. As described in 
Sect. 3.2, nonstationary Gaussian process models allow 
the spatial length-scale (i.e., magnitude and direction of 
spatial dependence) to vary across the spatial domain. As 
an illustration, we show results for the location intercept 
coefficient �0(�) in DJF, which characterizes the center of 
the extreme value distribution (constant over time) for 
each spatial location and hence drives the magnitude of 
the return values. Our best estimates of �0(�) in DJF are 
shown in Fig. 2a, where we show statistically-gridded esti-
mates (using Eq. 11) as it is easier to visualize the spatial 
distribution with a “filled-in” map. Figure 2 also shows the 
elevation-based spatial mean ( ̂𝛿𝜃(��) in Eq. (11) in Fig. 2b, 
as  wel l  as  t he  spa t ia l ly-dependent  res idua l 

( ��⊤
�,𝜃(��)

[
��𝜃 +

���

]−1(�� − ��𝜃
)
 in Eq. (11) in Fig. 2c. (Cor-

responding plots for MAM, JJA, and SON are shown in 
the Supplementary Figures D.4, D.5, and D.6.) The spatial 
mean in Fig. 2b represents the estimated first-order proper-
ties of �0(�) , and characterizes a linear relationship 
between elevation and the center of the extreme value dis-
tribution. The use of a spatial Gaussian process yields the 
spatially-dependent residual term, which characterizes 
additional nonlinear relationships over space in �0(�) that 
are not captured by the elevation covariate.

Focusing on the spatially-dependent residual, first note 
that the residuals are smooth over the southeast United States 
and upper Great Plains but highly heterogeneous across 
the Rocky Mountains and along the west coast. This is not 
surprising, but note that these differences can be explicitly 
characterized by the nonstationary Gaussian process, which 
estimates this length-scale directly from the data—and, 
these differences persist even after accounting for elevation 
directly via the spatial mean in Fig. 2b. (Note that elevation 
artifacts can still be seen in Fig. 2c, indicating some inad-
equacy in our characterization of the elevation-based mean.) 
To visualize these differences, consider Fig. 3, which shows 
a heuristic representation of the spatially-varying length 
scale (both magnitude and direction) via a set of ellipses, 
which are estimated locally across CONUS at the mixture 
component locations. Intuitively, a long/skinny ellipse (e.g., 

Fig. 2  Gridded best estimates of the location intercept �
0
(�) over CONUS (mm) for DJF (panel a), decomposed into the elevation-based spatial 

mean (panel b) and the spatially-dependent residual (panel c). In other words, panel a is the sum of panels b, c 
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coastal Washington state in DJF) means that the length scale 
of spatial dependence is much larger in one direction than 
in the orthogonal direction; a circular ellipse (e.g., western 
Illinois in DJF) means that the length-scale is roughly the 
same in all directions. Similarly, a large ellipse corresponds 
to long-range spatial dependence while a small ellipse cor-
responds to shorter-range spatial dependence. Note that the 
Gaussian process estimates translate to the variations in het-
erogeneity noted in the gridded spatial residuals: in DJF, the 
Rocky mountain range and west coast generally has a shorter 
length-scale (i.e., highly heterogeneous) while the southeast 
US and upper Great Plains generally have longer length-
scales (i.e., highly smooth or homogeneous). There are other 
interesting features to these ellipse maps, e.g., coastal effects 
(both east and west), as well as the southwest-to-northeast 
orientation of the ellipses across the southeast US (particu-
larly in SON). Also, note the seasonal differences in the 
spatial length-scale, particularly DJF vs. JJA, which could 
be due to either the climatology or the different storm types 
leading to extreme precipitation in winter and summer.

To be clear, estimating a spatially-varying length scale 
directly from the data reiterates the importance of using a 
statistical approach to gridding the GEV coefficients and 

hence the return values: the data itself informs the degree 
of smoothing, which varies over the domain. This approach 
is more physically meaningful than heuristic approaches 
like bilinear interpolation or inverse-distance weighting, or 
even “ordinary kriging” using an isotropic Gaussian process, 
which uses a constant (and circular) spatial length-scale.

As mentioned in Sect. 3.2, we include an orographic 
correction in the nonstationary Gaussian process mean for 
each GEV coefficient. Intuitively, this orographic correc-
tion involves estimating a linear relationship between eleva-
tion and each GEV coefficient empirically from the data, 
while allowing the magnitude and sign of this relationship 
to vary smoothly across CONUS. While the mean is linear 
in elevation, note that this does not completely specify the 
relationship between extreme precipitation and elevation 
because of the spatial smoothing induced by the Gaussian 
process (this is illustrated in Fig. 2). Figure 4 shows the 
data-driven, spatially-smoothed estimate of the relationship 
between extreme precipitation and elevation, across each 
season. Dark red areas indicate a strong positive relation-
ship relationship between elevation and extreme precipita-
tion (i.e., higher elevation corresponds to stronger storms), 
while blue areas indicate a negative relationship. Across 

Fig. 3  Directional spatial length-scale for the location intercept �
0
(�) for each season, estimated empirically from the data. The ellipses are a 

heuristic representation of the magnitude and direction of spatial dependence in �
0
(�)
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all of the seasons, the relationship between elevation and 
extreme precipitation is generally positive, with the largest 
effects showing up in the western United States. Of course, 
elevation itself is rather homogeneous over much of the cen-
tral United States. However, in the western United States 
(where elevation plays an important role in the climatology 
of precipitation), there are important seasonal differences in 
the relative elevation/precipitation relationship: for example, 
especially in California, the effect is larger for DJF than JJA. 
This is not surprising, as there is a strong wet/dry seasonal 
cycle in the western United States, but it is encouraging that 
the nonstationary GP was able to infer this directly from 
the data.

Of course, many gridded daily products also include an 
orographic correction, most notably the Parameter-elevation 
Relationships on Independent Slopes Model (PRISM; see 
Daly et al. 2008 and the references therein). While our oro-
graphic correction is applied to the climatological coeffi-
cients rather than daily precipitation itself, several notes of 
comparison should be made. First of all, like PRISM, our 
approach involves a linear relationship between the climate 
variable and elevation (compare Eq. 2 in Daly et al. 2008 
with Eq. 14 in the Appendix). However, PRISM proceeds 
to incorporate a distance weighting scheme (see Eq. 3 in 
Daly et al. 2008) that is fixed a priori and spatially constant 
(albeit elevation-dependent). Our approach with nonstation-
ary Gaussian processes, on the other hand, estimates the 

appropriate length scale for distance weighting directly from 
the data, using a non-constant weighting scheme over space. 
Furthermore, the Gaussian process prediction (via Eq. 11) 
implicitly accounts for the over-representation issue in dis-
tance-weighted averaging (such as in PRISM) while also 
explicitly removing noise in the data due measurement error. 
Finally, it is worth restating that the most important differ-
ence between our approach and PRISM is in what is actu-
ally being smoothed; whereas PRISM smooths precipitation 
itself, our method smooths GEV distribution parameters.

4.2  Probabilistic gridded product

Returning to the main goal of the analysis, we now present 
our new probabilistic gridded product. The product consists 
of spatially complete maps (on the 0.25◦ grid) of the four 
climatological coefficients in (2): a best estimate map calcu-
lated from the full data, as well as 250 smoothed maps calcu-
lated from the bootstrap data sets. With these gridded data in 
hand, one can create summary statistics for the entire spatial 
domain as well as bootstrap sampling distributions for con-
fidence intervals or standard errors. Furthermore, these cal-
culations are possible for any individual year in 1950–2017 
(note, however, that we have not explicitly accounted for 
year-to-year variability due to, e.g., ENSO). The most com-
mon summaries would likely be return values (4) or return 
periods (5), but one could just as easily calculate risk ratios 

Fig. 4  Spatially-varying elevation correction for the Gaussian process mean of �
0
(�) , across each season (mm of precipitation per km of eleva-

tion). Positive values indicate larger return values for higher elevations; negative values indicate smaller return values for higher elevations
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Fig. 5  Spatially-complete 20-year return values (mm) for CONUS, across each season. Part of California is masked out for JJA because the dry 
season in this region means that the stations in this area do not register any “extreme” precipitation measurements

Fig. 6  Spatially-complete bootstrap standard errors (mm) for the 
20-year return value across each season. The standard error provides 
an estimate of the uncertainty in the return values shown in Fig.  5. 

Part of California is masked out in JJA due to seasonal dryness (see 
the caption of Fig. 5)
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for comparing one time point with another (see, e.g., Risser 
and Wehner 2017) or even trends over time.

As an illustration, Fig. 5 shows spatially complete maps 
of the 20-year return value for each season, and the bootstrap 
standard errors are shown in Fig. 6. These maps are unique 
in that they are high resolution, and they produce return-
value estimates consistent with what would be measured at a 
point (rather than over an area). As a result, the return value 
estimates from our method are substantially higher than 
those estimated from gridded datasets. For example, Figure 
A4b in Volosciuk et al. (2015), shows 20-year DJF return 
values estimated from the gridded Climate Prediction Center 
daily precipitation product (the equivalent of the DJF panel 
in our Fig. 5), and the highest daily return values shown are 
only about 125 mm, in comparison to values approaching 
200 mm estimated using our method. We explore this com-
parison more deeply in Sect. 4.3.

The influence of topography, which is explicitly included 
in the spatial model (see Sect.  4.1) is clearly evident 
throughout Fig. 5, as the Sierra Nevada topographic variabil-
ity associated with the Basin and Range province is clearly 
evident: high topography areas generally have larger return 
values. Notably, however, the influence of topography in 
the western U.S. is substantially damped during the sum-
mer convective season, with the Sierra Nevada and Cascade 
ranges hardly evident. This variation in orographic influence, 
which emerges naturally from the data itself, is consistent 
with what one might physically expect: orographic influ-
ence in the western U.S. is most prevalent during the winter 
season, when storm systems have a strong zonal flow that 
is roughly perpendicular to the dominant orography, and it 
is weaker during the season when precipitation is primarily 
convective. Note that Fig. 3 shows that the spatial depend-
ence of DJF extreme precipitation in the western U.S. is 
more meridional than zonal and appears to be aligned with 
the dominant orientation of topography in the vicinity. This 
would indicate that though winter storms impinging on the 
western U.S. have a predominantly zonal flow, extremes 
tend to spatially co-occur along meridionally-oriented (and 
somewhat perpendicular) mountain ranges that intercept 
the flow. Intriguingly, however, orographic modulation of 
extremes is also absent in the southwestern U.S., which is 
the center of action during the monsoon season when large 
moisture fluxes from the south bring summer precipitation 
that one might expect to also cause orographically modu-
lated precipitation. It is plausible that this is because the 
direction of the incoming moisture flux is roughly paral-
lel, rather than perpendicular, to the dominant direction of 
ranges in the Basin and Range province, which may weaken 
the orographic effect.

Our probabilistic gridded product is freely available 
via a public repository on the Harvard Dataverse (Risser 
et al. 2019; https ://bit.ly/2CXdn uj). The data are packaged 

together into network common data form (netCDF) files. 
Three separate files are available, with data provided sepa-
rately for each season: (1) best estimates of the GEV coef-
ficients (e.g., Fig. 2a) as well as bootstrap standard errors, 
(2) 10-, 20-, 50-, and 100-year return values (with bootstrap 
standard errors) for 1955, 1965, 1975, 1985, 1995, 2005, 
and 2015, and (3) smoothed bootstrap estimates (250 total) 
for each GEV coefficient (these are used to calculate the 
bootstrap standard errors in the first two files). We also pro-
vide code that can be used to calculate return values, return 
periods, or any function thereof for any year in 1950–2017, 
as well as the corresponding bootstrap sampling distribu-
tion (which can be used to quantify uncertainty via standard 
errors or confidence intervals).

4.3  Comparison to the Livneh data product

As mentioned in Sect. 1, gridded data products are often 
used in place of station data to calculate the extreme sta-
tistics of precipitation. In light of our novel approach for 
calculating extreme statistics over CONUS, we now compare 
our results with a more traditional analysis using the Livneh 
gridded data product (Livneh et al. 2014). Using this data 
product, we conduct the extreme value analysis described 
in Sect. 3.1 independently for each grid cell over CONUS, 
using the block bootstrap (but without spatial smoothing) to 
calculate uncertainties.

A comparison of the DJF 20-year return values and stand-
ard errors for 2010 is shown in Fig. 7: this plot shows esti-
mates without spatial smoothing (also shown in Fig. 1) and 
our gridded product, as well as estimates based the Livneh 
data product. Livneh return values and standard errors 
for other seasons are show in Supplementary Figures D.7 
and D.8, which can be directly compared with Figs. 5 and 6. 
A visual comparison of the plots in Fig. 7 reveals two imme-
diate points: (1) the return values calculated from the Livneh 
data product are systematically smaller than the return val-
ues generated using the station data, both smoothed and raw, 
and (2) the standard errors from both approaches appear 
to be approximately the same. In other words, our gridded 
product produces return values that are consistent with sta-
tion estimates but higher than estimates from gridded data, 
while reducing uncertainty relative to independent station 
estimates. Figure 8 shows a direct comparison of these two 
quantities by plotting our gridded estimates versus the corre-
sponding Livneh estimates: in the top row, note that the sta-
tion data return values are uniformly larger than the Livneh 
return values, and that the bias is worse for the largest return 
values. In the bottom row of Fig. 8, however, we can see that 
the scatterplots are clustered around the 45◦ line, meaning 
that the standard errors are comparable. There is, however, 
a tendency for the Livneh standard errors to be larger than 

https://bit.ly/2CXdnuj


 M. D. Risser et al.

1 3

the GHCN standard errors, particularly for locations with 
greater uncertainty. And, since the Livneh return values 
are smaller than the GHCN values, this tendency for large 
Livneh standard errors is increased when they are expressed 
as percentages.

5  Conclusions

In this paper, we have developed novel statistical methodol-
ogy for conducting a spatial analysis of extreme precipitation 
for a large network of weather stations over a heterogene-
ous domain. Using Gaussian processes, our approach uses 
data-driven smoothing to borrow strength over space, which 
yields increased confidence in our subsequent estimates of 
the climatology of extreme precipitation. The result of our 
analysis is a new “probabilistic” gridded product specifically 
designed for characterizing extreme precipitation, which will 
be made freely available in a public data repository.

Compared to traditional gridded products, our results 
yield important differences in estimates of return val-
ues. Furthermore, our methodology is able to produce 
spatially-complete, high resolution maps of return values 
based on irregularly observed station data, and we are 
therefore able to characterize extreme statistics of pre-
cipitation at small spatial scales—especially relative to 
the large, spatially-averaged summaries provided in, for 
example, Kunkel et al. (2013) or Easterling et al. (2017). 
As a result, our new gridded product provides important 
insight into the underlying physics of precipitation over 
CONUS (both in the spatial length-scale differences and 
further exploration of the extreme statistics themselves), 
and the return value maps are of value with respect to 
impacts of extreme precipitation, resource management, 
and infrastructure design.

An important extension of the results presented in this 
paper involves characterizing high-resolution observed trends 
in extreme precipitation. In future work we plan to explore 
the presence and statistical significance of any trends over 

Fig. 7  DJF 20-year return values for 2010 (left) and standard errors (right) for an analysis with no smoothing (top), our gridded product (mid-
dle), and for an analysis using the Livneh data product (bottom)
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time in the statistics of extreme precipitation. Such an explo-
ration naturally requires incorporation of more sophisticated 
trend models where the effects of interannual or decadal vari-
ability (e.g., the El Ni no/Southern Oscillation or the Pacific 
Decadal Oscillation) are explicitly accounted for. However, 
introducing additional time-varying covariate information 
into a statistical model for the extreme statistics of precipita-
tion necessitates robust methodology for selecting the vari-
ables that are relevant for explaining year-to-year variability.

In conclusion, we note that the correct interpretation 
and usage of gridded products closely depends upon their 
construction. In the methodology presented here, the long 
period return values within a grid box are interpreted as rep-
resentative of any point within that grid box. A simple inter-
pretation is that for a given return period, any point within 
the grid box has the same return value. On the other hand, 
modeled daily precipitation is the total precipitation within a 
grid box integrated at all points within the box as constrained 
by the conservation properties of the model. Hence, when 
compared to return values from a climate model, observed 
gridded return values obtained by our method should be 
considered an upper bound. In other words, if during an 
extreme storm, simulated precipitation is such that every 
point within a grid box is simultaneously precipitating at a 

very high rate then we would expect the modeled return val-
ues to agree with our observational estimates. This situation 
could indeed occur if the model’s grid cells are small enough 
and if storm properties are relatively spatially uniform on 
this scale. Hence, we might expect that our estimates of mid-
latitude winter storm extreme precipitation would agree with 
the very high resolutions of cloud system resolving models, 
but not for convective summer storms, which would always 
be simulated lower than our estimates because of these scale 
considerations.

Alternatively, one might expect that return values based 
on gridded daily observed precipitation products, as in Weh-
ner (2013), might be more directly comparable to modeled 
precipitation if the gridding process is conservative. How-
ever, because the station density is low compared to model 
grid boxes, the probability of missing an extreme rainfall 
event with the grid box is high. Hence, return values cal-
culated from a daily gridded precipitation product provide 
a lower bound on what climate models should be expected 
to produce. As a model evaluation strategy, we can utilize 
these two differing ways of estimating observed long period 
precipitation return values as model performance metrics by 
considering them as upper and lower bounds on expected 
model targets. Typically, models at CMIP5-class horizontal 

Fig. 8  Seasonal density scatter plots of return values and their standard errors, with quantities from the Livneh data product on the x-axis and 
corresponding quantities from our GHCN station data analysis on the y-axis. The red line indicates the 45◦ line
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resolutions produce seasonal return values that are lower than 
observational estimate, because simulated gradients of tem-
perature and moisture are weaker than observed. As resolu-
tion is increased to ∼ 25 km , simulated mid-latitude winter 
extreme precipitation typically compares more favorably with 
this lower bound, but simulated summer extreme precipita-
tion can be too high, even compared to the upper bounds, 
due to deficiencies in cumulus convection parameterizations 
(Wehner et al. 2014). It would be reasonable to expect that 
as higher resolution multi-decadal simulations become avail-
able that simulated mid-latitude winter extreme precipitation 
will be increased but should be less than the lower bound. 
Improvements in simulated mid-latitude summer extreme 
precipitation await convection-permitting resolutions.
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Appendix 1: Exploratory analysis

As described in Sect. 1, there is clearly spatial dependence 
in the underlying fields of daily precipitation (due to storm 
systems; here referred to as “storm dependence”) that is 

not accounted for when conducting the GEV analysis on 
seasonal maxima separately for each station. As such, 
fields of the pointwise maximum likelihood estimates con-
tain both signal and noise, because the true underlying 
signal is contaminated by error due to the unaccounted-for 
storm dependence (note, however, that simple sampling 
noise or measurement error would occur even without 
storm dependence). The block bootstrap approach out-
lined in Sect. 3.3 can be used to approximate the sam-
pling distribution of parameter estimates at each station 
and quantify the spatial features of this error. Since we use 
the same bootstrap samples for all stations, we can also 
obtain estimates of the pairwise correlations between sam-
pling distributions. Accounting for this correlation allows 
us to explicitly separate the signal and noise present in the 
maximum likelihood estimates.

As a concrete example, consider the following explora-
tory plots for the location parameter intercept �0(�) for 
DJF. To explore the co-variance of the pointwise maxi-
mum likelihood estimates, we can use the pairwise empiri-
cal correlations from the bootstrap samples across all pairs 
of stations. The easiest way to visualize these correlations 
simultaneously is via a correlogram, where we bin the 
pairwise correlations by distance and present box plots 
for each bin. The correlogram for the location intercept in 
DJF is shown in Fig. 9. Note that there is non-negligible 
correlation up to approximately 1000 km, indicating that 
the spatial range of correlation in the bootstrap errors is 
quite large at least for some regions of CONUS.

To visualize these correlations more directly for individ-
ual stations, consider the plots in Fig. 10, which show spa-
tial maps of the empirical correlations between six selected 
reference stations and all other stations in CONUS. The plot 
in the top left of Fig. 10 (reference location 1) is typical of 
the correlation map for many stations across CONUS: there 
appears to be moderate correlations (i.e., approximately 0.5) 
at very short distances and nonzero correlations extending 
over a large swatch of the country. The reference station in 
California (reference location 2) shows strong local correla-
tion, but this correlation dies off rather quickly. Reference 
locations 3–6 show very strong local correlations that extend 
over large, irregular areas. Given that we are considering 
DJF and reference locations 3–6 are in the center of the 
United States, these large clusters of strong correlation are 
likely the direct result of the winter storm systems that are 
common in this area. The bottom left plot (reference loca-
tion 4) is particularly interesting, as this shows a strong yet 
narrow band of large correlation, oriented in a southwest-
to-northeast direction. Again, while some of these correla-
tions may be spurious, there are definitely non-negligible 
correlations for many reference locations that extend over 
large spatial domains.

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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These explorations confirm the presence of spatially-
correlated error in the coefficient estimates at non-neg-
ligible scales, and that this noise is a result of the unac-
counted-for storm dependence. It is therefore important 
to account for this error in the second step of the analysis 
where we estimate the first- and second-order properties of 
the true spatial signal (Sect. 3.2). Unfortunately, it is not 
entirely clear how to do this, since the spatial coherence 
of both signal and error appear to be on similar spatial 
scales. Furthermore, it is obvious that the correlation pat-
terns are highly irregular and long-range (which could be 
evidence of teleconnections), so we would prefer to use 
an empirically-based approach rather than complex sta-
tistical modeling. The simplest approach would be to use 
the empirical (sample) covariance matrix of the bootstrap 
samples as a fixed plug-in estimate for the true error covar-
iance �varvec� , but unfortunately the sample covariance is 

known to be a poor estimate of the true covariance. Fur-
thermore, since B = 250 (the number of bootstrap samples) 
is less than n = 5202 (the number of locations; in practice 
B could be made arbitrarily large), the sample covariance 
is singular. Of course, the statistics literature describes a 
wide variety of strategies for covariance regularization, 
including modeling the covariance separately in terms of 
standard deviations and correlations (Barnard et al. 2000) 
and a variety of shrinkage-based approaches (e.g., Dan-
iels and Kass 2001; Schäfer and Strimmer 2005; Hannart 
and Naveau 2014), among many others. However, it is not 
immediately clear what type of regularization is appro-
priate, as some of the long-range correlations shown in 
Fig. 10 are real. Furthermore, when we implemented a 
test case where �varvec� was fixed as the sample bootstrap 
covariance, we were not convinced that the spatial smooth-
ing/shrinkage was being done correctly (the fact that the 

Fig. 9  Correlogram of bootstrap correlations for the location parameter intercept in DJF

Fig. 10  Spatial maps of bootstrap correlations for several reference points for the location parameter intercept in DJF
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signal and error have similar spatial scales may be causing 
problems). Therefore, as mentioned in Sect. 3.3, we used 
a simple (i.e., diagonal) model for the error covariance 
estimated directly from the pointwise maximum likelihood 
estimates, relying on the block bootstrap to account for 
the storm dependence. Further exploration of this issue is 
beyond the scope of this paper and will be the subject of 
future methodological work.

Appendix 2: Spatial statistical modeling 
for the coefficient fields

Recall from Sect. 3.2 that we account for dependence across 
the climatological coefficients over the spatial domain using 
second-order nonstationary spatial Gaussian process models 
for each of the spatially-varying climatological coefficients 
in (2). Given the two-stage nature of the analysis, recall from 
Sect. 3.3 that we estimate the Gaussian process mean �� , 
covariance �� , and error covariance ��

 using the marginal-
ized model

where �� =
(
�� = (�� , (�1),… , ��(�n)

)
 , the ij element of �� 

is C�(�i, �j) , and ��
 is a diagonal matrix of elements �2

�
(�i) . 

In other words, �2
�
(�i) quantifies the variability of the error 

at station �i.
In general, using a Gaussian process to estimate a second-

order nonstationary covariance function C� for a large data set 
is computationally demanding. First of all, for a data set of 
size n, a single evaluation of the multivariate Gaussian likeli-
hood requires (n2) storage and (n3) calculations, which is 
costly (yet not impossible) for n = 5202 . More seriously, many 
nonstationary covariance function models are highly param-
eterized (we refer the interested reader to Risser 2016), and 
parameter estimation becomes very difficult for large n. To 
navigate both of these difficulties, we elect to use the covari-
ance function outlined in Risser and Calder (2017), which uses 
local-likelihood estimation and a mixture component tech-
nique to estimate the high-dimensional covariance function 
parameters. The essence of the method is that we first estimate 
the statistical parameters of (12) locally and then use a Gauss-
ian smoothing kernel to interpolate the local estimates to the 
station locations. Formally, the method starts out by defining 
a coarse grid of K “mixture component” locations over the 
spatial domain, denoted {�k ∶ k = 1,… ,K} . Then, indepen-
dently for each �k , a set of statistical parameters are estimated 
from a stationary (anisotropic) Gaussian process with a mean 
that is linear in an elevation-based covariate (as well as an 
intercept) using data from all of the stations that lie within a 
particular radius r of �k . Let � represent an arbitrary parameter 
in the stationary Gaussian process model, i.e., one of the mean 
regression coefficients, spatial variance, and spatial covariance 

(12)�̂� ∼ Nn(𝜹� ,�� + �𝜽),

parameters (for simplicity, we drop the � subscript, but note 
that these parameters are estimated separately for each clima-
tological coefficient). Then, conditional on mixture component 
estimates {�̂�k ∶ k = 1,… ,K} , the parameter estimate for an 
arbitrary location � is

where wk ∝ exp{−||� − �k||2∕(2h)} such that 
∑K

k=1
wk(�) = 1 . 

These estimates are plugged into the nonstationary covari-
ance function outlined in Risser and Calder (2017), which 
was originally derived in Paciorek and Schervish (2006) 
and Risser and Calder (2015), as well as the diagonal error 
covariance. The estimate for each component of the mean 
of (12) is

where x(�) is an elevation-based covariate at location � and 
𝛽0(�) and 𝛽1(�) are estimated as in (13) from the local coef-
ficient estimates {𝛽k

0
, 𝛽k

1
∶ k = 1,… ,K}.

To implement the above statistical model for a given 
application, however, one must make several choices:

1. A set of mixture component locations {�k ∶ k = 1,… ,K}

2. The local fit radius r
3. The bandwidth parameter h in the smoothing kernel

Furthermore, specific to this example, we must also select

4. The local correlation model
5. An elevation-based covariate for the mean structure

We must make these choices separately for each cli-
matological coefficient {�0,�1, log �, �} in each season 
{DJF, MAM, JJA, SON} . A priori, we consider the mix-
ture component locations fixed, using the K = 41 evenly 
spaced locations over CONUS shown with the “+” sym-
bol in Fig. 11, and we also fix the bandwidth parameter to 
h = 3 units, so that the weights at the mixture components 
themselves, i.e., wk(�k) , are approximately 0.95 (on aver-
age) and the weights for neighboring mixture component 
locations are approximately 0.0125 (on average). We would 
like the data to indicate “best” choices for the other selec-
tions, as we do not have strong a priori expectations about 
the most appropriate fit radius, local correlation model, and 
mean covariate. As such, we use fivefold (out-of-sample) 
cross-validation and the continuous rank probability score 
(CRPS) to select the best model, considering all possible 
combinations of the following:

– Fit radius: intuitively, a very large fit radius implies that 
the spatial mean and covariance parameters are very 

(13)�̂�(�) =

K∑

k=1

wk(�)�̂�k,

(14)𝛿(�) = 𝛽0(�) + 𝛽1(�)x(�),
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smooth across the spatial domain, while a very small 
fit radius implies heterogeneity in the parameters. As 
such, we consider four different fit radii r1 = 9 , r2 = 7.5 , 
r3 = 6 , and r4 = 4.5 , as these cover a reasonable range of 
values for defining the local models. Intuitively, these fit 
radii indicate varying degrees of second-order nonsta-
tionarity, with r4 yielding the strongest nonstationarity 
and r1 yielding the weakest nonstationarity. To compare 
the fit of a stationary Gaussian process, we also fit a glob-
ally stationary model, where all mean and covariance 
parameters are constant over CONUS (we denote this 
model as “radius 0” or r0).

– Local correlation: a popular choice in spatial statistics 
for modeling environmental processes is the Matérn cor-
relation function (see, e.g., Stein 1999), which includes 
a smoothness parameter � that specifically controls the 
roughness of the fitted surface. We consider two values 
of � : 0.5, which corresponds to the exponential correla-
tion and non-differentiable surfaces, and 2.5, which gives 
surfaces that are twice-differentiable.

– Mean covariate: given the well-established relationships 
between extreme precipitation and orography, we con-
sider using both elevation and the log of elevation in the 
Gaussian process mean.

Several other items should be noted: first, we are interested 
in characterizing large-scale features in the location param-
eter time trend �1(�) and shape parameter �(�) , as we expect 
these features to vary less over space than the location inter-
cept and scale parameters. As a result, for �1(�) and �(�) we 
estimate a locally isotropic correlation (i.e., circular spatial 
correlation contours), while for �0(�) and log �(�) we esti-
mate a locally anisotropic correlation (i.e., elliptical spatial 

correlation contours). Second, given that the true time trend 
�1(�) is likely to have only large scale features, we only con-
sider the � = 2.5 model for �1(�).

The best model (in terms of CRPS) for each coefficient and 
each season is shown in Table 1. While we wish to allow the 
coefficient in each season to have a unique degree of nonsta-
tionarity (i.e., fit radius), we opt to use a fixed mean covariate 
(elevation) and smoothness ( � = 0.5 ) across all seasons and 
coefficients, as these two models are most often chosen as 
“best” (except for the smoothness in �1(�) , which is fixed at 

Fig. 11  The K = 41 mixture 
components used for the non-
stationary covariance function 
(black “+” symbols), and the 
four fit radii considered (red 
= Radius 1, green = Radius 
2, blue = Radius 3, and light 
blue = Radius 4). The GHCN 
stations used in the analysis are 
shown with the dark gray dots 
in the background

Table 1  Best spatial models for each season, in terms of the continu-
ous rank probability score for out-of-sample cross validation

Season Coefficient Radius Mean covariate Smoothness

DJF �0 4 Elevation 0.5
DJF �1 3 Elevation 2.5 (fixed)
DJF log � 4 Elevation 0.5
DJF � 1 Elevation 0.5
MAM �0 4 Elevation 0.5
MAM �1 4 Elevation 2.5 (fixed)
MAM log � 3 Elevation 0.5
MAM � 3 Log elevation 0.5
JJA �0 3 Elevation 0.5
JJA �1 2 Elevation 2.5 (fixed)
JJA log � 4 Elevation 0.5
JJA � 3 Elevation 0.5
SON �0 4 Elevation 0.5
SON �1 3 Log elevation 2.5 (fixed)
SON log � 2 Elevation 0.5
SON � 1 Log elevation 0.5
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2.5). Note that across all seasons and parameters, the non-
stationary Gaussian process models (Radii 1–4) are always 
preferred to the stationary Gaussian process model (Radius 0).

Appendix 3: Computational details

The computational resources required for the analysis in 
this paper are extensive in light of the bootstrap fitting, 
even given the computational efficiency of the local like-
lihood method for estimating a nonstationary covariance 
function. The analysis was feasible in our case thanks 
to having access to a large supercomputer through the 
National Energy Research Scientific Computing Center 
(NERSC). Specifically, we utilized NERSC’s newest 
supercomputer Cori, a Cray XC40 machine comprised of 
2388 Intel Xeon “Haswell” processor nodes (there are two 
other node partitions in Cori that we did not use). Each 
Haswell node consists of 32 cores, with a total of 128 GB 
DDR4 2133 MHz memory per node.

There are three primary tasks that are time consum-
ing for the analysis. The approximate number of required 
hours (both wall clock and compute time) and node 
configuration for each task are given in the following 
subsections.

Appendix 3.1: Station‑specific extreme value 
analysis

The four-parameter GEV analysis for each station using 
climextRemes (Paciorek 2016)—i.e., estimating �0 , �1 , 
� , and � – is actually quite fast; however, recall that there 
are 5202 stations and we must conduct the analysis at each 
station for four seasons and B = 250 bootstrap samples (plus 
one more for the full data fits). On the Cori cores, estimating 
the GEV coefficients for all 5202 stations takes approxi-
mately 15 min. Overall, the configuration for this step is as 
follows:

– One “job” is defined as estimating the GEV coefficients 
for all 5202 stations

– Configuration: the 4 seasons × (250 bootstrap + 1 full 
data) = 1004 jobs are spread out over 16 nodes (512 
cores)

– Compute hours: 1004 jobs × 15 min each ≈ 250 h
– Wall clock (elapsed) hours: approximately 30 min total

Appendix 3.2: Cross‑validation for spatial model 
selection

Recall from Appendix 2 that we must fit a set of spatial 
models to each of (4 seasons) × (4 GEV coefficients) × (2 
mean covariates) × (2 smoothness values) × (5 holdout sets) 

= 320 models. The benefit of the nonstationary models (radii 
1–4) is that we can split each of these fits into K = 41 local 
fits, one for each mixture component. The stationary model 
(radius 0), unfortunately, cannot be divided into any smaller 
tasks.

Given that the stationary model involves fitting a spatial 
model to over 5000 stations and the nonstationary model 
involves fitting local models to sample sizes ranging between 
50 and 2000, for computation we split these tasks into two 
computing jobs:

Stationary model fitting

– One “job” is defined as fitting a stationary model to all 
5202 stations

– Configuration: the 320 jobs are spread out over 5 nodes 
(160 cores)

– Compute hours: 160 cores × 10 hours ≈ 1600 hours total
– Wall clock (elapsed) hours: approximately 10 h.

Nonstationary model fitting

– One “job” is defined as fitting a locally stationary model
– Configuration: the 320 combinations × 4 radii × 41 local 

fits = 52480 jobs spread out over 32 nodes (1024 cores)
– Compute hours: 1024 cores × 5 h ≈ 5120 h total
– Wall clock (elapsed) hours: approximately 5 h.

Once the GP parameters have been estimated, it remains to 
conduct prediction for the held-out data, but this is a rela-
tively low-cost operation computationally, and was con-
ducted on a personal laptop.

Appendix 3.3: Spatial model fitting for the full 
and bootstrap data sets

The cross-validation is conducted to select a best model for 
each coefficient/season, shown in Table 1. The next task is 
to fit the best model to all 5202 stations, for both the full 
data estimates and the bootstrapped estimates. Given that 
the best model across all coefficients/seasons is one of the 
nonstationary models, we can split things up as follows:

– One “job” is defined as fitting a locally stationary model
– Configuration: (250 bootstrap + 1 full data) × 4 coef-

ficients × 4 seasons × 41 local fits = 164,656 jobs spread 
out over 64 nodes (2048 cores)

– Compute hours: 2048 cores × 6 h ≈ 12288 h total ≈ 1.4 
years

– Wall clock (elapsed) hours: approximately 6 h
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Appendix 3.4: Kriging for the full and bootstrap 
data sets

After estimating the local GP parameters, we need to obtain 
best estimates for the coefficients (across all seasons and 
bootstrap data sets) at both the GHCN station locations 
(5202 locations) and the 0.25◦ grid over CONUS (13,073 
locations). This step is non-trivial, as it involves comput-
ing a 5202 × 5202 covariance matrix and a 13073 × 5202 
cross-covariance matrix, as well as computing the Cholesky 
decomposition of a 5202 × 5202 matrix and the subsequent 
large matrix operations (see Eq. 11 in the main text). Given 
the large memory requirements of these calculations (recall 
that for a data set of size n, a single evaluation of the Gauss-
ian likelihood requires (n2) storage and (n3) calculations), 
the following calculations were done using an alternative 
computing cluster (2x Eight Core Xeon E5-2680 2.7 GHz 
machine with 384 GB total memory):

– One “job” is defined as calculating the kriging predictor 
for 5202 + 13,073 locations

– Configuration: (250 bootstrap + 1 full data) × 4 coef-
ficients × 4 seasons = 4004 jobs spread out over 16 cores

– Compute hours: 4004 jobs × 6.2 min each ≈ 410 h
– Wall clock (elapsed) hours: approximately 17 h.

Appendix 3.5: Total time

Aggregating all of the above:

– Compute hours: 250 + 1600 + 6144 + 12288 + 410 =

20692 hours
– Wall clock (elapsed) hours: 0.5 + 10 + 6 + 6 + 17 = 39.5 

hours.
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