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The advent of sophisticated single-cell RNA sequencing (scRNA-seq) techniques now allows

investigation of the transcriptomic landscape of tens of thousands of genes across tissues

at the resolution of individual cells. However, scRNA-seq necessitates dissociation of the

sample, thereby destroying any spatial context which can be crucial to the understanding of

cellular development and dynamics. The loss of spatial information in scRNA-seq data can

be partially mitigated by referring to known spatial expression patterns of a small subset of

genes, termed a “spatial reference atlas.” Several recent computational methods have been

developed to impute spatial data onto existing scRNA-seq datasets to achieve individual-

cell resolution while retaining the spatial arrangement. In Chapter 2, we discuss a novel

deep learning-based, system-adaptive method (DEEPsc) of integrating non-spatial scRNA-

seq data with spatial imaging data. DEEPsc and other mapping methods rely on a high

quality reference atlas which must be compiled from raw images into a useable form. In

Chapter 3, we introduce AtlasGeneratorOT, a novel software suite which uses techniques in

optimal transport theory to more fully automate the creation of a spatial reference atlas for

use with DEEPsc and other integration methods. In Chapter 4, we extend AtlasGenera-

torOT with additional capabilities for three-dimensional biological systems imaged in serial

slices, allowing for alignment of and interpolation between slices to provide a more cohesive,

comprehensive atlas than previously available.

xiii



Chapter 1

Introduction

Although all cells of a biological system have access to the same genetic blueprint, the

function and fate of each cell is influenced by many other factors, which can activate or

suppress the expression of genes in cells of different types at different locations within the

system. The study of how and why certain genes are expressed in certain contexts and not

in others is known as transcriptomics.

Originally coined as a term in 1996 by Charles Auffray,[5] the field of transcriptomics devel-

oped rapidly throughout the late 1990s and early 2000s. With the advent of sophisticated

single-cell RNA sequencing (scRNA-seq) techniques in the late 2000s and 2010s,[6] it is now

possible to investigate the transcriptomic landscape of tens of thousands of genes across tis-

sues at the resolution of individual cells.[7, 8] However, a drawback to scRNA-seq methods is

the necessity of dissociating the cells in the biological sample under study, thereby destroying

any spatial context which can be crucial to the understanding of cellular development and

dynamics.[9]

A common task related to scRNA-seq datasets is to perform analysis such as unsupervised

clustering of cells and identifying marker genes with known spatial expression associated with

1



each cell cluster.[10, 11] Several existing methods further attempt to impute a pseudospatial

or pseudotemporal axis onto the data;[12, 13, 14, 15] however, little related to physical space

is immediately discernible from scRNA-seq data alone.

The loss of spatial information in scRNA-seq data can be partially mitigated by referring

to spatial staining data.[16, 17] Several recent computational methods have been developed

to impute spatial data onto existing scRNA-seq datasets through analyzing known spatial

expression patterns of a small subset of genes, termed a “spatial reference atlas.”[1, 2, 18]

Another promising solution is the emerging field of spatial transcriptomics, which has led to

the development of methods that obtain in situ spatial expression patterns of multiple genes

simultaneously.[19, 20, 21, 22, 23, 24]

Compared to scRNA-seq, current spatial techniques often cover fewer cells or genes or with

a suboptimal resolution and depth. It is therefore a trending theme to combine the strengths

of both methods to achieve a high coverage and individual-cell resolution while retaining or

recovering the spatial arrangement.[9, 11] Many existing spatial integration methods rely on

predefined algorithms for computing a correspondence score between cells in a scRNA-seq

dataset and locations in a given biological system.[1, 2, 18, 25, 26] Other existing methods

are more broadly focused on integration of datasets in general, spatial data being only one

among many inputs.[27, 28, 29, 30, 31]. Since the spatial characteristics of different biological

systems could be significantly different, we aim to develop a system-adaptive integration

method specifically designed for imputing spatial information onto scRNA-seq data.

Another trending area of research is that of machine learning and deep learning, particularly

into the application of various well-established ML/DL techniques to biological data. Many

ML/DL-based methods have been developed for the task of transferring high-level informa-

tion such as cell types between datasets by formulating a supervised learning problem with

the high-level information being the target.[32, 33, 34, 35, 36, 37, 38, 39] Other forays of

machine learning into the realm of biology include advances in the field of metric learning,
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specifically the determination of a pseudometric between different modalities of data,[40] as

well as increasing interest in applying deep learning to metric learning.[41, 42]

In Chapter 2, we develop a system-adaptive deep learning-based method (DEEPsc) for im-

puting spatial data onto scRNA-seq data. The training of a DEEPsc network can be regarded

as a general metric learning task,[43] wherein we learn a nonlinear metric between cells in

the scRNA-seq dataset and positions in a spatial reference atlas. In addition, we develop

a comprehensive measure, which was previously lacking, for evaluating how well a given

method maps scRNA-seq data to known spatial origins, called a performance score. Using

this score on four biological systems, including one (the murine follicle[12]) for which we

generated a novel reference atlas, we show that DEEPsc maintains a comparable accuracy

to four existing methods while achieving a better balance between precision and robustness.

In order for DEEPsc or any other reference atlas-based method of integrating spatial data

with scRNA-seq data to perform adequately, the reference atlas should be of a high quality.

Many such reference atlases exist of varying spatial resolutions numbers of genes (cf. Table

1 in [18]), and more are being created constantly as fast, high-resolution imaging technology

becomes more ubiquitous.[19, 20, 21, 22, 23, 24] However, the creation of a novel reference

atlas from a collection of images is a nontrivial task which is often performed manually.

Besides being slow and tedious, a manual creation process may potentially introduce unin-

tentional biases into the atlas, which may influence the training of a DEEPsc network and

therefore the spatial mapping of future scRNA-seq datasets.

There have been many recent advancements in the field of optimal transport, particularly in

the area of graph matching and cross-domain alignment,[44, 45] as well as advances directly

involving scRNA-seq data itself.[46, 47, 48] In Chapter 3, we introduce a novel automation

platform, AtlasGeneratorOT, which, with minimal user input, allows for the creation of a

reference atlas from a collection of images using techniques based in optimal transport theory.

We introduce a novel method of accelerating the computation of a coupling matrix for various

3



optimal transport formulations in the context of matching point clouds and produce novel

reference atlases of fifteen serial slices of the murine neural crest using an imaging dataset

provided by Soldatov, et al.[4]

Like the murine neural crest dataset, it is often the case that a three-dimensional biological

system is imaged in multiple two-dimensional slices which may then need to be recombined

to form a coherent three-dimensional structure. We expand on the capabilities of AtlasGen-

eratorOT in Chapter 4, describing a process by which disparate two-dimensional reference

atlases can be aligned into a common geometry, producing in the process a detailed three-

dimensional atlas of the murine neural crest. We further introduce an interpolation method,

also based in optimal transport theory, which allows for continuous interpolation between

serial slices of a biological system, thus allowing for the creation of a high-resolution, three-

dimensional reference atlas of a biological system, even when only a few serial slices are

provided.

Taken together, the techniques introduced in this dissertation can drastically improve and

optimize the workflow of creating an unbiased, high-resolution reference atlas from a collec-

tion of images of a small number of genes, and using that reference atlas to determine the

spatial origin of cells in an scRNA-seq dataset. This improved workflow can facilitate many

advances in the understanding of cellular development and dynamics.[9]
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Chapter 2

DEEPsc: A Deep Learning-Based

Map Connecting Single-Cell

Transcriptomics and Spatial Imaging

Data

This chapter is a reprint of the material as it appears in Frontiers in Genetics.[49] The co-

authors listed in this publication directed and supervised research which forms the basis for

this chapter.

2.1 Background

While cells of a biological system have access to the same genetic blueprint, they navigate

through different developmental paths toward various cell fates. These diverse fate programs

of cells are controlled by their own states, interactions with spatially neighboring cells, and
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other environmental cues.[50] To decipher the processes of cell fate acquisitions, observations

of the transcriptomics with single-cell resolution in spatial context are desired. The advent of

sophisticated single-cell RNA sequencing (scRNA-seq) techniques now allows investigation

of the transcriptomic landscape of tens of thousands of genes across tissues at the resolution

of individual cells.[7, 8] However, a drawback to scRNA-seq methods is the necessity of

dissociating the sample in question, thereby destroying any spatial context which can be

crucial to the understanding of cellular development and dynamics.[9] In current common

workflows of scRNA-seq data analysis, unsupervised clustering of cells is carried out, followed

by identifying marker genes associated with each cell cluster.[10] While the list of marker

genes for each cell cluster can be screened for genes associated with known spatial regions

to estimate the spatial origin of the cluster, the spatial arrangement of individual cells

remains unclear.[10, 11] Several existing methods attempt to impute a pseudospatial or

pseudotemporal axis onto the data;[12, 13, 14, 15] however, little related to physical space

is immediately discernible from scRNA-seq data alone.

The loss of spatial information in scRNA-seq data can be partially mitigated by refer-

ring to spatial staining data.[16, 17] Another promising solution is the emerging spatial

transcriptomics methods such as osmFISH[19], MERFISH[20], seqFISH[21], seqFISH+[22],

STARmap[23], and Slide-seq[24] that obtain in situ spatial expression patterns. Compared

to scRNA-seq, current spatial techniques often cover fewer cells or genes or with a subopti-

mal resolution and depth. It is therefore a trending theme to combine the strengths of both

methods to achieve a high coverage and individual-cell resolution while retaining the spatial

arrangement.[11, 9] Due to these differences among the scRNA-seq and spatial techniques,

and biological systems, it is challenging to derive a generally applicable computation method

to integrate the two kinds of data.

Several recent computational methods have been developed to impute spatial data onto ex-

isting scRNA-seq datasets through analyzing known spatial expression patterns of a small
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subset of genes, termed a “spatial reference atlas.” Seminal methods were developed indepen-

dently by Achim et al.[18] and Satija et al.[1] and were applied to the Platynereis dumerilii

brain and zebrafish embryo, respectively, using binarized reference atlases derived from in

situ hybridization (ISH) images. DistMap, another method that uses a binarized ISH-based

reference atlas, was developed by Karaiskos et al.[2] and applied to the Drosophila embryo.

Achim et al.[18] use an empirical correspondence score between each cell-location pair based

on the specificity ratio of genes. Satija et al.[1] (Seurat v1) fits a bimodal mixture model

to the scRNA-seq data and then projects cells to their spatial origins using a probabilistic

score. DistMap applies Matthew’s correlation coefficients to the binarized spatial imag-

ing and scRNA-seq data to assign a cell-location score.[2] Several methods have also been

developed which use spatial reference atlases directly measuring the RNA counts that are

comparable to scRNA-seq data without binarization.[25, 26] More recently, computational

methods have been developed for imputing gene expression in spatial data,[51], transferring

cell type label from scRNA-seq data to spatial data,[52, 53, 54] de novo spatial placement

of single cells,[55] and inferring spatial distances between single cells.[47]

In addition to the methods designed specifically for integrating spatial data and scRNA-seq

data, other computational methods have been developed recently for general data inte-

gration. Such methods focus on the general task of integrating RNA sequencing datasets

obtained from the same biological system through different technologies, in situ data being

one possibility among many, into one large dataset offering a more complete description of

the system under study. These methods include newer versions of Seurat[27, 28], LIGER[29],

Harmony[30], and Scanorama[31] which are mainly based on correlation analyses and ma-

trix factorizations. Another more specific task is to transfer high-level information such as

cell types between datasets. Many machine learning- and deep learning-based methods have

been developed for this task by formulating a supervised learning problem with the high-level

information being the target.[32, 33, 34, 35, 36, 37, 38, 39]
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Since the spatial characteristics of different biological systems could be significantly differ-

ent, we aim to develop a system-adaptive method specifically designed for imputing spatial

information onto scRNA-seq data. To this end, unlike other spatial integration methods that

use predefined algorithms for computing scores, we learn a specialized correspondence score

between cells and locations for a given biological system. This can then be regarded as a

general metric learning task.[43] In addition to linear methods that learn a pseudometric,[40]

there has been increasing interest in applying deep learning to metric learning.[41, 42] These

methods are mostly designed for cases where the pair of data points to be compared are

in the same space. Though the common genes from the spatial data and scRNA-seq data

are used here, directly treating them as in the same space may cause inaccuracy due to

differences in the original datasets such as scaling and noise.

Here we develop a system-adaptive deep learning-based method (DEEPsc) for imputing

spatial data onto scRNA-seq data. A DEEPsc network accepts a low-dimensional feature

vector corresponding to a single position in the spatial reference atlas along with a corre-

sponding feature vector of the gene expression of a single cell and returns a likelihood the

input cell originated from the input position. The network is trained and validated using

positions in the spatial reference atlas as simulated scRNA-seq data. The network is also

validated through the task of predicting the scRNA-seq data from the spatial reference atlas

or the other way around. In addition, we implemented several strong baseline methods using

different norms and linear metric learning for benchmark comparison. We further develop

a comprehensive measure, which was previously lacking, for evaluating how well a given

method maps scRNA-seq data to known spatial origins, called a performance score. This

score contains three components that measure the accuracy, precision, and robustness of a

method, respectively. Using this score on four biological systems, we show that DEEPsc

maintains a comparable accuracy to four existing methods while achieving a better balance

between precision and robustness.
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2.2 Results

2.2.1 A deep-learning based method to connect scRNA-seq datasets

and spatial imaging data

Given any spatial reference atlas consisting of binary or continuous gene expression levels

for a biological system on a set of locations with known spatial coordinates, and a scRNA-

seq dataset consisting of binary or continuous gene expression levels for the same biological

system, we introduce a Deep-learning based Environment for the Extraction of Positional

information from scRNA-seq data (DEEPsc) to impute the spatial information onto the

scRNA-seq data.

In DEEPsc, we first select a common set of genes from the reference atlas and scRNA-seq

data, then perform dimensionality reduction via principal component analysis (PCA) on the

reduced reference atlas to shorten training time (Figure 2.1A). The scRNA-seq data is then

projected into the same PCA space on which we learn a metric for comparison between cells

and spatial positions. The DEEPsc network accepts a concatenated feature vector for a

single cell and a single position and returns a likelihood the input cell originated from the

input position. The network contains two fully connected hidden layers with N nodes each,

where N is the number of principal components kept from PCA, and a single node in the

output layer. Sigmoid activation functions are applied to each node, including the output

node, so that the resulting output is in [0, 1] and can be interpreted as a likelihood that

the input cell originated from the input spatial position. To train the DEEPsc network, we

use the spatial position feature vectors as simulated scRNA-seq data for comparison (Figure

2.1B). Each simulated cell is compared pairwise with every position in the spatial reference

atlas; if the simulated cell is an exact match to a given position, the target output is 1 (a

high likelihood of origin), and if the simulated cell and chosen position are not an exact
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match, the target output is 0 (a low likelihood of origin). Training is terminated when the

error on a randomly chosen validation set is no longer improving.

After training the DEEPsc network, a feature vector associated with an actual cell from

the scRNA-seq data is fed in as input and compared to each position in the reference atlas

individually. We display the results as a heatmap on the schematic diagram of the biolog-

ical system, choosing the spatial position with the largest likelihood of origin according to

DEEPsc as the determined origin of the cell. This process is repeated for each cell in the

scRNA-seq dataset to assign spatial origins of all cells (Figure 2.1C).

2.2.2 Quantifying spatial mapping performance

Each of the highlighted methods to impute spatial data onto scRNA-seq data, including

DEEPsc, can be essentially boiled down to the following: For some tissue with a well-defined

standard spatial structure, given known binary or continuous expression levels of G genes at

each of P spatial locations (the reference atlas), calculate a correspondence score, S, of how

similar each of C cells in an scRNA-seq dataset is to each of the P positions in the atlas.

That is, define a function, S : [0, 1]G × [0, 1]G → [0, 1], such that S(ci, pj); i = 1, 2, . . . , C;

j = 1, 2, . . . , P describes the likelihood that cell ci originated from position pj, based on the

similarity of the expression vectors of the cell and position.

To quantify how well a given method performs for a given spatial reference atlas, we use the

reference atlas itself as simulated single cell data; that is, we generate a simulated scRNA-

seq dataset with C = P cells, each an exact copy of a reference atlas position. This allows

us to treat the simulated scRNA-seq data as having a known spatial origin, against which

we can compare the output of each method. We define a system-adaptive, comprehensive

performance score, consisting of three penalty terms: accuracy, which determines whether or

not the known spatial origin was given a high likelihood of origin; precision, which determines
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Figure 2.1: The general workflow of training and implementing DEEPsc. (A)
Given a spatial reference atlas of gene expression levels for some biological system
and a scRNA-seq dataset, genes common to both are selected, and dimensionality of
the data is reduced (e.g., by PCA, UMAP). Each spatial position in the reference
atlas and each cell in the scRNA-seq dataset is associated with a feature vector
in the reduced space. (B) The DEEPsc architecture takes as input the feature
vectors of one single cell and one spatial position, returning a likelihood between
0 (low likelihood) and 1 (high likelihood) that the cell originated from the spatial
position. A DEEPsc network is trained using the spatial position feature vectors as
simulated scRNA-seq data. The target output is a 1 (high likelihood of origin) if the
simulated input cell matches the input position, and 0 (low likelihood of origin) if
they do not match. (C) Once the DEEPsc network is sufficiently trained, a feature
vector associated with a cell in the scRNA-seq dataset can be fed into the network
with each spatial position individually. The resulting likelihoods are displayed as
a heatmap depicting the likelihood of origin of the cell from each position. The
position with the highest likelihood is chosen as the origin of the cell. This process
is repeated for each cell in the scRNA-seq dataset.
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whether or not other locations were given low likelihoods of origin; and robustness, which

determines how sensitive a mapping method is to random noise in the input data. Each

penalty term is represented by a number in [0, 1], with 0 being no penalty and 1 being a

worst-case scenario. The performance score is defined as E = 1
P

∑P
i=1Ei, where

Ei = 1− 1

3

1− Si,i︸ ︷︷ ︸
Accuracy

+

∣∣∣∣∣1−
∑P

j=1 Si,j

P − 1

∣∣∣∣∣︸ ︷︷ ︸
Precision

+ (1− σ∗)4︸ ︷︷ ︸
Robustness

 , (2.1)

Si,j = S(ci, pj) is the correspondence score of cell ci to position pj, and Ei is interpreted as

the error in the mapping of cell ci. The quantity σ∗ in the robustness term is calculated by

determining the accuracy and precision penalty terms with no Gaussian noise added to the

input data, then calculating the same two penalties with various levels of Gaussian noise

with standard deviation σ ∈ [0, 1]. The quantity σ∗ is defined to be the level of Gaussian

noise required to raise the mean of the accuracy and precision penalties by 0.1 from their

values with no added noise, or σ∗ = 1, whichever is smallest. The exponent of four in the

robustness term was chosen empirically such that the robustness term does not dominate

the performance score, keeping in mind that expression levels are normalized to [0, 1] before

calculating the correspondence scores, so e.g., σ∗ = 0.5 means a method requires noise on

the order of half of the expression levels to raise the precision and accuracy penalties by 0.1.

The performance score has a range of [0, 1], where a performance score of E = 1 represents

an ideal mapping that maps a cell to its known location with high confidence, to all other

locations with low confidence, and does so in a manner robust to noise. An illustration of

each term in the performance score is shown in Figure 2.2.

This performance score is limited by the fact that it relies on ground truth knowledge of

the spatial origin of a single cell/spot to determine the performance of a given mapping

method. However, this ground truth knowledge is not available for actual scRNA-seq data.
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Figure 2.2: Explanation of the terms constituting the performance score. In each
hypothetical mapping heatmap, the known location of the input cell is highlighted in
black. (A) The accuracy score measures whether or not the known location receives
a high likelihood; the precision score measures whether or not other locations receive
low likelihoods. (B) The robustness score measures how much the accuracy and
precision scores change if random noise is added to the input cell. A mapping
method which is accurate, precise, and robust is given a high performance score
while a mapping method that lacks in any or all of the three areas is given a lower
performance score.

To more directly quantify the mapping performance on actual scRNA-seq datasets, we use

a measure of predictive reproducibility, obtained from a k-fold cross validation scheme, in

which we randomly split the common genes in the reference atlas and scRNA-seq data into

k folds and calculate the correspondence score for each method using all but one fold. The

correspondence scores are then used as coefficients in a weighted sum to predict the value

of the dropped-out genes in each fold for each cell (scRNA-seq predictive reproducibility)

or each spatial position (atlas predictive reproducibility) and determine the error in the

predicted expression level. The predicted expression of gene k in cell ci is computed as

ĉ
(k)
i =

∑P
j=1 S

(k)
i,j p

(k
j /
∑P

j=1 S
(k)
i,j , and the predicted expression of gene k in position pj is

computed as p̂
(k)
j =

∑C
i=1 S

(k)
i,j c

(k
i /
∑C

i=1 S
(k)
i,j where S

(k)
i,j is the correspondence score between

cell ci and position pj with genes in folds not containing gene k and c
(k)
i and p

(k)
j are the known

expression values of gene k from the scRNA-seq and the spatial atlas data, respectively.

To accommodate the sparsity of data, we compute the predictive reproducibility scores

separately for cells or positions with zero expression values and with positive expression
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values. For example, we measure the predictive reproducibility for the task of reproducing

gene k in scRNA-seq data on cells with zero expression using R
(k)
sc zero = 1−

∑
i∈I(k)sc zero

|ĉ(k)i −

c
(k)
i |/|I

(k)
sc zero| where I

(k)
sc zero = {i : c

(k)
i = 0}. Taking the average over all common genes

results in a single score Rsc zero, and in the same manner, we define Rsc nonzero, Ratlas zero,

and Ratlas nonzero. When producing predictive reproducibility scores, we use the same k-fold

split across all methods to ensure a fair comparison.

2.2.3 Comparisons of multiple methods using simulated scRNA-

seq data

Using the performance score, we benchmarked the methods developed by Achim et al.[18] and

Satija et al.[1] (Seurat v1), Karaiskos et al.[2] (DistMap), and Peng et al.[25] together with

our DEEPsc method and applied them to four different biological systems: the zebrafish

embryo[1], the Drosophila embryo[2], the murine hair follicle[12], and the murine frontal

cortex, downloaded from the 10x Genomics Spatial Gene Expression Datasets. The reference

atlas for the zebrafish embryo contains the binarized expression of 47 genes on 64 spatial bins

that assemble half of the hemisphere of the 6hpf embryo.[1] The Drosophila embryo reference

atlas contains 84 genes on 3,039 spatial positions.[2] The spatial reference atlas generated

with the Visium technology[56] for the murine frontal cortex contains 32,285 genes on 961

spatial positions (a subset presenting the frontal cortex from the original data), from which

we kept 2755 genes from the 3,000 most variable genes in spatial data that are also present in

scRNA-seq data. Segmenting a standard diagram of the follicle into 233 spatial positions and

using FISH imaging of eight genes identified as spatially localized,[12] we manually defined

a continuous reference atlas for the follicle (section 2.5). For mapping methods requiring

a binary reference atlas, we defined a cutoff expression of 0.2 to be considered on in the

follicle reference atlas. We further implemented several baseline methods for benchmark

comparisons, including several methods using predefined metrics where the correspondence
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Performance on reference atlas as simulated scRNA-seq

A B 

Figure 2.3: Summary of the robustness, precision, and accuracy scores of the im-
plemented methods on four different biological systems (A), as well as the simple
average across all four (B). These scores are each defined to be one minus the cor-
responding penalty term in the performance score, so that a higher score is better.
Since most methods have near perfect accuracy scores, the x-axis shows a mean
of the precision and accuracy scores. The y-axis shows the robustness scores for
each method. Due to memory constraints, we were unable to run Seurat v1 on the
cortex dataset.

score S is defined to be the 2-norm, infinity norm, or mean percent difference in the space

of common genes between the input cell and spatial position. We also implemented a large

margin nearest neighbor (LMNN) method that learns a linear metric (section 2.5). Figure

2.3 shows a scatter plot of the penalty terms constituting the performance score of each

implemented method on each of the four biological systems, as well as the average for each

method across all four systems. Table 2.1 includes the numerical values for each penalty

term, as well as the calculated performance score for each method. Figure 2.4 includes

example heatmaps of simulated cells for each of the biological systems. The penalty terms

for the individual locations are shown in Figure 2.5.

The majority of methods were able to project the simulated scRNA-seq cells to their known

spatial origins with high accuracy. Specifically, Seurat v1 and DistMap achieve high per-

formance scores in the zebrafish embryo and Drosophila embryo datasets that they were

originally applied to, respectively. Designed to be a system-adaptive method, DEEPsc has
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the best average performance score across the four datasets (Table 2.1). Moreover, while

some methods are stronger in terms robustness or precision, DEEPsc attains a balance be-

tween robustness and precision (Figure 2.3). This balance is especially important when

investigating the impact of cellular spatial neighborhood on cell fate acquisition. It is de-

sired to narrow down the inferred spatial neighborhood (precision) and at the same time

reduce the sensitivity to noise (robustness). The high precision and robustness of DEEPsc

is consistently observed across all locations in the dataset (Figure 2.5). Finally, it is worth

mentioning that DEEPsc has a significantly higher robustness in the follicle dataset which

has the smallest number of genes and is the noisiest among the four datasets.

Method Accuracy Precision Robustness Performance

(Author) Term Term Term Score

Follicle

(Achim) 0.0043 0.3484 0.4116 0.7452

Seurat v1 (Satija) 0.0795 0.1076 0.5704 0.7475

DistMap (Karaiskos) 0.0043 0.4076 0.3723 0.7386

(Peng) 0.0000 0.5118 0.4439 0.6814

2-norm (baseline) 0.0000 0.3255 0.2686 0.8020

Inf-norm (baseline) 0.0005 0.2299 0.3613 0.8028

% difference (baseline) 0.0000 0.2829 0.8722 0.6150

LMNN (baseline) 0.0000 0.0002 0.8455 0.7181

DEEPsc (ours) 0.0272 0.2684 0.1904 0.8380

Zebrafish

(Achim) 0.0000 0.4645 0.2516 0.7613

Seurat v1 (Satija) 0.0000 0.0156 0.0604 0.9747

DistMap (Karaiskos) 0.0000 0.3989 0.0000 0.8670

(Peng) 0.0000 0.4296 0.0000 0.8568

2-norm (baseline) 0.0000 0.2902 0.0003 0.9302

Inf-norm (baseline) 0.0000 0.0536 0.1588 0.9292

% difference (baseline) 0.0000 0.4249 0.0095 0.8552

LMNN (baseline) 0.0000 0.0315 0.1689 0.9332

DEEPsc (ours) 0.0339 0.1281 0.0230 0.9383

Drosophila
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(Achim) 0.0000 0.3407 0.0759 0.8611

Seurat v1 (Satija) 0.6605 0.0848 0.0000 0.7516

DistMap (Karaiskos) 0.0000 0.3496 0.0024 0.8827

(Peng) 0.0000 0.4313 0.0000 0.8562

2-norm (baseline) 0.0000 0.2310 0.0130 0.9186

Inf-norm (baseline) 0.0000 0.0006 0.1671 0.9441

% difference (baseline) 0.0000 0.3597 0.0013 0.8797

LMNN (baseline) 0.0000 0.0052 0.0987 0.9653

DEEPsc (ours) 0.0087 0.0179 0.1827 0.9303

Cortex

(Achim) 0.0000 0.6357 0.0859 0.7594

Seurat v1 (Satija) — — — —

DistMap (Karaiskos) 0.0000 0.4778 0.0000 0.8407

(Peng) 0.0000 0.4400 0.0000 0.8533

2-norm (baseline) 0.0000 0.3008 0.1546 0.8482

Inf-norm (baseline) 0.0000 0.0006 0.3042 0.8984

% difference (baseline) 0.0000 0.4332 0.3817 0.7284

LMNN (baseline) 0.0000 0.0143 0.3376 0.8827

DEEPsc (ours) 0.0000 0.1167 0.0289 0.9515

Average

(Achim) 0.0011 0.4473 0.2063 0.7818

Seurat v1 (Satija) 0.1850 0.0693 0.2103 0.8246

DistMap (Karaiskos) 0.0011 0.4085 0.0937 0.8323

(Peng) 0.0000 0.4532 0.1110 0.8119

2-norm (baseline) 0.0000 0.2869 0.1091 0.8748

Inf-norm (baseline) 0.0001 0.0712 0.2479 0.8936

% difference (baseline) 0.0000 0.3752 0.3162 0.7696

LMNN (baseline) 0.0000 0.0128 0.3627 0.8748

DEEPsc (ours) 0.0175 0.1328 0.1063 0.9145

Table 2.1: Numerical values of each of the three constituent terms of the perfor-
mance score, as determined from simulated scRNA-seq data for each biological
system, as well as the average across all systems. For each term, a value closer to
zero signifies lower error. For the performance score, a value closer to one indicates
a better performing method. The best method for each term is highlighted in red
for each system.
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Example mappings of simulated scRNA-seq
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Figure 2.4: Example mappings of simulated single cells produced by various existing
methods on four different biological systems, with DEEPsc mappings for compari-
son. The simulated input cell for the murine follicle system corresponds to position
228. For the Zebrafish system (for which Seurat was introduced), the simulated
input cell corresponds to position 34. For Drosophila (for which DistMap was in-
troduced), the simulated input cell corresponds to position 1982. For the murine
frontal cortex, the simulated input cell corresponds to position 458. Each known
position is highlighted in black in each of the heatmaps.
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Figure 2.5: Heatmap representation of the various components of the performance
score on a per position basis in (A) the follicle system, (B) the Zebrafish, (C) the
Drosophila embryo, and (D) the murine frontal cortex. We were unable to run
Seurat v1 on the Drosophila embryo and cortex data due to memory constraints.
The penalty terms for each simulated cell, including robustness, were computed
individually and plotted as a heatmap.

2.2.4 Applications to real scRNA-seq datasets

We now map actual scRNA-seq data for each system and calculate the predictive repro-

ducibility for each method (Table 2.2 and Figure 2.6). For the follicle, the scRNA-seq data

contains 1,422 cells with 26,024 genes measured containing the eight genes in the spatial

atlas.[12] For the Drosophila embryo, we used the scRNA-seq dataset with 1,297 cells and

8,924 genes among which all the 84 spatial genes are present.[2] For the Zebrafish embryo,

there are 1,152 cells and 11,978 genes in the scRNA-seq dataset with all the 47 spatial

genes included.[1] For the murine frontal cortex, we used the scRNA-seq dataset provided by

the Allen Institute,[3] generated with SMART-Seq2, which contains 14,249 cells and 34,617

genes, from which a set of 2,755 genes were found to be present in the top 3,000 highly

variable genes in spatial atlas. These four datasets cover different situations. The follicle
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Figure 2.6: Ridgeline plots of the zero (A) and nonzero (B) scRNA-seq predic-
tive reproducibility of individual cells in the scRNA-seq datasets and zero (C) and
nonzero (D) atlas predictive reproducibility of individual positions in the spatial at-
las for the four studied systems. We were unable to run Seurat v1 on the Drosophila
embryo and cortex data due to memory constraints.

data contains a moderate number of locations, and the cells form well-defined layered struc-

tures such that there could be long and thin spatial regions that contain the same cells. The

zebrafish embryo spatial data has a suboptimal resolution such that each spatial location

consists of multiple cells. This data helps to evaluate the methods in treating coarse spatial

atlases. The Drosophila embryo data contains rich spatial characteristics. There is a well-

defined global ventral-dorsal/anterior-posterior coordinate system. Locally, there is also a

striped pattern in the lateral side of the embryo. The frontal cortex data examines spatial

gene expression at the transcriptomics level, and functions as a demonstration that DEEPsc

is able to maintain a high performance on high-dimensional datasets.

Method (Author) Follicle Zebrafish Drosophila Cortex Average

Rsc zero

(Achim) 0.8772 0.5537 0.7798 0.8019 0.7531

Seurat v1 (Satija) 0.8335 0.6842 — — 0.7589

DistMap (Karaiskos) 0.8404 0.6641 0.7850 0.8055 0.7738

(Peng) 0.8219 0.6375 0.7859 0.8092 0.7636

20



2-norm (baseline) 0.8017 0.6973 0.7874 0.8114 0.7745

Inf-norm (baseline) 0.8641 0.6180 0.7807 0.8141 0.7692

% difference (baseline) 0.8357 0.5657 0.7790 0.8079 0.7471

LMNN (baseline) 0.8254 0.6795 0.7917 0.8120 0.7772

DEEPsc (ours) 0.8344 0.7335 0.7961 0.8165 0.7951

Rsc nonzero

(Achim) 0.7495 0.7698 0.8126 0.6693 0.7503

Seurat v1 (Satija) 0.7640 0.6975 — — 0.7308

DistMap (Karaiskos) 0.7705 0.7619 0.8103 0.6685 0.7528

(Peng) 0.7801 0.7663 0.8114 0.6680 0.7565

2-norm (baseline) 0.7891 0.7386 0.8083 0.6667 0.7507

Inf-norm (baseline) 0.7496 0.7636 0.8128 0.6695 0.7489

% difference (baseline) 0.7740 0.7721 0.8115 0.6690 0.7567

LMNN (baseline) 0.7730 0.7477 0.8117 0.6643 0.7492

DEEPsc (ours) 0.7352 0.7026 0.8080 0.6691 0.7287

Ratlas zero

(Achim) 0.7680 0.9042 0.9264 0.8360 0.8587

Seurat v1 (Satija) 0.7681 0.9088 — — 0.8385

DistMap (Karaiskos) 0.7674 0.9005 0.9259 0.8374 0.8578

(Peng) 0.7707 0.9006 0.9267 0.8406 0.8597

2-norm (baseline) 0.7681 0.9003 0.9278 0.8411 0.8593

Inf-norm (baseline) 0.7623 0.9050 0.9259 0.8343 0.8569

% difference (baseline) 0.7714 0.9035 0.9261 0.8438 0.8612

LMNN (baseline) 0.7677 0.8937 0.9289 0.8359 0.8566

DEEPsc (ours) 0.7881 0.9148 0.9257 0.8415 0.8675

Ratlas nonzero

(Achim) 0.7598 0.6658 0.8523 0.5124 0.6976

Seurat v1 (Satija) 0.7570 0.6776 — — 0.7173

DistMap (Karaiskos) 0.7584 0.6709 0.8527 0.5127 0.6987

(Peng) 0.7570 0.6682 0.8530 0.5135 0.6979

2-norm (baseline) 0.7582 0.6755 0.8530 0.5135 0.7001

Inf-norm (baseline) 0.7583 0.6745 0.8534 0.5130 0.6998

% difference (baseline) 0.7573 0.6669 0.8524 0.5134 0.6975

LMNN (baseline) 0.7573 0.6764 0.8564 0.5129 0.7008

DEEPsc (ours) 0.7724 0.7079 0.8527 0.5125 0.7114
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Table 2.2: Predictive reproducibility of each method for real scRNA-seq data. A
value closer to one signifies higher predictive reproducibility. A missing entry signi-
fies that the relevant method was not able to run successfully on the given dataset.

For the baseline models, we linearly normalized each gene in the log-normalized scRNA-seq

dataset onto the interval [0, 1]. Continuous spatial atlases with expression values in the [0, 1]

range were used for the follicle, Drosophila embryo, and murine frontal cortex systems, the

latter two having been linearly normalized to [0, 1] in the same fashion as the scRNA-seq

data. Since a continuous spatial atlas for Zebrafish embryo is lacking, we applied a spatial

convolution to the binary atlas and added a small amount of Gaussian noise to simulate a

continuous atlas. The 2-norm, Inf-norm, percent difference, and LMNN baseline models are

then applied to the vectors of the commonly expressed genes in the spatial atlas and scRNA-

seq data. For DEEPsc, we first applied a PCA reduction to the spatial atlas, and then

applied the same linear transformation to the normalized expression values of the common

genes in the scRNA-seq data. The feature vectors for the locations in the spatial atlas and

the cells in the scRNA-seq data in the PCA space were then fed to the neural network. For

the four existing methods, we followed the procedure as described in the associated original

publications, scaling the resulting correspondence scores to [0, 1] for direct comparison with

baseline methods. For all the methods, we compute the predictive reproducibility by iterating

over all common genes, attempting to reconstruct the expression of one gene using the k-fold

cross validation scheme described in the previous section. We used k = 4 for the follicle and

Drosophila embryo dataset, and k = 5 for the zebrafish embryo and cortex dataset.

DEEPsc has a comparable accuracy compared to other methods, and it also has a consistent

performance across different systems (Table 2.2 and Figure 2.6). This consistent perfor-

mance further demonstrates the system-adaptive advantage of DEEPsc and the benefit of

using adaptive metrics over predefined ones. We also notice that similar to the simulated

case, DEEPsc also achieves a balance between precision and robustness in the case of real
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Example mappings of real scRNA-seq
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Figure 2.7: Example mappings of real single cells produced by various existing
methods on four different biological systems, with DEEPsc mappings for compari-
son. The input cell for the murine follicle system is cell 710 from the Joost dataset.
For the Zebrafish system (for which Seurat v1 was introduced), the input cell is
cell 877 from the scRNA-seq dataset.[1] For Drosophila (for which DistMap was in-
troduced), the input cell is cell 130 from the scRNA-seq dataset.[2] For the murine
frontal cortex, the input cell is cell 885 from the Allen reference dataset.[3]

scRNA-seq data. For example, while it exhibits high precision by mapping the example cell

to a specific local spot in the Zebrafish embryo or a local strip in Drosophila embryo, it

also robustly maps a cell to the entire outer bulge of the follicle instead of only part of it

(Figure 2.7). The high precision ensures that we can resolve the heterogeneity in the spatial

environment and further relate them to the heterogeneity in cell fates. The high robustness

prevents the identification of false correlations. Overall, DEEPsc achieves a high predictive

reproducibility across all cells in the scRNA-seq dataset.
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2.2.5 Comparison of dimensionality reduction methods

Dimension reduction is a crucial initial step of DEEPsc. A dimension reduction method

that can be trained on one dataset and deterministically applied to another is needed due

to the separated training and predicting steps. Here, we explore two different representa-

tive dimension reduction methods in the linear and nonlinear categories, PCA and Uniform

Manifold Approximation and Projection (UMAP).[57] To compare these two methods, we

trained several networks with varying amounts of added noise on the reference atlases of

the four studied biological systems (Figure 2.8). We compared PCA (8 principal compo-

nents), UMAP30 (n components = 8, n neighbors = 30), and UMAP5 (n components = 8,

n neighbors = 5). While on the follicle system all three reduction methods performed virtu-

ally identically, on all three other systems PCA outperformed the other reduction methods

by achieving a higher robustness score while maintaining similar accuracy.

2.3 Discussion

We have developed the DEEPsc framework, which trains a deep neural network using the

known expression levels of a small subset of genes in a spatial context, then imputes that

spatial information onto a non-spatial scRNA-seq dataset. Instead of using a predefined

metric, DEEPsc finds a metric adaptive to data. This framework is system-adaptive and

designed to be robust to noise. DEEPsc consistently performs at or above the level of

several existing methods across all four biological systems studied herein, including systems

for which existing methods were originally developed (Figure 2.3 and Tables 2.1, 2.2), based

on our comprehensive performance measure. While DEEPsc achieves comparable accuracy

and precision to other methods, it is significantly more robust to noise.

The source of DEEPsc’s ability to perform well across multiple biological systems is likely
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Comparison of dimensionality reduction techniques

Figure 2.8: A comparison of the performance of DEEPsc networks using different
dimensionality reduction methods on each of the biological systems for various levels
of added noise during training. We compare principal component analysis (PCA) to
Uniform Manifold Approximation and Projection (UMAP) with n neighbors = 30
(UMAP30) and n neighbors = 5 (UMAP5). Each of these methods reduce the
dimensionality of the initial dataset to n dimensions = 8. These scores are each
defined to be one minus the corresponding penalty term in the performance score,
so that a higher score is better. Since most methods have near perfect accuracy
scores, the x-axis shows a mean of the precision and accuracy scores. The y-axis
shows the robustness scores for each method.
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the generality of its neural network architecture and the multiple checks for robustness em-

ployed during training on the reference atlas. The various parameters for training a DEEPsc

network, though chosen empirically, appear to translate to multiple systems effectively, so we

expect DEEPsc to continue to perform well across more biological systems in future study.

One notable weakness of DEEPsc is the significant amount of training time required to

produce a final mapping. While most existing reference atlas methods simply involve a

deterministic calculation to produce a mapping, DEEPsc requires an initial training, and the

training time depends on the number of locations in the spatial atlas. The training process

of DEEPsc can be effectively accelerated by iterating over a subset of possible location pairs.

Due to the dimension reduction step, DEEPsc can still be trained efficiently on datasets with

large amount of genes, for example, the spatial transcriptomics data on the murine frontal

cortex. Though the predefined metrics including the 2-norm and inf-norm perform well in

terms of accuracy and precision, they are less robust to noise. This is further the case for

LMNN as it tries to amplify any small variations. This drawback in robustness is mitigated

by DEEPsc by controlling the balance between precision and robustness.

Learning a metric from high-dimensional datasets can be generally useful for analysis and

integration of omics datasets. A future research interest is to decrease training time in

such framework by developing a better method for reducing the size of the training set to

a small, targeted fraction of relevant examples, particularly for very large atlases such as

those derived from spatial transcriptomics assays. Since the size of the training set can

increase quadratically with the number of positions in the atlas, it is beneficial to develop a

more efficient training pipeline. We have developed a method of sparsifying the training set

(section 2.5), so that its size only increases linearly with the number of positions in the atlas,

though further improvement may be warranted. The largest atlas studied here was that of

Drosophila (P = 3039), the training of which took several hours even with the sparsified

training set. Typical numbers of distinct spatial locations in a spatial transcriptomics dataset
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can be orders of magnitude larger.

DEEPsc aside, the performance score we have created can serve as a comprehensive measure

of mapping performance for future work. The performance score is able to be calculated for

any mapping method that assigns a likelihood of origin from each spatial location, partic-

ularly within the reference atlas framework. It is not dependent on any specific system or

mapping method, and the individual terms which constitute it allow for a detailed analysis

and comparison of various methods. Potential improvements might include incorporating

some amount of spatial awareness into the calculation. Currently each spatial position is

treated as completely independent from every other spatial position, so the precision term,

for example, can yield unintuitive results if a method maps a cell, for example, with high

probability to two positions on opposite sides of a system and low probability everywhere

else, compared to a different method mapping the same cell with high probability to five

positions in a tightly clustered, spatially compact region of the system. If, for example, the

various correspondence scores for each position with high probability were weighted by their

physical distance from other cells with high probability, this term might more accurately

reflect the intuitive idea of precision. Other improvements might include simplifying the

calculation of the robustness term to require fewer intensive calculations.

2.4 Conclusion

DEEPsc achieves an accuracy comparable to several existing methods while attaining im-

proved precision and robustness. It also has a more consistent performance across the four

different biological systems tested thanks to the system-adaptive design. As spatially re-

solved gene expression data becomes more readily available, our method will serve as a

useful tool to infer spatial origins from non-spatial scRNA-seq data.
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Additionally, our comprehensive performance score and the collection of reproductions of

previously developed methods in a single software framework will serve as useful tools for

future comparisons of spatial mapping methods. This systematic approach to imputing

spatial information to scRNA-seq data is crucial to studying the spatial impact on cell fate

dynamics.

2.5 Materials and methods

2.5.1 Data preparation for DEEPsc

Given a matrix of scRNA-seq read counts where each row is a different gene and each column

is a different cell, and a matrix representing a spatial reference atlas where each row is a

different gene and each column is a different spatial position, we first select common genes

by eliminating rows in each corresponding to genes not in the other matrix. Once we have

eliminated genes not in common, we are left with a number of cells (C) × number of genes

(G) matrix for the scRNA-seq data and a number of positions (P ) × number of genes (G)

matrix for the spatial reference atlas.

We then apply dimensionality reduction to the atlas in the form of a PCA projection, select-

ing a user-configurable number of principal components to serve as feature vectors. We find

in our analysis that keeping the top eight principal components yields satisfactory results.

The same PCA coefficients are used to project the scRNA-seq matrix into these princi-

pal components. After projection, both matrices are normalized by dividing by the largest

element in each, so that the elements are all in [0, 1].

For the comparisons in section 2.2.5 we use the UMAP implementation by Meehan et

al.[58] found on the MATLAB Central File Exchange at https://www.mathworks.com/
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matlabcentral/fileexchange/71902. Specifically, we ran the run umap() function on the

spatial reference atlas with n dimensions = 8 and n neighbors = 30 or n neighbors = 5 for

UMAP30 and UMAP5, respectively.

2.5.2 Training a DEEPsc network

To train the DEEPsc network, we use the spatial position feature vectors themselves as

simulated scRNA-seq data. The training data is a set of P 2 vectors of length 2N , where

N is the reduced dimensionality of the reference atlas. The first N components correspond

to a feature vector of one position in the reference atlas (functioning as a simulated cell)

and the last N components correspond to some other position in the reference atlas. Each

simulated cell is compared pairwise with every position in the spatial reference atlas; if the

simulated cell is an exact match to a given position, the target output is chosen to be 1

(a high likelihood of origin), and if the simulated cell and chosen position are not an exact

match, the target output is chosen to be 0 (a low likelihood of origin).

The DEEPsc architecture is an artificial neural network with 2N inputs, two fully connected

hidden layers with N nodes each and a single node in the output layer. Sigmoid activation

functions are attached to each node, including the output node, so that the resulting output

is in [0, 1] and can be interpreted as a likelihood that the input cell originated from the input

spatial position. To preserve robustness and avoid overfitting the training data, a layer of

Gaussian noise is added to the simulated cells so that the network is pushed to learn complex

nonlinear relationships among the spatial positions in the reference atlas rather than simply

activate when an exact match is encountered. This Gaussian noise layer allows the user to

configure the standard deviation of the added noise, as well as to configure the probability

that any noise will be added in a given training epoch. We find empirically that a noise level

of about 0.10 and a probability of 0.5 yield reasonable robustness to noise, though this may
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vary from system to system.

Since the training data will naturally consist of many more non-matches than matches, and

thus the target data will contain many more zeros than ones, we use a novel custom objective

function,

L(Y, T ) =
P∑
i=1

(yi − ti)2
1

1.001− ti
(2.2)

where yi is the network’s predicted output and ti is the target output (ti = 1 if exact match

and ti = 0 if not), to more heavily penalize the network when it gives a false negative (low

likelihood when it should be high) than when it gives a false positive (high likelihood when

it should be low). This acts to counteract the tendency of the network to “learn” to simply

return 0 for every single input and “ignore” any comparably rare training data with ti = 1.

To further account for the sparsity of exact matches in the training set, we split it into

a test and validation set, the former consisting of a configurable fraction of the inputs

corresponding to exact matches as well as a configurable multiple of the inputs corresponding

to non-matches. If trainFrac = 0.9 and trainingMultiple = 99, for example, 90% of the exact

matches will be added to the training set and 99x more non-matches will be added, so that

the exact matches make up 1% of the training set. The rest of the inputs are reserved for the

(generally much larger) validation set. This is beneficial in reducing training time because it

allows us to train with a much smaller fraction of the P 2 input vectors, giving preference to

the exact matches. Indeed, this reduces the size of the actual training set to scale linearly

with the size of the atlas rather than quadratically.

Training is performed in MATLAB using the trainNetwork() function in the Deep Learning

Toolbox,[59], for which we implemented the above-described custom network layers. Since

the input data is already normalized in preprocessing, we disable the default normalization

of trainNetwork(). We use the default Glorot[60] initialization of weights and biases in the

fully connected layers. We then train each network for a maximum of 50,000 epochs of
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standard gradient descent with a learning rate of η = 0.01, shuffle the order of the data each

epoch, and use the ADAM optimization method (Kingma and Ba, 2014) with the default

parameters β1 = 0.9, β2 = 0.999, and ε = 10−8. In addition to the custom objective function

layer we describe above, trainNetwork() by default adds an L2-regularization term to the

loss with a regularization factor of λ = 0.0001. We monitor the RMSE of the validation

set throughout training and manually stop training if it is no longer improving before the

maximum number of epochs has been reached. The trainNetwork() function also allows for

parallel computation via the Parallel Computing Toolbox,[61] which is highly recommended

but not strictly required for training.

2.5.3 Creating a reference atlas for the murine follicle

To create a spatial reference atlas for the murine follicle system, we patterned the spatial

coordinates of each position in the atlas off of a standard diagram of a mouse follicle found

in Figure 1 of Joost et al.[12] We constructed a Voronoi diagram around each of the cell

centers and made manual adjustments to the vertices as we saw fit aesthetically. We then

selected the eight genes in the atlas from the systematic staining catalog made available

by Joost. We chose the genes based on a combination of high image quality and spatial

diversity. Gene expression levels in [0, 1] were chosen manually to best represent the images,

though to eliminate any implicit bias we also added a small level of Gaussian noise to the

atlas. For all methods requiring a binary atlas, we chose a cutoff of 0.2 to represent “on”

expression in this atlas.

2.5.4 Large margin nearest neighbor baseline

To implement a LMNN baseline for benchmarking comparison, we used code from the

MATLAB Toolbox for Dimensionality Reduction found at https://lvdmaaten.github.
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io/drtoolbox/ and modified it for our uses. Specifically, we used the lmnn() function in the

“techniques” subfolder, and modified the code to set mu = 1, i.e., to remove the “pull” term,

as well as setting the number of targets to 1 (the point itself) and treating all other points as

imposters. Further, we modified the slack variables to enforce a minimum separation of
√
D,

where D is the dimensionality of the space (D = G for our applications). For the numerical

experiments of the LMNN method with the cortex dataset, a PCA dimension reduction (50

PCs) was performed before applying LMNN to accommodate the large number of genes.
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Chapter 3

AtlasGeneratorOT: Automating the

creation of a reference atlas

In order to train DEEPsc networks for the biological systems studied in Chapter 2, we made

use of already existing reference atlases of the biological systems where available,[1, 2, 56]

and we created by hand a novel reference atlas of the murine hair follicle using fluorescence

imaging data of eight different genes known to have spatially coherent expression patterns.[12]

Steps involved in the manual creation of this reference atlas included creating a standardized

diagram of the follicle onto which we manually ascribed 233 different “spots” of approximate

cellular resolution. We then examined each of the eight fluorescence imaging slides and

manually decided an expression level for each spot.

This manual process was slow and tedious, and would have been even more so if the number

of genes in the reference atlas were larger. Further, using a similar manual creation process

to develop future novel reference atlases may potentially introduce unintentional biases into

the atlas, which may influence the training of a DEEPsc network and therefore the spatial

mapping of future scRNA-seq datasets. In this chapter, we describe our efforts to more fully
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Detect spots Align to common geometry Extract expression levels

Figure 3.1: Flowchart describing the workflow for AtlasGeneratorOT. Beginning
with a collection of images, AtlasGeneratorOT detects spots in each image (left),
uses an optimal transport-based algorithm to align the spots to a common geome-
try (middle), and extracts expression information from each of the aligned images
(right). Images depict Slice 15 of the murine neural crest in [4].

automate the process of creating a novel reference atlas from a collection of fluorescence or

other imaging data, speeding up the workflow and reducing bias in the atlas creation process.

3.1 Background

A typical reference atlas for a biological system consists of a P × G matrix A representing

the expression level of G genes for each of P positions. The spatial arrangement X of

these P positions is also given, e.g. as a set of coordinates X = {(xi, yi)}Pi=1 ∈ R2 or

{(xi, yi, zi)}Pi=1 ∈ R3, or as a collection of patches or regions X = {Ui}Pi=1 ⊂ R2 or R3 in a 2-

or 3-dimensional standardized diagram of the biological system. Many such reference atlases

exist of varying spatial resolutions and with wildly varying numbers of genes (cf. Table 1

in [18]), and more are being created constantly as fast, high-resolution imaging technology
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becomes more ubiquitous. Particularly with the recent advent of spatial transcriptomic

methods,[19, 20, 21, 22, 23, 24] the ease with which a collection of images of a large number

of genes can be quickly produced is increasing rapidly.

However, the process of extracting the information necessary to create an atlas matrix A or

even a spatial description X from the collection of images is sorely lacking. A typical starting

point for the creation of a reference atlas is to gather a collection of images depicting the

spatial gene expression pattern for some number of genes. Often times these images may

be sourced from multiple samples of the system, produced by different labs, under vastly

different experimental setups. Because of this, the process by which expression levels are

extracted from the images is a nontrivial problem, perhaps requiring complicated mapping

of one geometry onto another, distinguishing the output of disparate imaging technologies,

and dealing with images of vastly different quality and resolution.

There do exist several platforms for spot or cell detection in 2-D images which can be used to

produce a spatial description X of the spots or cells in an image, among them CellProfiler[62]

and StarDist,[63, 64] with the latter also able to handle 3-D images. However, the learning

curve for many of these platforms is quite steep, and there appear to be no existing platforms

dedicated to the creation of a spatial reference atlas directly. We therefore introduce here

a novel automation platform, AtlasGeneratorOT, which, with minimal user input, produces

an atlas matrix A and set of 2-D spatial coordinates X corresponding to a common set of

spots compiled from all images in a collection.

AtlasGeneratorOT makes a few basic assumptions about the dataset from which the reference

atlas will be created. We first assume that at least one image of the expression of one gene

depicts the entire biological system in a convenient geometry with a clearly distinguishable

solid color background and will thus serve as the “anchor” onto which all other images will

be mapped. We also assume that all images of the system are stored in a single folder with

no other files. Finally, we assume that each image depicts only one gene with one color. It is,
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however, possible using AtlasGeneratorOT to extract the expression of multiple genes from

a single image, provided the image is duplicated multiple times with different filenames in

the parent folder.

Throughout this chapter, we use as a motivating biological system the murine neural crest,

with imaging data provided by Soldatov et al. (cf. Data S11 in [4]). We begin with images of

the expression level of 32 different genes known to be spatially regulated, obtained by in situ

sequencing of 15 serial sections of the neural crest of an E9.5 murine embryo. Within each

serial slice, each of the 32 images depicts gene expression over the same underlying geometry,

so no alignment is necessary for this dataset; all images share coordinates exactly and the

extraction process of section 3.2 can be applied directly. However, we describe in section 3.3

a method of aligning images with differing geometries based on optimal transport theory,

which may be required for other datasets. A flowchart of the AtlasGeneratorOT workflow is

shown in Figure 3.1.

3.2 Extracting expression levels from images

3.2.1 Detecting spots in the anchor image

Given a 2-D anchor image in RGB format (i.e. I ∈ [0, 1]w×h×3), we allow the user to define

an integer spot size ∆x ∈ (0, w], default ∆x = dw/50e, and construct a regular nx × ny

grid atop the image consisting of square cells of ∆x × ∆x pixels, allowing for non-square

cells around the borders if necessary. The pixels in each cell are compared to a background

color c = [r, g, b] ∈ [0, 1]3, by default defined as the most common color in the image,

c = mode(Ix,y), x = 1, 2, . . . , w, y = 1, 2, . . . , h, but also user-configurable if necessary. We
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use for the distance between colors the Euclidean norm on the sRGB color space,

d(c1, c2)
2 = d([r1, g1, b1], [r2, g2, b2])

2 = (r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2 (3.1)

and calculate for each grid cell Gi,j, i = 1, 2, . . . , nx, j = 1, 2, . . . , ny, the average of the

distance from each pixel to the background color c,

d̄i,j =
1

|Gi,j|
∑

k,l∈Gi,j

d(Ik,l, c) (3.2)

since each d̄i,j ∈ [0, 1] by definition, we then use a threshold η ∈ (0, 1), default η = 0.1, to

define whether or not a cell is a background cell (d̄i,j < η) or a detected spot (d̄i,j ≥ η).

The coordinates of the centers of each detected spot are then stored as an array X ∈ RP×2,

where P is the number of spots detected.

Other more complex methods of defining a measure of color difference exist, including those

in several perceptually uniform color spaces such as CIEXYZ, CIELUV, or CIELAB. In par-

ticular CIE76, defined over the L∗a∗b∗ color space (itself a nonlinear transformation of RGB

space), and CIE94, defined over the closely related L∗C∗h∗ color space, can be shown to

more accurately reflect human perception of color difference. However, due to the relatively

higher computational complexity of these measures, we choose to use the more computa-

tionally efficient sRGB measure described above. To account for less ideal results, we allow

the user to manually select false positive spots to remove from the array X if desired.

Experimental results of the spot detection algorithm on an image extracted from Data S11

in [4] of the expression of Car11 in Slice 1 of the murine neural crest are shown for various

spot sizes ∆x and thresholds η in Figure 3.2. We note that the optimal value of η ≈ 0.1 for

each of the chosen spot sizes.
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Original

Δx = 8

Slice 1, Car11

Δx = 4 Δx = 2

η = 0.01

η = 0.10

η = 0.25

Figure 3.2: Results of the spot detection algorithm, applied to a 201 × 494-pixel
RGB image depicting expression of the gene Car11 in Slice 1 of the murine neural
crest from Soldatov.[4] Results are shown for spot sizes ∆x = {8, 4, 2}, background
color c = [0, 0, 0] (black) with threshold values η = {0.01, 0.10, 0.25}.

38



3.2.2 Extracting gene expression from each image

Given a collection of spot coordinates {(xi, yi)}Pi=1 stored in an array X ∈ RP×2 extracted

from the anchor slide, we now seek to extract gene expression levels at each of the P spots

in each of G images, I1, I2, . . . , IG, depicting the fluorescence expression of each gene to be

included in the n×G reference atlas. To do so, we require for each image a color cg ∈ [0, 1]3

indicating expression of the gth gene, and we use a similar process as in (3.2) to determine

the average color difference d̄i between pixels in a ∆x × ∆x square centered at (xi, yi) in

image Ig, where ∆x is the same spot size used to extract spots in section 3.2.1.

We find that the unnormalized distance between colors gives in general some nonzero expres-

sion at every spot, which is biologically unlikely, and may or may not give a large expression

value to spots where a human would likely do so. To remedy this, after calculating d̄i for all

P spots, we rescale the group to the interval [0, 1] by subtracting the minimum expression,

then dividing by the resulting maximum. Finally, we subtract the result from 1 so that the

resulting values represent a similarity measurement rather than a dissimilarity measurement.

A value close to 1 therefore signifies high expression while a value close to 0 signifies low

expression. To further sparsify the expression pattern, we again specify a threshold δ ∈ (0, 1)

below which a gene is assumed to have zero expression.

We repeat this process for each of the G images, storing the resulting values into columns of

a P × G matrix A, which, along with the coordinate matrix X, we call the reference atlas.

We include the expression levels extracted from images of genes Ets1 and Sox2 in Slices 1

and 15 of the murine neural crest in Figure 3.3. We note that the extraction process robustly

captures gene expression for different values of ∆x.
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Figure 3.3: Extracted gene expression for genes Ets1 and Sox2 from images of Slice 1
and Slice 15 of the murine neural crest from Soldatov[4] for spot sizes ∆x = {2, 4, 8}.
Gene expression color cg is taken to be [1, 0, 0] (red), expression threshold δ = 0.1,
in all images. Expression levels are detected using the sRGB distance (3.2) and
scaled from 0 (low/no expression, blue) to 1 (highest expression, red).
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3.3 Aligning images of different genes with optimal

transport

During the creation of a reference atlas from a collection of images as in section 3.2, it is often

the case that, unlike in the murine neural crest dataset, images of the expression patterns of

different genes do not conform to the same geometry, i.e. the coordinates of the spots in the

anchor image do not translate directly to the other images, and thus some type of alignment

is necessary. Manual alignment using photo editing software is a slow and tedious process,

leading to a bottleneck in the workflow and is a possible source of further unintended bias in

the atlas creation process. In this section, we describe a process based on optimal transport

(OT) theory which we use to semi-automate the alignment process.

3.3.1 Optimal transport background

The output of the spot detection algorithm outlined in section 3.2 is a set of points {(xi, yi)}ni=1 ∈

R2, where n is the number of spots detected in the image. If we view these spots as a discrete

distribution on R2, µ = 1
n

∑n
i=1 δ(xi, yi), where δ(x) is the Dirac distribution at point x, then

given the spots in two images, we can formulate an optimal transport problem to couple

the spots {xi}ni=1 in image 1 to the spots {yj}mj=1 in image 2. Mathematically, a (discrete)

optimal transport problem is described as follows:[65]

Given two distributions

α =
n∑

i=1

aiδ(xi), β =
m∑
j=1

bjδ(yj) (3.3)

such that ai ≥ 0,
∑

i ai = 1, bi ≥ 0,
∑

j bj = 1, along with a cost matrix C ∈ Rn×m
+ , find a
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coupling matrix T that solves

argmin
T∈Rn×m

+

∑
i,j

Ci,jTi,j subject to T1m = a, TT1n = b (3.4)

where 1n ∈ Rn is a length n vector of all ones and Ti,j can be interpreted as the fraction

of “mass” transported from point xi in the source distribution to the point yj in the target

distribution. The constraints on T are often referred to as “mass constraints”, as they can be

interpreted physically as requiring transport of all mass from one distribution to the other.

In typical applications, the cost matrix C consists of pairwise Euclidean distances between

points in each distribution, i.e. Ci,j = ‖xi − yj‖2; however, in principle, this matrix can

be computed with any power of any distance metric, Ci,j = d(xi,yj)
p. In this case, the

minimum value of the product computed using the optimal T in (3.4) is referred to as the

pth Wasserstein distance between the two distributions (which depends on d), and is often

denoted

Wp =

(
min

T∈Rn×m
+

∑
i,j

d(xi,yj)
pTi,j

)1/p

=⇒ W p
p = min

T∈Rn×m
+

∑
i,j

Ci,jTi,j (3.5)

One drawback to using the Euclidean distance to form a cost matrix is the implicit assump-

tion that the two distributions inhabit the same space. Indeed even if a collection of spots

ostensibly inhabits the same space, the classical OT algorithm is not invariant under simple

transformations like rescalings, translations, and rotations. A relevant example of using a

non-standard cost matrix is that of Motta, et al.,[45] wherein they make use of an underly-

ing graph structure to form a cost matrix consisting of node-to-node and neighborhood-to-

neighborhood dissimilarities in order to align two images of a retinal fundus.

In the context of spots extracted from images, since the images may be of different sizes

and/or may have nontrivial differences in geometry, that the spots extracted from two images

inhabit the same space is not a valid assumption. Furthermore, early attempts at defining
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novel cost matrices for this task did not produce sufficiently satisfactory alignment results.

Instead we rely on an extension of classical optimal transport, Gromov-Wasserstein, which

does not require the two distributions to inhabit the same space.[66, 67] Indeed, we need only

calculate two separate distance matrices for each space. If α is defined on the metric space

(M1, d1) and β is defined on the metric space (M2, d2), we can compute the two matrices

D1 ∈ Rn×n
+ and D2 ∈ Rm×m

+ where (D1)i,i′ = d1(xi,xi′) and (D2)j,j′ = d2(yj,yj′). Then the

pth Gromov-Wasserstein distance is defined by

GW p
p = min

T∈Rn×m
+

∑
i,i′,j,j′

|(D1)i,i′ − (D2)j,j′|p Ti,jTi′,j′ (3.6)

where the matrix T is subject to the same mass constraints, T1m = a, TT1n = b, as in

classical optimal transport.

The classical OT optimization problem can be viewed as a linear program and thus enjoys

the existence of many different efficient solvers based on, e.g., Dantzig’s Simplex method or

interior point methods.[65] However, finding the coupling matrix which solves the Gromov-

Wasserstein OT problem is a quadratic assignment problem and in general NP-hard to solve.

To allow faster approximation of a solution (indeed even of the classical OT problem), an

entropic regularization term is often added to the loss function,[68] typically of the form

εH(T ), where

H(T ) = −
∑
i,j

Ti,j (log Ti,j − 1) (3.7)

As detailed by Benamou in [69], this regularization term allows the solution to (3.4) to admit

a factorization

Ti,j = uie
−Ci,j/εvj ≡ uiKi,jvj (3.8)

for some scaling vectors u ∈ Rn
+, v ∈ Rm

+ . The mass constraints on the optimal T then
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require

u� (Kv) = a, v � (KTu) = b (3.9)

where � is the Hadamard componentwise product. This factorization thus allows for the use

of iterative procedures such as the Sinkhorn algorithm,[70] which defines for ` = 0, 1, 2, . . .

u(`+1) =
a

Kv(`)
, v(`+1) =

b

KTu(`+1)
(3.10)

where v(0) ≡ 1m and the division is understood to be componentwise.

Large ε values typically lead to more dense coupling matrices, and small values lead to

more sparse coupling, and the solution to the regularized problem approaches that of the

unregularized problem in the limit ε → 0. In general, the goal is to determine an optimal

coupling matrix with as small a value of ε as possible; however, due to the factor of 1/ε in

the definition of K in (3.8), small values of ε can lead to numerical overflow errors, especially

for distributions with a large number of spots.

For the Gromov-Wasserstein formulation (3.6), the entropic regularization term allows the

problem to be successively linearized,[71] amounting to an update for ` = 0, 1, 2, . . .

T (`+1) = argmin
T∈Rn×m

+

∑
i,j

C
(`)
i,j Ti,j − εH(T ) (3.11)

where C(`) = −D1T
(`)D2, with T (0) = abT. Then each update can be viewed as an en-

tropically regularized classical OT problem, which can be approximated iteratively with the

Sinkhorn algorithm above.
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Figure 3.4: Overview of control point determination using the coupling matrix
between two point clouds provided by Gromov-Wasserstein optimal transport
(GWOT). GWOT accepts the two distance matrices D1 and D2 and outputs cou-
pling matrix T satisfying (3.4) in classical OT or (3.6) in GWOT. This coupling
matrix is then used to determine a set of control points representing the source
image in the target image geometry by computing the weighted sum (3.12).

3.3.2 Identification of control points

Once an optimal coupling matrix T has been determined (with either classical OT or Gromov-

Wasserstein OT), we use it to identify pairs of control points by transforming the spots in

one image (hereafter, the source image) into the coordinate system of the other (hereafter,

the target image). Given the coordinates of the m points in the source image, we use the

coupling matrix T to form a weighted average of the coordinates of the spots in the target

image, i.e.

x̃j =
1

Sj

n∑
i=1

T 8
i,jyi (3.12)

where Sj =
∑n

i=1 T
8
i,j. The exponent of eight was chosen empirically to further sparsify the

coupling since each element satisfies 0 ≤ Ti,j ≤ 1 due to the mass constraints. These mapped

coordinates then serve as control points for the source image spots in the target coordinate

system. An overview of this process is depicted in Figure 3.4.

We show in Figure 3.5 a sampling of the set of control points determined through classi-
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Classic OT Gromov-Wasserstein OT

Figure 3.5: Control points determined using classical optimal transport (3.4, left)
and Gromov-Wasserstein optimal transport (3.6, right) between two sets of identical
points, extracted from the same image of Slice 1 of the murine neural crest from
Soldatov.[4] In both panels, the source points (red) have been rotated by an angle
of 180◦, and lines connect these points to the corresponding mapped coordinates
given by (3.12) using the relevant coupling matrix T . To reduce clutter, we have
suppressed all but a randomly chosen 5% of control point pairs to indicate coupling.
We see that GWOT is invariant to the source rotation while classic OT produces
control points that are not desirable.

cal OT (3.4) and Gromov-Wasserstein OT (3.6) between two identical sets of coordinates

representing Slice 1 of the murine neural crest, the second having been rotated through an

angle of 180◦. We see that classical OT is unable to produce realistic control points with this

rotation while Gromov-Wasserstein is invariant to the rotation, still producing meaningful

control points.
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3.3.3 Determining a global transformation for image registration

After a set of control points has been identified between two images, we infer a global trans-

formation using these points which can be applied pointwise to the source image to warp it

into the coordinates of the target image so that its expression data can be extracted as in

section 3.2. We do so with the help of the fitgeotrans () function in MATLAB’s Image Pro-

cessing Toolbox,[72] which allows the inference of several different types of transformations.

The simplest type of transformation allowed is a rigid transformation consisting of a rotation,

a horizontal and vertical translation, and scale factor. Given a set of points {xj}mj=1 in the

coordinate system of the source image and a corresponding set of points {x̃j}mj=1 in the

coordinate system of the target image, a regression algorithm is used to fit a 3× 3 matrix

A =


a b 0

c d 0

e f 1

 such that

[
x̃T
j 1

]
≈
[
xT
j 1

]
A ∀j = 1, 2, . . . ,m (3.13)

This is the general matrix form of any composition of the following three elementary trans-
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formations: 
1 0 0

0 1 0

tx ty 1

(horizontal translation by tx, vertical translation by ty)


sx 0 0

0 sy 0

0 0 1

(horizontal scaling by sx, vertical scaling by sy)


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

(CCW rotation by θ)

Once the matrix A is determined, this informs a global transformation that can be applied

to every point in the source image (e.g. using MATLAB’s imwarp() function),

f(x) =

[
x 1

]
A (3.14)

A more general nonlinear transformation allowed by the fitgeotrans () function is a poly-

nomial transformation of degree 2, 3, or 4. This transformation uses a similar regression

algorithm to determine a set of coefficients to polynomials of the specified degree. If the

coordinates of a point in the source image are given by (x, y), the output coordinates (u, v)

in the target image are given by

u =
k∑

i+j=0

ai,jx
iyj, v =

k∑
i+j=0

bi,jx
iyj (3.15)

where k = 2, 3 or 4, for quadratic, cubic, or quartic polynomial transformations, respectively,

and the sum is over all valid (i, j) combinations. A quadratic polynomial requires at least
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six control points to allow approximation of the six coefficients, a cubic polynomial requires

ten, and a quartic polynomial requires fifteen.

A third type of transformation allowed by the fitgeotrans () function is a piecewise linear

transformation. This transformation computes a Delaunay triangulation for the points in

the source image and fits a linear transformation to each triangle.

The final transformation allowed by fitgeotrans () is a local weighted mean function, which

for each point in the source image fits a quadratic polynomial using the k nearest neighbors

in the source image (k ≥ 6, as above), then applies a weighted average of each polynomial

to each point in the source image.

Due to the relevant coefficients or parameters for each type of transformation being derived

from a regression algorithm (the core of which requires inverting some matrix), there are

certain regularity conditions the control points must meet to fit a transformation successfully.

If too large of a regularization parameter ε is used in the entropic GWOT algorithm, the

resulting dense coupling may lead to local discontinuities or overlap in the control point

definitions. For example, point A may be above point B in the source space but in the

target space point B̃ is above point Ã while the surrounding points remain in the original

orientation, or perhaps point Ã and B̃ end up at exactly the same coordinates. In this

case, the matrix to be inverted as part of the regression will not be full rank or be very

ill-conditioned and thus can lead to numerical errors.

To ameliorate this issue, we make use of a sparsity parameter s to eliminate points mapped

“too close” to each other in the target geometry, ensuring a more even spread of control points

to better facilitate inference of a transformation. To sparsify the control points, we iteratively

loop through the i = 1, 2, . . . ,m mapped source spots in the target geometry, and any point

mapped within s∆x of point x̃i is eliminated from the set of control points. Here, ∆x is the

grid spacing used in the spot detection algorithm in section 3.2. A check is performed after
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iterating through all points to ensure that the minimum number of control points for each

transformation type remains. This sparsification process is shown to empirically reduce the

number of errors encountered when inferring a global transformation.

Once the desired transformation is fitted to the set of (sparsified) control points, it is ap-

plied pointwise to the source image to create a warped image in the target space, with any

intermediate points interpolated linearly by default, though options for nearest neighbor or

cubic spline interpolation are also supported. The resulting image is then able to have gene

expression data extracted as in section 3.2.2, using the coordinates of the anchor spots. If

desired, a new set of spots can be detected in the warped image, and the gene expression

for the new spots in the anchor image can be redetermined. Once all G images have been

aligned to the anchor, one final pass is made over all G images to ensure that every spot is

associated with the correct expression information.

3.3.4 Accelerating the Gromov-Wasserstein computation

The Gromov-Wasserstein optimal transport (GWOT) algorithm used to register and align

two different images is computationally expensive and thus any speed improvement would

significantly speed up the total workflow of creating a reference atlas from a collection of

images. Indeed, the amount of time taken to run the GWOT algorithm is experimentally

shown (Figure 3.6D) to scale linearly with the product of the number of spots in the source

and target images. On an iMac with a 3.6 GHz 8-Core Intel Core i9 CPU and 64 GB of

2667 MHz DDR4 RAM, typical run times for two images with ∼ 3000 spots is upwards of

20-30 minutes. For this reason, we have developed an algorithm to reduce the number of

spots considered for GWOT, as detailed in this section.

Given a set of m points in a source image and n points in a target image, as well as grid

spacings ∆xs and ∆xt, respectively, we define a scaling parameter µ to reduce the resolution
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B) Scaling rules

t=169 sec

t=1.2 sec

t=16 sec

µ = 1

µ = 2

µ = 4

Source Target

µ=1 (original) µ=2 µ=4

Scaled cells 
occupied if 
number of 
unscaled 

occupants 
≥ µ2/2

C) Scaled Results ComparisonA) Images to Align

D) Experimental Runtimes

Figure 3.6: (A) Example images of cell expression to be aligned. The source im-
age depicts expression of gene Gbx2 in Slice 13 of the murine neural crest from
Soldatov[4] and the target image depicts expression of gene Foxd3 in the same.
(B) Example scalings with µ = {1, 2, 4} for an initial point cloud. Cells in the
low-resolution grid are marked occupied if more than µ2/2 corresponding cells in
the high-resolution grid are occupied. (C) Resulting alignment of the source image
into the target geometry based on the control points determined by GWOT with a
scaling parameter of µ = 1 (original, top), µ = 2 (center), and µ = 4 (bottom). In
each, we learn a local weighted mean transformation, choosing k = 50 nearest neigh-
bors to inform the local quadratic polynomial transformation, as well as a sparsity
parameter s = 5. Also included are the runtimes required to obtain the aligned
source images. (D) Experimentally observed runtime to determine the coupling
matrix T using GWOT for various numbers of input points N ·M . The runtime
scales linearly with this product, and the scale factor µ decreases computation time
by a factor of O(µ4).
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of the atlas in order to compute an optimal transport coupling more efficiently. To do so, we

overlay a new, lower resolution grid atop the existing grids in the source and target images,

with grid spacing µ∆xs and µ∆xt, respectively. We then iterate over the cells in this low

resolution grid, marking a cell as occupied if the number of spots inside the cell is greater

than or equal to µ2/2. When µ = 2, this corresponds to a doubling of the grid spacing so

that at most four spots would occupy each cell, and cells are marked occupied if µ2/2 = 2

or more spots are inside the cell. For a value of µ = 3, a tripling of the grid spacing for a

maximum of nine spots in each cell, cells are marked occupied if µ2/2 = 4.5 or more spots

occupy each cell. Figure 3.6B explains the scaling rules with a toy example.

The centers of the occupied cells in the low resolution source and target grids then serve as

the support of the distribution supplied to the GWOT algorithm. Figure 3.6C shows scaled

spots extracted from the source and target images in Figure 3.6A, a sample of the control

points determined by GWOT as in section 3.3.2, and the resulting warped source image

determined by a local weighted mean transformation as in section 3.3.3. In each, we choose

k = 50 nearest neighbors to inform the local quadratic polynomial transformation, as well

as a sparsity parameter s = 5. We also include the runtimes required to obtain the aligned

source images for each scaling parameter.

Because the same scaling is applied to the grid spacing in the source and target atlas, and

the runtime of GWOT is directly proportional to the product of the number of spots in the

source and target, the runtime with a scaling factor of µ decreases by a factor of O(µ4),

a significant improvement. We show in Figure 3.6D experimental results for computation

time required to determine a coupling matrix various numbers of input points using both

unaccelerated (µ = 1) and accelerated (µ = {2, 4}) GWOT. Furthermore, the quality of the

mapping empirically does not appear to suffer, even in combination with the sparsification

process described in section 3.3.3.
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3.4 Conclusion

We have developed the software suite AtlasGeneratorOT, accessible as a standalone app

via the free MATLAB Runtime Environment, to serve as a useful tool to create future

reference atlases in a largely automated fashion with minimal user input. The graphical user

interface, a screenshot of which is shown in Figure 3.7, allows the user to select an anchor

image, detect spots in the anchor image using the various thresholds and options described

in section 3.2.1, then extract expression levels from the anchor and all other images using the

settings described in section 3.2.2. If any image in the collection is not aligned to the same

geometry as the anchor image, AtlasGeneratorOT gives the user the option to automatically

register and align the two images using the Gromov-Wasserstein optimal transport-based

algorithm described in section 3.3. A manual override of the alignment and of all parameters

involved is also provided for extra fine tuning.

Using the novel GWOT acceleration algorithm in section 3.3.4, AtlasGeneratorOT can

greatly reduce the time and overhead required to generate novel (two-dimensional) refer-

ence atlases, such as those for each of the 15 serial slices through the murine neural crest

provided by Soldatov.[4] As more and more imaging data becomes available due to high

throughput spatial transcriptomic techniques, AtlasGeneratorOT can serve as a useful tool

to speed up the workflow required to integrate scRNA-seq data with spatial imaging data.
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Figure 3.7: Screenshot of the AtlasGeneratorOT GUI for extracting gene expression
information from a collection of images to create a reference atlas. Shown is the
current detection of gene Ets1 in Slice 5 of [4]. Options are available to change the
threshold δ for each image as well as the gene color cg (cf. Section 3.2.2), and to
re-align the current image to the anchor geometry if necessary.
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Chapter 4

Combining multiple 2-D reference

atlases into a cohesive 3-D reference

atlas

As with the neural crest dataset of Soldatov[4] examined in Chapter 3, it is often the case that

a three-dimensional biological system is imaged in multiple two-dimensional slices. These

two-dimensional slices may then need to be recombined to form a coherent three-dimensional

structure. The extraction and alignment process in sections 3.2 and 3.3 can be used to

construct separate two-dimensional reference atlases of each slice, which consists of a set of

spot coordinates, {xi}ni=1 ∈ R2, and a corresponding n × G matrix, where G is the number

of genes in the reference atlas, the columns of which describe the expression level of each

gene at each spot on a scale from 0 (not at all expressed) to 1 (highly expressed).

Similar to how images of the expression of genes within a slice may not conform to the

same geometry and must therefore be aligned to a common geometry as in section 3.3, the

collection of two-dimensional reference atlases may also need to be aligned into a common
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geometry. We therefore include a separate GUI as part of AtlasGeneratorOT which allows

the combination of two-dimensional slices into a coherent three-dimensional atlas by again

making use of optimal transport to couple spots between two atlases, identify pairs of control

points, and determine a global mapping of one slide onto another. After all slices are aligned

to the same 2-D coordinate system, each can be assigned a z value according to the inter-slice

distance(s), thus forming a coherent three-dimensional reference atlas.

We describe in this chapter the various methods by which AtlasGeneratorOT can align

reference atlases of two or more slices to the same geometry. We further outline in section

4.3 a separate function which allows optimal transport-based interpolation between existing

two-dimensional slices, further improving the quality of the resulting three-dimensional atlas.

4.1 Fused Gromov-Wasserstein

If the spacing between 2-D slices of a 3-D system is small enough that there is not much geo-

metric variation between them, coupling spots in two slices with classical optimal transport

(3.4) may lead to reasonable results. However, if the slices are spaced far apart from each

other or there is a lot of geometric variation between them, more advanced OT variations

may be required. One possibility is to again make use of the Gromov-Wasserstein formula-

tion (3.6) used to align images within the same slice, which considers the structure of each

reference atlas (i.e. the intra-spot distances) to determine a coupling matrix. As in the

alignment of images of the same slice, the Gromov-Wasserstein OT (GWOT) formulation

typically leads to more reasonable results in this setting than classical OT, as in Figure 4.1

where we show alignment of spots extracted from Slide 2 of the murine neural crest from [4]

to those extracted from Slice 1 of the same system for various scale parameters µ = {1, 2, 4}

(cf. section 3.3.4). Because the two slices have very similar structures, GWOT is able to

provide reasonable couplings here, even for large µ.
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Source (slice 1) µ=1 (1134 s) µ=2 (102 s) µ=4 (8 s) Target (slice 2)

Figure 4.1: An example mapping of two point clouds extracted by the procedure
in section 3.2.1 from an image of Slice 1 (far right, green) and Slice 2 (far left,
magenta) of the murine neural crest from Soldatov.[4] We superimpose in magenta
on top of the target spots in green the result of the pointwise application to the
source spots of the global map inferred from the set of control points obtained by
GWOT with µ = 1 (unscaled, left), µ = 2 (middle), and µ = 4 (right). Each is
labelled with the runtime required to produce such a mapping.

However, in general the output from GWOT may still exhibit non-ideal behavior such as

unwarranted reflections or rotations between neighboring slides. In these cases, not all is lost,

however. Indeed, in contrast to the task of aligning two images of gene expression within

the same slice, the task of aligning two atlases might ideally make use of the existence of not

only coordinate information, {xi}ni=1 ∈ R2, but also feature information in the form of gene

expression data, {gi}ni=1 ∈ [0, 1]G, for each spot. GWOT, however, ignores the features and

only incorporates structure data.

Another variation of optimal transport called Fused Gromov-Wasserstein optimal transport,

introduced by Vayer et al,[73, 74] incorporates both structure and feature information to

provide a coupling. The base assumption in the Fused Gromov-Wasserstein formulation is

that the two distributions α and β are viewed as tuples {(xi,gi)}ni=1 ∈ M1 × [0, 1]G and

{(yj,gj)}mj=1 ∈ M2 × [0, 1]G, where (M1, d1) is the metric space for the spots in the source
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image, (M2, d2) is the metric space for the spots in the target image, and ([0, 1]G, d) is the

shared feature space for both images. Defining δ(x,g) as the Dirac distribution over the

product space, we can thus write

α =
n∑

i=1

aiδ(xi,gi), β =
m∑
j=1

bjδ(yj,gj)

Given this assumption, we compute two matrices D1 ∈ Rn×n
+ and D2 ∈ Rm×m

+ where

(D1)i,i′ = d1(xi,xi′) and (D2)j,j′ = d2(yj,yj′) as in Gromov-Wasserstein, as well as the

feature matrix C ∈ RG×G
+ where Ci,j = d(gi,gj) as in classical OT. The Fused Gromov-

Wasserstein distance is then defined using a tradeoff parameter t ∈ [0, 1] and p, q ≥ 1 as

FGW p
p,q = min

T∈Rn×m
+

∑
i,i′,j,j′

(
(1− t)Cp

i,j + t |(D1)i,i′ − (D2)j,j′|p Ti′,j′
)q
Ti,j (4.1)

where T is subject to the same mass constraints as in classical and Gromov-Wasserstein

OT, T1m = a, TT1n = b. Vayer shows that this quantity satisfies all metric axioms iff

q = 1, which we henceforth assume for simplicity. We note that if t = 0, this reduces to

the pth Wasserstein distance in the classical OT formulation, and if t = 1 this reduces to

the pth Gromov-Wasserstein distance; thus, the Fused Gromov-Wasserstein distance can be

interpreted as the most general distance of the three.

In the case q = 1, the FGW optimization problem can be viewed as a classical OT problem

(3.4) with cost matrix

C̄i,j = (1− t)Cp
i,j

and a nonentropic regularization term,

H̄(T ) =
∑

i,i′,j,j′

|(D1)i,i′ − (D2)j,j′ |p Ti′,j′Ti,j.
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so that (4.1) reads

FGW p
p = min

T∈Rn×m
+

∑
i,j

C̄i,jTi,j + tH̄(T ) (4.2)

Because of this nonentropic regularization term, the standard Sinkhorn algorithm (3.10)

cannot be applied. Instead, Vayer[74] utilizes a Franke-Wolfe style conditional gradient

method wherein during each iteration, the gradient of (4.2) with respect to T ,

∂FGW p
p

∂T
(T ) ≡ G(T ) = (1− t)Cp

i,j + 2t
∑
i′,j′

|(D1)i,i′ − (D2)j,j′ |p Ti′,j′ (4.3)

is evaluated at T = T (`−1), with T (0) = abT, and an unregularized classic OT problem is

solved with cost function

C(`) = G(T (`−1)) (4.4)

producing a transport matrix T̃ (`). A line search algorithm (Algorithm 2 of [73]) is then

used to find the optimal step size τ (`) ∈ [0, 1] along a second degree polynomial fitted to the

non-convex loss, the solution of which defines the next iterate,

T (`) = (1− τ (`))T (`−1) + τ (`)T̃ (`) (4.5)

This iteration is repeated until convergence, which is only guaranteed to be local due to the

nonconvexity of the problem.

When applying Fused Gromov-Wasserstein optimal transport (Fused GWOT) to align two

reference atlases, we use a similar acceleration technique as that used to accelerate GWOT in

section 3.3.4. In addition to obtaining a low-resolution representation of the atlas structure

in the form of bins on a regular grid, the gene expression information is averaged over the

spots contributing to each bin in the low-resolution atlases. This averaged gene expression is

then passed to the Fused GWOT algorithm as feature information for each bin. For a given

scaling parameter µ as in accelerated GWOT, we also observe a similar O(µ4) decrease in
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Slice 8, RetSlice 9, Ret Gromov-Wasserstein Couplings
(unwarranted reflection)

Fused Gromov-Wasserstein Couplings
(no reflection)

Figure 4.2: Example couplings of atlases obtained from Slice 8 and Slice 9 of the
murine neural crest from [4] (example images, left) provided by GWOT (center) and
Fused GWOT (right). Since Fused GWOT not only considers structure information
but also feature information in the form of gene expression for each spot, it is more
able to correctly couple spots in each atlas without introducing an unwarranted
horizontal reflection than is GWOT, which only incorporates structure information.

runtime for accelerated Fused GWOT. Similarly, we make use of the same sparsity parameter

s described in section 3.3.3 for Fused GWOT to ensure sufficiently well-conditioned matrices

for the regression used by fitgeotrans ().

Because Fused GWOT also considers feature information, the coupling is often more accurate

than in Gromov-Wasserstein OT (GWOT). For example, the atlases extracted from images

of Slice 8 and Slice 9 of the murine neural crest from [4] have very similar structures, as

shown in Figure 4.2. GWOT tends to introduce a horizontal reflection into the mapping

(Figure 4.2, center), which at first glance may seem warranted even to a human. However,

when incorporating feature data such as the expression of gene Ret (Figure 4.2, left), which

appears to skew slightly right of center, it becomes evident that this reflection is likely

erroneous. The Fused GWOT algorithm is able to incorporate this feature information into

the coupling and results in more accurate control points (Figure 4.2, right).
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Figure 4.3: Screenshot of the AtlasGeneratorOT GUI for aligning a collection of
two-dimensional reference atlases to a common anchor geometry. Shown are the
reference atlases generated by AtlasGeneratorOT as in Chapter 3 for Slice 1 and
2 of the murine neural crest.[4]. Options for each of the formulations of optimal
transport are included as described in the text.
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4.2 Partial Optimal Transport

In classical optimal transport (3.4), the coupling matrix T is assumed to transport all of the

mass from the source distribution α to the target distribution β. As such, both α and β are

assumed to have unit mass (
∑

i ai =
∑

j bj = 1) to facilitate transfer. In some applications,

it may be useful to specify that only part of the mass need be transferred. For example, given

neighboring two-dimensional slices of an atlas, it may be that one atlas fails to depict part

of the underlying biological system. In this case, we can reformulate a generalization of the

classical OT problem to only transport part of the mass, called the partial OT problem.[75]

Whereas in classical OT, the restrictions on the coupling matrix T were equalities, requiring

T1m = a, TT1n = b, in partial OT, these are replaced with inequalities,

T1m ≤ a, TT1n ≤ b, 1T
nT1m = γ (4.6)

where γ ∈ (0, 1) is the fraction of mass to be transported.

In practice, this can be reformulated into a balanced classical OT problem with equality

constraints (3.4) by adding virtual points xn+1 to the source and ym+1 to the target and

extending the standard cost matrix as

C̃ =

 C ξ1m

ξ1T
n 2ξ + A

 (4.7)

for any A > max(Ci,j) and ξ > 0. Setting the mass of these points to an+1 = bm+1 = 1− γ

results in a balanced OT problem with the augmented source distributions ã = [a, 1 − γ],

b̃ = [b, 1− γ]. The optimal coupling matrix for the partial OT problem can be shown to be

the optimal coupling matrix from the augmented problem, deleting the last row and column.

A similar extension exists for partial Gromov-Wasserstein optimal transport (PGWOT),

62



wherein similar to balanced GWOT, the extended problem (3.6) is successively linearized as

in (3.11), and the final coupling matrix is similarly taken to be the solution to the extended

problem, deleting the last row and column. To the current author’s knowledge, however, no

similar extension to allow for partial Fused Gromov-Wasserstein exists; however, a similar

approach with extended matrices may be possible.

Figure 4.3 shows a screenshot of the portion of the AtlasGeneratorOT graphical user interface

devoted to aligning two-dimensional atlases into the same underlying geometry. Shown are

all options related to the optimal transport algorithms described in this chapter, including

the scale parameter µ, the sparsity parameter s, and the fraction (γ) and weight/tradeoff

(t) parameters from partial and fused GWOT, respectively. Also included are the relevant

options for each of the global transformations able to be inferred from the control points

decided by the chosen OT algorithm using the fitgeotrans () function described in section

3.3.3. Also included in the software is the ability to override any of the OT couplings and

manually align two slides using a rigid transformation.

We further show in Figure 4.4A a sample of the fully aligned reference atlas for all 15 slices in

the murine neural crest. All images depict the expression levels of gene Car11 and have been

aligned using either Fused Gromov-Wasserstein or Gromov-Wasserstein optimal transport if

results are reasonable, though some have been manually aligned using the override options

provided by AtlasGeneratorOT. Although we describe a partial OT algorithm above, we did

not make use of partial OT to align any slides. However, particularly for the alignment

between Slides 2 and 3 and between Slides 4 and 5, where Slices 3 and 4 appear to only

contain a fraction of the system compared to Slices 2 and 5, a partial OT mapping may be

preferable. For these slides, we resorted to a manual alignment as we were unable to obtain a

sufficiently accurate mapping using any of the optimal transport methods described herein.

We also show in Figure 4.4B an example of Slices 1-4 endowed with a z coordinate to form a

(portion of a) coherent three-dimensional atlas. We show the atlases before (left) and after
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Slices 1-4, Hnf1b expression
Unaligned Aligned with AtlasGeneratorOT

Slice 6

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

Slice 7 Slice 8 Slice 9 Slice 10

Slice 11 Slice 12 Slice 13 Slice 14 Slice 15

A)

B)

Figure 4.4: (A) Finished alignment of all 15 slices of the murine neural crest
created with AtlasGeneratorOT to a common geometry. Each slice depicts the
expression level of gene Car11; however the full atlas includes expression levels
of all 32 genes provided by Soldatov.[4] All slices have been aligned using Fused
Gromov-Wasserstein optimal transport where results were reasonable, or manual
alignment where optimal transport failed to give expected results (e.g. between
slices 2 and 3 and between slices 4 and 5). (B) Three-dimensional plot of expression
of gene Hnf1b in Slices 1-4 pre-alignment (left) and post-alignment (right) with
AtlasGeneratorOT.
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(right) alignment with AtlasGeneratorOT. We note that the aligned 3-D atlas appears to

show a more coherent structure than the collection of unaligned 2-D atlases.

4.3 Interpolating between slices in a 3-D reference at-

las

After aligning the reference atlases of all two-dimensional slices in a biological system to a

common two-dimensional coordinate system and assigning a z coordinate to each to form

a coherent three-dimensional reference atlas as in Figure 4.4B, the resolution of the atlas

within each two-dimensional slice is often much higher than the resolution in the z direction

due to sparse slicing. We discuss in this section a method also based on optimal transport

which allows interpolation between two-dimensional slices to further improve the quality of

the final three-dimensional atlas.

Suppose that we have two 2-D reference atlases in the planes z = a (the source atlas) and

z = b (the target atlas). Denote the spot centers in the source atlas as {(x(a)i , y
(a)
i )}ni=1 ≡

{x(a)
i }ni=1, and those in the target atlas as {(x(b)j , y

(b)
j )}mj=1 ≡ {x

(b)
j }mj=1. For some t ∈ (0, 1),

we wish to form an interpolated reference atlas at z = (1−t)a+tb, somewhere in the interval

(a, b). For example t = 0.5 would produce a new interpolated atlas at z = (a+ b)/2, halfway

between the two given atlases.

To produce such an atlas, we formulate the problem in terms of a Wasserstein barycenter

computation,[69, 67, 65] wherein given a set of distributions {αk}Kk=1 over some metric space

(M,d) and a corresponding set of weights {λk}Kk=1 such that
∑

k λk = 1, we seek a new

distribution α∗ ∈M that solves

c (4.8)
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where Wp is the pth Wasserstein distance, as in 3.5. This can be viewed as a special case of

the more general Fréchet mean computation over any metric space (X , d),

argmin
x∈X

K∑
k=1

λkd(x, xk)p

For example, when X = Rn, d(x, y) = ‖x − y‖2, p = 2, the resulting minimizer is the

arithmetic mean of input points,
∑

k λkxk.

Even for discrete distributions, the barycenter problem (??) can be computationally expen-

sive to solve. Most formulations involve discretizing the metric space M into a regular grid

with N � max(n,m) cells and representing the distributions αk as histograms over the N

cells.[65] Computing the common cost matrix Ck = C = Dp, where D ∈ RN×N
+ is a distance

matrix containing pairwise distances between grid cells, the problem can be viewed as a large

linear program wherein we seek a set of coupling matrices {Tk}Kk=1 ∈ RN×N
+ between the his-

togram of each input distribution αk and the histogram of the barycenter distribution α∗,

which are each subjected to the same mass constraint, TT
k 1N = a, where a is the histogram

representing α∗. That is, we seek a solution to

argmin
a∈RN

+ , T1,T2,...TK∈RN×N
+

∑
i,j,k

λk(Tk)i,j(Ck)i,j such that ∀k, Tk1N = a, TT
k 1N = ak (4.9)

The scale of this linear program makes computation of a solution unwieldy in general, though

several approaches exist for the general case, including using entropic regularization (3.7) to

make the problem smooth and convex so that a modified Sinkhorn algorithm can be used as

in classical OT (3.10).

In certain special cases, however, the barycenter problem (4.9) has known explicit solutions.

For our case where K = 2, i.e. we seek the barycenter of only two discrete distributions

with weights λ1 = t, λ2 = 1 − t, t ∈ (0, 1), it is shown in [65] that the optimal solution is
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equivalent to McCann’s interpolation,[76]

α∗t =
∑
i,j

Ti,jδ((1− t)x(a)
i + tx

(b)
j ) ≡

∑
i,j

Ti,jδ(x
∗
(i,j,t)) (4.10)

where T ∈ Rn×m is the solution to the classical OT problem (3.4) with cost matrix Ci,j =

‖x(a)
i − x

(b)
j ‖2. This explicit solution speeds up computation tremendously compared to the

general case, with the added benefit that no discretization of the metric space is required,

resulting in smaller matrices. Furthermore, multiple interpolated reference atlases can be

generated from the same coupling matrix.

An exact solution T to (3.4) can be shown to have at most n+m+1 nonzero elements,[65] each

of which is interpreted as a spot in the interpolated atlas; however, if entropic regularization is

used as we do, there may be many more nonzero elements in T . To prevent the interpolated

atlas from containing too many spots, we set a threshold value ξ on T , only keeping the

spot x∗(i,j,t) in the interpolated atlas if Ti,j ≥ ξ. To further prune the interpolated atlas, we

limit each spot x
(a)
i in the source to be associated with at most three interpolated spots

x∗(i,j,t), choosing the three corresponding spots x
(b)
j1

, x
(b)
j2

, and x
(b)
j3

to be those with the largest

coupling coefficients in the ith row of T . We also prune in the other direction, selecting for

each target spot x
(b)
j only the top three coupled spots in the source atlas. This heuristic

appears to lead empirically to reasonably sized interpolated atlases.

Once the spots in the interpolated atlas are determined, it is straightforward to interpolate

the expression information from the source and target slices. For the spot x∗(i,j,t) = (1−t)x(a)
i +

tx
(b)
j , we simply assign the linearly interpolated gene expression g∗(i,j,t) = (1 − t)g(a)

i + tg
(b)
j ,

where g
(a)
i ∈ [0, 1]G is the gene expression associated with spot x

(a)
i in the source, and

g
(b)
j ∈ [0, 1]G is the gene expression associated with spot x

(b)
j in the target.

We show in Figure 4.5A computed interpolations between Slices 1 and 2 and in Figure 4.5B

those between Slices 4 and 5, for interpolation parameter values t = {1/6, 1/3, 1/2, 2/3, 5/6}.
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To demonstrate the interpolation not only of geometry but also of gene expression, we label

each spot with the interpolated expression level of gene Msx1. We note that with the

similarity of Slices 1 and 2, the interpolation appears to work almost flawlessly; however,

the interpolation between Slices 4 and 5 is not as ideal. This may be due to the fact that

the spots in Slice 4 can be recognized as depicting only a portion of the spots in Slice 5,

excluding the bottom part of the system. Because of this, optimal transport appears to have

trouble figuring out which spots in the source are coupled to that region in the target, if any.

Obtaining a coupling matrix using partial optimal transport as in section 4.2 may lead to

better results.

We further show in Figure 4.5C an interpolated version of the expression of gene Hnf1b

in slices 1-4 originally shown figure 4.4B. Compared to the uninterpolated version, the in-

terpolated version fills in the gaps with relevant detail, providing for a more high quality

three-dimensional reference atlas.

4.4 Conclusion

We have extended the capabilities of AtlasGeneratorOT to be able to not only extract and

compile a two-dimensional atlas from a collection of images as in Chapter 3, but in the case

of a three-dimensional biological system imaged in multiple serial two-dimensional slices,

to be able to align those slices to a common geometry and supplement the existing slices

with any number of intermediate interpolations to provide a more complete structure of the

three-dimensional system. With an intuitive GUI as in Figure 4.3, AtlasGeneratorOT can

largely automate a process which in the absence of software may take many hours. Using

the powerful framework of the various formulations of optimal transport, AtlasGeneratorOT

can serve as a useful tool to speed up the workflow required to integrate scRNA-seq data

with spatial imaging data.
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Slice 1 Slice 2t = 1/6 t = 1/3 t = 1/2 t = 2/3 t = 5/6

Slice 4 Slice 5t = 1/6 t = 1/3 t = 1/2 t = 2/3 t = 5/6

A)

B)

C)

Figure 4.5: Example interpolations between (A) Slice 1 and Slice 2 (B) Slice 4 and
Slice 5, for values of t = {1/6, 1/3, 1/2, 2/3, 5/6}. Displayed are the interpolated
positions and expression levels for all spots x∗i,j,t which have coupling constant
Ti,j ≥ ξ = 0.01 and satisfy the pruning constraints. With n1 = 3630 spots in the
atlas for Slice 1 and m2 = 3309 spots in the atlas for Slice 2, we find there are
n1,2 = 8191 spots in each interpolated atlas. With n4 = 3696 spots in the atlas for
Slice 4 and m5 = 3745 spots in the atlas for Slice 5, we find there are n4,5 = 6619
spots in each interpolated atlas. For visualization, we have represented the known
expression levels of gene Msx1 in each of the fixed slices, as well as the interpolated
expression levels in each of the interpolated slices. (C) Hnf1b expression in slices
1-4 of the resulting interpolated 3-D atlas. Compared with Figure 4.4B, much more
detail is evident.
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