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Abstract Alcoholic liver disease (ALD) progresses from

a normal liver, to steatosis, steatohepatitis, fibrosis, and

hepatocellular carcinoma (HCC). Despite intensive studies,

the pathogenesis of ALD is poorly understood, in part due

to a lack of suitable animal models which mimic the stages

of ALD progression. Furthermore, the role of IL-17 in

ALD has not been evaluated. We and others have recently

demonstrated that IL-17 signaling plays a critical role in

the development of liver fibrosis and cancer. Here we

summarize the most recent evidence supporting the role of

IL-17 in ALD. As a result of a collaborative effort of Drs.

Karin, Gao, Tsukamoto, and Kisseleva, we developed

several improved models of ALD in mice: (1) chronic-

plus-binge model that mimics early stages of steatohep-

atitis, (2) intragastric ethanol feeding model that mimics

alcoholic steatohepatitis and fibrosis, and (3) diethylni-

trosamine (DEN) ? alcohol model that mimics alcoholic

liver cancer. These models might provide new insights into

the mechanism of IL-17 signaling in ALD and help identify

novel therapeutic targets.

Keywords Alcoholic liver disease � Ethanol metabolism �
Activated myofibroblasts � Regression of liver fibrosis �
Hepatocellular carcinoma � Innate immunity � Adaptive
immunity � Cytokines � Inflammation
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Introduction

Alcoholic liver disease (ALD) is a major cause of cirrhosis

and liver failure, which is the 12th leading cause of death in

patients in the United States [1••]. ALD progresses from

steatosis to steatohepatitis, fibrosis, cirrhosis, and finally

hepatocellular carcinoma (HCC) [1••]. Several injury-trig-

gered events (see below) play a critical role in the patho-

genesis of ALD. To date, there is no effective treatment of

ALD, in part because there are no preclinical models

available to study ALD progression. Furthermore, the

majority of preclinical models focus on the effect of

chronic alcohol consumption on pathology of a single

organ, such as liver, brain, heart, or kidneys. In reality,

alcohol-induced injury produces a systemic effect, and the

failure of the damaged liver to perform detoxifying func-

tion also has a profound effect on the brain and other

organs. Here we summarize the recent evidence for the role

of IL-17 signaling pathway in alcohol-induced injury of the

liver and the brain, and regulation of the intestinal per-

meability, the critical factors that drive the development of

alcoholic liver disease.

ALD Progression in Patients

Progression of ALD from Steatohepatitis to Fibrosis

ALD studies have been hampered by the absence of suit-

able animal models. In patients, ALD progresses from fatty

liver to steatohepatitis and fibrosis, and often leads to

development of HCC. Each stage is characterized by

specific morphological changes and upregulation of

specific sets of cytokines. Recently, we developed a

chronic-plus-binge ethanol feeding model, which induces

significant liver inflammation and neutrophil infiltration

but not fibrosis [2••, 3••], and reflects early stages of

steatohepatitis. Alcohol-induced damage to hepatocytes is

induced via upregulation of cytochrome P4502E1, SREBP-

1c causing accumulation of fat droplets (mainly triglyc-

erides and phospholipids), centrilobular ballooning of

hepatocytes, and the formation of Mallory–Denk hyaline

inclusions [4]. Serum levels of about 250 IU/L ALT and

420 IU/L AST were found post single binge gavage, and

correlated with increased expression of inflammatory

cytokines IL-8, IL-6, and IL-1b and development of hep-

atic oxidative stress [1••, 4]. Neutrophilic infiltration is the

major feature of alcoholic steatohepatitis. Apoptotic hep-

atocytes release TGF-b1 and factors, including IL-8,

CXCL1 (Gro-a), and IL-17, that facilitate recruitment of

inflammatory cells to the fatty liver. Infiltrating BM-

derived neutrophils kill sensitized hepatocytes and further

exacerbate alcohol-induced liver injury [5]. A rodent model

of ASH has demonstrated a pivotal role of neutrophils in

pathogenesis of ALD [1••, 2••]. Recruited T and B lym-

phocytes also contribute to liver damage causing activation

of liver-resident Kuppfer cells, which secrete TGF-b1 and

activate hepatic myofibroblasts. Myofibroblasts are the

primary source of extracellular matrix (ECM) in fibrotic

liver [6–11]. Activated Hepatic Stellate Cells (aHSCs) have

been recently demonstrated to serve as a major source of

myofibroblasts in alcohol-damaged liver. Under physio-

logical conditions, HSCs store Vitamin A and function as

liver pericytes, but in response to sustained exposure to

alcohol, HSCs rapidly differentiate into fibrogenic myofi-

broblasts, start producing Collagen Type I, the major

component of extracellular matrix, and make liver fibrotic.

To date, the intragastric model of ethanol feeding (Tsu-

kamoto–French model) [12] is the best rodent model of

alcohol-induced liver fibrosis, which mimics this stage of

alcoholic fibrosis in patients, and these mice develop sig-

nificant level of liver fibrosis after 2 months of alcohol [12,

13••]. This stage is characterized by release of TGF-b1,
mostly by Kupffer cells [4], and activation of Hepatic

stellate cells (HSCs) [13••, 14]. Furthermore, a recent study

has demonstrated that the addition of ethanol to drinking

water increased tumor incidence in DEN-injected male

mice [15•], suggesting that this model can be used to study

the effects of ethanol on HCC progression.

Hepatocellular Carcinoma (HCC)

HCC is the fifth most common cancer worldwide and the

third most common cause of cancer death [16]. HCC is a

malignant tumor made of cells resembling hepatocytes

with a plate-like organization around sinusoids [17], usu-

ally arises in a cirrhotic liver of patients with ALD [16, 18],

and is identified by the expression of alpha-fetoprotein

(AFP), CD90, CD133, YAP, and EpCAM [19]. Several

mechanisms contribute to the development of HCC in

patients with alcoholic cirrhosis, including sustained

inflammation, immunosuppressive effect of alcohol,

impaired hepatocyte proliferation, loss of cell cycle

checkpoints, and increased tumor cell survival, telomere

shortening, and chromosomal instability [1••, 2••]. Three

potential cellular sources of HCC have been suggested: (1)

mature hepatocytes as unipotential stem cells which rapidly

regenerate to restore the liver mass in response to acute

injury, (2) oval cells as bipotential stem cells which are

activated and proliferate in response to chronic injury when

proliferation of hepatocytes is exhausted or inhibited, and

(3) BM-derived stem cells [20, 21]. Accumulating evi-

dence suggests that HCC originates from dedifferentiation

and transformation of mature hepatocytes, or maturation

arrest of oval cells [18, 19]. Progression of HCC in patients

with ALD is associated with upregulation of IL-6 [22••],
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IL-17 [23, 24], and IL-22 [25••] and constitutive activation

of Stat3 [26•]. Consistent with this, IL-22-/- mice are less

susceptible to DEN-induced HCC than wild-type mice. In

addition to Stat3 [27], NFjB, Wnt/b-catenin, and Hedge-

hog signaling pathways were implicated in HCC develop-

ment [23, 28, 29••, 30•, 31].

After injury and loss of hepatic mass, the liver regen-

erates mainly via proliferation of remaining adult hepato-

cytes. Oval cells (ductular reaction) activate when

proliferation of hepatocytes is inhibited or exhausted [1••].

Oval cells are bipotential liver progenitor cells, which

reside in the Canal of Herring [32], and give rise to hep-

atocytes and cholangiocytes [20, 33]. Oval cells exhibit a

CD45-/11b-/31-/MIC1-1C3?/133?/26- phenotype [34].

Several studies indicate that these may originate from

Sox9-expressing clonogenic progenitors [33–36]. There-

fore, recently generated Sox9creERT2-R26RYFP mice [34]

may be useful for lineage tracing of oval cells. The oval

cell reaction includes a broader progenitor population

which can be identified by the expression of A6, AFP,

FoxJ1 [34, 36], and other markers [37] in mice. Chronic

alcohol consumption inhibits hepatocyte proliferation,

increasing the number of oval cells in patients with ALD.

Proliferation of oval cells correlates with the severity of

ALD and risk of alcoholic HCC. It has been suggested that

tumor progenitors may originate from the oval cell reaction

emerging in response to chronic alcohol exposure [38].

Recent studies have implicated IL-22 in the regulation of

alcohol-induced oval cell response and HCC progression.

Thus, overexpression of IL-22 in the liver (IL-22TG mice)

drives exaggerated oval cell proliferation via Stat3 acti-

vation [26•, 39], suggesting that IL-22/Stat3 signaling may

be critical in HCC [40].

Systemic Effect of Alcohol on Liver–Brain Axis

and Intestinal Permeability

Liver metabolizes alcohol and, therefore, is directly

affected by chronic alcohol consumption. In turn, liver

dysfunction contributes to systemic release of proinflam-

matory microbial products, toxic lipids (such as cer-

amides), and cytokines into the circulation, and exacerbates

the cytotoxic effect of alcohol on the other organs,

including the development of insulin resistance and

oxidative stress. The central nervous system (CNS) is the

other major target of alcohol toxicity and degeneration. In

addition to its direct neurotoxic effects, alcohol misuse

establishes a liver–brain axis of neurodegeneration medi-

ated by toxic lipid trafficking across the blood–brain bar-

rier, leading to a range of complications that begin with

mild neurocognitive impairment but can progress to more

severe dementing disorder. The neuroanatomic underpin-

nings of these neurocognitive disorders include disruption

of white matter integrity as evidenced by reduction in

fractional anisotropy and increase in diffusivity measures

on diffusion tensor imaging; and loss of volume in hip-

pocampus, frontal cortex, subcortical structures, and cere-

bellum. On structural brain imaging, brain volume loss

may be manifested by cortical thinning, white matter loss,

and corresponding enlargement of sulci and ventricles.

These changes may be accompanied by neuropathologic

findings of astrogliosis, loss of synaptodendritic complex-

ity, loss of cytoskeleton, and ultimately neuronal loss.

When complicated by thiamine deficiency, there may be

additional damage to thalamus and mammillary bodies

with clinical presentation of Wernicke Korsakoff syndrome

[amnestic-confabulatory syndrome] [41–45].

Evidence of the Role of IL-17 Signaling Pathway
in ALD

Interleukin 17 (IL-17)

Interleukin-17 (IL-17)-producing effector CD4? T (Th17)

cells [46, 47] originate from naı̈ve T cells via activation of

lineage-specific transcription factors [48, 49], regulated by

TGF-b1 and IL-6, and other cytokines [50, 51]. IL-17 is

mainly produced by CD4? Th17 cells, but also by a variety

of cells, including cd T cells, CD8? T cells, NKT cells, NK

cells, innate lymphoid cells, eosinophils, neutrophils, and

monocytes [52]. Th17 cells secrete IL-17 cytokines, a

family of cytokines comprising IL-17A, IL-17F, IL-17B,

IL-17C, and IL-17E [53]. IL-17A homodimers (also known

as IL-17) are the most abundant in Th17 cells, exhibit

higher biological activity, and signal through their cognate

receptors IL-17RA and IL-17RC [52]. IL-17RA is ubiq-

uitously expressed, but is strongly induced in hematopoi-

etic cells [54] and fibroblasts [55] in response to stress. IL-

17A signaling activates inflammatory signaling in target

cells, including Stat3, TRAF6, Act1, JNK, ERK, and NF-

jB [54, 56]. IL-17 mediates autoimmunity, and the

autoimmune inflammatory diseases psoriasis and rheuma-

toid arthritis respond to anti-IL-17 biological therapies

[57]. Most recently, IL-17 has been implicated in liver,

lung, and skin fibrosis and in tumorigenesis [5, 52, 53, 58–

64]. Although anti-TNF-a therapy has been ineffective in

patients with ALD [1••, 65], the corollary of our underlying

hypothesis is that anti-IL-17 therapy is a potential novel

therapy for ALD. The autoimmune inflammatory diseases

psoriasis and rheumatoid arthritis respond to anti-IL-17

biological therapies [57]. Most recently, IL-17 has been

implicated in liver, lung, and skin fibrosis and in tumori-

genesis [52, 66]. We have demonstrated that IL-17 is a

critical mediator of liver fibrosis of different etiologies [2••,

67••].
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IL-17 in Liver Fibrosis

Patients with ALD have a high serum level of IL-17.

Accumulation of Th17 cells was significantly increased in

the livers of patients with ALD, and the numbers of Th17

cells correlated with fibrosis score [5]. Several events play

a critical role in the progression of alcohol-related liver

fibrosis. Hepatocyte apoptosis causes recruitment of

inflammatory cells to the damaged liver and release of pro-

fibrogenic cytokines (TGF-b1, IL-6, IL-1b, TNF-a). Our
group has recently demonstrated that IL-17A and its

receptor IL-17RA are highly upregulated in injured livers,

and IL-17 signaling plays a critical role in the pathogenesis

of liver fibrosis. IL-17 regulates the production of TGF-b1
by activated Kupffer cells and can directly activate Col-

lagen Type I production by HSCs, the major source of

fibrogenic myofibroblasts in fibrotic liver. Deletion of IL-

17 signaling in mice resulted in the inhibition of liver

fibrosis by 75 %. Abrogation of IL-17 signaling in

hematopoietic cells (as demonstrated by deletion of either

IL-17A or IL-17RA in BM) decreases liver fibrosis by

50 %. Kupffer cells are the primary targets of IL-17 which

regulates approximately 30 % of TGF-b1 production by

Kupffer cells. Meanwhile, deletion of IL-17RA in non-

immune liver-resident cells decreases liver fibrosis by

25 % [67••]. In this case, HSCs are the primary non-

parenchymal targets of IL-17 in fibrotic liver, and IL-17A

can directly stimulate the activation of HSCs or induce IL-

6 production, which stimulates Collagen Type I production

in HSCs [67••]. Increased expression of IL-17A was

detected in livers from patients with liver fibrosis and cir-

rhosis of different etiologies (compared to patients with no

fibrosis), and correlated with the severity of the disease

[23].

Regulation of Th17 Differentiation in Liver Fibrosis

TGF-b1 and IL-6 are strongly upregulated during the

development of ALD-induced fibrosis. In the mean time,

TGF-b1, IL-6, and IL-21 drive the differentiation of Th17

cells from naı̈ve Th0 cells [50] via activation of retinoid-

related orphan receptor ct (ROR ct) [48]. IL-23 is required

for Th17 proliferation [52]. IL-23 is expressed by the mac-

rophages and DCs, signals through IL-12Rbeta1 and IL-23R

receptors, and activates Jak2/STAT3 signaling pathway

[68]. Mice deficient of IL-23p19 have very few Th17 cells

[69, 70], suggesting that and the main biological function of

IL-23 is regulation of Th17 cell expansion. IL-23 is upreg-

ulated along with IL-17 in fibrotic liver, and IL-23-/- defi-

cient mice develop less fibrosis in response to cholestatic and

toxic liver injury [67••], indicating that the IL-23/Th17 axis

may become a promising target for suppressing liver

inflammation during ALD [71, 72••]. Furthermore, IL-23 is

upregulated in multiple human cancers, and ablation of IL-

23p19 gene resulted in reduced tumorigenesis in a mouse

model of skin cancer [73] and colitis-associated cancer

(CAC) [66]. There is emerging evidence that IL-23 also

promotes HCC development [74–76].

IL-27 antagonizes the expansion of Th17 via inhibition

of IL-23-producing cells which are formed from IL-27p28

and Ebi3 subunits [77] and IL-27p28-/- [78] and Ebi3-/-

[79] knockout mice have been generated. IL-27 signals via

IL-27RA and common receptor chain gp130, activating

STAT3 and Stat1 in target cells [77, 80]. IL-17RA-/- mice

[81] exhibit a dramatic increase in Th17 activity, demon-

strating that IL-27 suppresses de novo Th17 cell differen-

tiation driven by IL-6 and TGF-b1 [78].

IL-25 also blocks Th17 cell proliferation via inhibition

of IL-23, IL-1b1, and IL-6 secretion by dendritic (and

other) cells [52]. IL-25 propagates allergic responses [82–

84]. IL-25 binds to IL-17RA and IL-17RB heterodimers (of

which IL-17RB represents an IL-25-specific moiety [85,

86]), and induces Act1-dependent activation of NFjB
signaling pathway in target cells [87]. IL-25 drives the

expression of IL-13 [88], which is required for suppression

of Th17 responses [82–84, 89, 90]. We have demonstrated

that IL-25 attenuates liver fibrosis in mice, suggesting that

IL-25 agonists may become targets for ALD treatment

[67••].

IL-17 in Brain and Spinal Cord

In addition to immune cells, glial cells in the CNS also

express IL-17 under physiological conditions [91]. IL-17R

is widely expressed within the CNS and upregulated under

inflammatory conditions [92••]. Genetic deletion of IL-17

increased the number of adult-born neurons. Furthermore,

IL-17 deletion altered the network of the cytokines, facil-

itated basal excitatory synaptic transmission, enhanced

intrinsic neuronal excitability, and increased the expression

of proneuronal genes in neuronal progenitor cells (NPCs),

suggesting a profound role of IL-17 in the negative regu-

lation of adult hippocampal neurogenesis under physiology

conditions [93]. In an ischemic brain injury model, IL-17,

highly expressed by cd T lymphocytes, has been shown to

play an important role in mediating the evolution of brain

infarction and accompanying neurological deficits in the

delayed phase of injury [94•]. In a spinal cord injury model,

IL-17 deletion improved tissue sparing and locomotor

recovery without significantly affecting microglial activa-

tion and astroglial reactivity [95].

IL-17 in Blood–Brain Barrier

In addition, Th17 lymphocytes promote blood–brain bar-

rier disruption and central nervous system inflammation
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[92••, 96]. Aging augments T-cell-derived release of IL-17

and granzyme B that mediate neuronal cell death. IL-17

and IL-22 receptors are expressed on blood–brain barrier

endothelial cells (BBB-ECs), and elevated levels of IL-17

and IL-22 disrupt BBB tight junctions in vitro and in vivo.

Furthermore, Th17 lymphocytes transmigrate efficiently

across BBB-ECs, highly express granzyme B, kill neurons,

and promote CNS inflammation through recruitment of

CD4? lymphocytes.

IL-17 and Intestinal Permeability

The translocation of bacteria and bacterial products into the

circulation and subsequent changes in the microbiome

composition are associated with chronic alcohol con-

sumption. Thus, overgrowth of Bacteroidetes and Verru-

comicrobia bacteria was observed in alcohol-fed mice

(compared with a predominance of Firmicutes bacteria in

control mice) and was associated with downregulation in

gene and protein expression of bactericidal c-type lectins

Reg3b and Reg3g in the small intestine [97]. Commensal

bacteria regulate efficiency of immune response, and vice

versa. For example, mono-colonization of mice with seg-

mented filamentous bacteria (SFB) results in the induction

of proinflammatory factors that favor expansion and

accumulation of Th17 cells in the small intestine, and

elicits a systemic Th17 response. Intestinal microbiota have

also been shown to play a critical role in the absorption of

lipopolysaccharide (LPS) [98].

IL-17 and Aging

Aging is associated with change of liver function caused by

increased steatosis, inflammation, and fibrosis [99]. Chan-

ges in hypothalamic–pituitary–adrenal (HPA) activity are

one of several proposed mechanisms involved in brain

aging [100]. Recent studies have also implicated IL-17 in

the process of aging in humans and mice [101]. For

example, it has been suggested that aging is associated with

changes in the immune system that affect specific T-cell

functions. The immune response to infection, immuniza-

tion, and tumors in aged individuals is quite different from

that found in the young. Specifically, aged naive CD4 T

cells do not differentiate well into Th1 and Th2 effector

subsets, but exhibit an increased ability to generate func-

tional Th17 effectors, which can be found readily in older

individuals. Therefore, the levels of IL-17 are highly

increased in older individuals. Th17 effectors produce high

levels of IL-17 family cytokines (IL-17, IL-21, and IL-22).

In addition to the greater prevalence of Th17 effectors,

aging is associated with the expansion of regulatory T cells

(Treg) [101]. Since IL-2 was shown to inhibit the expres-

sion of IL-17, blocking IL-2 promotes the differentiation of

Th17 effectors [102]. Therefore, it has been suggested that

the presence of regulatory T cells during an immune

response may favor the development of a Th17-polarized

response because the regulatory cells consume IL-2, which

is needed for the development of Th1 and Th2 but not Th17

effectors. These observations also suggest that aging has

very specific effects on CD4 T-cell populations and does

not lead simply to an overall downregulation of T-cell

function [101].

IL-17 and HIV

Th17 cells play a crucial role in protection against infec-

tions. Therefore, it is not surprising that IL-17-producing T

cells play an important role in the pathogenesis of HIV and

opportunistic infections observed in AIDS patients [103].

Specifically, the loss of balance between Th17 cells and

Tregs was linked to increased immune activation and HIV

progression. Although the numbers of Th17 cells in the

peripheral blood often vary in AIDS patients, Th17 cells

are substantially depleted from the gastrointestinal tract,

leading to a loss of mucosal integrity, increased microbial

translocation, and further impairment of systemic immune

responses [103]. Furthermore, excessive alcohol use is

common among AIDS patients and greatly augments HIV-

associated neurocognitive deficits [104]. However, the role

of IL-17 signaling in HIV progression complicated by

chronic alcohol abuse has not been evaluated. A longitu-

dinal assessment of functional changes in circulating and

tissue Th17 cells is urgently needed in order to better

determine the dynamic of Th17 cells in peripheral blood,

and IL-17-specific regulation of liver–brain axis and

intestinal permeability in AIDS patients with a history of

chronic alcohol abuse.

Regulation of Th17 Differentiation by Gut

Microbiota

The composition of microbiota has been linked to the

differentiation of Th17 cells in the gut, specifically in the

small intestine lamina propria. In vitro, IL-17-expressing

T-helper cells are induced by the interactions of cytokines

TGF-b, IL-6, IL-21, and IL-23; these cytokines also play

an important role in Th17 differentiation in vivo and reg-

ulation of inflammatory immune response. Recent studies

have demonstrated the correlation between Th17 in vivo

differentiation and induction in the small intestine lamina

propria with the presence of intestinal Cytophaga–

Flavobacter–Bacteriodes group bacteria [105]. Here, Th17

differentiation was observed independent of IL-21 and IL-

23 signaling, the cytokines typically associated with reg-

ulation of Th17 expansion. Additionally, the abrogation of

Th17-inducing bacteria in the gut microbiota was linked to
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increased Foxp3 ? T regulatory cells in the lamina pro-

pria. These findings implicate gut microbiota composition

in the induction of Th17 cells and the regulation of

Th17:Treg balance in the lamina propria; this in turn sug-

gests that certain populations of bacteria influence host

defense and predisposition to inflammatory bowel diseases

[105]. A subsequent investigation narrowed the search for

Th17-inducing bacteria down to segmented filamentous

bacteria (SFB). Germ-free mice were used as a model for

Th17-deficient mice; the colonization of SFB in these mice

led to the expression of IL-17 and IL-22 in the CD4? T

cells found in the intestine lamina propria. SFB coloniza-

tion was also associated with a more potent host defense

against Citrobacter rodentium, an intestinal pathogen. SFB

is the first specific microbiota component that has been

linked to Th17 cell differentiation, an important step in the

still-growing understanding of the commensal mechanisms

that shape host immunity [106]. The finding that micro-

biota induce CD4? T cells expressing IL-17 arouses

speculation that alcoholic liver disease can be curbed

through antibiotics that target specific microbiota compo-

nents. However, studies have found that germ-free mice

associated with immune deficiency exhibit elevated levels

of cirrhosis compared to those with active microbiota.

Given this, the implications commensal bacteria carry for

alcoholic liver disease [97], as well as any roles they may

hold in its treatment [107], have yet to be conclusively

defined.

Conclusion

Considerable progress has been made in our understanding

of the effects of alcohol on liver function, brain function,

intestinal permeability, composition of the gut microbiota,

and dysregulation of immune responses. However, we are

still far from achieving a comprehensive understanding of

the systemic interactions between affected organs, and

mechanisms underlying pathological changes associated

with chronic alcohol abuse. Therefore, further interdisci-

plinary collaborative studies are required to identify targets

which mediate a crosstalk among injured organs, and that

can either protect from or exacerbate alcohol-induced

systemic multi-organ damage. IL-17 signaling may func-

tion as one of these potential targets, and more studies are

required to address this question. The new animal models

described above might provide new insights into the

mechanism of IL-17 signaling in ALD and identify novel

therapeutic targets.
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