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Bayesian estimates of free energies from nonequilibrium work data in the presence of
instrument noise.
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The Jarzynski equality and the fluctuation theorem relate equilibrium free energy differences to
non-equilibrium measurements of the work. These relations extend to single-molecule experiments
that have probed the finite-time thermodynamics of proteins and nucleic acids. The effects of
experimental error and instrument noise have not previously been considered. Here, we present
a Bayesian formalism for estimating free-energy changes from non-equilibrium work measurements
that compensates for instrument noise and combines data from multiple driving protocols. We
reanalyze a recent set of experiments in which a single RNA hairpin is unfolded and refolded using
optical tweezers at three different rates. Interestingly, the fastest and farthest-from-equilibrium
measurements contain the least instrumental noise, and therefore provide a more accurate estimate
of the free energies than a few slow, more noisy, near-equilibrium measurements. The methods we
propose here will extend the scope of single-molecule experiments; they can be used in the analysis
of data from measurements with AFM, optical, and magnetic tweezers.

I. INTRODUCTION

A central endeavor of thermodynamics is the measure-
ment of entropy and free energy changes, for which the
principal experimental methods are based on the Clau-
sius inequality1. One starts with a system equilibrated
in one thermodynamic state, A, and then perturbs the
system, following some explicit protocol, until the control
parameter corresponds to a new thermodynamic state, B.
If the temperature T of the surroundings is fixed, the
change in entropy, ∆S = SB − SA, is related to the flow
of heat Q into the system:

∆S ≥ β〈Q〉, (1)

∗present address: D. E. Shaw Research, New York, New York
10036, USA; electronic address: paul.maragakis@deshaw.com

where β = 1/kBT , and kB is the Boltzmann constant.
Equivalently, the free energy difference ∆F = FB−FA =
∆〈U〉 −∆S/β is related to the work W done on the sys-
tem:

∆F ≤ 〈W 〉. (2)

Here we use the sign convention ∆U = Q+W . The angle
brackets indicate an average over many repetitions of the
same experiment. In macroscopic systems individual ob-
servations do not differ significantly from the mean. But
for a microscopic system the fluctuations from the mean
can be large and the inequality only holds on average
(i.e., not for individual measurements).

It was recently discovered that equilibrium free energy
differences can also be determined by measuring the work
performed during irreversible transformations, using the
Jarzynski12,13,14,15 and work fluctuation relations16,17.
These theoretical insights have been used to determine
the unfolding free energy of an RNA hairpin2,3,4,9,18 from

http://arXiv.org/abs/0707.0089v1
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FIG. 1: Non-equilibrium work measurements for folding and
unfolding an RNA hairpin2. A single RNA molecule is at-
tached between two beads via hybrid DNA/RNA linkers. One
bead is captured in an optical laser trap that can measure the
applied force on the bead. The other bead is attached to a
piezoelectric actuator, which is used to irreversibly unfold and
refold the hairpin2,3,4,5,6,7,8,9,10,11.

finite-time, non-equilibrium experiments, as described in
Fig 1. We consider a protocol (labeled Λ) that starts
with an equilibrated system, and then transforms an ex-
ternal control parameter from an initial value A, to a final
value B in a finite time. (In the RNA hairpin unfolding
experiments, the control parameter is the distance be-
tween the center of the optical trap and the center of the
fixed bead.) This perturbation drives the system out-of-
equilibrium. Once the protocol ends, the control param-
eter is again fixed, and the system can relax back to ther-
mal equilibrium. One can also run the protocol in reverse,
starting with a system equilibrated with the control pa-
rameter at B, and then transform the system through
the reverse sequence of intermediate control parameters,
to A. We label this conjugate protocol Λ̃. Due to the
reversibility of the microscopic dynamics, the probabil-
ity P (W |∆FΛ,Λ) of measuring a particular value of the
work during protocol Λ is related to the work probabil-
ity density of the conjugate protocol, Λ̃, by the following
work fluctuation symmetry2,4,16,17,19,20,21,22:

P (+W |∆FΛ,Λ)

P (−W |∆FΛ̃, Λ̃)
= e+βW−β∆FΛ , (3)

with ∆FΛ (= −∆FΛ̃) the change in free energy associ-
ated with the change of the external control parameter
in protocol Λ (Λ̃). This relation immediately implies the
Jarzynski equality12,13,14,15,16,23

〈

e−βW
〉

=

∫

dWP (+W |∆FΛ,Λ) e−βW

=

∫

dWP (−W |∆FΛ̃, Λ̃) e−β∆F

= e−β∆F . (4)

In other words, a Boltzmann weighted average of the irre-
versible work recovers the equilibrium free energy differ-
ence from a non-equilibrium transformation. The Clau-

FIG. 2: Typical force extension curves in the unfolding (solid
lines) and folding (dashed lines) of a 20 base pairs RNA hair-
pin. Different colors correspond to different unfolding-folding
cycles. The rip in force observed around 15pN corresponds
to the cooperative unfolding/folding transition. The area be-
low the force-extension curve is equal to the mechanical work
done on the RNA hairpin. Because the transformations are
irreversible, the work performed varies from one unfolding or
refolding measurement to the next. Drift effects observed in
force extension curves arise from different causes, including
air currents, mechanical vibrations and temperature changes.

sius relation follows by an application of Jensen’s inequal-
ity, ln〈exp(x)〉 ≥ 〈x〉.

Given the thermodynamics preamble, we can
rephrase the problem of measuring the free en-
ergy as follows: How do we calculate the most
accurate, least biased, estimate of the free en-
ergy, given a finite number of irreversible work
measurements?3,17,24,25,26,27,28,29,30,31,32,33,34,35,36,37 We
consider both the statistical error due to limited data
and, for real experiments, the additional error due
to measurement noise. Furthermore, we may wish to
simultaneously combine the data from multiple proto-
cols connecting the same thermodynamic states38. For
example, in the single-molecule experiment described
in Fig. 1, the same RNA hairpin was unfolded at three
different rates, with each dataset providing a different
compromise between statistical and experimental errors.

The Clausius relations are exact equalities only for in-
finitely slow, thermodynamically reversible transforma-
tions, where the irreversible dissipation is zero. A trans-
formation that occurs in a finite time provides only an
upper bound to the free energy and a lower bound to
the entropy change. (Since entropy and free energy are
state variables, the reverse transformation, from thermo-
dynamic state B back to A, provides a lower (upper)
bound to the same free energy (entropy) change.) One
approach to analyzing irreversible transformations is to
directly apply the Jarzynski relation3,13,18,39. However,
this identity strictly holds only in the limit of an infi-
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nite number of repeated experiments. For a finite num-
ber of measurements, we again obtain an inequality that
only holds on average12, and the free energy estimates
tend to be strongly biased25,30,32,33,37,40,41,42,43. Because
the magnitude of the bias depends on the protocol, one
cannot reliably combine data from different protocols44.
Moreover, the Jarzynski relation is sensitive to measure-
ment noise and variations in the experimental setup (e.g.,
heterogeneity in the attachments and variable length of
tethers). Broadening of the work distribution leads to
a bias in the estimated free energy, since smaller work
values contribute more than larger work values in the
exponential average of Eq. 4.

Bennett laid the foundations for the solution to this
problem in his development of the acceptance ratio
method for free energy perturbation calculations45 (a
technique for computing free energy changes by simu-
lating infinitely fast transformations). He realized that
an optimal solution requires combination of work mea-
surements from both forward and reverse switches. The
acceptance ratio method was later extended to finite-time
switches17, shown to a maximum-likelihood free energy
method28,46, related to the problem of logistic regres-
sion28,38,47,48, and extended to a network of thermody-
namic states connected with many protocols38. In this
paper, we develop a Bayesian formalism that extends
these results to provide not only a reliable estimate of
the free energy, but also reliable estimates of the statis-
tical uncertainty. In this formalism, it is straightforward
to incorporate additional prior information about the ex-
periment into the analysis. In particular, we show how
to allow for experimental measurement noise. The mag-
nitude of the noise can be determined from the data and
an error-corrected free energy estimate recovered. We use
this approach to reanalyze a recent experiment in which
a single RNA hairpin was unfolded and refolded at three
different rates using optical tweezers38.

II. POSTERIOR FREE ENERGY ESTIMATE

Formally, we require the probability that the free en-
ergy change ∆F has a particular value, given a collection
of work measurements W , the protocol used for each
measurement (either Λ or Λ̃), and the (fixed) temper-
ature of the environment T . Initially, we consider the
simplest case, in which there are two protocols that are
conjugate to each other, so that the work distributions
are related by the fluctuation relation Eq. (3). We also
assume, for now, that the measurements are error free.

The essential element in solving this problem is to treat
both the work and the protocol as random variables that
are uncorrelated from one observation to the next28. We
rewrite the free energy probability density given a sin-
gle measurement in terms of these variables using Bayes’
rules, P (A|B) = P (B|A)P (A)/P (B):

P (∆FΛ|W,Λ) =
P (W,Λ|∆FΛ)P (∆FΛ)

P (W,Λ)
. (5)

Since a priori the free energy could be positive or nega-
tive and of any magnitude, the prior distribution of free
energy P (∆FΛ) can be reasonably taken as uniform (see
Kass and Wasserman49 for an in-depth discussion of pri-
ors). The denominator, which does not depend on ∆FΛ,
can be absorbed into a normalization constant.

The distribution P (W,Λ|∆FΛ) is the final undeter-
mined factor on the right-hand side of Eq. (5). In the ab-
sence of detailed knowledge about the work likelihood for
the system under investigation, we should choose a maxi-
mally uninformative, system independent distribution. If
the work were not conditional on the free energy we could
again assign a uniform distribution, since a single work
measurement could be positive or negative and of any
magnitude. But, we expect that the work will probably
(but not certainly) be larger than that value of the free
energy. Concretely, any work probability distribution
must satisfy the work fluctuation symmetry, Eq. (3). We
can satisfy this constraint by first considering the sym-
metrized distribution P (W,Λ|∆FΛ) + P (−W, Λ̃|∆FΛ̃).
This averaged distribution does not need to satisfy any
symmetry and therefore we can again assign a maximally
uninformative improper prior:

P (W,Λ|∆FΛ) + P (−W, Λ̃|∆FΛ̃) = constant. (6)

However, the work fluctuation relation implies that

P (+W,Λ|∆FΛ)

P (−W, Λ̃|∆FΛ̃)
= eβW−β∆FΛ+MΛ (7)

where MΛ = lnP (Λ|∆FΛ)/P (Λ̃|∆FΛ̃). It follows that

P (W,Λ|∆FΛ) ∝ 1

1 + eβW−β∆FΛ+MΛ

(8)

Together with an uninformative free energy prior, we fi-
nally obtain

P (∆FΛ|W,Λ) ∝ P (W,Λ|∆FΛ)

∝ f
(

βW − β∆FΛ + MΛ

)

, (9)

where f(x) is the logistic function (Fig. 3), the cumula-
tive distribution function of the standard logistic distri-
bution (see appendix, Fig. 7):

f(x) =
1

1 + e−x
. (10)

Essentially, each measurement of the work provides a
soft upper bound to the free energy change. Measure-
ments made on the conjugate protocol provide soft lower
bounds to the same free energy. Therefore, combining
measurements from conjugate protocol pairs provides re-
liable, but fuzzy, free energy bounds. This is in contrast
to the Clausius inequality [Eq. (2)] where the average

work provides a hard bound to the free energy change.
Figure 4 illustrates the posterior distribution result-

ing from combining two work measurements, one from
each of a conjugate protocol pair, where the measured
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FIG. 3: The standard logistic function, f(x) = 1/(1 + e−x).

FIG. 4: Posterior free energy given two work measurements,
one from each of two conjugate protocols with values βW =
±

1
2
δ. The posterior variance, π2/3+δ2/12, is minimized when

the rectified work variables coincide, and increases quadrati-
cally with separation.

values are βW = ± 1
2δ. If the work values are widely

separated, then the posterior free energy distribution is
broad and flat. We only obtain a tight constraint on the
free energy if the separation is less than about 4kBT . The
minimum uncertainty for a single pair of measurements
is σ ≈ 1.8kBT , which occurs when δ = 0.

Assuming that each measurement of the work is inde-
pendent, we can combine measurements by multiplying
the separate posterior distributions together. So far, we
have been considering a single pair of conjugate protocols
switching between two thermodynamics states. How-
ever, it was recently demonstrated that we can combine
measurements from many different protocols connecting
many different thermodynamic states in a network of
transformations38. Each measurement provides a single
soft constraint [Eq. (9)], which we can combine by mul-
tiplying the different posterior distributions:

P (F|W,Λ) =
1

C

N
∏

k=1

f
(

βWk − β∆FΛk
+ MΛk

)

, (11)

where Wk is the work measured in the kth experiment,
performed with protocol Λk, ∆FΛk

is the free energy
change associated with that protocol, C is a normaliza-
tion constant and N is the total number of measure-
ments. In the simplest case we have only a single conju-
gate protocol pair, forward and reverse. In general, we
can have many different protocols (for example, pulling
a molecule apart at different loading rates.), and dif-
ferent protocols could connect different thermodynamic
states38. In the equation above, F = {F1, F2, F3, . . .} are
the free energies of the initial and final states of these
transformations. At least one free energy Fi is fixed at
zero, or some other convenient reference point, since only

differences in free energy are significant.
The MΛk

terms compensate for a difference in the
probability of observing a forward or reverse protocol
from a conjugate protocol pair. In the absence of detailed
prior information about the work distributions, it is best
to pick each member of a conjugate pair equally often45.
However, the difficulties of real world experiments may
result in unequal numbers of forward and reverse mea-
surements. In such cases, we can estimate a reasonable
value for MΛk

from the number of observations, NΛ, ob-
tained from each protocol:

MΛ = ln
P (Λ|∆FΛ)

P (Λ̃|∆FΛ̃)
≈ ln

NΛ + 1

NΛ̃ + 1
. (12)

The additional ‘+1’ is a pseudocount which regularizes
the frequency estimate. It can be justified as a Laplace
prior on the probabilities50,51. Note that without this
regularization, Eq. (12), and thus also Eq. (11), would
become invalid in the single sample limit. With the ad-
dition of the pseudocount, the probability distribution in
Eq. (11) may still only produce one-sided bounds (for ex-
ample, when there is no protocol that ends in a certain
state, one has at best an upper bound for the free energy
of that state.) However, we could recover a finite free
energy posterior distribution if we were to use a more
informative free energy prior in Eq. (11).

The experimental measurements of the work values
can typically be considered to be uncorrelated. However,
when the measurements, or simulation results, are cor-
related, the maximum likelihood, or Bayesian estimates,
may need to be modified to result in an optimal estimate
of the free energy48. In the absence of a general-purpose
formulation for correlated work measurements, the esti-
mators discussed in this paper are likely to underestimate
the errors.

The Bayesian free energy posterior is an optimal esti-
mate in the sense that it uses all of the available data and
makes the fewest possible assumptions. We can, in prin-
ciple, improve the estimate by incorporating additional
information, either by using more informative priors, or
by adding additional assumptions, for example, by as-
suming that the work distribution is smoothly varying45,
or that it can be parameterized in terms of a particular
functional form52.

In many practical cases, the posterior distribution of
∆F quickly converges to a normal one as a consequence
of the central limit theorem. We can summarize this pos-
terior distribution with a point estimate and reasonable
error bounds, for example the posterior mean free en-
ergy and 95% confidence intervals. The posterior mean
will coincide with the maximum likelihood, and the con-
fidence interval will be ±2 standard deviations.

III. EXPERIMENTAL ERRORS

The preceding analysis does not include the possibility
of experimental errors, an omission that we now address,
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(a)

(b)

(c)

FIG. 5: (a) Histograms of work measurements for folding and
unfolding an RNA hairpin at three different rates. Observa-
tions are binned into integers centered at 1 kBT intervals.
This data corresponds to Fig. 2 of Collin et al.2. Note that
Eq. (3) predicts that the folding and unfolding work distri-
butions cross at the free energy change. (b) The posterior
distribution of the error correction factor γ [Eq. (16)]. (c)
Posterior free energy derived from the data in (a), both with
[Solid line, Eq. (16)] and without [Dashed line, Eq. (11)] cor-
rection for measurement noise. Notice that the correction
is substantial for the slowest experiment (1.5 pN/s), minor
for the intermediate rate, and the corrected and uncorrected
posteriors are indistinguishable (at this scale) for the fastest
rate. The most reliable free energy estimate is obtained by
combining the three separate noise corrected free energy pos-
terior distributions.

since real experiments are not ideal and real measure-
ments can be inaccurate.

We initially assume that the instrument error can be
adequately described as additive white noise with zero
mean and standard deviation σ. Since we do not know
the magnitude of the noise, we estimate the joint distri-
bution of the free energy and the noise, then integrate

out the noise to obtain a final free energy estimate:

P (∆FΛ|W,Λ) =

∫

P (∆FΛ, σ|W,Λ)dσ. (13)

Let us write W = w + ε where W is the observed work
value, w is the true work and ε is the measurement error.
Using Eq. (9) we get,

P (∆FΛ, σ|W,Λ) ∝ (14)
+∞
∫

−∞

f
(

βW − βε − β∆FΛ + MΛ)N (ε; 0, σ) dε.

Here, N (x; µ, σ) is a Gaussian distribution with mean µ
and standard deviation σ. [See Eq. (20)].

This convolution of a logistic function and a Gaus-
sian distribution generates a new sigmoidal function, il-
lustrated in Fig. 6. This function does not have a simple
closed form, but fortunately it can be closely approxi-
mated by a reparametrized logistic distribution

P (∆FΛ, σ|W,Λ) ∝ f
(1

γ
(βW − β∆FΛ + MΛ)

)

, (15)

where the parameter γ =
√

1 + πβ2σ2/8 essentially acts
as a correction factor to the work fluctuation symmetry.
(The mathematical details are given in the appendix.)

Having proceeded this far, we no longer need to as-
sume that the errors are a result of white noise. Instead,
we will treat γ as the principle experimental error factor
directly, without reference to an explicit error model or
to the standard deviation of the noise, σ. For example, a
systematic miscalibration of the work measurement or an
incorrect thermostat would also result in a non-unit γ. In
such cases γ could be less than 1. Therefore, we allow γ
to be any positive number. We introduce an uninforma-
tive prior for γ, P (γ) = 1/γ. This distribution is scale
invariant and follows given only that γ is positive and
a priori of unknown magnitude50. We can now average
over the free energy to obtain the posterior distribution
of the error correction factor γ, or average over the er-
ror correction factor to obtain the posterior free energy
estimate corrected for instrument error

P (∆FΛ|W,Λ) = (16)

1

C′

+∞
∫

0

1

γ

∏

k

f
(1

γ
(βWk − β∆FΛ + MΛ)

)

dγ,

where C′ a normalization constant. Note that instrument
error, and thus the distribution of γ, will vary with the
protocol. One could construct a complex hierarchical
prior48 for the experimental error factors, that would feed
information about the typical scale of the errors from one
protocol to the next. In this work, we find it sufficient to
estimate γ independently for each protocol, and obtain a
final posterior:

P (F|W,Λ) =
∏

Λ

P (∆FΛ|W,Λ). (17)



6

NU NR ∆F ∆F γ
(Uncorrected) (Corrected)

1.5 pN/s 127 129 109.8 ± 0.4 109.8 ± 0.8 2.70 ± 1.00

7.5 pN/s 384 383 110.3 ± 0.3 110.3 ± 0.3 1.11 ± 0.17

20 pN/s 699 696 110.0 ± 0.3 110.0 ± 0.3 1.00 ± 0.14

Combined 110.1 ± 0.2

TABLE I: Summary of results graphed in Fig. (5). NU and
NR: Number of unfolding and refolding work measurements
at each pulling rate, respectively. ∆F : Posterior mean free
energy estimate with 95% confidence intervals, both corrected
and uncorrected for measurement error. γ: Posterior mean
estimate of the noise correction factor, with 95% confidence
intervals

Here, as in Eq. (11), F = {F1, F2, F3, . . .} are the free
energies of the initial and final thermodynamic states.

Another potential source of errors arises from unin-
tended variations of the experimental procedure from
one measurement to the next. For example, we may in-
tend to forcibly unfold an RNA hairpin in a particular
time, but each experimental run may be slightly faster
or slower than another. Instead of an experiment be-
ing described by a single protocol, each measurement is
made with a similar, but slightly different procedure (e.g.
due to hysteresis effects in the mechanical response of
the actuators). However, if a protocol variation has the
same probability both forward and reverse, then the fac-
tor MΛ [Eq. (12)] does not change. Consequently, if the
variations in protocol are statistically the same for the
conjugate forward and reverse protocol pairs then that
variation has no effect on the free energy estimate.

IV. APPLICATION AND DISCUSSION

Figure 5 shows the result of applying the Bayesian free
energy estimate to data from the single-molecule RNA
pulling experiments reported in2, both with and without
noise correction. This data set is particularly useful to
illustrate the previous analysis, since it represents three
distinct protocols; i.e. the same RNA hairpin is unfolded
at three different rates: slow, medium, and fast. The
free energy change is the same in each case; we can see
that this is qualitatively true by noting that the forward-
reverse work histograms all cross at roughly the same
value of the work. The experimental noise is expected to
accumulate during a single experiment, and so we expect
the data from the fastest pulling rate to be contaminated
with the least measurement error. This is indeed what
the Bayesian error analysis finds: γ approaches 1 as the
pulling rate increases.

Qualitatively, the effect of instrument noise is to
broaden both the forward and reverse work distributions.
This broadening tends not to significantly change the
crossing point, but it does increase the overlap between
the conjugate distributions. Therefore, ironically, the in-
strument error does not greatly change the free energy

estimate, but it does significantly (and erroneously) re-
duce the calculated error bars. Fortunately, the noise
invalidates the fluctuation theorem, and the magnitude
of that violation allows us to estimate the magnitude of
the instrument errors and to extract noise-corrected free
energy estimates with meaningful error bounds.

A useful feature of this error analysis is that we can
use the parameter γ as a measure of how well the ex-
periments have confirmed the work fluctuation relation
[Eq. (3)]. For the fastest pulling, highest quality data,
we find that γ = 1 ± 0.14; in other words, the fluctua-
tion relation is confirmed to within 14% at the 95% con-
fidence limit. Although more accurate constraints can
be obtained by performing experiments on systems with
simple potentials39,53,54,55,56,57, this is the best available
experimental data for irreversibly switching a complex
system2,58. We can also use the interrelation between
the noise and the correction factor (γ =

√

1 + πβ2σ2/8)
to estimate the measurement accuracy needed to improve
this result. For example, if we wish to confirm the fluctu-
ation relation to better than 1%, then the work must be
measured to better than ≈ 1

4kBT accuracy, which is well
within the limits of modern optical tweezer instruments.

The quantitative effect of the noise corrections to ∆F
can be seen in Fig. 5c and Table I. The noise correc-
tion makes a substantial difference to the free energy
confidence interval for the slowest data, but very little
difference to the posterior mean free energy or the er-
ror bounds for the faster data. Note that the free en-
ergy considered in this analysis includes unfolding the
RNA hairpin and stretching the DNA/RNA handles; de-
convoluting the contributions of the handles introduces
additional uncertainty not considered here2,3,18. Having
applied the instrument noise correction, we can safely
combine the posterior free energy estimates from the
three different protocols to obtain a combined estimate
of ∆F = 110.1± 0.2kBT . This result is a substantial im-
provement over the best, single protocol, maximum like-
lihood estimate, ∆F = 110.2 ± 0.6kBT , extracted from
the same data2.

In summary, we have presented a Bayesian formalism
for estimating free-energy changes from non-equilibrium
work measurements. The formalism compensates for in-
strument noise and combines results from multiple ex-
perimental protocols. The method is widely applicable
and could be used in the analysis of single-molecule ex-
perimental data from optical tweezers, AFM, or mag-
netic tweezers. Together with advances in single-molecule
traps and use of multiple experimental setups (e.g.,
changing bead sizes, trap power, or the length of the han-
dles), it will aid in extending the scope of single-molecule
experiments.
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Appendix : Approximate convolution of a logistic
function with a Gaussian distribution

We are interested in the function

g(x; α, σ) =

∫ +∞

−∞

f(x + ε; α)N (ε; 0, σ)dε , (18)

the convolution of a logistic (or Fermi) function

f(x; α) =
1

1 + e−x/α
=

1

2
+

1

2
tanh

x/α

2
, (19)

with a Gaussian (or normal) distribution with zero mean
and standard deviation σ:

N (x; µ, σ) =
1√

2πσ2
exp

(

− (x − µ)2

2σ2

)

. (20)

The function g(x; α, σ) does not have a simple, closed
form. However, as is illustrated in the figure, it can be
reasonably approximated by a reparameterized logistic
function:

g(x; α, σ) ≈ f(x; γ), (21)

where γ is a function of α and σ. We fix γ by requiring
equality of the derivative at the origin, since, for our
purposes, it is more important to minimize the errors
around the origin than elsewhere. The value of g(x; α, σ)
at the origin is 1/2, the same as f(0; γ). Note that

d

dx
f(x; γ)

∣

∣

∣

∣

x=0

=
1

2γ + 2γ cosh (x/γ)

∣

∣

∣

∣

x=0

=
1

4γ
, (22)

and therefore

γ−1 = 4
d

dx
g(x; α, σ)

∣

∣

∣

∣

x=0

= 4

∫ +∞

−∞

(

d

dx
f(x + ε; α)

∣

∣

∣

∣

x=0

)

N (ε; σ)dε

= 4

∫ +∞

−∞

(

1

2α + 2α cosh ε/α

)

N (ε; σ)dε. (23)

The expression inside the bracket is a logistic distribu-
tion, which is closely approximated by the Gaussian dis-
tribution N (ε; 0, α

√

8/π) (See Fig. 7). These parameters
ensure that the two distributions agree exactly at the ori-
gin. Therefore, our problem reduces to a straightforward
Gaussian integral:

γ−1 ≈ 4

∫ +∞

−∞

N (ε; 0, α

√

8

π
)N (ε; 0, σ)dε

γ =

√

1 +
π

8α2
σ2. (24)

For α = −1/β we recover the case of white noise dis-
cussed in the main text.
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