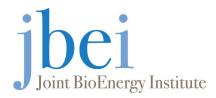
Lawrence Berkeley National Laboratory

Recent Work

Title

Transcriptomic Studies of the Response to Exogenous Exposure and Endogenous Production of Biofuel Candidates in E. Coli

Permalink


https://escholarship.org/uc/item/9x50c30r

Authors

Dahl, R. Rutherford, Becky J. Mukhopadhyay, Aindrila et al.

Publication Date

2009-12-18

Transcriptomic Studies of the Response to Exogenous Exposure and Endogenous Production of Biofuel Candidates in E. Coli

R. Dahl *1.3 , B. Rutherford *1.3 , A. Mukhopadhyay *2.3 , J. D. Keasling *1234*1 Department of Chemical Engineering, University of California, Berkeley, CA 94720 *2 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 *3 Joint BioEnergy Institute, Emeryville, CA 95608 (www.jbei.org) *1 Department of Bioengineering, University of California, Berkeley, CA 94720 *robdahl@berkeley.edu

The production of biofuels in microbial systems presents a unique challenge to the host cell. Not only is the cell exposed to the solventogenic fuel molecule itself, the coordinated overexpression of an exogenous pathway presents a large burden on the cell's physiology, both in depleting nutrients and introducing foreign intermediates which could have toxic side-effects. At JBEI, we have focused on the impacts of short-chain alcohols (e.g. butanol) and isoprenoid-based fuels (e.g. isopentenol). Microarrays (in complementary studies with other system-wide "Omics" studies) were used to characterize E. coli's response to these challenges. The general response has been one of a combination of oxidative, hyperosmotic (chaotrophic/ desiccation) and heat shock. In this poster, we present some of these results as well as the unique challenge to engineer the cell to better cope with these stresses.

