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EXPLOITING MULTIPLE LEVELS OF PARALLELISM IN SPARSE
MATRIX-MATRIX MULTIPLICATION

ARIFUL AZAD∗, GREY BALLARD† , AYDIN BULUÇ‡ , JAMES DEMMEL§ , LAURA

GRIGORI¶, ODED SCHWARTZ‖, SIVAN TOLEDO∗∗, AND SAMUEL WILLIAMS††

Abstract. Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many
high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid.
The scaling of existing parallel implementations of SpGEMM is heavily bound by communication.
Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat
MPI model on Erdős-Rényi matrices, those algorithms had not been implemented in practice and
their complexities had not been analyzed for the general case. In this work, we present the first
implementation of the 3D SpGEMM formulation that exploits multiple (intra-node and inter-node)
levels of parallelism, achieving significant speedups over the state-of-the-art publicly available codes
at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks
that should be subject to further research.

Key words. Parallel computing, numerical linear algebra, sparse matrix-matrix multiplication,
2.5D algorithms, 3D algorithms, multithreading, SpGEMM, 2D decomposition, graph algorithms.

AMS subject classifications. 05C50, 05C85, 65F50, 68W10

1. Introduction. Multiplication of two sparse matrices (SpGEMM) is a key
operation for high-performance graph computations in the language of linear alge-
bra [31, 40]. Examples include graph contraction [25], betweenness centrality [13],
Markov clustering [47], peer pressure clustering [43], triangle counting [4], and cycle
detection [49]. SpGEMM is also used in scientific computing. For instance, it is often
a performance bottleneck for Algebraic Multigrid (AMG), where it is used in the set-
up phase for restricting and interpolating matrices [7]. Schur complement methods in
hybrid linear solvers [48] also require fast SpGEMM. In electronic structure calcula-
tions, linear-scaling methods exploit Kohn’s “nearsightedness” principle of electrons
in many-atom systems [33]. SpGEMM and its approximate versions are often the
workhorse of these computations [8, 10].

We describe new parallel implementations of the SpGEMM kernel, by exploiting
multiple levels of parallelism. We provide the first complete implementation and
large-scale results of a “3D algorithm” that asymptotically reduces communication
costs compared to the state-of-the-art 2D algorithms. The name “3D” derives from
the parallelization across all 3 dimensions of the iteration space. While 2D algorithms
like Sparse SUMMA [14] are based on a 2D decomposition of the output matrix with
computation following an “owner computes” rule, a 3D algorithm also parallelizes
the computation of individual output matrix entries. Our 3D formulation relies on
splitting (as opposed to replicating) input submatrices across processor layers.

While previous work [5] analyzed the communication costs of a large family of
parallel SpGEMM algorithms and provided lower-bounds on random matrices, it did
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2 AZAD ET AL.

not present any experimental results. In particular, the following questions were left
unanswered:

• What is the effect of different communication patterns on relative scalability of
these algorithms? The analysis was performed in terms of “the number of words
moved per processor”, which did not take into account important factors such as
network contention, use of collectives, the relative sizes of the communicators, etc.

• What is the effect of in-node multithreading? By intuition, one can expect a positive
effect due to reduced network contention and automatic data aggregation as a result
of in-node multithreading, but those have not been evaluated before.

• What is the role of local data structures and local algorithms? In particular, what
is the right data structure to store local sparse matrices in order to multiply them
fast using a single thread and multiple threads? How do we merge local triples
efficiently during the reduction phases?

• How do the algorithms perform on real-world matrices, such as those with skewed
degree distributions?

This paper addresses these questions by presenting the first implementation of
the 3D SpGEMM formulation that exploits both the additional third processor grid
dimension and the in-node multithreading aspect. In particular, we show that the
third processor grid dimension navigates a tradeoff between communication of the
input matrices and communication of the output matrix. We also show that in-
node multithreading, with efficient shared-memory parallel kernels, can significantly
enhance scalability. In terms of local data structures and algorithms, we use a priority
queue to merge sparse vectors for in-node multithreading. This eliminates thread
scaling bottlenecks which were due to asymptotically increased working set size as
well as the need to modify the data structures for cache efficiency. To answer the
last question, we benchmark our algorithms on real-world matrices coming from a
variety of applications. Our extensive evaluation via large-scale experiments exposes
bottlenecks and provides new avenues for research.

Section 3 summarizes earlier results on various parallel SpGEMM formulations.
Section 4 presents the distributed-memory algorithms implemented for this work, as
well as the local data structures and operations in detail. In particular, our new
3D algorithm, Split-3D-SpGEMM, is presented in Section 4.4. Section 5 gives an
extensive performance evaluation of these implementations using large scale paral-
lel experiments, including a performance comparison with similar primitives offered
by other publicly available libraries such as Trilinos and Intel Math Kernel Library
(MKL). Various implementation decisions and their effects on performance are also
detailed.

2. Notation. Let A ∈ Sm×k be a sparse rectangular matrix of elements from a
semiring S. We use nnz (A) to denote the number of nonzero elements in A. When
the matrix is clear from context, we drop the parenthesis and simply use nnz . For
sparse matrix indexing, we use the convenient Matlab colon notation, where A(:, i)
denotes the ith column, A(i, :) denotes the ith row, and A(i, j) denotes the element
at the (i, j)th position of matrix A. Array and vector indices are 1-based throughout
this paper. The length of an array I, denoted by len(I), is equal to its number of
elements. For one-dimensional arrays, I(i) denotes the ith component of the array.
I(j : k) defines the range I(j), I(j + 1), . . . , I(k) and is also applicable to matrices.

We use flops(A,B), pronounced “flops”, to denote the number of nonzero arith-
metic operations required when computing the product of matrices A and B. When
the operation and the operands are clear from context, we simply use flops. We ac-
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knowledge that semiring operations do not have to be on floating-point numbers (e.g.
they can be on integers or Booleans) but we nevertheless use flops as opposed to ops
to be consistent with existing literature.

In our analysis of parallel running time, the latency of sending a message over
the communication interconnect is α, and the inverse bandwidth is β, both expressed
as multiples of the time for a floating-point operation (also accounting for the cost of
cache misses and memory indirections associated with that floating point operation).
Notation f(x) = Θ(g(x)) means that f is bounded asymptotically by g both above
and below. We index a 3D process grid with P (i, j, k). Each 2D slice of this grid
P (:, :, k) with the third dimension fixed is called a process “layer” and each 1D slice
of this grid P (i, j, :) with the first two dimensions fixed is called a process “fiber”.

3. Background and Related Work. The classical serial SpGEMM algorithm
for general sparse matrices was first described by Gustavson [27], and was subsequently
used in Matlab [24] and CSparse [19]. For computing the product C = AB, where
A ∈ Sm×l, B ∈ Sl×n and C ∈ Sm×n, Gustavson’s algorithm runs in O(flops +
nnz +m + n) time, which is optimal when flops is larger than nnz , m, and n. It
uses the popular compressed sparse column (CSC) format for representing its sparse
matrices. Algorithm 1 gives the pseudocode for this column-wise serial algorithm for
SpGEMM.

Algorithm 1 Column-wise formulation of serial matrix multiplication

1: procedure Columnwise-SpGEMM(A,B,C)
2: for k ← 1 to n do
3: for j where B(j, k) 6= 0 do
4: C(:, k)← C(:, k) + A(:, j) ·B(j, k)

McCourt et al. [41] target ABT and RART operations in the specific context of
Algebraic Multigrid (AMG). A coloring of the output matrix C finds structurally or-
thogonal columns that can be computed simultaneously. Two columns are structurally
orthogonal if the inner product of their structures (to avoid numerical cancellation)
is zero. They use matrix colorings to restructure BT and RT into dense matrices by
merging non-overlapping sparse columns that do not contribute to the same nonzero
in the output matrix. They show that this approach would incur less memory traf-
fic than performing sparse inner products by a factor of n/ncolor where ncolor is the
number of colors used for matrix coloring. However, they do not analyze the memory
traffic of other formulations of SpGEMM, which are known to outperform sparse inner
products [15]. In particular, a column-wise formulation of SpGEMM using CSC incurs
only O(nnz /L + flops) cache misses where L is the size of the cache line. Consider
the matrix representing the Erdős-Rényi graph G(n, p), where each edge (nonzero)
in the graph (matrix) is present with probability p independently from each other.
For p = d/n where d � n, in expectation nd nonzeros are uniformly distributed in
an n-by-n sparse matrix. In that case, SpGEMM does O(d2n) cache misses com-
pared to the O(dnncolor) cache misses of the algorithm by McCourt et al. Hence,
the column-wise approach not only bypasses the need for coloring, it also performs
better for d ≤ ncolor, which is a common case. Furthermore, their method requires
precomputing the nonzero structure of the output matrix, which is asymptotically as
hard as computing SpGEMM without coloring in the first place.

There has been a flurry of activity in developing algorithms and implementations
of SpGEMM for Graphics Processing Units (GPUs). Among those, the algorithm of
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Gremse et al. [26] uses the row-wise formulation of SpGEMM. By contrast, Dalton
et al. [18] uses the data-parallel ESC (expansion, sorting, and contraction) formula-
tion, which is based on outer products. One downside of the ESC formulation is that
expansion might create O(flops) intermediate storage in the worst case, depending
on the number of additions performed immediately in shared memory when possible,
which might be asymptotically larger than the sizes of the inputs and outputs com-
bined. The recent work of Liu and Vinter is currently the fastest implementation on
GPUs and it also addresses heterogenous CPU-GPU processors [36].

In distributed memory, under many definitions of scalability, all known parallel
SpGEMM algorithms are unscalable due to increased communication costs relative to
arithmetic operations. For instance, there is no way to keep the parallel efficiency (PE )
fixed for any constant 1 ≥ PE > 0 as we increase the number of processors [34]. Re-
cently, two attempts have been made to model the communication costs of SpGEMM
in a more fine grained manner. Akbudak and Aykanat [3] proposed the first hyper-
graph model for outer-product formulation of SpGEMM. Unfortunately, a symbolic
SpGEMM computation has to be performed initially as the hypergraph model needs
full access to the computational pattern that forms the output matrix. Ballard et
al. [6] recently proposed hypergraph models for a class of SpGEMM algorithms more
general than Akbudak and Aykanat considered. Their model also requires the spar-
sity structure of the output matrix and the number of vertices in the hypergraph is
O(flops), making the approach impractical.

In terms of in-node parallelism via multithreading, there has been relatively little
work. Gustavson’s algorithm is not thread scalable because its intermediate working
set size is O(n) per thread, requiring a total of O(nt) intermediate storage, which can
be larger than the matrices themselves for high thread counts. This intermediate data
structure is called the sparse accumulator (SPA) [24]. Nevertheless, it is possible to
get good performance out of a multithreaded parallelization of Gustavson’s algorithm
in current platforms, provided that accesses to SPA are further “blocked” for matrices
with large dimensions, in order to decrease cache miss rates. In a recent work, this is
achieved by partitioning the data structure of the second matrix B by columns [42].

We also mention that there has been significant research devoted to dense matrix
multiplication in distributed-memory settings. In particular, the development of so-
called 3D algorithms for dense matrix multiplication spans multiple decades; see [21,
30, 39, 44] and the references therein. Many aspects of our 3D algorithm for sparse
matrix multiplication are derived from the dense case, though there are important
differences as we detail below.

4. Distributed-memory SpGEMM. We categorize algorithms based on how
they partition “work” (scalar multiplications) among processes, as we first advocated
recently [5]. The work required by SpGEMM can be conceptualized by a cube that
is sparsely populated by “voxels” that correspond to nonzero scalar multiplications.
The algorithmic categorization is based on how these voxels are assigned to processes,
which is illustrated in Figure 4.1. 1D algorithms assign a block of n-by-n-by-1 “lay-
ers” of this cube to processes. In practice, this is realized by having each process
store a block of rows or columns of an m-by-n sparse matrix, though the 1D/2D/3D
categorization is separate from the data distribution. With correctly chosen data
distributions, 1D algorithms communicate entries of only one of the three matrices.

2D algorithms assign a set of 1-by-1-by-n “fibers” of this cube to processes. In
many practical realizations of 2D algorithms, processes are logically organized as a
rectangular p = pr×pc process grid, so that a typical process is named P (i, j). Subma-
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trices are assigned to processes according to a 2D block decomposition: For a matrix
M ∈ Sm×n, processor P (i, j) stores the submatrix Mij of dimensions (m/pr)×(n/pc)
in its local memory. With consistent data distributions, 2D algorithms communicate
entries of two of the three matrices.

(a) 1D (b) 2D (c) 3D

Fig. 4.1: Partitioning the work cube to processes. Image reproduced for clarity [5].

3D algorithms assign subcubes (with all 3 dimensions shorter than n) to processes,
which are typically organized on a p = pr × pc × pl grid and indexed by P (i, j, k).
3D algorithms communicate entries of A and B, as well as the (partial sums of the)
intermediate products of C. While many ways of assigning submatrices to processes on
a 3D process grid exist, including replicating each Aij along the process fiber P (i, j, :),
our work focuses on a memory-friendly split decomposition. In this formulation,
P (i, j, k) owns the following m/pr × n/(pcpl) submatrix of A ∈ Sm×n:

A(im/pr : (i+ 1)m/pr − 1, jn/pc + kn/(pcpl) : jn/pc + (k + 1)n/(pcpl)− 1).

The distribution of matrices B and C are analogous. This distribution is memory
friendly because it does not replicate input or output matrix entries, which is in
contrast to many 3D algorithms where the input or the output is explicitly replicated.

4.1. Sparse SUMMA Algorithm. We briefly remind the reader of the Sparse
SUMMA algorithm [11] for completeness as it will form the base of our 3D discussion.
Sparse SUMMA is based on one formulation of the dense SUMMA algorithm [23]. The
processes are logically organized on a pr× pc process grid. The algorithm proceeds in
stages where each stage involves the broadcasting of n/pr×b submatrices of A by their
owners along their process row, and the broadcasting of b × n/pc submatrices of B
by their owners along their process column. The recipients multiply the submatrices
they received to perform a rank-b update on their piece of the output matrix C. The
rank-b update takes the form of a merge in the case of sparse matrices; several rank-b
updates can be done together using a multiway merge as described in Section 4.3. We
will refer to this as a “SUMMA stage” for the rest of the paper. Here, b is a blocking
parameter, which can be as large as the inner submatrix dimension. A more complete
description of the algorithm and its general implementation for rectangular matrices
and process grids can be found in an earlier work [14].

4.2. In-node Multithreaded SpGEMM Algorithm. Our previous work [12]
shows that the standard compressed sparse column or row (CSC or CSR) data struc-
tures are too wasteful for storing the local submatrices arising from a 2D decom-
position. This is because the local submatrices are hypersparse, meaning that the
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B"

= x"

C" A"
Heap%size%
nnz(B(:,i))%

Fig. 4.2: Multiplication of sparse matrices stored by columns [12]. Columns of A are
accumulated as specified by the non-zero entries in a column of B using a priority
queue (heap) indexed by the row indices. The contents of the heap are stored into a
column of C once all required columns are accumulated.

ratio of nonzeros to dimension asymptotically approaches zero as the number of pro-
cessors increase. The total memory across all processors for CSC format would be
O(n
√
p+ nnz ), as opposed to O(n+ nnz ) memory to store the whole matrix in CSC

on a single processor.
This observation applies to 3D algorithms as well because their execution is rem-

iniscent of running a 2D algorithm on each processor layer P (:, :, k). Thus, local data
structures used within 2D and 3D algorithms must respect hypersparsity.

Similarly, any algorithm whose complexity depends on matrix dimension, such as
Gustavson’s serial SpGEMM algorithm, is asymptotically too wasteful to be used as
a computational kernel for multiplying the hypersparse submatrices. We use Heap-
SpGEMM, first presented as Algorithm 2 of our earlier work [12], which operates on
the strictly O(nnz ) doubly compressed sparse column (DCSC) data structure, and its
time complexity does not depend on the matrix dimension. DCSC [12] is a further
compressed version of CSC where repetitions in the column pointers array, which arise
from empty columns, are not allowed. Only columns that have at least one nonzero
are represented, together with their column indices. DCSC is essentially a sparse
array of sparse columns, whereas CSC is a dense array of sparse columns. Although
not part of the essential data structure, DCSC can support fast column indexing by
building an AUX array that contains pointers to nonzero columns (columns that have
at least one nonzero element) in linear time.

Our HeapSpGEMM uses a heap-assisted column-by-column formulation whose
time complexity is

nzc(B)∑
j=0

O
(
flops(C(:, j)) log nnz (B(:, j))

)
,

where nzc(B) is the number of columns of B that are not entirely zero, flops(C(:, j))
is the number of nonzero multiplications and additions required to generate the jth
column of C. The execution of this algorithm is illustrated in Figure 4.2, which differs
from Gustavson’s formulation in its use of a heap (priority queue) as opposed to a
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sparse accumulator (SPA).
Our formulation is more suitable for multithreaded execution where we parallelize

over the columns of C and each thread computes A times a subset of the columns
of B. SPA is an O(n) data structure, hence a multithreaded parallelization over
columns of C of the SPA-based algorithm would require O(nt) space for t threads.
By contrast, since each heap in HeapSpGEMM is of size O(nnz (B(:, j)), the total
temporary memory requirements of our multithreaded algorithm are always strictly
smaller than the space required to hold one of the inputs, namely B.

4.3. Multithreaded Multiway Merging and Reduction. Each stage of
Sparse SUMMA generates partial result matrices that are summed together at the
end of all stages to obtain the final result C. In the 3D algorithm discussed in Sec-
tion 4.4, we also split C across fibers of 3D grid, and the split submatrices are summed
together by each process on the fiber. To efficiently perform these two summations,
we represent the intermediate matrices as lists of triples, where each triple (i, j, val)
stores the row index, column index, and value of a nonzero entry, respectively. Each
list of triples is kept sorted lexicographically by the (j, i) pair so that the jth column
comes before the (j+1)st column. We then perform the summation of sparse matrices
by merging the lists of triples that represent the matrices. The merging also covers
the reduction of triples with repeated indices.

To perform a k-way merge on k lists of triples T1, T2, ..., Tk, we maintain a heap of
size k that stores the current lexicographically minimum entry, based on (j, i) pairs,
in each list of triples. In addition to keeping triples, the heap also stores the index
of the source list from where each triple was inserted into the heap. The multiway
merge routine finds the minimum triple (i∗, j∗, val∗) from the heap and merges it into
the result. When the previous triple in the merged list has the same pair of indices
(i∗, j∗), the algorithm simply adds the values of these two triples, reducing the index-
value pairs with repeated indices. If (i∗, j∗, val∗) is originated from Tl, the next triple
from Tl is inserted into the heap. Hence, the time complexity of a k-way merge is

k∑
l=1

O
(
nnz (Tl) log k

)
,

where nnz (Tl) is the number of nonzero entries in Tl. When multithreading is em-
ployed, each thread merges a subset of columns from k lists of triples using the same
k-way merge procedure described earlier. If a thread is responsible for columns jp to
jq, these column indices are identified from each list via a binary search. For better
load balance, we ensure there is enough parallel slackness [46] by splitting the lists
into more parts than the number of threads and merging the columns in each part
by a single thread. In our experiments, we created 4t parts when using t threads and
employed dynamic thread scheduling.

4.4. Split-3D-SpGEMM Algorithm. Our parallel algorithm is an iterative
3D algorithm that splits the submatrices along the third process grid dimension (of
length pl). This way, while there is no direct relationship between the size of the third
process dimension and the extra memory required for the input, the extra memory
required by the output is sparsity-structure dependent. If the output is sparse enough
so that there are few or no intermediate products with repeated indices, then no extra
memory is required. Recall that entries with repeated indices arise when more than
one scalar multiplication aikbkj that results in a nonzero value contributes to the same
output element cij . The pseudocode of our algorithm, Split-3D-SpGEMM, is shown
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Fig. 4.3: Execution of the Split-3D-SpGEMM algorithm for sparse matrix-matrix
multiplication C = A · B on a

√
p/c ×

√
p/c × c process grid. Matrices A, B,

and Cint matrices are shown during the first stage of the algorithm execution (the
broadcast and the local update, i.e. one “SUMMA stage”). The transition from Cint

to C happens via an all-to-all followed by a local merge, after all
√
p/c SUMMA

stages are completed.

in Algorithm 2 for the simplified case of pr = pc =
√
p/c and pl = c. The execution

of the algorithm is illustrated in Figure 4.3.

Algorithm 2 Operation C← AB using Split-3D-SpGEMM

Input: A ∈ Sm×l,B ∈ Sl×n: matrices on a
√
p/c×

√
p/c× c process grid

Output: C ∈ Sm×n: the product AB, similarly distributed.
1: procedure Split-3D-SpGEMM(A,B,C)
2: locinndim = l/

√
pc . inner dimension of local submatrices

3: for all processes P (i, j, k) in parallel do

4: B̂ijk ← AlltoAll(Bij:, P (i, j, :)) . redistribution of B across layers

5: for r = 1 to
√
p/c do . r is the broadcasting process column and row

6: for q = 1 to locinndim /b do . b evenly divides locinndim
7: locindices = (q − 1)b : qb− 1
8: Arem ← Broadcast(Airk(:, locindices), P (i, :, k))

9: Brem ← Broadcast(B̂rjk(locindices, :), P (:, j, k))
10: Cint

ij: ← Cint
ij: + HeapSpGEMM(Arem,Brem)

11: Cint
ijk ← AlltoAll(Cint

ij: , P (i, j, :))

12: Cijk ← LocalMerge(Cint
ijk)

The Broadcast(Airk, P (i, :, k)) syntax means that the owner of Airk becomes
the root and broadcasts its submatrix to all the processes on the ith process row of
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the kth process layer. Similarly for Broadcast(B̂rjk, P (:, j, k)), the owner of B̂rjk

broadcasts its submatrix to all the processes on the jth process column of the kth
process layer. In line 7, we find the local column (for A) and row (for B̂) ranges
for matrices that are to be broadcast during that iteration. They are significant
only at the broadcasting processes, which can be determined implicitly from the first
parameter of Broadcast. In practice, we index B̂ by columns as opposed to rows in
order to obtain the best performance from the column-based DCSC data structure. To
achieve this, B̂ gets locally transposed during redistribution in line 4. Using DCSC,
the expected cost of fetching b consecutive columns of a matrix A is b plus the size
(number of nonzeros) of the output. Therefore, the algorithm asymptotically has the
same computation cost for all blocking parameters b.

Cint
ij: is the intermediate submatrix that contains nonzeros that can potentially

belong to all the processes on the (i, j)th fiber P (i, j, :). The AlltoAll call in
line 11 packs those nonzeros and sends them to their corresponding owners in the
(i, j)th fiber. This results in Cint

ijk for each process P (i, j, k), which contains only the

nonzeros that belong to that process. Cint
ijk possibly contains repeated indices (i.e.

multiple entries with the same index) that need to be merged and summed by the
LocalMerge call in line 12, resulting in the final output.

In contrast to dense matrix algorithms [21, 30, 39, 44], our sparse 3D formulation
requires a more lenient trade-off between bandwidth-related communication costs and
memory requirements. As opposed to increasing the storage requirements by a factor
of pl, the relative cost of the 3D formulation is nnz (Cint)/nnz (C), which is always
upper bounded by flops(A,B)/nnz (C).

4.5. Communication Analysis of the Split-3D-SpGEMM Algorithm.
For our complexity analysis, the previous work [5] assumed that nonzeros of sparse
n-by-n input matrices are independently and identically distributed, with d > 0 nonze-
ros per row and column on the average. The sparsity parameter d simplifies analysis
by making different terms in the complexity comparable to each other. However, in
order to capture the performance of more general matrix-matrix multiplication, we
will analyze parallel complexity directly in terms of flops and the number of nonzeros
in A,B, and C without resorting to the sparsity parameter d.

Our algorithm can run on a wide range of configurations on a virtual 3D p =
pr × pc × pl process grid. To simplify the analysis, we again assume that each 2D
layer of the 3D grid is square, i.e. pr = pc and we use c to denote the third dimension.
Thus, we assume a

√
p/c×

√
p/c× c process grid.

The communication in Algorithm 2 consists of collective operations being per-
formed on disjoint process fibers: simultaneous broadcasts in the first two process
grid dimensions at line 8 and line 9 and simultaneous all-to-alls in the third pro-
cess grid dimension at line 4 and line 11. We use the notation Tbcast(w, p̂, ν, µ) and
Ta2a(w, p̂, ν, µ) to denote the costs of broadcast and all-to-all, where w is the size of
the data (per processor) in matrix elements, p̂ is the number of processes participating
in the collective, ν is the number of simultaneous collectives, and µ is the number of
processes per node. Parameters ν and µ capture resource contention: the number of
simultaneous collectives affects contention for network bandwidth, and the number of
processes per node affects contention for the network interface card on each node.

In general, these cost functions can be approximated via microbenchmarks for a
given machine and MPI implementation, though they can vary over different node
allocations as well. If we ignore resource contention, with ν = 1 and µ = 1, then the
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costs are typically modeled [17] as

Tbcast(w, p̂, 1, 1) = α · log p̂+ β · w p̂− 1

p̂

and

Ta2a(w, p̂, 1, 1) = α · (p̂− 1) + β · w p̂− 1

p̂
.

The all-to-all cost assumes a point-to-point algorithm, minimizing bandwidth cost at
the expense of higher latency cost; see [5, Section 2.2] for more details on the tradeoffs
within all-to-all algorithms.

The time spent in communication is then given by

Ta2a

(
nnz (B)

p
, c,

p

c
, µ

)
+

n

bc
·Tbcast

(
b

n
· nnz (A)√

p/c
,
√
p/c,
√
pc, µ

)
+

n

bc
·Tbcast

(
b

n
· nnz (B)√

p/c
,
√
p/c,
√
pc, µ

)
+

Ta2a

(
flops(A,B)

p
, c,

p

c
, µ

)
.

The amount of data communicated in the first three terms is the average over all
processes and is accurate only if the nonzeros of the input matrices are evenly dis-
tributed across all blocks. The amount of data communicated in the last term is an
upper bound on the average; the number of output matrix entries communicated by
each process is likely less than the number of flops performed by that process (due to
the reduction of locally repeated indices prior to communication). A lower bound for
the last term is given by replacing flops(A,B) with nnz (C).

If we ignore resource contention, the communication cost is

α ·O
( n
bc

log(p/c) + c
)

+ β ·O
(
nnz (A) + nnz (B)

√
pc

+
flops(A,B)

p

)
,

where we have assumed that nnz (B) ≤ flops(A,B). Note that this expression matches
the costs for Erdős-Rényi matrices, up to the choice of all-to-all algorithm [5], where
nnz (A) ≈ nnz (B) ≈ dn and flops(A,B) ≈ d2n.

We make several observations based on this analysis of the communication. First,
increasing c (the number of layers) results in less time spent in broadcast collectives
and more time spent in all-to-all collectives (note that if c = 1 then no communi-
cation occurs in all-to-all). Second, increasing b (the blocking parameter) results in
fewer collective calls but the same amount of data communicated; thus, b navigates a
tradeoff between latency cost and local memory requirements (as well as greater pos-
sibility to overlap local computation and communication). Third, for a fixed number
of cores, lower µ (higher value of t) will decrease network interface card contention
and therefore decrease communication time overall.
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Cray XK7 (Titan) Cray XC30 (Edison)
Core AMD Interlagos Intel Ivy Bridge

Clock (GHz) 2.2 2.4
Private Cache (KB) 16+2048 32+256

DP GFlop/s/core 8.8 19.2
Socket Arch. Opteron 6172 Xeon E5-2695 v2

Cores per socket 16 12
Threads per socket 16 241

L3 cache per socket 2×8 MB 30 MB
Node Arch. Hypertransport QPI (8 GT/s)
Sockets/node 1 2

STREAM BW2 31 GB/s 104 GB/s
Memory per node 32 GB 64 GB

Interconnect Gemini (3D Torus) Aries (Dragonfly)

Table 5.1: Overview of Evaluated Platforms. 1Only 12 threads were used. 2Memory
bandwidth is measured using the STREAM copy benchmark per node.

5. Experimental Results. We evaluate our algorithms on two supercomput-
ers: Cray XC30 at NERSC (Edison) [22], and Cray XK6 at ORNL (Titan) [45].
Architectural details of these computers are listed in Table 5.1. In our experiments,
we ran only on the CPUs and did not utilize Titan’s GPU accelerators.

In both supercomputers, we used Cray’s MPI implementation, which is based on
MPICH2. Both chip architectures achieve memory parallelism via hardware prefetch-
ing. On Titan, we compiled our code using GCC C++ compiler version 4.6.2 with
-O2 -fopenmp flags. On Edison, we compiled our code using the Intel C++ com-
piler (version 14.0.2) with the options -O2 -no-ipo -openmp. In order to ensure better
memory affinity to NUMA nodes of Edison and Titan, we used -cc depth or -cc

numa node options when submitting jobs. For example, to run the 3D algorithm on
a 8×8×4 process grid with 6 threads, we use the following options on Edison: aprun
-n 256 -d 6 -N 4 -S 2 -cc depth. In our experiments, we always allocate cores
needed for a particular configuration of 3D algorithms, i.e., to run the 3D algorithm
on
√
p/c×

√
p/c× c process grid with t threads per process, we allocate pt cores and

run p MPI processes on the allocated cores.

Several software libraries support SpGEMM. For GPUs, CUSP and CUSparse im-
plement SpGEMM. For shared-memory nodes, MKL implements SpGEMM. Trilinos
package implements distributed memory SpGEMM [29], which uses a 1D decomposi-
tion for its sparse matrices. In this paper, we compared the performance of 2D and
3D algorithms with SpGEMM in Cray-Trilinos package (version 11.6.1.0) available in
NERSC computers, which features significant performance improvements over earlier
versions. Sparse SUMMA is the 2D algorithm that had been published before [11]
without in-node multithreading, and Split-3D-SpGEMM is the 3D algorithm first
presented here. Sometimes we will drop the long names and just use 2D and 3D for
abbreviation.

In our experiments, we used both synthetically generated matrices, as well as real
matrices from several different sources. In Section 5.2, we benchmark square matrix
multiplication. We use R-MAT [16], the Recursive MATrix generator to generate
three different classes of synthetic matrices: (a) G500 matrices representing graphs



12 AZAD ET AL.

Name

Spy Plot

Dimensions nnz/row

Description Nonzeros symmetric

mouse gene 45K×45K 642

Gene network 28.9M X

ldoor 952K×952K 48.8

structural problem 46.5M X

dielFilterV3real 1.1M×1.1M 81.2

electromagnetics problem 89.3M X

cage15 5.15M×5.15M 19.3

DNA electrophoresis 99.2M

delaunay n24 16.77M×16.77M 6

Delaunay triangulation 100.6M X

nlpkkt160 8.34M×8.34M 27.5

indefinite KKT matrix 229.5M X

HV15R 2.01M×2.01 141.5

3D engine fan 283M

NaluR3 17.6M×17.6M 26.9

Low Mach fluid flow 474M X

it-2004 41.29M×41.29M 27.8

web crawl of .it domain 1,150M

Fig. 5.1: Structural information on the sparse matrices used in our experiments.
All matrices are from the University of Florida sparse matrix collection [20],
except NaluR3, which is a matrix from low Mach number, turbulent reacting
flow problem [35]. For the Florida matrices, we consider the explicit zero entries
to be nonzeros and update the nnz of the matrices accordingly.

with skewed degree distributions from Graph 500 benchmark [1], (b) SSCA matri-
ces from HPCS Scalable Synthetic Compact Applications graph analysis (SSCA#2)
benchmark [2], and (c) ER matrices representing Erdős-Rényi random graphs. We
use the following R-MAT seed parameters to generate these matrices: (a) a = .57,
b = c = .19, and d = .05 for G500, (b) a = .6, and b = c = d = .4/3 for SSCA, and
(c) a = b = c = d = .25 for ER. A scale n synthetic matrix is 2n-by-2n. On average,
G500 and ER matrices have 16 nonzeros, and SSCA matrices have 8 nonzeros per row
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Table 5.2: Statistics about squaring real matrices and multiplying each matrix with
its restriction operator R.

Matrix (A) nnz(A) nnz(A2) nnz(R) nnz(RTA) nnz(RTAR)

mouse gene 28,967,291 482,594,045 45,101 2,904,560 402,200
ldoor 46,522,475 145,422,935 952,203 2,308,794 118,093
dielFilterV3real 89,306,020 688,649,400 1,102,824 4,316,781 100,126
cage15 99,199,551 929,023,247 5,154,859 46,979,396 17,362,065
delaunay n24 100,663,202 347,322,258 16,777,216 41,188,184 15,813,983
nlpkkt160 229,518,112 1,241,294,184 8,345,600 45,153,930 3,645,423
HV15R 283,073,458 1,768,066,720 2,017,169 10,257,519 1,400,666
NaluR3 473,712,505 2,187,662,967 17,598,889 77,245,697 7,415,297
it-2004 1,150,725,436 14,045,664,641 41,291,594 89,870,859 26,847,490

and column. We applied a random symmetric permutation to the input matrices to
balance the memory and the computational load. In other words, instead of storing
and computing C = AB, we compute PCPT = (PAPT)(PBPT). All of our experi-
ments are performed on double-precision floating-point inputs, and matrix indices are
stored as 64-bit integers.

In Section 5.3, we benchmark the matrix multiplication corresponding to the re-
striction operation that is used in AMG. Since AMG on graphs coming from physical
problems is an important case, we include several matrices from the Florida Sparse
Matrix collection [20] in our experimental analysis. In addition, since AMG restric-
tion is computationally isomorphic to the graph contraction operation performed by
multilevel graph partitioners [28], we include a few matrices representing real-world
graphs.

The characteristics of the real test matrices are shown in Table 5.1. Statistics
about squaring real matrices and multiplying each matrix with its restriction operator
R is given in Table 5.2.

5.1. Intra-node Performance. Our 3D algorithm exploits intra-node paral-
lelism in two computationally intensive functions: (a) local HeapSpGEMM per-
formed by each MPI process at every SUMMA stage, and (b) multiway merge per-
formed at the end of all SUMMA stages. As mentioned before, HeapSpGEMM
returns a set of intermediate triples that are kept in memory and merged at the end
of all SUMMA stages. In this section, we only show the intra-node scalability of these
two functions and compare them against an MKL and a GNU routine.

5.1.1. Multithreaded HeapSpGEMM Performance. We study intra-node
scalability of local SpGEMM by running a single MPI process on a socket of a node
and varying the number of threads from one to the maximum number of threads
available in a socket. We compare the performance of HeapSpGEMM with MKL
routine mkl csrmultcsr. To expedite the multiway merge that is called on the output
of HeapSpGEMM, we always keep column indices sorted in increasing order within
each row. Hence, we ask mkl csrmultcsr to return sorted output. We show the
performance of HeapSpGEMM and MKL in Figure 5.2 where these functions are
used to multiply (a) two randomly generated scale 16 G500 matrices, and (b) Cage12
matrix by itself. On 12 threads of Edison, HeapSpGEMM achieves 8.5× speedup
for scale 16 G500 and 8.7× speedup for Cage12, whereas MKL achieves 7.1× speedup
for scale 16 G500 and 9.2× speed for Cage12. Hence, HeapSpGEMM scales as well
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Fig. 5.2: Thread scaling of our HeapSpGEMM and the MKL routine
mkl csrmultcsr on 1,3,6,12 threads (with column indices sorted in the increasing
order for each row) when squaring a matrix on a single socket of Edison.
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Fig. 5.3: Thread scaling of our multiway merge and GNU multiway merge routine
gnu parallel::multiway merge augmented with a procedure that reduces repeated

indices: (a) in squaring scale 21 G500 matrix on 4×4 process grid and (b) in squaring
scale 26 G500 matrix on 16×16 process grid on Edison.

as MKL. However, for these matrices, HeapSpGEMM runs faster than MKL on any
concurrency with up to 33-fold performance improvement for G500 matrices.

5.1.2. Multithreaded Multiway Merge Performance. On a
√
p/c×

√
p/c×

c process grid, each MPI process performs two multiway-merge operations. The first
one merges

√
p/c lists of triples computed in

√
p/c stages of SUMMA and the second

one merges c lists of triples after splitting the previously merged list across layers.
Since both merges are performed by the same function, we experimented the intra-
node performance of multiway merge on a single layer (c=1). For this experiment,
we allocate 12p cores on Edison and run SUMMA on a

√
p ×√p process grid. Each

MPI process is run on a socket using up to 12 available threads. Figure 5.3 shows
the merge time needed by MPI rank 0 for a 4-way merge and a 16-way merge when
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multiplying two G500 matrices on a 4 × 4 and a 16 × 16 grid, respectively. We
compare the performance of our multiway merge with a GNU multiway merge routine
gnu parallel::multiway merge. However, the latter merge routine simply merges

lists of triples keeping them sorted by column and row indices, but does not reduce
triples with the same (row, column) pair. Hence, we reduce the repeated indices
returned by gnu parallel::multiway merge by a multithreaded reduction function
and report the total runtime. From Figure 5.3 we observe that our routine performs
both 4-way and 16-way merges faster than augmented GNU multiway merge for G500
matrices. On 12 threads of Edison, our multiway merge attains 8.3× speedup for 4-
way merge and 9.5× speedup for 16-way merge. By contrast, the augmented GNU
merge attains 5.4× and 6.2× speedups for 4-way and 16-way merges, respectively. We
observe similar performances for other matrices as well.

5.2. Square Sparse Matrix Multiplication. In the first set of experiments,
we square real matrices from Table 5.1 and multiply two structurally similar randomly
generated matrices. This square multiplication is representative of the expansion
operation used in the Markov clustering algorithm [47]. We explore an extensive set
of parameters of Sparse SUMMA (2D) and Split-3D-SpGEMM (which is the main
focus of this work), identify optimum parameters on difference levels of concurrency,
empirically explain where Split-3D-SpGEMM gains performance, and then show the
scalability of Split-3D-SpGEMM for a comprehensive set of matrices.

5.2.1. Performance of Different Variants of 2D and 3D Algorithms. At
first, we investigate the impact of multithreading and 3D algorithm on the perfor-
mance of SpGEMM. For this purpose, we fix the number of cores p and multiply two
sparse matrices with different combinations of thread counts t and number of layers c.
Figure 5.4 shows strong scaling of squaring of nlpkkt160 matrix on Edison. On lower
concurrency (< 256 cores), multithreading improves the performance of 2D algorithm,
e.g., about 1.5× performance improvement with 6 threads on 256 cores in Figure 5.4.
However, there is little or no benefit in using a 3D algorithm over a multithreaded
2D algorithm on lower concurrency because the processor grid in a layer becomes too
small for 3D algorithms.

For better resolution on higher concurrency, we have not shown the runtime of 2D
algorithms before 64 cores in Figure 5.4. For the completeness of our discussion, we
briefly discuss the performance of our algorithm on lower concurrency and compare
them against MKL and Matlab. Matlab uses an efficient CSC implementation of
Gustavson’s algorithm. 2D non-threaded algorithm takes about 800 seconds on a
single core and attains about 50× speedup when we go from 1 core to 256 cores,
and 2D algorithm with 6 threads attains about 25× speedup when we go from 6
cores to 216 cores. By contrast, on a single core, MKL and Matlab take about
500 and 830 seconds, respectively to square randomly permuted nlpkkt160 matrix
(in Matlab, we keep explicit zero entries1 to obtain the same number of nonzeros
shown in Table 5.2). Therefore, the serial performance of Sparse SUMMA (2D) is
comparable to that of MKL and Matlab. The best single node performance is obtained
by multithreaded SpGEMM. Using 24 threads on 24 cores of a single node of Edison,
MKL and HeapSPGEMM take about 32 and 30 seconds, respectively. We note that
the above performance numbers depend significantly on nonzero structures of the
input matrices. Here, we select nlpkkt160 matrix for discussion because the number

1The default Matlab behavior is to remove entries with zero values when constructing a matrix
using its sparse(i,j,v)
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Fig. 5.4: Strong scaling of different variants of 2D (Sparse SUMMA) and 3D (Split-3D-
SpGEMM) algorithms when squaring of nlpkkt160 matrix on Edison. Performance
benefits of the 3D algorithm and multithreading can be realized on higher concurrency.
2D non-threaded algorithm attains about 50× speedup when we go from 1 core to
256 cores, and 2D algorithm with 6 threads attains about 25× speedup when we go
from 6 cores to 216 cores (not shown in the figure).

of nonzero in the square of nlpkkt160 is about 1.2 billion (c.f. Table 5.2), requiring
about 28GB of memory to store the result, which is close to the available single node
memory of Edison.

The performance benefits of the 3D algorithm and multithreading become more
dominant on higher concurrency. In Figure 5.4, when we increase p from 256 to 16,384
(64× increase), non-threaded 2D and 3D (c=16, t=6) algorithms run 4× and 22×
faster, respectively. Consequently, on 16,384 cores, Split-3D-SpGEMM with c=16, t=6
multiplies nlpkkt160 matrix 8× faster than non-threaded 2D algorithm. We observe
similar trend for other real and randomly generated matrices as well. For example,
Split-3D-SpGEMM with c=16, t=6 runs 10× faster than the Sparse SUMMA (2D)
algorithm when squaring of NaluR3 on 32,764 cores of Edison (Figure 5.5), and Split-
3D-SpGEMM with c=16, t=8 runs 9.5× faster than 2D algorithm when multiplying
two scale 26 RMAT matrices on 65,536 cores of Titan (Figure 5.6).

In fact, on higher concurrency, the time Split-3D-SpGEMM takes to multiply two
square matrices decreases gradually with the increase of c and t as indicated on the
right side of Figure 5.4. This trend is also observed in Figures 5.5 and 5.6. Therefore,
we expect that using more threads and layers will be beneficial to gain performance
on even higher concurrency.
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Fig. 5.5: Strong scaling of different variants of 2D and 3D algorithms when squaring
of NaluR3 matrix on Edison. 3D algorithms are an order of magnitude faster than
2D algorithms on higher concurrency.
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Fig. 5.6: Strong scaling of different variants of 2D and 3D algorithms on Titan when
multiplying two scale 26 G500 matrices. 3D algorithm and multithreading improve
performance of SpGEMM on higher concurrency
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Fig. 5.7: Breakdown of runtime spent by Split-3D-SpGEMM for various (c, t) config-
urations on 8,192 cores of Titan when multiplying two scale 26 G500 matrices. The
broadcast time (the most dominating term on high concurrency) decreases gradually
with the increase of both c and t, which is the primary catalyst behind the improved
performance of multithreaded 3D algorithms.
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Fig. 5.8: Breakdown of runtime spent by Split-3D-SpGEMM for various (c, t) config-
urations on 32,768 cores of Titan when multiplying two scale 26 G500 matrices.

5.2.2. Breakdown of Runtime. To understand the performance of Split-3D-
SpGEMM, we break down the time spent in communication and computation when
multiplying two G500 graphs of scale 26 and show them in Figure 5.7 for 8,192 cores
and Figure 5.8 for 32,768 cores on Titan. Here, “Broadcast” refers to the time needed
to broadcast pieces of A and B within each layer, “AlltoAll” refers to the communi-
cation time needed to communicate pieces of C across layers, “Local Multiply” is the
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(b) NaluR3 × NaluR3 (c = 16, t = 6)

Fig. 5.9: Breakdown of runtime spent by (a) Sparse SUMMA (2D) algorithm with
c = 1, t = 1 and (b) Split-3D-SpGEMM algorithm with c = 16, t = 6 to square NaluR3
on Edison.

time needed by multithreaded HeapSpGEMM, “Merge Layer” is the time to merge√
p/c lists of triples computed in

√
p/c stages of SUMMA within a layer, and “Merge

Fiber” is the time to merge c lists of triples after splitting pieces of C across processor
fibers. For a fixed number of cores, the broadcast time gradually decreases with the
increase of both c and t, because as we increase c and/or t, the number of MPI pro-
cesses participating in broadcast within each process layer decreases. For example,
in Figure 5.8, the broadcast time decreases by more than 5× from the leftmost bar
to the rightmost bar. Since broadcast is the dominating term on higher concurrency,
reducing it improves the overall performance of SpGEMM. However, for a fixed num-
ber of cores, the All2All time increases with c due to the increased processor count
on the fiber. The All2All time also increases with t because each MPI process owns
a bigger portion of the data, increasing the All2All communication cost per process.
Therefore, increased All2All time might nullify the advantage of reduced broadcast
time when we increase c and t, especially on lower concurrency. For example, using
c>4 does not reduce the total communication time on 8,192 as shown in Figure 5.7.

Figure 5.7 and Figure 5.8 reveal that shorter communication time needed by
Split-3D-SpGEMM makes it faster than Sparse SUMMA (2D) on higher concurrency.
Figure 5.9(b) demonstrates that both communication and computation time scale
well for Split-3D-SpGEMM with c = 16, t = 6 when squaring NaluR3 on Edison. By
contrast, communication time does not scale well for Sparse SUMMA (Figure 5.9(a)),
which eventually limits the scalability of 2D algorithms on higher concurrency.

5.2.3. Strong Scaling of Split-3D-SpGEMM. In this subsection, we show
the strong scaling of Split-3D-SpGEMM with the best parameters on higher concur-
rency (c = 16, t = 6 on Edison, and c = 16, t = 8 on Titan) when multiplying real
and random matrices. Figure 5.10 shows the strong scaling of Split-3D-SpGEMM
when squaring seven real matrices on Edison. When we go from 512 to 32,768 cores
(64× increase of cores), the average speedup of all matrices in Table 5.1 is about 27×
(min: 9× for delaunay n24, max: 52× for mouse gene, standard deviation: 16). We
observe that Split-3D-SpGEMM scales better when multiplying larger (e.g., it-2004)
and denser matrices (e.g., mouse gene and HV15R) because of the availability of more
work. By contrast, delaunay n24 is the sparsest matrix in Table 5.1 with 6 nonzeros
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Fig. 5.10: Strong scaling of Split-3D-SpGEMM with c = 16, t = 6 when squaring real
matrices on Edison. Large (e.g., it-2004) and dense (e.g., mouse gene and HV15R)
matrices scale better than small and sparse (e.g., delaunay n24) matrices.
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Fig. 5.11: Strong scaling of Split-3D-SpGEMM with c = 16, t = 8 on Titan when
multiplying two G500 matrices.

per column, and Split-3D-SpGEMM does not scale well beyond 8,192 processor when
squaring this matrix.

Next, we discuss strong scaling of Split-3D-SpGEMM for randomly generated
square matrices whose dimensions range from 224 to 227. Figures 5.11, 5.12a, and
5.12b show the strong scaling of multiplying two structurally similar random matrices
from classes G500, ER, and SSCA, respectively. Once again, Split-3D-SpGEMM
scales better when multiplying larger (e.g., scale 27) and denser matrices (G500 and
ER matrices have 16 nonzeros per row, but SSCA matrices have 8 nonzeros per row).
Multiplying matrices with more nonzeros per row and column is expected to yield
better scalability for these matrices.
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Fig. 5.12: Strong scaling of Split-3D-SpGEMM with c = 16, t = 8 on Titan when
multiplying two (a) ER and (b) SSCA matrices.

5.3. Multiplication with the Restriction Operator. Multilevel methods are
widely used in the solution of numerical and combinatorial problems. Such methods
construct smaller problems by successive coarsening. The simplest coarsening is graph
contraction: a contraction step chooses two or more vertices in the original graph G
to become a single aggregate vertex in the contracted graph G′. The edges of G that
used to be incident to any of the vertices forming the aggregate become incident to the
new aggregate vertex in G′. Constructing coarser representations in AMG or graph
partitioning [28] is a generalized graph contraction operation. This operation can
be performed by multiplying the matrix representing the original fine domain (grid,
graph, or hypergraph) by the restriction operator from the left and by the transpose
of the restriction from the right [25].

In our experiments, we construct the restriction matrix R using distance-2 max-
imal independent set computation, as described by Bell et al. [7]. An independent
set in a graph G(V,E) is a subset of its vertices in which no two are neighbors. A
maximal independent set (MIS) is an independent set that is not a subset of any
other independent set. MIS-2 is a generalization of MIS where no two vertices are
distance-2 neighbors. In this scheme, each aggregate is defined by a vertex in MIS-2
and consists of the union of that vertex with its distance-1 neighbors.

The linear algebraic formulation of Luby’s randomized MIS algorithm [37] was
originally described earlier [38]. Here, we generalize it to distance-2 case, which is
shown in Algorithm 3 at a high level. MxV signifies matrix-vector multiplication.
EwiseAdd performs element-wise addition between two vectors, which amounts to a
union operation among the index sets of those vectors. EwiseMult is the element-
wise multiplication, which amounts to an intersection operation among the index sets.
For both EwiseAdd and EwiseMult, wherever the index sets of two vectors overlap,
the values for the overlapping indices are “added” according to the binary function
that is passed as the third parameter. Line 5 finds the smallest random value among
a vertex’s neighbors using the semiring where scalar multiplication is overloaded with
the operation that returns the second operand and the scalar addition is overloaded
with the minimum operation. Line 6 extends this to find the smallest random value
among the 2-hop neighborhood. Line 8 returns the new additions to MIS-2 if the
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random value of the second vector (cands) is smaller. Line 9 removes those new
additions, newS, from the set of candidates. The rest of the computation is self-
explanatory.

Algorithm 3 Pseudocode for MIS-2 computation in the language of matrices

Input: A ∈ Sn×n, cands ∈ S1×n
Output: mis2 ∈ S1×n: distance-2 maximal independent set, empty in the beginning

1: procedure MIS2(A, cands,mis2)
2: cands = 1 : n . all vertices are initially candidates
3: while nnz(cands) > 0 do
4: Apply(cands,Rand()) . generate random values
5: minadj1←MxV(A, cands,Semiring(min, select2nd))
6: minadj2←MxV(A,minadj1,Semiring(min, select2nd))
7: minadj← EwiseAdd(minadj1,minadj2,Min()) . Union of minimums
8: newS← EwiseMult(minadj, cands, Is2ndSmaller())
9: cands← EwiseMult(cands, newS, select1st())

10: newS adj1←MxV(A, newS,Semiring(min, select2nd))
11: newS adj2←MxV(A, newS adj1,Semiring(min, select2nd))
12: newS adj← EwiseAdd(newS adj1, newS adj2,Any()) . Union of neighbors
13: cands← EwiseMult(cands, newS adj, select1st())
14: mis2← EwiseAdd(mis2, newS, select1st()) . Add newS to mis2

Once the set mis2 is computed, we construct the restriction matrix R by having
each column represent the union of a vertex in mis2 with its distance-1 neighborhood.
The neighborhood is calculated using another MxV operation. The remaining sin-
gletons are assigned to an aggregate randomly in order to ensure good load balance.
Consequently, R is of dimensions n× size(mis2).

5.3.1. Performance of Multiplying a Matrix with the Restriction Op-
erator. Figure 5.13 shows the strong scaling of different variants of 2D and 3D al-
gorithms when computing RTA with NaluR3 matrix on Edison. Split-3D-SpGEMM
with c = 16, t = 6 attains 7.5× speedup when we go from 512 cores to 32,768 cores,
but other variants of 2D and 3D algorithms achieve lower speedups. Comparing the
scaling of squaring NaluR3 from Figure 5.5, we observe moderate scalability of all
variants of 2D and 3D algorithms when multiplying NaluR3 with the restriction ma-
trix. This is because the number of nonzeros in RTA is only 77 million, whereas
nnz (A2) = 2.1 billion for NaluR3 matrix (see Table 5.2). Hence, unlike squaring
NaluR3, RTA computation does not have enough work to utilize thousands of cores.
However, the performance gap between 2D and 3D algorithms is larger when comput-
ing RTA. Figure 5.13 shows that Split-3D-SpGEMM with c = 16, t = 6 runs 8× and
16× faster than non-threaded 2D algorithm on 512 and 32,768 cores, respectively.

Figure 5.14 shows the breakdown of runtime spent by Split-3D-SpGEMM (c =
16, t = 6) to compute RTA for (a) nlpkkt160, and (b) NaluR3 matrices on Edison.
We observe that when computing RTA, Split-3D-SpGEMM spends a small fraction
of total runtime in the multiway merge routine. For example, on 384 cores in Fig-
ure 5.14(b), 37% of total time is spent on computation, and only about 7% of total
time is spent on multiway merge. This is because nnz (RTA) is smaller than nnz(A)
for NaluR3 matrix (also true for other matrices in Table 5.2). Therefore, in computing
RTA, nnz (RTA) dominates the runtime of multiway merge while nnz (A) dominates
the local multiplication, making the former less computationally intensive. Hence,
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Fig. 5.13: Strong scaling of different variants of 2D and 3D algorithms to compute
RTA for NaluR3 matrix on Edison.
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Fig. 5.14: Breakdown of runtime spent by Split-3D-SpGEMM to compute RTA for
(a) nlpkkt160, and (b) NaluR3 matrices with c = 16, t = 6 on Edison. Both commu-
nication and computation time scale well as we increase the number of cores.

despite good scaling of local multiplication, the overall runtime is dominated by com-
munication even on lower concurrency, thereby limiting the overall scaling on tens
of thousands of cores. By contrast, Split-3D-SpGEMM spends 64% of its total run-
time in computation (with 40% of the total runtime spent in multiway merge) when
squaring NaluR3 on 384 cores of Edison (Figure 5.14(b)). Hence, squaring of matrices
shows better strong scaling than multiplying matrices with restriction operators.

Finally, Figure 5.15 shows the strong scaling of Split-3D-SpGEMM (c = 16, t =
6) to compute RTA for other real matrices. Split-3D-SpGEMM attains moderate
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Fig. 5.15: Strong scaling of Split-3D-SpGEMM to compute RTA with c = 16, t = 6
for seven real matrices on Edison.
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Fig. 5.16: Breakdown of runtime spent by Split-3D-SpGEMM to multiply RTA and
R for (a) nlpkkt160, and (b) NaluR3 matrices with c = 16, t = 6 on Edison.

speedups of up to 10× when we got from 512 cores to 32,768 cores because of low
computational intensity in the computation of RTA.

5.3.2. Performance of Multiplying RTA and R. Figure 5.16 shows the
scaling and breakdown of runtime spent by Split-3D-SpGEMM (c = 16, t = 6) to
multiply RTA and R for (a) nlpkkt160, and (b) NaluR3 matrices on Edison. Even
though (RTA)R computation can still obtain limited speedups on higher concurrency,
the runtimes in Figure 5.16 and the number of nonzeros in RTAR suggest that we
might want to perform this multiplication on lower concurrency if necessary without
degrading the overall performance.



MULTIPLE LEVELS OF PARALLELISM IN SPGEMM 25

4 16 64 256 1024 4096
0.25

1

4

16

64

Number of Cores

T
im

e 
(s

ec
)

 

 

EpetraExt
2D (t=1)
3D (c=8, t=6)

(a) nlpkkt160

4 16 64 256 1024 4096
0.5

2

8

32

128

Number of Cores

T
im

e 
(s

ec
)

 

 

EpetraExt
2D (t=1)
3D (c=8, t=6)

(b) NaluR3

Fig. 5.17: Comparison of Trilinos’s EpetraExt package with 2D and 3D algorithms
when computing AR for nlpkkt160 and NaluR3 matrices on Edison.

5.4. Comparison with Trilinos. We compared the performance of our al-
gorithms with the distributed-memory SpGEMM available in EpetraExt package of
Trilinos. We observed that SpGEMM in EpetraExt runs up to 3× faster when we com-
pute AR instead of RTA, especially on lower concurrency. Hence, we only consider
the runtime of AR so that we compare against the best configuration of EpetraExt.
By contrast, our 2D and 3D algorithms are less sensitive to the order of matrix multi-
plication with less than 1.5× performance improvement in computing AR over RTA.
We use a random partitioning of rows to processors for EpetraExt runs.

Figure 5.17 shows the strong scaling of EpetraExt’s SpGEMM implementation
and our 2D/3D algorithms when computing AR on Edison. On low concurrency,
EpetraExt runs slower than the 2D algorithm, but the former eventually outperforms
the latter on higher concurrency. However, on all concurrencies, the 3D algorithm
with c = 8, t = 6 runs at least twice as fast as EpetraExt for these two matrices. We
note that these matrices are structured with good separators where 1D decomposition
used in EpetraExt usually performs better. However, given the limitations of 1D
decomposition for matrices without good separators, EpetraExt is not expected to
perform well for graphs with power-law distributions [9]. We have tried scale 24
Graph500 matrices in EpetraExt, but received segmentation fault in I/O. We also
tried other larger matrices, but EpetraExt could not finish reading the matrices from
files in 24 hours, the maximum allocation limit for small jobs in Edison. Hence,
we compare with EpetraExt on problems that it excels (AMG style reduction with
matrices having good separators) and even there our 3D algorithm does comparably
better. We could have separated the diagonal for better scaling performance [14], but
we decided not to as if would break the “black box” nature of our algorithm.

6. Conclusions and Future Work. We presented the first implementation of
the 3D parallel formulation of sparse matrix-matrix multiplication (SpGEMM). Our
implementation exploits inter-node parallelism within a third processor grid dimen-
sion as well as thread-level parallelism within the node. It achieves higher performance
compared to other available formulations of distributed-memory SpGEMM, without
compromising flexibility in the numbers of processors that can be utilized. In partic-
ular, by varying the third processor dimension as well as the number of threads, one
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can run our algorithm on many processor counts.
The percentage of time spent in communication (data movement) is significantly

lower in our new implementation compared to a 2D implementation. This is advan-
tageous for multiple reasons. First, the bandwidth for data movement is expected
to increase at a slower rate than other system components, providing a future bot-
tleneck. Second, communication costs more energy than computation [32, Figure 5].
Lastly, communication can be hidden by overlapping it with local computation, up to
the time it takes to do the local computation. For example, up to 100% performance
increase can be realized with overlapping if the communication costs 50% of overall
time. However, if the communication costs 80% of the time, then overlapping can only
increase performance by up to 25%. Overlapping communication with computation
as well as exploiting task-based programming models are subject to future work.

Our 3D implementation inherits many desirable properties of the 2D matrix de-
composition, such as resiliency against matrices with skewed degree distribution that
are known to be very challenging for traditional 1D distributions and algorithms.
However, the 3D formulation also avoids some of the pitfalls of 2D algorithms, such
as their relatively poor performance on structured matrices (due to load imbalance
that occurs on the processor on the diagonal), by exploiting parallelism along the
third dimension. This enabled our algorithm to beat a highly-tuned 1D implementa-
tion (the new EpetraExt) on structured matrices, without resorting to techniques such
as matrix splitting that were previously required of the 2D algorithm for mitigating
the aforementioned load imbalance [14].

Our experimental results indicate that at large concurrencies, performance of
the inter-node communication collectives becomes the determinant factor in overall
performance. Even though work on the scaling of collectives on subcommunicators
is under way, we believe that the effect of simultaneous communication on several
subcommunicators are not well studied and should be the subject of further research.
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