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ABSTRACT OF THE THESIS

Open Vocabulary Part Grounding in Multimodal Large Language Models

by

Raunak Sinha

Master of Science in Computer Science

University of California, Los Angeles, 2024

Professor Nanyun Peng, Chair

We investigate the complexities involved in open-vocabulary part segmentation, a task

significantly more challenging than bounding box detection due to the precision and

granularity required at the pixel level. Bounding box prediction allows for broad object

localization, whereas segmentation demands exact delineation of object boundaries,

making it a more difficult and nuanced task. Moreover, part grounding introduces an

additional layer of complexity compared to object grounding. While object grounding

relies on recognizing the whole object, part grounding requires understanding the intricate

relationships between the object’s components, each of which may have distinct shapes

and functions. Through an extensive evaluation of multiple models, including DesCo,

LISA, and VLPart, we assess their performance across both tasks on the PACO dataset,

revealing their limitations in addressing the intricacies of part segmentation.

The results indicate that DesCo PACO (+ve) achieves the highest performance in

bounding box detection, with an Average AP of 23.37, despite being trained without

descriptive input. This highlights the relative simplicity of object grounding, where

coarse localization is sufficient to achieve high accuracy. However, part grounding and

segmentation models, such as LISA Fine-tuned, exhibit significantly lower performance,

with an Average AP of 13.4, underscoring the additional complexity of localizing and

identifying object parts. Part segmentation demands a deeper understanding of the

object’s internal structure and functional distinctions, which current models struggle to
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consistently capture.

Furthermore, this study explores the impact of descriptive input on model perfor-

mance. While descriptive augmentation has minimal effect on bounding box detection,

it significantly improves segmentation accuracy. Descriptions provide critical context

that enables models such as LISA Description to differentiate between visually similar

parts, resulting in an improved Average AP of 16.3. However, despite these improvements,

models like VLPart continue to struggle with generating accurate part masks, often

producing irrelevant or misaligned predictions. These challenges are compounded by the

need to resolve ambiguities between part categories and to capture parts that vary greatly

in scale, shape, and context, making part grounding inherently more difficult than object

grounding.
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CHAPTER 1

Introduction

Figure 1.1: Images with part-segments annotated from the PACO dataset. The different
scenes show the complexity of the task in terms of diversity of parts in multi-object scenes.

(a) "Blade of Grass" vs "Blade of Sword" (b) "Face of Clock" vs "Face of Horse"

Figure 1.2: Showcasing difference between similarly named parts across two different
objects

Real-world tasks increasingly demand a fine-grained understanding of objects, extend-

1



ing beyond mere object attributes and descriptions to part-level comprehension. Current

grounding models, such as DesCo, demonstrate high proficiency in recognizing and ground-

ing objects within images in an open-vocabulary setting. However, this capability does

not naturally extend to part-level understanding, which presents its own set of challenges

(Figure 1.1).

Part-level understanding is complicated by the variability in the meaning of part

names across different object types. For instance, the “face” of a clock is vastly different

from the “face” of a horse, and the “blade” of grass is visually distinct from a “blade” of a

knife. This issue is less pronounced in object grounding, where each concept (e.g., clock

vs. horse) is distinctly different (Figure 1.2). Existing approaches, such as those proposed

by VLPart and LISA, treat each object part as a new class. This significantly increases

the number of classes to learn, with limited annotations per class, and overlooks shared

concepts across different objects. For example, while the “leg” of a dog differs from the

“leg” of a chair, the concept of a “leg” used for standing is common to both. A global

understanding of parts across objects would facilitate extending this notion to novel and

unseen objects. These difficulties are compounded by the scarcity of labels for object

parts both in terms of the number of annotations per part and the total number of objects

with uniquely identified parts.

Object detection and segmentation have undergone substantial evolution, advancing

from recognizing a limited set of categories to handling an open vocabulary of objects.

Open-vocabulary systems are capable of identifying any object in the world, extending

beyond fixed categories in existing datasets. These systems have greater real-world impact

as they can recognize unseen categories expanding to detection cases that go beyond the

limited corpus of labeled data. Despite these advancements, there remains a critical need

for intelligent vision systems to understand and segment objects into their constituent

parts in a detailed and flexible manner. Traditional models typically focus on object-level

detection, but the ability to discern fine-grained details, such as the parts of an object, is

essential for numerous applications, including robotics manipulation, behavior analysis,

and detailed image editing.
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It’s tempting to apply existing open-vocabulary object detection methods to part-level

recognition since parts constitute an object. This is popularly achieved by replacing

weights from the final classifier layer with the text-embedding from the part-category

name. However, these methods do not generalize well to part-level recognition. Existing

approaches to open-vocabulary object detection struggle with part segmentation due to

their reliance on object-level data, which often lacks the granularity required for part-level

recognition. The primary challenges are twofold: (1) The recall issue, where models

trained on object-level data fail to generalize to the finer granularity of parts, and (2) The

precision issue, where insufficient part-level annotations hinder effective part segmentation.

The model for open-vocabulary part segmentation is designed to segment objects not

only by their general categories but also by finer granularity. For example, a dog can be

segmented into parts like the head, torso, legs, and tail, and further into more detailed

parts such as the ear, eye, and nose. Annotating these detailed object parts is highly

expensive, and the available datasets for part segmentation are less comprehensive and

diverse compared to those for image classification and object detection. Despite gathering

data from three sources—Pascal Part, PartImageNet, and PACO—only a limited number

of object parts are accessible. Each dataset defines its own set of parts for the same

object, making the problem more complex as what visibility of part should be the most

acceptable?

While existing object detection methods usually use image captioning data for model

training, they rely on novel methodologies to construct alignment between objects in the

image and their captions, as these datasets only provide images and captions without

dense alignment between text and objects. For datasets with dense caption alignment

between objects and text, the frequency of parts in contrast to objects is skewed towards

objects, making part-level segmentation more challenging.

To address these challenges, it is essential to develop models that can learn part-

grounding with limited data and expand this capability to open-vocabulary settings

for both objects and parts. Despite the nascent state of parts/attributes grounding,

state-of-the-art (SOTA) segmentation models have shown proficiency in understanding
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parts across a range of types. Most of these models explore open-vocabulary in terms of

new object types, but rarely are new part types studied. For instance, based on human

prior, dogs and cats can be thought to have similar parts of head, body, tail, nose, ears,

neck etc. But existing datasets do not consider the possibility of a new part. This might

be a problem if a concept of a part like "wing" for example was never seen before, which

is an integral part of objects like birds. To enhance the part-grounding capability of

models like DesCo, it is necessary to train on comprehensive datasets, experiment with

various training strategies, and employ methods like SAM (Segment Anything Model) to

generate captions for segments and perform DesCo-style training.

To enhance the part-grounding capability of DesCo, we train the model on the PACO

dataset, which encompasses bounding boxes for 75 different object categories along with

456 object part-categories and 55 attributes. This dataset provides a rich and diverse set

of annotations crucial for developing a nuanced understanding of object parts.

In our experimentation, we are employing various training strategies for fine-tuning

DesCo:

• Object-Agnostic Part Classes: Instead of treating each "part of object" as

a unique class, we adopt a strategy where "part" is considered a unique class,

independent of the object it belongs to. For instance, the "leg of a bird" and the

"leg of a chair," while visually distinct, are conceptually similar. By training a model

solely on parts without object-class mentions, we aim to generalize the concept of

parts across different objects, enhancing the model’s ability to recognize parts in

novel objects.

• Descriptive Training for Generalization: Traditional captioning methods do

not facilitate generalization to an open-vocabulary setting. Therefore, similar to

DesCo’s training style, we employ contrastive descriptions of object parts. This

approach involves using detailed descriptions to learn about parts, thereby improving

the model’s ability to generalize from descriptive text to visual parts.

By employing these diverse and innovative training strategies, we aim to significantly
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improve the part-grounding capabilities of DesCo, making it more adept at handling the

complexities of part-level segmentation in an open-vocabulary context.
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CHAPTER 2

Analysis of current models

2.1 Related work

2.1.1 Image segmentation

Image segmentation, a fundamental task in computer vision, assigns a class label to every

pixel in an image. Early techniques relied on manual feature extraction and traditional

algorithms like thresholding and clustering. The advent of deep learning revolutionized

segmentation methods, with Convolutional Neural Networks (CNNs) (Lecun et al., 1998)

becoming pivotal. Notable architectures include Fully Convolutional Networks (FCNs)

(Long et al., 2015) and U-Net (Ronneberger et al., 2015), which utilize encoder-decoder

structures for dense pixel predictions and precise localization. Research has further

advanced with methods like dilated convolutions (Yu and Koltun, 2016), pyramid pooling

modules (Zhao et al., 2017), and non-local operators (Wang et al., 2018) enhancing

semantic information encoding. Instance and panoptic segmentation have introduced

innovations like DETR-based structures (Carion et al., 2020), mask attention (Endo, 2023),

and dynamic convolution for instance-level segmentation. Recently, models like SAM

(Kirillov et al., 2023) and X-Decoder (Zou et al., 2023) have demonstrated exceptional

segmentation quality and multi-task compatibility, while SEEM (Zou et al., 2024) supports

diverse human interactions. These advancements continue to push the boundaries of

detailed and accurate image analysis, making segmentation a continually evolving area of

research.
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2.1.2 Semantic Correspondence

The aim of semantic correspondence is to establish spatial visual correspondences between

different instances of the same object category, enhancing the ability to recognize and relate

visual features across varied contexts. This concept is essential in tasks such as object

detection, segmentation, and image captioning, where understanding the relationship

between visual and textual data is crucial. Early works focused on leveraging pre-trained

models to compute feature map similarities, with methods using a pre-trained CNN

to establish these correspondences. Performance was further improved by employing

Vision Transformers (ViT) (Dosovitskiy et al., 2020) to enhance the representation

capabilities, demonstrating superior results in cross-domain correspondence tasks. Recent

advancements have seen the application of self-supervised models like DINO (Caron et al.,

2021), which leverage self-supervised learning to generate robust feature representations.

DINO facilitates the alignment of novel objects with base objects without requiring

extensive labeled data, significantly improving the model’s ability to generalize across

different object categories by establishing more accurate and detailed correspondences

(Sun et al., 2023). Transformer-based models, such as CLIP (Radford et al., 2021), have

further advanced the field by aligning images and text in a shared embedding space using

a contrastive learning approach. Further, models like OSCAR (Li et al., 2020) integrate

object tags into the learning process, enhancing the model’s ability to establish semantic

correspondences between objects in images and their textual descriptions. UNITER (Chen

et al., 2020) and VinVL (Zhang et al., 2021) have introduced sophisticated methods for

integrating visual and textual information by employing large-scale pre-training on diverse

datasets, enabling them to capture richer and more nuanced semantic correspondences.

2.1.3 Vision-and-language representation learning

Vision-language representation learning has advanced significantly, aiming to unify visual

and textual understanding for tasks like visual question answering (Goyal et al., 2017;

Gurari et al., 2018; Agrawal et al., 2016; Srivastava et al., 2020; Malinowski et al.,
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2018)(VQA), image captioning (Xu et al., 2015; Vinyals et al., 2015; Rennie et al., 2017;

Anderson et al., 2018; Sharma et al., 2018), and cross-modal retrieval (Frome et al., 2013;

Faghri et al., 2018; Lee et al., 2018). Central to this progress are contrastive learning

techniques, as seen in models like CLIP (Radford et al., 2021) and ALIGN (Jia et al.,

2021), which align image-text pairs, enabling open-vocabulary generalization beyond

fixed categories. Models such as UNITER (Chen et al., 2020) and VinVL (Zhang et al.,

2021) have pushed this further by leveraging pre-training on large-scale datasets, aligning

fine-grained object and language correspondences, improving performance in reasoning

tasks involving object attributes and spatial relationships. With the integration of large

language models (LLMs) in models like Flamingo (Alayrac et al., 2022) and LISA (Lai

et al., 2024), vision-language systems have evolved to handle more complex, context-

aware tasks, demonstrating the potential for deeper reasoning and broader real-world

applications.

2.1.4 Multimodal large language model

Multi-modal large language models (LLMs) integrate textual and visual data to enhance

AI comprehension and generation capabilities. Models like CLIP (Radford et al., 2021)

use contrastive learning to align images with text, excelling in zero-shot learning tasks

without extensive fine-tuning. Inspired by LLMs’ reasoning abilities, researchers have

developed models such as Flamingo (Alayrac et al., 2022), which uses cross-attention

(Vaswani et al., 2017) for visual in-context learning, and BLIP-2 (Li et al., 2023b) and

mPLUG-OWL (Ye et al., 2023), which encode image features with a visual encoder before

feeding them into the LLM. Otter (Li et al., 2023a) incorporates few-shot capabilities

through in-context instruction tuning, while LLaVA (Liu et al., 2024) and MiniGPT-4

(Zhu et al., 2023) align image-text features followed by instruction tuning. VisionLLM

(Wang et al., 2024) and Kosmos-2 (Peng et al., 2023) enhance interaction and grounding

capabilities, respectively, while DetGPT (Pi et al., 2023) bridges multi-modal LLMs and

open-vocabulary detectors for detection based on user instructions. These advancements,

supported by vision-language pre-training, transform tasks like image captioning (Xu

8



et al., 2015; Vinyals et al., 2015; Rennie et al., 2017; Anderson et al., 2018)and visual

question answering (Goyal et al., 2017; Gurari et al., 2018), making multi-modal LLMs

versatile tools for complex content generation and understanding.

2.1.5 Open-vocabulary object detection

Open-vocabulary object detection (OVOD) extends the capabilities of object detection

models beyond fixed categories to recognize and localize novel objects described by

arbitrary text inputs. This addresses the limitations of traditional models confined to a

limited number of seen categories during training. Models like ViLD (?), RegionCLIP

(Zhong et al., 2021), and PB-OVD (Gao et al., 2022) leverage pseudo region annotations

from pre-trained vision-language models to enhance detection capabilities, with ViLD

using knowledge distillation to align region embeddings with text and image embeddings.

RegionCLIP refines regional features with contrastive learning, improving generalization

to unseen categories. DetPro (Du et al., 2022) enhances category embeddings through

automatic prompt learning, and GLIP integrates detection and grounding data to improve

the alignment of textual descriptions with visual regions. Detic (Zhou et al., 2022b)

expands novel class recognition using image classification data, and VLDet (Lin et al.,

2022) continuously extracts region-word pairs from image-text pairs, this is seen as

a set-matching problem between image-regions and word-embeddings. OVOD faces

challenges in data scalability and integration of high-quality language models, but these

advancements pave the way for more adaptable vision systems capable of detailed object

and part recognition in complex scenarios.

2.1.6 Part Segmentation

Part-segmentation has emerged as an essential task in computer vision, focusing on

segmenting objects into their constituent parts, beyond traditional object-level detection.

Early work such as Pascal-Part pioneered part-annotated datasets, enabling initial ad-

vancements in this domain but remained limited in category diversity and granularity.
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PartImageNet further expanded the scope by offering a broader dataset, but fine-grained

hierarchies of parts remain a challenge. Recent efforts like VLPart (Sun et al., 2023),

LISA (Lai et al., 2024), and DesCo (Li et al., 2023c) introduced vision-language models

that improve generalization to unseen objects by leveraging semantic correspondence and

complex language reasoning, though their specific mechanisms are discussed later. Despite

progress, the lack of extensive, detailed part-level annotations across diverse categories

continues to limit part-segmentation, driving the need for more robust cross-domain

generalization methods to bridge the gap between object and part-level understanding.

2.2 Model breakdown

For making targeted improvements we first need to understand the best models for

part-segmentation extension. We discuss three models DesCo, VLPart, and LISA. The

discussion is divided into four sections: Method Breakdown, Data Details, Metrics, Result

for each model.

2.2.1 DesCo

2.2.1.1 Model Breakdown

Traditional models trained to recognize a fixed set of categories often fail to generalize to

novel concepts or domains, limiting their effectiveness in real-world applications. Recent

advancements using contrastive objectives on expansive image-text datasets, such as

CLIP and GLIP, have produced foundation models adept at various downstream tasks

(Shen et al., 2021; Zhou et al., 2022a; Li et al., 2022a; Gao et al., 2021; Cho et al., 2021).

However, these models typically rely on language queries that primarily use object names,

missing out on the rich, descriptive information necessary for precise object identification.

Descriptive queries, which include attributes, shapes, textures, and relationships, can

significantly enhance model performance, allowing them to recognize novel classes through

detailed descriptions. For instance, an “axe" can be described as a “long handle, with
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a sharp blade, used for cutting wood," providing a comprehensive context that simple

object names lack. Using object descriptions during training time enables the model to

extend to unseen novel objects during test time, this extension is possible because the

model learns to rely on object description for identification which can be compositional.

The primary bottleneck in current approaches is the lack of fine-grained descriptions

in image-captioning data, which often results from reporting bias, as humans tend to

mention entities rather than providing detailed descriptions. Moreover, models are not

incentivized to understand these descriptions fully. In a contrastive setting, models tend

to align positive phrases with relevant regions while suppressing negatives, but even

with such an alignment the model focuses directly on the entity name and bypasses the

descriptions. DesCo’s focus is on paying higher attention to descriptions rather than

entities (Li et al., 2023c).

Furthermore, prior models frequently treat queries as a“bag-of-words", leading to

hallucinations due to inconsistencies in training formulations. They struggle with complex

queries and fail to interpret descriptive information accurately. DesCo addresses these

limitations by leveraging detailed, context-rich language descriptions, enabling the model

to handle complex queries and novel concepts more effectively. This approach ensures that

models are better equipped to understand and utilize detailed descriptions, significantly

enhancing their generalization capabilities and performance in real-world scenarios.

The ablation study for DesCo explores several key modifications to enhance the

model’s performance. Directly appending descriptions to queries without context-sensitive

construction showed no improvement in performance for rare categories and minimal

change in context sensitivity, indicating the model’s difficulty in effectively utilizing

non-contextual descriptions. In contrast, removing the entity name significantly enhanced

both contextual sensitivity and object detection, emphasizing the importance of focusing

on contextual information. Incorporating hard negative captions further boosted detection

accuracy by helping the model grasp subtle nuances in language descriptions. Additionally,

using higher-quality language models like those from the GPT family markedly improved

detection performance, highlighting the value of robust pre-trained language models for
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embedding rich visual information. These findings collectively demonstrate the critical role

of context, strategic input modifications, and high-quality language models in optimizing

DesCo’s performance.

DesCo extends the training of GLIP (Li et al., 2022b) by using expansive description

for objects in any given scene. As GLIP is the foundation of DesCo it is imperative to

understand the core principle of GLIP (Grounded Language-Image Pretraining), which is

to transform any task-specific, fixed-vocabulary classification problem into a task-agnostic,

open-vocabulary vision-language matching problem. This approach unifies training data

into a grounding format, where each setup includes an image, a text query, bounding boxes,

and ground-truth alignment labels. For detection data, the text query is a concatenation

of object classes, encompassing both positive and negative examples. For grounding data,

which involves image captions with region annotations, GLIP creates complex queries

by combining multiple captions from a single image. For image-caption pairs lacking

bounding boxes, pseudo labels are generated using a grounding model.

Detection is viewed as language-context-free grounding, while grounding is considered

language-context-dependent detection. The model computes an alignment score between

image regions and words.

During training, GLIP optimizes for region-word matching loss and localization

loss. This unified approach enables the model to perform well across various vision-

language tasks, leveraging both visual and textual information to improve accuracy and

generalization. By aligning regions with descriptive language, GLIP effectively bridges

the gap between visual content and its textual description, enhancing its capability to

understand and process complex queries.

2.2.1.2 Dataset Creation

The aim of this work is to enrich object detection models with complex, description-rich

language. This is achieved through a novel description-conditioned contrastive training

paradigm, where large language models, imbued with extensive world knowledge, generate

12



detailed descriptions. The models are prompted with questions like “What features should

object detection models focus on for an entity in the caption?” to produce nuanced

descriptions.

Additionally, the focus is on “context-sensitive queries” where negative and positive

phrases can only be distinguished through detailed descriptions. To identify any particular

object a perfect match to the description needs to be established. Negative descriptions are

created by altering the descriptions slightly. To create challenging scenarios, “Winograd-

like" queries are constructed to produce confounding descriptions. The original grounding

task is generalized to allow for fully negative queries to enhance robustness.

This approach addresses key observations:

• Entity Shortcuts: Models often learn to rely solely on entity names, ignoring the

surrounding context. In such cases, the mutual information of the context and

ground-truth, given the entity and image, is nearly zero. Thus, simply augmenting

the context with more detailed descriptions does not add value.

• Hallucinations: Traditional phrase grounding methods focus on finding entities in

captions that are always present, which can lead to hallucinations. By introducing

context-sensitive queries and negative examples, the model is encouraged to pay

attention to the full description, reducing the reliance on entity shortcuts and

minimizing hallucinations.

Through this meticulous dataset construction process, the models are trained to better

understand and utilize detailed, context-rich descriptions, leading to more accurate and

robust object detection capabilities.

2.2.2 Metrics

The authors measure model performance using two key metrics: the first being Average

Precision (AP), which assesses accuracy, and the second set comprising ∆Box and ∆Conf.

∆Box quantifies the variation in bounding box coordinates, while ∆Conf evaluates changes
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in the alignment score for these boxes.

2.2.2.1 Result

The authors conduct a comprehensive evaluation of GLIP to assess its capacity for

understanding descriptive input. They observe that incorporating descriptions during

inference adversely impacts model performance. Additionally, the model appears to

disregard the provided contextual information. This is evidenced by experiments where

negative descriptions are added to entity names, revealing that as long as the entity

is explicitly mentioned, the model’s predictions remain largely unaffected. Contrary

to expectations, the model shows neither stronger alignment with positive descriptions

nor significant variation in predictions when presented with negative versus positive

descriptions.

They also study the zero-shot transferability of the model across LVIS and OmniLabel,

DesCo-GLIP shows an improvement of 8.6 AP over GLIP and for rare categories (APr)

there is a 10.0 increase.

The authors conduct multiple ablation studies across different components in the model.

Dropping the entity name improved the focus of the model on contextual information.

Including hard negatives improves model detection across multiple datasets while ensuring

robust contextual comprehension.

The novel learning paradigm introduced in this work employs language supervision to

construct context-sensitive queries. While DesCo demonstrates the ability to comprehend

complex queries within a contextual framework, extending this capability to parts of objects

presents significant challenges. Utilizing language models for description generation can

introduce noise, as the generated descriptions may lack accuracy or relevance. Moreover,

successful deployment of DesCo requires careful prompt engineering to ensure precise

interpretation. The application of the DesCo paradigm to object detection, which

predicts bounding box coordinates around objects, is not directly translatable to part-

level understanding. Bounding boxes are an inherently coarse method of localization,
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and using them to delineate object parts can lead to significant overlap between distinct

regions, resulting in ambiguous part definitions. Therefore, while the DesCo paradigm

shows promise, its application may be more appropriate for image segmentation tasks,

which offer finer granularity and are more aligned with the study of object parts.

2.2.3 VLPart

2.2.3.1 Method Breakdown

VLPart (Sun et al., 2023) is trained using multiple levels of information, integrating

part-level, object-level, and image-level data. This comprehensive training strategy allows

the model to achieve multi-level granular alignment between language and images. By

leveraging datasets like Pascal Part, PartImageNet, and PACO, VLPart grows the existing

set of classes with part-level annotations. It parses novel objects into their respective parts

through dense semantic correspondence with known base objects. This dual-step approach

enables VLPart to generalize across diverse data sources and foundational models.

VLPart addresses two levels of openness; open category and open granularity. Open

category, a concept familiar in object detection, involves recognizing novel objects. Open

granularity, however, deals with the hierarchical structure of object parts. For example,

a human figure can be segmented into parts such as head, hands, and legs, with each

part further divided into finer components like eyes, nose, and mouth. This hierarchical

nature makes part-segmentation inherently challenging, as the appropriate level of detail

varies with different objects and scenarios. To expand part categories, VLPart utilizes

large vocabularies from object-level and image-level data sources, which lack part-level

annotations. Training on different granularity helps the model align vision and language

features at multiple levels. VLPart calculates alignment scores between class names

and regions, a function that is applicable to both object-level and part-level tasks. The

objective is to transfer this alignment capability from large-scale object detection to

detailed part segmentation.

For generalization and data discovery, VLPart proposes a new data-annotation pipeline
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that employs existing vision foundation models to parse unseen objects into their parts,

creating correspondences between known objects and parts and novel, unseen objects as

a form of data discovery. This is done due to the absence of part-level supervised data.

In summary, VLPart leverages a combination of convolutional and transformer-based

image encoders, a multi-scale feature generation network, a sophisticated detection decoder

that integrates text embeddings for flexible classification, and a mask decoder designed

for open-vocabulary part segmentation. This comprehensive approach enables detailed

and accurate segmentation of objects and their parts across a wide range of categories and

granularities. The detection decoder comprises two main components: a region proposal

network (RPN) and an R-CNN recognition head. The RPN generates box proposals

outlining potential objects and parts within the image. These proposals are refined by

the R-CNN recognition head, which adjusts the box locations and assigns classification

scores.

Notably, instead of traditional classifier weights, the R-CNN recognition head uses

text embeddings of object and part names. These embeddings, derived from the text

encoder in CLIP, replace fixed classifier weights, enabling a more flexible and comprehensive

classification process. The classification score is calculated through a dot-product operation

between the region features, extracted from the feature maps generated by the image

encoder, and the text embeddings. This mask decoder includes a class-agnostic head,

allowing it to segment objects from novel categories not seen during training. This

class-agnostic approach is crucial for open-vocabulary segmentation tasks, where the

model must generalize to new object categories.

The training loss for VLPart includes location loss, classification loss, and mask loss

for both part-level and object-level data, whereas image-level training only updates the

classification loss. The assumption in parsing novel objects into parts is that novel objects

will exhibit high similarity with the part taxonomies of base objects. For example, a knife

and a sword share similar parts. By establishing dense semantic correspondence between

regions in novel objects and parts of base objects, new regions can be pseudo-labeled,

facilitating effective part segmentation even for unseen objects.
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2.2.3.2 Data Details

The VLPart model is trained on various datasets, each providing different levels of

annotations essential for detailed part segmentation. The detailed part annotations help

refine part distinctions, the object detection data enhances localization and recognition

capabilities, and the image-level classification data broadens the model’s understanding

of different categories.

• Part-Level Annotated Datasets: All part-level annotated datasets used in VLPart

contain segmentation masks for parts and their respective categories. Typically,

each part is defined as an object-part pair, allowing the model to discern between

similar parts of different objects. For example,“tail of dog" and “tail of cat" are

treated as separate categories.

• Object Detection Datasets: Object detection datasets used in VLPart contain

objects along with their bounding boxes and, in some cases, their masks. Each

object is also assigned a category label, which helps the model learn to identify and

localize different objects within an image.

• Image-Level Classification Datasets: Image-level classification datasets provide

labels and images of objects but lack bounding boxes. Despite this, these labeled

samples are valuable for improving the classification loss by introducing a broader

range of object categories. For instance, by considering the maximum-size proposals

for an image, the model can incorporate more diverse categories, enhancing its

ability to generalize and recognize various objects.

VLPart uses a pretrained DINO for finding the nearest base object for each novel

object and build the dense correspondence. Such correspondence show good align-

ment in terms of color, texture and pose but there is a often are at the cost of high

semantic correspondence between such objects.

17



2.2.3.3 Metrics

To evaluate their methodology, the VLPart paper employs two levels of generalization:

cross-category and cross-dataset generalization. Cross-category generalization involves

training the model on seen categories (base parts) and testing it on unseen categories

(novel parts), ensuring no overlap between them. This method assesses the model’s

ability to generalize to new, unseen categories, demonstrating robustness in recognizing

and segmenting unknown parts. Cross-dataset generalization, on the other hand, trains

the model on one dataset and evaluates it on a different one. Unlike cross-category

generalization, class exclusivity between training and testing datasets is not guaranteed,

closely simulating real-world applications and evaluating the model’s practical utility and

adaptability to diverse data.

The paper also uses mean average precision (mAP) to measure performance. mAP

assesses the average precision across all classes and IoU thresholds, providing a comprehen-

sive evaluation of detection and segmentation accuracy. Specifically, mAPmask@[0.5, 0.95]

calculates the mean average precision for mask predictions across IoU thresholds from 0.5

to 0.95. This metric ensures a robust assessment of both coarse and fine segmentation

tasks, validating VLPart’s accuracy in various precision levels.

2.2.3.4 Result

They show that adding more image-caption data might marginally help the performance

but is not sufficient for part-level performance. Directly introducing part information

for training had a strong effect on the model performance, as can be seen with the

improvement of 3.5 17.6 mAP across the quadrupeds class for a model trained on Pascal

Part dataset. The also observe an average improvement of 3.3 mAP over the baseline

across the 40 classes in the PartImageNet validation sent. There is a positive correlation

to the increase in the number of part annotations dataset and performance.
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2.2.4 LISA

2.2.4.1 Method Breakdown

The work (Lai et al., 2024) introduces an innovative task in computer vision known as

reasoning segmentation. Unlike traditional segmentation tasks, which rely on explicit

instructions or predefined categories to identify objects within an image, LISA (Large

Language Instructed Segmentation Assistant) addresses more complex scenarios where

instructions are implicit. This necessitates the model to reason and infer the user’s intent

based on context or world knowledge. For example, instead of directly identifying “the

trash can", the query might be “something that the garbage should be put into", requiring

a deeper understanding and reasoning capability.

Inspired by the reasoning capabilities of large language models (LLMs) and their

adeptness at understanding user prompts, LISA utilizes this potential to advance visual

segmentation tasks. While existing multimodal LLMs can process visual inputs, their

primary focus has been on text generation, often neglecting the direct production of

meaningful image features. LISA addresses this limitation by integrating the reasoning

strengths of LLMs with segmentation, thereby extending the model’s ability to handle

complex, context-dependent queries with a deeper understanding of both language and

visual information.

In discussing LISA, our emphasis is on its emergent capability to understand object

parts, rather than its primary focus on reasoning segmentation tasks. However, the

following contributions by the paper are noteworthy:

• Complex and Implicit Query Handling: LISA excels in managing intricate queries

that require advanced reasoning, understanding nuanced descriptions and contextual

clues to identify target objects or regions within an image.

• ReasonSeg Benchmark: The ReasonSeg benchmark was developed to evaluate

model performance, consisting of 1218 image-instruction pairs from OpenImages

and ScanNetv2. These pairs, annotated with short phrases and long sentences, test
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the model’s ability to handle varying levels of query complexity.

• Proficiency in Complex Reasoning: LISA can adeptly handle scenarios involving

complex reasoning, world knowledge, explanatory answers, and multi-turn conversa-

tions, making it suitable for applications demanding contextual understanding and

precise responses.

The “embedding-as-mask" paradigm is a novel approach introduced in the LISA model to

enable multi-modal Large Language Models (LLMs) to generate fine-grained segmentation

masks directly. Multi-modal LLMs, such as LLaVA, Flamingo, BLIP-2, and Otter,

support image and text inputs and produce textual outputs but lack the capability to

output detailed segmentation masks. VisionLLM offers a partial solution by parsing

segmentation masks as sequences of polygons, allowing representation as plain text and

enabling end-to-end training within existing multi-modal LLM frameworks. However, this

method faces optimization challenges and may compromise generalization ability unless

significant computational resources are employed. For example, training a 7B model in

VisionLLM requires extensive GPU resources, making it computationally prohibitive.

LISA addresses these limitations by expanding the LLM’s vocabulary to include a new

token, <SEG>, which signals the need for segmentation output. Given a text instruction

xtxt and an input image ximg, the model processes these inputs and generates a response

that includes the <SEG> token. The last-layer embedding corresponding to this <SEG>

token is extracted and transformed into a segmentation mask through a Multi-Layer

Perceptron (MLP) projection layer. Concurrently, a vision backbone network, such as

SAM or Mask2Former, extracts visual embeddings from the input image. These visual

embeddings and the <SEG> token embedding are combined in a decoder to produce the

final segmentation mask.

By integrating this embedding-as-mask technique, LISA significantly enhances the

capability of multi-modal LLMs to perform sophisticated segmentation tasks, effectively

bridging the gap between language understanding and visual segmentation. This method

allows the model to leverage the strengths of both text and visual data, enabling it to
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handle complex queries involving intricate reasoning and contextual understanding while

maintaining computational efficiency. For instance, training LISA-7B requires only 10,000

training steps on 8 NVIDIA 24G 3090 GPUs, making it far more feasible compared to

VisionLLM.

LISA’s optimization is achieved through a weighted sum of the text-generation loss

Ltxt and the segmentation mask loss Lmask. The text-generation loss Ltxt is an auto-

regressive cross-entropy loss, which ensures the model’s language outputs are coherent

and contextually accurate. The segmentation mask loss Lmask enhances the quality of the

generated segmentation masks. This loss combines per-pixel binary cross-entropy and

DICE loss, which together help produce precise and high-quality segmentation results.

The binary cross-entropy component focuses on the accuracy of each pixel classification,

while the DICE loss addresses the overlap between predicted and ground truth masks,

promoting better overall segmentation performance.

2.2.4.2 Data Details

LISA’s training process incorporates three distinct types of datasets to ensure compre-

hensive segmentation capabilities. Semantic Segmentation Datasets such as ADE20K,

COCO-Stuff, and LVIS-PACO involve images with multi-class labels. During training,

categories are randomly selected for each image, and QA pairs are generated using

templates like “USER: <IMAGE> Can you segment the CLASS NAME in this image?

ASSISTANT: It is <SEG>.” The binary segmentation mask corresponding to CLASS

NAME serves as the ground truth, and various templates are used to ensure data diversity.

Vanilla Referring Segmentation Datasets including refCOCO, refCOCO+, refCOCOg,

and refCLEF provide images paired with explicit descriptions of target objects. These

are converted into QA pairs such as, “USER: <IMAGE> Can you segment description

in this image? ASSISTANT: Sure, it is <SEG>,” where description specifies the target

object. Visual Question Answering (VQA) Datasets like LLaVA-Instruct-150k, generated

by GPT-4, are included to maintain the model’s ability to handle diverse queries. This
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dataset directly preserves the VQA capabilities of the multi-modal LLM, ensuring the

model’s versatility in responding to varied and complex instructions.

2.2.4.3 Metrics

The evaluation of LISA employs two key metrics: gIoU and cIoU. Generalized Intersection

over Union (gIoU) calculates the average IoU across all images, providing a balanced

measure of segmentation accuracy. In contrast, cumulative Intersection over Union (cIoU)

measures the cumulative intersection over the cumulative union, which tends to be biased

towards larger regions. This dual-metric approach ensures a comprehensive assessment of

LISA’s performance, capturing both average accuracy and performance on larger segments.

2.2.4.4 Results

LISA-13B demonstrates substantial improvements over LISA-7B, particularly in handling

long queries. This enhancement underscores the potential for further advancements in

understanding long dependencies within prompts. In the reasoning segmentation task,

LISA achieves a 20% gIoU performance boost for complex reasoning tasks that require

an understanding of world knowledge and reasoning abilities.

2.3 Dataset

Our experiments are focused primarily on the PACO dataset. We feel that this dataset

has the highest number of part-categories across a diverse set of objects. Additionally,

the scene from this dataset are more complex which is more realistic. But we also

mention details of other datasets we considered as baseline for our work. These three

datasets are the standard dataset for part-understanding. We observed that not all models

train/evaluate on the same dataset, so that can be hard for direct comparisons.
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2.3.1 PACO

The PACO (Ramanathan et al., 2023) (Parts and Attributes of Common Objects) dataset

is a comprehensive resource designed to advance part-level understanding and attribute

recognition in computer vision. It includes detailed annotations for 75 object categories,

covering 456 object-part categories and 55 attributes. The dataset amalgamates data

from LVIS (Gupta et al., 2019) for images and Ego4D (Grauman et al., 2022) for videos,

providing a rich vocabulary and temporally aligned narrations to aid in sourcing frames

for specific objects. The annotation pipeline encompasses object bounding boxes, part

masks, and detailed attribute annotations, ensuring exhaustive coverage of both objects

and their parts.

2.3.2 PASCAL-Part

The PASCAL-Part (Chen et al., 2014) dataset extends the PASCAL VOC 2010 dataset by

providing detailed segmentation masks for 20 object categories, covering individual body

parts such as heads, legs, paws, eyes, and ears. It includes 10,103 images for training and

validation and 9,637 images for testing, offering a comprehensive resource for fine-grained

part segmentation. For objects without consistent parts, like boats, silhouette annotations

are used.

2.3.3 PartImageNet

The PartImageNet (He et al., 2022) dataset is a comprehensive resource designed for part

segmentation tasks in computer vision. Comprising approximately 24,000 images across

158 classes from ImageNet, it provides detailed part-level annotations for both non-rigid

and rigid objects. Organized into 11 super-categories, PartImageNet offers pixel-level

segmentation masks, supporting various vision tasks such as part discovery, semantic

segmentation, and few-shot learning.
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2.4 Model analysis

We want to compare which model out of DesCo, VLPart and LISA is the most suitable

for extending to open-vocabulary part-segmentation. To this extend we conduct com-

prehensive analysis which involves a detailed examination of each model’s functions and

inherent limitations. DesCo is inherently different from the other models as this model

focuses on bounding boxes whereas VLPart and LISA focus on segmentation, this make

the direct comparison of the two very difficult as the metrics for each scenario and not

directly comparable.

As each model is originally evaluated using different metrics, we compare the metrics

and establish which is the most discerning to evaluate, we also extensively discuss

limitations associated with the metrics.

This approach ensures a thorough understanding of each model’s capabilities and

shortcomings, guiding us to the optimal choice for further development.

2.4.1 Bounding Box vs Segmentation

Segmentation in entity grounding is inherently more challenging than bounding box

detection due to the precision and granularity it requires. While bounding boxes offer a

coarse localization of objects, segmentation demands pixel-level accuracy, capturing the

exact shape and boundaries of each entity. This level of detail requires a more nuanced

understanding of the object’s structure and its context within the image. In bounding box

detection, the task is simplified, as the model only needs to predict the location of four

boundary points to enclose the object, allowing for some degree of inaccuracy. However,

segmentation must accurately capture complex shapes and contours, making it more

sensitive to variations in object appearance, occlusions, and background clutter. This

complexity is further compounded when dealing with overlapping objects or fine-grained

parts, where even minor inaccuracies can lead to significant errors in scene understanding.

Moreover, segmentation requires models to integrate detailed spatial information and
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Figure 2.1: (Top) Segmentation-mask and bbox for part-body of object-handbag (bottom)
Segmentation-mask and bbox for part-bottom of object-bottom. While the segmentation
mask for body and bottom have clear distinctions, the bbox for these parts are overlapping.
Sample and annotations taken from PACO dataset.

context from the entire image, rather than relying solely on high-level cues that may suffice

for bounding boxes. The need for fine-grained feature extraction and spatial reasoning

emphasizes the difficulty of segmentation tasks, pushing the limits of current model

architectures and computational resources. As such, while bounding boxes provide a

broad-strokes approach to object localization, segmentation represents a more sophisticated

and demanding challenge, essential for applications that require precise delineation of

objects and their parts.

This distinction is especially notable in part-grounding. As shown in Figure 2.1, the

bounding boxes for different parts of an object, such as the base and body of a handbag,

can have significant overlap. Grounding models trained on bounding boxes tend to be

more lenient, which has important implications for evaluation. The model has greater

leeway to make errors without being heavily penalized; as long as the bounding box is

approximately in the region of the part, it can achieve a decent IoU score. In contrast,

25



Figure 2.2: (Top) Segmentation-mask and bbox for part-rim of object-can (bottom)
Segmentation-mask and bbox for part-body of object-can. Bbox of rim is much bigger
than the body of can which is incorrect. Sample and annotations taken from PACO
dataset.

segmentation masks need to be far more precise and are generally much smaller than

bounding boxes, leaving less margin for error.

Figure 2.2 highlights how bounding boxes can sometimes be misleading. For example,

the rim of a can is much smaller than its body, as the segmentation mask correctly indicates.

However, the bounding boxes incorrectly suggest the opposite, making the rim appear

larger than the body. This underscores the fact that, even in widely accepted annotated

datasets for object parts, bounding boxes may not always be the most appropriate form

of annotation. The segmentation mask for the two rims of the can does not overlap with

any irrelevant parts of the object, while the bounding box for the rim has significant

overlaps with other parts of the can, such as the body and label.

The difference between these two types of annotations can lead to varying results
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Figure 2.3: Segmentation masks for part-back cover of object-cellular telephone. Each
color denotes a new masks, there are five such instances in this image.

in evaluation. For instance, a bounding box that encompasses multiple parts of an

object in an image would not be heavily penalized if the predicted bounding box covers

a similar region as the original one. With a looser definition of boundaries, there is a

higher likelihood of falsely positive points along the edges. On the other hand, the exact

shape of the object becomes more critical with segmentation masks. In this case, even

small changes in the predicted boundaries can significantly impact the IoU score. These

variations in IoU scores can greatly influence the mAP, as mAP is determined by setting

thresholds on the IoU scores.

As demonstrated above, predicting bounding boxes for object parts is a much simpler

problem, both from a modeling standpoint and in terms of evaluation. Models trained

and evaluated solely on bounding boxes, such as DesCo, consistently perform better

when comparing metrics like mAP and IoU. However, segmentation models like LISA or

VLPart, while achieving higher precision, may suffer from lower recall.
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2.4.2 Multiple Masks

Each image-part pair can have multiple masks, for example, in Figure 2.3 there are five

instances and segmentation masks for back-cover (part) of cellular telephone (object).

Models like VLPart and DesCo support generating multiple masks for the same entry but

LISA only outputs one mask per input prompt.

When calculating IoU and mAP, each ground-truth map or bounding box is compared

with all available maps or bounding boxes of a particular label. For models like LISA,

which predict only one label per query, the evaluation may result in lower scores in the

presence of multiple ground-truth maps. This happens because only one ground-truth

map will have a strong overlap with the predicted output. For instance, in Figure 2.3,

the output mask can, at best, align with one of the five cellphone masks. As a result,

evaluating with metrics like AP or IoU penalizes the model for all the other instances

where there is no match. To address this, we use the max-IoU pair between each predicted

and ground-truth pair for a given label to provide a more accurate evaluation.

A global average for mAP does not provide an accurate reflection of model performance,

as some images may contain over 200 masks for the same part category or numerous small

parts (in the order of hundreds), which can be too complex for most models to handle

effectively. A global average unfairly penalizes models in these cases. A more accurate

measure of performance is to compute AP on a per-image basis and then average the

results. Therefore, we follow this protocol for evaluating LISA.

2.4.3 VLPart Analysis

To investigate the limitations of the VLPart model, we conduct experiments on both

in-domain and out-of-domain objects from the training data. We query the model using

images with varying attributes such as texture and color, as well as all possible known

labels. Ideally, the model should not predict parts or objects that do not exist. However,

as shown in Figure 2.4, we observe that for out-of domain objects such as shovels VLPart

not only predicts incorrect parts but also misidentifies parts of shovel as entirely different
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objects based solely on shape.

Figure 2.4: Querying VLPart with out-of-domain objects with all training classes as
prompts.

Figure 2.5: Querying VLPart with in-domain objects with all training classes as prompts.

This trend is also evident in in-domain objects, such as when the bowl of a spoon

is mistakenly classified as a mouse (Figure 2.5). VLPart appears to rely heavily on

shape-based recognition for part discovery, as indicated by the high confidence score it

assigns to parts being misidentified as objects.
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CHAPTER 3

Proposed solution

3.1 Methodology

We experiment with a few fine-tuning strategies for DesCo and LISA. DesCo is originally

only trained on object level information so we wanted to naturally extend DesCo to part

level descriptions and perform training. We rely on the PACO dataset for supervised part

level annotation.

We query Llama 3 (Grauman et al., 2022) to automatically generate nuanced de-

scriptions for each part of a given object. Our focus lies specifically on the visual

characteristics that make each part unique and distinctive. Below, we provide a sample

query demonstrating this approach:

{

{

"role": "system",

"content": "You are an expert who can describe visual features of parts

of objects for understanding distinctions visually. Output each main

feature as a list"

},

{

"role": "user", "content": <PART> of <OBJECT>

}

}
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Figure 3.1: Ground-truth segmentation and bounding in comparison to the VLPart and
DesCo. VLPart and DesCo output multiple masks/bounding-box for a single prompt.

Once all the descriptions are generated, we clean and process the text for training. Dur-

ing fine-tuning of DesCo and LISA, we append the format "<PART> of a <OBJECT>"

with the corresponding "<DESCRIPTION>".

We also experiment with training using only positive descriptions, as well as a combi-

nation of both positive and negative descriptions. Our results indicate that using only

positive descriptions yields the best performance. Including both positive and negative

descriptions seems to confuse the model during training, reducing its overall effectiveness.

In our discussion for any given model X, X fine tuned means fine tuning on existing part

dataset whereas X Description means fine tuning done with descriptions.

3.2 Result

3.2.1 Qualitative analysis

Instead of predicting one mask, VLPart and DesCo give multiple output mask for a single

query which often span a large option of scales (Figure 3.1. This leads to more chances

for correct overlap. As long as there is a decent overlap the model will not be penalized

for false predictions (this is the bias in LVIS-AP calculations).

Similar to AP, the LVIS implementation of IoU also doesn’t penalize for multiple

incorrect predictions if there is atlease one that aligns well. We fix IoU comparison by

computing IoU for each predicted mask and averaging this per image-part prompt.

Figure 3.2a presents the results for the query "nose of dog". Both LISA Fine-tuned
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Description and VLPart achieve high scores for this query. However, VLPart produces

multiple candidate masks, only one of which accurately aligns with the ground truth.

DesCo-Part, on the other hand, performs significantly worse, with all predicted bounding

boxes encompassing broader regions (such as the face) rather than precisely focusing on

the specific part, in this case, the nose of the dog.

Figure 3.2b illustrates the results for the query "neck of dog". Here, we observe

that LISA Fine-tuned Description outperforms VLPart, delivering a higher degree of

segmentation accuracy. While VLPart proposes several regions, none exhibit significant

overlap with the ground truth. In contrast, DesCo-Part, with its multiple proposed

bounding boxes, increases the probability of finding a more accurate match, as evidenced

in this particular instance.

In Figure 3.2c and Figure 3.2e, we observe that none of the models effectively segment

the blade of the knife. Figure 3.2c shows that VLPart fails to generate any output, as

none of the predicted masks reach a sufficient confidence threshold for the region.

Another clear example of how bounding box detection is a simpler task compared to

segmentation can be seen in Figure 3.2d. Although LISA performs well, VLPart is only

able to identify part of the inner side. DesCo, despite predicting multiple bounding boxes

with high confidence, produces several incorrect predictions. This further highlights that

even in an easier task like bounding box detection, inaccuracies can still arise.

In Figure 3.2f, VLPart successfully places the segment roughly in the general region

where the spoon should be, but it fails to precisely identify its exact location. In contrast,

LISA, fine-tuned on descriptive data, is capable of identifying a nearly accurate segment.

In Figure 3.3, we focus on a direct comparison between LISA fine-tuned on descriptions

and VLPart. It is evident that VLPart’s predicted masks are not always relevant. Even

when VLPart correctly predicts the part, it often includes additional masks for completely

unrelated objects or parts. For instance, in Figure 3.3f, when querying for the "body" of

the vase, VLPart also outputs a mask for a teddy bear. Similarly, in Figure 3.3b, the mask

for the coffee table appears, despite having no connection to the query "top of television
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set". Although models like VLPart and DesCo may output completely irrelevant masks

that are unrelated to the object in question, the mAP and IoU scores do not penalize

them as long as one of the predicted masks is correct. This characteristic can lead to a

false sense of confidence in the model’s performance, as the metrics do not reflect the

inaccuracy of the other predicted masks.

3.2.2 Quantitative analysis

Table 3.1: Comparison of different models on the PACO dataset with average AP scores.

Model Training Dataset Average AP
Bounding Box

DesCo PACO PACO 17.56
DesCo PACO (+ve) PACO 23.37

DesCo PACO (+ve) description PACO + description 20.55
Segmentation

VLPart PACO + Pascal Part + PartImageNet 9.6
LISA PACO + Pascal Part + PartImageNet 9.9

LISA Fine-tuned PACO 13.4
LISA Description (+ve) PACO description 16.3

The results in Table 3.1 provide a detailed comparison of the models across both

bounding box and segmentation tasks, highlighting key performance differences. Interest-

ingly, for the bounding box task, the DesCo PACO (+ve) model, which was not trained

with descriptive input, achieves the highest Average AP of 23.37. This demonstrates that,

despite the absence of description-based training, the model is still able to localize objects

effectively. The high performance of this model further emphasizes that bounding box

prediction allows for a greater margin of error, where broad object localization is sufficient

for achieving high scores.

In contrast, the DesCo PACO (+ve) with description model, which incorporates

descriptive training, shows a slightly lower score of 20.55. This suggests that the descriptive

training, while generally helpful in refining object understanding, may introduce complexity

that doesn’t directly improve performance in the coarser task of bounding box prediction.

This model’s lower score, despite the added contextual information, aligns with the notion
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that descriptions may not always be advantageous in tasks where precise part identification

is not as critical.

Shifting to the segmentation task, the results continue to underscore the difficulty

of this task compared to bounding box prediction. LISA Fine-tuned performs the best

among the segmentation models, with an Average AP of 13.4, showing that its fine-tuning

on part-level data allows it to perform more accurately in segmenting specific regions.

Meanwhile, LISA Description performs relatively well with a score of 16.3, highlighting

how descriptive input can benefit segmentation tasks that require finer granularity.

VLPart, however, struggles with segmentation, scoring only 9.6, which reflects its

difficulty in accurately identifying and segmenting object parts. Despite its ability to

generate multiple proposed regions, the model’s part discovery remains limited, as seen

through lower segmentation performance, where pixel-level precision is necessary.

3.3 Conclusion

In conclusion, this research has explored the complexities involved in open-vocabulary

part segmentation, contrasting it with the comparatively simpler task of bounding box

detection. Our analysis of models such as DesCo, LISA, and VLPart demonstrates the

critical challenges inherent in part segmentation, where precision at the pixel level is

required. The performance differences observed between these models underscore how

segmentation demands more granularity than the coarse approximations of bounding box

detection.

Bounding box prediction, exemplified by DesCo PACO (+ve), consistently performed

better, with an Average AP of 23.37, despite not using descriptive input. This illustrates

the ease with which bounding box tasks can be accomplished, as the model only needs

to approximate the general location of an object. Even without descriptions, the task

remains forgiving of small inaccuracies, provided the bounding box sufficiently covers the

object.
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Conversely, segmentation presents a far greater challenge, with LISA Fine-tuned

achieving the highest score of 13.4 in segmentation, a clear drop in performance when

compared to bounding box detection. VLPart struggles even more in this context, with

an AP of 9.6, reinforcing the notion that the task of part segmentation requires a much

deeper level of spatial reasoning and part-specific localization.

An important takeaway from this research is the role that descriptions of parts play

in segmentation tasks. Descriptions provide essential context that enables the model to

differentiate between visually similar parts, such as distinguishing between the "blade" of

a knife and the "handle." Descriptions, like "curved handle of a spoon" or "sharp edge of

a blade," enable the model to make more informed decisions about part segmentation,

going beyond purely visual input. This additional context is what allows models like LISA

Description to improve performance, as evidenced by its comparatively higher score of

16.3. The results clearly show that while descriptions do not necessarily improve bounding

box detection, they are particularly effective in refining part segmentation, where finer

granularity and part-specific knowledge are required.

However, despite the advantages that part descriptions bring, models like VLPart still

show limitations in generating accurate masks, often outputting irrelevant regions in part

segmentation. This highlights the broader challenge in developing models capable of both

general object detection and detailed part-level segmentation with the same precision.

Ultimately, the findings from this research reinforce the ongoing need to refine segmen-

tation models to handle the complexity of part-grounding. While descriptions prove to be

a helpful addition, future work must focus on further enhancing the ability of these models

to deal with the subtleties and intricacies inherent in part segmentation, particularly in

open-vocabulary settings where unseen parts and objects need to be effectively localized.
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(a) Nose (part) of Dog (object). LISA-finetuned and VLPart notably perform well.

(b) Neck (part) of Dog (object). LISA-finetuned and DesCo-Part perform well.

(c) Blade (part) of Knife (object). All models fail to identify the correct part.

(d) Inner side (part) of Pan (object). LISA performs the best.

(e) Shoulder (part) of Sweater (object).

(f) Bowl (part) of Spoon (object). VLPart tired to localize the part spoon.

Figure 3.2: Comparing differnce cases across all three models
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(a) Seat (part) of Bench (object).

(b) Top (part) of Television set (object).

(c) Cover (part) of Bucket (object).

(d) Bottom (part) of Plate (object).

(e) Top (part) of Table (object).

(f) Body (part) of Vase (object).

Figure 3.3: Comparing LISA fine tuned and DesCo-Part.
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