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Abstract 

We consider projections of SU(2) lattice link variables onto Z2 center and U(1) sub
groups, with and without gauge-fixing. It is shown that in the absence of gauge-fixing, and 
up to an additive constant, the static quark potential extracted from projected variables 
agrees exactly with the static quark potential taken from the full link variables; this is an 
extension of recent arguments by Ambj¢rn and Greensite, and by Ogilvie. Abelian and 
center dominance is essentially trivial in this case, and seems of no physical relevance. The 
situation changes drastically upon gauge fixing. In the case of center projection, there are 

• a series of tests one can carry out, to check if vortices identified in the projected configu
rations are physical objects. All these criteria are satisfied in maximal ceKter gauge, and 
we show here that they all fail in the absence of gauge fixing. The non-triviality of center 
projection is due entirely to the maximal center gauge-fixing, which pumps information 
about the location of extended physical objects into local Z2 observables. 
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1 Introduction 

There is currently a debate in the lattice gauge theory community regarding which type 
of gauge field configuration is responsible for the confining force. Of course, confinement 
mechanisms involving monopoles, center vortices, instantons, and various other types of 
topological objects have been long discussed in the literature, over a period of decades. In 
recent years, however, some of these proposals are being subjected to numerical tests. In 
this connection, it is useful to ask if all of these tests really give us new information, or if, 
instead, certain results turn out as they do for some very trivial reason. 

In this article we will be largely concerned with the center vortex theory, and with the 
(somewhat vague) concept of "center dominance," and most especially with the ability 
of center projection to identify physical objects in the vacuum. Much of the discussion, 
however, applies to abelian dominance and abelian projection as well. 

We will begin by showing, in section 2, that in the absence of gauge-fixing, and apart 
from an additive constant, the potential extracted from center-projected and/or abelian
projected lattices agrees exactly with the pote.ntial derived from the unprojected lattice; 
i.e. not only at large distances, but also in the Coulomb regime. If this is what is meant by 
center or abelian dominance, then it is essentially a triviality in the absence of gauge-fixing, 
having no obvious relevance to the physics of confinement. This result is an extension of 
remarks by Ambj0rn and one of the authors [1], and of recent work by Ogilvie [2]. 

The situation is much different when gauge-fixing is imposed. Center projection in 
maximal center gauge has been used to identify the location of center vortices, and it is 
asserted that these are physical objects. In ref. [3] we reported the results of a series of 
numerical tests demonstrating the physical nature of vortices identified in center projection; 
these include such things as the effect of vortices on large, unprojected Wilson loops, 
asymptotic scaling of the vortex density, and other properties discussed below. It is a 
compelling illustration of the importance of maximal center gauge-fixing to simply repeat 
the numerical tests in the absence of gauge-fixing. What we find, in section 3, is that every 
one of these tests of "physicality" fails, when no gauge-fixing is employed. This -failure 
is not at all surprising. Vortices are located using local opera~ors (the center-projected 
plaquettes), and in the absence of a global gauge-fixing these operators can hardly be 
expected to contain information about infrared physics. But the failures of the no gauge
fixing case serve to highlight the remarkable, and highly non-trivial, fact that each test is 
satisfied when maximal center gauge is imposed. 

Finally, in section 4, we note that the "center dominances" which are obtained with and 
without gauge-fixing are not really the same. Without gauge-fixing, projected and unpro
jeCted potentials are identical, starting out Coulombic at short distances and going linear 
at large distances. Imposing maximal center gauge, the center-projected potential is nearly 
linear everywhere, from one lattice spacing onwards. We explain why this "precocious lin
earity" is to be expected, if projected plaquettes locate the genuine confining configurations 
(center vortices) in the unprojected lattice. Section 5 contains some concluding remarks. 
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2 Center Dominance Without Gauge Fixing 

Let U(C) denote the product oflink variables around loop C in SU(2) lattice gauge theory, 
and let U(R, T) in particular denote the link product around a rectangular R x T loop. 
Suppose, instead of computing the potential in the usual way, i.e. 

V(R) = lim -log [< Tr[U(R, T + 1)] >] 
T-'too < Tr[U(R, T)] > (1) 

we calculate the potential from only the sign of the Wilson loop 

Vs(R) = lim -log [< signTr[U(R, T + 1)] >] 
T-'too . < signTr[U(R, T)] > 

(2) 

This was done done numerically in ref. [4] (although of course without taking T to 00), 
with the surprising result that the sign-projection potential Vs(R) and the full potential 
V(R) agree, except for the very smallest loops. However, this agreement can actually be 
explained in a simple way, as shown in ref. [1] (see also [5,6]). 

We first need the result that for large T, 

(3) 

where 

(4) 

and Xj[g] is the SU(2) group character in representation j. The above inequality (3) can 
be seen as follows. In all cases, we consider very large T, and j =half-integer. Begin with 
R in the Coulombic regime. The leading contribution, just coming from 1-gluon exchange, 
is 

(5) 

where Cj = j(j + 1) is the quadratic Casimir and b is a constant of 0(1).1. The first term 
is the Coulomb contribution, the second term is the self-energy, and we have neglected 
terms subleading in T. Because Cj increases with j, and because the self-energy exceeds 
the Coulomb term, the inequality (3) at large T follows. As R is increased, and the loop 
probes forces in the Casimir-scaling regime, the leading loop behavior becomes 

(6) 

where the string tension aj increases with j. Casimir scaling behavior is deduced from 
numerical results; c.f. [8]. Here again, since aj and Cj increase with j, the inequality 
(3) is satisfied. Finally, in the asymptotic regime, the color charges of the half-integer 
representations are screened via bind~ng to gluons down to j = ~, and we have 

(7) 

IThis result is obtained by standard perturbative evaluation of the Wilson loop; c.f. [7] 
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Color screening of static souces by matter in the fundamental representation ("string
breaking") has only recently been observed in Monte Carlo simulations [9]. The screening 
of higher representation color charges by gluons is also expected to occur, on the basis 
of very general energetics arguments, at sufficiently large separations; this screening can 
be easily demonstated in the context of the strong coupling expansion. The term dj will 
have contributions from two sources. The first, for j > !, is the bound state energy 
of gluons required- to screen the heavy quark color charge to j = 1/2. The higher j 
is, the more gluons are required to screen the charge, and the larger the energy of the 
"gluelump.,,2 A second contribution to dj comes from the heavy-quark perturbative self
energy contribution, proportional to g2Cj . Both contributions cause dj to increase with 
j, and again (3) is obtained. The conclusion is that, for any R, and any two half-integer 
representations jl > j2, 

We now make the character expansion 

with 

signTr[g] = :E ajXj[g] 
j=~,~,~, ... 

! dg signTr[g]Xl/2[g] 

8 
37r 

Then, taking into account (8), this means that for large T 

< signTr[U(R, T)] >~ ~ < Tr[U(R, T)] > 
37r 

(8) 

(9) 

(10) 

(11) 

and the equality of the full potential Y(R) and projected potential Vs(R) follows Immedi
ately. From its derivation, which simply follows from the character expansion and eq. (3), 
it is not clear to us that the equality of Vs(R) and V(R) bears directly on the confinement 
issue. Note that this equality holds even in the Coulombic regime, before confinement 
physics comes into play. 

A closely related observation has been made by Ogilvie [2], this time concerning projec
tions of link variables, rather than loop variables. Consider a projection Up.(x) -+ Hp.(x), 
of SU(N) link variables onto some subgroup H of SU(N). Then it is shown in ref. [2] that, 
in the absence of gauge-fixing, the asymptotic string tension extracted from the projected 
link variables in Tr H (C) agrees with the asymptotic string tension derived from the full 
link variables. 

2 An increase in the mass of the gluelump with increasing numbers of bound gluons seems rather likely, 
although the gluelump masses associated· with higher representation static sources have not yet been 
calculated numerically, and we do not attempt to do so here. 
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In fact, for both abelian and center projection, the statement concerning potentials 
from full and projected link variables can be made very much stronger than the result 
stated in [2]. As in ref. [2], we consider such projections in the absence of any associated 
gauge-fixing. We begin with center projection. The Wilson loop on a center-projected 
lattice is defined to be 

< II signTr[Ud > 
lEG 

~ I DU II L ajlXjl[Ude-
S 

lEG jl=~'~'!"" 

Let (Xl, Yl) denote the (path-ordered) endpoints oflink l E C, with the convention 

(12) 

Ul = U/L(XI) if Yl = Xl + fl, and Ul = Uj(YI) if Xl = Yl + fl· Applying the familiar trick 
of inserting an integration over gauge transformations 1 = f Dg followed by a change of 
variables U -+ gU 9 t , 

(13) 

where P(C) is the loop perimeter, and we have used the identity 

(14) 

with dj = 2j + 1. Finally, making use of (8) we have 

. T (4)P(G) 
Wp(R, T) ~ 4 37f W1/ 2 (R, T) (center projection) (15) 

and the equality of center-projected and full potentials up to an additive constant 

Vp(R) + 2In(3~) = V(R) (16) 

again follows immediately. 
Abelian links A are obtained from full link variables U 

U = ( cos <p e
i9

. sin <p ei~ ) 
- sin <p e-ZX cos <p e-dJ (17) 
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by setting 

A(U) = (e~8 e~i8) (18) 

and the abelian Wilson loop is defined as 

1 
Wp[C] = - < Tr[II A(Ul )] > 

2 lEG 
(19) 

Abelian links, unlike center projected links, are not class functions, and cannot be expanded 
in SU(2) group characters. Instead we make use of the fact that, in the absence of gauge
fixing, only the gauge-invariant component Oinv of an operator 0 will contribute to the 
expectation value of 0, where Oinv is given by 

(20) 

This fact is readily verified by again making the insertion 1 = J Dg and change of variables 
U ---+ gU gt in the functional integral, which gives,in the present case, 

(21) 

The quantity in braces is gauge invariant, and can now be expanded in SU(2) group 
characters 

where 

a· J 

and in particular 

I II dUl I Dg ~Tr[II A(g(xl)Ulgt(Yl))]Xj[II Uz] 
lEG 2 lEG lEG 

III dUl ~Tr[II A(Ul)]Xj[II Ul] 
lEG 2 lEG lEG 

Thus we can again express . 

. Wp[C] = L aj < Xj[II Uz] > 
j=!,~,~,... lEG 
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For the same reasons as before, the higher representations can be neglected as T -+ 00, so 
that 

(2) P(C) 
Wp(R, T) T-4f 2 3 W1/ 2 (R, T) (abelian projection) (26) 

from which the exact equality (up to an additive constant) of the abelian-projected and 
full potentials follows. It is interesting that, although the expressions (15) and (26) re
lating Wp(R, T) to W1/ 2 (R, T) only hold exactly as T -+ 00, we have found in numerical 
simulations that these are in fact very good approximations to even the smallest projected 
1 x 1 and 1 x 2 loops at, e.g., f3 = 2.3. 

The initial interest in abelian projection (and, more recently, center projection) was 
sparked by the discovery that the string tension of abelian projected lattices scales, and 
agrees (at least approximately) with the full string tension [10]. The triviality of this result, 
in the absence of gauge fixing, suggests that no strong conclusions can be drawn from 
abelian and/or center dominance alone. However, results obtained from lattice projection 
do not end with abelian or center dominance. In particular, in the case of center projection 
in maximal center gauge, we claim to be able to identify the location of confining center 
vortices in the unprojected lattice and to show, via a series of tests, that these are physical 
objects rather than artifacts of the projection. The existence of center dominance (16) in 
the absence of gauge-fixing then raises a natural question: Are the tests for the physical 
nature of vortices also somehow trivial? Suppose one tries to identify center vortices 
without any gauge fixing, and repeats the same series of tests. What happens? 

3 Can One Find Vortices Without Gauge-Fixing? 

The "direct" version of maximal center gauge, used in most of our work, is defined as the 
gauge which maximizes 

2: ITr[UtL (x)] 12 (27) 
x,tL 

There is also an "indirect" version, which begins from maximal abelian gauge and then uses 
the remnant U(l) symmetry to maximize an expression like (27), with the full link variables 
replaced by the abelian projected links. Center projection (in SU(2) gauge theory) is a 
mapping of the SU(2) lattice link variables PtL to Z2 link variables ZtL via 

(28) 

The excitations of a Z2 lattice are Z2 vortices, which are line-like in D=3 dimensions, and 
surface-like in D=4 dimensions. We refer to the vortices on the center-projected lattice 
as projected vortices, or just "P-vortices." A plaquette on the original lattice is said to 
be "pierced" by a P-vortex if the corr~sponding plaquette on the projected lattice has the 
value -1. We define vortex-limited Wilson loops Wn (C) to be Wilson loops evaluated on 
the original, unprojected lattice, with the following "cut" in the Monte Carlo data: Wn(C) 
is only evaluated for those loops C in which exactly n plaquettes in the minimal area are 
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pierced by P-vortices. In the same way, Weven(C) and Wodd(C) refer to loops pierced by 
even and odd numbers of P-vortices, respectively, and one can also define Creutz ratios 
Xn(I, J), Xeven(I, J) extracted from the Wn and Weven· 

We now list our reasons, which are the outcome of a series of tests, for believing 
that "thin" P-vortices in the center-projected lattice locate "thick" center vortices in the 
unprojected lattice, and that these thick vortices are physical objects: 

• P-Vortices locate center vortices. Vortex excitations in the center-projected 
configurations, in direct maximal center gauge, locate center vortices in the full, 
unprojected lattice. The evidence for this comes from the fact that 

(29) 

as loop area increases. 

• No vortices:::} no confinement. When Wilson loops in SU(2) gauge theory are 
evaluated in sub ensembles of configurations with no vortices (or only an even number 
of vortices) piercing the loop, the string tension disappears; i.e. 

Xo (I, J) --+ 0 Xeven (I, J) --+ 0 (30) 

as loop area increases. 

• Vortex density scales. The variation of P-vortex density with coupling {3 goes 
exactly as expected for a physical quantity with dimensions of inverse area [3,11]. 

• P-vortices are strongly correlated with action density. Plaquettes which 
are pierced by P-vortices have a very much higher unprojected plaquette action than 
the vacuum average. Monopole loops lie on P-vortices [12]. 

Regarding this last point, it is also found that monopoles, identified in the maximal abelian 
gauge, lie along center vortices, found in the indirect maximal center gauge, in a monopole
antimonopole chain. The non-abelian field strength of monopole cubes, above the lattice 
average, is directed almost entirely along the associated center vortices. Monopoles them
selves appear to be rather undistinguished regions of vortices. In fact, it is natural to 
interpret them as simply "kinks" of the vortex magnetic field in maximal abelian gauge, as 
explained in ref. [12], where the magnetic field components in the vortex direction reverse 
their orientation in color space (e.g. from the +0"3 to the -0"3 direction). 

Finally, there is 

• Precocious Linearity. There is no Coulomb potential on the center-projected 
lattice at short distances. The projected potential is linear from the beginning, with a 
string tension in agreement with the one extracted asymptotically on the unprojected 
lattice. 
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As far as the "precocious linearity" of the projected potential is concerned, we know 
already, from the validity of eq. (16) at all distances, that this result is not obtained in the 
absence of gauge fixing. A discussion of this point will be deferred to the next section. We 
will now present data on the other criteria, taken from Monte Carlo simulations with no 
gauge fixing, and compare it to our previous results, in which the maximal center gauge 
was imposed. 

The first check is whether P-vortices still locate center vortices, in the absence of max
imal center gauge fixing. The criterion (c.f. ref. [3]) is that Wn(C)/Wo(C) -+ (_l)n; 
however, since the density of P-vortices is quite large in the absence of gauge fixing, it 
is hard to get good statistics for Wo (C) for the larger loops. Instead, we check the ratio 
Wodd/Weven. If P-vortices locate center vortices, then we should also see 

Wodd(C) -+-1 
Weven(C) 

(31) 

as the loops get large. The data at f3 = 2.3 on a 144 lattice is shown in Fig. 1. The ratios 
obtained under maximal center gauge are tending towards -1 as the loop area increases, 
which indicates that P-vortices do indeed locate center vortices (we have shownWl/WO and 
W2 /WO data elsewhere [3], this is also consistent with P-vortices locating center vortices). 
In obvious contrast, the ratio obtained without gauge-fixing is consistent with + 1, and has 
little variation with loop size. There is no reason, in this case, to suppose that P-vortices 
locate center vortices. So this is the first test to fail in the no gauge-fix case. 

The second test is to see if the no-vortex or even-vortex Wilson loops lose their string 
tensions, because of the zero- or even-vortex restrictions. Again, because of statistics, we 
can only look at the even-vortex loops in the no gauge-fix case. In Fig. 2 we see that in 
maximal center gauge the Creutz ratios Xeven(I, I) do indeed drop to zero as loop area 
increases, while in the absence of gauge fixing there is no discernable difference between 
Xeven(I' I) and the usual Creutz ratios x(I, I). 

Of course, the results shown in Figs. 1 and 2, for the no gauge-fixing case, are closely 
related. From Fig. 1 we have that Weven(C) ~ Wodd(C) in the no gauge-fix case',- which 
implies W(C) ~ Weven(C). The equality of Creutz ratios Xeven(I,I) = x(I,I) follows, as 
seen in Fig. 2. 

The failure of these two tests, in the case of no gauge-fixing, could also have been 
anticipated analytically. This will be shown in an appendix. 

For the test of asymptotic scaling, we first define p to be the fraction, and Nvor to be 
the total number, of center projected plaquettes with value -1. Nvor is also the total area 
of all P-vortices on the dual lattice, and we denote by NT the total number of all plaquettes 
on the lattice. Then 

p 
Nvor Nvora2 

2 
---:-a 

NT NTa4 

Total Vortex Area 2 
-------a 

, 6 x Total Volume 
1 
_pa2 

6 
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Figure 1: Ratio of the Odd-Vortex to the Even-Vortex Wilson loops, Wodd(C)/Weven(C) , 
vs. loop area at {3 = 2.3, with (squares) and without (triangles) maximal center gauge
fixing. 

If p, which is the area of P-vortices per unit volume, is a fixed quantity in physical units, 
then according to asymptotic freedom we should find, in the scaling regime, 

= ~~ (67r2 
) 102/121 ex [_ 67r2 1 

P 6A2 11{3 p 11{3 (33) 

where a is .the lattice spacing. The fraction p is related to the I-plaquette term in center 
projection 

Wcp(l, 1) = (1 - p) + p x (-1) = 1 - 2p (34) 

A plot of the P-vortex density p versus coupling {3, as shown in Fig. 3. The straight line 
is the asymptotic freedom expression (last line of eq. (33)), with the choice J p / (6A 2) = 50. 
For the data obtained in maximal center gauge, the scaling of P-vortex densities seems 
really compelling (a result which was first reported for the "indirect" version of this gauge 
in ref. [11]). By contrast, the density of P-vortices obtained in the absence of gauge-fixing 
shows no sign at all of asymptotic scaling. 

Finally we show in Fig. 4 a plot of the one-vortex plaquette action WI (1, 1) as a function 
of {3, both for maximal center gauge and no gauge-fixing, compared to the usual plaquette 
action. For no gauge-fixing, the deviation of vortex plaquettes from average plaquettes is 
very small. In the maximal center gauge there is a very substantial deviation. 

We conclude that the P-vortices identified in maximal center gauge are true physical 
objects, which can be identified with center vortices. In the absence of gauge fixing there 
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Figure 2: Creutz ratios Xeven(R, R) extracted from loops pierced by even numbers of P
vortices, defined with (squares) and without (crosses) maximal center gauge fixing; as com
pared to the usual Creutz ratios X(R, R) (triangles) at (J = 2.3. Data points for Xeven(R, R) 
with no gauge-fixing (crosses) have been slightly displaced in R, to help distinguish them 
from the X(R, R) data points (triangles). 

is no indication, apart from a very slight correlation with action density, that individual 
P-vortex plaquettes identify the location of any physical object. 

4 Precocious Linearity 

Only the gauge-invariant component Oinv of an observable 0, obtained by averaging over 
gauge transformations, contributes to the expectation value < 0 >, when the expectation 
value is computed in the absence of gauge-fixing. For abelian or center-projected Wilson 
loops, the leading gauge-invariant contribution is the standard, fundamental-representation 
Wilson loop, which in fact gives the entire contribution to the expectation value in the 
T -+ 00 limit. This is· the quick explanation for why projected potentials agree with 
the full potential in the absence of gauge-fixing. There is, however, no reason for such an 
agreement to persist when a global gauge-fixing is imposed, and in fact the exact agreement 
does not persist in general. 

In the first place, there is known 'to be a discrepancy between the string .tensions of 
abelian projected loops obtained in maximal abelian gauge, and string tensions of un
projected loops. A careful study in lattice SU(2) gauge theory at a particular coupling 
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Figure 3: Evidence for asymptotic scaling of the P-vortex density, defined as the fraction p 
of plaquettes pierced by P-vortices (one-sixth -the average area occupied by P-vortices per 
unit lattice volume). The solid line is the asymptotic freedom prediction of eq. (33), with 

constant J p/{6A2) = 50. Data points with and without maximal center gauge-fixing are 
shown. 

(/3 = 2.5115) shows that the string tension of projected loops in maximal abelian gauge 
is only 92%, rather than 100% of the usual string tension [13]. There is also a difference 
between string tensions obtained in the "direct" [3] and "indirect" [14] versions of maxi
mal center gauge, with ..j(i / A differing by ~ 13% in the two cases. The projected string 
tensions in the direct version of maximal center gauge are in excellent agreement with 
the usual string tensions (see below), while the agreement in the indirect version is not 
so good. From these examples it is already apparent that when a global gauge-fixing is 
imposed, the equality of string tensions extracted from projected and unprojected loops 
is by no means guaranteed. But a much more striking difference between the gauge-fixed 
and non-gauge-fixed cases is found at short distances. 

Since the abelian and center projected potentials agree exactly with the full potential 
(up to an additive constant) in the absence of gauge-fixing, it follows that at short dis
tances the projected potentials must have a Coulombic form. In contrast, Creutz ratios 
of the center-projected lattice in maximal center gauge are basically constant, starting 

12 



--~ 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 
(3"' 

full plaquette -
P-vortex, no gauge fix -+-
P-vortex, max center ·e··· 

.<3"'" 
.... 

-0.4 L--__ __'_~ __ -L-___ ...L-__ ___''__ __ __'_ _ ___' 

o 0.5 1.5 
Beta 

2 2.5 

Figure 4: One-plaquette loops W1 (1, 1) for plaquettes pierced by P-vortices, evaluated both 
in maximal center gauge (squares) and with no gauge-fixing (crosses), as compared to the 
usual one-plaquette loop W(l, 1) (diamonds)_ 

with X(2,2); this means that the potential is linear starting at one lattice spacing. This 
"precocious" linearity, for center projection in maximal center gauge, is illustrated in Fig. 
5, where we compare center projected Creutz ratios at (3 = 2.5, to the corresponding full 
Creutz ratios X(R, R) quoted in ref. [15]. A sampling of center projected Creutz ratios 
in maximal center gauge, compared to the asymptotic string tension reported in ref. [16], 
is shown at various values of {3 = 2.3, 2.4, 2.5 in Fig. 6. This linearity of the center 
projected potential deep in the Coulombic regime is clearly not just a small perturbation 
of the non-gauge-fixed result. 

The key point here is that, in maximal center gauge, the distribution of P-vortices is 
precisely that of center vortices, which are large, extended, physical objects. Only this 
distribution, reflecting long-range, confining physics, contributes to Wilson loops on the 
center-projected lattice. Short-range fluctuations which, on the unprojected lattice, are 
responsible for the Coulomb potential, are simply removed by the projection. In contrast, 
with no gauge fixing, the distribution of P-vortices in some region of scale R just reflects 
the underlying fluctuations (including gaussian fluctuations) on the unprojected lattice at 
the scale R, and is only marginally affected, at small scales, by the presence or absence 
of "thick" center vortices on the unprojected lattice. This is why the projected potential, 
with no gauge-fixing, only recovers the Coulomb potential at short distances. 

. A similar effect is found in a variant of abelian projection in maximal abelian gauge, 
known as "monopole dominance." Monopoles are first located on abelian-projected lat
tices by the DeGrand-Toussaint criterion, and their contribution to the abelian Wilson 
loops is computed using the lattice Coulomb propagator. The potential extracted from 
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Figure 5: Center-projected Creutz ratios Xproj(R, R) in maximal center gauge, as compared 
to the usual Creutz ratios X(R, R) at j3 = 2.5. 

such "monopole" Wilson loops then displays precocious linearity [13]. Here again, the 
distribution of monopoles is presumably governed by long-range physics. The magnetic 
fields assigned to those monopoles by the "monopole-dominance" procedure do not in
clude the high-frequency field fluctuations responsible for the Coulomb potential; there are 
only large-scale fluctuations resulting in a linear potential. 

The relation between monopole and vortex distributions has been discussed in ref. [12], 
where it was found that monopoles, identified in abelian projection, lie along center vortices, 
identified in center projection, in monopole-antimonopole chains. The gauge-invariant 
plaquette action around monopole cubes has also been computed, and it is found that 
almost all the excess plaquette action, above the vacuum average, lies on plaquettes of 
the cube pierced by P-vortices. Moreover, this action distribution is almost identical to 
that of any cube pierced by a P-vortex line, with no monopole inside. This indicates 
that the monopoles identified in abelian projection are rather undistinguished regions of 
center vortices, as discussed in ref. [12]. Nevertheless, the fact that center vortices, under 
abelian projection in maximal abelian gauge, appear as monopole-antimonopole chains, 
no doubt underlies the approximate agreement of the monopole-dominated and center
projected potentials (both of which display precocious linearity). 
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Figure 6: Center-projection Creutz ratios X(R, R) vs. R at (3 = 2.3, 2.4, 2.5. Triangles are 
our data points. The solid lines show the value (at each (3) of the asymptotic string tension 
of the unprojected configurations, and the dashed lines, above and below each solid line, 
indicates the associated error bars, quoted in ref. [16]. 

5 Conclusions 

We have shown that in the absence of gauge-fixing, potentials Vp(R) and V(R) obtained, 
respectively, from projected and unprojected Wilson loops, agree exactly (up to an additive 
constant) at all R. On the other hand, such agreement does not hold automatically when 
global gauge-fixing is imposed, particularly at short distances. In view of this, the criterion 
that Vp(R) and V(R) have the same asymptotic behavior should be viewed only as a 
necessary condition that configurations identified on projected lattices are physical objects, 
with the required confinement properties. Abelian and center dominance in themselves are 
by no means a sufficient indicator of the physical nature of monopoles and/or vortices 
identified on projected lattices. 

There are, however, a number of other tests which can be used to establish the physical 
nature of topological objects identified on projected lattices. In the case of center vortices, 
where the vortices are identified by projection in maximal center gauge, it was found 
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that: (i) if a Wilson loop is linked to a region whicli, according to the center-projection, 
contains a vortex, then that Wilson loop picks up a relative minus sign (Wn/Wo -+ (_l)n); 
(ii) the presence of vortices in the projected lattice is correlated to the existence of a 
string tension on the unprojected lattice (Xo(R, R) -+ 0); (iii) P-vortex densities scale as 
required by asymptotic freedom, in a way which is appropriate to a density of surfaces; 
and (iv) there is a very large excess plaquette action at plaquettes pierced by P-vortices. 
Properties (i), (iD, and (iv) involve correlations between the P-vortices of the projected 
lattice with gauge-invariant quantities (Wilson loops, Creutz ratios, and plaquette actions, 
respectively) on the unprojected lattice, while property (iii) is required if P-vortices on the 
center-projected lattice correlate with the location of physical, surface-like objects on the 
unprojected lattice. 

We have shown in this paperthat all of the criteria (i-iv) above, for the physical nature 
of vortices located via center projection, fail completely if no gauge-fixing is imposed. 
This is a simple consequence of the fact that vortices are identified using local operators 
(projected plaquettes), and in the absence of a global gauge-fixing these operators have no 
information about physics on scales much larger than one lattice spacing. The non-triviality 
of center projection, and its ability to locate confining center vortex configurations, can 
be attributed entirely to the effect of fixing to maximal center gauge. This does not mean 
that the center vortex mechanism is in any sense gauge-dependent, and in fact much of 
the data shown above concerns the effect of vortices on gauge-invariant observables. It 
is important to distinguish between the procedure for locating vortices, and the center 
vortices themselves; it is only our method for finding vortices which relies on a gauge 
choice. 

Finally, the fact that the center-projected potential has the correct string tension re
mains an important property of maximal center gauge. It is true that this property is a 
triviality in the absence of gauge-fixing, as shown in ref. [2] and also here. However, as 
noted in the last section, the agreement of projected and standard string tensions is neither 
trivial nor inevitable when a global gauge-fixing is imposed and "precocious linearity" is 
obtained; this agreement is needed in order to establish that fluctuations of center vortices 
alone lead to the correct value of the string tension. It is the tests of physicality (i-iv) 
above, combined with the property of center dominance in maximal center gauge, that 
together make the case for center vortices as the quark confinement mechanism. 
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A Appendix 

In this appendix we show why Weven(C) ~ Wodd(C) ~ W(C), in the absence of gauge 
fixing, up to very large distance scales. If we denote by 

Z(C) = II signTr[Ul ] 

LEG 

then it is not hard to see that 

Weven(C) 
< H1 + Z(C)HTr[U(C)] > 

< H1 + Z(C)) > 
< H1 - Z(C)HTr[U(C)] > 

< ~(1 - Z(C)) > 

Applying eq. (15), and also using the fact that 

Xl/2[U(C)]2 = 1 + xdU(C)] 

we have 

(
4)PCG) 

Weven(C) ~ W(C) + 2 311" 

( 
4 )PCG) 

Wodd(C) ~ W(C) - 2 311" 

(35) 

(36) 

(37) 

(38) 

Since W(C) has an area-law falloff, it is clear that when the area of the loop is much larger 
than the perimeter, the first term on the rhs, W(C), can be neglected in comparison to 
the second term. That would give Wodd/Weven -+ -1, which is in apparent contradiction 
to the Monte Carlo results shown in Fig. 1. The paradox is resolved by computing how 
large the loop C has to be, for this limiting ratio to be obtained. Consider for simplicity, 
square Wilson loops, and let L be the length of a side such that 

( 
4 )4L 

W(L, L) = 311" (39) 

For loops of somewhat smaller area, we can neglect the second, rightmost terms in eq. (38), 
so that Weven ~ Wodd. 3 From 

W(L, L) = exp[-o-L2 - 4bg2(a)L] (40) 

we have 

L 4 ( 311" 2) -;; log 4 - bg (a) 

4 311" 
~ .. -log-

o- 4 
(41) 

3For example, in the case of fJ = 2.3, we find W(5, 5) ~ 4 X 10-4 , while for this loop the second term 
2(4j37r)P(C) in eq. (38) is approximately 7 x 10-8 . 
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where we have used the fact that g2(a) -7 0 in the continuum, {3 -7 00 limit. Since 
(J({3) -7 0 as (3 -7 00, it is clear that L -7 00 in lattice units in the same limit. Convert 
now to physical units 

Lp = La , (42) 

and we find 
4(J-llog 371" 

L - P 4 (43) 
p - a 

Since a({3) -7 0 goes exponentially to zero as (3 -7 00, it follows that Lp diverges to infinity 
in physical units. The conclusion is that in the continuum limit, 

Weven(C) = Wodd(C) = W(C) (44) 

for all loops C, and, as a consequence, 

Xeven(I, J) = X(I, J) (45) 

everywhere, in the absence of maximal center gauge-fixing. This explains the results shown 
above in Figs. 1 and 2. 
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