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Advances in Kriging-Based 
Autonomous X-Ray Scattering 
experiments
Marcus M. noack1*, Gregory S. Doerk2, Ruipeng Li3, Masafumi fukuto3* & Kevin G. Yager2*

Autonomous experimentation is an emerging paradigm for scientific discovery, wherein measurement 
instruments are augmented with decision-making algorithms, allowing them to autonomously explore 
parameter spaces of interest. We have recently demonstrated a generalized approach to autonomous 
experimental control, based on generating a surrogate model to interpolate experimental data, and 
a corresponding uncertainty model, which are computed using a Gaussian process regression known 
as ordinary Kriging (OK). We demonstrated the successful application of this method to exploring 
materials science problems using x-ray scattering measurements at a synchrotron beamline. Here, 
we report several improvements to this methodology that overcome limitations of traditional Kriging 
methods. The variogram underlying OK is global and thus insensitive to local data variation. We 
augment the Kriging variance with model-based measures, for instance providing local sensitivity 
by including the gradient of the surrogate model. As with most statistical regression methods, OK 
minimizes the number of measurements required to achieve a particular model quality. However, in 
practice this may not be the most stringent experimental constraint; e.g. the goal may instead be to 
minimize experiment duration or material usage. We define an adaptive cost function, allowing the 
autonomous method to balance information gain against measured experimental cost. We provide 
synthetic and experimental demonstrations, validating that this improved algorithm yields more 
efficient autonomous data collection.

A central goal in experimental material science is to explore and understand the composition-processing- 
structure-property relations of materials in their associated multi-dimensional parameter spaces1–3. These param-
eter spaces can be thought of as the set of all conceivable combinations of the parameters affecting an experiment, 
including synthesis and processing conditions, material composition, and environmental conditions during the 
experiment. In an attempt to characterize a material—that is, to explore the parameter space—scientists tradi-
tionally change the parameters of the experiment interactively; when one measurement is accomplished, the 
recent and all prior results are interpreted and used to manually assess trends in the data, which are then utilized 
to determine the next measurement parameters. This manual approach is not only costly in the sense that it con-
sumes valuable equipment and researcher time, but is also entirely insufficient when attempting to explore the 
vast, high-dimensional parameter spaces that underlie complex materials.

A properly explored parameter space means, mathematically, that we can, with high confidence, define a func-
tion that maps the position in this space onto a set of real numbers representing the quantities that the experimen-
tal instrument measures. For instance, suppose one is interested in doing an experiment in which the synthesis of 
a material can be performed at a range of temperatures (T) and the measurements can be performed at different 
sample locations [x, y]T. In this case, the experiment probes a three-dimensional parameter space . If, for 
instance, the measured quantity of interest is the material’s degree of crystallinity, say ρ, the goal is to find the 
function Tx( , ): 3ρ ⊂ →P R R.

For low-dimensional parameter spaces, experimental scientists traditionally sample the space by selecting 
a grid of experimental conditions, with grid spacing selected somewhat arbitrarily. For 1 − 3 parameters, this 
method is manageable; for  > 3 parameters, the procedure becomes increasingly ineffective and impractical. In 
these cases, a common method of experimental guidance is to determine the next measurement using intuition 
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based on past measurements and the experimenter’s knowledge/experience. For a small number of parameters 
and an experiment that has been performed extensively before, this approach can be highly successful; however, 
for new experiments it can introduce a strong bias and potentially fails to discover new science in unexpected 
parts of the parameter space. Also, this method is rather costly, because it needs the constant attention of a human 
expert to determine the next, often non-optimal, measurement. And last but not least, the intuition-based and 
grid-based approaches provide no quantitative measure to decide when the experiment can be terminated.

Rapidly advancing computing power and instrumentation efficiency makes it increasingly important to be 
able to perform experiments quickly and autonomously. This large-scale automation and optimization allows 
for more complex scientific challenges to be explored by minimizing the number of data points needed to fully 
characterize a system. These important experimental issues serve as the motivation for the work on methods for 
optimal and autonomous experimentation.

Design of experiment (DOE) methods seek to find optimal measurement schemes4. These methods are largely 
geometrical, referred to as static sampling methods since they are independent of the measurement outcome 
and are concerned with efficiently exploring the entire parameter space. The Latin hyper-cube technique is the 
prime example of this class of methods5,6. When the optimization of a specific feature of a material is the goal, a 
one-variable-at-a-time (OFAT/OVAT) approach7 is often employed. This method fails, however, for non-convex 
or non-concave model functions, i.e. function that exhibit second derivatives that change signs. Most of the recent 
approaches to steer experiments fall into the category of dynamic sampling algorithms and are largely based on 
machine learning techniques, in which data is used for the machine to learn about a model function2,8–10. The 
authors of Ref. 8, for instance, used a sparse supervised learning approach to find the most information-rich loca-
tions in order to minimize the dose in diffraction-based protein crystal positioning. The work in Ref. 11 utilized 
the power of a deep neural network to simulate costly measurements. Another, very efficient type of algorithms 
comes from the field of image reconstruction. Here, the goal is to minimize the number of measurements needed 
to recreate an image9. However, these methods are generally optimized to explore low-dimensional spaces. A 
useful collection of methods can be found in Refs. 12 and13.

Noack et al.1 explored a general approach to autonomous experimentation based on ordinary Kriging (OK), 
called SMART, which stands for Surrogate Model Autonomous expeRimenT. OK is able to efficiently generate a 
surrogate model function based on collected data, and compute a corresponding variance, which can be thought 
of as an error function that quantifies the uncertainty of the surrogate model. The next measurement should then 
be performed where the variance is estimated to be a maximum14, since this will decrease uncertainty the most 
and thus maximize information gain. This procedure is applied iteratively. After each measurement conducted 
at an uncertainty maximum, a new model function and variance are constructed. This way, the autonomous 
procedure iteratively decreases the error of the surrogate model. Figure 1 shows a schematic of the autonomous 
experiment procedure. It was shown that the method is able to efficiently uncover the correlations between meas-
urable properties and a set of experimentally controllable parameters (temperature, pressure, etc.) by means of 
a surrogate model. Using the data of all past measurements, the method rapidly reduced the initial error of the 
model and was able to find a high-confidence model quickly. Additionally, the method returns an estimated error 
after each iteration, providing a convenient termination criterion.

However, comprehensive testing has also uncovered several limitations of the SMART method. OK is able 
to perform regression very efficiently by utilizing a stationary kernel, called the variogram. The variogram is 
found by fitting a predefined parametric function to the relationship of data differences and distances. Without 
user input, the function is fitted to the global data set and can therefore not contain any information about local 
data variation. Therefore, OK exclusively takes into account global variations of the data. In statistics, this phe-
nomenon is known as stationarity; the mean is an unknown constant within the domain, and the difference in 
the data only depends on the distance, not on the respective location of the data within the domain. OK, without 
additional experiment-specific tuning, therefore assumes first and second order stationarity of the data, which 
cannot be guaranteed in an autonomous experiment. The stationarity requirements mean that OK cannot take 
into account local features of the model, such as local high gradients.

Even though many improvements have been proposed for Kriging (e.g. universal Kriging), they are either not 
accomplished autonomously or use the entire armada of Gaussian process regression methods which are compu-
tationally more costly. For instance, whenever autonomy is not required, the user can predefine a length-scale to 
make the variogram more sensitive to local data, which is not an option for autonomous experiments.

The purpose of this work is to augment the OK error function, to create an objective function that reflects 
local information of the model. This local information will be referred to as "features" throughout the paper, and 
the particular examples of gradients and function values will be investigated. The OK error function, together 
with a measure of these features will be used to define an objective function, whose maximum constitutes an 
optimal next measurement location. Refer to Figure 2 for a schematic of this process. Additionally, instead of 
selecting measurements by finding the maximum of an error function that corresponds to the model, we explore 
an alternative approach of finding the maximum error per experimental cost. The error function is used to alter 
the objective function which results in optimal experiments with respect to a defined cost measure.

The proposed method is closely related to Bayesian optimization15–17. In particular, making use of the func-
tion values for the computed surrogate model is a well-understood approach in Bayesian optimization. While 
Bayesian optimization mainly works with the function value of the model, in this paper, the main goal is to 
provide the experimentalist with a general and intuitive framework to make a Kriging-based autonomous search 
algorithm more sensitive to a variety of features of interest and to handle measurement costs. Also, the proposed 
method provides a convenient way to shift between exploration and exploitation of the autonomous experiment, 
without any user interaction.

This paper is organized as follows. First, the derivation of the necessary theory of ordinary Kriging will be 
repeated for convenience, adding the treatment of local features of the model and the costs. Next, several synthetic 
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tests based on a purposefully chosen test function will be presented to showcase the functionality of the new fea-
tures. The last section shows the results of an x-ray scattering experiment at a synchrotron beamline, which took 
advantage of some of the proposed methodology.

Theory
We first present a concise derivation of the ordinary Kriging variance (or just Kriging variance) σ2(p), which we 
will refer to as the “error function” throughout this paper. We will then augment the error function, using local 
information and word measurement costs, to create an improved objective function, whose maximum constitutes 
the optimal selection for the next measurement. Local features (e.g. gradients) are included by introducing a 
probability density function that defines a probability of finding certain values of the feature within the domain. 
This probability is then used to make decisions regarding the use of the feature for steering. Costs are included by 
defining local cost functions, whose global minimum is located at the last measurement point. In other words, 
local cost functions define the cost of movement in  away from the position of the most recent measurement. 
The offset of the local cost function defined the average cost of a measurement.

Derivation of the Kriging variance. Ordinary Kriging, an instance of Gaussian process regression, is used 
to compute an interpolant that inherently minimizes the estimated variance between the data points. Kriging 
constructs the surrogate model function as a linear combination of weights w(p) and data points ρ(pi), where i is 

Figure 1. Schematic of an autonomous x-ray scattering experiment. When the measurement is performed, 
the data acquisition and data processing occur automatically. From the processed data, the SMART algorithm 
selects the next measurement parameters by finding an error function, a corresponding objective function 
and its maximum. Figure 2 provides a more detailed look into the way the data is used to find the optimal 
next measurement position. The model is computed as a byproduct in each step. The graphs (bottom) show 
an example where a one-dimensional problem is studied. As the number of measurements (N) increases, the 
surrogate model more and more closely matches the actual physical system behavior and the error (gray shade) 
decreases. For low data density, the actual model does not have to be inside the gray error bounds (far left). This 
is a common behavior which will not affect the autonomous experiment and it will disappear when more data is 
gathered.
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the index of the ith measured data point, not the ith component of p. In an imaging context, the location in the 
image x is contained in p. The surrogate model function is defined by 

∑ρ ρ= wp p p( ) ( ) ( ),
(1)

s
i

N

i i

where ρ(pi) are the measured values of the true physical model ρ at point pi, obtained from previous measure-
ments. Kriging is based on minimizing the mean squared prediction error (see Ref. 18 for details) 

Cp w Cw w D( ) 2 , (2)T T2
00σ = − −

where the matrix C and the vector D are defined as 

C p p1 ,
(3)

ij i j
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−


D p p1 ,
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where again, p refers to the position in  where the error is to be estimated, and γ is the so-called variogram. The 
matrix C is the covariance matrix that contains the correlations between all points in the data set. The vector D 
contains all correlations between the points in the data set and the point to be estimated. Since C−1 is required in 
the calculation, the method has numerical complexity O(N3), where N is the number of measurements.

In this work, the variogram is defined as 

γ = − −h e( ) 1 , (5)lh

where h is the Euclidean distance between two points p p1 2 2
|| − || . The variogram in Eq. 5 is referred to as expo-

nential kernel in the Gaussian process literature. Other variograms can be considered. See Ref. 19 for a compre-
hensive overview of kernels. The variable l is chosen in a least-squares manner to fit the squared difference of the 
data (see Figure 3). Local constraint minimization of Eq. 2 via the Lagrange multiplier technique18, yields the 
equation for the weights 

λ= −−w C D 1( ), (6)1

where 

λ =
−

.
−

−
D C 1

1 C 1
1

(7)

T

T

1

1

Figure 2. A flow chart depicting, in detail, the path from data to the next optimal measurement point. This 
figure should be interpreted as an extension to Fig. 1. Note that this paper is concerned with the left column of 
the flow chart. The Theory section will guide the user through each step in the flow chart.
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1 in Eqs. 6 and 7 is a vector of 1s. The estimator has to be unbiased, therefore we assume ∑wi = 1, which serves as 
the constraint in the optimization. A major take-away from Eq. 6 is that the weights can be entirely determined 
by the geometry of the data and the point at which we want to estimate the surrogate model function. Inserting 
Eqs. 6 and 7 in Eq. 2 yields the final expression for the error or the so-called ordinary Kriging variance 

σ λ= − −Cp w p D p p( ) ( ) ( ) ( ), (8)T2
00

which we will refer to as (Kriging) error function throughout this paper. The main goal, in this work, is to augment 
the Kriging error function in Eq. 8 to account for local features of the model and the costs of the measurements.

Accounting for features of the surrogate model. Here we introduce a simple method to incorporate 
local information about the surrogate model function for steering autonomous experiments efficiently. This is 
done by augmenting the original error function in Eq. 8 by terms encoding the desired feature. The challenge 
is to make decisions about how strongly to emphasize the selected feature. We accomplish this by making use 
of probability density functions for the feature. For illustrative purposes, we will deal with the specific example 

Figure 3. Variograms for two test functions and random measurement points (blue dots in (a) and (c)). 
Variograms serve as a measure for the dependency of data correlation on distance and play a vital role in 
Kriging. The dots in (b,d) show the difference of the data, defined by p p( ( ) ( ))ij i j

2ρ ρ ρ∆ = − . The red lines 
represent the fitted variograms. The shape of the variogram is found by a least-squares fitting of a parametric 
function to the squared difference of the data points. This fitting is repeated periodically to account for the most 
recent data. Note that C and D in Eqs. 3 and 4 are functions of the variogram. A mostly-flat variogram, that 
reaches a seemingly-constant value at low distances, translates into a strong correlation of data points. A steeply 
increasing variogram value over all distances translates into statistical low correlation of data points. (a) Test 
function portraying a mathematical model with correlations at many different length scales. This function is the 
well-known Ackley’s function. (b) Variogram, γ, for Ackley’s function in (a). Model function values are strongly 
correlated locally, and also over large distances. The average squared distance (red line) suggests that local 
information can be extrapolated to remote parts of the parameter space. (c) Test function portraying a 
mathematical model with small correlations over large distances. (d) Variogram, γ, for the synthetic test 
function in (c). While some model function values are highly correlated, there is a large set of pairwise 
comparisons where the correlation is very poor. The average behavior (red line) suggests that one needs to 
collect information over relatively short distances in order to confidently reconstruct the model.

https://doi.org/10.1038/s41598-020-57887-x
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of the absolute value of the gradient and the function value of the surrogate model function as the “features” of 
interest where applicable. The absolute value of the gradient is useful when the experimental aim is to find regions 
of rapidly changing characteristics (e.g., phase boundaries); while the function value can be used to home in on 
the specific set of parameter values that optimize a material property (e.g., largest grain size). Instead of using the 
absolute value of the gradient one can only use a single component of the gradient if desired. We will therefore, 
from here on out, not make a distinction between a component of the gradient or the absolute value, and just refer 
to it as gradient.

A feature evaluated at a large number of randomly chosen points throughout the parameter space (random 
according to a uniform probability density function), constitutes a random variable which defines a probability 
density function. This probability density function can be used to calculate the probability of finding the feature 
within selected limits. For instance, evaluating the absolute value of the gradient of the surrogate model at 1000 
points will give a distribution, which can be used to calculate the probability that a newly chosen point shows 
a gradient within a given range. Figure 4 shows the probability density function (PDF) for randomly chosen 
gradients, where the gradient values for each test function are scaled to [0, 1], and each PDF integrates to unity 
(as required for probability density functions). From this PDF, our algorithm can make decisions on whether 
the chosen feature, here the gradient, should be taken advantage of or not. If the vast majority of gradients are 
relatively high, the algorithm should not focus on them since high-gradient regions are common. If, on the 
other hand, the vast majority of gradients are characterized as low and few gradients are characterized as high, 
the high gradients areas are exceptional and should be preferentially explored as features of interest. What 
constitutes “high” and “low” relative gradients can be defined by the user, not as absolute values but as relative 
values  ∈ [0, 1].

The described procedure is used for both the gradient and the function value of the surrogate model function. 
A measure of how much emphasis should be placed on a given model feature in steering the experiment can then 
be defined by the following unitless functional: 

∫

∫
∫

φ χ

χ χ

χ χ

χ χ

=











<

>

−

−

g a b c d

for g d c

for g d d

g d c

d c
else

( ( ); , , , )

0 ( )

0 ( )

( )

(9)

a

b

a

b

a

b

where the function g(χ) is the PDF for the gradient or function value of the model, as a function of the scaled 
gradient χ (see Fig. 4), and a, b, c and d are user defined constants  ∈ [0, 1]. Naturally, a and b must have the 
unit of χ and c and d are unitless probabilities. It is important to note here that the choice of the constants does 
not depend on the unknown final model function, which would be undesirable, but only on the overall goal of 
the experiment. In other words, knowledge of the outcome of the experiment is not strictly required, but can be 
used if it exists. Intuitively speaking, the constants a and b are a way to communicate for the user which relative 
feature range constitutes high or low values. If, for instance, the user is looking only for areas where the gradient 
is significantly higher than the average, these values should be close to 1 (a < b). The values c and d are a way to 
express how common these features are. For example, if the user is interested in certain gradients which are very 
sparse, then possible values would be c = 0.2 and d = 0.6. In this case, when the feature is too common, it will be 
ignored. As for the sensitivity of the steering with respect to those parameters, it can be said that reasonable values 
will lead to an improvement of the resolution of the model. In the worst case scenario, the ranges for the features, 
specified by the users are too dense or sparse, such that the algorithm converts word to pure ordinary Kriging. φ 
will later serve as a coefficient to weight the impact of the feature on the final objective function, whose maximum 
will dictate the location of the next measurement (see Fig. 5). Eq. 9 is a piecewise linear function of the probability 
for a certain range [a, b] of the feature.

Accounting for the costs of measurements. Up to this point we have developed a method that will 
inherently minimize the estimated model error for a given number of performed measurements. However, in 
many cases in experimental sciences, the objective, in fact, is not to minimize the total number of measurements 
but some other quantity reflecting experimental costs, for instance, time or the use of a costly material. To address 
these cases, we introduce local cost functions which can augment the original error function. Costs are accounted 
for in the sense of local costs of moving to a new point p from the previous point p in the experimental parameter 
space. For this we define a local cost function as 

 

c c f p pp p p p( , ) ( ) ( ),
(10)i

N

i i i∑= − = −

where f p p( )i i i−  are linear, sigmoid or other functions defining the cost of moving in the direction pi. Note here, 
that pi now refers to the ith component of p. p is the location of the last measurement point, while p is the new 
point at which we are computing the cost and later the objective function value. Therefore, the cost function is 
centered at the last measurement point and reflects the cost of moving to the next measurement location. In this 
case ∣∣ ⋅ ∣∣ is the L1 norm (for more information see Ref. 20), which is the most applicable for many experiments. This 
is due to the fact that the parameters of an experiment can often only be changed one at a time. For instance, if the 
parameters are the position of the motion stage at a beamline (e.g., for a different sample position), movement may 
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Figure 4. Four different test functions and the corresponding probability densities of the gradient. The step 
function (a) is mostly flat but comprises a small region with exceptionally high gradients (see (b)). This is a 
prime example for invoking the gradient. The test function in (c) comprises almost entirely (comparably) high 
gradients (see (d)). Here, the gradient would not be used for steering. The third test function (e) comprises non-
zero gradients almost everywhere and seemingly no extremely steep regions either, which is reflected by the 
corresponding distribution of gradients (f). In this case, it is up to the choice of the user-defined gray interval if 
the gradient is invoked. The last function (g) is an often-encountered problem in which the human expert wants 
to find small areas of interesting activity. Here, the gradient would be invoked, if the user defines small bounds 
on the integral in Eq. 9 (see (h)). The gray shaded area dictates how strongly the gradient is invoked; when this 
area is large the gradient should be ignored. The limits of the integral and its impact on the gradient can be 
defined by the user. The reader is encouraged to judge how strongly they would have invoked the gradient in 
each of the examples.

https://doi.org/10.1038/s41598-020-57887-x
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need to occur in sequence (e.g. vertically then horizontally) rather than simultaneously (e.g. diagonally). The cost 
of moving a motion stage is approximately described by a linear function of the travel distance, while switching 
samples may be defined by a sigmoid function if the cost is independent of which new sample will be measured 
next (Fig. 6(b)). One could also use a step function in this case, but maintaining differentiability for the cost func-
tion can be advantageous as it will keep the final augmented objective function, to be described next, differentiable. 
Maintaining differentiability is necessary if local optimization algorithms, like gradient based optimization meth-
ods are used. Note that when using linear cost functions, differentiability is not provided and derivative-free opti-
mization techniques have to be used.

Combining variance, features and costs into one objective function. When combining the Kriging 
error function, the features of the surrogate model and the costs into one equation, we have to ensure that their 
associated units make physical sense. The Kriging variance, or error function, has the unit of the model squared 
([model2], for example nm2 for grain size), the surrogate model function has the unit of the model (in this exam-
ple [nm]), the gradient has the model unit per distance in parameter space  (e.g. [nm ∕mm]) and the costs have 
assigned units (minutes, dollars, etc.). Since a measurement point p ∈  should be selected to improve the 
surrogate model, we can intuitively state that we want to perform the next measurement where the error improvement

cost
( )  

is a maximum. Therefore, the objective function, which we want to maximize, can be defined as 





σ φ ρ φ ρ
=

+ ∇ +

−

∣ ∣
F

c
p p

p p p

p p
( , )

( ) ( ) ( )

( )
,

(11)

n2
1 2 2

where n is the nearest-neighbor distance averaged over all points in the data set (respective points with smallest 
Euclidean distance). Eq. 11 now has the desired unit of error in the model unit per cost. The n term balances 
units by selecting an appropriate scale by which we combine model values and gradients thereof; φ1∕2 are defined 
in Eq. 9. In this case, we are using two features with their respective distributions, e.g. the gradient and function 
value of the surrogate model.

The added features of interest—the gradient and the function value of the surrogate model are used here—
raise the function value of the objective function; therefore, regions where the feature is present are preferred as 
the next measurement location. The objective function will have lowered function values in regions where the 
cost is high, leading to a preference for the next measurement where the cost is low, thereby maximizing the infor-
mation gain per cost (see Fig. 6) per measurement.

Maximizing the objective function. When optimizing the highly non-linear objective function, we have 
to strike an optimal trade-off between computational efficiency and functionality. Noack et al.1 employed a 
genetic algorithm to quickly find a suitable solution. The use of other global optimization methods, like differen-
tial evolution, are acceptable. The genetic algorithm and differential evolution are ideally suited when the dimen-
sionality of  is low and only one, potentially local, maximum is sufficient. While the global optimum is the 
location of the optimal next measurement, any local optimum is an admissible solution. In low dimensional 
spaces, these algorithms can deliver a maximum very efficiently, which is preferred when many measurements 
have to be performed in a short amount of time. If many local maxima are sought, a purely global optimization 
method cannot guarantee to deliver. In this particular case, the HGDN algorithm21 is a good choice since it can 
find and eliminate optima, by using deflation. After deflation, the optimum cannot be found again by a 
Newton-based optimization. The optima (here maxima) of the objective function can then be provided to the 
measurement instrument. After each measurement, the updated data set is then used to create a new error and 
objective function.

Figure 5. A graphical depiction of the function φ that is used to weight the impact of the feature on the final 
objective function. The function shows that only certain probability values (abscissa) will result in invoking 
the gradient. Within the limit [c, d], the dependence is linear. c and d can be defined by the user, as well as the 
boundaries of the integration domain a and b.
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Synthetic Test
To highlight the different features of our proposed advancements of ordinary Kriging for autonomous experi-
ments, we present a side-by-side comparison for each proposed improvement based on synthetic tests. We will 
refer to ordinary Kriging often simply as Kriging or abbreviate it by OK. The test function used is shown in 
Fig. 7, together with some illustrations showing the respective surrogate model for each of the method improve-
ments. This test function arose from an actual x-ray scattering experiment performed at the CMS beamline at the 
National Synchrotron Light Source II, Brookhaven National Laboratory1. The sample comprises large regions of 
approximately zero function value and gradients, and limited regions of high-gradient and high-function-value 
regions. It is therefore ideally suited for our synthetic tests. All figures shown are the result of applying the pro-
posed methods to explore the same test function, based on linear interpolation of the measured data points.

Kriging vs gradient-supported and function-value-supported Kriging. First, we want to compare 
the results of pure Kriging, gradient-supported Kriging and function-value supported Kriging. The three algo-
rithms were challenged to approximate the test function depicted in Fig. 7. The results are presented in Fig. 8. For 
this comparison the synthetic autonomous experiment was terminated after 500 measurements. The decrease in 
the corresponding mean absolute percentage errors with the number of measurements is shown in Fig. 9. Both 
figures clearly show that the quality of the gradient and function-value supported approaches outperform pure 
Kriging. This is due to the fact that, after an initial period, the supported algorithm can target specific regions 
which will contribute positively to the accuracy of the approximation. The values in Eq. 9 were chosen as follows: 
a = 0.8, b = 1.0, c = 0.02, d = 0.5.

Kriging vs cost-constrained Kriging. This comparison is not concerned with the quality of the recon-
struction, but rather with its efficiency. As described in the Theory section, the error function can be adjusted, so 
that the maximum in the objective function represents the best error improvement per cost. We again terminated 
the synthetic autonomous experiment after 500 measurements and the results are summarized in Fig. 10. The cor-
responding mean absolute percentage errors are displayed in Fig. 11. The two figures convey how choosing meas-
urements by maximizing the error improvement per cost can make the autonomous experiment more efficient. 
Figure 10 shows that measurements are organized along a curve to minimize cost of movement. Figure 10 shows 
the result of this procedure; lower errors are reached at lower costs. The cost, in this example, was implemented 
as directional distance (L1).

The role of costs in feature-supported Kriging. This comparison is concerned with the combination 
of feature-supported (here function-value and gradient supported) and cost-constrained Kriging. We compare 
the models after a certain cost spent, not after a certain number of measurements. The results are summarized 
in Fig. 12. The figure shows that a high resolution can be reached more efficiently by using costs in combination 
with function value and gradient support. However, the result also shows that the high resolution is more spread 
out and not as focused. This is due to the cost constraint, which causes the possible optimal-next-measurement 
point to not move freely.

Kriging vs cost-constrained Kriging in three dimensions. Noack et al.1 showed ordinary Kriging 
applied to a three-dimensional physical test function which is defined as the diffusion coefficient D = D(r, T, Cm) 
for the Brownian motion of nanoparticles in a viscous liquid consisting of a binary mixture of water and glycerol: 

Figure 6. Typical error and cost functions and the resulting objective function. Note that the cost function 
depends on the location of the last measurement in the parameter space and changes with each new 
measurement. Therefore, finding the maximum of the objective function amounts to finding the best ratio of 
model accuracy improvement and cost efficiency. The position of the maximum of this function constitutes the 
optimal next measurement, which can be communicated to the measuring device. (a) The original error function 
e(p). (b) A typical local cost function. This cost function combines linear costs in the p1 direction, such as the one 
associated with sample movement, and a sigmoidal cost in p2 direction, associated with changing samples, for 
instance. It is centered around the last measurement points (marked). (c) The resulting objective function defined 
in Eq. 11. The objective function has the units of error

costs
, where the error has the unit of the model itself.
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where r ∈ [1, 100] nm is the nanoparticle radius, kB is Bolzmann’s constant, T ∈ [0, 100]° C is the temperature and 
μ = μ(T, Cm) is the viscosity (Ref. 22), where Cm ∈ [0.0, 100.0] % is the glycerol mass fraction.

The diffusion coefficient of nanoparticles in complex fluids can be measured by x-ray photon correlation 
spectroscopy (XPCS), a coherent x-ray scattering method, which is available at modern x-ray light sources23,24. 
The dimensionality of this example emphasizes the need for autonomously steered experiments. The error con-
vergence can be seen in Fig. 13. The error was defined as proportional to the directional distance (L1). The costs, 
however, significantly vary in different directions, as it is common for many experiments. This example shows 
how beneficial the inclusion of a cost function can be when the dimensionality of the parameter space increases.

Figure 7. The test function used for all synthetic tests and its approximation using different versions of the 
proposed method. The test function was created by using all 4025 data points. The approximations use 1000 
data points. Note, that even though the data amount is reduced to about 25%, the gradient and function-value 
supported results show a higher resolution in some of the areas of interest. (a) The test function created by 
using all 4025 available data points. (b) The approximation of the test function using ordinary Kriging. (c) 
The approximation of the test function using ordinary Kriging supported by gradient information. (d) The 
approximation of the test function using ordinary Kriging supported by function value information.

https://doi.org/10.1038/s41598-020-57887-x


1 1Scientific RepoRtS |         (2020) 10:1325  | https://doi.org/10.1038/s41598-020-57887-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Experimental Validation
The presented methods were employed to conduct autonomous x-ray scattering experiment at the Complex 
Materials Scattering (CMS, 11-BM) beamline at the National Synchrotron Light Source II (NSLS-II), Brookhaven 
National Laboratory. Experimental control was coordinated by combining three distinct Python software pro-
cesses: one controlling the beamline, one performing automated analysis of newly collected detector images, and 
one implementing the Kriging-based optimization presented herein. For the experiments discussed herein, trans-
mission small-angle x-ray scattering (SAXS) data were collected using a two-dimensional area detector positioned 
5.090 m downstream of the sample. The incident x-ray beam energy was 13.5 keV, and was focused to a spot size 
of 0.2 mm by 0.2 mm. The samples studied were self-assembling polymer thin films cast on a silicon substrate 
(0.2 mm thickness). In particular, the polymer films were block copolymers, which are self-assembling materials 
that spontaneously form well-defined nanostructures25. Films were applied using a novel positionally-controlled 
electrospray method26, allowing in-plane gradients in material composition to be created. This allows a single 
sample to represent a large library of different material compositions. The goal of the autonomous experiment 
was to measure gradient samples, in particular mapping the heterogeneity in ordering (as measured by x-ray 
scattering) both to probe the underlying materials physics, and to test and validate the deposition characteristics 
of the electrospray method. To illustrate this purpose, we present here data for a sample coated using non-optimal 
electrospray parameters, which thus displays both a smooth variation in material properties due to the composi-
tion gradient, as well as heterogeneity due to imperfections in the deposition.

The sample consisted of a ternary blend polymer film with gradient composition, deposited on a silicon 
substrate onto which a hydroxyl-terminated polystyrene-random-poly(methyl methacrylate) (PS-r-PMMA) 

Figure 8. Measurement distribution and surrogate model function after 100, 300, and 500 measurements 
using ordinary Kriging (OK), ordinary Kriging with gradient support (OK + Gr) and ordinary Kriging with 
model-function-value support (OK + FV). Note how the definition of certain features of the model function of 
gradient and function-value supported calculations surpass the quality of ordinary Kriging.

Figure 9. The mean absolute percentage errors corresponding to the experiments shown in Fig. 8. Note the 
increased performance of gradient and function-value-supported ordinary Kriging, which is in agreement with 
the message conveyed in Fig. 8.
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copolymer brush with 61% PS content had been grafted27. The brush yields a chemically neutral substrate with 
respect to the ordering of the block copolymer film (PS-b-PMMA) that is subsequently deposited. The gradient 
polymer film deposition was accomplished using a custom-built combinatorial gradient electrospray deposition 
instrument, which is described elsewhere26. Briefly, immediately before spray deposition, polymer solutions were 
combined and mixed within a 50 mm long needle having a 100 μm inner diameter orifice in proportions dictated 
by three automated, synchronized syringe pumps. Deposition was confined to a 1 mm diameter spot of electro-
sprayed material produced using a “small spot” extractor tube. An automated x-y stage translated the sample 
during spraying to deposit the polymers in a raster pattern of 32 mm long lines in the y-direction with 1 mm steps 
between them in the x-direction, thereby creating a 32 × 32 mm square pattern. Each spray line in the y-direction 
included a continuous gradient from 3.5 kg/mol PS homopolymer (y = 0 mm) to 3 kg/mol PMMA homopoly-
mer (y = 32 mm); in the positive x-direction, a 104 kg/mol PS-b-PMMA lamellae-forming diblock copolymer 

Figure 10. Model, measurement distributions and movement paths after 100, 300, and 500 measurements 
using ordinary Kriging (OK) and OK + Costs. Contrary to ordinary Kriging, cost-supported ordinary Kriging 
organizes subsequent measurements in a line to save movement costs. The color of the lines are for optical 
assistance to see the position of the measurements in order (blue to yellow and opaque to transparent).

Figure 11. The mean absolute percentage errors corresponding to experiments shown in Fig. 10. Both 
experiments were run up to 500 measurements. Note that, especially in the beginning of the experiment, the 
cost-supported method reaches the same error at less cost.
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was blended into the sprayed solution at increasing proportions from 0 to 100% that were constant within each 
spray line (3.125% steps per line). It is expected that composition steps in the x-direction are smoothed out by 
some small degree of overlap between adjacent spray lines. As a result, the target pattern is a square with pure 
block copolymer on one side (x = 32 mm) and pure homopolymer on the opposing side (x = 0 mm), where the 
homopolymer transitioned from PS to PMMA in the orthogonal y-direction. Overall, the sample thus represents 
a two-dimensional ternary phase diagram with every possible composition of the three mixed components (PS, 
PMMA, and PS-b-PMMA) represented.

All sprayed polymers were dissolved in propylene glycol monomethyl ether acetate (PGMEA) at a concentra-
tion of 1% (w/w) and solutions were sprayed at a rate of 10 μL/min. For each gradient line, the substrate moved 
linearly at a speed of 0.15 mm/s. The substrate temperature was held at 150 ° C,  and extractor ring and nozzle 
voltages were 1 and 3.5 kV, respectively. After deposition, the PMMA polymer within the film was selectively 
infiltrated with aluminum oxide as described previously28 to increase X-ray scattering contrast.

For this experimental exploration, the costs were of special interest. The experimental cost was calculated as 
the total time required to acquire a new datapoint, including motion of the sample to the new (x, y) coordinates 
selected by the algorithm, as well as the detector exposure time for the measurement. The algorithm presented 
here can be provided with an initial estimate for the cost function; however it will also track the returned exper-
imental costs and compute an improved empirical cost model consistent with the actual measured costs. This 
cost update is done as follows: All measurement costs are recorded and outliers are removed. Periodically, a 
Newton optimization finds the parameters of the predefined cost function that best explain the recorded meas-
urement costs. The influence of the cost modeling can be seen quite explicitly in Fig. 14. The cost keeps meas-
urements “localized”, favoring new measurements that are close to the current (x, y) position. More interestingly, 
in this example the algorithm learned an anisotropic cost model; in particular determining that motion in the 
x-direction are lower-cost relative to motions in the y-direction. Correspondingly, the search path favored by 
the algorithm was to explore along a “stripe” at constant y, and move to a new x position only after sufficient 
exploration in this direction. This disparity in cost for the x and y directions was identified—after experiment 

Figure 12. Model and measurement distributions after a cost of 400 using ordinary Kriging supported by 
gradients and function values (OK + Gr + FV) versus the same, constrained by costs (OK + Gr + FV + Costs). 
Note the higher average resolution in the cost-constrained case. However, the resolution in high-gradient and 
high-function-value regions is slightly lower.

Figure 13. Mean absolute percentage error for a three-dimensional physics-inspired synthetic test function. 
The costs describes the total distance traveled. The cost-supported Kriging can lower the error much faster 
compared to Kriging without the cost support.
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conclusion—to be due to different motor speeds used to drive the two directions. Thus, the algorithm was able 
to learn and exploit a cost model that was not provided to it by the experimenters; indeed the difference was not 
known to the experimenters until after data collection was concluded. This emphasizes one key advantage of 
adaptive autonomous methods, in that they are able to both learn useful models for efficient constrained explo-
ration of parameter spaces; and moreover that they do so adaptively and thus in a way that continually updates to 
match the experimental reality. The final local cost function is presented in Fig. 15.

The algorithm also efficiently reconstructs a model for material ordering. As can be seen (Fig. 14), the sam-
ple exhibited significant heterogeneity in the scattering intensity, with ordering being overwhelmed by regions 
of significantly higher scattering signal despite the underlying smooth gradient in material composition. This 
map suggested that the film was substantially thicker in localized regions, and was used to further optimize the 
electrospray deposition (and eliminate droplet formation which gave rise to these local defects). The autonomous 
algorithm was able to quickly identify heterogeneity, and localize these defects. Further measurements efficiently 
refined the delineation of these defects by adding new data points as necessary. Overall, this autonomous exper-
iment demonstrates the utility of machine-guided exploration for providing experimenters with useful data, 

Figure 14. The resulting model for material ordering and the exploration path after 100, 500 and 1500 
measurements (from top to bottom). The algorithm adjusted the cost function to account for the different 
speeds of the stage moving in different directions. Therefore movement in the horizontal direction in the figure 
is cheaper and therefore favored. The final cost function can be seen in Fig. 15. The color of the lines are of 
optical assistance to emphasise the path of the measurements.
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especially in cases where the experimenter cannot define ahead of time how the search should be performed. 
Moreover this test demonstrates the value of learned models for the surrogate, uncertainty, and cost; since adap-
tive models can react to unanticipated structure in the accumulated experimental data.

Discussion
In this paper we have proposed several advancements to the ordinary Kriging method used to steer autonomous 
X-ray scattering experiments in Ref. 1. The first type of enhancements enables autonomous experimental modes 
that depend on local features of the surrogate model. The objective of such steering modes may be to optimize a 
certain measurable material property or to recognize and elucidate phase boundaries in the material parameter 
space. In these cases, the domain scientist knows that high function values or high gradient values in the surro-
gate model are the most important for steering the experiment, and this information can be used to make the 
autonomous experiment more efficient for a specific purpose of interest. Even if no prior knowledge about the 
model exists, the feature can be invoked if the user decides that the feature should be emphasized, contingent 
on its existence. Figures 8 and 9 show the improvement of the model quality given a number of measurements. 
For the examples studied here, the autonomous method converges to a low-error reconstructed model much 
more rapidly when exploiting these additional features. However, it is important to note that the success of the 
function-value and gradient-supported procedures depends highly on the character of the function being probed. 
If, during execution time, the chosen feature turns out not to be informative, the proposed algorithm will rec-
ognize it and cease to use the quantity. Therefore some model functions will not permit the feature to be used 
at all; the algorithm will, by itself, determine if invoking the selected feature is advantageous to the autonomous 
experiment outcome or efficiency. If not, the algorithm autonomously drops back to ordinary Kriging. Setting the 
user defined constants does not strictly require any prior knowledge about the model, but rather entails knowing 
which features of this model should be emphasized during steering. We want to emphasize that our treatment of 
local features can be included without adding significant computational costs. In cases where computational costs 
are not a limiting factor—such as when measurement suggestions are not needed rapidly—more sophisticated 
methods can be employed. Gaussian process regression is able to use non-local kernels which could, for instance, 
result in higher error function values in regions where the characteristic length scale is smaller. This commonly 
needs the maximization of a log likelihood, instead of a simple fitting of a variogram, which is a potentially 
expensive procedure. However, the authors are aware of these methods and will investigate and utilize them in 
future work.

The second type of advancement allows for the incorporation of experimental costs in guiding autonomous 
experiments. Figures 10 and 11 show how beneficial including cost can potentially be. Figure 10 shows how, 
under costs, measurements are autonomously organized in a pattern along a curve; thereby minimizing costly 
movement. Figure 11 shows the impact of the proposed method on the error of the autonomous experiment. The 
error drops more quickly compared to the same experiment without cost. Our treatment of costs is in the image 
of a greedy algorithm, i.e. the costs are re-evaluated in each iteration and measurement with the locally maxi-
mum improvement per cost is chosen. There is no guarantee that, looking back after a number of measurements, 
that, given the now known model, all measurements have been chosen to globally minimize the costs of the 
measurement. In other words, if we had known the model beforehand, we could have chosen more cost efficient 
measurements, a common issue with greedy algorithms. However, knowing the model beforehand would defeat 
the purpose of the experiment. In future work, one could include a global test function specified by the user that 
defines how the local cost functions change across the parameter space, depending on certain characteristics of 
experiments in different regions. For instance, in x-ray scattering, certain regions could require a longer exposure 
time than others, leading to higher measurement costs.

Figure 15. The cost function for the beam line experiment. Note that while a guess of the cost function has 
to be provided by the user, it will be updated as more data is recorded. The figure shows the final cost function 
centered at the final measurement point (i.e., the point of minimum cost). The algorithm reliably determined 
the different speeds of stage movement in x and y direction.
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We want to emphasize that, even though we mostly have shown the new techniques being applied separately, 
the experimenter is free to combine features of the model and costs. Also, often it is desirable to switch between 
modes, which has shown to be very useful. This switch or a transition could be dependent on the number of 
measurements or on some preliminary interpretation of an early result. The take-home message here is that the 
proposed advancements of the Kriging-based autonomous experimentation can be combined or transitioned 
between dependent on the overall goal of the experiment.

One of the most challenging tasks we face when working on autonomous machines is that, contrary to many 
different fields, user interaction cannot be mandatory. Therefore, stability has to be the number one priority. One 
difficulty when invoking a feature of the surrogate model in the decision-making process is that it can lead to 
clustering, i.e., getting stuck in a certain confined region in the parameter space. When clustering becomes too 
strong, the correlation length of the data becomes very short and the prediction power of the algorithm actually 
decreases. Future work will therefore treat other ways of including local information. One possibility could be to 
use a non-stationary kernel which, unfortunately, as previously stated, is expected to come with high computa-
tional costs, which can however, partly be decoupled from the measurements.
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