
UCLA
UCLA Previously Published Works

Title
Feasibility of deriving a novel imaging biomarker based on patient-specific lung elasticity 
for characterizing the degree of COPD in lung SBRT patients

Permalink
https://escholarship.org/uc/item/9x2100b0

Journal
British Journal of Radiology, 92(1094)

ISSN
0007-1285

Authors
Hasse, Katelyn
Neylon, John
Min, Yugang
et al.

Publication Date
2019-02-01

DOI
10.1259/bjr.20180296
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9x2100b0
https://escholarship.org/uc/item/9x2100b0#author
https://escholarship.org
http://www.cdlib.org/


BJR

Cite this article as:
Hasse K, Neylon J, Min Y, O'Connell D, Lee P, Low DA,  et al. Feasibility of deriving a novel imaging biomarker based on patient-specific 
lung elasticity for characterizing the degree of COPD in lung SBRT patients. Br J Radiol 2019; 91: 20180296.

https:// doi. org/ 10. 1259/ bjr. 20180296

Full PaPer

Feasibility of deriving a novel imaging biomarker based 
on patient-specific lung elasticity for characterizing the 
degree of COPD in lung SBrT patients

KaTelyn HaSSe, Ph.D., JOHn neylOn, PhD, yugang Min, PhD, Dylan O'COnnell, PhD, PerCy lee, MD, 
Daniel a lOw, PhD and ananD P SanTHanaM, PhD

Departmentof Radiation Oncology, University of California, Los Angeles Medical Plaza Driveway, Los Angeles, CA, US

Address correspondence to: Ms Katelyn Hasse
E-mail:  katelyn. hasse@ ucsf. edu

inTrODuCTiOn
Chronic Obstructive Pulmonary Disease (COPD) refers 
to a large group of progressive lung diseases that are char-
acterized by persistent reduction of airflow which inhibits 
normal breathing.1 Despite the heterogeneity of COPD 
phenotypes, diagnosis is based on symptoms and presence 
of fixed airflow obstruction, which do not fully reflect the 
heterogeneous pathophysiological conditions observed 
in COPD.2,3 There is an emerging role for quantitative 
computed tomography (CT) to assess lung structure and 
function in the evaluation of pulmonary emphysema.4,5 A 
common method employed for the detection and quantifica-
tion of the lung function is lung densitometry, where voxels 
on full inspiration lung CT scans with less than −950HU 
are classified as emphysematous tissue; this is measured by 

the relative area of voxels less than −950 HU and known as 
RA950.6,7 The percent of voxels on full expiration lung CT 
scans with less than −856 HU have been related to gas trap-
ping.8 CT densitometry has been observed to relate well to 
clinical parameters observed in a recent systematic review 
and other studies.9–11 Recently, imaging post-processing 
and registration techniques have been evaluated for linking 
inspiratory and expiratory CT lung scans to provide a clas-
sification of individual parenchymal voxels within COPD 
phenotypes such as emphysema, gas-trapping, and small 
airways disease.8,12,13 However, a clear limitation of these 
methods stems from the fact that COPD pathophysiology 
is related to changes in the tissue mechanics, which may 
not be fully represented by either a single quantitative CT 
or post-processing image pairs.14
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Objective: Lung tissue elasticity is an effective spatial 
representation for Chronic Obstructive Pulmonary 
Disease phenotypes and pathophysiology. We investi-
gated a novel imaging biomarker based on the voxel-by-
voxel distribution of lung tissue elasticity. Our approach 
combines imaging and biomechanical modeling to char-
acterize tissue elasticity.
Methods: We acquired 4DCT images for 13 lung cancer 
patients with known COPD diagnoses based on GOLD 
2017 criteria. Deformation vector fields (DVFs) from 
the deformable registration of end-inhalation and 
end-exhalation breathing phases were taken to be the 
ground-truth. A linear elastic biomechanical model 
was assembled from end-exhalation datasets with 
a density-guided initial elasticity distribution. The 
elasticity estimation was formulated as an iterative 
process, where the elasticity was optimized based on 
its ability to reconstruct the ground-truth. An imaging 
biomarker (denoted YM1-3) derived from the optimized 
elasticity distribution, was compared with the current 

gold standard, RA950 using confusion matrix and area 
under the receiver operating characteristic (AUROC) 
curve analysis.
results: The estimated elasticity had 90 % accuracy 
when representing the ground-truth DVFs. The YM1–3 
biomarker had higher diagnostic accuracy (86% vs 71 %), 
higher sensitivity (0.875 vs 0.5), and a higher AUROC 
curve (0.917 vs 0.875) as compared to RA950. Along with 
acting as an effective spatial indicator of lung patho-
physiology, the YM1–3 biomarker also proved to be a 
better indicator for diagnostic purposes than RA950.
Conclusions: Overall, the results suggest that, as a 
biomarker, lung tissue elasticity will lead to new end 
points for clinical trials and new targeted treatment for 
COPD subgroups.
advances in knowledge: The derivation of elasticity 
information directly from 4DCT imaging data is a 
novel method for performing lung elastography. The 
work demonstrates the need for a mechanics-based 
biomarker for representing lung pathophysiology.
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Although these techniques are promising, there is a need to 
further characterize COPD pathophysiology by considering the 
lung tissue mechanics. Lung function is closely related to the 
mechanical properties of the lung parenchyma.15 COPD is char-
acterized by damaged lung tissues with altered mechanical prop-
erties and ventilation profiles.16 For example, the destruction of 
collagen and elastin fibers in emphysematous tissue decreases the 
strength and elastic recoil of the tissue, subsequently reducing 
the elastic modulus.17 The dynamic mechanical properties of the 
lung and the transformation during disease is generally appreci-
ated within the field of clinical pulmonary research.18 Although 
the link between lung mechanics and disease initiation and 
progression has been established, the ability to noninvasively 
assess disease progression through mechanical property changes 
at a regional level has not been investigated. A key biomechanical 
property of tissue is its elasticity. Elastography is a non-invasive 
imaging technique for quantifying the elasticity distribution in 
tissues. Elastography techniques can provide contrast between 
the mechanical properties of normal and diseased tissue. 
Currently, elastography exists across several modalities including 
MR and ultrasound.19 The air within and motion of the lungs 
renders conventional elastography techniques difficult to imple-
ment.20 In addition, elastography has not yet been fully investi-
gated for COPD patients.

4DCT images are pertinent for lung elastography as they encap-
sulate lung tissue motion during tidal breathing.21 4DCT data 
acquisition involves CT imaging in axial cine mode with retro-
spective image sorting based on respiratory phase.22 4DCT 
images are also routinely acquired for lung cancer patients that 
receive radiation therapy.23 Since a significant portion of lung 
cancer patients also have some level of COPD, analyzing their 
4DCT images for lung elastography could yield critical infor-
mation regarding the lung tissue elasticity for COPD affected 
regions. The result of such lung elastography is novel for the field 
of COPD diagnosis and treatment.

MeTHODS anD MaTerialS
In this article, we present a 4DCT-based lung elastography 
procedure for evaluating lung tissue elasticity in COPD affected 
lungs. We further correlate the spatial distribution of lung tissue 
elasticity with the inherent GOLD severity criteria and RA950 
to validate the diagnostic and staging ability of the lung tissue 
elasticity. Using the estimated elasticity, we investigated a novel 
imaging biomarker, YM1–3. The results presented in this article 
support our hypothesis that lung tissue elasticity could lead to an 
effective biomarker for characterizing spatial lung pathophysio-
logical changes and its heterogeneity can be used for the quan-
titative evaluation of functional lung regions. In addition, the 
biomarker presented in this article performs better than RA950, 
thereby demonstrating the potential for mechanics-derived elas-
ticity as a biomarker for COPD.

Data
A set of 13 lung cancer SBRT patient 4DCT datasets were retro-
spectively obtained using a novel protocol designed to mitigate 
image artifacts at UCLA from October 2012 to August 2016.24 The 
patient datasets were acquired with patient consent and approval 

from the Institutional Review Board of UCLA (IRB #11–000620-
CR-00004). The 4DCT scans were acquired pre-treatment with 
the same acquisition protocol on Siemens Definition Flash, 
Siemens Biograph 64, and Siemens Definition AS 64 scanners 
and reconstructed with 1 mm slice thikceness using the Siemens 
reconstruction kernel B30f. The protocol required approximately 
2.5 s to scan the entire lung volume from apices to lung base.25 
The pulmonary tissue was segmented using an intensity thresh-
olding approach.26 Pulmonary function tests were available for 
all 13 of the patients.

Elastography
Biomechanical model
The primary aim of the lung elasticity evaluation for COPD 
patients was to determine if patient disease status could be 
correlated with underlying tissue elasticity derived from the 
4DCT geometry, boundary conditions, and the deformation 
vector fields. Peers have investigated characterizing lung func-
tion using only the deformation vector fields by computing 
the voxel-by-voxel expansion and contraction.2 We envision 
that integrating the three above-mentioned components using 
a biomechanical framework will enable the precise characteri-
zation of lung tissue elasticity. A biomechanical model that has 
been well validated using head and neck, breast, and lung data-
sets was used as a forward model to solve the inverse elasticity 
problem.24,27 Biomechanical property estimations are generated 
using iterative inverse deformation methods that use biomechan-
ical models to estimate the linear elasticity that duplicates the 
image dataset deformations.28 The geometry of the biomechan-
ical model was instantiated using end-exhalation lung datasets, 
where every image voxel corresponded to a finite element within 
the model. For the estimation process, an initial density-guided 
linear elastic distribution was assigned to the biomechanical 
lung model, associating a discrete elasticity value to every lung 
tissue voxel. For each patient, end-inhalation and end-exhalation 
breathing phases were first registered using an in-house optical 
flow deformable image registration (DIR) algorithm.29 The 
displacement of each voxel was taken to be the ground-truth.25,29 
The inverse elasticity problem was formulated as a parameter-op-
timization problem with an objective to determine the elasticity 
that would minimize the difference between the ground-truth 
displacement and that computed by the biomechanical model. 
The displacement of the lung boundary (between parenchymal 
and pleural tissues) obtained from the DIR algorithm were used 
as boundary condition for the elastography analysis to deform 
the biomechanical model to represent end-inhalation geometry. 
For changes in the lung boundary, the inner voxels biomechan-
ically deformed according to the linear elastic forces within the 
biomechanical model. The Euclidean distance between the initial 
and final position for each voxel was taken to be the model defor-
mation for that voxel.

Parameter optimization
A detailed description of the inverse elasticity estimation and 
underlying parameter estimation has been discussed in.24 For 
clarity, we present a brief description of the parameter opti-
mization process. Solving the inverse elasticity problem was 
carried out by (a) computing the displacement vector field for 

http://birpublications.org/bjr
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every voxel of lung tissue for a given elasticity distribution (as 
discussed above), and (b) optimizing the elasticity distribution 
that best reproduced the ground-truth.26 The tissue elasticity was 
iteratively updated and optimized and the resulting displacement 
was then compared with the ground-truth DIR displacement 
until convergence.30

Lung elasticity evaluation for COPD patients
To evaluate the correlation of disease status with underlying elas-
ticity, the patients were first classified by an experienced physi-
cian with a score of 0–4 according to the GOLD 2017 standard, 
where 0 corresponds to no limitation and 4 to very severe airway 
limitation.31 The physician had no prior knowledge of the elas-
ticity metrics of the patients. The corresponding 4DCT patient 
datasets were used to estimate the tissue elasticity and assessed 
for their ability to discriminate patient COPD status with the 
following three experiments:

Experiment 1: Documenting spatial changes in the 
elasticity for COPD patients
It is expected that the elasticity should be spatially varying 
because COPD does not present homogeneously. We expect 
the elasticity distributions to vary widely between subjects. In 
addition, correlations between the tissue displacements and 
elasticity distributions were analyzed. We expect a poor correla-
tion, since elasticity should be independent of the deformation. 
Correlations between intensity and elasticity distributions were 
also analyzed. The correlation between intensity and elasticity is 
expected to be high, as we want to compare our results to the 
intensity-derived RA950 metric. However, a perfect correlation 
would indicate that elasticity does not provide any more useful 
information than RA950.

Experiment 2: Investigating changes in elasticity 
distribution for different stages of COPD patients
An increase in the GOLD criteria reflects a decrease in the lung 
function – these changes should be evident in the underlying 
elasticity. Parenchymal voxels were segmented using an inten-
sity thresholding approach, where parenchymal voxels were 
taken to be those voxels with intensity values between −800 and 
−500 HU.26 Average elasticity values for parenchymal tissue were 
correlated with the GOLD criteria to observe for any changes 
in the lung function. Elasticity histograms were generated for 
all GOLD scores and also analyzed for change in lung tissue 
function.

Experiment 3: Comparing an elasticity-derived 
biomarker to RA950

While the elasticity estimation gives a distribution of values, 
for diagnostic purposes, it is convenient to have a binary indi-
cator of disease. A binary COPD classification was first deter-
mined based on the GOLD score; a score of 0 or 1 corresponded 
to a non-COPD (normal) classification (value of 0) and a score 
greater than 2 corresponded to a COPD classification (value of 
1).32

Using these classification methods, 9 of the patients that were 
included in this study were then classified as having COPD 
(GOLD 2–4). First, the voxel-to-voxel correlation of the 

elasticity with RA950 was investigated, to determine if the elas-
ticity information could serve as a proxy for COPD, in this 
case specifically emphysema, diagnosis. For completeness, 
RA910, RA960, and RA970 were also investigated. Second, a 
binary elasticity threshold was empirically derived to discrim-
inate patient COPD status. The relative area of voxels with an 
elasticity less than the binary elasticity threshold or Young’s 
modulus, YM1–3, was compared to the conventional RA950 
imaging metric using a confusion matrix and ROC analysis.

reSulTS
Overall, 89.35  ± 8.16% of voxels converged within 10% of the 
deformation. Table  1 denotes the convergence percentage for 
each of the patients for parenchymal tissue. 87.32  ±  4.61% of 
parenchymal voxels converged within 10% of maximum defor-
mation. The high convergence of the parenchymal tissue moti-
vates the use of the elasticity results for the remainder of the 
experiments.

Experiment 1: Documenting spatial changes in 
elasticity for COPD patients
Figure  1 (a) shows the ground–truth displacement for a 2D 
slice of non-COPD patient lung, while Figure  1(b) shows 
the resultant elasticity distribution. Figure 1(c & d) show the 
ground-truth deformation and elasticity maps, respectively, 
for a COPD patient with impaired lung function. The patients 
shown here were chosen in such a way that their maximum 
ground-truth deformation values matched. However, the 
elasticity distributions differ significantly, demonstrating the 
ability of the proposed methods to discriminate normal versus 
diseased patients. The elasticity of the COPD patient Figure 1d 
is much lower than that of the non-COPD patient (Figure 1b), 
which was expected since COPD is known to affect elastin and 
collagen in diseased tissue,17 leading to a decrease in strength 

Table 1. onvergence results of elasticity estimation study 
broken down by underlying tissue type

Patient ID Convergence percentage of voxels < 10% 
maximum deformation (%)

1 92.85

2 89.32

3 94.11

4 94.70

5 78.75

6 85.51

7 85.63

8 94.30

9 92.47

10 89.18

11 90.61

12 92.82

13 87.08

Average 87.32

http://birpublications.org/bjr
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and elasticity. This supports the hypothesis that the elasticity 
estimation discussed here can provide useful functional infor-
mation, which is explored in Experiment 2.

We now present the elasticity distribution as a function of the 
displacement magnitude as well as the voxel intensity. Table  2 
denotes the correlation coefficient between both a) displacement 
and elasticity distributions and b) the intensity and elasticity 
distributions for each patient.

On average, the correlation between elasticity and displacement 
is low with a Pearson correlation coefficient of 0.09. The low 
correlation strongly suggests that elasticity is independent of the 
displacement. Therefore, deriving functional information solely 
from displacement-based metrics may not be a good representa-
tion of the underlying pathophysiology. The correlation between 
elasticity and intensity was better, with an average coefficient 
of 0.76. This supports the hypothesis that elasticity is related 
to intensity and can be used to complement intensity-derived 
metrics, such as RA950, while still providing additional functional 
information. This will be further explored in Experiment 3.

Experiment 2: Investigating changes in elasticity 
distribution for different stages of COPD patients
Table  3 denotes maximum deformation and average elasticity, 
both for all lung tissue and parenchymal tissue only, for the 
patients stratified by GOLD score. It can be seen that, although 
maximum deformation did not have a correlation with the 
GOLD criteria, average elasticity varied with decreasing lung 
function. Furthermore, parenchymal average elasticity decreased 
with decreasing lung function, strongly suggesting that elasticity 
can provide functional lung information.

While average elasticity relates to a decrease in lung function, 
the average is a high-level representation the whole physiology. 
To evaluate whether the distribution of the elasticity informa-
tion correlates with lung function, a histogram of the elasticity 
results for the groups of patients with GOLD status 0–4 is shown 
in Figure 2. The peak of elasticity for the patients with normal 
lung function (GOLD 0–1) is significantly further to the right 
than those patients with COPD (GOLD 2–4), which corresponds 
to the average elasticity values seen in Table 3 above. The histo-
grams illustrate that the shift between non-COPD and COPD 
patients isn’t gradual. Specifically, an increase in the GOLD status 

Figure 1. 2D slices showing ground-truth displacement (a & c) and reconstructed elasticity distributions (b & d) for normal (a & b) 
and COPD (c & d) patients respectively.

Table 2. Displacement and elasticity correlation along inten-
sity and elasticity correlation results

Patient ID
Correlation between 

displacement and 
elasticity

Correlation 
between intensity 

and elasticity
1 0.14 0.76

2 0.02 0.78

3 0.03 0.61

4 0.12 0.87

5 0.02 0.91

7 0.11 0.69

7 0.08 0.83

8 0.04 0.89

9 0.22 0.26

10 0.06 0.80

11 0.02 0.86

12 0.11 0.72

13 0.15 0.85

Average 0.09 0.76

http://birpublications.org/bjr
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was characterized by an increase in the number of voxels with an 
elasticity between 1 and 3 kPa, and a significant decrease in the 
number of voxels with an elasticity between 4 and 8 kPa. This can 
be understood by the fact that COPD patients are known to have 
damaged lung tissue with decreased collagen and elastin content.

Using this information, we derived a novel elasticity-based 
imaging biomarker that represents the percentage of paren-
chymal voxels within 1–3 kPa. Specifically, a new mechan-
ics-based imaging biomarker, YM1–3, represents the percentage 
of voxels of parenchymal tissue with an elasticity between 1 and 3 
kPa. The range of voxels with elasticity between 1 and 3 kPa, will 
be explored in Experiment 3 below.

Experiment 3: Comparing an elasticity-derived 
biomarker to RA950
A visual representation of the RA950 imaging biomarker is shown 
along with the corresponding elastic modulus distributions in 
Figure 3. Figure 3 (a–e) show source CT images with HU values 
less than −950 HU highlighted in red, a visual approximation 
of RA950. Figure 3 (f–j) show the corresponding elasticity distri-
butions for the same slices. Slices are shown for patients with 
GOLD 0 (a, f) through GOLD 4 (e, j) status. It can be seen that 
the regions highlighted in red correspond to the lower elasticity 
regions in purple and dark blue. Furthermore, the prevalence of 
low intensity regions and the lowered elasticity regions increased 
with the GOLD status, illustrating that a decrease in the lung 

Table 3. Maximum deformation and average elasticity for GOLD score groups of patients

Patient averages Maximum deformation33 Average elasticity (kPa) Average parenchymal elasticity (kPa)
All 17.52 6.24 5.87

GOLD 0 10.05 6.55 5.28

GOLD 1 18.30 6.79 7.28

GOLD 2 22.82 6.33 6.06

GOLD 3 19.19 4.32 4.34

GOLD 4 8.92 4.40 4.43

Figure 2. Histogram of elasticity values for patients with GOLD scores ranging from 0 (top) to 4 (bottom).

http://birpublications.org/bjr
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function corresponded with a decrease in both intensity and 
elasticity values. RA910, RA960, and RA970 were also investigated, 
and the same overall trends were observed.

The voxels with an elasticity between 1 and 3 kPa are compared 
to a visual representation of RA950 in Figure 4. Figure 4a depicts 
a source CT image with voxel intensity of less than −950 high-
lighted in red to illustrate RA950. Figure 4b shows the recon-
structed elasticity distribution, with voxel elasticity between 1 
and 3 kPa also highlighted in red. These values were derived 
from the histogram in Figure  2. Many of the highlighted 
regions overlap between Figure 4a,b, demonstrating the poten-
tial of low elasticity values to be indicative of impaired lung 
function.

To further illustrate the diagnostic potential of an elasticity 
COPD metric, a confusion matrix was used to compare the diag-
nostic capabilities of YM1–3 versus RA950 and is shown for each 
metric respectively in Figure 5 below.

Patients with confirmed COPD are denoted with a red asterisk, 
while patients with normal lung function are denoted with a 
blue dot. Figure  5a shows the average RA950 value for each 
patient. We adopted a 5% value of average RA950 as a threshold 
for densitometrically defined emphysema.34–36 Figure 5b shows 
the average YM1–3 for each patient, with the same patient 
labels as in Figure 5(a). A threshold YM1–3 of 2% was empiri-
cally derived to define emphysema. The upper left quadrant of 
each figure illustrates the true positives, the right upper quad-
rant illustrates false positives, the lower left quadrant illus-
trates false negatives, and the lower right quadrant illustrates 
true negatives. It can be seen that using a diagnostic criteria 
derived from RA950 results in only 4 true positives, while the 
remaining COPD patients are misclassified as non-COPD. 
Conversely, using the elasticity diagnostic criteria, 7 of the 8 
COPD patients are correctly classified. All non-COPD patients 
are correctly classified with RA950 while 1 non-COPD patient 
is misclassified with the elasticity metric.

The statistical measures used to evaluate the two metrics are 
shown in Table  4. The YM1–3 metric had a significantly (p < 
0.05) higher accuracy than RA950. YM1–3 was more sensitive 
as a COPD metric than RA950, but RA950 was more specific. 
Specificity describes the extent to which reported positives 
represent the condition of interest. YM1–3 was less specific 
than RA950 because of the patient who would be falsely iden-
tified as COPD-positive, seen in the upper right quadrant of 
Figure 5b. To evaluate a single metric independent of threshold, 
the area under the ROC curve (AUROC) was investigated and 
is also listed in Table 4. The AUROC is higher for YM1–3 when 
compared to RA950, which indicated that, for the cases evalu-
ated here, YM1–3 classified the patient cases better than the 
conventional densitometric metric, RA950. This demonstrates 
that the elasticity is a superior indicator of the underlying lung 
pathophysiology.

Figure 3. Illustration of source CT with HU values less than −950 HU highlighted in red shown for a GOLD 0 (a), GOLD 1 (b), GOLD 
2 (c), GOLD 3 (d), and GOLD 4 (e) patient. Elasticity distributions for same patients are shown in (f–j).

Figure 4. The conventional RA_950 imaging metric and an 
initial elasticity derived imaging metric for the same 2-D slice 
of a patient left lung.

http://birpublications.org/bjr
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In summary, the aforementioned three experiments demonstrate 
the ability of lung tissue elasticity to serve as a spatial quantifica-
tion of disease extent. Furthermore, we demonstrated the ability 
of the mechanics-based imaging biomarker YM1–3 to guide the 
diagnosis and staging procedures for COPD patients.

DiSCuSSiOn
In this article, we investigated lung tissue elasticity as a poten-
tial imaging biomarker for COPD diagnosis using a set of 13 
patients. Accuracy of the elasticity estimation was demonstrated 
by the high convergence percentages. The elasticity distributions 
allowed for the depiction of functional lung regions based on 
lung deformation biomechanics. Future work will investigate 
mapping the elasticity values to specific structures in the lung 
and evaluating changes for patients at various GOLD stages. This 
information has the potential to be used for the early detection 
of GOLD 1 disease. Furthermore, a the elasticity information 
was translated into a mechanics-based biomarker (YM1–3) that 
was investigated in this article for evaluating disease staging and 
progression, with results similar to and exceeding that of RA950 
based scoring of COPD.

While the novel mechanics-based metric shows great promise 
for COPD diagnosis and staging, we would like to highlight two 
limitations of the current work. First, the input data stems from 
4DCT scans of lung cancer radiotherapy patients. The accuracy of 
the metric will depend on the accuracy and reproducibility of the 
4DCT technique. Furthermore, 4DCT is not conventionally used 
for COPD patients because of its inherently high imaging dose. 

The lesions of the lung cancer patients might also further affect 
the results. Currently, SPIROMICS studies have employed an 
effective imaging dose of 3.2 mSv in their protocols for acquiring 
the total lung capacity.37 We anticipate that with an increasing 
scope of application for 4DCT in COPD diagnosis and staging, 
imaging experts will focus on reducing the imaging dose to a 
level that is within the imaging limits for COPD. For instance, 
prospective and low dose scanning techniques are being inves-
tigated by peers for reducing the 4DCT imaging dose. Once the 
dose can be reduced for the assessment of COPD, the scans can 
be used for a longitudinal assessment of COPD progression and 
better differentiation of the degree and type of COPD. Elastog-
raphy methods using deformation seen between RV and TLC 
lung datasets are also being investigated.

Second, the biomechanical model employs a linear elastic 
approach for the lung elastography. While the linear elastic 
model is shown to be applicable for COPD lung during normal 
breathing, we anticipate that for representing the full range 
of breathing motion, we will need to employ a hyperelastic 
process.38 In future studies, the linear elastic assumptions will 
be expanded to hyperelastic constitutive laws. Furthermore, 
as MR elastography techniques mature and become more 
applicable to the lungs, the model-guided elastography will 
be validated and the YM1–3 metric will need to be updated 
accordingly.

From a radiotherapy perspective, the development of functional 
tissue-sparing treatment plans guided by the elasticity information 
will be investigated. A limitation of the patient datasets used in 
this study is the small sample size that was collected in a radio-
therapy setting, so functional information was a byproduct of the 
radiology reports and no data was available as a healthy control. 
Future work will focus on collecting and analyzing mainstream 
COPD data to further evaluate the diagnostic potential. Further-
more, we will investigate the development of a clinical protocol 
to focus on explicitly validating lung regions affected by COPD, 
both emphysema and small airways disease, with a pulmonary 
radiologist.

Figure 5. (a) RA950 for each patient and (b) YM1–3 for each patient. Patients with confirmed COPD are denoted with red stars.

Table 4. Statistical measures used to analyze prediction accu-
racy of the conventional RA950 versus YM1–3

RA950 YM1–3

Accuracy 0.7142 0.8571

Sensitivity 0.5 0.875

Specificity 1 0.833

AUROC 0.875 0.917

http://birpublications.org/bjr
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In summary, a novel imaging biomarker was developed using 
a physics-based biomechanical model and 4DCT-driven lung 
elastography. A preliminary imaging biomarker for COPD was 
assessed in comparison to the conventional RA950 and performed 
favorably. The resultant elasticity distributions gained from our 
methodology can be used to identify functional regions of paren-
chymal tissue, leading to patient-specific treatment options and 

guiding pulmonary physicians as to the early management of 
COPD.
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