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The ordering effect of sequential treatment addition is present in many problem areas ranging

from online search ranking and job scheduling to election standardization and the design of

clinical trials. The straightforward approach to studying this ordering effect on a response

is to test each permutation of the treatment components. When the run size becomes too

costly, a random sample of permutations can instead be used for estimation and inference.

Noting the inefficiencies present in both of these approaches, well-designed order-of-addition

experiments have been proposed to reduce the computational complexity of studying the

ordering effect without sacrificing statistical power; however, this problem is under-studied

in the statistical literature.

In this work we make several state-of-the-art advancements to the order-of-addition liter-

ature. By leveraging the structure of order-of-addition data, we pose flexible, position-based

models that work well in practice. These new models inspire and necessitate the creation

of parsimonious designs that guarantee stable parameter estimates. We further adapt these
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designs for a component screening problem in which the pool of treatment components is

larger than the number of available positions in the sequence.

We test our methods against several prominent order-of-addition problems, including

drug chemotherapy and job scheduling. Our models and model-based optimal designs out-

perform the accepted alternatives in most cases, and in other situations our methods act

as valuable tools for encouraging robust experimentation. To encourage the use of quality

order-of-addition designs in wider practice, we implement and compare popular, nature-

inspired metaheuristic algorithms for solving difficult design problems without closed-form

solutions. We find that certain variants and hybridized algorithms can produce quality de-

signs for obtaining stable parameter estimates in order-of-addition models or for studying

black-box deterministic functions on the space of permutations.
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CHAPTER 1

Introduction

In 1935, R.A. Fisher performed the famous “Lady Tasting Tea” experiment in which four

cups of tea were made by first introducing milk and then adding tea, while four others were

made with tea first, milk second. The goal of this experiment was to test the lady’s ability

to label the mixture present in each of the eight cups when tasting them in a random order

(Fisher, 1935). It is rumored that the lady was able to correctly identify all eight cups of

tea, leading to the conclusion that it is highly unlikely that she was blindly guessing but

rather has some ability to determine the order.

As interesting as this result is, the experiment is regarded as a historic moment in the field

of statistics because of its place as one of the supporting pillars of randomization analysis

of experiments (Basu, 1980). However, this trial also represents the first modern statistical

attempt to understand the relationship between the sequential order of a set of components

(milk and tea) and a measured outcome (correct detection of recipe).

In the decades since the lady proved her tea-tasting ability, the prevalence and com-

plexity of similar experiments has grown tremendously, reaching a diverse set of disciplines

and finding increased everyday importance on critical applied problems in the realm of data

science. Order-of-addition problems have been found when studying physical and simulated

phenomenon in many areas, such as chemistry and biology (Olsen et al., 1994; Ryberg,

2008), food science (Jourdain et al., 2009), political science (Grant, 2017), operations re-

search (Garey et al., 1976), and mechanics and engineering (Voutchkov et al., 2005). As

one specific example, we encounter order-of-addition experiments in both past and present
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drug combination projects. Combination chemotherapy has become commonly used in can-

cer treatment, viral infection eradication and super bacteria inhibition (Ding et al., 2013;

Jaynes et al., 2013; Ding et al., 2015; Silva et al., 2016; Xiao et al., 2019). A major lim-

itation in the current techniques for drug combination experimentation is that drugs are

simultaneously added and drug sequence is not considered. However, drug sequence often

plays a major role in deciding endpoint efficacy, since the early addition of certain drugs

could prepare the biological system to better accept or defend the later drugs. Pre-clinical

and clinical studies indicate that drug sequence is of great importance to improve the effect

of the treatment (MacBeath and Yaffe, 2012; Wang et al., 2020). These and other critical

applications are the driving force behind this dissertation.

1.1 Motivation and Objectives

Given the great impact that order-of-addition problems have across a diverse set of research

areas and industries, and its foundation in classical statistics, it is astounding that robust

statistical methodology for the design or analysis of order-of-addition experiments has only

recently been developed. The key problem faced by practitioners looking to solve order-of-

addition problems is the combinatorial explosion that takes place as the size of the component

pool grows. Many of the recently developed models and designs, while providing a solid

foundation for the study of this problem, are lacking in flexibility and as such perform

poorly on large problems. Likewise, the existing methods fail to tackle several important

cases that are practically relevant to many applied problems. Our aim is to fill a sizable

portion of this gap while also highlighting the flexibility of our approaches and the broad

implications of this research for many relevant problems in sequential drug administration

and job scheduling.
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1.2 Outline of the Dissertation

The outline of this dissertation is as follows. In Chapter 2 we introduce many relevant ideas

to the modern study of order-of-addition experiments. Chapter 3 then presents several key

developments in the design and analysis of order-of-addition experiments, including a family

of flexible models and a robust design construction. Building on these new ideas, Chapter

4 studies the more nuanced problem of order-of-addition screening designs, in which the

number of available positions cannot accommodate the number of components. As such,

the endpoint analysis must isolate the most important components. We construct screening

designs to aid in this process. In order to cover other significant problems in the order-of-

addition family, we demonstrate in Chapter 5 the efficacy of nature-inspired metaheuristic

algorithms to locate optimal designs, including a thorough comparison of popular methods

and their modern variants. Chapter 6 summarizes our results and outlines other significant

research areas that are lacking in the order-of-addition literature and could be explored using

this dissertation as a foundation. Throughout this work we tie our results into many relevant

applied problems that can benefit from the developed methods.

1.3 Individual Contributions

The major individual contributions to the field of order-of-addition experiments are de-

scribed in Chapters 3 and 4. These contributions include new models and corresponding

optimal designs for analyzing data from general order-of-addition experiments, along with

the development of optimal designs for the more specialized component screening problem.

Chapter 5 presents a novel study of the use of popular metaheuristic algorithms to solve

pressing order-of-addition design problems in the areas of optimality and space-filling prop-

erties. These new methods are applied in the context of sequential drug administration and

job scheduling.
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CHAPTER 2

Current State of Order-of-Addition Research

The current state of order-of-addition research is characterized by a search for parsimonious

models and efficient designs. There are two major classes of models, which differ according

to the key assumption that is made about how the component positions interact with the

response. This chapter first introduces pivotal concepts in the design of experiments that

are used throughout our work and the notation used to frame order-of-addition problems.

Next, the existing model classes and the corresponding designs that have been constructed

are described. Finally, brief consideration is given to the many statistical and computa-

tional research areas that study problems closely related to the analysis of order-of-addition

experiments.

2.1 Overview of Relevant Design Methodology

Before describing the state-of-the-art research of order-of-addition problems, we first briefly

review the necessary background for constructing model-based designs and the applicable

criteria that will be used throughout this work. Wu and Hamada (2009) provides further

detail on many aspects of the design and analysis of controlled experiments.

2.1.1 Design Framework

We consider a design with n runs, where n is usually set by the experiment’s budget and other

practical considerations. For p experimental variables, each run is a point in p-dimensional
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space xT
i = (xi1,xi2, . . . ,xip) that details the treatment to be administered and yields the

corresponding scalar response yi. We can combine the n runs into a design matrix X =

(x1,x2, . . . ,xn)T. Depending on the nature of the experimental variables and assumptions

made about the underlying data-generating process, there are many criteria that can be used

to compare the quality of competing designs.

2.1.2 Factorial Designs

When each experimental variable is a discretized factor with a fixed number of levels, one

criterion that we can use to assess the goodness of a design is the generalized wordlength

pattern (GWLP). The GWLP (W1, . . . ,Wm) measures the aliasing of factorial effects, where

Wi ≥ 0 measures the overall aliasing of i-factor interactions on the general mean under

the standard ANOVA model. An important property of the GWLP is that it characterizes

the orthogonality or strength of a design. Xu and Wu (2001) showed that a design is an

orthogonal array of strength t if and only if W1 = · · · = Wt = 0. Applying this result,

we have W1 = 0 if and only if the design is level balanced, that is, each level appears the

same number of times in each column. Among level balanced designs, designs with small

W2 are preferred. The generalized minimum aberration criterion (Xu and Wu, 2001) favors

designs which sequentially minimize W1,W2, . . .. Generalized minimum aberration designs

are model robust in the sense that they minimize contamination of higher-order effects on the

estimation of lower-order effects. There are many variations and special cases of minimum

aberration criteria. For examples, see Fries and Hunter (1980); Tang and Deng (1999); Xu

(2003); Xu et al. (2009).
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2.1.3 Optimal Approximate Designs

Instead of a factorial approach, we can also construct designs given a statistical model and

an objective. Specifically, the assumed statistical model takes the form

yi = f(xi,β) + εi, i = 1, . . . , n, x ∈ X , (2.1.1)

where yi is the response at the vector of explanatory variables xi. The errors εi are identically

and independently distributed with zero mean and some constant variance. f(xi,β) is

a known continuous function assumed to capture the relationship through the vector of

unknown model parameters β. The p-dimensional region available for experimentation is X .

If the model f(x,β) can be written as f(x)Tβ, we refer to it as linear and the model matrix

is given by (f(x1),f(x2), . . . ,f(xn))T. Otherwise we refer to it as non-linear.

Given the study objective and the fixed total number of observations n available for the

study, our goal is to optimally select a set of |β| ≤ k ≤ n support points xi’s, i = 1, 2, . . . , k,

from X to observe responses. We require the design space to be a compact set so that the

optimum exists. Each support point is associated with a weight wi such that
∑k

i=1wi = 1. If

there are n distinct support points, each with weight 1/n, we call the collection of points an

exact design. In general, finding theoretically optimal exact designs for a fixed n is difficult.

We can instead look for optimal approximate designs, those in which the number of

support points is less than n and the weights are often unequal. For the given model and

criterion, the optimal approximate design can be implemented by rounding each nwi to

the nearest integer to ensure the resulting replicate counts sum to n. More background

on approximate designs can be found in Kiefer (1959) and Silvey (1980). We denote a k-

point approximate design with weight wi at xi, i = 1, . . . , k by ξ. If ∇f(x,β) is the partial

derivative of the mean function with respect to the model parameters β, then the normalized

information matrix for the design ξ is given by

M(ξ,β) =
k∑
i=1

wi

(
∇f(xi,β)

)(
∇f(xi,β)

)T

. (2.1.2)
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The covariance matrix of the maximum likelihood estimates for the parameters β is

inversely proportional to M (ξ,β), so making the information matrix large in some sense

is desirable. There are two widely-used criteria to meet this goal: D-optimality and A-

optimality. A D-optimal design maximizes |M(ξ)| while an A-optimal design minimizes

tr(M−1(ξ)). The D-optimality criterion seeks to minimize the volume of the confidence

ellipsoid around the parameter estimates, and the A-optimality criterion minimizes the sum

of the variances of the parameter estimates. When the model is nonlinear, the information

matrix is a function of the unknown parameters and locally optimal designs or Bayesian

optimal designs can be found (Atkinson, 1996).

Given a reference design and one of these two criteria, we can compare the quality of any

proposed design to this reference one. For convenience, we define the D- and A-efficiency of

ξ1 under model (2.1.1) relative to ξ2 respectively as

D(ξ1) = {|M (ξ1)|/|M (ξ2)|}1/p, A(ξ1) = {tr(M−1(ξ2))/tr(M
−1(ξ1))}, (2.1.3)

where p is the number of columns in the model matrix. If the above ratios are 0.5, then

the design ξ1 requires twice as many observations to perform as well as ξ2 with respect to

the given criterion. If the reference design ξ2 is optimal under the chosen criterion then we

sometimes refer to these values as the D- and A-efficiency of ξ1 without explicitly referring

to the reference design.

We can use the general equivalence theorem for checking the optimality of a design over

all designs defined on X . This result is based on directional derivative considerations of the

convex design criterion (Kiefer, 1961; Fedorov, 1972). Each convex optimality criterion has

a unique equivalence theorem. For example, under a linear model over compact space X

with the two criteria discussed above, a design ξ∗ is optimal if and only if

D : f(x)TM(ξ∗)−1f(x)− p ≤ 0 ∀x ∈ X , (2.1.4)

A : f(x)TM (ξ∗)−2f(x)− tr(M (ξ∗)−1) ≤ 0 ∀x ∈ X , (2.1.5)

with equality obtained at the design points x ∈ ξ∗. We refer to each of (2.1.4) and (2.1.5)

7



as checking conditions and call the function on the left hand side the design’s sensitivity

function.

2.1.4 Space-Filling Designs

Sometimes we are interested in understanding the relationship between the inputs to a

deterministic computer simulation and its output. While the original simulation may take

a significant amount of time to generate each output, we can train a surrogate model that

acts as a cheaper approximation of the full simulation (Fang et al., 2006; Santner et al.,

2013). Since there is no noise in the observations, we can focus on designs that minimize the

bias. Johnson et al. (1990) found that designs which in some way maximally fill the design

space are effective for this purpose. The authors propose the maximin and minimax distance

criteria for finding such space-filling designs. A design S∗ with fixed size n is a maximin or

minimax optimal design respectively if

min
s,s′∈S∗

d(s, s′) = max
S

min
s,s′∈S

d(s, s′), (2.1.6)

max
t∈T

d(t, S∗) = min
S

max
t∈T

d(t, S), (2.1.7)

where T is a collection of candidate points in the design space, S is any set of points with

cardinality n, d is a distance function and d(t, S) = mins∈S d(s, t). These designs have been

shown to work especially well for cases in which our data is modeled as a Gaussian Process,

a spatial process that generates multivariate normal observations where the covariance is a

function of the distances between the observations. For a thorough introduction to space-

filling designs with Gaussian Processes and the computer experiments that use them, see

Gramacy (2021).
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2.2 Order-of-Addition Framework

With the primary criteria that we will use to benchmark the proposed designs established,

we can introduce the major ideas behind order-of-addition experiments. In many cases,

an experimental process consists of performing a set of steps in a fixed order in which the

execution of each step depends on a set of experimental variables. At the conclusion of each

run of the process, the response or responses of interest are recorded. However, in some cases

the variables of interest are the steps of the process themselves. For example, Voutchkov

et al. (2005) studied the relationship between welding patterns of a crucial aircraft engine

mount and the resulting structural properties. While there are many variables that could

be studied as part of the welding process (time, temperature, etc.), the experimenters were

interested in understanding the impact of the order of 6 critical weld paths.

In this example of an order-of-addition experiment, the goal is to predict the structural

integrity of the finished product from the weld path sequence; however, order-of-addition

experiments may have other goals. For example, we may wish to make inferences about the

effect of the order of candidate names on a ballot on the outcome of an election (Grant,

2017) or to optimize the completion rate of a sequence of onboarding screens in a mobile

application to encourage a positive user experience. In order to design and analyze these

and other order-of-addition experiments we need a standard framework.

We call each material to be added or step to be performed in the experiment a component.

Each set of ordered components is called a sequence or ordering. If the experiment involves

m components, denoted by 0, 1, . . . ,m − 1, and the budget allows for n runs, then we can

collect a set of n orderings in an n ×m component matrix A = (aij), where each row is a

permutation of the components 0, 1, . . . ,m−1. There are a total of m! possible permutations.

Let Fm be the component matrix of the full design with m! distinct rows and m columns,

where each row is a permutation of m components. To illustrate this notation, Table 2.1

gives the component matrix of the full design for four components F4.
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Table 2.1: Component matrix for the full design F4.

Run a1 a2 a3 a4

1 0 1 2 3

2 0 1 3 2

3 0 2 1 3

4 0 2 3 1

5 0 3 1 2

6 0 3 2 1

7 1 0 2 3

8 1 0 3 2

9 1 2 0 3

10 1 2 3 0

11 1 3 0 2

12 1 3 2 0

Run a1 a2 a3 a4

13 2 0 1 3

14 2 0 3 1

15 2 1 0 3

16 2 1 3 0

17 2 3 0 1

18 2 3 1 0

19 3 0 1 2

20 3 0 2 1

21 3 1 0 2

22 3 1 2 0

23 3 2 0 1

24 3 2 1 0

Performing all possible permutations (i.e. following the full design Fm) quickly becomes

unfeasible even for experiments with five or more components. For example, in the welding

problem there are six possible welds, each following one of two directions, leading to a full

design with over 40,000 runs. Furthermore, each individual run of this experiment requires

32 hours to perform. To save time and cost, it is necessary to instead choose a subset of the

runs to perform. Natural questions then arises of which subset to choose and how to model

the response.

2.3 Relative Position Models

There have only been a few studies to develop models for studying the ordering effect. At

the heart of the models that have been proposed is a key assumption: is the ordering effect
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driven by the relative position or the absolute position of each component in the sequence?

In other words, can we influence the response by simply moving a single component to be

later in the sequence, or does understanding this relationship require that we consider which

components were displaced when the component was moved? The choice of which of these

assumptions to make about the underlying data generating process plays a significant role

in how we model the problem. However, it is often the case that our model assumption is

incorrect, so it is also important to consider that the other assumption may be the correct

one, or that the true relationship is a hybrid of both approaches. For the remainder of this

section we consider a family of models that make the assumption that the relative position

of components drives the relationship.

2.3.1 Pairwise Ordering Models

Van Nostrand (1995) and Voelkel (2019) studied order-of-addition experiments by creating

a set of psuedo-factors {Iij, 0 ≤ i < j ≤ m− 1} such that each corresponds to the pairwise

ordering of the components. For example, in the case of m = 4 components, the six pairwise

ordering factors are I01, I02, I03, I12, I13, I23. Each factor Iij has two levels, 1 and −1, indicat-

ing whether or not, respectively, component i is added before component j. Furthermore,

they considered the following pairwise ordering (PWO) model

y = β0 +
∑
i<j

βijIij + ε, (2.3.8)

where βij represents the relative position effect between components i and j and ε ∼ N(0, σ2)

is a random error.

Voelkel (2019) also constructed a class of designs for this PWO model called Order-of-

Addition Orthogonal Arrays (OofA-OAs). We use OAn,m to refer to an OofA-OA in n runs

and m components. These designs have the same information matrix as the full design Fm

when n is a multiple of 12 and m = 4, 5 or when n is a multiple of 24 and m = 6. Each

OofA-OA in m components with n runs has the property that each pair of psuedo-factors
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Table 2.2: Component matrix of OA12,4 developed by Voelkel (2019) and its set of six

pseudo-factors.

Run a1 a2 a3 a4 I01 I02 I03 I12 I13 I23

1 0 1 3 2 1 1 1 1 1 -1

2 0 2 1 3 1 1 1 -1 1 1

3 0 3 1 2 1 1 1 1 -1 -1

4 1 0 2 3 -1 1 1 1 1 1

5 1 2 3 0 -1 -1 -1 1 1 1

6 1 3 2 0 -1 -1 -1 1 1 -1

7 2 0 3 1 1 -1 1 -1 -1 1

8 2 1 0 3 -1 -1 1 -1 1 1

9 2 3 0 1 1 -1 -1 -1 -1 1

10 3 0 2 1 1 1 -1 -1 -1 -1

11 3 1 0 2 -1 1 -1 1 -1 -1

12 3 2 1 0 -1 -1 -1 -1 -1 -1

(Iij, Ikl) meets the following conditions:

1. If i 6= k, i 6= l, j 6= k, and j 6= l, the factors are orthogonal.

2. If i = k or j = l, the inner product of the factors is n/3.

3. If i = l or j = k, the inner product of the factors is −n/3.

An example of the component matrix and corresponding set of pseudo-factors for a particular

design, OA12,4, are given in Table 2.2. This table demonstrates how we can easily convert

the component matrix A into the corresponding model matrix for the PWO model (2.3.8).

Peng et al. (2019) showed that the full design Fm is optimal for the PWO model under

any concave and signed permutation invariant criterion. The authors also constructed a

class of fractional designs that are optimal under these same conditions. However, their
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designs often have an excessive number of runs and may be less useful in practice. Zhao

et al. (2020a) constructed minimally-supported designs for the PWO model containing only

one point per parameter, and Chen et al. (2020) used small OofA-OAs as blocks to construct

designs with a large number of components (7 < m < 16) that are efficient under the PWO

model. Recently, Schoen and Mee (2021) proposed an algorithmic approach to enumerating

all OofA-OAs for a given n and m. A summary of the standard PWO model is provided in

Lin and Peng (2019).

2.3.2 Triplets and Other Expansions

Several extensions of the PWO model have been considered to improve its performance. For

example, in addition to the main effects present in (2.3.8), it is common in practice to find

that a few two-factor interactions are also significant. For this reason, Mee (2020) considered

expanded pairwise models that include interactions of the pairwise factors Ijk. The model

that includes only factor interactions that involve exactly three components is dubbed the

triplets model and is given by

y = β0 +
∑
j<k

βjkIjk +
m−2∑
j=1

m−1∑
k=j+1

m∑
l=k+1

[βjk?jlIjkIjl + βjk?klIjkIkl] + ε, (2.3.9)

where βjk?jl captures the interaction effect between the relative position of components j and

k and components j and l. This model contains many more parameters than the standard

PWO model, so it requires a much larger run size to estimate; however, this also gives it

additional flexibility that may produce a better fit.

In addition to the prevalence of higher-order terms it may be the case that the relative

position effect between a pair of components grows weaker the further apart the components

are in the sequence. To account for this effect, Peng et al. (2019) considered tapered PWO

models with various levels of tapering. They also found that designs constructed via standard

optimal design algorithms are robust to the magnitude of the tapering.
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2.4 Absolute Position Models

Instead of assuming that the ordering effect is driven by the relative position of components

we can instead assume that the relationship depends only on each individual component’s

absolute position. This assumption is generally valid when there is a temporal relationship

between a component and its effect on the response. For example, in sequential drug studies,

administering an individual drug earlier in the sequence gives the drug more time to take

effect, regardless of which drugs come before or after. In this case the absolute position of

the drug drives its relationship with the response. As with the relative position assumption,

it could be that this assumption is incorrect, so it is important to base the choice of model

on the application details.

2.4.1 Component-Position Models

The Component-Position (CP) model was established by Yang et al. (2021) as an alter-

native to the PWO model. For this model the authors incorporate the absolute position

effect assumption by using a one-way layout. They constructed an indicator z
(i)
kj for each

component-position pair (k, j), such that z
(i)
kj is 1 if aij = k, and 0 otherwise. Because exactly

one component is used at each position, we have
∑m−1

k=0 z
(i)
kj = 1 for any i and j. Thus, m− 1

contrasts are needed to represent the effects of m components for each position. Because

each run is a permutation of m distinct components, we also have
∑m

j=1 z
(i)
kj = 1 for any i

and k. As a result, we can only include m−1 positions in the model. With these constraints

the CP model is given by

y = γ0 +
m−1∑
k=1

m−1∑
j=1

zkjγkj + ε, (2.4.10)

where y is the response, γ0 is the intercept, zkj is an indicator for the component-position

pair (k, j), as described above, γkj is the parameter representing the effect of component k

being added at the jth position, and ε is an independent normal random error. The authors

showed that the full design Fm is D-optimal under the CP model.
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Apart from the CP model, few other absolute position effect models have been proposed.

Two examples are the response surface models proposed by Piepho and Williams (2021) and

the Gaussian Process-based models by Xiao and Xu (2021) that attempt to estimate the

distances between positions instead of treating them as equidistant. Otherwise, the focus

has been on developing designs for the CP model.

2.4.2 Component Orthogonal Arrays

Yang et al. (2021) proposed a class of designs for the CP model (2.4.10) built from the

ideas of orthogonal arrays, the Component Orthogonal Array (COA). An n×m matrix with

entries from {0, 1, . . . ,m−1} is a COA, denoted by COA(n,m), if each row is a permutation

of {0, 1, . . . ,m− 1} and, for any subarray of two columns, each level combination (i, j), with

i 6= j and i, j = 0, 1, . . . ,m− 1, appears equally often.

Fom this definition, every level combination (i, j), with i 6= j and i, j = 0, 1, . . . ,m − 1,

must appear equally often in every two-column sub-array of a COA(n,m). Thus, to be a

COA, a design must have n = λm(m − 1) runs, where λ is an integer. Thus, COAs are

orthogonal arrays of type I, as defined by Rao (1961). An example of a COA(12,4) from

Yang et al. (2021) with the corresponding CP model matrix is given in Table 2.3

Yang et al. (2021) proposed an algorithm that for any m such that m is prime or a prime

power, produces a COA(m(m− 1), m). Zhao et al. (2020b) created a new criteria and used

it to find COAs with m = 6, and Huang (2021) presented a new recursive construction that

can generate COAs for any m.

2.5 Related Literature

In addition to the published literature on order-of-addition experiments, there are several

other research areas that tackle order-of-addition problems, such as studying the relationship

between a response and a set of permutations, or locating the permutation that minimizes
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Table 2.3: COA(12,4) presented by Yang et al. (2021) and the corresponding CP model

matrix.

Run a1 a2 a3 a4 z11 z21 z31 z12 z22 z32 z13 z23 z33

1 0 1 2 3 0 0 0 1 0 0 0 1 0

2 0 2 3 1 0 0 0 0 1 0 0 0 1

3 0 3 1 2 0 0 0 0 0 1 1 0 0

4 1 0 3 2 1 0 0 0 0 0 0 0 1

5 1 2 0 3 1 0 0 0 1 0 0 0 0

6 1 3 2 0 1 0 0 0 0 1 0 1 0

7 2 0 1 3 0 1 0 0 0 0 1 0 0

8 2 1 3 0 0 1 0 1 0 0 0 0 1

9 2 3 0 1 0 1 0 0 0 1 0 0 0

10 3 0 2 1 0 0 1 0 0 0 0 1 0

11 3 1 0 2 0 0 1 1 0 0 0 0 0

12 3 2 1 0 0 0 1 0 1 0 1 0 0

the response. These related techniques come from research in designs for other controlled

experiments, active learning on a pool of permutations, and general optimization on discrete

spaces. We briefly review each of these areas.

2.5.1 Alternative Experiments

There are several research areas in experimental design that have a similar premise to order-

of-addition experiments but vary in their applicability to the problems proposed here. The

major discrepancies between these methods and the design of order-of-addition experiments

involve the underlying assumptions placed on the component relationships that allow for

unique construction methods and models.

One such related area is that of crossover experiments. Designs for crossover experiments
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are used to study multiple treatments that are applied to units over several periods (Jones

and Kenward, 2015). While this appears similar to our objectives, there are some major dif-

ferences. In order-of-addition experiments, a single response is recorded after all components

have been added to the treatment. In contrast, a single crossover trial has multiple observed

responses, as each component is considered to be a treatment on its own. Additionally, the

primary objective differs between the two classes of experiments. For our case, interest is

often in finding the addition order that optimizes an endpoint response. In crossover ex-

periments the goal is to instead compare the effects of individual components. Thirdly, the

underlying assumptions placed on the component effects differ between the two situations.

In an order-of-addition experiment, the effects are believed to be dependent on the order of

component administration. In a crossover trial, each component has a fixed effect, which

may carry over to the next period but does not depend on the order of administration. Due

to these differences, the results of design and analysis for crossover trials are not applicable to

order-of-addition experiments. For an introduction to the models and designs for crossover

experiments see Bose and Dey (2015).

Order-of-addition experiments can also be viewed as a constrained version of mixture

experiments (Box and Draper, 2007; Cornell, 2011). Mixture experiments are those in which

each run is a set of proportions detailing how much of a certain ingredient to include in the

mixture. The response is modeled as a function of these proportions. This means that for

m components, design points are selected from the continuous (m − 1)-simplex. The most

common models used for these experiments are Scheffé polynomials (Scheffé, 1958). However,

order-of-addition experiments are more complicated in that each run must be a permutation

of m components. If we divide each row of the component matrix A by
∑m−1

j=0 aij, then

we get a component mixture matrix C = (cij) that covers only a small, discrete subspace

of the simplex. The optimal design points for modeling mixture experiments with Scheffé

polynomials often fall along the vertices and boundaries of the full simplex, few of which

are included in this subspace. As a result, optimal designs for these models cannot be
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used explicitly for order-of-addition experiments. However, the models and methods of the

mixture experiment literature may be useful in cases in which the relationship between

both the order and concentration of components with the response is being investigated.

For example, Piepho and Williams (2021) recently proposed regression models for order-of-

addition experiments based on the principles of mixture experiments.

2.5.2 Pool-based Active Learning

As an alternative to a designed experiment, we can also consider sequential experimentation

with active learning to solve order-of-addition problems. These techniques are useful when

we have a large pool of candidates (in our case a set of permutations), and the goal is to

optimize a response, yet obtaining the response for a specific candidate is quite expensive.

For these cases we instead collect a small initial sample of responses and then iteratively

sample at new locations to gain more information about the problem.

There are two distinct bodies of literature that tackle the problem of active learning

over the space of the permutations. The first focuses on the problem of recovering the true,

optimal ordering of a set of components by querying the pairwise preferences. Collecting

just a small, yet targeted set of these pairwise orderings can lead to accurate recovery of

the best sequence. There are several algorithms for performing this type of active learning,

many of which rely on some type of clustering or statistical learning paradigm (Mitliagkas

et al., 2011; Ailon, 2012). These methods are especially relevant in practice for real-time

matching of user preferences to search result or product recommendation orderings. However,

since we typically consider the entire experimental process holistically in order-of-addition

experiments, we rarely have access to the response for individual pairs of components.

The second body of active learning literature that deals with the space of permutations

involves optimizing a response given the entire permutation sequence. This is usually done

either for a given set of features, such as in the case of matching individual users to items

they will be interested in, or generally for black-box optimization problems. In the first case,
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several state-of-the-art Reinforcement Learning solutions have been proposed, whereas in

the second case it is more common to use Bayesian Optimization (Baptista and Poloczek,

2018; Emami and Ranka, 2018; Mena et al., 2018). While the first problem generally requires

more data than we have access to prior to running the experiment, the second problem has

been studied in the context of order-of-addition experiments in Xiao et al. (2020). In this

work the authors present an active learning framework in conjunction with order-of-addition

models and initial designs to optimize the response when the experimenter is interested in

both the ordering effect and additional covariates associated with each component. The

development of active learning algorithms to solve order-of-addition problems is a growing

area of research. In Chapter 4 we explore the ability of our proposed designs to improve the

speed of convergence of such algorithms.

2.5.3 Optimization over Permutations

In addition to active learning optimization approaches, there have been many solvers pro-

posed for optimization over the space of permutations generically. Buchhei and Jünger (2005)

reviews many of these approaches, but this is still only a small sample of the many methods

that have been studied for discrete optimization on the finite symmetric group. In addition

to general optimization on the space of permutations, there has been extensive work done in

the creation of solvers for specific problems. Two primary examples of this are the traveling

salesman problem (TSP) and permutation flow shop scheduling (PFS). For examples of some

of the solvers that have been proposed for these two problems see Rego et al. (2011) and

Kumar and Jadon (2014), respectively. While these solvers are adept at quickly locating

the optimal value of the response, they often provide no insight into the dynamics of the

relationship between the ordering and the response and sometimes require access to data

that we often do not have available. For this reason, they provide interesting insight into

approaches we may incorporate into our models and designs, but are not directly applicable.
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2.6 Chapter Summary

In this chapter we have looked at the foundations of experimental design including useful

criteria that we will apply throughout the remainder of this work. We have also detailed the

primary developments and key motivations behind order-of-addition experiments in terms of

existing models and designs. Lastly, we have covered alternative approaches for tackling the

ordering effect problem including other design frameworks, active learning paradigms, and

brute force search algorithms. With this foundation, we now present several methodologies

that fill crucial gaps in the current statistical literature on the design and analysis of order-

of-addition experiments.
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CHAPTER 3

A Position-Based Approach for the Design and

Analysis of Order-of-Addition Experiments

Despite the progress that has been made through the developments presented in Chapter 2,

the statistical literature for designing and analyzing order-of-addition experiments remains

quite limited. In the first major contribution of this work, we present a new, position-based

framework for modeling order-of-addition problems. We then examine the limitations of

the existing models in the context of real, sequential drug administration experiments and

show how the proposed position methods are parsimonious, yet provide an interpretable,

appropriate fit.

In addition to a new class of flexible models, we present a construction algorithm for

producing optimal and near-optimal designs for both the proposed models and the existing

CP and PWO models. We evaluate the performance and properties of the designs from our

algorithm using the design criteria established in the previous chapter and compare them

with those of existing designs. This includes a study that demonstrates that the proposed

designs are highly efficient and robust to algorithm tuning and certain model misspecification.

Before elaborating on our new approach to modeling order-of-addition problems, we

first introduce two real data sets that showcase both the prevalence of the ordering effect in

critical real-life problems and the necessity for additional modeling techniques. Several recent

works have focused on the problem of choosing an optimal sequence for drug administration

described in Chapter 1. Figure 3.1 shows the component-position effects plots for four-drug

(left) and five-drug (right) order-of-addition experiments from Yang et al. (2021) and Mee
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(2020). These experiments considered four and five chemotherapeutics, respectively, for

treating lymphoma that have received FDA approval for clinical testing (Wang et al., 2020).

Each drug was tested at a fixed dosage estimated from a preliminary dose-response study.

For each sequence, a drug was administered every four hours in the four-drug study, and

every three hours in the five-drug study.

Figure 3.1: Component-position effects plots for four-drug (left) and five-drug (right) or-

der-of-addition experiments.

In each plot, the horizontal axis denotes the position at which a drug is added, and the

vertical axis denotes the mean response, in this case, a measure of cancer cell inhibition 24

hours after the first drug was administered. Each point denotes the mean response of all

runs in which the labeled drug is administered in the fixed position. For each drug, the m

dots corresponding to m different positions are connected to visualize the trend as that drug

is shifted to a later position in the sequence. The solid horizontal line, used as a reference,

represents the average response of all observations.

Both plots show that the effect of a drug on tumor inhibition depends on its position.

The four-drug plot suggests that the component effects have a nearly linear relationship

with the position. In this case, the authors found that both the PWO model (2.3.8) and
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the CP model (2.4.10) fit the data well, with predictive R2 of 0.67 and 0.54, respectively.

On the other hand, the five-drug plot suggests that the relationship between the component

effects and the position is nonlinear. Neither model fits the data well, with predictive R2

of 0.20 and 0.09, respectively. The triplets model described in Section 2.3 demonstrates

better performance on this problem, but it involves many additional model parameters that

necessitate a larger design. Our goal is thus to create new models and designs that can

handle increasingly complex situations, such as the five-drug example, without requiring an

excessive number of runs.

3.1 Flexible Position Models

We have so far presented the design matrix for order-of-addition experiments as an n ×m

matrix A = (aij), where each row is a permutation of the components 0, 1, . . . ,m − 1.

However, we now define a new n ×m matrix B = (bik) as follows: bik = j if aij = k − 1,

for k = 1, . . . ,m. Note that aij is the component used at the jth position of the ith run,

while bik is the position of component k− 1 in the ith run. For example, the left side of row

14 in Table 3.1 indicates that the four components should appear in the order (2, 0, 3, 1),

while the right-hand side equivalently states that positions (2, 4, 1, 3) should be assigned to

components 0, 1, 2, and 3, respectively. Each row of B is a permutation of the m positions

1, . . . ,m. To maintain the previous notation, we refer to B as the position matrix.

To compare our new models against the existing ones, we use the previously discussed

four- and five-drug data from Yang et al. (2021) and Mee (2020), respectively. The data from

these two experiments are given in Table 3.1 (matrices A and B) and Table 3.2 (matrix A),

respectively. Recall that the existing methods are not sufficient for estimating the interaction

effects between the drugs without sacrificing efficiency. Thus, we propose the following

broader class of linear models based on the position matrix B = (bik) that overcomes this
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Table 3.1: Design and data for a four-drug order-of-addition experiment.

Components Positions

Run a1 a2 a3 a4 b1 b2 b3 b4 y

1∗ 0 1 2 3 1 2 3 4 41.1

2∗ 0 1 3 2 1 2 4 3 37.5

3∗ 0 2 1 3 1 3 2 4 55.4

4∗ 0 2 3 1 1 4 2 3 56.5

5∗ 0 3 1 2 1 3 4 2 43.3

6∗ 0 3 2 1 1 4 3 2 51.2

7∗ 1 0 2 3 2 1 3 4 46.1

8∗ 1 0 3 2 2 1 4 3 27.8

9∗ 1 2 0 3 3 1 2 4 39.5

10∗ 1 2 3 0 4 1 2 3 46.4

11∗ 1 3 0 2 3 1 4 2 34.4

12∗ 1 3 2 0 4 1 3 2 39.4

13∗ 2 0 1 3 2 3 1 4 53.5

14∗ 2 0 3 1 2 4 1 3 51.2

15∗ 2 1 0 3 3 2 1 4 50.8

16∗ 2 1 3 0 4 2 1 3 51.4

17∗ 2 3 0 1 3 4 1 2 52.9

18∗ 2 3 1 0 4 3 1 2 53.4

19∗ 3 0 1 2 2 3 4 1 39.1

20∗ 3 0 2 1 2 4 3 1 46.4

21∗ 3 1 0 2 3 2 4 1 37.2

22∗ 3 1 2 0 4 2 3 1 42.1

23∗ 3 2 0 1 3 4 2 1 46.8

24∗ 3 2 1 0 4 3 2 1 41.8

Note: The 12 (∗) runs were used in Section 3.1.1 to fit the models and compare the quality

of the out-of-sample predictions.
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weakness:

y = f(x)Tβ + ε, (3.1.1)

where x is a row of the position matrix B, f(x) is a vector of some basis functions, β is a

vector of unknown coefficients, and ε ∼ N(0, σ2). All error terms are independent. Using

B, we can represent the two existing models, PWO and CP, as special cases of this model.

Specifically, the PWO model uses a set of basis functions that return the sign of bk − bl

for each pair of components k − 1 and l − 1 when x = (b1, . . . , bm), where bk gives the

position of component k − 1. The CP model similarly includes one indicator function for

every component-position pair (k, j). However, these methods do not take full advantage of

the benefit provided by this new position-based perspective.

Because positions have a natural order, we can study their effects using polynomial

functions (e.g., Wu and Hamada (2009)). Such a model was proposed by Anderson-Cook

and Lu (2019), but no framework or details were given. We define the orthogonal polynomials

of degree 1 and 2 over the set of positions as

p1(x) = c1

(
x− m+ 1

2

)
and p2(x) = c2

[(
x− m+ 1

2

)2

−
(
m2 − 1

12

)]
,

respectively, where c1 and c2 are scalars that ensure that the length of each contrast vec-

tor is
√
m. For example, when m = 4, c1 = 2/

√
5 and c2 = 2, and (p1(x), p2(x)) =

(−1.5c1, 1), (−0.5c1,−1), (0.5c1,−1), and (1.5c1, 1), for x = 1, 2, 3, and 4, respectively. When

m = 5, c1 =
√

1/2 and c2 =
√

5/14, and (p1(x), p2(x)) = (−2c1, 2c2), (−c1,−c2), (0,−2c2),

(c1,−c2), and (2c1, 2c2), for x = 1, 2, 3, 4, and 5, respectively.

The orthogonal polynomials have the following constraints:

(a)
m∑
x=1

pj(x) = 0, (b)
m∑
x=1

p2j(x) = m, (3.1.2)

for j = 1, 2. These constraints complicate the modeling and the study of the design op-

timality for order-of-addition experiments, because each row of the position matrix B is a

permutation of {1, . . . ,m}.
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Table 3.2: Design and data for a five-drug order-of-addition experiment.

Run Components y Run Components y

1 3 1 0 2 4 4.93 21 3 1 2 4 0 5.53

2 1 0 2 3 4 13.63 22 1 0 3 4 2 7.72

3 3 0 1 4 2 15.57 23 0 1 3 2 4 10.96

4 3 2 4 0 1 18.47 24 1 3 2 0 4 12.09

5 4 3 0 1 2 19.5 25 3 0 4 2 1 13.84

6 0 1 4 3 2 20.23 26 0 3 4 1 2 16.25

7 1 3 4 2 0 21.47 27 0 4 2 3 1 16.37

8 0 4 1 2 3 21.59 28 3 2 0 1 4 17.97

9 0 2 3 1 4 23.55 29 4 2 3 0 1 19.71

10 0 3 2 4 1 23.61 30 4 3 1 2 0 20.35

11 1 2 0 4 3 23.85 31 1 4 0 2 3 20.4

12 3 4 2 1 0 25.23 32 0 2 1 4 3 22.06

13 4 2 1 3 0 25.62 33 2 1 4 0 3 22.35

14 2 1 3 4 0 26.08 34 2 0 1 3 4 23.37

15 4 0 3 2 1 26.75 35 3 4 1 0 2 23.4

16 1 4 3 0 2 28.38 36 4 1 0 3 2 24.31

17 2 3 1 0 4 29.43 37 1 2 4 3 0 24.65

18 2 4 0 3 1 30.52 38 2 3 0 4 1 25.99

19 2 0 4 1 3 31.27 39 2 4 3 1 0 26.3

20 4 1 2 0 3 31.96 40 4 0 2 1 3 26.49
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Using these polynomials, we consider three specific models:

y = β0 +
m−1∑
k=1

p1(bk)βk + ε, (3.1.3)

y = β0 +
m−1∑
k=1

p1(bk)βk +
m−1∑
k=1

p2(bk)βkk + ε, (3.1.4)

y = β0 +
m−1∑
k=1

p1(bk)βk +
m−2∑
k=1

p2(bk)βkk

+
∑

1≤k<l≤m−1

p1(bk)p1(bl)βkl + ε, (3.1.5)

where y is the response, b1, . . . , bm are the positions of the m components, β0 is the inter-

cept, βk, βkk, and βkl are unknown parameters, and ε ∼ N(0, σ2) is a random error. We

can interpret the main effect parameters as the expected change in the response after mov-

ing the specified component one position later in the sequence. Because each row of the

position matrix is a permutation of {1, . . . ,m} and the orthogonal polynomials obey the

constraints in (3.1.2), we must remove one component effect from models (3.1.3) and (3.1.4)

in order to make the models estimable. Furthermore, model (3.1.5) only includes βkk, for

k = 1, 2, . . . ,m− 2, and does not contain any interaction terms involving component m− 1.

We can similarly craft more complicated models with higher-order terms, if needed. For

convenience, we refer to models (3.1.3), (3.1.4), and (3.1.5) as the first-order, quadratic, and

second-order position models, with m, 2m−1, and (m−1)(m+2)/2 parameters, respectively.

Table 3.3 shows the number of parameters of the three models, the PWO model and

the CP model for m = 3, . . . , 10. The first-order and quadratic position models have fewer

parameters than the others when m > 4. The second-order position model has a few more

parameters than the PWO model, but has fewer parameters than the CP model as m in-

creases. The new position models are both parsimonious and flexible. We demonstrate these

traits using both drug sequencing experiments, each of which has two objectives: fitting an

accurate model, and locating the optimal drug sequence.
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Table 3.3: Number of parameters of models for m = 3–10.

m

Model 3 4 5 6 7 8 9 10

PWO Model 4 7 11 16 22 29 37 46

CP Model 5 10 17 26 37 50 65 82

First-order Model 3 4 5 6 7 8 9 10

Quadratic Model 5 7 9 11 13 15 17 19

Second-order Model 5 9 14 20 27 35 44 54

3.1.1 Example: Sequential Administration of Four Drugs

Consider the four-drug order-of-addition experiment in Table 3.1. We first fit the five models

to the full data. The PWO and CP models have predictive R2 of 0.67 and 0.54, respectively.

The first-order, quadratic, and second-order position models have predictive R2 of 0.69, 0.66,

and 0.65, respectively. The root mean squared errors (RMSEs) for the PWO and CP models

are 2.97 and 2.86, respectively, and 3.34, 3.00, and 2.67, respectively, for the position models.

From this, we see that all five models have a similar goodness of fit. The first-order model

with four parameters is the simplest and achieves the best predictive R2 value.

To further compare the predictive accuracy of the models, we train each on the COA(12,4)

given by the runs with ∗ in Table 3.1, and predict across all 24 sequences. The PWO

and CP models have predicted versus observed correlations of 0.90 and 0.87, respectively,

while the position models have correlations 0.87, 0.88, and 0.89, respectively. All models

achieve comparable prediction accuracy, but the first-order model is able to do so with fewer

parameters and has a better predictive R2 when considering the full data set. Thus, for the

simpler data set in which the relationship appears linear (Figure 3.1), our succinct models

fit well and produce accurate predictions.

In order to interpret the position models, we first simplify each model (fit to all 24 runs)
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using forward and backward stepwise variable selection with respect to the AIC. We start

from a constant model, and instead of removing the last effect, as in (3.1.3)-(3.1.5), we allow

for the choice of any effect. The resulting models are

ŷ = 45.22 + 2.03B − 5.55C − 1.81A, (3.1.6)

ŷ = 45.22− 1.81A+ 2.03B − 5.55C + 1.41A2, (3.1.7)

ŷ = 44.68− 1.81A+ 2.03B − 5.55C + 0.98A2 − 1.62AB, (3.1.8)

where each drug has been replaced with a letter to make the conclusions clearer (e.g., A

and A2 represent the linear and quadratic effects, respectively, of drug 0). The predictive R2

values for these three models are 0.69, 0.72, and 0.74, and the RMSEs are 3.34, 3.03, and 2.76,

respectively. Further examination reveals that A, A2, and A2 and AB are not significant at

the 5% level in models (3.1.6)-(3.1.8), respectively. After removing the nonsignificant terms,

we have the reduced model ŷ = 45.22 + 2.93B − 4.65C.

In this model, the negative coefficient of drug C can be interpreted as the response being

maximized when it comes earlier in the sequence, and the positive coefficient of drug B

signifies that the response increases when it is placed later. These interpretations reflect

the linear trends we see in the four-drug component-position effects plot in Figure 3.1. Mee

(2020) and Yang et al. (2021) also performed a stepwise regression to simplify the PWO and

CP models, respectively. Their simplified PWO and CP models are comparable to models

(3.1.6)-(3.1.8) in terms of their predictive R2.

3.1.2 Example: Sequential Administration of Five Drugs

Consider the five-drug order-of-addition experiment in Table 3.2. The experiment was con-

ducted in batches. The first 20 runs were used in a batch, and the second 20 runs were

used in another batch. After fitting each model to all 40 runs, including a block variable

representing the batch effect, the PWO and CP models have predictive R2 values of 0.20

and 0.09, respectively, and the first-order, quadratic, and second-order position models have
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predictive R2 values of 0.44, 0.41, and 0.52, respectively. The RMSEs for the PWO and

CP models are 4.11 and 3.45, respectively, and 4.18, 3.80, and 2.85, respectively, for the

position models. The position models show a greater ability to capture the nonlinear trends

present in Figure 3.1. The second-order model not only produces the overall best fit, but

also generalizes well.

In order to improve interpretability and keep the final model concise, variable selection is

used to choose the most appropriate effects to include from the second-order model. Starting

with a constant model, forward and backward stepwise regressions are used to produce a

model with a small AIC. Because the choice of which effects to remove from the position

models was arbitrary, we allow for the selection of any linear, quadratic, or two-factor inter-

action effects, as in the previous example. We also allow for the selection of a block effect

that represents the two batches. With this in mind, the resulting model has a total of eight

terms, has a predictive R2 of 0.68 (larger than any competitor), and is given by

ŷ = 23.13− 4.08∆ + 3.19A+ 3.45B + 4.49D + 1.05C2 + 1.82BE − 1.64CE. (3.1.9)

In this model, the block variable is given by ∆, and each drug is again represented by a

letter to facilitate substantive conclusions. We see that the quadratic effect of drug C and

two interactions involving drug E are included in the final model. Owing to the constraints

in (3.1.2), we have A+B+C+D+E = 0. Therefore, if we replace A with −B−C−D−E,

then we get an equivalent model that follows the effect hierarchy principle (Wu and Hamada,

2009).

A direct interpretation of these significant effects is complicated by the inclusion of C2,

BE, and CE, so we consider the top 10 predicted sequences: CEBAD, CAEBD, CEABD,

CBEAD, CADEB, CEBDA, EBADC, CAEDB, CABED, and EBACD. While most of these

sequences are not in the Table 3.2 design, the sequence CAEBD has the second-highest

predicted response and the second-highest observed response.

In order to overcome the shortcomings of the PWO model when fitting to the data, Mee
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(2020) considered the triplets ordering model given in (2.3.2). Also using a forward stepwise

regression, the author found two models that include some of the additional interaction

terms. Our stepwise model (3.1.9) with df=32, predictive R2 = 0.68, and RMSE = 3.32

is competitive with both of these triplets models (df = 24, predictive R2 = 0.60, RMSE

= 3.14, and df = 26, predictive R2 = 0.51, RMSE = 3.73), and becomes more appealing

when considering the use of fewer parameters. Furthermore, the top two predicted sequences

from both of these models are CAEBD and CEBAD, aligning with the top two predicted

sequences from the position model. Our model is also better than the PWO and CP models

with interactions reported by Yang et al. (2021) in terms of various measures, including the

predictive R2 and RMSE. This further substantiates our claim that the second-order model

is able to achieve an intuitive and cost-effective fit on complex order-of-addition data, which

until now has not been possible.

Note that while our models fit well to the real data in these examples, they assume

that the absolute rather than the relative component positions are most predictive of the

response. While the substantive conclusions are similar between the two model types, it is

important to recognize that, in practice, the details of the application should be considered

when assuming a model. For example, the absolute position assumption may be more valid

in the drug administration problem, in which early exposure to a drug may produce better

results. On the other hand, the relative position assumption makes more sense in cases

where the components are known to react with each other, as in the experiments considered

by Voelkel and Gallagher (2019).

3.2 Design Construction and Optimality

The encouraging results from the previous examples inspire us to study the properties of

these new models and the possibility of constructing optimal or highly-efficient designs for

them. Because we do not know in advance which model is the best for a given application, we
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would like to have a class of designs that can perform well under different model assumptions

and various run sizes. To achieve this goal, we develop a construction method based on the

properties of Latin squares. For many values of m, this construction can quickly generate

efficient designs of any run size and in certain cases achieves D-optimality for the position-

based models.

3.2.1 Design Construction Algorithm

For a prime or a prime power m, let GF (m) = {ω0, ω1, . . . , ωm−1} be a Galois field of order m,

with ω0 being the zero element (Barker, 1986). When m is prime, GF (m) = {0, 1, . . . ,m−1}

is a ring of integers modulo m. The following algorithm constructs an n×m design for any

n ≤ m!.

Algorithm 3.1.

Step 1. For k = 1, . . . ,m − 1, define an m ×m matrix Lk such that its (i, j)th element is

ωi + ωk ∗ ωj, for i, j = 0, . . . ,m− 1, where the addition and multiplication are defined

on GF (m).

Step 2. Construct an (m2 −m)×m matrix C1 by row-wise concatenating L1, . . ., Lm−1.

Step 3. Keep the first two columns of C1 fixed and permute the last m − 2 columns of C1

in a systematic way. There are (m − 2)! permutations, admitting a total of (m − 2)!

permuted matrices, denoted as C1, . . . , C(m−2)!.

Step 4. Construct an m! ×m matrix Fm by row-wise concatenating C1, . . . , C(m−2)! and

replacing ωi with number i, for i = 0, . . . ,m− 1.

Step 5. Let Fn,m be the n×m design formed by the first n rows of Fm.

Step 6. Permute the columns of Fn,m to improve its performance under a chosen criterion.

Each Lk in Step 1 is an m×m Latin square, and the (m−1) Latin squares (L1, . . ., Lm−1)

32



are mutually orthogonal.(Two Latin squares are orthogonal if, when they are superimposed,

each pair (i, j) appears exactly once for any i, j = 0, . . . ,m− 1.) Mutually orthogonal Latin

squares are traditionally used to construct balanced incomplete block designs and orthogonal

arrays. We use them for a different purpose.

The design C1 constructed in Step 2, as well as any Ci in Step 3, is a COA(m2−m,m).

Any pair of Ci and Cj in Step 3 do not share any common permutations. The m!×m matrix

Fm constructed in Step 4 consists of all m! permutations of m components. Step 5 simply

chooses the first n rows of Fm as a candidate design, which often has good properties already.

Specifically, Anderson-Cook and Lu (2019) outline the benefits of constructing designs from

Latin squares and choosing a run size that is a multiple of m. Step 6, to be discussed later,

can be used to further improve the design according to a specific criterion.

We consider the m = 4 case, where the full design Fm consists of 24 permutations in the

order given in Table 3.4. The first four permutations form a 4× 4 Latin square L1, the next

four permutations form another Latin square L2, and so on. The first 12 permutations form

a COA(12,4). The last 12 permutations are obtained from the first 12 by permuting the last

two columns.

When n = m(m− 1), Fn,m is equivalent to the COA(m(m− 1),m) constructed by Yang

et al. (2021). However, their construction does not provide designs with other run sizes.

When m is not a prime power, a Galois field of order m does not exist. In these cases, an

exchange algorithm may produce good designs or the recursive construction of COA designs

for any m presented in Huang (2021) may be used as a starting point.

3.2.2 Theoretical Guarantees

To assess the orthogonality properties of different types of designs, we use the GWLP function

in the R package DoE.base (Groemping et al., 2014) to compute the GWLP of the component

matrixA. Recall that the GWLP measures the contamination of lower-order effect estimates
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Table 3.4: The full 24-run design F4, as generated by Algorithm 3.1.

Run a1 a2 a3 a4 Run a1 a2 a3 a4

1 0 1 2 3 13 0 1 3 2

2 L1 1 0 3 2 14 1 0 2 3

3 2 3 0 1 15 2 3 1 0

4 3 2 1 0 16 3 2 0 1

5 0 2 3 1 17 0 2 1 3

6 C1 L2 1 3 2 0 18 C2 1 3 0 2

7 2 0 1 3 19 2 0 3 1

8 3 1 0 2 20 3 1 2 0

9 0 3 1 2 21 0 3 2 1

10 L3 1 2 0 3 22 1 2 3 0

11 2 1 3 0 23 2 1 0 3

12 3 0 2 1 24 3 0 1 2

by higher-order effects and can tell us about the orthogonality, strength and robustness

properties of a design. We also note that the component matrix A and the position matrix

B have the same GWLP, provided that every component appears in every position at least

once. With these ideas in mind, the designs Fn,m produced by Algorithm 3.1 have several

desirable properties. All proofs can be found in Appendix A.

Theorem 3.1. The design Fn,m has the following properties:

(i) For any n = qm+r with integers q > 0 and 0 ≤ r < m, Fn,m has W1 = mr(m−r)/n2,

which is the minimum among all possible designs with n runs, m columns, and m levels.

(ii) If n is a multiple of m, then Fn,m has W1 = 0.

(iii) If m ≤ n ≤ m(m − 1), then Fn,m has generalized minimum aberration among all

possible designs with n runs, m columns, and m levels.

(iv) If n is a multiple of m(m− 1), then Fn,m is a COA(n,m).
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Theorem 3.1 (i) and (ii) imply that our designs always have the desirable property of

being level balanced or nearly balanced for each column. Theorem 3.1 (iii) and (iv) indicate

that our designs tend to minimize the correlation between columns and reduce aliasing among

first-order and second-order effects. Finally, having shown in Theorem 3.1 (iv) that Fn,m is a

COA when n is a multiple of m(m−1), Theorem 3.2 shows that these designs are D-optimal

under the first-order and quadratic models.

Cheng et al. (2002) and Mandal and Mukerjee (2005) showed that generalized minimum

aberration designs have high efficiency under model uncertainty for factorial experiments.

Thus, Theorem 3.1 implies that the designs constructed from our algorithm have high effi-

ciency under various models for order-of-addition experiments. Examples in the next section

provide evidence of this property.

We can also evaluate the constructed designs using the D- and A-optimality criteria (See

Section 2.1.3). It is known that the full design Fm with all m! permutations is D-optimal for

both the PWO model and the CP model (Peng et al., 2019; Yang et al., 2021). Additionally,

Peng et al. (2019) showed that this design is also A-optimal for the PWO model. We can

therefore compare the quality of any proposed design to this optimal one using D- and

A-efficiency.

However, we need to determine whether the full design Fm is indeed optimal under

the three position models in order to compare candidate designs. For this we rely on the

checking condition for optimality provided by the general equivalence theorem (Silvey, 1980).

In the case of the three position models, each x is a permutation, and X is the space of all

permutations of {1, . . . ,m}. We have the following important results regarding the full

design and COAs.

Theorem 3.2. The full design Fm is D-optimal under the first-order and quadratic position

models, as is every COA(n,m).

Theorem 3.3. The full design Fm is D-optimal for the second-order position model.
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Note that the result of Theorem 1 from Peng et al. (2019), which shows the optimality of

Fm under the PWO model for any concave and signed permutation invariant criteria, does

not apply to the three position models. As a counterexample, we consider the A-optimality

criterion. If the result of their theorem held for the position models, then we would be able

to confirm A-optimality of the full design numerically. However, as shown below, this is not

the case. Furthermore, the information matrices for the first-order and quadratic models

are block diagonal (see the proof in Appendix A), yet the closed form of the information

matrix for the second-order model is too complex to work with directly. However, the proof

of Theorem 3.3 is general and can be applied to the PWO and CP models, along with other

models, such as a third-order model that includes all estimable terms.

The D-efficiency of a design varies with respect to column permutations; that is, per-

muting the columns of a design may lead to different D-efficiencies. For this reason, we

can permute the columns in Step 6 to maximize the D-efficiency for a specific model. We

consider other opportunities for improved efficiency using level and Ci permutations in the

next section. In contrast, the GWLP is invariant with respect to column permutations, and

instead studies the combinatorial properties of the design, such as balance and orthogonality.

Through preliminary investigation, we have found that the design Fm does not satisfy the

checking condition (2.1.5), and is thus not A-optimal, for any of the position models. Using a

popular metheuristic algorithm, Differential Evolution (Storn and Price (1997); Chakraborty

(2008)), we have found nearly A-optimal designs for the position models for several values

of m. Table 3.5 shows the relative efficiency of Fm to these designs and indicates that

the full design is indeed sub-optimal in most cases, with its efficiency growing worse as m

increases. Furthermore, we have found that A-optimal designs under our models depend

on specifically which component effects are removed from the model to make it estimable.

Since our decision to remove the effect of component m− 1 was in large part arbitrary, this

phenomenon requires further study with the goal of producing A-optimal designs which are

robust to this choice. D-optimality remains the most popular design criterion, so we focus
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Table 3.5: Relative A-efficiency of Fm to near-optimal designs.

m first-order quadratic second-order

3 0.951 1 0.951

4 0.909 0.987 0.885

5 0.879 0.934 0.812

on it for the remainder of this chapter, but we consider the problem of finding A-optimal

designs for the position models more thoroughly in Chapter 5.

3.3 Efficiency and Robustness of Designs

With this new construction in hand, and its positive theoretical properties in mind, we can

compare the performance of the resulting designs to that of the existing methods. This

includes studying the efficiency of these and other designs for non-fractional run sizes and

measuring the orthogonality properties that allow for clear effect estimation. Furthermore,

there are some structural decisions to be made in the construction, leading to uncertainty in

the algorithm. We would like to understand how robust the construction is to these decisions

in addition to the different assumptions about the structure of the ordering effect present in

the models.

3.3.1 Design Efficiency Comparison

We start by comparing our designs with those from Voelkel (2019) with m = 4, 5, 7 and

various run sizes. We also compare them with the design given in Table 3.2 from Mee (2020)

with (n,m) = (40, 5). In order to present a fair comparison, we consider one design Fn,m,

which is generated by taking the first n rows of the full design Fm in Step 5, and another

design F∗n,m, which permutes the columns of Fn,m in Step 6 to maximize the geometric mean

efficiency of the models of interest. Table 3.6 compares the D-efficiencies of these designs
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under the five models and the first two terms (W1 and W2) of the GWLP. Designs F∗n,m

for which there is no improvement over Fn,m are omitted. While Voelkel (2019) used many

other criteria to compare his order-of-addition designs, many of these are derivatives of the

two we consider here, and are thus not necessary to include. Because our algorithm is able

to generate designs with variable run sizes, we also include the efficiencies of designs with

various n between m(m− 1) and m!.

Voelkel’s designs are constructed for the PWO model, and thus perform well under this

model. However, they exhibit poor performance under the CP model and have large W1 or

W2 values. In contrast, our designs are robust and perform well under all models (with the

exception of the PWO model in certain situations) and always have small W1 and W2 values.

Recall W1 = 0 if and only if a design is level balanced for each column. Voelkel’s designs are

not level balanced, as can be seen in Table 3.7, except for one case (Voelkel.12a), while our

designs are all level balanced or nearly balanced. Mee’s design performs comparably to F40,5

for all models except the PWO model, which it outperforms. When allowing for column

permutations, Mee’s design has similar properties to those of F∗40,5. In general, the F∗n,m

designs in Table 3.6, which maximize the geometric mean efficiency, may not necessarily be

optimal for any of the five models, but they are model robust and have high D-efficiencies

for all models, a point we will now explore further.

Figure 3.2 shows the maximal D-efficiency obtained using Algorithm 3.1 for each model

across a range of run sizes, n, by using a brute force search over all column permutations

in Step 6. From these plots, we find that the algorithm is able to produce highly efficient

designs for many values of n. Specifically, we find that with a proper selection of a column

permutation, our designs achieve high D-efficiency (> 85%) for every model. However, we are

also curious about the general effect of the choice of column permutation, the permutation

of the design levels, and the ordering of the Ci. These questions, along with robustness to

model misspecification are briefly considered in the next section.
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Table 3.6: Comparison of D-efficiency and GWLP across designs and models.

D-efficiency GWLP

n m Design DPWO DCP DFO DPQ DSO W1 W2

12 4 Voelkel.12a 1 0.758 1 0.955 0.953 0 4.667

Voelkel.12b 1 0 1 0.916 0.877 0.361 2.514

F12,4 0.909 1 1 1 1 0 2

20 5 Voelkel.20a 0.903 0.588 0.997 0.945 0.861 0.35 10.35

Voelkel.20b 0.97 0.623 0.993 0.931 0.854 0.625 8

F20,5 0 1 1 1 0.959 0 2.5

F∗20,5 0.898 1 1 1 0.950 0 2.5

24 5 Voelkel.24a 1 0.094 1 0.969 0.933 0.573 8.281

Voelkel.24b 1 0 1 0.967 0.94 0.639 7.635

Voelkel.24c 1 0.668 1 0.969 0.944 0.226 8.368

F24,5 0.545 0.961 0.99 0.982 0.949 0.035 3.75

F∗24,5 0.926 0.961 0.996 0.981 0.950 0.035 3.75

40 5 Mee.40 0.969 1 1 1 0.994 0 2.5

F40,5 0.889 1 1 1 0.999 0 2.5

F∗40,5 0.969 1 1 1 0.995 0 2.5

48 7 Voelkel.48 0.986 0.587 1 0.950 0.872 0.924 17.099

F48,7 0 0.967 0.993 0.985 0.876 0.018 5.688

F∗48,7 0.943 0.967 0.995 0.989 0.798 0.018 5.688

Note: D-efficiency: the larger, the better; GWLP: the smaller, the better. DX is the D-

efficiency under model X (PWO, CP, first-order, pure quadratic, and second-order, respec-

tively). In some cases, the chosen run size does not permit estimation of some models (with

D-efficiencies marked by “-”). Designs Fn,m are obtained via Algorithm 3.1 without Step

6, while F∗n,m are obtained with column permutations in Step 6 to maximize the geometric

mean efficiency of the estimable models.
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(a) m = 4

(b) m = 5

(c) m = 7

Figure 3.2: Maximal D-efficiency of F∗n,m under column permutations for variable run sizes

for (a) m = 4, (b) m = 5, and (c) m = 7.

40



Table 3.7: The 4-component, 12-run designs from Voelkel (2019).

Voelkel.12a Voelkel.12b

Run a1 a2 a3 a4 Run a1 a2 a3 a4

1 0 1 3 2 7 2 0 3 1

2 0 2 1 3 8 2 1 0 3

3 0 3 1 2 9 2 3 0 1

4 1 0 2 3 10 3 0 2 1

5 1 2 3 0 11 3 1 0 2

6 1 3 2 0 12 3 2 1 0

Run a1 a2 a3 a4 Run a1 a2 a3 a4

1 0 2 1 3 7 1 3 0 2

2 0 2 3 1 8 2 0 1 3

3 0 3 1 2 9 2 3 1 0

4 1 0 3 2 10 3 0 1 2

5 1 2 0 3 11 3 2 0 1

6 1 2 3 0 12 3 2 1 0

3.3.2 Robustness Properties

In addition to column permutations, the assignment of values to ω0, ω1, . . . , ωm−1 in Step 1

and the order of permutations of the last m− 2 columns to create the Ci in Step 3 can both

be manipulated. To understand the effects of these permutations, we repeat the algorithm

many times, with each iteration using a different combination of level, Ci, and column

permutations. This detailed study has demonstrated that for small values of m, the effect

of the choice of permutations on efficiency is large under the PWO model, and small for the

other models. Upon studying each choice of permutation in turn, we find that improvements

to the D-efficiency of the best column-permuted design are small when allowing for level and

Ci permutations. This justifies the inclusion of column permutations in Step 6 of Algorithm

3.1. The full results of this study can be found in Appendix B.

Furthermore, having shown that Algorithm 3.1 can, in general, produce designs that

are optimal or near-optimal for many models when accounting for choices in the algorithm,

we now examine the robustness of our designs to model misspecification. For example, we

see from Table 3.6 that Voelkel’s designs have lower efficiency under the CP model, while
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our designs Fn,m have lower efficiency for the PWO model. If we design our experiment

under the assumption that one of these models fits the experimental data, when in reality

a different model captures the trend, then we run the risk of choosing an inefficient design.

To test the ability of our designs to withstand such an error, we consider the trade-off in

efficiency for different levels of confidence in our selection of the true model. Here, we

find that our designs are robust to misspecification, and specifically to the assumption that

relative/absolute position effects are most relevant. The full details of this study can also be

found in Appendix B.

3.4 Chapter Summary

In this chapter, we have proposed succinct models and cost-effective order-of-addition designs

for accurately capturing important trends. Through careful research, we have seen that our

models yield a superior fit and interpretable estimates, while our designs are optimal in many

cases and robust to model misspecification. Note, however, that all of the models we consider,

with the exception of the PWO model, are based on the absolute position effects assumption.

Were we to consider further extensions of the PWO model, such as those proposed in Voelkel

and Gallagher (2019) or Mee (2020), we may see different results. Furthermore, Schoen and

Mee (2021) have recently found designs for m = 5, 6, 7 that are optimal under the PWO

model and exhibit stronger balance than Voelkel’s. Such designs may be more appropriate if

there is strong confidence in the relative position assumption, but we do not consider them

here.

Applications to sequential drug administration have further demonstrated the scientific

value of these methods to the broader research community. However, there is still much work

left to be done in this field. Mee (2020) briefly discussed the idea of ordering restrictions, yet

there are many constrained situations for which no appropriate designs exist. Additionally,

standard approaches for combining designs for the ordering effect with those for additional
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covariates result in experiments too large to be of much practical use. In the next chapter,

we consider one such related problem in which the size of the component pool is larger than

the number of available positions, so we must screen the pool of components to find the

effect of each component’s inclusion in addition to its position. There are many practical

applications of this problem, yet there are no designs for studying it.

43



CHAPTER 4

Component Screening Designs for Order-of-Addition

Experiments

We have seen that the literature on the modeling and design of order-of-addition problems

is growing to meet the needs of researchers across a diverse set of applied areas. However,

despite the growing amount of literature there are many open problems for which designed

experiments are not available. For example, in some cases a researcher may have a larger

pool of components than the number of available positions can accommodate. Putting this in

the context of sequential drug administration, when working with a large collection of anti-

tumor drugs, the practical consideration of a patient’s willingness to take many drugs at

once may limit the maximum number of positions available in the order. In such a situation

the experimenter needs to screen the drug combinations to determine which set produces

the best result, while also understanding the impact of the drug sequence on the response.

To our knowledge this problem has not yet been studied in the context of order-of-addition,

yet the same combinatorial explosion that impedes the standard order-of-addition problem

is present here. Thus, in the second major contribution of this dissertation, we formalize

this setup and develop efficient, robust designs for conducting such experiments.

In this chapter, we first make adjustments to two prominent order-of-addition models

that can then be used to capture the effects of the component subset and sequence on

the measured response in the screening problem. Next, we offer several design construction

algorithms for choosing D-optimal subsets of the full design for different choices of the model,

size of the component pool, and number of available positions by leveraging the properties
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of existing designs for the standard order-of-addition problem. To demonstrate the value of

these designs we consider the practical application of our order-of-addition screening designs

to synthetic job scheduling problems in the context of both a single-shot experiment and

an active learning framework for sequential experimentation. We find that the proposed

designs offer clear effect estimation and accurate predictions when treated as a single-shot

experiment and fast convergence to the optimal ordering in sequential experiments. All

proofs from this chapter are given in Appendix A.

4.1 Screening Models and Full Design Optimality

We assume that the number of available positions in the order is fixed throughout the

experiment and is represented by q with 1 < q < m, where m is the total number of

available components. The m components are denoted for convenience as 0, 1, . . . ,m − 1.

Under this setup there are a total of
(
m
q

)
q! = m!

(m−q)! possible ways to assign the m components

to the q positions. Each order-of-addition design is given in terms of a component matrix A

in which each column aj represents position j and aij gives the component added in position

j of run i. We refer to the design which contains every possible subset/permutation pair as

the full screening design, denoted by Sm,q. For m = 5, q = 3 the component matrix of S5,3

is given in Table 4.1. It is clear from this table that the number of possible sequences grows

quickly as the number of components increases. With no existing designs to cover this case,

our aim is to construct efficient order-of-addition screening designs that include only a small

fraction of the total set of sequences.

To analyze data from screening experiments, we consider two existing order-of-addition

models with slight changes to accommodate the screening problem. First is the CP model

from Yang et al. (2021) given in (2.4.10). Typically the constraint
∑m

k=1 z
(i)
kj = 1 for any i

and j necessitates that we remove the effect of one component and one position. However,

in our case each run is a permutation of at most m− 1 distinct components instead of a full
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Table 4.1: Full screening design S5,3 with m = 5 components and q = 3 positions.

Run a1 a2 a3
1 0 1 2
2 0 2 1
3 1 0 2
4 1 2 0
5 2 0 1
6 2 1 0
7 0 1 3
8 0 3 1
9 1 0 3
10 1 3 0
11 3 0 1
12 3 1 0
13 0 1 4
14 0 4 1
15 1 0 4

Run a1 a2 a3
16 1 4 0
17 4 0 1
18 4 1 0
19 0 2 3
20 0 3 2
21 2 0 3
22 2 3 0
23 3 0 2
24 3 2 0
25 0 2 4
26 0 4 2
27 2 0 4
28 2 4 0
29 4 0 2
30 4 2 0

Run a1 a2 a3
31 0 3 4
32 0 4 3
33 3 0 4
34 3 4 0
35 4 0 3
36 4 3 0
37 1 2 3
38 1 3 2
39 2 1 3
40 2 3 1
41 3 1 2
42 3 2 1
43 1 2 4
44 1 4 2
45 2 1 4

Run a1 a2 a3
46 2 4 1
47 4 1 2
48 4 2 1
49 1 3 4
50 1 4 3
51 3 1 4
52 3 4 1
53 4 1 3
54 4 3 1
55 2 3 4
56 2 4 3
57 3 2 4
58 3 4 2
59 4 2 3
60 4 3 2

permutation of all m components. Thus, we do not need to remove the effect of one of the

positions to make the model estimable. The component-position screening model (CPS) is

then

y = γ0 +
m−1∑
k=1

q∑
j=1

zkjγkj + ε, (4.1.1)

where y is the response, γ0 is the intercept, zkj is an indicator for the component-position

pair (k, j), γkj is the parameter representing the effect of component k being added at the

jth position, and ε is an independent normal random error. In addition to this version of the

CP model we will also use the COA designs proposed in Yang et al. (2021) and discussed in

Section 2.4 as building blocks for order-of-addition screening designs.

We also consider the pairwise ordering model first introduced by Van Nostrand (1995)

and Voelkel (2019) given in (2.3.8). In this model a set of psuedo-factors {Iij, 0 ≤ i < j ≤ m}

is created such that each corresponds to the pairwise ordering of the components. In the

standard model each factor Iij has two levels, 1 and −1, indicating whether or not component

i is added before component j. However, in the screening case not every component is present

in the sequence, so for each Iij in which component i or j is missing from the sequence we
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assign a value of 0. With this change, the pairwise ordering screening model (PWOS) is

given by

y = β0 +
∑
i<j

βijIij + ε, (4.1.2)

with random error ε ∼ N(0, σ2).

In addition to this version of the model we will use the OofA-OA class of designs that

was proposed by Voelkel and Gallagher (2019) and has since been expanded by Mee (2020)

and Schoen and Mee (2021). The properties of OofA-OAs are given in Section 2.3. These

designs will provide a basis for the construction of order-of-addition screening designs under

the PWOS model.

Note that while we have relabeled the CP and PWO models as CPS and PWOS, re-

spectively, this is done only to differentiate this study from the one in the previous chapter

concerning the standard order-of-addition problem. The fundamental structure of each model

is largely unchanged up to the minor alterations required to accommodate the data from

component screening experiments. It remains the subject of future research to consider other

modeling approaches (e.g., position-based models, Gaussian Process models, etc.). With this

in mind, the first step in finding smaller designs for order-of-addition screening experiments

is to show that the full design is optimal for the two models discussed above, so that we

may use it as a reference design for future designs. To meet this end we have the following

results:

Theorem 4.1. The full design Sm,q is D-optimal for the CPS model (4.1.1) with m ≥ 3 and

1 < q < m.

Theorem 4.2. The full design Sm,q is D-optimal for the PWOS model (4.1.2) with m ≥ 3

and 1 < q < m.

With these results, we can now compare the quality of any proposed design to this

optimal one. We can calculate the D-efficiency under the chosen model using (2.1.3) where
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ξ2= Sm,q. With these preliminary steps complete, we are ready to construct smaller, optimal

and near-optimal order-of-addition screening designs.

4.2 Component Screening Design Constructions

Considering the two models described in the previous section, we offer two primary design

constructions and a third construction for a special case not covered by the other two. The

two primary constructions are built upon existing order-of-addition designs. To motivate the

construction of order-of-addition screening designs for the CPS model, Alogirthm 4.1 utilizes

the flexible construction of COA-based designs proposed in Chapter 3. For the PWOS model

Algorithm 4.2 considers the special case of q = 3 with even m while Alogirthm 4.3 takes

advantage of the properties of the OofA-OAs constructed in Schoen and Mee (2021) to cover

the remaining cases. Each of these constructions produces fractional designs for variable m

and q that are D-optimal under one or both models. For each method, we establish settings

of m, q and n under which the resulting design is D-optimal. To understand the robustness

of our designs to model misspecification, we explore the efficiency of the designs produced

for one model under the other.

4.2.1 Optimal Design Construction for the CPS Model

In Chapter 3, we showed that the designs generated by Algorithm 3.1 for the standard

order-of-addition problem, denoted by Fn,m for n runs in m components, can achieve high

efficiency on the standard CP and PWO models with minor tuning. We base our construction

of efficient designs for the CPS model on these designs. Using the Fn,m designs we propose

the following algorithm for constructing order-of-addition screening designs with a pool of

m components, n runs and q positions.

Algorithm 4.1.
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Step 1. Generate the n×m matrix Fn,m using Algorithm 3.1.

Step 2. Construct an n × q matrix Sc
n,m,q by taking the first q odd-numbered columns of

Fn,m if q ≤ m/2. Otherwise take the dm/2e odd-numbered columns followed by the first

q − dm/2e even-numbered columns.

Step 3. Permute the columns of Sc
n,m,q to improve its performance under a chosen crite-

rion.

In the development of Algorithm 4.1 we have found that the choice of which columns

of the design to take in Step 2 does not affect the endpoint efficiency of the design under

the CPS model. However, taking the odd-numbered columns of Fn,m first followed by the

even-numbered columns produces pairwise pseudo-factors in the PWOS model with better

balance properties, and in turn yields much higher D-efficiency, than taking the first or last

q columns or taking a random subset of columns. For small m and q, a complete search over

all
(
m
q

)
sub-designs to maximize the chosen criterion could be beneficial.

To illustrate the construction we consider the case m = 5, q = 3 in which the full design

S5,3 has 60 runs as shown in Table 4.1. Instead of using this full design we construct a

design in 20 runs by first generating the design F20,5 (Table 4.2a), then taking the three

odd-numbered columns, and finally permuting the columns to maximize the efficiency under

the PWOS model (Table 4.2b). This design is D-optimal under the CPS model and has high

efficiency under the PWOS model (approximately 0.91).

Figure 4.1 further demonstrates the performance of our algorithm on the PWOS and CPS

models for different settings of m and q. Specifically, the cases (m = 5, q = 3), (m = 7, q = 3),

and (m = 7, q = 4) are considered. It is important to note that the order-of-addition design

Fn,m can only be constructed when m is prime or a prime power. This is a limitation that

could be addressed by using the recursive construction of COA designs with a non-prime

number of components presented in Huang (2021) in Step 1 of Algorithm 4.1.

From this figure we see that the construction yields designs with high D-efficiency relative
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Table 4.2: (a) 20-run optimal order-of-addition design with m = 5, F20,5. (b) 20-run

D-optimal screening design under the CPS model with m = 5, q = 3, Sc
20,5,3, generated

from Algorithm 4.1.

(a) (b)
Run a1 a2 a3 a4 a5

1 0 1 2 3 4
2 1 2 3 4 0
3 2 3 4 0 1
4 3 4 0 1 2
5 4 0 1 2 3
6 0 2 4 1 3
7 1 3 0 2 4
8 2 4 1 3 0
9 3 0 2 4 1
10 4 1 3 0 2
11 0 3 1 4 2
12 1 4 2 0 3
13 2 0 3 1 4
14 3 1 4 2 0
15 4 2 0 3 1
16 0 4 3 2 1
17 1 0 4 3 2
18 2 1 0 4 3
19 3 2 1 0 4
20 4 3 2 1 0

Run a1 a2 a3
1 2 0 4
2 3 1 0
3 4 2 1
4 0 3 2
5 1 4 3
6 4 0 3
7 0 1 4
8 1 2 0
9 2 3 1
10 3 4 2
11 1 0 2
12 2 1 3
13 3 2 4
14 4 3 0
15 0 4 1
16 3 0 1
17 4 1 2
18 0 2 3
19 1 3 4
20 2 4 0

to the full screening design Sm,q for both models. Under the PWOS model our designs

perform well, achieving efficiency over 0.90 in most cases where the run size is suitable for

estimating the model. However, in no case does our algorithm achieve the optimal design

under the PWOS model. This is to be expected though, as the Fn,m designs used to generate

these designs are similarly only near-optimal under the standard PWO model (See Section

3.3). On the other hand, the designs generated under the CPS model achieve high D-

efficiency and in some cases optimality. In fact, we have the following general result about

designs generated from Algorithm 4.1 for the CPS model.

Theorem 4.3. For n ≤ m! and 1 < q < m with n divisible by m(m− 1) and m a prime or
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(a)

(b)

(c)

Figure 4.1: D-efficiency of designs Sc
n,m,q relative to the full design Sm,q generated for

variable run sizes with (a) m = 5, q = 3, (b) m = 7, q = 3, and (c) m = 7, q = 4.
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prime power, Sc
n,m,q is D-optimal under the CPS model.

These results indicate that for all possible values of q our construction algorithm can

generate optimal designs under the CPS model with affordable run sizes. We also see from

Figure 4.1 that our designs are fairly robust to violations of the assumption of whether

absolute or relative position effects are more suitable for capturing the true relationship

between the order and the response.

4.2.2 Optimal Design Constructions for the PWOS Model

While the construction presented in Algorithm 4.1 produces near-optimal designs under the

PWOS model, none of the resulting designs are D-optimal. To fill this gap we propose two

separate constructions that can produce fractional D-optimal designs under this model. For

q ≥ 4 our designs are constructed from OofA-OAs, such as those presented in Voelkel and

Gallagher (2019) and Schoen and Mee (2021). However, for q < 4 a separate construction is

required. The following result establishes the basis of our method for constructing D-optimal

designs under the PWOS model with q = 3.

Theorem 4.4. For m > 2 the run size n of any design with D-efficiency of 1 relative to the

full design under the PWOS model has the following constraints:

(i) If q = 2, the minimum run size of a design with D-efficiency 1 is n = 2
(
m
2

)
.

(ii) If q = 3 and m is odd, the minimum run size of a design with D-efficiency 1 is n =

6
(
m
3

)
.

(iii) If q = 3 and m is even, the only run size for which a design with D-efficiency 1

exists with n < 6
(
m
3

)
is n = 3

(
m
3

)
.

Considering this result, we know that no fractional design with D-efficiency 1 exists when

q = 2 or when q = 3 and m is odd. For q < 4 this leaves only the case that q = 3 with even

m. In this case only a half fraction optimal design exists. For any even m, the following
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algorithm generates this design along with an efficient design for any n < 3
(
m
3

)
.

Algorithm 4.2.

Step 1. Generate the set of
(
m
3

)
3-component combinations {i, j, k} with 0 ≤ i < j < k ≤

m− 1.

Step 2. For every 3-component combination such that i+ j + k is even, construct the 3× 3

matrix Dijk given by

Dijk =

[
i k j
j i k
k j i

]
.

Step 3. For every 3-component combination such that i+ j + k is odd, construct the 3× 3

matrix Dijk given by

Dijk =

[
i j k
j k i
k i j

]
.

Step 4. Construct Sp
n,m,3 by first row-wise concatenating the Dijk for all 0 ≤ i < j < k ≤

m − 1 such that i + j + k is even, then concatenating the remaining Dijk and taking

the first n rows.

Table 4.3 demonstrates this construction method in the case of m = 4, q = 3. For this

scenario there are 4, 3-component combinations, with (0, 1, 3) and (1, 2, 3) summing to an

even number and (0, 1, 2) and (0, 2, 3) summing to odd. Concatenating the respective Dijk

for each of these combinations produces Sp
12,4,3, a 12-run, D-optimal design for the PWOS

model, a half-fraction of the 24-run full design.

Algorithm 4.2 covers the special case of generating half-fraction screening designs with

q = 3. We note that the construction as presented can be used to generate designs for odd

m, but the result will only achieve high efficiency, not optimality, as this case is not covered

in the following theorem.
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Table 4.3: 12-run, half-fraction D-optimal screening design for the PWOS model with

m = 4, q = 3, Sp
12,4,3, produced by Algorithm 4.2.

Run a1 a2 a3
1 0 3 1
2 D013 1 0 3
3 3 1 0
4 1 3 2
5 D123 2 1 3
6 3 2 1
7 0 1 2
8 D012 1 2 0
9 2 0 1
10 0 2 3
11 D023 2 3 0
12 3 0 2

Theorem 4.5. For n = 3
(
m
3

)
and m even, Sp

n,m,3 is D-optimal under the CPS and PWOS

models.

To visualize the performance of these designs we consider the cases (m = 6, q = 3),

(m = 8, q = 3), and (m = 10, q = 3) in Figure 4.2. We see from this figure that the

designs generated by Algorithm 4.1 achieve high D-efficiency across both models for all run

sizes considered, with the half fraction design having n = 3
(
m
3

)
runs being D-optimal as

determined in Theorem 4.5.

For q ≥ 4 we instead use OofA-OAs in q components as the building blocks of D-

optimal designs, leveraging the special properties of these designs detailed in Section 2.3.

From Voelkel and Gallagher (2019) we know that optimal OofA-OAs must have a run size

that is divisible by 12. Thus, for a given q the smallest optimal order-of-addition design has

N = 12d(
(
q
2

)
+1)/12e runs. With these properties in mind, Algorithm 4.3 generates optimal

or near optimal designs for any n ≤ N
(
m
q

)
with m > 4 and 3 < q < m.

Algorithm 4.3.

Step 1. Construct OAN,q, the smallest optimal OofA-OA in q components {0, 1, . . . , q−1},
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(a)

(b)

(c)

Figure 4.2: D-efficiency of designs Sp
n,m,3 relative to the full design Sm,3 generated for

variable run sizes with (a) m = 6 (b) m = 8, and (c) m = 10.
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with N = 12d(
(
q
2

)
+1)/12e runs.

Step 2. Generate the set of
(
m
q

)
q-component combinations {i1, i2, . . . , iq} with 0 ≤ i1 <

i2 < . . . < iq ≤ m− 1

Step 3. For every q-component combination create the N × q matrix OAN,q,i1i2...iq by sub-

stituting the levels of OAN,q according to the permutation(
0 1 . . . q − 1
i1 i2 . . . iq

)
.

Step 4. Construct Sp
m,q by row-wise concatenating the OAN,q,i1i2...iq for all 0 ≤ i1 < i2 <

. . . < iq ≤ m− 1.

Step 5. Generate Sp
n,m,q by rearranging the rows of Sp

m,q according to the following process:

1. Index each q-component combination j = {0, . . . ,
(
m
q

)
− 1}.

2. Set the index of the starting run from OAN,q,j to be rj = j (mod N).

3. For k ∈ {0, 1, . . . , N − 1} and j ∈ {0, . . . ,
(
m
q

)
− 1} add run rj + k (mod N) + 1

of OAN,q,j to Sp
n,m,q until the chosen run size n is met.

With this construction we can generate optimal designs for any combination of m and q.

Specifically, Table 4.4 demonstrates the process of creating a 72-run design for the case m =

6, q = 5. We start with the 12-run order-of-addition design in 5 components given in Schoen

and Mee (2021). This is represented as OA12,5,01234 in the left panel of Table 4.4. Next, we

consider the five other 5-component combinations and substitute the levels according to the

permutation given in Step 3 to create each OA12,5,i1i2...i5 . After concatenating these six arrays

we rearrange the rows as described in Step 5 to ensure a sufficient amount of information is

present in the first n rows if n is less than the size of the complete design. We do this by

selecting the first run from OA12,5,01234 followed by the second run from OA12,5,01235, and so

on, cycling through runs 1 through 12 and each OA12,5,j for j = 1, . . . , 6 until all runs are

accounted for. The result is a 72-run D-optimal design that is the one-fifth fraction of the

full design with 360 runs given in Table 4.4.
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Table 4.4: 72-run, fifth-fraction D-optimal screening design, Sp
72,6,5, for the PWOS model

with m = 6, q = 5 produced by Algorithm 4.3.

Run a1 a2 a3 a4 a5

OA12,5,01234

1 0 1 2 3 4

7 0 1 4 3 2

13 0 2 4 3 1

19 0 3 4 2 1

25 4 2 3 0 1

31 3 2 4 0 1

37 4 1 3 0 2

43 3 1 4 0 2

49 4 1 2 0 3

55 3 1 2 0 4

61 2 1 4 0 3

67 2 1 3 0 4

OA12,5,01345

58 0 1 3 4 5

64 0 1 5 4 3

70 0 3 5 4 1

4 0 4 5 3 1

10 5 3 4 0 1

16 4 3 5 0 1

22 5 1 4 0 3

28 4 1 5 0 3

34 5 1 3 0 4

40 4 1 3 0 5

46 3 1 5 0 4

52 3 1 4 0 5

Run a1 a2 a3 a4 a5

OA12,5,01235

68 0 1 2 3 5

2 0 1 5 3 2

8 0 2 5 3 1

14 0 3 5 2 1

20 5 2 3 0 1

26 3 2 5 0 1

32 5 1 3 0 2

38 3 1 5 0 2

44 5 1 2 0 3

50 3 1 2 0 5

56 2 1 5 0 3

62 2 1 3 0 5

OA12,5,02345

53 0 2 3 4 5

59 0 2 5 4 3

65 0 3 5 4 2

71 0 4 5 3 2

5 5 3 4 0 2

11 4 3 5 0 2

17 5 2 4 0 3

23 4 2 5 0 3

29 5 2 3 0 4

35 4 2 3 0 5

41 3 2 5 0 4

47 3 2 4 0 5

Run a1 a2 a3 a4 a5

OA12,5,01245

63 0 1 2 4 5

69 0 1 5 4 2

3 0 2 5 4 1

9 0 4 5 2 1

15 5 2 4 0 1

21 4 2 5 0 1

27 5 1 4 0 2

33 4 1 5 0 2

39 5 1 2 0 4

45 4 1 2 0 5

51 2 1 5 0 4

57 2 1 4 0 5

OA12,5,12345

48 1 2 3 4 5

54 1 2 5 4 3

60 1 3 5 4 2

66 1 4 5 3 2

72 5 3 4 1 2

6 4 3 5 1 2

12 5 2 4 1 3

18 4 2 5 1 3

24 5 2 3 1 4

30 4 2 3 1 5

36 3 2 5 1 4

42 3 2 4 1 5
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Theorem 4.6. For n = 12d(
(
q
2

)
+1 )/12e

(
m
q

)
, Sp

n,m,q is D-optimal under the PWOS

model.

Following the results of Theorems 4.5 and 4.6 we achieve significant savings by using

the screening designs produced by Algorithms 4.2 and 4.3. To further demonstrate the

efficiency of these designs, Figure 4.3 shows the D-efficiency of the designs Sp
n,m,q under

the PWO model for several values of m and q. We study the three following situations:

(m = 6, q = 4), (m = 7, q = 4), and (m = 8, q = 5).

It is important to note that for q > 3 the designs generated by Algorithm 4.3 have

efficiency 0 under the CPS model due to the fact that at least one component is absent from

at least one column of every OofA-OA. Given this natural limitation, we can only consider

the efficiency of our designs under the CPS model when q = 3. For q ≥ 4 we instead

demonstrate the value of the row rearrangement in Step 5 of Algorithm 4.2 by comparing

the final n run design to one that results from taking the first n runs of Sp
m,q in Step 4.

We can see from Figure 4.3 that the row rearrangement in Step 5 greatly improves the

efficiency of the resulting design, especially for small run sizes. In general, we find that

once the run size is sufficiently large enough to estimate the PWOS model, the design after

row rearrangement is quite efficient, with D-efficiency greater than 0.80. From these results

we conclude that between the three construction methods, we can generate designs that are

efficient, parsimonious, and in some cases optimal for estimating one or both of the screening

models. Our goal is now to see how researchers can use these designs in practice through a

simulated order-of-addition screening experiment.

4.3 Order-of-Addition Screening Experiments in Practice

In order to demonstrate the value of our proposed designs in practice, we consider a collection

of job scheduling problems of varying complexity. Job scheduling problems are a class of

well known NP-hard problems that have been critically studied in operations research (Garey
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(a)

(b)

(c)

Figure 4.3: D-efficiency of designs Sp
n,m,q relative to the full design Sm,q generated for

variable run sizes with (a) m = 6, q = 4, (b) m = 7, q = 4, and (c) m = 8, q = 5.
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et al., 1976). Specifically, we borrow the setup from Zhao et al. (2020a) in which we consider

a single machine which is tasked with sequentially processing jobs, each of which takes some

fixed time to complete and requires some fixed costs to perform. Our goal is to complete q

of the m available jobs in a specific order such that a given penalty is minimized, indicating

that the sequence is in some sense the most efficient. The penalty we choose is a quadratic

penalty given by y =
∑q

i=1 ci(
∑i

j=1 tj)
2, where tj and ci are the processing time of job j

and the cost of job i, respectively (Townsend, 1978). Considering this task, we demonstrate

the value that our proposed order-of-addition screening designs provide in capturing the

relationship between the job sequence and the endpoint penalty as well as in cheaply and

efficiently uncovering the optimal job sequence.

4.3.1 Screening Experiments for Modeling Job Scheduling Problems

To evaluate how the proposed designs can be used to model the relationship between the

component selection and sequence, we consider two situations (m = 4, q = 3 and m = 6,

q = 4) based on the problems considered in Zhao et al. (2020a). The scheduling matrices for

these problems are given in Table 4.5.

Table 4.5: Job scheduling matrices for m = 4 and m = 6 problems from Zhao et al. (2020a).

job 0 1 2 3

t 1 5 5.5 7

c 7 3 2 6

job 0 1 2 3 4 5

t 5 3 2 10 3 1

c 4 5 3 1 6 2

For the four-job problem we consider two designs which we have found are D-optimal for

the respective models. We use the 12-run design from Algorithm 4.2 for training the PWOS

model and the 12-run design from Algorithm 4.1 for training the CPS model. The PWOS

model gives average performance (R2 = 0.65, AIC = 188.83) while the CPS model yields high

performance (R2 = 0.96, AIC = 116.40). To test the predictive performance of each model

we predict across all 24 sequences and measure the observed versus predicted correlation.
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Figure 4.4: Component-position effects plots for the true data (left) and CPS predictions

(right) for the job scheduling problem with m = 4, q = 3. The CPS model is trained on a

12-run D-optimal design and predictions across all 24 runs are used to generate the plot.

The CPS model outperforms the PWOS model with a correlation of 0.91 compared to 0.54

for the PWOS model.

We can also visually interpret these models and draw some preliminary conclusions from

the component-position effects plots in Figure 4.4. For a detailed explanation of how these

plots are generated see the discussion of Figure 3.1. This figure shows the component-position

effects plot for the true data and for the CPS model predictions. Each plot is constructed

from 24 observations. The left plot is built from the 24 true values and acts as a benchmark

while the right plot is built from the 24 predictions of the fitted CPS model. We omit the

plot of the PWOS model predictions due to its average performance; however, we note that

the overall interpretations are similar. Interpreting these plots we see that the CPS model is

adept at picking up the trends of the true data. If our aim is to minimize the penalty, then

we should process job 0 first and job 2 third. The CPS model then indicates that we should

process job 1 second and not process job 3 at all. These interpretations align with the plot of

the true data and the sequence that obtains the true minimum penalty, {0, 1, 2}. This visual

analysis of course is only a first attempt at how researchers may use the proposed designs in

concert with the screening models to draw substantive conclusions. Further study may be
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Figure 4.5: Component-position effects plots for the true data (left) and the CPS predictions

(right) for the job scheduling problem with m = 6, q = 4. The CPS model is trained on a

30-run design and predictions across all 360 runs are used to generate the plot.

required to uncover and interpret any potential interactions between the components.

Considering the six-job problem, we again start from two designs inspired by the proposed

algorithms. For the PWOS model this is the 30-run D-optimal design from Algorithm 4.3.

Since this problem has a non-prime number of components, we cannot directly apply a design

generated by Algorithm 4.1 for the CPS model. For this reason we instead replace Fn,m in

Step 1 of the algorithm with the first 30 runs of the six-component COA from Huang (2021)

and use the resulting design. While this design is not D-optimal under the CPS model, it

achieves high efficiency relative to the full design.

Training the models on their respective designs, we find that the CPS model demonstrates

good performance, having R2 = 0.98, AIC = 431.60 while the PWOS model’s performance

is average, having R2 = 0.80, AIC = 491.17. Considering the predictive performance, we

predict across all 360 sequences and see similar trends to the previous problem, with the

CPS and PWOS models having observed versus predicted correlations of 0.88 and 0.47,

respectively. From these results we can see that, even as the number of components grows,

the CPS model, in concert with efficient designs, is capable of capturing the relationships

between the job sequence and the endpoint penalty.
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Finally, we can again visually interpret the output of the models. For this, we can use

the 360 predicted values from the CPS model to generate the component-position effects

plot. This plot, along with the plot built from the 360 true values are given in Figure 4.5

and can be interpreted in a similar manner to the previous problem. We again omit the

predictions from the PWOS model due to its poorer performance and to conserve space.

Due to the increased complexity of this problem, we can only deduce general conclusions

from the plot of the CPS predictions. For example, the model indicates that job 3 should

be processed last while job 0 is perhaps too costly to process at all. Furthermore, the plot

of the true data does not show a clear distinction between the other jobs when considering

the remaining positions of the sequence, while the model indicates that jobs 1 and 5 should

be processed early in the sequence. These discrepancies could be due to the fact that the

30-run design inspired by Huang (2021) is not a COA and is only near-optimal. Further

study of this construction is necessary to improve the performance of designs for the CPS

model with non-prime m.

We again note that these conclusions, while quite general, would require further study to

understand the nuances in the underlying relationship; however, from the analysis of both of

these problems we have seen that our proposed designs can be quite successful in advancing

a critical application of order-of-addition experiments.

4.3.2 Sequential Screening Experiments for Optimizing Job Scheduling Perfor-

mance

While we have seen that the proposed designs lead to stable, interpretable models, we have

so far focused on single-shot designs where the entire budget of the experiment is used at

once. However, in some cases it may be of interest to run a sequential experiment in which

the goal is to find the best sequence as quickly as possible by first obtaining the responses

from an initial design and then adding points to the design one at a time. We now aim to

demonstrate the benefit of the proposed designs for this problem. For this procedure we only
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consider the CPS model and designs generated from Algorithm 4.1. We further assume that

we have the full job sequencing dataset with a known global minimum. Within this setup,

we consider the benefit of choosing the designs we have constructed as the initial design over

a random one as follows:

1. First collect the response from the design Sc
n,m,q obtained from Algorithm 4.1 with

n = q(m− 1) + 5 and record the minimum response.

2. Next fit the CPS model to the data and calculate the Expected Improvement for all

remaining sequences in the pool (Jones et al., 1998). The Expected Improvement for

a given sequence x can be calculated as

EI(x) = (y∗ − ŷ(x))Φ
(y∗ − ŷ(x)

σ̂

)
+ σ̂φ

(y∗ − ŷ(x)

σ̂

)
,

where y∗ is the minimum value observed so far, φ and Φ are the PDF and CDF of the

normal distribution, respectively, and σ̂ is the estimate of the standard error of the

prediction.

3. Add the design point with the highest EI value to the design and calculate its response.

4. Fit the CPS model again with the updated design and record the minimum response

found so far.

5. Repeat 2-4 until the maximum number of iterations is reached.

In the first step of our sequential experiment framework, note that the number of initial

runs is set to n = q(m − 1) + 5. This is done in order to keep the number of runs in the

experiment low while ensuring sufficient degrees of freedom for estimation. To compare this

approach to a random initial design we repeat the process above with 100 random designs

and average the resulting curves. We consider two different job scheduling problems with

m = 7 and m = 11. Table 4.6 gives the values of t and c for each job for the two problems.

These values were uniformly sampled for each problem from {0, 1, . . . , 3m}.
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Table 4.6: Job scheduling matrices for active learning sequential experiments with m = 7

(left) and m = 11 (right).

Job 0 1 2 3 4 5 6

t 6 1 11 1 2 21 2

c 7 19 3 4 10 20 18

Job 0 1 2 3 4 5 6 7 8 9 10

t 6 27 13 11 20 20 5 10 20 21 17

c 17 18 19 29 28 4 24 30 10 8 1

We first consider the problem with m = 7 jobs. We generate the designs Sc
n,7,q, where

q takes the values 3, . . . , 6 and n = q(m − 1) + 5. Applying each design in the sequential

experimentation outlined above, the results for each value of q are presented in Figure 4.6.

In these plots the dashed gray line represents the true global minimum. Each point on the

red curve represents the average minimum value obtained at the specified iteration across

100 random initial designs. From these plots we can see that initializing the experiment

with the design Sc
n,7,q leads to convergence that is at least as fast as when starting from an

average random design. In fact, for most cases we see that convergence is much faster under

the proposed design. Specifically in the cases of q = 3 and q = 6 we see that convergence

to the global minimum occurs with less than half the number of iterations required for the

random design. After accounting for the size of the initial designs this translates to roughly

a 40% and 30% reduction in the total budget required for the experiments, respectively.

Considering the more difficult problem with m = 11 jobs, we again start from the Sc
n,11,q

designs for q = 3, . . . , 6. The results of running the sequential experiment for each of these

initial designs and 100 random designs are given in 4.7. The true global minimum is again

given as a dashed gray line in each figure. As with the simpler 7 job problem, we see that for

all situations the convergence of the algorithm when starting from the proposed design is at

least as fast as when starting from a random design. In fact, we see that in the four cases we

have considered the convergence is actually faster under our design, and in one case, q = 6,

the average random design is unable to converge with 100 additional runs. For the other

three cases, this faster convergence leads to a substantial reduction in the total budget of
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q = 3 q = 4

q = 5 q = 6

Figure 4.6: Convergence of the sequential job scheduling experiment with m = 7 and variable

q with different initial designs.
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the experiment, between roughly 9% and 27%.

q = 3 q = 4

q = 5 q = 6

Figure 4.7: Convergence of the sequential job scheduling experiment with m = 11 and

variable q with different initial designs.

We can see from these two examples that starting from a design generated by Algorithm

4.1 often leads to much faster convergence than a random design, even as the total number

of components or the value of q increase. In some cases we have seen that the total budget

required for the experiment when starting from this design is only a fraction of that under

the random design. These examples have demonstrated the potential value of our proposed

designs. We could repeat this procedure with the optimal designs generated for the PWOS

model by Algorithms 4.2 and 4.3, but as we have seen in the previous section, the CPS

model seems more appropriate for the job sequencing application, so we postpone this study
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until there is an appropriate application. However, in all of the problems considered here

we also notice that the minimum achieved by Sc
n,m,q before any additional points are added

(iteration 0) tends to be much smaller than that of the average random design. This is likely

due to improved space-filling properties of the design Sc
n,m,q, an observation we explore

further in Chapter 5.

4.4 Chapter Summary

In this chapter we have studied the problem of designing order-of-addition experiments in

cases where the number of components of interest m outnumbers the number of available

positions in each sequence q. Like the standard order-of-addition problem, the full design

that includes all possible sequences grows too quickly to be appropriate in most cases, ne-

cessitating smarter, simpler designs. However, this problem differs from the standard one in

that our goal is not only to understand the relationship between the component sequence

and the response, but also to screen the components to find the q that have the largest ef-

fect. While only small modifications of the standard order-of-addition models are necessary

to accommodate this new component screening problem, new designs are required in order

to keep costs low.

We have proposed three constructions for order-of-addition screening designs and have

shown that each guarantees D-optimality for certain run sizes. For the CPS model Algorithm

4.1 generates D-optimal designs by leveraging the balance properties of the Fn,m designs

generated in Chapter 3 for the standard order-of-addition problem. On the other hand,

Algorithms 4.2 and 4.3 generate D-optimal for different choices of m and q under the PWOS

model. Algorithm 4.2 considers the case that m is even and q = 3. For this case the algorithm

generates highly efficient designs including a D-optimal half-fraction design. Algorithm 4.3

on the other hand covers the remaining cases where m > 4 and 3 < q < m. Using the OofA-

OA designs developed for the standard order-of-addition problem under the PWO model,
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this construction generates D-optimal designs with only a small fraction of the number of

runs in the full design, with the savings growing larger as m increases. Collectively these

three constructions fill an important gap in the order-of-addition literature.

To demonstrate the value of our methods, we have studied several synthetic job sequenc-

ing data sets with varying m and q. We have found that for simpler problems, training

each model on the proper optimal design from our constructions results in a suitable fit with

stable coefficients and strong predictive performance. Furthermore, to showcase the cost-

saving potential of our designs, we have considered sequential job scheduling experiments in

an active learning framework. The results of this study indicate that the proposed designs

lead to much faster convergence of the algorithm to the true optimal job sequence when

compared to a random initial design, even as m increases. By providing efficient designs

for the study of order-of-addition screening experiments it is our hope that researchers will

soon find many other applications of these results and continue to explore new approaches

for modeling this problem.
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CHAPTER 5

Metaheuristic Solutions to Order-of-Addition Design

Problems

In the previous chapters we have solved several critical problems in the design and analysis

of order-of-addition experiments. However, many important problems remain unsolved and

approaches for solving them with theoretical guarantees are not always available or easy to

obtain. For these problems we resort to nature-inspired, metaheuristic approaches that have

become popular for solving optimization problems, especially in engineering and computer

science (Whitacre, 2011a,b). Some key reasons for their popularity are their speed, simplicity,

flexibility and ease of implementation. Additional compelling reasons for their widespread

use are: (a) a lack of technical assumptions, so they can be applied to solve problems where,

for example, the objective function is non-differentiable, multi-modal, multi-objective or high

dimensional, and (b) they tend to provide exact or approximate solutions of high quality

and if necessary, they can be improved either by better choice of the values for the tuning

parameters or by hybridization with one of more algorithm of the same or different types;

see Blum and Roli (2001).

There are two primary classes of nature-inspired metaheuristic algorithms: swarm in-

telligence and evolutionary algorithms. Both classes involve a set of agents exploring the

space. In swarm intelligence algorithms the agents share information as necessary. The

class of swarm intelligence algorithms has become quite large recently, but one of the key

representatives of the class is Particle Swarm Optimization (PSO), which is used frequently

in practice with the number of publications applying PSO growing exponentially since its
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creation (Kennedy and Eberhart, 1995; Poli, 2008). In evolutionary algorithms, each agent

is made up of chromosomes and gene, in an adaptive, survival-of-the-fittest battle to be

part of the best generation. Differential Evolution (DE) is a representative algorithm from

this class that has found widespread usage for modern applications (Storn and Price, 1997;

Chakraborty, 2008).

Recently, these algorithms have been applied to solve challenging optimal design prob-

lems. For example, Wong et al. (2015) used PSO to construct D-optimal designs for a

variety of mixture models, Chen et al. (2015) tackled maximin and standardized optimal

design problems, and Phoa et al. (2016), applied PSO to find optimal supersaturated de-

signs. DE has similarly been used to locate optimal designs. For example, Paredes-Garćıa

and Castaño-Tostado (2017) compared DE-derived designs for well-known models with those

currently available, Feoktistov et al. (2017) used DE to find sparse split-plot designs, and

Xu et al. (2019) found D-optimal designs for logistic models. Motivated by these recent

successes, we want to test the ability of these algorithms and their variants to find quality

designs for open order-of-addition problems.

In this chapter, we are the first to consider the efficacy of DE, PSO, and several of their

most popular variants for finding solutions to two critical order-of-addition problems. First

we introduce the key concepts of both algorithms and various alterations that have been

made to improve their performance on complex optimization problems. Next we outline

two important order-of-addition problems: A-optimal order-of-addition designs for position-

based models and space-filling order-of-addition designs. Finding quality designs for these

problems would help to advance the field and address relevant applications, but analytic

solutions are too difficult to derive.

Section 5.2 presents our proposed optimality criteria and applications to find two types

of order-of-addition designs. Section 5.3 compares results using the DE and PSO algorithms,

along with 3 of each of their variants. We find that across many situations the algorithms are

able to produce order-of-addition designs with dramatically improved optimality and space-
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filling properties, with Jingqiao’s Adaptive Differential Evolution (JADE) and Quantum

Particle Swarm Optimization (QPSO) generating particularly outstanding results for several

cases. The designs generated by these algorithms outperform the existing ones developed in

the previous chapters in terms of our chosen criteria and a future study of their properties

could aid in the development of general constructions.

5.1 Differential Evolution, Particle Swarm Optimization, and Their

Popular Variants

We first review two popular metaheuristic algorithms: DE and PSO. These algorithms have

achieved widespread support from the optimization community for their simplicity, efficiency

and high performance. We outline the key details of each algorithm including their nature-

inspired structure, considerations for tuning their parameters, and their variants that have

found widespread usage. As expected, variants generally perform better in some ways than

the original version or are particularly suited for tackling a specific type of optimization

problems.

Without loss of generality, assume that the goal is to minimize a real-valued fitness

function with v variables h : Rv −→ R by finding x∗ ∈ Rv such that h(x∗) ≤ h(x) for all

x ∈ Rv. The search space of candidate solutions is defined by the limits of each of the v

variables and constitutes the landscape of the fitness function. These limits may be specified

naturally by the application or selected by the experimenter. In our specific case of order-

of-addition experiments the variables may be the individual permutations or columns of the

component matrix A that make up the candidate design. Examples of fitness functions of

interest here are the negative log of the determinant or the trace of the information matrix.
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5.1.1 Differential Evolution

In the class of metaheuristic algorithms based on evolutionary mechanics, DE was proposed

as a general purpose evolutionary algorithm as a means of quickly optimizing functions that

are not necessarily differentiable or continuous. It has since found widespread application

in many areas (Chakraborty, 2008). The goal of evolutionary algorithms is to simulate

survival-of-the-fittest dynamics to gradually converge to the global optimum. DE does this

by treating each candidate or agent x as a chromosome made up of v genes and implementing

mutation and crossover procedures to allow beneficial genes to persist into future generations

(Storn, 1996).

The first step in this process is to choose the number of candidate solutions per generation,

np, also known as the population size. Each solution is represented by a vector of length v,

so each generation of candidate solutions has dimension v×np. In addition to the population

size, there are two parameters, a mutation weighting factor wf and crossover constant cr,

to be selected. The final step in the initialization process is to specify a stopping rule or

condition. For example, a maximum number of iterations or a target value may be set. Once

these preliminary steps are complete, the five steps for the standard DE algorithm are as

follows:

1. Genetic Representation: The initial population must be of size np > 4 to ensure

that there is enough genetic diversity. Each agent is represented by a vector of length

v and labeled as xg11 ,xg12 , . . . ,x
g1
np. The initial value for each entry in each agent is

randomly chosen over the interval specified for the particular variable.

2. Mutation: Mutation expands the search space of DE. For each agent xg1i , mutation

produces a donor vector dg1i by adding the weighted difference of two agents to a third,

all randomly chosen and distinct from the target. For this process, a weighting factor

wf is chosen on the interval [0, 2]. Thus, with this constant, np vectors are created
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according to

dg1i = xg1r0 + wf(xg1r1 − x
g1
r2

), (5.1.1)

where r0 6= r1 6= r2 6= i. Depending on the bounds and choice of f this process may

lead to values that fall outside of the acceptable region for each dimension. There are

many strategies in the general optimization literature for dealing with this problem,

but we do not explicitly discuss them.

xg11

xg12

...

xg1i dg1i = xg12 + wf
(
xg1np−1 − xg1np

)
...

xg1np−1

xg1np

Figure 5.1: An illustration of mutation for a single agent in the DE algorithm where a donor

vector dg1i is created by blending 3 randomly drawn agents. In this case xg12 , xg1np−1 and xg1np

were chosen.

3. Crossover: Crossover blends the current generation of agents with the population

of donor vectors in order to form candidates for the next generation known as trial

vectors. This technique requires the crossover constant cr, chosen from [0, 1]. For each

i from 1 to np, one of the v elements of dg1i is randomly selected to directly enter

the trial vector tg1i . In this way one variable is forced to change so that each tg1i will

certainly differ from its original target vector. Next, with probability cr more elements

are taken from dg1i and placed in the trial vector. Whichever variables do not take their
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dg1i1 dg1i2 dg1i3 . . . dg1ij . . . dg1iv(d)

+

xg1i1 xg1i2 xg1i3 . . . xg1ij . . . xg1iv(x)

dg1i1 xg1i2 dg1i3 . . . dg1ij . . . xg1iv (t)

Figure 5.2: An illustration of the crossover procedure for a single agent in the Differential

Evolution algorithm. A trial vector tg1i is created by combining xg1i and dg1i . The light green

elements of tg1i come from the donor vector dg1i and the light red elements come from the

target vector xg1i . The jth element of tg1i is marked in dark green as it comes from dg1i with

probability one.

value from the donor vector inherit their original value from xg1i . Assuming variable j

is randomly chosen to take its value from the trial this process is driven by the following

equation:

tg1i =


dg1i for i = j,

dg1i with probability CR, for i 6= j,

xg1i with probability 1− CR, for i 6= j.

(5.1.2)

4. Selection: Selection creates the next generation of agents by comparing each target

vector to its respective trial vector. Whichever is measured to be the most fit using h

becomes xg2i . In the case of minimization this process is given by

xg2i =


tg1i if h(tg1i ) < h(xg1i ),

xg1i otherwise.

(5.1.3)

5. Repeat: Repeat steps 2 through 4 over many generations until the specified stopping

condition is satisfied.

The standard DE algorithm defined above has only 3 tuning parameters, np, wf, and

cr. The selection of these values is critical to the success of the algorithm. This process is
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in part driven by the application of interest and prior knowledge of the function landscape;

however, there are several rules of thumb we can apply to most prolems . For example, it

is recommended that np be at least 10 times the number of variables v to ensure sufficient

diversity. Under the standard algorithm, empirical evidence has indicated that wf should

be set between 0.6 and 0.9 for general optimization problem (Zaharie, 2002). Finally, the

creators of DE suggests setting cr ∈ {[0, 0.3] ∪ [0.8, 1]}, choosing from the smaller range for

separable problems and the larger range otherwise. One approach for reducing the effect

of choosing a poor value of wf or cr is dithering and jittering (Dawar and Ludwig, 2014).

Dithering involves choosing new parameter values for each generation while jittering chooses

a new value for each variable in the optimization by adding a small perturbation γ to the

value for that generation. These approaches can be implemented simultaneously and this

is one extension of the basic algorithm that we will consider in our analysis. Price et al.

(2005) provides an investigation into how the selection of individual parameters can affect

performance of the standard DE.

5.1.2 Particle Swarm Optimization

Since its creation in 1995 PSO has exploded in popularity. It has been applied to tackle

a diverse set of optmization problems in healthcare, investment banking, engineering and

many others in the last decade (Poli, 2008; Elbes et al., 2019). It is the premier algorithm

in the class of swarm intelligence metaheuristics and operates by mimicking the process of

flocking birds or schooling fish, allowing for the transfer of information between the flock or

agents x. This structure allows the particles to converge to the global optimum while also

sufficiently exploring the space (Chen et al., 2015).

Akin to DE, to initialize PSO we first need to decide how many agents will make up the

population np. Additionally, there are several other parameters that need to be initialized,

including an inertia weight τ , two independent random vectors β1 and β2, a cognitive learning

factor cl and a social learning factor sl. Given the fitness function, the search space and a
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user-selected set of values for the tuning parameters, the standard PSO algorithm has the

following steps:

1. Swarm Generation: The initial positions for the agents (xt=0
1 ,xt=0

2 , . . . ,xt=0
np ) are

randomly generated over the specified interval of dimension d. An initial velocity vt=0
i

is also generated for each agent. This velocity is often 0d or randomly drawn from

[0, 1]v for all agents. By definition, this vector gives the magnitude and direction of

the agents movements between iterations. For each agent, its personal best position is

set to pi = xt=0
i and the global best position so far is set to pg = arg min

i
h(xt=0

i ) by

calculating the fitness function of each agent’s position.

2. Particle Velocity Calculation: As each agent moves through the space its velocity

changes. The updated velocity can be calculated using the inertia τ , cognitive and

social learning factors cl, sl and random vectors β1, β2 ∈ [0, 1]v. The relationship

between these parameters and the next velocity step for each agent xti is given by

vt+1
i = τvti + clβ1 � (pi − xti) + slβ2 � (pg − xti), (5.1.4)

where � represents hadamard multiplication. The inertia factor τ can control the effect

of the current velocity and allow the agent to explore parts of the space that are closer

to the global or personal best positions.

3. Particle Position Update: Using the calculated velocity, the agent explores the

space in the direction of its velocity vt+1
i and its position is updated accordingly as

follows:

xt+1
i = xti + vt+1

i . (5.1.5)

As with DE’s mutation, there is a chance that this procedure will produce positions that

are outside of the search region. Many techniques exists for dealing with this problem,

but we will not discuss them here and simply use the default clipping mechanism of

the original PSO.
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4. Global and Personal Best Refresh: Following the update of each agent’s position,

the agent’s best position so far pi is updated as well as the global best position pg by

calculating the fitness function for each agent’s new position. In the tth iteration, the

personal best of an agent is the best position it has attained up to time t, and the

global best position is the best position the flock has attained up to time t. Here best

means the most optimal value of the fitness function.

5. Repeat: Repeat steps 2 through 4 over many iterations until the specified stopping

criterion is satisfied.

Typically the 6 parameters np, τ, cl, sl, β1, and β2 are chosen randomly over a uniform

interval, often [0, 1] for all parameters besides np, but there has been much research into

more complex approaches for setting their values. Of course, the application of interest and

prior knowledge of the search space can also be useful in initializing these parameters. As

a rule of thumb the number of agents is generally between 20 and 50, with fewer agents

required for simpler problems (He et al., 2016). Furthermore, Shi and Eberhart (1998)

suggested that choosing τ ∈ [0.9, 1.2] gives good performance without requiring too many

iterations; however, it is also common to linearly decrease the inertia over the course of the

algorithm as the agents get closer to the optimum. The cognitive and social learning factors

are known to have a large impact on the convergence properties of the algorithm, and while

there is no clear guidance on the best values to choose, Eberhart and Shi (2000) found that

a value between 1.496 and 2 works well for general problems. While these rules provide

some assistance in choosing appropriate parameter values, it is clear that the number of

parameters and their sensitivities will be an important consideration in the evaluation of

their performance on order-of-addition design problems. For a detailed look at the process

of tuning the parameters in metaheuristic algorithms, see Birattari (2009).
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5.1.3 Popular Variants

A common feature of metaheuristic algorithms is that there are many variants of them. These

are modified versions of the original algorithm that enhance the algorithm’s performance in

different ways. For example, they propose ways to bring rogue agents back to the search

space, strategies for faster convergence or attempts to escape local optima. DE and PSO are

no exceptions to this, and in the years since their creation there have been many advanced

versions of each that have been shown to produce higher quality results for general problems.

In our search for efficient order-of-addition designs, we also consider some of the most popular

variants. Of course, there are far too many variants to consider here, so we choose some of

the most impactful and widely-used variants to briefly review and compare.

For each algorithm, we have already discussed a few simple changes that are commonly

used in practice. For DE, dithering and jittering help to reduce the effect of choosing poor

values for wf and cr, while for PSO a linear schedule is often used to reduce the value of τ

across generations to allow for finer convergence. In addition to these simple changes, there

are more complex revisions of each algorithm in our comparison. For DE, this often involves

exploring other strategies for mutation and crossover with adaptive parameter search. One

example is Jingqiao’s Adaptive Differential Evolution (JADE) (Zhang and Sanderson, 2009).

For this algorithm a new set of parameters is generated for every agent in every generation,

and a new mutation strategy is implemented in Step 2, in which the donor vector dg1i is

generated by the following equation:

dg1i = xg1i + wfi(x
p
best,g1

− xg1i ) + wfi(x
g1
r0
− xg1r1), (5.1.6)

where xpbest,g1 is randomly chosen as one of the top 100p% current best agents, with p ∈ (0, 1]

being a new parameter, and wfi is the value of the weighting factor chosen for agent i in the

particular generation. Each new value of wfi is initially chosen from a Cauchy distribution

with mean 0.5 and scale parameter 0.1, truncated at 1. At the end of each generation the

distribution is updated based on which wf values led to trial vectors that were accepted into
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the next generation over the target vector. Similarly, the individual values of cri are randomly

drawn from N(0.5, 0.1), truncated at 1, and the mean is updated after each generation based

on which cri values were successful. In each of these cases a parameter c ∈ [0, 1] controls

how much weight is given to the successful values when shifting the location parameter.

Another popular variant of DE is the Self-Adaptive Differential Evolution (SADE) (Qin

et al., 2009). It differs from DE by allowing two different mutation strategies. For each

agent in each generation, the first strategy is chosen with probability p1, and the second is

chosen with probability p2 = 1−p1. These probabilities are updated after a specified number

of generations gupdate based on the ratio of successful and unsuccessful mutations. The two

mutation procedures are the standard one given in (5.1.1) and one that incorporates the best

value so far. Specifically, the second mutation is given by

dg1i = xg1i + wfi(x
g1
best − x

g1
i ) + wfi(x

g1
r0
− xg1r1), (5.1.7)

where xg1best is the agent that has attained the best value so far. Like JADE, the parameters

wfi and cri are chosen for each agent in each generation according to wfi ∼ N(0.5, 0.3) and

cri ∼ N(0.5, 0.1). For cri the values are maintained for a few generations greset before a

new set is chosen. After a few iterations glearning of choosing new values, the mean of the

distribution is updated to be the mean of the successful values used so far. Using these

variants with adaptive parameters we can reduce the effect of tuning and the effort required

to perform DE.

Likewise, there are many variants of PSO. One of the most popular variants introduces

quantum mechanics to take advanatage of the observation that the algorithm converges

when each of the agents converges to a so-called local attractor. This is a point between

the agent’s personal best position pi and global best position pg. Developed by Sun et al.

(2004), this variant is known as Quantum Particle Swarm Optimization (QPSO) because it

removes the velocity attribute of each agent in favor of drawing the updated positions from

an exponential distribution with parameters based on each agents local attractor and the

average best position found so far among all agents. Unlike the DE variants, QPSO has
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previously been implemented to solve design problems, so we use a design-focused QPSO

variant called d-QPSO (Lukemire et al., 2019). We omit a full discussion of the details

of d-QPSO but note that there is one new tuning parameter, α, a contraction-expansion

parameter that controls the extent to which particles are pulled towards the average best

position. Using this variant we can extract useful information from all agents, even those

with fitness function values far from the optimum.

Another popular PSO variant is PSO with Extremal Optimization (PSOEO), proposed

in Chen et al. (2010). This hybridized variant aims to steer PSO away from premature

convergence by increasing its local search capabilities with Extremal Optimization (EO).

This means that at every inv iteration, where inv is a new tuning parameter, we attempt

to mutate each individual component of each agent’s position to improve its best value

attained so far. It is important to note that this mutation operation differs from that of the

DE algorithm in that it does not rely on the position of the other agents. If the mutation is

successful then the change is kept, otherwise the position is left unchanged. To perform the

mutation we start with Gaussian mutation

x′i,k = xi,k +Nk(0, 1), (5.1.8)

where a new random normal value is drawn for each variable k. If the mutated agent falls

outside of the search region, then Cauchy mutation

x′i,k = xi,k + δk(1), (5.1.9)

where δk(1) is a Cauchy random variable with scale parameter equal to one, is used to pull it

back. This algorithm hybridizes the standard PSO algorithm, known for having good global

search properties, with the local EO search algorithm to facilitate local exploration.

Alongside the standard algorithms, dithering/jittering of the parameters in DE, and lin-

ear annealing for the inertia parameter in PSO, these variants will be used to benchmark the

performance of metaheuristic algorithms for finding efficient designs to challenging order-of-

addition problems. We are of course cognizant of the no free lunch theorem (Wolpert and
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Macready, 1997), which states that no algorithm can possibly be the best for an entire class

of problems, including those we consider here. The algorithms we consider here are a small

sample of the huge number of metaheuristic algorithms that have been proposed, including

many hybrid algorithms that aggregate operations and solutions from many individual al-

gorithms. However, our aim here is to give some guidance as to which algorithms among

a few selected competitive ones can quickly find efficient designs, and/or to obtain an ini-

tial starting point for more specialized design-based algorithms such as Fedorov’s algorithm

(Fedorov, 1972) or its various extensions (Yang et al., 2013; Hyun and Wong, 2015). Good

initial designs are known to improve the performance of these approaches.

5.2 Optimal Order-of-Addition Designs for Challenging Problems

Now that we have established the various metaheuristic algorithms and their extensions that

we will use, we introduce the details of two challenging order-of-addition problems we aim to

solve with these methods. Both of these problems involve finding order-of-addition designs

in situations that are difficult to solve analytically.

The first situation we consider is an elaboration of the problem introduced in Chapter

3 of finding A-optimal designs under the position-based models (3.1.3 - 3.1.5). Recall that

the A-optimality criterion given in (2.1.5) is an important measure of a design’s ability to

generate stable parameter estimates. As shown in Table 3.5, we have found through simple

application of DE that the full design Fm is not A-optimal for the position models. This

means that there exist a design for which the A-efficiency relative to the full design is greater

than 1. Furthermore, we have seen that A-optimal designs for each model depend on which

component effect is removed. Since the choice of which effects to remove from those models

is in large part arbitrary or driven by the application, our designs should be robust to this

choice.

Considering these findings, the fitness function we will use is the geometric mean A-
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efficiency across the entire family of models relative to the first n rows of Fn,m, where n

will take a range of values. Maximizing this criterion for a choice of m, n and model family

should give us a sufficient design that achieves high efficiency regardless of which component

effects are removed. For the three position models: first-order, quadratic, and second-order,

the geometric mean A-efficiency Ā(ξ) for a design ξ relative to Fn,m is given by

Ā(ξ) =
(m−1∏

i=0

(
tr(M−1

(−i)(Fn,m))/tr(M−1
(−i)(ξ))

))1/m
(5.2.10)

for the first-order and quadratic models, and

Ā(ξ) =
( m−1∏
i,j=0,i 6=j

(
tr(M−1

(−i,−j)(Fn,m))/tr(M−1
(−i,−j)(ξ))

))1/(m(m−1))
(5.2.11)

for the second-order model.

In the above equations, we first take the product of the relative A-efficiencies under each

model in the chosen class. For the first-order and quadratic models this involves removing

the linear or linear and quadratic effects of a single component, respectively. We can see this

represented in Equation (5.2.10), where removing the effect involving component i results in

the information matrix M(−i), where M(−i) has dimension m for the first order model and

2m−1 for the quadratic model. To arrive at the geometric mean, we then raise the product of

the efficiencies under each of these information matrices to 1/m. For the second-order model,

we must also remove a second quadratic effect, that of component j, and all interactions

that involve component i to make the model estimable. Considering each combination (i, j)

the resulting information matrix is denoted by M(−i,−j) in Equation (5.2.11) with dimension

(m−1)(m+2)/2, the number of parameters remaining in the model after removing the effects.

We raise the product of the efficiencies under each information matrix to 1/(m(m − 1)) to

arrive at the final geometric mean. Our aim is to optimize this criterion and generate designs

that are robust to the choice of model from a specified family, reducing the risk of model

misspecification.
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The second problem we consider is that of finding space-filling order-of-addition designs.

As described in Section 2.1.4, space-filling designs are useful for understanding the dynamics

of deterministic computer systems. By constructing space-filling designs, we can capture a

maximal amount of information about fluctuations in the response throughout the parameter

space. There have been many studies done for the construction of space-filling designs for

general factorial experiments, yet designs for order-of-addition computer experiments have

not been constructed (Xiao and Xu, 2017; Wang et al., 2018; Sun et al., 2019). To begin to

fill this gap, we consider the construction of maximin and minimax order-of-addition designs.

These two criteria are given in (2.1.6) and (2.1.7), respectively, and aim to fill the space by

choosing a set of points that either maximizes the minimum pairwise distance between the

points in the design or minimizes the maximum distance between the design points and all

points in the set.

It is important to note that in both of these problems there is only a single criterion.

However, in practice holistic consideration of many properties of a design are necessary

to determine if it is the appropriate choice for the application. For example, if there are

additional objectives in the study, then multi-objective metaheuristic algorithms should be

used to find the optimal design. Such a goal is beyond the scope of this work. In the next

section, we outline the setup and results of applying DE, PSO and their popular variants to

these two order-of-addition problems.

5.3 Comparison of Designs Derived from Metaheuristic Algorithms

We now investigate the efficacy of PSO, DE and their variants to find valuable order-of-

addition designs for the two challenging classes of problems discussed in the previous section.

In total, we consider eight algorithms, each of which is described in Section 5.1. Table 5.1

summarizes the tuning parameters associated with each algorithm. We now apply these

algorithms to tackle specific cases within the two problem classes of interest.
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Table 5.1: Eight metaheuristic algorithms used to find order-of-addition designs and their

tuning parameters.

Algorithm Parameter

Standard Differential Evolution (DE) population size np

mutation factor wf

crossover probability cr

DE with Jittering and Dithering (DEJD) perturbation γ

Jingqiao’s Adaptive Differential Evolution (JADE) best agent percentage p

successful values weight c

Self-Adaptive Differential Evolution (SADE) cr reset interval greset

cr learning interval glearning

p1, p2 update interval gupdate

Standard Particle Swarm Optimization (PSO) population size np

intertia τ

random weight vectors β1, β2

cognitive learning factor cl

social learning factor sl

PSO with Linearly Decreasing Inertia (PSOLD) final inertia τ ∗

Quantum Particle Swarm Optimization (QPSO) contraction-expansion constant α

PSO with Extremal Optimization (PSOEO) EO frequency inv

Note: For variants of DE and PSO, the table only includes the parameters that are unique

to the variant and omits parameters that are shared with the standard algorithm.
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In each case, the rules of thumb from the algorithm’s literature, some of which have

been outlined previously, are used as the initial values for the parameters. In some of the

algorithms, particularly the adaptive DE algorithms (JADE and SADE) and PSOLD, some

parameters are adaptively chosen throughout the algorithm, and thus the initial values have

less impact on the final results. Some tuning is performed in cases where convergence is

especially poor, but in order to present a fair comparison, we rely on the published rules

given in Table 5.2 along with the range of values considered for tuning. For PSO-based

algorithms with a velocity component, the vectors β1 and β2 are drawn randomly from a

multivariate uniform distribution.

Another important consideration in comparing these algorithms is the number of iter-

ations/generations that are performed. We choose to fix this value across all algorithms

instead of using the number of function evaluations, as the fitness function is evaluated the

same number of times in nearly all of the algorithms. However, while we somewhat arbitrarily

choose a maximum number of iterations that we believe strikes a balance between allowing

for proper convergence and limiting computation time, running all of the algorithms longer

may produce better results. For all cases, we run each algorithm for 2000 iterations with 5

repetitions, and keep the best value from across the repetitions for each sample size. The

next subsection reports the results of applying these algorithms to specific order-of-addition

problems.

5.3.1 A-optimal Order-of-Addition Designs for Position-Based Models

For the first problem, we search for designs for standard order-of-addition experiments with

m components, where m = 4, 5, 6, that are A-optimal (or near-optimal) across different

families of position-based models. We consider these values of m because they strike a

balance between the importance to practical applications and the level of difficulty that

makes them worthy for testing the capability of nature-inspired metaheurisitc algorithms.

For each m we consider maximizing the criteria given in (5.2.10) and (5.2.11) for each family
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Table 5.2: Default parameter values for finding Order-of-Addition designs with metaheuristic

algorithms. In this table the problem dimension is n, the run size of the desired design.

Parameter Algorithm(s) Default Range

np All 10n Fixed

wf DE, DEJD 0.8 [0.6,0.9]

cr DE, DEJD 0.9 [0.8,1]

γ DEJD 0.003 [0.001, 0.005]

p JADE 10 [5,20]

c JADE 0.1 [0.05,0.2]

greset SADE 5 [1,10]

glearning SADE 5greset [3greset,7greset]

gupdate SADE 50 [25,75]

τ PSO, PSOLD, PSOEO 0.9 [0.9,1.2]

cl PSO, PSOLD, PSOEO 2 [1,3]

sl PSO, PSOLD, PSOEO 2 [1,3]

τ ∗ PSOLD 0.4 [0.2,0.6]

α QPSO 0.9 [0.4,1.4]

inv PSOEO 50 [25,75]
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of position models (first-order, quadratic, and second-order). For each family of models, we

search for designs with variable run sizes p ≤ n ≤ m(m − 1), where p is the number of

parameters required to estimate the models in each family. The upper bound of m(m− 1) is

chosen to keep the final designs small enough to be practically useful. As we are interested

in finding designs that are robust to the choice of model within a larger family, we do not

assess A-optimality directly with the equivalence theorem. We have found that for cases

with small values of n and m, a design which is A-optimal under the entire family of models

may exist, but an analytic proof of our empirical findings is beyond the scope of the current

experiment.

We consider nine situations, one for each combination of m and model family. The fol-

lowing results are representatives of the full experiment. We focus on a few representative

examples to conserve space and discuss the high-level conclusions. Figure 5.3 shows a col-

lection of plots for different choices of m and model family. Specifically, in each panel the

left plot shows the results of applying the four DE-based algorithms to the problem, while

the right plot shows the results of applying PSO-like algorithms. The black horizontal line

indicates a mean relative efficiency of 1. Values above this line are indicative of designs that

have better mean A-optimality across the model family when compared to the design Fn,m

generated by Algorithm 3.1 in Chapter 3. For the case m = 6, we use the recursive definition

from Huang (2021) to generate a design with the appropriate number of components and

runs to use for the comparison.

There are several interesting conclusions we can draw from the generated designs. First,

we observe that with the exception of a few cases, the DE and PSO algorithms tend to

perform comparably, with the maximal efficiencies in each plot for each run size being close.

The one notable exception to this is the case of m = 5 for the quadratic position model.

For this problem the PSO-based algorithms find much better designs when the run size is

low (roughly 20× more efficient than Fn,m). Sticking with general observations, we also

find that all algorithms are capable of finding designs that greatly improve on the mean
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A-efficiency of Fn,m across the range of problems and run sizes. For some specific problems,

it seems that there is more room for improvement. This is especially true for small sample

sizes when m is small and for large sample sizes when m = 6. This aligns with our conclusion

from Table 3.5 that the A-efficiency of Fm, and by extension Fn,m, decreases as the size and

dimension of the design grows. In these cases it is clear that metaheuristic algorithms can

generate designs with better A-optimality properties that are more robust to the choice of

effect removal in the position-based model family.

We also observe that within the DE-based algorithms, the standard DE algorithm has the

poorest performance, but with the exception of the m = 4, second-order problem, the losses

tend to be small. On the same problem, JADE tends to outperform the other algorithms.

This of course seems reasonable as the DE variants have been shown to outperform the

standard version on general problems, and JADE has received much attention for its superior

convergence. For the PSO-based algorithms, we find that PSOLD and standard PSO perform

comparably while QPSO performs comparably to JADE for the simpler problems, with the

exception of large run sizes. However, the hybrid PSOEO algorithm consistently performs

worse than the others. This could be due to nuances in the search space that make Extremal

Optimization inefficient or simply a feature of the algorithm that it requires more iterations

to converge for this problem.

To make the benefits of the designs found via metaheuristic algorithms more concrete,

the left panel of Table 5.3 displays the exact design found by JADE for the case that m = 4,

n = 12 and the model family is the second-order position model. This design is represented

by JADE12,4. The middle panel contains the design F12,4, which is used as the benchmark

for computing the A-efficiency under each model. The A-optimality is given for each design

under all models in the second-order position family in the right panel, with the last row

giving the geometric mean across all models.

We see from this table that the improvement in A-optimality of the JADE12,4 design is

spread fairly across each of the twelve models. However, it is important to note that under
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DE PSO

m = 4, model: Second-Order

m = 5, model: Quadratic

m = 6, model: First-Order

Figure 5.3: Mean relative A-efficiency of designs found via DE, PSO and related algorithms

for order-of-addition problems with m = 4, 5, 6 under different position-based models and

variable run sizes.
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Table 5.3: The design found by JADE with n = 12,m = 4, JADE12,4, compared to F12,4

constructed via Algorithm 3.1 in terms of geometric mean A-efficiency under the second-order

position model family.

JADE12,4 F12,4

Run a1 a2 a3 a4

1 0 1 3 2

2 0 2 3 1

3 0 3 1 2

4 1 0 2 3

5 1 3 2 0

6 2 0 1 3

7 2 1 0 3

8 2 1 3 0

9 2 3 1 0

10 3 0 2 1

11 3 1 0 2

12 3 2 0 1

Run a1 a2 a3 a4

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

4 1 0 3 2

5 1 2 0 3

6 1 3 2 0

7 2 0 1 3

8 2 1 3 0

9 2 3 0 1

10 3 0 2 1

11 3 1 0 2

12 3 2 1 0

Model F12,4 JADE12,4 A-Eff.

M(−0,−1) 17.50 11.77 1.49

M(−0,−2) 26.53 11.77 2.25

M(−0,−3) 17.50 18.17 0.96

M(−1,−0) 17.50 12.51 1.40

M(−1,−2) 17.50 21.51 0.81

M(−1,−3) 26.53 12.51 2.12

M(−2,−0) 26.53 11.13 2.38

M(−2,−1) 17.50 16.55 1.06

M(−2,−3) 17.50 11.13 1.57

M(−3,−0) 17.50 17.70 0.99

M(−3,−1) 26.53 11.74 2.26

M(−3,−2) 17.50 11.74 1.49

Mean 20.10 13.66 1.47

three of the models the A-optimality value of the new design is actually larger. For this

reason, it is critical that the context and goals of the experiment be taken into consideration

when choosing a design. Our proposed design shows improved robustness to the choice of

the removed effect; however, if the true data-generating process follows one of the models

for which the A-efficiency is lower, then using this design may result in less stable parameter

estimates.
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5.3.2 Space-filling Designs for Standard and Screening Order-of-Addition Ex-

periments

Having shown that metaheuristic algorithms are able to find designs with improved A-

efficiency for the position-based models, we now turn our attention to the second order-

of-addition problem. For the case of space-filling designs for order-of-addition experiments,

we again consider m = 4, 5, 6 with variable run size m ≤ n ≤ m(m−1). For each of these sit-

uations we search for designs that minimize the maximal pairwise distance between the rows

of the design and all points in the space (minimax) and designs that maximize the minimal

pairwise distance between rows of the design (maximin). This is equivalent to minimizing

(2.1.7) and minimizing the negation of (2.1.6).

We consider each of these situations in the context of two problems: the standard order-of-

addition problem from Chapter 3, and the order-of-addition component screening problem

of Chapter 4. For the screening problem, we specifically consider the cases (m = 4, q =

3), (m = 6, q = 3) and (m = 6, q = 4). To visualize the improvement of the designs found

by each algorithm over the existing ones we compute the relative maximin and minimax

efficiencies. The maximin and minimax efficiencies of a design ξ1 relative to ξ2 are given by

min
x,y∈ξ1

d(x, y)/ min
x,y∈ξ2

d(x, y) (5.3.12)

max
y∈ξ2

d(y,Sm,q)/max
y∈ξ1

d(y,Sm,q), (5.3.13)

respectively, where d(x, y) is the L2 distance between points x and y and d(y,Sm,q) =

minx∈Sm,q d(x, y). In these definitions we have used the full screening design Sm,q to represent

the entire set of candidate points. For the standard order-of-addition problem we would

instead use Fm, the design with all m! permutations. If the design ξ1 is more space-filling

than ξ2 under either criteria, then the respective efficiency will be larger than 1. For the

standard order-of-addition problem we use Fn,m from Algorithm 3.1 for ξ2 when m is prime

or a prime power and COA designs from Huang (2021) otherwise. For the order-of-addition

screening problem we use the appropriate Sp
n,m,q designs constructed for the PWOS model
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given in Algorithms 4.2 and 4.3. For designs generated using Algorithm 4.3 with q > 3

positions we use designs presented in Schoen and Mee (2021) as the OofA-OA in Step 1.

For this study our search space is the set of all component matrices A with the specified

number of runs. We could instead consider the set of all position matrices B, but for the

standard order-of-addition problem under the L2 distance there is a one-to-one mapping

between these spaces, and for the screening problem the position matrix is not well-defined.

Further research is needed to determine a proper distance for working with position matrices

in this case, so we proceed with the component matrices instead.

With these criteria established, we use the eight algorithms to search for both minimax

and maximin designs for six specific problems, three standard and three screening. As with

the previous problem, we only provide a slice of the results obtained to conserve space, but

present both general and specific conclusions. For the standard problem, we display 2 mini-

max and 1 maximin examples, whereas for the screening problem we display 1 minimax and

2 maximin examples to demonstrate the various conclusions reached for different problems.

Also, like the previous problem, we tune the parameters within the ranges displayed in Table

5.2, but omit the full details. All other details of the experiment (number of iterations, initial

parameter values, etc.) are retained from the previous problem.

Figure 5.4 presents the results of applying the eight algorithms to find space-filling designs

for the standard order-of-addition problem. The left panel in each row shows the efficiency

of the designs found by DE-based algorithms under the specified criterion, while the right

panel shows the efficiency of the designs found via PSO-based algorithms. The solid black

line indicates an efficiency of 1. Points above this line indicate that the corresponding design

has better space-filling properties than the existing design.

From these plots we draw several general conclusions. First, we again observe that

the DE-based and PSO-based algorithms tend to perform comparably. Notable exceptions

are the minimax designs found via QPSO and PSOEO, which tend to have much better

performance across small run sizes for m = 4 and large run sizes for m = 5. Second,
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DE PSO

m = 4, criterion: Minimax

m = 5, criterion: Minimax

m = 6, criterion: Maximin

Figure 5.4: Relative space-filling efficiency of designs found via DE, PSO and related algo-

rithms for the standard order-of-addition problem with m = 4, 5, 6 under the minimax and

maximin criteria.
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we observe that across all problems and sample sizes, there is at least one algorithm that

produces a design with space-filling properties at least as good as, but often better than,

the reference design. This conclusion holds more generally for all algorithms when searching

for minimax designs and for smaller run sizes. This may indicate that the algorithms are

not suitable for finding maximin designs, or perhaps that the existing designs already have

good maximin properties and good space-filling properties in general for larger run sizes.

Specifically, we notice that for smaller run sizes, the PSO-based algorithms produce better

maximin designs while designs from the DE-based algorithms perform better for larger run

sizes. One other notable conclusion is that no algorithm is able to generate a minimax design

that outperforms the reference design when n = m(m − 1). In fact, it seems that the Fn,m

designs may be optimal with respect to the minimax criterion when n = m(m− 1), but this

claim requires further investigation to verify.

Unlike the previous problem, we notice that apart from the noted exceptions, all algo-

rithms perform comparably. However, when it comes to the maximin problem, we notice

that for each run size, one or two of the eight algorithms find suitable designs, while the

others fail to converge to a design that outperforms the reference design. This may indicate

that for some problems it is more reasonable to consider the output of multiple algorithms

or a hybrid version that borrows elements from both DE and PSO.

To gain additional insight into the designs generated by these algorithms, Table 5.4 gives

an example of the minimax design generated by QPSO for the case m = 5. Since we

hypothesize that the reference design is optimal under the minimax criterion, a comparison

with n = m(m − 1) would not be interesting. Instead we choose a different multiple of m,

n = 15. The table compares this design, labeled as QPSO15,5, to the reference design F15,5.

We can see from this table that the proposed design has a minimax distance that is

roughly 75% that of the existing one, indicating that it is much more space-filling. Studying

the distances between the individual design points and the remaining 105 points in the space

more carefully reveals that there are five points in the space that are a distance of 3.16 from
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Table 5.4: The design found by QPSO with n = 15,m = 5, QPSO15,5, compared to F15,5

constructed via Algorithm 3.1 in terms of the maximum distance between each point in the

space and its closest point in the design.

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a1 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4

QPSO15,5 a2 1 1 1 3 4 4 4 1 3 4 0 1 1 1 3
max: 2.45 a3 2 2 3 4 0 2 3 3 4 1 4 0 2 0 2

a4 3 4 2 2 3 3 2 4 0 0 2 4 0 2 1
a5 4 3 4 1 2 0 0 0 1 3 1 2 4 3 0

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

F15,5 a2 1 2 3 2 3 4 0 3 4 0 1 4 0 1 2
max: 3.16 a3 2 4 1 3 0 2 3 4 1 2 4 0 1 3 0

a4 3 1 4 4 2 0 1 0 3 4 2 1 2 0 3
a5 4 3 2 0 4 3 4 1 0 1 0 2 3 2 1

their closest point in the design F15,5. Table 5.5(a) shows these 5 points along with a design

point that achieves the minimum distance to each. The two rightmost columns give the

points in QPSO15,5 that are closest to these five points and their respective distances.

From this table we can see that the design generated by QPSO has reduced distances

to the five problematic points and thus has a smaller minimax criterion value. Meanwhile

Table 5.5(b) gives the distributions of the minimum distances between the points in the

space and the two designs. There are 25 points in the space that are a distance of 2.45

from the closest point in QPSO15,5 while the design F15,5 only has 15 such points. From

the distance distributions we find that the average distance to the design is lower for the

existing design (1.78 versus 1.82) even though its minimax criterion is larger. Thus, it is

important to remember that in this example we are only considering a single criterion. It

could be that the existing design has other valuable space-filling properties that would come

to light when considered holistically. Nevertheless, the proposed design provides a window

into the structure of the theoretically-optimal minimax design.

When considering the order-of-addition screening problem, we notice similar trends in
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Table 5.5: (a) The five points in the set F5 that are the furthest from F15,5. F∗ and

QPSO∗ represent the points in F15,5 and QPSO15,5 that are the closest to each point. The

corresponding distances are given by F∗dist and QPSO∗dist . (b) The distribution of minimum

distances between the 105 points not included in the designs and the two different designs.

(a) (b)

F∗ F∗dist QPSO∗ QPSO∗dist

04321 12340 3.16 03421 1.41

10432 01234 3.16 30421 2.45

21043 40123 3.16 31042 1.41

32104 34012 3.16 31204 1.41

43210 23401 3.16 43210 0

distance 1.41 2 2.45 3.16

QPSO15,5 51 29 25 0

F15,5 60 25 15 5

Figure 5.5, which shows a few examples of applying each algorithm to find designs with fixed

values of m and q under each fitness function. Specifically, all eight algorithms achieve similar

performance, improving on the reference designs. On the maximin problems it appears that

the DE-based algorithms slightly outperform the PSO-based algorithms in some cases. For

larger sample sizes under the minimax criterion, the opposite seems to be true, with PSO-

based algorithms finding designs with better space-filling properties. Both of these observa-

tions could also be the beginning of larger trends that occur as m increases.

Like the previous problem, we observe that the proposed designs are much more space-

filling than the Sp
n,m,q designs under the chosen criterion. This observation holds for each

of the situations we consider, with the exception of the maximin designs found by the PSO-

based algorithms for a few large run sizes. This difference can likely be attributed to either

the increased dimension of the problem, the space-filling properties of the existing designs

that make it difficult to beat, or both.

Table 5.6 shows a specific example of a maximin space-filling design for the case n =

20,m = 6, and q = 4. We compare this design, labeled PSO20,6,4, to the appropriate
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DE PSO

m = 4, q = 3, criterion: Minimax

m = 6, q = 3, criterion: Maximin

m = 6, q = 4, criterion: Maximin

Figure 5.5: Relative space-filling efficiency of designs found via DE, PSO and related algo-

rithms for the order-of-addition screening problem with (m, q) = (4, 3), (6, 3), (6, 4) under

the minimax and maximin criteria.
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Table 5.6: The design found by PSO with n = 20,m = 6, q = 4, PSO20,6,4, compared to

Sp
20,6,4 constructed via Algorithm 4.3 in terms of the minimum pairwise distance between

runs.

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
a1 0 0 0 0 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5

PSO20,6,4 a2 1 1 4 4 3 0 3 3 5 0 1 1 4 5 5 0 5 2 2 4
min: 2.24 a3 2 3 3 5 0 3 4 5 0 5 0 2 1 1 4 5 1 0 4 1

a4 3 5 5 1 5 4 5 1 3 4 5 0 5 0 2 1 3 4 3 0

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
a1 0 0 0 0 0 0 0 1 1 2 2 2 3 3 3 3 5 5 5 5

Sp
20,6,4 a2 1 1 1 2 2 4 5 2 3 4 4 4 2 2 4 5 2 3 3 4

min: 1 a3 2 3 4 4 5 3 2 4 5 0 0 5 1 5 0 0 0 0 4 0
a4 3 2 2 1 1 1 1 5 4 3 5 3 4 1 1 1 3 1 0 1

design generated by Algorithm 4.3, Sp
20,6,4. We observe from this table that the minimum

pairwise distance between the runs of the proposed design is 2.24 times larger than that of

the existing designs, indicating that this new design is much more space-filling in terms of the

maximin criterion. To further demonstrate this point, Figure 5.6 shows all two-dimensional

projections of each design. The black points come from PSO20,6,4 while the red points come

from Sp
20,6,4. The size of each point indicates the number of replicates at the site. From

these projection plots we can visually conclude that the design found by PSO is much more

space-filling, especially with respect to the projection of each design into positions 1 and

3 as well as 1 and 4. In these projections, the existing design has large areas without any

observations and other areas with clusters of replicated points. In contrast, the proposed

design has fewer replicates and covers more of the space without many noticeably large gaps.

5.4 Chapter Summary

Nature-inspired metaheuristic algorithms have recently become quite popular for solving

problems in the field of design of experiments. In this chapter we have considered the efficacy
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Figure 5.6: Two-dimensional projections for the design found via PSO, PSO20,6,4, in black

and the design generated by Algorithm 4.3, Sp
20,6,4, in red. The size of each point reflects

the number of replicates at the site.
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of these algorithms to find designs for challenging order-of-addition problems. Specifically,

we considered eight algorithms from the two major classes of nature-inspired metaheuristic

algorithms. From the class of evolutionary algorithms we considered Differential Evolution

(DE) and three of its variants: DE with dithering and jittering (DEDJ) and two adaptive

parameter algorithms, JADE and SADE. From the class of swarm intelligence algorithms we

implemented Particle Swarm Optimization (PSO) and three of its variants: PSO with linearly

decreasing inertia (PSOLD), quantum PSO (QPSO), and PSO with Extremal Optimization

(PSOEO).

We applied these eight algorithms to two critical problems in the design of order-of-

addition experiments. First, we considered the problem of finding efficient, A-optimal designs

for position-based models that are robust to the choice of effect removal. While deriving

these designs analytically is challenging, we have found that JADE and QPSO are well-

suited for this problem when working with smaller cases. As m increases we truly see the

benefit of working with metaheuristic algorithms as the A-efficiency of all eight designs grows

dramatically relative to the existing position-based designs.

Next we considered the problem of finding space-filling designs for use in order-of-addition

computer experiments, either for the standard problem or the component screening problem.

In both of these cases, we find that for small sample sizes all algorithms are capable of

generating designs with greatly improved space-filling properties relative to the existing

designs, with the size of the benefit diminishing as the run size of the desired design increases.

While none of the algorithms stand out as better or worse than the others in general, except

for JADE and PSO in a few cases, we note that it would be prudent to consider multiple

algorithms or a DE-PSO hybrid approach for a given problem.

While we have not seen a strong effect of the choice of algorithm class between evolu-

tionary algorithms and swarm intelligence, we have found in all cases that metahueristics

in general are capable of quickly producing order-of-addition designs with desirable quali-

ties without requiring substantial parameter tuning. These designs can then be used as the
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starting point for further manipulation to make them more suitable for the application at

hand and may also provide inspiration for the development of theoretical constructions.
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CHAPTER 6

Concluding Remarks

Following Fisher’s remarkable “Lady Tasting Tea” experiment, problems involving the rela-

tionship between a sequence of steps or the sequential administration of components have

developed across many fields. Social scientists have studied the effect that candidate name

order on election ballots has on the outcome of senate races (Grant, 2017), engineers have

considered the relationship between weld sequence and the structural properties of gas tur-

bines (Voutchkov et al., 2005), and chemists have examined the impact of reagent addition

order on the endpoint reaction performance in the large-scale preparation of aromatic ni-

triles (Ryberg, 2008), to name a few. However, despite widespread application, a large gap

exists in the statistical treatment of these and other order-of-addition experiments. Without

proper experimental designs, these researchers are left to either perform every possible com-

bination or use some ad-hoc selection of runs. This can of course quickly become impossible

when, for example, each run requires 32 hours to complete, as in Voutchkov et al. (2005).

Furthermore, without robust modeling approaches, analysts are required to adapt existing

models from their field, which are often ill-fitted to the ordering effect present in the data.

To address the needs of these researchers, we have filled several sizable gaps in the order-

of-addition literature in this dissertation. Specifically, we have developed a class of flexible,

position-based models for the standard order-of-addition problem in addition to a robust de-

sign construction. These methods can be used in concert to conduct efficient, cost-effective

experiments. We are among the first to consider designs for order-of-addition screening ex-

periments, establishing several constructions that produce optimal and near-optimal designs
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for the standard order-of-addition screening models. Finally, for some problems analytic con-

structions are difficult to create, yet the resulting designs are greatly needed in practice. To

fill this gap we have explored the efficacy of several prominent nature-inspired, metaheuristic

algorithms to locate designs with suitable efficiency and space-filling properties, finding that

variants and hybridized versions of standard algorithms can find designs that far outperform

the existing ones.

6.1 Summary of Results

First, Chapter 3 considers the standard order-of-addition problem. Our main contribution

is the idea of position-based models. By altering the perspective for the analysis of order-of-

addition data to focus on the effects of individual components, we open up the possibility of

modeling with orthogonal polynomials. Applying this new class of position-based models to

the critical application of sequential drug administration, we have found that they are capable

of elucidating the effect of individual drug’s positioning on the endpoint effectiveness of the

treatment while also generating accurate predictions as to the best sequence. This is a bar

that existing models fall short of without the addition of many costly parameters. To support

these new models, we have used the theory of Latin squares to construct optimal designs

that dramatically reduce the cost of running order-of-addition experiments. Together these

methods provide a framework for the design and analysis of order-of-addition experiments

that is robust to assumptions about the relationship between components in the ordering

effect.

Next, Chapter 4 tackles the difficulties that accompany the problem of screening a pool

of components for the most effective subset when there is also a suspected ordering effect.

This screening problem requires adaptations of existing order-of-addition models, namely

the component-position and pariwise ordering models. However, the real contribution here

is in the three design construction algorithms. Between these constructions, all supported
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by the theory of optimal design, we have covered many potential cases that a researcher may

encounter in order-of-addition screening experiments. Applying these results to the field of

operations research through a job scheduling application, we have found that the designs

offer a cheap, effective alternative to performing all sequences, and when used in conjunction

with an active learning optimization scheme they can lead to earlier convergence to the best

job sequence than a random design.

Finally, while we can use our proposed models and design constructions to solve many

important problems in the field of order-of-addition experiments, there are still many open

problems without theoretically-supported solutions. This includes the development of A-

optimal designs that are robust to the choice of position-based model and space-filling designs

for computer experiments to study deterministic systems that take a permutation as the

input. To solve these important and computationally difficult problems, we turn to the class

of nature-inspired metaheuristic algorithms. Specifically, we investigate the performances

of two prominent members of this class, Differential Evolution (DE) and Particle Swarm

Optimization (PSO), along with several of their popular variants. Through a detailed study

of eight algorithms we were able to find designs that show great improvement over the

existing ones in terms of the criteria of interest, with adaptive parameter variants of DE

and hybridized versions of PSO showing particular promise. Being the first to showcase

the benefit of applying these algorithms to order-of-addition problems, we have handled

several more problems that researchers may encounter when studying ordering effects in

practice. Furthermore, having found initial success, we can now study the properties of

the resulting designs from these metaheuristic algorithms with the aim of either obtaining

further improvements or generalizing them into a well-defined construction.
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6.2 Future Work

This dissertation provides substantial contributions to several pressing problems in the de-

sign and analysis of order-of-addition experiments, but the statistical treatment of these

experiments is still in its early stages. There are of course many open areas of research for

creating or improving methods for tackling other practical problems. This section reviews a

few such problems.

We have considered in Chapter 4 how to screen components when the size of the pool is

larger than the number of positions available. However, another problem faced in practice

is deciding how many positions may be appropriate. For example, in the drug sequencing

applications from Yang et al. (2021) and Mee (2020), it is not clear whether five drugs are

necessary, or if the maximum benefit can be obtained with four drugs or less. Designing and

analyzing an experiment in which the number of drugs administered varies by run continues

to be an open area of research. One idea is to concatenate the screening designs we have

constructed in Chapter 4 for every possible value of 1 < q < m and further adapt the standard

order-of-addition models to accommodate a design with a variable number of components per

run. Another approach would be to design an adaptive experiment with at least two stages

in which the pool of components is reduced in each stage until the relationship between the

choice, size, and order of the sequence is understood.

In many applications we are not solely interested in understanding the ordering effect;

in fact, we may be more convinced that additional covariates associated with each compo-

nent are more important than the order. Sticking with the sequential drug administration

application, this problem arises in the determination of the proper dosage for each drug.

For example, Wang et al. (2020) studied three drugs, with two of the drugs having two

dosages per drug and the dosage of the third drug being fixed. To study this relationship,

the researchers used a cross-array design, combining an order-of-addition design with an

orthogonal array for studying the dosage effect. However, for many situations the resulting
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design would be too large to be practically useful, and it raises concerns about the inter-

action effects between the dosages and the ordering. Xiao et al. (2020) instead approached

the problem by using a Gaussian Process-based model within an active learning framework

to reduce the computational complexity of locating the optimal dosage and position of each

drug. Since this approach employs a spatial Gaussian Process model, this is one area where

the space-filling, order-of-addition designs we found in Chapter 5 could lead to potential

improvements in the convergence speed, but further research is necessary.

Lastly, another practical area of importance in the study of order-of-addition is that of

hard-to-change components. In the event that the positions of at least two components are

difficult to change, a design with completely randomized run order may lead to additional

costs associated with the extra effort required to change the positions. For example, this

type of practical problem may occur in operations research and engineering applications if

different steps of a job require heavy machinery or additional manpower. Generalizing this,

if the positions of all components are difficult to change, then the number of position changes

required between runs is an important consideration. As another example, consider the toy

problem of sequentially arranging a set heavy stones to build the most efficient makeshift

bridge across a river. An improper choice of design could lead to a substantial increase in

the number of times each stone must be lifted and the distance it must be carried. The

solution to this problem, minimum run-change designs, have been studied for specific design

structures, such as two-level factorial designs (Cheng et al., 1998) and Plackett-Burman

designs (Quinlan and Lin, 2015); however, the direct study of run order in optimal order-of-

addition designs is still an open problem.
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APPENDIX A

Proofs

Proof of Theorem 3.1. (i) By Corollary 6 (i) of Xu (2003), we have W1 ≥ mr(m− r)/n2,

with equality if and only if each component appears as equally often as possible in every

column. When n = qm+ r, Fn,m contains q m×m Latin squares, so each level appears in

each column q times in the first qm runs of Fn,m. Each column of the last r runs of Fn,m

contains each level at most once, meaning that the maximum difference in the number of

occurrences of each level per column is 1. Thus, Fn,m has minimum W1 = mr(m − r)/n2

among all possible designs.

(ii) This is a direct result of (i).

(iii) We show that Fn,m is an orthogonal array of weak strength t for all t ≥ 1. A design

is an orthogonal array of weak strength t if all possible level combinations for any t columns

appear as equally often as possible (Xu, 2003). From (i) we know that Fn,m has minimum

W1. Since Fm(m−1),m is a COA with the property that every pair of level combinations shows

up exactly once, we know that the sub-design Fn,m, n ≤ m(m − 1), contains each pair of

level combinations either 0 or 1 times. Since n ≤ m(m− 1), Fn,m is an orthogonal array of

weak strength t for all t ≥ 1. Hence, by Theorems 2 and 3 of Xu (2003), design Fn,m has

generalized minimum aberration among all possible designs.

(iv) If n = m(m − 1), then the claim is true by the mutual orthogonality of the Latin

squares derived in Step 1 of Algorithm 1. The two COA properties of a design are invariant

with respect to column permutation. Therefore, each Ci, i = 1, . . . , (m − 2)!, is also a

COA(m(m−1),m) and for any n > 0 such that n/(m(m−1)) = λ is an integer, concatenating
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the λ COA(m(m− 1),m) designs produces a COA(n,m).

Proof of Theorem 3.2. We prove the claim for any COA(n,m) as the full design Fm is a

special case with n = m!. For a point b = (b1, . . . , bm) ∈ X , the vector of regression functions

under the quadratic model (3.1.4) is

f(b) = (1, p1(b1), . . . , p1(bm−1), p2(b1), . . . , p2(bm−1))
T,

with the first m terms being the regression functions under the first-order model (3.1.3). For

any COA(n,m) the information matrix under the quadratic model and its inverse take the

form

M (ξ) =


1 0T

m−1 0T
m−1

0m−1 δJ(m−1) + (1− δ)I(m−1) 0(m−1)×(m−1)

0m−1 0(m−1)×(m−1) δJ(m−1) + (1− δ)I(m−1)

 ,

M (ξ)−1 =


1 0T

m−1 0T
m−1

0m−1 −(mδ)−1(J(m−1) + I(m−1)) 0(m−1)×(m−1)

0m−1 0(m−1)×(m−1) −(mδ)−1(J(m−1) + I(m−1))

 ,
where δ = −1/(m− 1), 0k is a column vector of 0’s, Jk is a k× k matrix of 1’s, and Ik is the

k×k identity matrix. The top left 2×2 submatrix in both cases is the equivalent information

matrix and inverse under the first-order model. Now we can apply the checking condition

(2.1.4) provided by the equivalence theorem and exploit the properties of the orthogonal

polynomial contrasts (3.1.2).

f(b)TM(ξ)−1f(b) = 1− 2

mδ

m−1∑
k=1

p21(bk)−
2

mδ

m−2∑
k=1

m−1∑
l>k

p1(bk)p1(bl)

− 2

mδ

m−1∑
k=1

p22(bk)−
2

mδ

m−2∑
k=1

m−1∑
l>k

p2(bk)p2(bl).

Because b = (b1, . . . , bm) is a permutation of {1, . . . ,m}, using (3.1.2) and some algebra, for

j = 1, 2, we have

2
m−1∑
k=1

p2j(bk) + 2
m−2∑
k=1

m−1∑
l>k

pj(bk)pj(bl) = m.
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Therefore,

f(b)TM (ξ)−1f(b) = 1− 1

δ
− 1

δ
= 1 + (m− 1) + (m− 1) = 2m− 1.

As the quadratic model has p = 2m − 1 parameters, the equality in (2.1.4) holds for any

b ∈ X . By the equivalence theorem, every COA(n,m) is D-optimal for the quadratic model.

The proof of D-optimality for the first-order model is simpler. This completes the proof.

Proof of Theorem 3.3. For the full design Fm and the second-order position model (3.1.5),

let X be the n× p model matrix and M = XTX/n be the p× p information matrix with

n = m! and p = (m − 1)(m + 2)/2. Let H = X(XTX)−1XT be the hat matrix. To prove

the D-optimality, we need to show that the equality in (2.1.4) holds for any b ∈ X . For any

b ∈ X , by the standard linear model theory, the variance of the fitted value when x = b

is V ar(ŷ(x)) = σ2f(b)T(XTX)−1f(b) = n−1σ2f(b)TM−1f(b). Because every b is a row

of the full design Fm, it is sufficient to show that each of the diagonal elements of the hat

matrix H is p/n.

To do this, we consider the extended second-order model

y = β0 +
m∑
k=1

p1(bk)βk +
m∑
k=1

p2(bk)βkk +
∑

1≤k<l≤m

p1(bk)p1(bl)βkl + ε, (A.0.1)

which includes all m first-order, m pure quadratic and m(m− 1)/2 bilinear (or interaction)

terms. The extended second-order model has q = (m + 1)(m + 2)/2 parameters. Let Z be

the n × q model matrix for the full design Fm. Due to the constraints on the orthogonal

polynomials and the fact that each row is a permutation, ZTZ has rank p and its inverse does

not exist, so we consider its Moore-Penrose generalized inverse (ZTZ)−. By the standard

linear model theory (Seber and Lee, 2003), the projection matrix P = Z(ZTZ)−ZT of the

extended second-order model (A.0.1) is identical to the hat matrix H = X(XTX)−1XT of

the second-order position model (3.1.5) because columns of Z and X span the same linear

space. Under the extended model (A.0.1), all variables are exchangeable; therefore, the

variances of the fitted values are the same for all rows of the full design. This is equivalent
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to saying that the diagonal elements of projection matrix P are the same. Since P is

idempotent and has rank p, its trace is equal to its rank. Therefore, all of the diagonal

elements of P , and hence H , are equal to p/n. This completes the proof.

Proof of Theorem 4.1. For a fixed m and q the normalized information matrix and its

inverse under the full design Sm,q are given by

M (Sm,q) =



1 aT aT . . . aT

a B C . . . C

a C B . . . C
...

...
...

. . .
...

a C C . . . B


M−1(Sm,q) =



d eT eT . . . eT

e F G . . . G

e G F . . . G
...

...
...

. . .
...

e G G . . . F


,

a =
1

m
1(m−1) d =

m(1− 2q +mq)

m− q

B =
1

m
I(m−1) e = −m(m− 1)

(m− q)
1m−1

C =αJ(m−1) − αI(m−1) F = δJ(m−1) + δI(m−1)

α =
1

m(m− 1)
, δ =

(m− 1)(m− q + 1)

m− q
, ζ =

m− 1

m− q
G = ζJ(m−1) + ζI(m−1),

where Im is the m×m identity matrix, Jm is an m×m matrix of 1’s, and 1m is a length m

column vector of 1’s.

Using the equivalence theorem, for row i of the model matrix:

XiM
−1(Sm,q)X

T

i − ((m− 1)q + 1) = d+ wi

(
− 2mζ + δ + (wi − 1)ζ

)
−mq + q − 1,

where wi = q if run i does not include component m and wi = q − 1 otherwise.

After some algebra this expression simplifies to the following:

XiM
−1(Sm,q)X

T

i −((m−1)q+1) = −mq+wim−2mqwi+2qwi−wi+w2
im−w2

i +mq2−q2+q

For both settings of wi, this expression evaluates to 0, satisfying the equivalence theorem.
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Proof of Theorem 4.2. For a fixed m and q the normalized information matrix and its

inverse under the full design Sm,q are given by

M(Sm,q) =



1 0T
m−1 0T

m−2 . . . 0T
2 0

0m−1 Am−1 BT
m−2,m−1 . . . BT

2,m−1 BT
1,m−1

0m−2 Bm−2,m−1 Am−2 . . . BT
2,m−2 BT

1,m−2
...

...
...

. . .
...

...

02 B2,m−1 B2,m−2 . . . A2 BT
1,2

0 B1,m−1 B1,m−2 . . . B1,2 A1



M−1(Sm,q) =



1 0T
m−1 0T

m−2 . . . 0T
2 0

0m−1 Cm−1 DT
m−2,m−1 . . . DT

2,m−1 DT
1,m−1

0m−2 Dm−2,m−1 Cm−2 . . . DT
2,m−2 DT

1,m−2
...

...
...

. . .
...

...

02 D2,m−1 D2,m−2 . . . C2 DT
1,2

0 D1,m−1 D1,m−2 . . . D1,2 C1


,

Ai = α(Jm − Im) + δIm Ci = ζ(Jm − Im) + ηIm

Bi,j = [0(i×j−i−1)
...− α1i

...αIi] Di,j = [0(i×j−i−1)
...− ζ1i

...ζIi]

α =

q−1∑
j=1

j(j − 1)

m(m− 1)(m− 2)
δ =

q(q − 1)

m(m− 1)

ζ =
−α

(δ − 2α)(δ + (m− 2)α)
η =

δ + (m− 4)α

(δ − 2α)(δ + (m− 2)α)
,

where Im is the m × m identity matrix, Jm is an m × m matrix of 1’s, 0m is a length m

column vector of 0’s, 1m is a length m column vector of 1’s and 0i×j is an i× j matrix of 0’s.

Using the equivalence theorem, for any row i of the model matrix:

XiM
−1(Sm,q)X

T

i −
(
m

2

)
− 1 = 1 +

1

2
q(q − 1)η + gζ −

(
m

2

)
− 1,
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where g =
q−1∑
j=1

j(j − 1) = q(q − 1)(q − 2)/3. After some algebra this expression simplifies to

= q(q − 1)
(
q(q − 1) +

(m− 4)g

m− 2

)
− 2g

( g

m− 2

)
−
(
q(q − 1)− 2g

m− 2

)(
q(q − 1) + g

)
=
q(q − 1)(m− 4)g

m− 2
− gq(q − 1) +

2gq(q − 1)

m− 2

= gq(q − 1)
(m− 4

m− 2
− 1 +

2

m− 2

)
= 0

Proof of Theorem 4.3. Let m be prime or a prime power, 1 < q < m, and n = λm(m−1)

where λ ≥ 1. The design Sc
n,m,q inherits the properties of the COA(n,m) proposed by Yang

et al. (2021). This includes the property that every two-column sub-array contains every

level combination (i, j) with i 6= j and i, j = 1, 2, . . . ,m the same number of times. From this

property we know that before normalization the information matrix of the design Sc
n,m,q is

given by

nM (Scn,m,q) =



λm(m− 1) λ(m− 1)1T

(m−1) . . . λ(m− 1)1T

(m−1)

λ(m− 1)1(m−1) λ(m− 1)I(m−1) . . . λ
(
J(m−1) − I(m−1)

)
λ(m− 1)1(m−1) λ

(
J(m−1) − I(m−1)

)
. . . λ

(
J(m−1) − I(m−1)

)
...

...
. . .

...

λ(m− 1)1(m−1) λ
(
J(m−1) − I(m−1)

)
. . . λ(m− 1)I(m−1)


Dividing this matrix by n yields the same information matrix as the full design Sm,q given

in Theorem 4.1.

Proof of Theorem 4.4. (i) Assume that there is some n < 2
(
m
2

)
such that there is a

design with n runs for which the normalized information matrix is equal to the one given in

113



the proof of Theorem 4.1. For such a design the raw information matrix is given by

nM (Sm,2) =

 n 0T

(m
2 )

0(m
2 )

2n
m(m−1)I(m

2 )

 .
In this matrix nδ = 2n

m(m−1) represents the number of occurrences of each pair of components

(i, j). This number must be even so that each pair can occur as i, j and j, i an equal number

of times and produce a value of 0 in the first row and column of the matrix. Every pair

must also occur an equal number of times to all other pairs. We know that there is at least

one pair of components that appears fewer than 2 times. If a pair only appears once, then

balance is not possible, and if it appears 0 times, then it is not possible to have equal values

on the diagonal, so no such n exists.

(ii) Assume that there is some n < 6
(
m
3

)
such that there is a design with n runs for which

the normalized information matrix is equal to the one given in the proof of Theorem 4.1.

Following the proof of (i) each pair of components must occur the same number of times,

specifically nδ = 6n
m(m−1) times, which must be even. Similarly, each pair of pairs with one

overlapping component must occur nα = 2n
m(m−1)(m−2) times, which must be an integer. The

only value of n for which nα is an integer is n = 3
(
m
3

)
, yielding nα = 1. However, this value

of n yields nδ = 3(m− 2). Since m is odd, nδ cannot be even.

(iii) Following the proof of (ii), in the case that m is even, then n = 3
(
m
3

)
is the only

n < 6
(
m
3

)
which yields an integer value for nα and an even value for nδ = 3(m− 2).

Proof of Theorem 4.5. With n = 3
(
m
3

)
and even m, and using the information matrix

given in the proof of Theorem 4.1, the design Sp
n,m,3 is optimal for the CPS model if each

component occurs in each position the same number of times, specifically (m− 1)(m− 2)/2

times. Likewise, each pair of components (i, j) must occur in each 2-column sub-array equally

often, specifically (m− 2)/2 times.

The design Sp
n,m,3 is made up of

(
m
3

)
, Dijk matrices with 0 ≤ i < j < k ≤ m− 1, half of

which have i+ j+k even and half with i+ j+k odd. Since each Dijk is a Latin square, each
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component occurs in each position once per square, meaning that each component occurs in

each position
(
m−1
2

)
= (m− 1)(m− 2)/2 times.

For a fixed ordered pair of components (x, y) with x < y, consider the ordered set of

m− 2 elements z = {j = 0, . . . ,m− 1; j 6= x, y}. Consider a pair of triplets {x, y,z[j]} and

{x, y,z[j+1]}. There are (m−2)/2−1 such distinct pairs with no overlapping triplets. Each

triplet {x, y,z[j]} admits a matrix Dz[j]xy, Dxz[j]y or Dxyz[j]. x+y+z[j] and x+y+z[j+1]

have opposite parity if one of the following is true:

i) z[j] < x < y and z[j + 1] < x < y

ii) x < z[j] < y and x < z[j + 1] < y

iii) x < y < z[j] and x < y < z[j + 1]

iv) z[j] < x < y and x < y < z[j + 1]

Otherwise the parity of both triplets is the same if one of the following is true:

i) z[j] < x < y and x < z[j + 1] < y

ii) x < z[j] < y and x < y < z[j + 1]

In all cases, the six runs generated from concatenating the D matrices produced from the

two triplets yields the following 7× 7 partition of the raw information matrix that includes

only the intercept and terms that feature component x or y.


1 zx· zy·

1 6 2T
3 2T

3

zx· 23 2I3 J3 − I3

zy· 23 J3 − I3 2I


Since this holds for each of the (m−2)/2−1 pairs of triplets and for all pairs of components

(x,y) we conclude that each pair of components shows up in each pair of positions an equal

number of times, specifically (m− 2)/2− 1.
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For the PWOS model, optimality requires that each pair of components (x, y) occur as

both (x, y) and (y, x) an equal number of times. In proving the optimality of the design for

the CPS model we have already seen that this is true for each pair of positions and thus true

for the design overall.

Additionally, we know that each pair of pairs of components with exactly one component

overlapping is present in exactly 3 runs. For components x < y < z this can take 3 forms:

(xy)(xz), (xy)(yz) and (xz)(yz). Regardless of the parity of x + y + z, the 3 runs of Dxyz

admits the following partition of the raw information matrix that includes only the terms

that involve the three components:


Ixy Ixz Iyz

Ixy 3 1 −1

Ixz 1 3 1

Iyz −1 1 3


Summing these information matrices across all triplets recovers the information matrix given

in Theorem 4.2 for the specific case that q = 3, where α = 2/m(m − 1)(m − 2) and δ =

6/m(m− 1).

Proof of Theorem 4.6. For each pair of components x < y, we generate a set of
(
m−2
q−2

)
OofA-OAs. Concatenating these designs preserves the properties of each pair of pseudo-

factors given in Section 2.3, except that now the inner product of the factor with itself is ±(
m−2
q−2

)
n, where n = 12d(

(
q
2

)
+1)/12e.

For each triplet x < y < z, we generate a set of
(
m−3
q−3

)
OofA-OAs. Concatenating these

designs preserves the properties of each pair of pseudo-factors given in Section 2.3, except

that now the inner product of the factors is ±
(
m−3
q−3

)
n/3, where n = 12d(

(
q
2

)
+1)/12e.

Dividing each of these values by the run size of the whole design
(
m
q

)
n yields the correct

values for α and δ to reproduce the information matrix given in the proof of Theorem 4.2.
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APPENDIX B

Additional Results

B.1 Additional Permutation Robustness Results

For each sample size n in Figure 3.2, up to five unique designs are necessary to obtain the

largest D-efficiency under each model. Instead, we could consider a single design F∗n,m for

each combination of n and m that is derived from maximizing the geometric mean efficiency

of the estimable models, akin to those presented in Table 3.6. The results of this analysis are

presented in Figure B.1. Generally, we see that many of the efficiencies are on par with what

we observed when maximizing the value for each model individually. A notable exception

is the efficiency of the maximal geometric mean design under the PWO model, which for

some combinations of n and m is slightly lower than the efficiency of the design that solely

optimizes performance for the PWO model; see Figure 3.2.

While Figures 3.2 and B.1 substantiate our claim that our algorithm produces efficient

designs, they do not inherently show how much there is to gain or lose by selection of permu-

tations in Algorithm 3.1. They also do not consider the effect of level or Ci permutations.

To remedy this, Table B.1 gives the maximal DPWO and DSO values obtained through a

brute force search over all choices of the three permutations and the improvement relative

to the values of the Fn,m designs in Table 3.6. We do not include the other efficiencies since

many of the designs are optimal under the CP, first-order and quadratic models and show

minimal improvement with column permutations. The notation F+
n,m is used to represent

the resulting designs. ∆PWO and ∆SO give the difference in D-efficiency under the specified
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(a) m = 4

(b) m = 5

(c) m = 7

Figure B.1: The D-efficiency of F∗n,m, which maximizes the geometric mean efficiency for

variable run sizes for (a) m = 4, (b) m = 5, and (c) m = 7.
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model between the best permuted design and the design Fn,m given in Table 3.6. Cases for

which the same set of permutations generate the best design for both models are indicated

by †.

Table B.1: Maximal D-efficiencies of designs for the PWO and second-order models under

permutation.

D-efficiency Change

n m Design DPWO DSO ∆PWO ∆SO

†12 4 F+
12,4 0.909 1 0 0

†16 4 F+
16,4 0.917 0.953 0 0

†20 4 F+
20,4 0.954 0.961 0 0

20 5 F+
20,5 0.898 0.959 0.898 0

24 5 F+
24,5 0.926 0.961 0.381 0.012

40 5 F+
40,5 0.969 0.999 0.08 0

†60 5 F+
60,5 0.977 0.999 0 0.013

There are several interesting observations we can make from Table B.1. First, as expected,

we see that the DPWO values of our designs in situations that were previously troubling

greatly improve with this manipulation, closing the gap between our designs and Voelkel’s.

We also see minor improvements in the DSO values for some cases with m = 5. Most impor-

tantly, considering all three types of permutations did not lead to designs that substantially

outperform the F∗n,m designs that only considered column permutations.

We are also interested in knowing the worst efficiency attainable under our algorithm.

Table B.2 summarizes this effect in the same manner as before, this time using F−n,m to denote

the worst design. In this case we see that compared to the small gains in DSO of Table B.1,

the loss of efficiency due to poor selection of permutations is relatively large when m = 5.

On the other hand, the minimal value of DPWO is often not a substantial decrease from the

values found without permutations. For larger m, the brute force approach is limited by the

119



same combinatorial explosion that motivates order-of-addition designs.

Table B.2: Minimal D-efficiencies of designs for the PWO and second-order models under

permutation.

D-efficiency Change

n m Design DPWO DSO ∆PWO ∆SO

†12 4 F−12,4 0.909 1 0 0

†16 4 F−16,4 0.917 0.953 0 0

†20 4 F−20,4 0.954 0.961 0 0

20 5 F−20,5 0 0.428 0 −0.531

24 5 F−24,5 0.545 0.581 0 −0.368

†40 5 F−40,5 0.784 0.735 −0.105 −0.264

†60 5 F−60,5 0.861 0.875 −0.116 −0.111

B.2 Additional Model Misspecification Results

We fix (n,m) = (12, 4) and consider the PWO and CP models. We define our confidence

that the PWO model is indeed the true model as α ∈ [0, 1] and similarly our confidence in

the CP model as 1 − α. We then use Differential Evolution (Storn, 1996) to find 12-run

designs for various values of α that maximize the desirability function given by

Ḡ(α)(ξ) = Dα
PWO(ξ)D1−α

CP (ξ). (B.2.1)

Differential Evolution is inspired by principles of natural selection, mutation and genetic

crossover and has been shown to work well for finding optimal designs while only depending

on the choice of a few parameters (Price et al., 2005). A full description of Differential

Evolution is given in Section 5.1. After tuning the parameters, we are able to use this

algorithm to quickly locate the maximum for all α = 0, 0.1, . . . , 1.
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Figure B.2 shows the unweighted efficiencies of the designs found by the search. In this

plot, α gives our confidence in the PWO model. When α = 0, we assume that the data

follow the CP model with high confidence (1 − α = 1). In this case the algorithm finds

a design that is isomorphic to F12,4 from Algorithm 3.1, with the efficiencies matching our

results from Table 3.6. Designs with this property are represented in the plot by the “F”

symbol. As we then increase α and split our confidence between this model and the PWO

model, F12,4 continues to have maximal Ḡ(α). In fact, it is not until we increase α from 0.7

to 0.8 that this changes. For α ≥ 0.8 the algorithm finds a design equivalent to Voelkel.12a.

These designs are denoted with the “V” symbol.

Figure B.2: D-efficiencies of designs that maximize (B.2.1).

This result demonstrates that our designs are indeed robust to model misspecification in

this case. In addition to the model’s form, there is also the underlying assumption made by

each of these models as to whether the relative positions or absolute positions are impor-

tant in determining the response. By demonstrating that our designs are robust to model

misspecification under this pair of models, we have also shown that they are robust to this

assumption.
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