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Abstract
The  “human  dimensions”  of  energy  use  in  buildings  refer  to  the  energy-related  behaviors  of  key
stakeholders that affect energy use over the building life cycle. Stakeholders include building designers,
operators, managers, engineers, occupants, industry, vendors, and policymakers, who directly or indirectly
influence  the  acts  of  designing,  constructing,  living,  operating,  managing,  and  regulating  the  built
environments, from individual building up to the urban scale. Among factors driving high-performance
buildings, human dimensions play a role that is as significant as that of technological advances. However,
this factor is not well understood, and, as a result, human dimensions are often ignored or simplified by
stakeholders. This paper presents a review of the literature on human dimensions of building energy use
to assess the state-of-the-art in this topic area. The paper highlights research needs for fully integrating
human dimensions into the building design and operation processes with the goal of reducing energy use
in buildings while enhancing occupant comfort and productivity. This research focuses on identifying key
needs for each stakeholder involved in a building’s life cycle and takes an interdisciplinary focus that
spans the fields of architecture and engineering design, sociology, data science, energy policy, codes, and
standards to provide targeted insights.

Greater  understanding  of  the  human dimensions of  energy use  has  several  potential  benefits
including reductions in operating cost for building owners; enhanced comfort conditions and productivity
for building occupants; more effective building energy management and automation systems for building
operators and energy managers; and the integration of more accurate control logic into the next generation
of human-in-the-loop technologies. The review concludes by summarizing recommendations for policy
makers and industry stakeholders for developing codes, standards, and technologies that can leverage the
human dimensions of energy use to reliably predict and achieve energy use reductions in the residential
and commercial buildings sectors.
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1. Introduction

Buildings have the potential to act as smart systems that facilitate the shift towards a more sustainable
energy use paradigm [1]. They can encourage the accelerated uptake of renewable technologies and the
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reduction of energy use, carbon emissions, and operating costs while increasing the comfort, satisfaction,
health, and productivity of building occupants [2]. While a substantial body of research covers the energy
saving  potential  of  improved  building  performance  [3],  the  variable  impact  of  identical  energy
conservation measures  across different  building examples is  less understood  [4].  An existing base of
literature demonstrates that human factors may contribute substantially to this variance in energy use [5–
9].  The  main  conclusion  reached  by  these  existing  studies,  which  work  across  disciplines  and  are
international in scope, is that technology investments alone do not necessarily guarantee low or net-zero
energy, or higher comfort perception, in buildings. Indeed, humans factors also play a crucial role, and
while the understanding of their impact has improved, it is often ignored in building design and operation.

As  an  example,  office  occupants  often  work  beyond  typically  assumed  office  hours,  and  such
overtime occupancy drives the increase of internal heat  gains due to the use of electrical appliances,
lighting, and plug loads and extends the operation of building services such as Heating, Ventilation and
Air Conditioning (HVAC) systems and lighting [10]. Furthermore, not all occupants use building services
at  the  same intensity.  Researchers  [11] demonstrated via  computer simulations  that  occupants  with a
“wasteful” work style would consume up to double the energy of non-wasteful “austere” coworkers. It
has  also  been  widely  demonstrated  in  experimental  studies  [12–14] that  occupants  vary  in  comfort
preferences, satisfaction, and indoor environment perceptions due to physiological (i.e., gender and age),
psychological, and cultural factors  [15–19]. To the extent that these human factors impact total energy
use, they contribute to prediction gaps  [20] regarding energy expenditure and operating costs. Indeed,
predicting human occupancy and energy-related behavior, which is stochastic in nature, is a challenging
practice  [21–25]. Accordingly, human factors in commercial buildings are considered a “dark side” of
energy use [26].

In the residential sector, too, understanding the diversity of human energy use has been a topic of
great interest [27–29]. For example, residential studies on this topic conducted in Europe [11, 30–35], the
United States [11, 36–38], Asia [39–43], and Australia [44–46] have demonstrated variation by a factor of
3  to  10  in  household  energy use  that  is  attributable  to  human  factors.  Extended reviews  have  been
performed  on  independent  studies  worldwide  in  an  attempt  to  align  these  research  outcomes  and
demonstrate the continued future need for studies on this phenomenon [9, 29, 47–50].

Taking a broader perspective, the human dimensions of energy use in buildings refers to an array of
actions  related  to  the  building life  cycle  that  include  designing,  constructing,  living  and controlling,
operating, managing, serving, and regulating built environments from the building level up to the urban
scale.  The term “human” encompasses  influencing roles  from a variety of stakeholders  that  have an
impact on the actual building performance, with a focus on energy consumption and occupant comfort.
For this paper, stakeholders include building designers and owners, the technology industry and vendors,
occupants,  operators  and  managers,  energy  providers,  and  policy  makers.  The  influence  of  these
stakeholders on building energy use cannot be prescribed  a priori,  leading to inconsistencies between
potential and actual building energy performance. 

Given the potentially broad impacts of human dimensions on energy use and the need to meet 2020
and 2050 energy and greenhouse gas reduction goals [51], new data, guidelines, and models are needed to
leverage human dimensions towards substantial  building energy use reductions  and improvements  in
occupant comfort that can be sustained across an entire building life cycle.

In this paper, we argue that compliance with zero-net-energy buildings and other high-performance
building  guidelines  [52] cannot  be  achieved  without  state-of-the-art  methods  for  estimating  human
dimensions impacts on energy use at various stages of the building life cycle (design, operation, retrofit)
and at various scales (zone, building, and urban level),  both in residential and commercial buildings.



Specifically,  achieving  energy  efficiency  requires  understanding  both  technological  and  human
dimensions, integrating qualitative and quantitative methods and adopting appropriate tools to guide the
design and operation of low-energy residential and commercial building technologies. In this paper, the
approach  is  expanded  to  the  energy-related  behaviors  of  multiple  stakeholders,  including  not  only
occupants  but  also  building  designers,  engineers,  operators  and  managers,  industry  vendors,  energy
utilities, and policymakers. This paper discusses the state-of-the-art in  human dimensions research as it
pertains to each stakeholder, highlighting research outcomes that hold particular promise for achieving
sustained reductions in energy use and enhanced occupant comfort and productivity across a building’s
life cycle. 

2. The human dimensions of building energy use: a literature review

The following section summarizes literature relating to several human dimensions of the building life
cycle, including: (1) designing, (2) living and controlling, (3) operating and managing, (4) constructing
and regulating, and (5) servicing building environments, from the building level up the urban scale. As
mentioned, these human dimensions impact actual energy use as well as indoor environmental quality in a
building,  and  they  relate  to  a  wide  range  of  stakeholders  that  collectively  influence  all  stages  in  a
building’s life cycle (Figure 1). In this section, we focus on six stakeholders that are particularly important
in driving the human dimensions of building energy use  (Figure 1). 

Figure 1.  Six stakeholder groups that are driving the human dimensions of building energy use across different
building  life-cycle  phases:  building  designers  (Section  2.1),  occupants  (Section  2.2),  operators  and  energy
managers (Section 2.3), technology industry and vendors (Section 2.4), energy utilities and demand response (DR)
program developers (Section 2.5) and policy makers and governmental agencies (Section 2.6).

Literature review sub-sections are organized around each of the six stakeholders illustrated in
Figure  1  as  follows:  building  designers  (Section  2.1);  occupants  (Section  2.2);  operators  and energy
managers  (Section  2.3);  technology industry and vendors  (Section 2.4);  energy utilities and demand-
response (DR) program developers (Section 2.5); and policy makers and governmental agencies (Section
2.6).  Each sub-section identifies the  stakeholder group’s needs relative  to the building life  cycle  and



reviews relevant advancements in building, social, and data sciences to provide targeted guidelines and
insights. 

It is noted that the identified stakeholder types may encompass individual subjects (i.e., building
designers, occupants, operators, managers) as well as groups and associations (building industry, utility
users, technology vendors, policy makers), each of which may hold different goals related to building
performance  outcomes  [53].  For  example,:  building  energy  modelers  focus  on  comparing  design
scenarios  based  on  performance  and  accurately  predicting  building  energy  consumption;  building
occupants seek improved comfort and productivity; building operators seek to minimize daily energy use
while  maintaining  comfort  for  occupants;  utilities  and  policy  makers  aim  to  address  occupants’,
operators’, and managers’ energy savings impacts through codes and standard regulations; and building
vendors  seek  to  develop  high-performance  products  that  save  consumers  energy costs  with  minimal
capital investment requirements. Figure 1 provides a high-level summary of the diverse stakeholder roles
that drive these varied interests during the various phases of the building life-cycle.

2.1. The human dimensions of building design: architects and engineers

Until recently, architects and engineers rely on computer simulations in evaluating the performance of
various building design options; the effects of human-building interactions have largely been ignored or
oversimplified in these simulations For example, a building design incorporating natural ventilation might
fail from a comfort perspective because of unanticipated drafts generated by occupant window opening
and closing actions that were not considered in a building energy model [54–56]. 

Similarly, daylighting design failures due to glare issues arising from occupants’ dynamic operation of
shades and blinds have been largely demonstrated and discussed [57, 58]. Finally, the inability to consider
realistic occupant thermostat use behaviors in HVAC design and simulation has been shown to result in
problems with occupant  discomfort  and failure to meet  operator energy savings goals in  commercial
buildings [59–62].

More broadly, insufficient representation of occupant and operator behavior in building simulation
has been shown to be a major factor contributing to observed gaps between the designed and actual
energy performance of buildings [63]. Indeed, occupant and operator human dimensions were shown to
be major influencing factors in total simulated energy use of a building alongside several other factors
including climate, building envelope characteristics and equipment, and baseline indoor environmental
condition set points [63]. 

These latter four variables are satisfactorily described by mathematical equations in most of today’s
widely used building performance simulation (BPS) programs (e.g., EnergyPlus, ESP-r, TRNSYS, IDA
ICE, and DeST). However, simulating the impact of operators and occupants during the design stage
remains a significant challenge for architects and engineers, due to a general lack of models that can
reliably  predict  these  occupant/operator  impacts  as  well  as  the  perceived  complexity  of  modeling
frameworks that do exist. 

2.1.1.Stakeholder needs

Architects,  engineers,  and  energy  modelers  design  buildings  with  a  need  to  fully  consider  how
occupants will  interact with the building and its energy systems and how this interaction will impact
building  energy  use  and  indoor  environmental  quality  outcomes.  Architects,  engineers,  and  energy
modelers require more effective means of predicting energy use and occupant comfort as well as a way to



achieve building performance targets that relate to these outcomes. Such capabilities are supported by
data that underpin evidence-based  models,  which can represent occupants’ behavior and replicate the
stochastic nature of its impact on the designed solutions. These  tools integrate the developed modeling
frameworks and establish case studies for occupant and operator behavior impacts on predicted building
performance.

2.1.2.Supporting research advancements

Ongoing research aims to establish methodologies  that  support  building designers’ need to better
quantify the influence of human dimensions in building energy performance. 

Data.  A large  array  of objective and subjective monitoring techniques  have been  used to  gather
empirical  evidence  of  the  impacts  of  human  factors  on  building  energy  performance  [4,  8].  Indeed,
gathering data  on the human-building interaction has  been made increasingly possible  by Internet  of
Things (IoT) and Information and Communication Technology (ICT) products geared towards achieving
energy efficiency in the building sector [4, 68]. The amount of data available regarding occupancy (i.e.,
presence  and  movement),  occupants’ interactions  with  the  building  envelope  (i.e.,  windows,  shades,
blinds), and occupants’ use of control systems (i.e., HVAC, lighting systems, and plug-loads) has shown a
particular increase in recent years. Additionally, smart energy meters and pervasive environmental sensing
technologies promote data-rich building environments that help to infer which occupant behaviors hold
the greatest  influence on energy performance outcomes  [65–67].  Researchers have drawn from these
available data sources in identifying correlations between observed system states (i.e., windows being
opened/closed [31, 38, 48, 72–82], shades and blinds being drawn [79–85]); conditions or variables of the
indoor  and  outdoor  environment  (i.e.,  indoor  and  outdoor  air  temperature,  relative  humidity);  the
attitudes, beliefs, satisfaction [86–94] and socio-demographic aspects of the occupant population [42, 99–
103]; and actual building energy performance. 

Best practices for occupant behavior monitoring and data collection are reported in a new guidebook
on  occupant  behavior  modeling  [100].  The  guidebook  offers  recommendations  on  developing  an
appropriate  experimental  design  for  this  type  of  research,  and  includes  comprehensive  overviews  of
sensors  for  monitoring  environmental  and  behavioral  variables.  Different  types  of  experimental
environments  (in-situ,  laboratories)  are  introduced,  and  their  suitability  for  the  respective  research
question is discussed. Data management, as well ethics and privacy issues are also addressed.

Models. In parallel, the behavior research community has developed and critically evaluated several
behavior modeling approaches that would be useful to building designers [10, 29,101–106]. Such reviews
have focused on methods to assess the robustness and accuracy of proposed models, to establish the scope
of their effective application. For example, one review we recently developed [107] surveyed occupant
behavior modeling methods compared to traditional approaches. These innovative modeling approaches
include Bernoulli models, agent-based models, and survival models applied to lighting, plug loads, and
occupancy  data.  Methods  were  explored  for  modeling  the  diversity  between  occupants.  The  results
strongly suggest that current approaches using synthetic occupant schedules (i.e., the ones suggested by
ASHRAE  Standard  90.1  [108])  for  representing  occupants  in  buildings  significantly  suppress  the
diversity of real occupant behaviors. One example is a poor representation of occupants’ interaction with
control systems such as lighting usage (Figure 2) leading to unrealistic energy use predictions.



 
Figure 2: Comparison of the lighting use models' predictions with observed lighting use [107].

To achieve better predictions of building energy performance, models of human-building interaction have
increasingly been integrated into building energy simulation algorithms. Such approaches typically rely
on mathematical  equations  representing the relationship between specifically  exercised energy-related
behaviors (i.e., opening windows, drawing blinds and shades, operating artificial lights, using electrical
equipment) and some physical variables of the indoor and outdoor environment, specific to a particular
building setting [25, 109, 110]. Mathematical models are developed based on statistical analysis and data
mining of monitored data, with the goal of predicting the probability that a specific behavioral action will
occur under diverse environmental conditions [110]. 

The DNAS (Drivers-Needs-Actions-Systems) framework [50] is an example of the above approach;
this framework hypothesizes that human behavior responds to stimuli (drivers of behavior) to accomplish
personal  needs,  using  correlations  between  behavioral  drivers  and  actions  to  predict  an  occupant’s
interactions with the control systems. Recent advances in engineering and social science research argue
that such traditional stochastic behavior modeling approaches—even when refined to capture the diversity
of behavior at the different level of granularity—are inaccurate due to their weak representation of the
complex cognitive process that leads occupants to take environmentally adaptive actions [8].

Tools. A questionnaire survey was recently conducted among building designers and researchers on
how well commonly used building simulation tools (EnergyPlus, DOE-2, DeST, ESP-r, TRNSYS, IDA-
ICE, COMFIE, and DesignBuilder)  can represent occupant behavior inputs and energy/environmental
effects.  Survey  results  demonstrate  that  while  these  programs  vary  in  their  approaches  to  modeling
occupant behavior, most are limited to static and simplified behavior inputs and lack interoperability in
model exchange or reuse [111]. To address these shortcomings in simulation tools going forward, several
behavior modeling options are being integrated. For example:



 Occupancy Simulator: an agent-based model of occupant presence and movement in buildings

[24, 25].
 obXML: XML schema to represent various occupant behavior models. A library of 52 occupant

behavior models was developed in obXML and released [49].
 obFMU:  functional  mockup  unit  of  occupant  behavior  models  [112].  obFMU  enables  co-

simulation between occupant behavior models and BPS programs using the standard functional
mockup  interface.  obFMU  functions  as  a  solver  for  occupant  behavior  models  that  are
represented in obXML.

 Model predictive controls (MPC) have been developed combining building emulation model with

occupant  behavior  models  (via  co-simulation  or  embedded  Modelica  code)  that  predict  the
likelihood and effect of occupancy and adaptive actions over time [60, 113, 114].

Case studies. Simulation-based case studies include quantification of occupants’ human dimensions
impacts on building energy performance. These impacts include adaptive behaviors such as interaction
with the building envelope (i.e., windows, shades, blinds) and control systems (i.e., thermostats set points,
fans, radiator valves) and non-adaptive behaviors (presence, movement, and usage of electrical equipment
such as plug loads) [104]. Different scenarios for the building operation and energy management can be
simulated, too, by including diversity in lighting and occupancy schedules, set points, and regulation for
the HVAC systems for heating, cooling, and ventilation purposes [115]. Such simulated cases support a
wide array of stakeholders [4] in improving the robustness of building energy design to realistic occupant
behavior [116, 117]. 

2.2. The human dimensions of building usage: occupants

A recent study by Hong, et al.  [4] framed two main spheres of influence of occupant behavior on
building performance (energy use  and comfort)  including  (1)  adaptive  actions,  and  (2)  non-adaptive
actions. When performing energy-related “adaptive behaviors,” occupants engage in actions to adapt the
indoor environment to their needs or preferences, such as opening/closing windows,  lowering blinds,
adjusting thermostats,  turning lighting on/off,  and using plug-ins (such as personal  heaters,  fans,  and
electrical systems for space heating/cooling). Occupants can also adapt themselves to their environment
by adjusting clothing levels. Non-adaptive actions include occupant presence and operation of plug-ins
and  electrical  equipment  (such  as  office  and  home  appliances),  as  well  as  building  occupancy  and
movement  through  spaces.  Such  human-building  interactions  represent  quantitative  variables  that
influence  overall  building  energy  use  [109].  Over  the  last  decade,  the  number  of  scientific  articles
studying the impact of occupant behavior (adaptive and non-adaptive  [4]) on building energy use has
dramatically  increased  (Figure  3),  indicating  a  growing research interest  in  human-centered building
energy efficiency.

 



Figure 3. Screening of the Science Direct and Scopus databases, two of the leading citation index organizations to
select  papers  published  over  the  last  decades  (2005-2016)  using  the  terms  “building  energy  occupant”  and
“occupant behavior and energy consumption” in the title, abstract, and keywords.

2.2.1.Stakeholder needs

Occupants require comfortable and healthy spaces to live and work in as they spend more than 90%
of their time, on average, indoors  [118]. The energy use attributable to this requirement is substantial:
over the last ten years, an average of 40% of the energy use worldwide was consumed to service healthy
and comfortable indoor environments for residential and commercial building occupants [119].

Occupants also need to understand the design and operation of building systems such that they may
adapt and provide feedback to achieve personal comfort while minimizing energy use. The latter goal is
more challenging than the former because while humans directly perceive comfort conditions, associated
energy use outcomes are harder to anticipate [120]. As an example, if a change in the indoor or outdoor
environmental parameters occurs (i.e., the variation of the indoor and outdoor temperature, illuminance
level, noise, or bad odors), it is plausible that occupants might perceive a situation of discomfort (thermal,
visual,  acoustic,  air  quality).  Naturally,  occupants  tend to  react  to  bring about  (or  restore)  a  desired
comfort condition [51]. The main consequence of these needs is that occupants interact (if feasible) with
the  control  systems  of  the  buildings  (i.e.,  adjusting  the  thermostats,  opening  or  closing  windows,
operating shades and blinds, switching or dimming lights, etc.). These adaptive behaviors affect building
energy use and must  be regulated by providing different  stakeholders  with informative data,  models,
technologies, and tools  [49]. Providing occupants with smarter controls (real or perceptual), human-in-
the-loop technologies, and behavioral programs for feedback through active engagement with building
operators and control systems has been shown to allow more flexibility in providing comfort, leading to
reduced operating energy expenditure and costs, both in residential [121] and commercial buildings [122].

2.2.2.Supporting research advancements

Existing  literature  highlights  residential  building  occupancy  patterns  as  a  key  driver  of  building
performance worldwide  [30, 36, 42]. Similarly, simulation studies have shown that office workers who
are proactive in saving energy (dimming lights, turning on HVAC systems only when needed, turning off
plug loads and equipment when not needed) consume up to 50% less than occupants who do not  [11].
Innovative research agendas, both in experimental [14] and field settings [27, 123–125], aim to explore
and highlight occupant behavior as a fundamental influence on building energy use—an influence that
can maximize energy efficiency to the same extent that technological innovation can. This is achieved by
combining research and experimental activities for the development and deployment of human comfort-
adaptive mechanisms in indoor environments, data-driven analysis,  occupancy drive model predictive
controls (MPC) for the energy management and control systems (EMCS), modeling and simulation of
occupant  behavior  in  buildings,  and  building  physics  expertise  [126] with social  science  insights  to
provide an interdisciplinary,  innovative vision on human-centered energy efficiency in  buildings  [91,
127–130].  Research  advancements  in  the  building  efficiency  sector  have  been  fostered  around  the
development  of  human-in-the-loop  (HIL)  interaction  technologies  [131–133].  The  notion  of  HIL as
technology innovation enables occupants to become both passive sensors and active controllers of the
IEQ. Occupant receiving feedbacks on comfort levels and energy intensity in indoor spaces will perform



actions that  are  more “informed” and aware.  The human dimensions refer  to  the  occupant  presence,
movement in  and within the  indoor spaces and to the  occupant  interaction  with the building control
system.  The  observation  of  this  “human”  system is  attained  via  occupancy and  motion  sensors,  for
instance, by monitoring the building occupancy or the occupants’ interaction with the building envelope
components, such as windows, shades, and blinds state [134].

2.3. The human dimensions of building operation: building operators and energy managers

Building operators and managers have the challenging task of operating buildings efficiently while
meeting occupant comfort needs that are diverse, dynamic, and stochastic in nature. 

As  confirmed  by  recent  meta-analysis  review  [122],  the  energy-saving  leverage  of  building’s
operators and energy managers varies by building type, size, and vintage. Office spaces entail the greatest
energy-saving potential among commercial building types, followed by educational and retail buildings.
Lighting  is  confirmed  as  the  greatest  end-use-source  of  energy  saving  potential,  followed  by  space
heating  (especially  in  cold  climates).  Regarding  building  vintage,  operational-driven  energy  savings
opportunities emerge as proportionally greater in small offices (26%-27%) than big offices (10%-11%).
This is true both for lighting (23%-10%) and HVAC (15%-5%) end uses.

2.3.1. Stakeholder needs

Building operators and energy managers need knowledge and tools to guide them in achieving win-win
solutions  that  maximize  occupant  comfort  with low energy use.  These  tools  allow them to manage,
optimize, and predict the variables that contribute to an efficient building’s conditioning and energy usage
[61]. 

2.3.2.Supporting research advancements

Several  studies  attempt  to  support  building operators  and energy managers’ efforts  to  bridge  the
divide between technical and achievable behavior-based energy savings in  commercial buildings. For
example, researchers developed a comprehensive framework to quantify energy savings potential from
electricity and natural gas for improving the operational phase of commercial buildings [135]. Building
simulation programs were employed in tandem with benchmark data to support  building operators to
simulate the improvements in occupant behaviors (thermostat set points, equipment, and lighting system
usage) on diverse operating end uses. Through extensive analysis of primary energy metering data, a
related study  [136] determined the energy-saving potential of different types operators’ interventions—
including turning off  lights,  defining thermostat  setpoints and lighting settings,  and maintenance and
energy visualization strategies. 

Tools that  support building operator decision making processes by guiding them towards optimal
operational actions (lighting, cooling, ventilation, refrigeration and office equipment end uses [135,137])
hold an energy savings potential averaging 12%-18%. Innovative building EMCS and technologies are
now available to support smart building automation and operation [59,138]. Based on machine learning
processes,  indoor and outdoor environmental  parameters,  as well  as occupant  presence,  comfort,  and
action data are labeled, memorized, and re-employed to improve algorithms ruling the control system of
the building automation system (BAS) [61,114]. 

Improvements in BAS and EMCS gravitate around the concepts of bringing the human-in-the-loop
(HIL) for sensing and control of buildings over the entire building life cycle. The notion of HIL emerges
from the cyber-physical area [39–42], as an application that integrates real-time human feedback with the



management of complex systems for control optimization purposes. A variety of existing HIL applications
in the energy sector can be classified based on the level of integration of human control over system
functioning—as active, passive, or hybrid active-passive sensing and control systems. In such advanced
HIL processes, two-way communication occupancy-based MPCs [60, 113, 139] have been demonstrated
to be capable of supporting building operators and energy managers in achieving two-way comfort and
energy cost optimization goals. With such tools, building operators can correct undesired control logic on
the fly in accordance with occupant feedback and requests—minimizing building energy consumption
and waste while maximizing occupant comfort. 

2.4. The human dimensions of building technologies: manufacturers and vendors

The paramount role of building occupants in achieving high performing buildings that save energy
and provide comfort has been documented by diverse market actors. For example, Google has invested in
the  development  of  smart  home  thermostats  [140],  and  energy  utility  companies  now offer  human-
centered products like smart metering systems [92] and energy use feedback services such as the OPower
enhanced energy bill  [121,141,142] and System as a Service (SaaS)  [143]. In commercial buildings, a
broad range of human-building interaction technologies are now available on the market (e.g., Comfy,
CrowdComfort, BuildingIQ, Metasys), which enable advanced HIL building management and automation
services. Buildings installing such HIL sensing and control technologies have demonstrated improved
operation  and  management  outcomes,  achieving  savings  in  the  range  of  4%-22% of  annual  energy
operating costs in commercial buildings [4, 131, 132, 134].

2.4.1.Stakeholder needs

Building technology manufacturers and vendors require  a  better  understanding of how occupants
actually use their products. This understanding would allow them to develop technologies that are more
attractive to end users and more effective from an operational standpoint. Behavioral science research,
including customer research, user-centric design, and behavioral analytics can support HIL technology
manufacturers and vendors in  devising and conducting product  usability and performance tests.  Such
practices enable these stakeholders to understand users’ acceptance of technologies and observe the actual
human-building interaction, yielding improved certainty to product performance claims [50, 144]. Indeed,
uncertainty about product operating cost benefits is one of the adoption barriers facing manufacturers and
vendors [66, 92, 145, 146].

Manufacturers and vendors also require data-driven methods for quantifying the non-energy benefits
of  technologies  that  relate  to  human-building  interactions.  Such non-energy benefits  may be a  more
influential adoption driver than energy cost savings benefits  [12, 55, 147]. Indeed, non-energy benefits
can  include  the  increased  productivity  of  employees,  which  generally  represents  a  much  higher
percentage of overall organizational expenditures than do energy costs [148].

2.4.2. Supporting research advancements

Recent  developments  in  building  sensing  technology  and  control  strategies  leverage  Internet  of
Things (IoT) data on the human-building interaction, which is projected to grow to more than 29 billion
devices in “cognitive” buildings by 2020 [149]. A state-of-the-art review and recommendations for future
research in building energy metering and environmental monitoring have been provided by Ahmad, et al.
[150]. In 2016, the building efficiency market was the largest advanced energy market segment in the
United States, with $ 2.3 billion in home energy management sector revenue and 1300% growth since



2011  [151]. The fast pace of research and development investments in technologies that leverage such
data-rich environments  [132], such as home energy monitoring systems  [143,152], smart meters  [140],
and  personalized  environmental  controls [7],  indicates  the  growth  of  the  building  efficiency  market
towards human-driven technology innovations. Despite this growth and the reported potential of such
technologies to achieve up to 30% energy consumption reduction [122], the market penetration of these
technologies  is  still  low  relative  to  other  new building  efficiency  technologies  [53].  Barriers  to  the
adoption  of  human-centered  building  technologies  include  concerns  about  reliability,  the  inability  to
guarantee energy performance, and uncertainty about the replicability of observed technology impacts.
Moreover,  successful  market  penetration  cannot  be achieved by technology advancement  alone  [50].
Understanding  and  overcoming  occupant  concerns  regarding  comfort,  data  privacy  issues,  and
preferences  and needs will  most  likely  facilitate  consumer adoption  and exploit  the  full  potential  of
innovative human-centered building technologies [53].

Another  challenge  is  how to  bring  occupants’ comfort,  preference,  and  needs  together  with  the
technical  aspect  of  building automation  and control  into a  comprehensive and scientifically  accepted
modeling framework of HIL interaction. This achievement depends upon understanding the link between
energy  use  and human  factors  of  behavior  and operations.  Accordingly,  innovative  research aims  to
discern contextual motivational factors affecting, driving, and influencing energy-related behaviors [96].
By understanding the sphere of those motivational  factors,  research and development in  the  industry
sector are assuming the capability of developing models to explain, predict, and replicate the decision-
making process that leads humans to interact with the indoor environment having comparable endogenous
and exogenous characteristics [121, 141]. A considerable amount of MPC, behavioral models, modeling
approaches, and behavioral campaigns have been developed, tested, evaluated, and critically reviewed
over the last 30 years [18, 19, 64, 65]. 

What  emerges  from this  multi-disciplinary  picture  is  that  any  ad-hoc  rule  or  technical  solution
resolving the connection between energy use and the human dimensions must be prioritized.  Significant
outcomes of ongoing research armed by an international  industry perspective on the development of
occupancy-based MPC for the optimization of building energy performance (energy, comfort at costs)
demonstrate the connection with the vendor and manufacturer needs [153]. This is the case of building
automation companies testing the efficacy of innovative HIL products—such as the Comfy app from
Building  Robotic  [61]—making  use  of  machine  learning  software  and  active  human  feedback  for
personalized comfort in the workplace. Energy savings in the range of 22% are obtained through the
expansion  of  heating  and  cooling  deadbands  in  occupied  and  unoccupied  zones  and  the  dynamic
scheduling of HVAC [154].

2.5. The human dimensions of building services: energy utilities and demand response program
developers

Integrating building operating patterns with demand response logics that seek to balance energy loads
and reduce the peak power demand in buildings is a current matter of research for energy utilities and
program developers  [64,  155–157].  One of the  key challenges  is  the  spread and market  adoption  of
demand-side energy management technologies, bridging the research know-how with the deployment of
real-time  optimization  of  DR  intelligent  building  automation  systems.  Energy  consumption  in  the
residential and commercial building sectors can be reduced by providing building operators, managers,
and  energy  utilities  with  tailored  information  about  consumers’ energy-using  practices.  Unlocking
knowledge of the human dimensions of building service is hence twofold. Firstly, building users can



reduce  peak  power  demand  in  buildings  by  profiting  from  energy  visualization  and  conservation
incentives from their  utility company.  Second,  utility operators  can more efficiently  manage building
energy loads from the zone to the aggregated city level by implementing more effective demand response
logic given improved anticipation of demand-side operational patterns. 

2.5.1.Stakeholder needs

Human centered DR activities and programs need to be active elements in  the  energy utility
policy decisions process, as tools designed to create more reliable and more sustainable building energy
systems [53]. The mission of these programs is to deliver knowledge and tools for utilities to leverage in
implementing human-centered policies and measures. 

A program that better anticipates the human dimensions of buildings may improve the robustness
of  energy  systems  to  fluctuate  during  energy  consumption  loads,  ensuring  a  more  stable  energy
performance over time in the face of rapid energy market transformations [64, 155–159]. Meeting energy
users’ satisfaction while ensuring energy grid efficiency is one of the most important business goals to
energy utilities worldwide; it requires balanced energy loads on the national grid, which is much more
important  than  an  increase  of  revenues  from  energy  bills  [160].  However,  utilities’ capability  and
expertise to involve the human dimensions of energy use and demand response services are still low [53].
This capability gap impedes utilities at large to deliver behavioral-based effective solutions.

2.5.2. Supporting research advancements

Utilities  and  DR  program  developers  increasingly  rely  on  data-driven  analytics  to  extrapolate
knowledge on patterns of consumption and provide customized information on the demand (energy users)
and production (energy grid) sides [143].

As  part  of  the  mission  to  improve  customer  satisfaction,  many  energy  utilities  worldwide  have
developed programs engaging occupants to reduce their energy bill cost  [160–163]. Through enhanced
energy reporting that leverages social norms such as peer comparison  [88, 164, 165], programs have
demonstrated achievable energy savings of 2%-3% in the residential sector [141], at zero costs in terms of
technology investments in energy efficiency measures.

Research findings have helped identify particular utility programs and strategies that yield the most
consistently successful results. Examples of such strategies include increased energy savings by coupling
customer segmentation (i.e., via cluster analysis and group targets) with social theories (i.e., theories of
planned behavior) and practices (i.e., randomized control trials, user experience, surveys questionnaire,
etc.) to better understand how to address subjective norms, habits, beliefs, and needs towards energy use
behaviors in homes [92, 94, 99, 166, 167]. Other examples leverage social dynamics, norms, and group
behaviors in office spaces [12, 91, 168]. Literature in both energy and social science fields [169–171] has
documented a wide array of data-analytic driven behavioral based strategies to bridge the divide between
potential and achievable energy savings in the residential and commercial energy sectors [67, 168, 172–
175], such as social norms [88, 91, 176], competition [157], incentives [168, 169, 177], benchmarks [26,
139, 178] and energy simulations.

2.6. The human dimensions of building regulations: policy makers and government agencies

Policy  makers  and governmental  agencies  address  occupants’ and  O&M energy  savings  impacts
through codes and standards regulations and the development of energy efficiency incentives. Behavioral-
based energy efficiency programs and benchmarks are also considered in the policy arena as means for



achieving certain stock-wide energy mitigation targets in the buildings sector [179, 180]. Here, the ability
to target the behavior of individual users in achieving energy efficiency goals holds significant potential,
but there are opportunities to develop energy policy on broader scales as well.

2.6.1. Stakeholder needs

In developing behavioral-based regulations and incentive designs,  policymakers need a consistent
way to frame human-centered energy efficiency measures and their limits, which often stem from basic
comfort  needs  and  expectations.  To  frame  human-centered  measures  relative  to  building  efficiency
technologies, Langevin, et al. [181] discussed some key correlated challenges. A conclusion is that policy
makers need a better understanding of the human dimensions of building energy use to be able to provide
more compound regulations for the human-sensitive stream of data, as well as to establish a common
framework for describing potential and outcomes of HIL technologies. Two types of needs relating to
human dimensions present themselves for energy policymakers and governmental agencies. First, actions
such  as  business  strategies,  awareness  campaigns,  and  technology  investments  in  renewable  energy
sources must be encouraged to raise energy-conscious behaviors at the building level and to help meet
climate change mitigation goals at the urban level [182]. Second, efforts must be put in place to translate
actions into regulatory norms for a global behavioral energy mitigation agreement. Policy regulations or
incentive designs need to consider the limits for how much energy can be saved through human-centered
measures, where these limits stem from basic comfort needs and expectations, as well the diversity of
behaviors based on cultural, contextual, and personal factors [164, 183–185].

2.6.2.Supporting advancements in research

Energy policies and programs that leverage knowledge from building science and consider behavioral
science resolutions when setting behavioral-based energy efficiency goals have yielded improvements in
program cost-effectiveness and the development of more robust  energy conservation strategies  [186].
Energy efficiency measures often deviate from their designed implementation, again oversimplifying the
representation of human actions when referring to the human dimensions of building energy use. This has
led to suboptimal policies in the past, such as in the achievement of high-performing and sustainably
certified buildings (i.e., through the LEED protocol) [36, 125]. To meet 2020 and 2050 energy paradigm
reduction  targets  worldwide,  as  set  by  the  Paris  Agreement,  this  review  foresees  the  need  to  foster
dedicated behavioral-based policies in the building sector as well as more traditional building energy
performance  directives  and  financial  incentives  for  adopting  renewable  energy  production  and
technology. 

Similarly, existing energy audit protocols (such as the ASHRAE Commercial Building Energy Audits
procedure) and BSP are increasingly including these human dimensions for supporting building owners’
capabilities to demonstrate with code compliance. Behavioral audits [177] may contribute to, for example,
a  building  owner's  ability  to  achieve  operational  energy  savings  (and  hence  meet  building  code
compliance)  while  considering  the  aleatory  nature  of  some  human  dimensions  influencing  building
operating phases.  In  this view, there is  a strong need for advances in  building auditing tools able to
observe, measure, analyze, and evaluate the effects of design practices, behaviors, and operation strategies
on global building performance (occupant comfort and energy consumption). On the other hand, dynamic
occupant  behavior  models  have  been  adopted  for  simulation-aided  design  through  BPS  tools  to
understand  the  influence  of  assumptions  about  occupancy  and  occupants’ interactions  with  building
components and equipment on building energy use and comfort predictions [187]. 



Practices  as  such have  the  twofold  intention  to  support  policy makers  and government  agencies
towards the understanding of how these human dimensions must be regulated and how they can provide
information to building occupants and operators and managers leading to more efficient energy usage. 

3. Discussion

Given how broadly the human dimensions of building design and operation may be defined, it is
critical  that  key  stakeholders  –  e.g.,  researchers,  designers,  engineers,  operators,  occupants,  utilities,
technology vendors and policy makers - are educated on the relevance of human dimensions to their
particular perspective [92,188–190]; such education ensures that an understanding of human dimensions
becomes  integral  to  the  workflow of  each stakeholder  and achieves  large-scale  impacts  on  building
energy use, occupant comfort, and associated outcomes like energy, health, and productivity costs.

Stakeholder education on human dimensions may be delivered in various ways, for example: design
guidelines that encourage the robustness of building energy use to occupant/operator behavior; qualitative
and  quantitative  projections  of  building  technology  adoption  and  acceptance  for  policy  makers  and
technology vendors; design-stage behavior simulation methodologies for engineers and architects; and
improved tools for managing and optimizing building operations in the face of adaptive human behavior
[191]. 

Such educational approaches must draw from lessons learned outside the buildings sector (e.g., the
importance of energy manager education to large-scale renewable energy transition [192]) and require a
multi-disciplinary  focus  [193] that  emphasizes  the  limitations  of  technology  investments  alone  in
achieving  low-carbon,  passive,  high  performance  buildings.  The  successful  implementation  of  these
approaches  will  help  avoid  design  misconceptions  (the  gap  between predicted  and measured  energy
performance),  operational  failures  (the  gap  between  assumed  and  observed  usage  of  building
technologies), and  HVAC system oversizing or the installation of superfluous energy services (the gap
between expected and recorded energy costs).

3.1. Main challenges of human dimensions research

There is a growing effort to advance an integrative research agenda that investigates the human and
building  energy  interaction  [194].  Some interesting  insights  into  the  understanding  of  energy-related
behaviors have recently been yielded by state-of-the-art research, typically examining human dimensions
through the multi and inter-disciplinary lenses of building science, behavioral science, social science, data
science, psychology, user experience design, building automation, and control design. As human behavior
is complex, this research leaves some unresolved questions which must be addressed by a multi-faceted
investigation  of the  broad range of  perspectives  from building stakeholders  that  contribute  to  or are
affected by the human dimensions of energy use. 

Given the need for a multi-disciplinary effort on this topic, this paper has highlighted the human
dimensions of building energy use from these key stakeholder perspectives, which relate to all stages of
the building life cycle. In this work, we discussed how to pro-actively address the many challenges that
such interdisciplinary research faces. By providing a holistic overview of human dimensions research
relevant to key stakeholders in the building life cycle, this work tries to move beyond a siloed approach
and towards the establishment of a broad set of research needs and opportunities for this topic. 

3.2. Potential benefits of human dimensions research



This study aims to set the stage for human factors in buildings as a driving source of innovation for
energy efficiency in the built environment that contributes to achieving 2020 net-zero-energy buildings
and 2050 post carbon goals set by the Paris Agreement  [195]. Specifically, it leverages the potential of
significant  energy  conservation  opportunities  from integrating  interdisciplinary  knowledge  on  human
dimensions in building design, control, operation, management, service, and regulation. 

Outcomes of literature reviews, data analysis, guidelines, energy modeling and simulation tools and
scenarios including quantification of human-driven energy impacts aim to (1) support building energy
designers, modelers,  operators/managers, vendors, and policy makers in pursuing energy conservation
measures, (2) evaluate technology performance by taking into account human factors influencing energy
demand and consumption,  (3)  support  energy and urban planners  in  the  creation  of  human-centered
energy policies, programs, codes and standards, and (4) develop robust energy planning tools targeting
behavioral-based energy efficiency in buildings. 

Specific benefits of improved understanding of human dimensions impacts on energy use include:
more  accurate  building  performance  simulations,  which  will  bridge  the  gap  between  predicted  and
measured building energy use intensity and comfort  [36]; operating cost reductions for building owners
and managers through optimized building automation systems that provide enhanced comfort conditions
for  building  occupants;  increased  market  uptake  of  human-building  interaction  products  enabled  by
product  design  that  responds to  real  user  needs and preferences;  and more effective utility  demand-
response program designs that are tuned to realistic dynamics in demand-side operational patterns.

4. Conclusions

This study aimed to highlight the human dimension as a fundamental aspect of building energy use,
equal in weight to technological innovations. Given the stochastic nature of human behavior  [196], the
human dimension of buildings  cannot  be addressed in  the  same manner as purely technology-driven
building energy efficiency measures. Moreover,  a motto suggested by our review is that “technology
alone does not guarantee low energy use in buildings” [50]. 

Acknowledging that the human dimensions of building energy use cannot be fully examined through
the lens of a particular building stakeholder, this outlook provided an overview of  human dimensions
research  needs  and  opportunities  across  a  variety  of  stakeholder  perspectives  relating  to  the  entire
building life cycle, including: building designers, occupants, operators and energy managers, technology
industry and vendors, energy utilities and demand response program developers, and policy makers and
government agencies. A summary of findings is included below.

During  the  design  stage,  architects  and  engineers  need  to  fully  consider  how the  interaction  of
building occupants and operators with the building technologies and its energy systems will impact the
final energy use and indoor environmental quality outcomes. Accordingly, building designers need data,
models, tools, and case studies able to provide an evidence-based understanding of the human dimensions
of energy use. Reviewed advancements in design practices aim to establish methodologies to support the
better prediction of energy use and occupant comfort and achievement of building performance targets
that focus on these outcomes. 

During the operational phase of buildings, occupants require comfortable and healthy spaces to live
and work in. Occupants also need to understand the design and operation of building systems such that
they may adapt and provide feedback to achieve optimized personal comfort conditions while minimizing
energy use. The latest advances in engineering research argue that interdisciplinary adoption of theories



from  the  social  science  and  psychology  disciplines  have  unlocked  new  knowledge  to  meet  deeper
understanding of the occupant behavior human dimensions in building energy use. 

During the  construction and regulation phases of the building life cycle, the effectiveness of such
innovative technologies relies on the building technology manufacturers’ and vendors’ understanding of
how occupants actually use their products. More data-driven research on the human-building interaction
processes, including behavioral and energy data analytics, customer research,  user-centric design, and
behavioral  analytics,  as  well  as  the  economic  value  of  non-energy  benefits  of  including  human
dimensions in  technologies  for energy efficiency in  buildings,  is  predicted as  the  accelerator for the
advancement of technologies that are more attractive to end users and effective from an energy, comfort,
and economical operational standpoint. 

Utilities  and demand  response  program developers increasingly  rely  on  data-driven  analytics  to
extrapolate knowledge on the human dimensions of energy use and provide customized information on
the  demand and production  sides.  An improved understanding  of  the  human dimensions of  building
energy use to increase demand and production-side customer satisfaction and the effectiveness of demand
response programs emerges. 

A better understanding of the means of the human dimensions of building energy use is needed up to
the  building regulation stage, where policy makers need to provide regulations for the human-sensitive
stream of data. Revised advances in research mainly focus on the limits on how much energy can be
saved in the building sector through human-centered measures, where these limits stem from basic human
comfort needs and expectations, as well as an understanding of technological limits, technology adoption,
and market penetration based on socio-demographic variables of the targeted population.

Going forward, efforts to strengthen the inter-disciplinary focus on human dimensions of energy use
will be supported by research groups like IEA EBC Annex 66  [191] for the understanding of occupant
behavior  through  a  definition  and  simulation  framework  and  tools,  Annex  70  [195]  for  the  policy
perspective,  IEA Task 24 [53] for the demand response and utility and behavioral programs support, as
well as by industry-focused communities such as ASHRAE Multidisciplinary Task Group on Occupant
Behavior in Buildings.
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