
Dataframe Systems: Theory, Architecture, and Implementation

by

Devin Petersohn

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Anthony Joseph, Chair
Assistant Professor Aditya Parameswaran

Assistant Professor Fernando Pérez

Summer 2021

Dataframe Systems: Theory, Architecture, and Implementation

Copyright 2021
by

Devin Petersohn

1

Abstract

Dataframe Systems: Theory, Architecture, and Implementation

by

Devin Petersohn

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Anthony Joseph, Chair

Dataframes are a popular abstraction to represent, prepare, and analyze data. Despite the
remarkable success of dataframe libraries in R and Python, dataframe operations face per-
formance issues even on moderately large datasets. Moreover, there is significant ambiguity
regarding dataframe semantics. In this thesis, we discuss the implications of signature
dataframe features including flexible schemas, ordering, row/column equivalence, and
data/metadata fluidity, as well as the piecemeal, trial-and-error-based approach to interact-
ing with dataframes. While most modern systems aim to scale dataframe workloads by
changing properties of dataframes – or by requiring users to be proficient at distributed
systems – we instead target supporting scalable dataframe operations without changing
their semantics. This dissertation takes a ground-up approach towards scaling dataframe
systems, starting with a formal dataframe data model and algebra, and ending with a refer-
ence implementation. This implementation, Modin, has already accumulated significant
community support: over 6,000 GitHub stars and 1 million installs to date. This interest
shows the need for systems that solve modern data science problems without changing
semantics. Included in this thesis are several of our insights into how to build systems for
data scientists and what aspects data scientists prioritize. We believe these insights were
instrumental in unlocking the interest and support from the community in our open source
work.

i

To Madelyn and Vivian

This work is dedicated to the ones who believed in me before anyone else. We did it.

ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1

2 The Requirements of a Dataframe System 6
2.1 Chapter Overview . 6
2.2 The Data Science Lifecycle . 7
2.3 Motivating Example . 8
2.4 Intermediate Result Inspection & Think Time 10
2.5 Prefix and Suffix Inspection . 11
2.6 Incremental Query Construction and Composability 13
2.7 Debugging & Building Queries . 14

3 Dataframe Theoretical Foundation 17
3.1 Introduction . 17
3.2 History of the Dataframe . 17
3.3 Dataframe Data Model . 18
3.4 Dataframe Algebra . 20
3.5 Data Model Challenges . 27
3.6 Related work . 35
3.7 Discussion . 37

4 A General Dataframe Architecture and Design 38
4.1 Introduction . 38
4.2 Dataframe data model . 38
4.3 Dataframe Algebra Layer Design . 39

iii

4.4 Metadata Management . 51
4.5 Discussion . 54

5 Modin: The Reference Dataframe Implementation 55
5.1 Introduction . 55
5.2 Pluggable Interaction Modalities . 58
5.3 Modin Core . 59
5.4 Modin Operators and Optimization . 60
5.5 Metadata Management . 71
5.6 Partitioning . 76
5.7 Execution and Scheduling . 78
5.8 Related Work . 80
5.9 Discussion . 81

6 Evaluation 83
6.1 Introduction . 83
6.2 Functional Evaluation . 83
6.3 Microbenchmark Performance Evaluation 86
6.4 Scaling Performance against baselines 88
6.5 Discussion . 93

7 Architecture Case Study: Opportunistic Evaluation 94
7.1 Introduction . 94
7.2 Background and Motivation . 96
7.3 Assessment of Opportunities with Notebook Execution Traces 98
7.4 System Architecture . 101
7.5 Optimization Framework . 104
7.6 Case Study . 108
7.7 Related Work . 109
7.8 Conclusion & Future Work . 110

8 Open source project community building 111
8.1 My History Building a Successful Open Source Project 111
8.2 Lessons and Advice . 112
8.3 Concluding thoughts . 116

9 Conclusion 117
9.1 Summary of Findings . 117
9.2 Future Work . 120

iv

9.3 Final Remarks . 121

Bibliography 122

v

List of Figures

1.1 The data dcience landscape at small and large scale 2
1.2 The Modin architecture . 4

2.1 A simplified view of the data science lifecycle. 7
2.2 Example of an end-to-end data science workflow, from data ingestion, prepara-

tion, wrangling, to analysis. 9

3.1 The Dataframe Data Model . 18
3.2 Pivot table example, reproduced from [26], demonstrating pivoting over two

separate columns, “Month” and “Year”. 25
3.3 Logical plan for pivoting a dataframe around the “Year” column using the

dataframe algebra from this section. 27
3.4 Alternative query plans for pivoting a dataframe around the “Month” column.

TRANSPOSE is abbreviated as T. 32

5.1 The Modin architecture . 58
5.2 Cell/row/column-wise decomposition . 61
5.3 The hierarchy of decompositions: a parent node represents a more general

decomposition than its children. 63
5.4 An example of window operator . 67
5.5 Optimization opportunities from applying different decomposition rules . . . 69
5.6 Performance impact of data pipelining and selective data exchange. 70
5.7 Dataframe Type System Hierarchy . 72
5.8 An example of valid partitioning layout in Modin. 77

6.1 Percent coverage of the pandas dataframe API after deduplication. 85
6.2 Each function shows runtime and 95% confidence region for both Modin and

pandas. We omit pandas transpose as it is unable to scale beyond 6 GB. . . . 86
6.3 Single node performance of various operations on 23GB of data. 87
6.4 Scale test for operations that are supported by all tested systems. 90

vi

6.5 Performance of operations only supported in Modin and pandas. 91
6.6 Join performance under varied number of rows 92

7.1 Example program transformation involving operator reordering. 97
7.2 Program transformation involving predicate pushdown. 98
7.3 Think timethe average “think time” between cell executions and the average

think timeper notebook. 99
7.4 Number of non-critical operators before interactions. 100
7.5 Stats for head/tail interactions used in each notebook. 100
7.6 Distribution of number of operators that can benefit from reuse. 100
7.7 Opportunistic Evaluation Kernel Architecture. 102
7.8 Example Code Snippet and Operator DAG. 103
7.9 An example notebook. Cells that show an output are indicated with a red box. 108

9.1 The Dataframe Data Model. A copy of this figure can also be found in Chapter 3.118
9.2 The Modin architecture. This figure also appears in Chapter 5. 119

vii

List of Tables

3.1 Dataframe Algebra Description. 20
3.2 Dataframe Algebra Data Manipulation and Order. †: Ordered by left argument

first, then right to break ties. 3: Order of columns is inherited from order of
rows and vice-versa. 22

3.3 Table of comparison between dataframe and dataframe-like implementations.
Blue indicates dataframe systems, red indicates dataframe-like implementations.
†: Spark can be treated as ordered for some operations. +: R dataframe
operators can be invoked lazily or eagerly. *: Dask sorts by the row labels after
TOLABELS. 36

4.1 Dataframe Algebra mapping to pandas APIs. 40

5.1 Type inference and changes by operator. 74
5.2 Order and position needs and changes by operator. 75

6.1 I/O operator support in various systems. Operators are only considered if they
have native implementations. 84

6.2 Metadata support in various systems. An asterisk indicates that a significant
part of the operator is not possible in the system’s architecture. 84

viii

Acknowledgments

This work would not have been possible without the support of many people.
I would like first to thank Professor Anthony Joseph for advising me through the ups

and downs of graduate school, and for all of the technical and personal advice he gave over
the course of my graduate school career. Without this advice I certainly would not have
made it to the end.

I would like to thank Professor Aditya Parameswaran for the deep collaboration and for
serving on my committee. Aditya’s collaboration and paper-writing help was instrumental
in helping me get to this point.

Additionally, I would like to thank my committee member Professor Fernando Perez
who helped me contextualize my work in the scientific Python community, and gave
excellent feedback on how to integrate with that community.

There were many collaborators who put a significant effort into the work presented here.
Joe Hellerstein, Joey Gonzalez, and Ion Stoica were all instrumental in getting this work
off the ground and contributing significant, meaningful ideas and work around dataframes.

I would also like to thank Areg Melik-Adamyan and the group at Intel for their help
during my PhD. Areg supported the development of Modin and my PhD, and collaborating
and working with Areg helped make Modin successful.

I would like to acknowledge all of the contributors and committers to Modin, past and
present. Their contributions have helped the open source project grow to be widely adopted,
and I could not have done that alone.

Finally, I would like to thank my wife Madelyn and daughter Vivian. Their support
through the difficult parts of the PhD have been critical to my success.

1

Chapter 1

Introduction

Data science has become one of the fastest growing and most cross-cutting fields with
the advent of ubiquitous systems for data-centric computation [49]. Tools such as the R
programming language [113] and pandas library [69] for Python have created accessible
interfaces for manipulating data and performing exploratory data analysis (EDA) [118],
the process of summarizing, understanding, and deriving value from a dataset. These
tools have enabled organizations, both large and small, to better extract insight from
collected or generated data. Further, the ability for such tools to run on commodity, highly
available hardware, with open-source implementations and community support, has pushed
even organizations without technical roots in mathematics or computer science to seek
out data science solutions. Concurrently, the rate of data creation and collection has
been accelerating over the past decade with no indication of a slow-down. This growth
causes problems for traditional systems which are constrained to single-node, single-
threaded implementations, despite the number of cores on an individual machine constantly
increasing. This increase in the rate of data generation and collection has spurred advances
in distributed and parallel computation, with many frameworks embracing computing
across a cluster for data processing and analysis [33, 9, 116, 78].

However, data scientists, who may have training in mathematics or statistics rather than
computer science, often do not possess deep computational systems expertise. As such, they
may have inferential reasoning skills and the knowledge to manipulate or draw insights from
the data, but may be unfamiliar with best practices for engineering or adapting fast, scalable
software to work with said data. As the average data scientist is familiar with abstractions
such as pandas or R to work with their data, it is unreasonable for a data scientist to
work directly with low level libraries such as MPI [37] or OpenMP [29]. Even interfaces
that computer scientists label as “high level”, such as MapReduce [33], SQL, or Spark
DataFrames [109] may be out of reach for a typical data scientist. Data scientists typically
interact with their data in interactive environments using ad-hoc methods. For example,

CHAPTER 1. INTRODUCTION 2

Figure 1.1: The data dcience landscape at small and large scale

in Python, a typical data science workflow might start with the user initially inspecting
the quality of data by loading the dataset into pandas, performing a variety of cleaning
methods based on the user’s manual inspection of the data and summary statistics, as well
as generation of insights via various grouping, summarization, and statistical commands, all
in an interactive environment such as IPython [86] or Jupyter Notebook [61]. The actions
the users perform on their data are usually dependent on the results they receive on previous
views of said data.

This ad-hoc approach towards handling data is disjoint from the approach taken by
many popular parallel computation libraries, such as Dask [96], Spark [9], and Tensorflow
[2], that design computation around building and lazily executing entire dataflow graphs.
The advantage to the latter designs is the ability to perform holistic query optimization on
the entire graph, providing more performance gains than eagerly evaluated frameworks.
However, data scientists are accustomed to eager evaluation-based tools, like pandas, which
have more natural interoperability with interactive environments such as Jupyter notebooks.

As data scientists move from smaller to larger datasets, they regularly encounter a
change in requirements, user interface, and user experience, which can be extremely
frustrating. Figure 1.1 illustrates this disconnect. On the left, there are tools that are
designed for single-node usage. These are the tools that are used to teach students how to
do data science, and they are tools that every data scientist knows well. On the left is a
sample of the tools that are used in “large scale” data science. These tools solve scalability
problems well, but do not expose the same API as those tools on the left. Perhaps more

CHAPTER 1. INTRODUCTION 3

importantly, these tools typically require some distributed computing knowledge, e.g., the
number of partitions to choose for your data. Our goal in this dissertation is to start bridging
the divide between the tools on the right and on the left of Figure 1.1. We aim to preserve
the ease of use of the tools on the left, while providing the scalability benefits of the tools
on the right.

For concreteness, we focus on the pandas dataframe library due to its ubiquity [70].
Dataframes are a popular abstraction to represent, prepare, and analyze data. However,
despite the remarkable success of pandas and similar dataframe libraries in R, dataframes
face performance issues even on moderately large datasets. Moreover, there is significant
ambiguity regarding dataframe semantics. In this dissertation we lay out a vision and
roadmap for scalable dataframe systems. We propose an evolution of existing dataframe
libraries such as pandas, based on solid theoretical foundations, that can scale to modern
data volumes without sacrificing semantics. The dataframe abstraction provided by pan-
das within Python (pandas.pydata.org), has as of 2020 been downloaded over 300
million times, served as a dependency for over 222,000 repositories in GitHub, and accu-
mulated more than 25,000 stars on GitHub. Python’s own popularity has been attributed to
the success of pandas for data exploration and data science [124, 89].

In Chapter 2, we take a deep dive into the nuances of dataframe user behavior. We
explore in detail how this behavior might impact the performance of a dataframe system.
The usage of dataframes has certain characteristics that differ from that of users of other
scalable data processing tools like relational databases. For example, dataframe users
construct queries in an incremental, iterative, and interactive fashion. This alone presents
multiple challenges not present in relational databases, especially around query planning
and query optimization.

In Chapter 3, we propose a candidate data model and algebra for dataframes, which lay
the theoretical foundation for the rest of the paper. While dataframes have roots in both
relational and linear algebra, they are neither tables nor matrices. For example, dataframes
are ordered like matrices, but support more than one data type like relational databases. We
will exploit the similarities and differences to enable us to define both relational and linear
algebra operators in our dataframe algebra. The nuances of the challenges in supporting the
unique properties of the dataframe are explored in depth, with a set of potential solutions
for the unsolved dataframe challenges.

In Chapter 4, we present the architectural and design requirements of dataframe sys-
tems. This chapter does not offer an implementation, but instead proposes an architecture
that other systems can implement to gain the full benefits of the dataframe algebra and
data model. This chapter explores in detail what considerations may influence such an
implementation. The focus in this chapter is on the nuances of the algebraic operators and
implementation considerations.

pandas.pydata.org

CHAPTER 1. INTRODUCTION 4

Core

 API API [Future] API

Execution
Engine

Execution
Engine

[Future]
Execution

Engine

Modin
Core

API

Execution

Memory DiskStorage

SQL

Core
Operators

Metadata
Manager

Data Layout
Manager

Figure 1.2: The Modin architecture

Chapter 5 presents our reference implementation Modin and the rules we use to deter-
mine the optimal parallelism in this implementation. The architecture of Modin is shown in
Figure 1.2 and is designed to support multiple execution backends. This design decision
stems from the goal of supporting data science in all environments, such that data scientists
can use the same notebook with Modin in different operating environments with the same
results. Modin exposes the familiar pandas API to users by translating pandas operators
into the underlying algebraic implementation that we discuss in Chapters 3 and 4. We also
discuss low level implementation decisions, with an additional focus on how we manage
metadata in Modin. Each operator manipulates the metadata in specific ways, which we
explain in Chapter 5. We discuss how we overcome many of the challenges in having a
distributed implementation of a dataframe, including keeping certain metadata close to the
user (e.g., row and column labels) while also trying to keep the labels close to the data for
when they are inevitably operated on as data. Modin’s impact in the open source community
can be measured by the number of GitHub stars (6,000+) and installs (over one million)
[73]. The impact of Modin shows that there is a significant need for distributed dataframe
implementations that preserve semantics.

Chapter 6 is dedicated to evaluating different components of Modin and comparing
against established data processing systems. We first do a functional analysis of Modin
compared to Dask Dataframe [30] and Koalas (Spark) [63]. This functional analysis looks
at how much of the pandas API is covered by each implementation. There is a subsequent

CHAPTER 1. INTRODUCTION 5

discussion on the limitations of the architectures of each of the implementations evaluated
here (Modin, Dask Dataframe, and Koalas) which focuses on how each implementation
could change to improve the coverage of the pandas API. Following this discussion, we
examine the performance of Modin on a variety of workloads and queries. We compare
Modin to Dask Dataframe and Koalas, and use pandas as a baseline. Modin is up to 100x
faster than Koalas, 50x faster than Dask Dataframe, and up to 50x faster than pandas on a
variety of workloads and query types. With these metrics, we examine how Dask Dataframe
and Spark could potentially take advantage of some of the architectural decisions in Modin
to improve performance.

In Chapter 7, we do a case study on the architecture and potential optimizations for
handling some of the more unique behavior of dataframe users. We propose an approach
called Opportunistic evaluation, which leverages the user’s think time to make progress
on dataframe statements. Traditionally, systems have queued up operations and executed
queries lazily, which allows for query planning and query optimization, but leaves the CPU
idle for cycles that the user is spending thinking. Opportunistic evaluation leverages this
think time to ensure that the CPU is working toward results to save the data scientist time.
The first step in determining the potential efficacy of an approach that leverages think time
is to determine how much time users actually spend thinking. We analyzed notebook traces
from a corpus of Data 100 students and found that there is often significant think time spent
at key places in the notebook, usually around difficult to figure out tasks. We then crafted
an approach to leverage this think time that ended up being 8x faster than lazy evaluation.
The results here show that traditional computation paradigms are not optimal in interactive
settings, and opportunistic evaluation is a good start toward enabling efficient interactive
data science.

Chapter 8 is a discussion on our experience building a successful open source commu-
nity. We provide a set of recommendations based on what we did right and wrong. There is
a focus on what to expect in doing so as a grad student and how it may impact other aspects
of graduate school.

We begin with the requirements of a dataframe system.

6

Chapter 2

The Requirements of a Dataframe
System

2.1 Chapter Overview
In this chapter, we discuss the requirements of a dataframe system. We will use these
requirements as the basis for the architecture we present in Chapter 4 and the system we
present in Chapter 5. The requirements that we outline here are based on how users interact
with dataframes. We begin with a high level look at the typical data science lifecycle for
most organizations in Section 2.2. In Section 2.3, we provide a motivating example that
will be used in subsequent chapters to provide a simplified model of a typical dataframe
workload. In interactive workflows, dataframe users often spend a large amount of time
inspecting results and thinking about what they should do next. In Section 2.4, we discuss
the challenges and opportunities of user think time. In Chapter 7, we are able to exploit
think time to make progress on longer queries, reducing the overall time the user spends
waiting on results. When inspecting results, the prefix (first k lines) and suffix (last k lines)
are typically inspected to ensure that that a series of operators has executed as expected.
We explore the unique challenge in dataframe prefix and suffix computation in Section 2.5.
Next, in Chapter 2.6, we discuss incremental dataframe query construction, and how users
compose dataframe workflows. Composability is one of the most important features of the
dataframe, because it allows users to incrementally test and build larger workflows in pieces.
The debugging of dataframe queries is discussed in Section 2.7. Often users will rerun
the same query multiple times, which presents interesting opportunities to reuse previous
results. To frame the overall problem statement, we now discuss the data science lifecycle.

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 7

Figure 2.1: A simplified view of the data science lifecycle.

2.2 The Data Science Lifecycle
Data scientists often operate or iterate on new or unknown datasets–in various degrees
of cleanliness–to extract insights or value from them. This iteration cycle is shown in
Figure 2.1. Typically, as datasets are progressively cleaned and analyzed, they may be
deposited in an optimized relational database for static querying, but this can only be done
after the data is well-structured and the schema is defined. Given their capabilities in
processing large datasets efficiently, one may be ask why not use relational databases during
the earlier stages of cleaning and analysis. Unfortunately, relational databases have notable
limitations when it comes to “quick-and-dirty” exploratory data analysis (EDA) [118]. Data
needs to be defined schema-first before it can be examined. Data that is not well-structured
is difficult to query, and any query beyond SELECT * requires an intimate familiarity
with the schema, which is particularly problematic for wide tables. For more complex
analyses, the declarative nature of SQL makes it awkward to develop and debug queries in a
piecewise, modular fashion, conflicting with best practices for software development. Due
in part to these limitations, SQL is often not the tool of choice for data exploration. As an
alternative, programming languages such as Python and R support the so-called dataframe
abstraction. Dataframes provide a functional interface that is more tolerant of unknown data
structures and well-suited to developer and data scientist workflows, including REPL-style
imperative interfaces and data science notebooks [85].

Dataframes have several characteristics that make them an appealing choice for data
exploration:

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 8

• an intuitive data model that embraces an implicit ordering on both columns and rows
and treats them symmetrically;
• a query language that bridges a variety of data analysis modalities including relational

(e.g., filter, join), linear algebra (e.g., transpose), and spreadsheet-like (e.g., pivot)
operators;
• an incrementally composable query syntax that encourages easy and rapid validation of

simple expressions, and their iterative refinement and composition into complex queries;
and
• native embedding in a host language such as Python with familiar imperative semantics.

Characteristics such as these have helped dataframes become incredibly popular for EDA.
The dataframe abstraction provided by pandas within Python (pandas.pydata.org),
has, as of 2020, been downloaded over 300 million times, served as a dependency for
over 222,000 repositories in GitHub, and accumulated more than 25,000 stars on GitHub.
Python’s own popularity has been attributed to the success of pandas for data exploration
and data science [124, 89].

2.3 Motivating Example
We now discuss a motivating example that represents a data scientist’s dataframe usage. In
Figure 2.2, we show the steps taken in a typical workflow of a data scientist exploring the
relationship between various features of different iPhone models in a Jupyter notebook [85]
using pandas. The data scientist in this case has just been given access to this dataset and
has no knowledge of what the data contains.
Data ingest and cleaning (Extract-Transform-Load). Initially, the data scientist reads in
the iPhone comparison chart using read_html from an e-commerce webpage, as shown
in R1 in Figure 2.2. The data is verified by printing out the first few lines of the dataframe
products. (products.head() is also often used.) Based on this preview of the
dataframe, the data scientist identifies a sequence of actions for cleaning their dataset:
• C1 [Ordered point updates]: The data scientist fixes the anomalous value of 120MP for

Front Camera for the iPhone 11 Pro to 12MP, by performing a point update via iloc,
and views the result.
• C2 [Matrix-like transpose]: To convert the data to a relational format, rather than one

meant for human consumption, the data scientist transposes the dataframe (via T) so that
the rows are now products and columns features, and then inspects the output.
• C3 [Column transformation]: The data scientist further modifies the dataframe to better

accommodate downstream data processing by changing the column “Wireless Charging”

pandas.pydata.org

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 9

import pandas as pd
products = pd.read_html(...)
products

R1. Read HTML

products.iloc[2, 0] = "12MP"
products

C1. Ordered point updates
products = products\
["Wireless Charging"].map(
lambda x: 1 if x is "Yes" else 0)

products

C3. Column transformation

A3. Matrix Covariance

iphone_df.cov()
iphone_df

products = products.T
products

C2. Matrix-like transpose

prices = pd.read_excel(...)
prices

C4. Read Excel A2. JoinsA1. One-to-many column mapping

one_hot_df = pd.get_dummies(products)
iphone_df = prices.merge(

one_hot_df,
left_index=True, right_index=True

)
iphone_df

Figure 2.2: Example of an end-to-end data science workflow, from data ingestion, preparation,
wrangling, to analysis.

from “Yes/No” to binary. This is done by updating the column using a user-defined map
function, followed by displaying the output.
• C4 [Read Excel]: The data scientist loads price/rating information by reading it from a

spreadsheet into prices and then examines it.

Analysis. Then, the data scientist performs the following operations to analyze the data:
• A1 [One-to-many column mapping]: The data scientist encodes non-numeric features in

a one-hot encoding scheme via the get_dummies function.
• A2 [Joins]: The iPhone features are joined with their corresponding price and rating

using the merge function. The data scientist then verifies the output.
• A3 [Matrix Covariance]: With all the relevant numerical data in the same dataframe, the

data scientist computes the covariance between the features via the cov function, and
examines the output.

This example demonstrated only a sample of the capabilities of dataframes. Nevertheless, it
serves to illustrate the common use cases for dataframes: immediate visual inspection after
most operations, each incrementally building on the results of previous ones, point and batch
updates via user-defined functions, and a diverse set of operators for wrangling, preparing,
and analyzing data. Unlike in SQL where queries are submitted all-or-nothing, dataframe
users construct queries in an incremental, iterative, and interactive fashion. Queries are
submitted as a series of statements, as we show in Figure 2.2, i.e., a few operators at a
time in trial-and-error-based sessions. Users rely on immediate feedback to debug and
rapidly iterate on these statements and frequently revisit results of intermediate statements
for experimentation and composition during exploration. This interactive session-based
programming model for dataframes creates novel challenges for overall system performance
and imposes additional constraints on query optimization. For example, operator reordering
is often not beneficial when the results are materialized for viewing after every statement.
At the same time, dataframe query development sessions are bursty, with ample think time

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 10

between issuance of statements, and are tolerant of incomplete results as feedback—as long
as the original goals of experimentation and debugging are met, offering new opportunities
for query optimization. In this section, we discuss new challenges and opportunities in query
optimization arising from the interactive and incremental trial-and-error query construction
of a typical user.

2.4 Intermediate Result Inspection & Think Time
Present-day dataframe systems such as pandas are targeted toward ensuring users can
inspect intermediate results for debugging and validation, so they operate in an eager mode
where every statement is evaluated as soon as it is issued. Program control is not returned
to the user until the statement has been completely evaluated, forcing the user to be idle
during that time. However, there are many cases where users do not inspect the intermediate
results, or where results are discarded; in such cases, the user is still forced to wait for each
statement to be evaluated. Moreover, users are either rewarded or punished based on the
efficiency of a query as it is written.

On the other hand, with the lazy mode of evaluation, which is adopted by some
dataframe-like systems [31, 10] (See Section 3.6), control is returned to the user im-
mediately, and the system defers the computation until the user requests the result. By
scheduling computation later, the system can wait for larger query sub-expressions to
be assembled, leading to greater opportunities for optimization. The downside of lazy
evaluation is that computation only begins when the user requests the result of a query. This
introduces new burdens for users, particularly for debugging, since bugs are not revealed
until computation is triggered.

For example, consider two commutative operations op1, and op2. Say the user
submits the statement x = df.op1() followed by y = x.op2(). In eager evaluation,
x will be fully materialized before execution begins on y, even if x is never used again.
Computing y could be done using df.op2().op1(), but it is often more beneficial to
use the materialized version of x instead. In lazy evaluation, execution will be deferred
until explicitly requested, so the expression that creates y could be optimized to run
df.op2().op1(). The drawback of this approach is that the user must explicitly
request y in order to realize that there is a potential bug in x.

Furthermore, neither the lazy nor the eager mode takes advantage of the fact that the
users spend time thinking between steps, during which the system is idle. We can leverage
this time for computation, allowing us to effectively achieve the benefits of both paradigms.
While interactive latency is important to support immediate feedback, recent empirical
studies have also shown that optimizations can be relaxed to account for users’ long think
time between operations in exploratory analysis [11]. In Chapter 7 we describe a novel

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 11

opportunistic query evaluation paradigm suitable for optimizing dataframes in an interactive
setting.

Like lazy evaluation, opportunistic evaluation does not require the user to wait after
each statement. Instead, the system opportunistically starts execution, while passing control
back to users with a pointer to the eventually computed dataframe (a “future”), which is
asynchronously computed in the background as users are composing the next step. Like ea-
ger evaluation, opportunistic evaluation does not wait for users to complete the entire query
to begin evaluation. However, when a user requests to view a certain output, opportunistic
evaluation can prioritize producing that output over all else. Opportunistic evaluation allows
queries to be rewritten as new statements are submitted (e.g., df.op2().op1()) to get
to the requested answer as fast as possible, taking into account what is partially computed.
There are also new opportunities within opportunistic evaluation to do speculation, where
during idle time the system can start executing statements that commonly follow previous
ones. Opportunistic evaluation also leads to new challenges in sharing and reuse across
many query fragments whose computation has been scheduled in the background (see also
Section 2.6).

2.5 Prefix and Suffix Inspection
The most common form of feedback provided by dataframe systems is the tabular view of
the dataframe, as shown in Figure 2.2. The tabular view serves as a form of visualization
that not only allows users to inspect individual data values, but also convey the structural
information associated with the dataframe. Structural information, especially as it relates
to ordering, is important for validating the results of queries that manipulate and reshape
the dataframe. This tabular visualization typically contains a partial view of the dataframe
displaying the first and last few rows of the dataframe, accessed using head, tail, or
other print commands.

One way to give the users immediate feedback is to return the output to the user as
soon as these k rows are assembled, computing the rest of the output in the background
using opportunistic evaluation. This is reminiscent of techniques that optimize for early
results [121, 120] for LIMIT queries [57], or for representative tuple identification [106],
but a key difference in dataframes is that order must be preserved (so "any-k" result tuples
will not suffice [57]), and there are many more blocking operators. One starting point would
be to design or select physical operator implementations that not just prioritize high output
rate [120], but also preserve order, thereby ensuring that the first k rows will be produced
as quickly as possible. As an example, if only the first k rows of an ordered join were
to be computed, a nested loop join where the result displayed after k rows are computed
might work well. We can progressively process more portions of the input dataframes until

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 12

k output rows are produced in order: this may mean processing more than k rows of the
inputs if there are very selective predicates. Figuring out the right way to exploit parallelism
to prioritize processing the prefixes of the ordered input dataframes to produce the ordered
prefix of the output is likely to be a substantial challenge.

Since the top and bottom k rows are often the only results inspected for dataframe
queries, we may benefit from materializing additional intermediates or supporting indexes
to retrieve these rows efficiently. We could, for example, materialize the prefix and
suffix of a dataframe in original and transposed orientations, or the prefix or suffix of
the dataframe sorted by various columns to allow for efficient processing subsequently.
These materializations could happen during think-time as discussed in Section 2.4. We
may also be able to exploit approximate query processing to produce the prefix/suffix early
for blocking operators [34, 5, 84, 47, 130]. Since the tabular view is only a special form
of visualization, a rich body of related work from visualization on how to allow users to
quickly but approximately make decisions or perform debugging or validation may be
applicable [58, 83, 66, 7]; however, the rich space of operators that goes beyond simple
GROUPBY aggregation will lead to new challenges. Another interesting usability-oriented
challenge is whether this tabular view of prefixes or suffixes is indeed best for debugging—
perhaps highlighting possible erroneous values or outliers in dataframe rows or columns
that are not in the prefix or suffix may also be valuable [93].

While it is well known that some aggregates like MAX cannot be approximated [75],
even blocking operators such as SORT can return early approximate results, using results
from the 1990s [94]. There may be additional opportunities for approximation if the user
simply wants to inspect the approximate structure of the result for debugging purposes,
especially in conjunction with prefix/suffix computation. For example, we can provide
the overall structure of the output of a pivot table computation (displaying the row-wise
groups and column headers), without actually filling in any of the aggregate values, and
doing so progressively. Similar ideas of adding “placeholder” values for in-progress tuples
have been proposed in streaming [92], web-database hybrid [39], and crowdsourcing [82]
contexts, but not, as far as we can tell, for a group-by aggregation setting. This idea could
also be applied to operators where the structure of the output dataframe is prepared first,
with the values filled in progressively.

Other notions of approximation may also be valuable, e.g., the incomplete/phantom
notions in Lang et al. [65], wherein the result may contain additional rows not present in
the dataframe query result, or rows that should be present, but are absent. This could be
valuable, for example, for expensive filters.

In fact, we could also exploit correlations [56] between the filtering attribute and the
other attributes in order to quickly approximate the rows that might pass the filter and
quickly display them to the user, refining as additional filter evaluations are performed.

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 13

2.6 Incremental Query Construction and Composability
In addition to challenges around enabling immediate feedback, query optimization is further
complicated by the need to frequently evaluate and display results for intermediate sub-
expressions (i.e., the results of statements) over the course of a session (see also Section 2.4).
While incrementally constructing dataframe queries over the course of an interactive session,
users iterate on query sub-expressions through trial-and-error, frequently inspecting and
revisiting intermediate results to try alternate exploration paths. Such fragmented workloads
limit the optimizations that can be applied to each sub-expression. However, since user
statements often build on others, we can jointly optimize across these statements and
resulting sub-expressions, sharing the work as much as is feasible. Further, since users
commonly return to old statements to try out new exploration paths, we can leverage
materialization to avoid redundant reexecution. We discuss these two ideas next.

As a result of opportunistic evaluation, there are often many statements that are not
completely executed when issued by the user, and are instead executed in the background
asynchronously during user think time. Moreover, by prioritizing the return of a prefix
or suffix of the results (Section 2.5), many statements are often not computed entirely,
with the computation either deferred (in lazy or eager evaluation) or being scheduled in
the background (in opportunistic evaluation). Thus, there are many statements that may
be scheduled for execution at the same time. These statements may operate over similar
or identical subsets of data. These overlapping queries that can be batch processed make
dataframes particularly amenable to multi-query optimization (MQO), e.g., [104, 46, 38,
98]. In fact, some have argued that MQO has limited applicability in a general relational
context: “One problem of MQO is its limited applicability (...). In many workloads (...)
there aren’t many opportunities to factor out common subexpressions” [38], and “the
synchronization of the execution of queries with common subexpressions when queries are
submitted at different moments in time” [38]. In the dataframe setting, both these reasons
for limited applicability do not hold: there are often many statements executed essentially
in sync, and there are lots of opportunities to factor out common subexpressions since these
statements essentially build on top of each other. However, new challenges emerge because
of the new space of operators, as well as the prioritization of the return of prefixes/suffixes
over the entire result when requested by the user.

One approach is to allow operations that share inputs to share scans, thereby reducing
the overhead required to access data. We can go even further if we recognize that many
statements are essentially portions of a query composed incrementally. Therefore, we
simply need to construct a query plan wherein sub-plans that correspond to intermediate
dataframe results are materialized as by-products. These intermediates are also likely to be
reused by the user in the future. This presents an interesting conundrum because ensuring
that the sub-plan results are materialized “along the way” may result in suboptimal overall

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 14

plan selection (e.g. if the user cares more about the final dataframe than intermediates). By
using partial results to help users avoid debugging mistakes, we may be able to reduce the
importance of constructing many of the intermediate results in entirety, unless explicitly
requested. Moreover, by observing the user’s likelihood of inspecting the intermediates
over the course of many sessions, we can do a weighted joint optimization of all query
subexpressions, where the weights for each intermediate dataframe correspond to its
importance.

Going one step further, we can try to jointly optimize not just the evaluation of interme-
diate and final result dataframes, but also the partial or approximate results—a challenging
endeavor. We can estimate probabilities for what the user might do next, e.g., inspect an
intermediate, or compose the next statement, and the time they may take to do so. We
can couple that with quantifying the benefit of the user seeing a certain portion of an
intermediate result at a certain time, to construct a globally optimal query plan.

2.7 Debugging & Building Queries
The incremental and exploratory nature of dataframe query construction over the course
of a session leads to nonlinear code paths wherein the users revisit the same intermediate
results repeatedly as a step towards constructing just the right queries they want. In such
cases, intelligently materializing key intermediate results can save significant redundant
computation and speed up query processing. The optimizer needs to handle the trade off
between materialization overhead and the reduced execution time facilitated by availability
of such intermediates to utilize storage in a way that maximizes saved compute—small
intermediate dataframes that are time-consuming to compute and reused frequently should
be prioritized over large intermediate dataframes that are fast to compute. Note, however,
that materialization doesn’t necessarily need to happen on-the-fly, and can be also performed
in the background asynchronously during during user think time. Determining what to
materialize requires us to predict which intermediates are likely to be used frequently. The
prediction algorithm should take into consideration several factors, including user intent,
past workflows, and operator lineage.

Depending on the underlying intent, users can interact with dataframes in very different
ways. A user who is performing data cleaning is likely to issue point queries and focus on
regions with missing or anomalous values; users exploring the data for building machine
learning models tend to focus on manipulating columns with high mutual information
with the target column, or more broadly on feature engineering. Taking advantage of user
intent can lead to highly effective materialization and reuse strategies befitting specific
access patterns, such as in machine learning workflows [128]. The interactive sessions in
dataframe development make it possible for the system to infer and adapt to user intent.

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 15

User intent inference involves extensive offline analysis of workloads with known
intents as well as online processing of relevant telemetry: recent Jupyter notebook corpora
can provide a promising starting point [100]. One challenge is that unlike SQL workloads,
dataframe queries tend to be interleaved with non-dataframe operators in the same session,
which requires special considerations to identify the dataframe portion of the workload and
to handle the interaction between the dataframe system and other frameworks.

Finally, dataframe queries in a session often build upon one another. In the dataflow
graph of dataframe queries, we are likely to see intermediate results that lie on the path
to many leaf nodes. A simple heuristic is to persist intermediate results with high fan-
outs; more advanced graph analysis techniques can be applied to determine prominent
intermediate results. Opportunistic evaluation can significantly complicate the analysis as
the execution order can differ drastically from the query order.

In terms of costing operators for materialization and reuse, the dataframe setting
introduces two novel challenges. Partial views to support fast inspection in conjunction
with opportunistic evaluation can break up operators into multiple partial operators evaluated
at different times, motivating the need for short and long term costs on partial views for
each operator. The materialization and reuse decisions derived from these costs can feed
back into the decisions on filtering for partial views or delaying evaluation. For example, if
several queries based on a new sort order require immediate feedback in the near future,
it might be prudent to incur a delay on the first query to materialize the new sort order in
its entirety in order to significantly speed up subsequent queries on the new order through
reuse. Of course, being able to make such decisions hinges on the ability to predict future
reuse as discussed above. Secondly, the constantly growing dataflow graph requires eviction
of old materialized results from memory. The interesting challenge in the dataframe context
is that future reuse is determined by both what the user will do in the future and what the
opportunistic evaluator will choose to compute, with the former being purely speculative
and the latter being known within the system. We can reconcile the “two futures” by
passing the model we build of the future workflow to the opportunistic scheduler for unified
materialization/reuse planning.

Another approach to speed up dataframe queries would be to defer the creation of new
dataframes as a result of queries and instead allow for the results of dataframe queries
to be essentially non-materialized “views”. This could be useful, for example, when
a dataframe query essentially adds a new derived column for feature engineering. In
this case, we don’t actually add the derived column and create a new dataframe, simply
recording the operations instead, and materializing the result on-demand. Deferring the
operations also opens up opportunities for pipelining through subsequent operations, saving
overall computation costs. In fact, the Vaex project [119], which is a query engine for
static HDF5 files, implements virtual columns. With virtual columns, the column is not
actually materialized until required for output, printing, or for a query. In cases where the

CHAPTER 2. THE REQUIREMENTS OF A DATAFRAME SYSTEM 16

computation that creates a column is expensive, virtual columns will need to be paired
with intelligent caching mechanisms that prioritize caching columns that were expensive to
generate.

In the next chapter, we describe a theoretical basis on which we can build a dataframe
system. We aim to preserve the semantics of dataframes and define a dataframe data model
and algebra that we can use to build a dataframe system that scales.

17

Chapter 3

Dataframe Theoretical Foundation

3.1 Introduction
As we described in Section 2, dataframes are not well understood in scientific literature. In
this chapter, we explore the history of dataframes, and propose a data model and algebra as
a solid theoretical basis that practical systems can implement. We note that this is the first
candidate data model and algebra for dataframes presented in the literature to date.

3.2 History of the Dataframe
The history of dataframes begins with the S programming language. The S programming
language was developed at Bell Laboratories in 1976 to support statistical computation.
Dataframes were first introduced to S in 1990, and presented by Chambers, Hastie, and
Pregibon at the Computational Statistics conference [19]. The authors state: “We have
introduced into S a class of objects called data.frames, which can be used if convenient
to organize all of the variables relevant to a particular analysis ...” Chambers and Hastie then
extended this paper into a 1992 book [20], which states “Data frames are more general than
matrices in the sense that matrices in S assume all elements to be of the same mode—all
numeric, all logical, all character string, etc.” and “... data frames support matrix-like
computation, with variables as columns and observations as rows, and, in addition, they
allow computations in which the variables act as separate objects, referred to by name.”

The R programming language, an open-source implementation of S with some addi-
tional innovations, was first released in 1995, with a stable version released in 2000, and
gained instant adoption among the statistics community. Finally, in 2008, Wes McKinney
developed pandas in an effort to bring dataframe capabilities with R-like semantics to
Python, which as we described in the introduction, is now incredibly popular.

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 18

Cn Column Labels
Dn Column Domains

Array of Data

Amn

Rm
Row Labels

Figure 3.1: The Dataframe Data Model

3.3 Dataframe Data Model
As Chambers and Hastie themselves state, dataframes are not familiar mathematical objects.
Dataframes are not quite relations, nor are they matrices or tensors. In our definitions we
borrow textbook relational terminology from Abiteboul, et al. [3, Chapter 3] and adapt it to
our use.

The elements in the dataframe come from a known set of domains Dom =
{dom1,dom2, ...}. For simplicity, we assume in our discussion that domains are taken
from the set Dom = {Σ∗, int, float, bool, category}, though a few other useful domains
like datetimes are common in practice. The domain Σ∗ is the set of finite strings over an
alphabet Σ, and serves as a default, uninterpreted domain; in some dataframe libraries it
is called Object. Each domain contains a distinguished null value, sometimes written as
NA. Each domain domi also includes a parsing function pi : Σ∗ → domi, allowing us to
interpret the values in dataframe cells as domain values (including possibly null).

A key aspect of a dataframe is that the domains of its columns may be induced from
data post hoc, rather than being declared a priori as in the relational model. We define
a schema induction function S : (Σ∗)m → Dom that assigns an array of m strings to a
domain in Dom. This schema induction function is applied to a given column and returns a
domain that describes this array of strings; we will return to this function later.

Armed with these definitions, we can now define a dataframe:

Definition 3.3.1. A dataframe is a tuple (Amn, Rm, Cn, Dn), where Amn is an array of
entries from the domain Σ∗, Rm is a vector of row labels from Σ∗, Cn is a vector of column
labels from Σ∗, and Dn is a vector of n domains from Dom, one per column, each of which
can also be left unspecified. We call Dn the schema of the dataframe. If any of the n entries
within Dn is left unspecified, then that domain can be induced by applying S(·) to the
corresponding column of Amn to get its domain i and then p(·) to get its values.

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 19

We depict our conceptualization of dataframes in Figure 3.1. In our example of Figure 2.2,
dataframe products after step R1 has Rm corresponding to an array of labels [Display,
Camera, . . .]; Cn corresponding to an array of labels [iPhone 11 Pro, iPhone Pro
Max, . . .]; Amn corresponding to the matrix of values beginning with 5.8-inch, with
m = 6, n = 4. Here, Dn is left unspecified, and may be inferred using S(·) per column to
possibly correspond to [Σ∗,Σ∗,Σ∗,Σ∗], since each of the columns contains strings.

Rows and columns are symmetric in many ways in dataframes. Both can be ref-
erenced explicitly, using either numeric indexing (positional notation) or label-based
indexing (named notation). In our example in Figure 2.2, the products dataframe
is referenced using positional notation in step C1 with products.iloc[2, 0] to
modify the value in the third row and first column, and by named notation in step C3
using products ["Wireless Charging"] to modify the column corresponding
to "Wireless Charging". The relational model traditionally provides this kind of
referencing only for columns. Note that row position is exogenous to the data—it need
not be correlated in any way to the data values, unlike sort orderings found in relational
extensions like SQL’s ORDER BY clause. The positional notation allows for (row, col)
references to index individual values, as is familiar from matrices.

A subtler distinction is that row and column labels are from the same set of domains
as the underlying data (Dom), whereas in the traditional relational model, column names
are from a separate domain (called att [3]). This is important to point out because there
are dataframe operators that copy data values into labels, or copy labels into data values,
discussed further in Section 3.4.

One distinction between rows and columns in our model is that columns have a schema,
but rows do not. Said differently, we parse the value of any cell based on the domain of its
column. We can also imagine an orthogonal view, in which we define explicit schemata (or
use a schema induction function) on rows, and a corresponding row-wise parsing function
for the cells. In our formalism, this is achieved by an algebraic operator to transpose the
table and treat the result column-wise, discussed in Section 3.4. By restricting the data
model to a single axis of schematization, we provide a simple, unique interpretation of
each cell, yet preserve a flexibility of interpretation in the algebra. One way our data model
treats rows and columns differently is via Dn, which is associated only with columns rather
than rows. While we could have equivalently defined a row-level schema Sm, in many
cases, e.g., when each of the columns have distinct types, this will be overkill as the typing
for each row will correspond to an array of different types (or more compactly represented
as Σ∗). That said, specific dataframe systems may certainly keep track of row schemata,
especially when the types of all values in a row are the same, since it will be useful when
combined with transpose.

Despite the notational symmetry between rows and columns, Dn introduces a schematic
asymmetry that we will need to reason about. Consider a schema like Dn = [category,

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 20

Table 3.1: Dataframe Algebra Description.

Operator Description
SELECTION Eliminate rows
PROJECTION Eliminate columns
UNION Set union of two dataframes
DIFFERENCE Set difference of two dataframes
CROSS PRODUCT / JOIN Combine two dataframes by element
DROP DUPLICATES Remove duplicate rows
GROUPBY Group identical values for a given (set of) attribute(s)
SORT Lexicographically order rows
RENAME Change the name of a column
WINDOW Apply a function via a sliding-window (either direction)
TRANSPOSE Swap data and metadata between rows and columns
MAP Apply a function uniformly to every row
TOLABELS Set a data column as the row labels column
FROMLABELS Convert the row labels column into a data column

int, float]. Note that the column types differ, but the type of each row is the same (namely
[category, int, float]). Moreover, each column has a single domain (an atomic type), but
each row has a vector of domains (a tuple type). Once seen through the lens of a schema
and its parsing functions, rows and columns are quite different.

When the schema Dn has the same domain dom for all n columns, we call this a
homogeneous dataframe, and its rows and columns can be considered symmetrically to have
the domain dom differing only in dimension. As a special case, consider a homogeneous
dataframe with a domain like float or int and operators +,× that satisfy the algebraic
definition of a field. We call this a matrix dataframe, since it has the algebraic properties
required of a matrix, and can participate in linear algebra operations simply by parsing
its values and ignoring its labels. The dataframe iphone_df after step A2 in Figure 2.2
is one such example; thus it was possible to perform the covariance operation in step C3.
Matrix dataframes are commonly used in machine learning pipelines.

3.4 Dataframe Algebra
While studying pandas, we discovered that there exists a “kernel” of operators that encom-
passes the massive APIs of pandas and R. We developed this “kernel” into a new dataframe
algebra, which we describe here, while explicitly contrasting it with relational algebra.

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 21

We do not argue that this set of operators is minimal, but we do feel it is both expressive
and elegant; we demonstrate via a case study in Section 3.4 that it can be used to express
pivot. Based on the contrast with relational algebra, we are in a position to articulate
research challenges in optimizing dataframe algebra expressions in subsequent sections.

To the best of our knowledge, an algebra for dataframes has never been defined pre-
viously. Recent work by Hutchinson et al. [51, 52] proposes an algebra called Lara that
combines linear and relational algebra, exposing only three operators: JOIN, UNION, and
Ext (also known as “flatmap”); however, the operators below that manipulate metadata
would not be possible in Lara without placing the metadata as part of the data. Other
differences stem from the flexible data model and lazily induced schema.

We list the algebra operators we have defined in Table 4.1: the rows correspond to
the operators, and the columns correspond to their properties. The operators encompass
ordered analogs of extended relational algebra operators (from SELECTION to RENAME),
one operator that is not part of extended relational algebra but is found in many database
systems (WINDOW), one operator that admits independent use unlike in database sys-
tems (GROUPBY), as well as four new operators (TRANSPOSE, MAP, TOLABELS, and
FROMLABELS). The ordered analogs of relational algebra operators preserve the ordering
of the input dataframe(s). If there are multiple arguments, the result is ordered by the
first argument first, followed by the second. For example, UNION simply concatenates the
two input dataframes in order, while CROSS-PRODUCT preserves a nested order, where
each tuple on the left is associated, in order, with each tuple on the right, with the order
preserved.

We succinctly describe the new operators as well as highlight any deviating semantics
of GROUPBY and WINDOW. The output schema for most other relational operators can be
carried over from the inputs (indicated as static in Table 4.1).

It’s important to note that languages choose different approaches to inferring the schema
after a TRANSPOSE which can have important implications for usability. For example, in
R, a TRANSPOSE with heterogeneous Dn ends up coercing everything to string, which
may make it impossible to apply another TRANSPOSE and yield a dataframe equivalent to
the original Dn. In Python, everything is coerced to Object, which has typing information
embedded at runtime, so the schema induction function can always recover the original Dn

after two transposes.
Transpose. TRANSPOSE interchanges rows and columns, so that the columns of the
dataframe become the rows, and vice-versa. Formally, given a dataframe DF =
(Amn, Rm, Cn, Dn), we define TRANSPOSE(DF) to be a dataframe (AT

nm, Cn, Rm, null),
where AT

nm is the array transpose of Amn. Note that the schema of the result may be induced
by S, and may not be similar to the schema of the input. TRANSPOSE is useful both for
matrix operations on homogenous dataframes, and for data cleaning or for presentation

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 22

Table 3.2: Dataframe Algebra Data Manipulation and Order. †: Ordered by left argument first, then
right to break ties. 3: Order of columns is inherited from order of rows and vice-versa.

Operator (Meta)data Schema Origin Order
SELECTION × static REL Parent
PROJECTION × static REL Parent
UNION × static REL Parent†

DIFFERENCE × static REL Parent†

CROSS PRODUCT / JOIN × static REL Parent†

DROP DUPLICATES × static REL Parent
GROUPBY × static REL New
SORT × static REL New
RENAME (×) static REL Parent
WINDOW × static SQL Parent
TRANSPOSE (×) × dynamic DF Parent3

MAP (×) × dynamic DF Parent
TOLABELS (×) × dynamic DF Parent
FROMLABELS (×) × dynamic DF Parent

of “crosstabs” data. In step C2 in our example in Figure 2.2, the table was not oriented
properly from ingest, and a transpose was required to give us the desired table orientation.

In pandas and other dataframe implementations, it is possible to perform many op-
erations along either the rows or columns via the axis argument. Instead, to minimize
redundancy, we define operators on collections of rows, as in relational algebra, and enable
operations across columns by first performing a TRANSPOSE, applying the operation,
and then a TRANSPOSE again to return to the original orientation. That said, performing
TRANSPOSE can be expensive, so one of our goals will be to postpone performing it or
avoid it entirely. Moreover, given the presence of TRANSPOSE in the algebra, we need to
be prepared to handle dataframes that are not only extremely high in cardinality (“tall”) but
also extremely high in arity (“wide”).

In the algebra defined above, we define operators only on collections of rows, as in
relational algebra, allowing TRANSPOSE to toggle the axis of application of the operators.
Operations along the columns require a TRANSPOSE, application of the desired operator,
and a TRANSPOSE again to return to the original orientation. With this flexibility, operators
on the dataframe can be performed along either columns or rows.

The asymmetry of row and column types in the relational model makes TRANSPOSE
impossible to define for relations with non-homogeneous column domains (for which the
sets in Dn differ): there is no data-independent way to derive a relational output schema

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 23

for TRANSPOSE from the input schema. In the dataframe data model, the data-dependent
schema induction function provides an output schema.

TRANSPOSE can also be extremely computationally expensive depending on the system
architecture and partitioning. In its implementation, it will often be important to postpone
the calculation of TRANSPOSE until the last possible moment because of the associated
data layout manipulation costs.
Map. The map operator takes some function f and applies it to each row individually,
returning a single output row of fixed arity. The purpose of the map operator is to alter
each dataframe row uniformly. MAP is useful for data cleaning and feature engineering
(e.g., step C3 in Figure 2.2). Given a dataframe DF = (Amn, Rm, Cn, Dn), the result of
MAP(DF, f) is a dataframe (A′mn′ , Rm, C

′
n′ , D

′
n′) with f : Dn → D′n′ , where A′mn′ is the

result of the function f as applied to each row, C ′n′ is the resulting column labels, and D′n′ is
the resulting vector of domains. Notice that in this definition, the number of columns (n′)
and the column labels (C ′n′) can change based on this definition, but they must be changed
uniformly for every row. The vector of domains D′n′ may, in many cases, be inferred from
the type of the function f .

Extended relational algebra supports map via the use of functions in the subscript of
projection operators (i.e., in the SELECT clause of SQL). However, this projection syntax
is linear in the arity of the relation, which is cumbersome for very wide schemas (e.g.,
after a TRANSPOSE). In this definition, MAP is passed an entire row as an argument so
it can reason across columns in a generic fashion without enumerating them, whereas
SQL expressions (including UDFs) typically require specific fields from the row as scalar
arguments. For example, consider a transformation that needs to ensure the values in all
float-domain columns in a given row sum to 1.0; a generic, reusable MAP function can
normalize the value in each float field by the sum of the float fields in that row; instead, a
SQL expression would have to be crafted specially for each schema.
ToLabels. The TOLABELS operator projects one column out of the matrix of data, Amn,
to be set as new row labels for the resulting dataframe, replacing the old labels. Given
DF = (Amn, Rm, Cn,
Dn) and some column label L, TOLABELS(DF, L) returns a dataframe
(A′m(n−1), L, C

′
n, D

′
n), where C ′n (respectively D′n) is the result of removing the label L

from Cn (respectively Dn). With this capability, data from Amn can be promoted into the
metadata of the dataframe and referenced by name during future interactions.

From a relational perspective, this operator is rather unusual in that it converts data into
metadata. Dataframe users are interested in wrangling and cleaning data, so operations that
let them move entries between metadata and data are popular and convenient to use. In
fact, TOLABELS followed by TRANSPOSE is, in effect, promoting data values into column
labels, which is impossible using relational operators.

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 24

FromLabels. FROMLABELS creates a new dataframe with the row labels inserted into the
array Amn as a new column of data at position 0 with a provided column label. The data type
of the new column starts as null until it can be induced by the schema induction function
S. The row labels of the resulting dataframe are set to the default label: the order rank
of each row (positional notation). Formally, given a dataframe DF = (Amn, Rm, Cn, Dn)
and a new column label L we define FROMLABELS(DF, L) to be a dataframe (Rm +
Amn, Pm, [L] + Cn, [null] + Dn), where Rm + Amn is the concatenation of the row labels
Rm with the array of data Amn, Pm is the positional notation values for all of the rows:
Pm = (0, ...,m− 1), and [L] + Cn is the result of prepending the new column label L to
the column labels Cn.
GroupBy. As in relational algebra, our GROUPBY operator groups by one or more columns,
and aggregates one or more columns together or separately. Unlike relational algebra, where
aggregation must result in atomic values, dataframes can support composite values within a
cell, allowing a broader class of aggregation functions to be applied. One special function,
collect, groups rows with the same grouping attribute values into separate dataframes
and returns these as the (composite) aggregate values. Pandas’s groupby function has
similar behavior and applies collect to the non-grouped attributes, coupled with an
implicit TOLABELS call that elevates the grouping attribute values to the row labels. We
will use collect in our examples subsequently. An optimized query planner will need to
avoid materializing the sub-dataframes when possible.
Window. WINDOW-type operations are largely analogous to those used in recent SQL
extensions to RDBMSs like PostgreSQL and SQL Server. The key difference is that, in
SQL, many windowing functions such as LAG and LEAD require an additional ORDER BY
to be well-defined; in dataframe algebra, the inherent ordering already present in dataframes
makes such a clause purely optional.

FROMLABELS is the opposite of the TOLABELS operator, and the two of these give
the user complete control over moving data to and from the dataframe’s labels. This
allows users to apply operators on the dataframe’s metadata (specifically the row labels),
which is particularly useful for operators like JOIN and GROUPBY. Conceptually, this
operator also allows the positional notation of the dataframe to be treated as data if multiple
FROMLABELS are chained together. However, because the order is immutable, it is
impossible to update the order of the dataframe directly in this way. Despite providing the
ability to promote data to row labels (named notation), it is impossible in this algebra to
promote data to positional notation. If the users wished to reorder the data, they may JOIN
with another dataset with a specific order or SORT based on some column(s).

From a relational point of view, FROMLABELS enables the capability to push metadata
into the data to be queried and operated on. Thanks to this operator and TOLABELS
specifically, column and row labels must be of type Σ∗ so that these operators make sense.

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 25

Wide Table of MONTHs
Month 2001 2002 2003

Jan 100 150 300
Feb 110 200 310
Mar 120 250 NULL

Year Jan Feb Mar
2001 100 110 120
2002 150 200 250
2003 300 310 NULL

Wide Table of YEARs

Narrow Table (SALES)
Year Month Sales
2001 Jan 100
2001 Feb 110
2001 Mar 120
2002 Jan 150
2002 Feb 200
2002 Mar 250
2003 Jan 300
2003 Feb 310

Pivot −→
←− Unpivot

Figure 3.2: Pivot table example, reproduced from [26], demonstrating pivoting over two separate
columns, “Month” and “Year”.

FROMLABELS also has some interesting interaction with the schema induction function S,
where labels can be interpreted as any type in Dom when they are added to the data via
FROMLABELS and then operated on. It is important to point that out here in the definition,
but we leave the enumeration of the nuances of this interaction to future work.

Algebra Examples
Pivot Case Study

To demonstrate the expressiveness of the algebra above, we show how it can express pivot,
which is particularly challenging in relational databases due to the need for relations to
be declared schema-first [126, 26]. The flexible schemata inherent in the dataframe data
model enables a succinct description of pivot.

To start off, many pandas functions provide essentially identical functionality to
dataframe operators, e.g., sort_values for SORT, merge for JOIN, groupby for
GROUPBY, append for UNION, reset_index for FROMLABELS, and set_index
for TOLABELS. The function transform is a special case of MAP that applies a fixed
function to each value within a row, thereby preserving the input arity, while apply is
another special case where a fixed function is applied on a per-row-basis to combine values
across multiple columns to generate a new column.

A number of pandas functions correspond to dataframe operators, with specific UDFs.
As examples for WINDOW, cummax computes the cumulative max of values for one or more

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 26

columns, diff takes the difference between elements in a column and preceding values,
and shift shifts rows down to align with a new row label, maintaining the order of the
data. Likewise, for MAP, fill_na converts all null values to another value, isna replaces
each value with a boolean based on whether or not they are null, and str.upper converts
all the string values to upper case. In fact, pandas has many functions that implement string
and date-time transformations.

Finally, there are several pandas functions that are compositions of dataframe operators.
We list a few examples below, with informal descriptions on how they may be rewritten
using the algebra.

The agg[‘f1’,‘f2’, ...] function in pandas computes aggregate functions f1,
f2, ..., for each of the columns individually, with the resulting dataframe containing one
row per aggregate, i.e., the first row corresponds to the f1 aggregates, the second to the
f2 aggregates, and so on. This function can be rewritten using one GROUPBY operator
per aggregate function to produce a single row corresponding to the aggregates, followed
by a UNION to append these rows to each other in the order the aggregates are listed.
Another approach is to perform a TRANSPOSE, then a MAP to compute all the necessary
aggregates, one per column, followed by another TRANSPOSE to bring the result to the
right orientation.

The pandas function target.reindex_like(reference) supports changing
a given dataframe (the target) by reordering its rows and columns to match those of
another dataframe (the reference). This operator is useful for aligning two dataframes
for comparison purposes. One way to express this function using dataframe operators would
be to first FROMLABELS on both dataframes to allow the row labels to become part of the
data, followed by a INNER JOIN between the two dataframes on the row labels, with the
reference as the left operand; followed by a MAP to project out the reference dataframe
attributes (leaving behind reference’s ordering). Finally, TOLABELS can be used to
move the row labels back from the data.

The pivot operator (Figure 3.2) elevates a column of data into the column labels and
creates a new dataframe reshaped around these new labels. The pivot operator has been
described and implemented in relational systems [126, 26] but it is simpler to express in the
algebra from Section 3.4.

Since there is no need to know the names of the new columns or the resulting schema a
priori, a pivot can be expressed concisely in dataframe algebra as a combination of four
operators in the plan shown in Figure 3.3.

Recall that it is possible to elevate data to the column labels by using TOLABELS
followed by TRANSPOSE. In this case, the TOLABELS operator would be applied on the
label of the column being pivoted over, "Year" in this example. After this step, we perform
a GROUPBY on the pivoted attribute, "Year" with a collect aggregation applied to the
remaining attributes to produce a per-Year dataframe as a composite aggregated value.

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 27

DF

"Year" collect

GROUPBY MAP

flatten

TOLABELS

"Year"

TRANSPOSE

Figure 3.3: Logical plan for pivoting a dataframe around the “Year” column using the dataframe
algebra from this section.

This aggregated value is manipulated by a MAP operator with a function that flattens the
grouped data into the correct orientation. This results in a table pivoted around the attribute
selected for the TOLABELS operator. Notice in Figure 3.2 that transposing the dataframe
labeled “Wide Table in Months” results in the correct data layout for the “Wide Table
in Years”. This is one example of how TRANSPOSE can be exploited: cost models in
dataframe query optimizers can choose the more efficient pivot column and TRANSPOSE
at the end.

3.5 Data Model Challenges
Supporting the dataframe data model and algebra from Section 3.3 efficiently motivates a
new set of research challenges. We organize these challenges based on unique properties
of dataframes, and discuss their impact on query optimization, data layout, and metadata
management. We first discuss the impact of flexible schemas.

Flexible Schemas, Dynamic Typing
Major challenges arise from the flexible nature of dataframe schemas. Dataframes require
more than data; as noted in Section 3.3 they also require a schema to interpret the data. In
the absence of explicit types for certain columns, we must run the type induction function
S, and the resulting parsing functions—both of which can be expensive. Note that the
type of a column must be known before we can parse the value of any cell in that column.
Mitigating the costs inherent in flexible schemas and dynamic types therefore presents a
major challenge for dataframes.

In database terms, dataframes are more like views than tables. Programming languages
like Python and R do not store data; they access data from external storage like files or
databases. Hence every time a program is executed, it constructs dataframe objects anew.
Unfortunately, external storage in data science is often untyped. Dataframe-friendly file
formats like Apache Feather include explicit schemas and pre-parsed data, but most data
files used in data science today (notably those in the ever-popular csv format) do not.

Another source of dynamism arises from schema mutations, e.g., adding or removing
columns. These are first-class citizens of the dataframe algebra, unlike in relational

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 28

databases, which relegate such operations to a separate DDL. As such, they are not only
allowed, but are in fact frequent during data exploration with dataframes, especially during
data preparation and feature engineering. We consider the challenge of efficient schema
induction from three angles: rewriting, materialization, and query processing.

Rewrite Rules for Schema Induction

Due to their flexible schemas, dataframes support the addition and removal of columns as
first-class operations, and at any point in time could have several columns with unknown
type. Certain dataframe operators need type information, however—e.g. avoid attempting
to JOIN two dataframes on columns with mismatched types or using a numeric predicate
on a column with some strings. The schema induction function, S, could be used to induce
the requisite typing information, but it is expensive and must be explicitly considered when
modeling cost for query plans. Specifically, if certain columns are not operated on, inferring
their type via S can be deferred to when they are first manipulated and omitted entirely if,
for example, they are dropped before ever being accessed.

In some cases, schema inference rules might be able to avoid the application of S
altogether. For example, if ordered relational operations are chained together, schema
induction can be omitted between operations, suggesting the possibility of employing
rewrite rules to skip applying S. Another example involves UDFs with known output types
(e.g., a MAP with a UDF that returns an integer).

In the case of operations which merely shuffle rows around (e.g. moving even-indexed
rows to the beginning of a dataframe, reordering), schema induction can be omitted entirely.
When filtering or taking a sample of a dataframe, schema induction can be omitted if the
type is already fairly constrained and will not be additionally constrained based on the
sample. For example, if we drop all rows with strings in a specific column, we may end up
with that column having a restricted type such as float or int, requiring special care.

While omitting or deferring schema inference is promising, additional complications
arise from the fact that, in a dataframe system, metadata is data (see also Section 3.5) that
may itself be queried by a user. In particular, it is common for users to perform runtime
type inspections as a sanity check. As a result, the extra effort for eschewing or deferring
schema induction may prove futile if the user chooses to inspect types anyway.

Reusing Type Information

It is common to reuse a dataframe across multiple statements in a program. In cases where
the dataframe lacks explicit types, it can be very helpful to materialize the results of both
schema induction and parsing—both within the invocation of a program (internal state),
and across invocations in storage.

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 29

Materialization of flexibly-typed schemas introduces a new set of challenges. Both
schema induction and parsing can be a significant fraction of the cost of processing. This
raises optimization choices for materialization: we can cache the results of S (for one or
more columns), and additionally we can cache the results of parsing functions (in principle,
at a granularity down to the cell level). For complex multistep dataframe expressions,
we can choose to make these decisions at each operator in the pipeline that introduces a
dynamically-typed column. Hence the optimization search space is large. Moreover, the
workload of “queries” is different from traditional materialized view settings—languages
like Python are more difficult to analyze statically than SQL, and we can expect usage
patterns to differ from databases as well (Chapter 2).

In some cases, it is reasonable to expect that a data scientist will want to declare the
types of the dataframe explicitly—e.g., an expression like df_t = TRANSPOSE(df,
[myschema]) where myschema is an array of type names for the columns. In this
case, there is no need to run schema induction. In a loosely-typed language like Python,
myschema can be an arbitrary expression returning an array of strings. For example,
it might read a list of type names from a very large file with the same number of rows
as TRANSPOSE(df). Alternatively, the dataframe df itself might have “row types”
stored as strings in the i’th column of the data, leading to an expression like df_t =
TRANSPOSE(df, df[i]).

View maintenance has a role in the dataframe context, with new challenges for type
induction. The most direct use is in delta-computation of expressions that have the effect of
“adding” rows to their inputs. For example, consider a MAP operator with a data validation
function: for each column it returns the input if it passes a validation test, else it returns an
error message in that column. The new rows may all respect the constraints of the types of
the input dataframe, or some new rows could break those constraints—e.g. a string-typed
error message appearing in a column of numbers. In both cases, we’d like the type induction
to take advantage of the work done to induce a schema for the input, and differentially
decide on a schema for the output. Note that these issues get more subtle as the type system
gets richer—e.g., consider an input with a column of type percent that is passed into an
arithmetic MAP function—the output may be statically guaranteed to be numeric, and for a
given dataframe may or may not still be of type percent.

Pipelining Schema Induction in Query Plans

When applying S and the parsing function to columns is unavoidable, we may be able
to reduce its cost by trying to fuse it with other operations that are type-agnostic and
lightweight (e.g., data movement or serialization/deserialization) while adding minimal
overhead, which we foresee to be a fruitful research direction.

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 30

For other operations, the position of S within the query plan can have major performance
implications. Consider a MAP operation that is being applied to a column of strings. If the
MAP operation is relatively inexpensive (e.g., if it measures string length), it may make
sense to to skip type checking via schema induction before the MAP operation. Although a
type error (due to, e.g., the presence of an unexpected integer value) leads to wasted effort,
it may be acceptable if the overhead paid by actual application of the MAP is not too high.
On the other hand, a MAP which performs heavy-duty regular expression parsing over long
strings may delay error detection unacceptably if schema induction is fused into the MAP.

Overall, the positioning of the schema induction operator within the query plan, by
possibly fusing it with existing operators, combined with schema induction avoidance and
reuse, is crucial for the development of a full-fledged dataframe query optimizer.

Order and Equivalence
Unlike relations, dataframes are ordered along both rows and columns—and users rely on
this ordering for debugging and validation as they compose dataframe queries incrementally.
This order is maintained as rows are transformed into columns and columns into rows via
TRANSPOSE, ensuring near-equivalence of rows and columns. Additionally, as we saw in
Section 3.4, row and column label metadata is tightly coupled with the dataframe content,
and inherits the order and typing properties. In this section, we discuss the challenges
imposed by enforcing order and the frequently changing schema across row and column
labels and row/column orientation.

Order is Central

The order of a dataframe is determined by the order of ingested data. For example, a CSV
file ingested as a dataframe would have the same row and column order as the file. This
ordering is crucial for the trial-and-error-based interaction between a user and a dataframe
system. Users expect to see the rows in their dataframe stay in the same order as they
process it—allowing them to validate and debug each step by comparing its result to the
previous step. For example, to ensure that a CSV file is ingested and parsed correctly, users
will expect the first few rows of the dataframe to be the same as those they would see
when examining the CSV file. To examine a dataframe, users will either use the operator
head/tail to see the prefix/suffix or simply type the name of the dataframe for both
the prefix and suffix in the expected order. Additionally, operators such as WINDOW and
MAP expect a specific order for the rows (WINDOW) and columns (MAP). Perhaps most
challenging is the frequency at which the order can be changed, as each operator has a
deterministic output order (shown in Table 4.1). since the UDF argument to these operators

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 31

may rely on that order. Dataframes also support SELECTION and PROJECTION based
on the position of the rows and columns respectively.

Current dataframe systems such as pandas physically store the dataframe in the order
defined by the user and do not implement physical data independence. Physical inde-
pendence may open up new optimization opportunities, recognizing that as long as the
displayed results preserve the desired order semantics to the users, it is not necessary that all
intermediate products or artifacts (unobserved by user) adhere to the order constraint. For
example, a sort operation can be “conceptual” in that a new order can be defined without
actually performing the expensive sorting operation. Likewise, a transpose doesn’t require
the data to be reoriented in physical storage unless beneficial for subsequent operations; the
transpose can be captured logically to reflect the new orientation of the dataframe.

To ensure correct semantics while respecting physical data independence, we must
devise a means to capture ordering information, either tracked as a separate “order column”
if it is not implied via existing columns, or recording as metadata that the dataframe must
be ordered based on one or more of the preexisting columns. Then, the ORDER BY on
this “order column” or one of the existing columns will be treated as an operator in the
query plan, and will only need to be done “on-demand” when the user requests to view a
result. Additionally, since users are only ever looking at the first and/or last few lines of the
dataframe, those are the only lines that are required to be ordered, as discussed in Chapter
2.

Extending physical data independence even further, we can adapt other data represen-
tation techniques from the database community, optimized for dataframes. This includes
columnar or row-column hybrid storage [1], as well as those from scientific computing [23],
array databases [101], or spreadsheets [13]. Since dataframes are neither relations, matrices,
arrays, or spreadsheets, none of these representations are a perfect fit. Given that rows and
columns are equivalent, one candidate for dataframe representation is as a collection of
key-value pairs, where the key corresponds to the (row, column) pair. This representation
is especially effective when the dataframe is “sparse”, allowing us to omit pairs where
the value is null. Then, TRANSPOSE conceptually swaps the row and column for each
value: (column, row, value), and can be recorded in metadata. However, some operations
become more expensive, e.g. reconstructing a row for a MAP operation requires a join. Au-
tomatically detecting and updating to the right representation over the course of dataframe
query execution will be a substantial challenge.

The order of the dataframe also creates some interesting new challenges in query
planning. Operators that are commutative in the relational data model are not necessarily
commutative in dataframes, e.g., SELECTION based on a positional predicate. Due
to this, a dataframe query optimizer must now be aware of and manipulate an internal
representation of the order. The added complexity of maintaining order in the query plan

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 32

DF GROUPBY

collect"Month"

MAP

flatten

TOLABELS

"Month"

T

(a) Original plan

DF GROUPBY

collect"Year"

MAP

flatten

T TOLABELS

"Month"

T

(b) Optimized rewrite that leverages sorted Year column

Figure 3.4: Alternative query plans for pivoting a dataframe around the “Month” column. TRANS-
POSE is abbreviated as T.

due to the presence of non-commutative operators in dataframes will be a significant
challenge for dataframe systems wishing to preserve these semantics.

Given a certain physical representation, operations on dataframes, from a relational
perspective, often make use of ordered access, e.g., editing the ith row, as well as access
based on the row labels, e.g., filtering based on row labels (named notation) or row position
(positional notation). Because selecting the ith physical row or projecting the j th physical
column will not necessarily correspond to selecting (resp. projecting) the desired logical
row (resp. column), additional metadata that serves as the “order column” or “order row”
must be maintained to facilitate order-independence of the physical data. Automatically
maintaining indexes for this purpose can be beneficial. Recent work has developed posi-
tional indexing [14], allowing ordered access to be supported in O(log n), in the presence
of edits (e.g., adding or removing rows). Column stores take a different approach to avoid
expensive edits across columns, instead recording edits separately as deltas, and periodi-
cally merging them back in [1]; it would be interesting to investigate which approach is
more effective for a given set of dataframe operations. Similarly, for matrices, accesses
often happen in a row-major or column-major order, and identifying the right indexes
to efficiently support them in conjunction with relational-style accesses, is an important
challenge. In particular, when a dataframe has many rows and many columns, we may need
both row- and column-oriented indexing.

Row/Column Equivalence

The presence of a TRANSPOSE operator in the dataframe algebra presents novel challenges
in data layout and query optimization. TRANSPOSE allows users to flexibly alter their data

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 33

into a desired shape or schema that can be parsed according to an appropriate schema, and
queried using ordered relational operators.

To keep our data model and algebra compact, we have schemas only for columns and our
operators are defined on ordered sets of rows. By contrast, in pandas and other dataframe
implementations, it is possible to perform many operations along either the rows or columns
via the axis argument. Hence, programs written in (or translated to) our algebra are likely
to have more uses of TRANSPOSE than dataframe programs in the wild, to represent
columnwise operations and/or to reason about per-row schemas. These operations are
expressible logically in our simpler algebra by first performing a TRANSPOSE, applying
the operation, and then a TRANSPOSE again to return to the original orientation. Doing
frequent physical reorganizations for these operations would be a mistake, however.

The prevalence of TRANSPOSE in dataframe programs overturns many axis-specific
assumptions made in traditional database storage. Axis-specific data layouts like columnar
compression are problematic in this context. Metadata management also requires rethinking,
since dataframes are as likely to be extremely “wide” (columnwise) as they are “tall”
(rowwise). Both traditional and embedded RDBMSs typically limit the number of columns
in a relation (e.g., SQL Server has an upper limit of 1024 columns, or 30k columns using the
wide-table feature) [91, 50]. By applying TRANSPOSE on a tall and narrow dataframe, the
number of columns can easily exceed the millions in the resulting short and wide dataframe.

Dataframe systems will need careful consideration to ensure that a TRANSPOSE call
does not break assumptions made by the data layout layer used to perform optimizations.
To ensure these optimizations are harmonious with respect to TRANSPOSE, we can do a
logical TRANSPOSE “pull-up”. The proposed rewrite delays transpose in the physical plan
as much as possible, since it will often destroy many data layout optimizations that would
otherwise apply.

In certain cases, we may indeed want to consider optimizing the physical layout of the
data given a TRANSPOSE operator as a part of a query plan. This is in contrast with existing
data systems that create and optimize for a static data layout. A physical transpose may
help the optimizer match the layout to the access pattern (e.g., matrix multiplication). A
fixed data layout is likely to have a significant performance penalty when the access pattern
changes. Additionally, consider a case where TRANSPOSE allows us more flexibility in
query planning. In the pivot case in Section 3.4, we observed that transposing the result
of a pivot is effectively a pivot across the other column. Specifically, if we must pivot into
the wide table with Months as columns, we can either use the original plan (Figure 3.4a) or
one where we proceed as if the pivot is over Year, but then transpose the final result so that
the Month attribute values are used as column headers (Figure 3.4b). The latter plan will
be faster if the optimizer leverages knowledge about the sorted order of the Year column
to avoid hashing the groups. This is an interesting example of a new class of potential
optimizations within dataframe query plans that exploit an efficient TRANSPOSE. Because

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 34

the axis transpositions are happening in query expressions, the data layout becomes a
physical plan property akin to “interesting orders” [103] or “hash teams” [43], expanding
the rules for query optimization.

Metadata is Data (and Data is Metadata)

A standard feature of dataframes is the ability to fluidly move values from data to metadata
and back. This is made explicit in the TOLABELS and FROMLABELS operators of our alge-
bra, especially in combination with TRANSPOSE. These semantics cannot be represented
in languages like SQL or relational algebra that are grounded in first-order logic; this is a
signature of second-order logic, as explored in languages like OQL [8], SchemaSQL [64]
and XQuery [18]. There is significant prior work on optimizing second-order operations
like the unnesting of nested data (e.g. [35, 105, 123]). A distinguishing aspect of our
setting is that a dataframe operation like TOLABELS commonly generates a volume of
schema-level metadata that is dependent on the size of the data; this raises new challenges.
The closest prior work to our needs studies spreadsheet-style pivot/unpivot in databases
(e.g. [26, 126]); this work needs to be generalized to the richer semantics of a dataframe
algebra.

To address representational aspects, we could treat row labels the way we treat primary
keys in a relational database—by noting the sequence of label columns in a metadata
catalog. Some additional details arise in the support of positional notation: invoking
TOLABELS(c1, ..., cn) removes the relevant columns from their positions, requiring
a recalculation of the positions of all labels to the right of c1. This can be handled by
representing column order in dynamic ranked data structures like ranked B-trees [62] or
range min-max trees [76]. In terms of data access, we may want to efficiently process data
columns without paying to access (dynamically reassigned) metadata columns, and vice
versa. In this case, columnar layouts become attractive for projection. Alternatively, labels
can be moved into separate property tables [26], a form of “vertical partitioning” that does
not rely on columnar storage layouts.

Challenges arise in more complex expressions that include both TOLABELS and other
operators–notably MAP and TRANSPOSE. In these cases, the number and types of columns
in the dataframe is data-dependent. This exacerbates the metadata storage issues discussed
in the previous section, and brings up additional challenges.

In terms of query optimization, we now have a two-dimensional estimation problem:
both cardinality estimation (# of rows) and arity estimation (# of columns). For most
operations in our algebra this would appear straightforward: even for TRANSPOSE, we
know the cardinality and arity of output based on input. The challenge that arises is easy
to see in a standard data science “macro”, namely 1-hot encoding (get_dummies in
pandas). This operation takes a single column as input, and produces a result table whose

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 35

schema concatenates the input schema with an (typically large) array of boolean-typed
columns, one column per distinct data value of the input. Pivot presents a similar challenge:
the width of the output schema is based on the number of distinct data values in the input
columns. In our algebra, these macros can be implemented using GROUPBY followed by
MAP and TRANSPOSE. The resulting arity estimation problem reduces to distinct value
estimation for the input to GROUPBY. While techniques like hyperloglog sketches [36]
could assist here, note that we need to compute these estimates not only on base tables
that may be pre-sketched, but on intermediate results of expressions! In short, we need
to do distinct value estimation for the outputs of query operators—including arithmetic
calculations (e.g. sums, products) and string manipulations (e.g. expanding a document
into constituent words).

In some scenarios, arity estimation is insufficient—we need exact numbers and labels of
columns. Consider the example of performing a UNION of feature vectors generated from
two different text corpora, say Wikipedia articles unioned with DBLP articles. Each text
corpus begins as a dataframe with schema (documentID, content). After a standard
series of text featurization steps (word extraction with stemming and stop-word filtering
followed by 1-hot encoding), each corpus becomes a dataframe with a documentID
column, and one boolean column for each word in the corpus. The problem is that the
UNION needs to dynamically check for compatibility of the input schemas—it needs to
first generate the full (large!) schema for each input, and compare the two. Even if we
relax our semantics to an “outer” union, we want to identify and align the common words
across the corpora. These metadata requirements seem to require two passes of the inner
expression’s data: one to compute and align metadata, and another to produce a result.
There are opportunities for optimization here to return to single-pass pipelining techniques,
but they merit investigation. This pipeline-breaking problem generalizes to any operator
that reasons about its input schema(s), so it needs to be handled comprehensively.

In short, we expect that the fluid movement of large volumes of data into metadata and
vice versa introduces new challenges for query processing and optimization in dataframes.

3.6 Related work
While our focus on pandas is driven by its popularity, in this section, we discuss other
existing dataframe and dataframe-like implementations. Table 3.3 outlines the features
of these dataframe and dataframe-like implementations. We will discuss how existing
dataframe implementations fit into our framework, thus showing how our proposed research
is applicable to these systems.
Dataframe Implementations: R. The R language (and the S language before it), both
support dataframes in a manner similar to pandas and can be credited for initially popu-

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 36

Table 3.3: Table of comparison between dataframe and dataframe-like implementations. Blue
indicates dataframe systems, red indicates dataframe-like implementations. †: Spark can be treated
as ordered for some operations. +: R dataframe operators can be invoked lazily or eagerly. *: Dask
sorts by the row labels after TOLABELS.

Feature Modin Pandas R Spark Dask
Ordered model X X X X†

Eager execution X X X+

Row/Col Equivalency X X X
Lazy Schema X X X X
Relational Operators X X X X X
MAP X X X X X
WINDOW X X X X X
TRANSPOSE X X X
TOLABELS X X X X*
FROMLABELS X X X

larizing the use of dataframes for data analysis [54]. R is still quite popular, especially
among the statistics community. An R dataframe is a list of variables, each represented as a
column, with the same number of rows. While both the rows and columns in an R dataframe
have names, row names have to be unique; thus the pandas dataframe is more permissive
than the R one. As shown in Table 3.3, R supports all of the operations in our algebra.
The R dataframe fully captures our definition of a dataframe, and thus, implementational
support of R dataframes requires only conforming the R API to our proposed algebra.
External R packages such as readr, dplyr, and ggplot2 operate on R dataframes and provide
functionalities such as data loading, transformation, and visualization, similar to ones from
the pandas API [117, 125].
Dataframe-like Implementations. Some libraries provide a functional or object-oriented
programming layer on top of relational algebra. These libraries include SparkSQL data-
frames [88], SQL generator libraries like QueryDSL [95] and JOOQ [68], and object
relational-mapping systems (ORMs) such as Ruby on Rails [99] and SQLAlchemy [12].
All of these systems share some of the benefits with respect to incremental query construc-
tion mentioned in Chapter 2. However, they generally do not support the richness and
expressiveness of dataframes, including ordering of rows, symmetry between rows and
columns, and operations such as transpose.

SparkSQL and Dask are scalable dataframe-like systems that take advantage of dis-
tributed computing to handle large datasets. However, as shown in Table 3.3, Spark and
Dask do so at the cost of limiting the supported dataframe functionalities. For example,
a dataframe in SparkSQL does not treat columns and rows equivalently and requires a
predefined schema. As a consequence, SparkSQL does not support TRANSPOSE and is

CHAPTER 3. DATAFRAME THEORETICAL FOUNDATION 37

not well optimized for dataframes where columns substantially outnumber rows. Thus,
SparkSQL is closer to a relation than a dataframe. Koalas [63], a wrapper on top of the
SparkSQL API, attempts to be more dataframe-like in the API but suffers from the same
limitations.

Dask enables distributed processing by partitioning along the rows and treating each
partition as a separate “dataframe”, thus acting as a “meta-dataframe”. Since ordering and
transpose are ill-defined for a group of dataframes, Dask fundamentally cannot support
operations that rely on row-ordering. The set of operations supported are restricted to those
that can be combined into a single output based on the resulting, constituent dataframes.
These include embarassingly parallel operations, such as filter, aggregation, groupby, and
join.

Unlike these systems, Modin treats the dataframe data model and algebra as first-class
citizens, as opposed to a means to enable distributed processing, addressing challenges
in dataframe processing in systems like pandas and R at scale, while not sacrificing the
convenient functionalities that have made dataframes so popular. We advocate that our
research vision around the data model proposed in this paper is a key component towards
this more holistic approach for optimizing dataframe systems.

3.7 Discussion
In recent years, the convenience of dataframes have made them the tool of choice for data
scientists to perform a variety of tasks, from data loading, cleaning, and wrangling to
statistical modeling and visualization. Yet existing dataframe systems like pandas have
considerable difficulty in providing interactive responses on even moderately-large datasets
of less than a gigabyte. This paper outlines our research agenda for making dataframes
scalable, without changing the functionality or usability that has made them so popular.
Many fundamental assumptions made by relational algebra are entirely discarded in favor
of new ones for dataframes, including rigid schemas, an unordered data model, rows and
columns being distinct, and a compact set of operators. Informed by our experience in
developing Modin, a drop-in replacement for pandas, we described a number of research
challenges that stem from revisiting familiar data management problems, such as metadata
management, layout and indexing, and query planning and optimization, under these new
assumptions. In this chapter, we also proposed a candidate formalism for dataframes,
including a data model as well as a compact set of operators, that allowed us to ground our
research directions on a firm foundation.

Now that we have a theoretical foundation for dataframes, the logical next step is to
design an architecture that can support this data model and algebra. In the next chapter, we
explore a general architecture for dataframes.

38

Chapter 4

A General Dataframe Architecture and
Design

4.1 Introduction
In this chapter, we discuss a general architecture design for dataframe systems. Specific
implementation details are reserved for a later chapter. In this chapter we ignore imple-
mentation details related to exposing the pandas API, and instead focus on the architecture
design of a system that is able to implement the functionalities supported by the pandas
API. While this is not the only design possible, critical components described here (e.g.,
dataframe algebra design) must follow the rules outlined here to be a complete implemen-
tation of a dataframe. Some components (e.g., physical layout management) are open to
interpretation and modification.

To keep the chapter self-contained, we re-introduce or paraphrase some definitions here.

4.2 Dataframe data model
In this section, we introduce a set of rules and properties that dataframes must follow
for the language and type system to be applicable. Modifying or removing any of these
properties will disqualify a system from being designated as a dataframe. We aim to define
these system properties with respect to the dataframe data model and algebra presented in
Chapter 3. We note that the algebra in Chapter 3 requires some minor changes to adapt to
real systems, which we discuss below. This section introduces a concrete data model for
systems to implement.

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 39

A dataframe consists of four main components, each of which will be described in
detail below. The four components of a dataframe are as follows:

• A collection of data, logically arranged into ordered columns and ordered rows
• A set of row labels - one per row
• A set of column labels - one per column
• A set of column types - one per column

Data, logically arranged into columns and rows. There must be some logical represen-
tation of columns and rows in a dataframe, as in a 2-dimensional array. No additional
dimensions are supported in the dataframe data model.
Row labels. Row labels are a “special” column or columns of values that represent each
row. Row labels must be able to contain any data type that the dataframe can support, e.g.,
floating point data. There is no special type designation for row labels because they can be
treated as data with some operators.
Column labels. Column labels are a set of labels that each represent a single column. It is
possible to have hierarchical column labels in this data model. As with row labels, there is
no special type designation for column labels, and they must be able to contain any data
type that the dataframe can support.
Column types (domains). Column types are a mapping of the type to each column. Any
of these types may be left unspecified and inferred/coerced at runtime. In the case that
implementations do not support unspecified types, the set of operations will be limited to
those operations that have known output types.

Each data value can have independent data types, and they may be tracked separately
from the column labels. In the case that the values have individual data types, it must fit
into the type hierarchy, described below. Each data value must have a type associated with
it at all times, either via some individual designation or via the column types object in the
dataframe data model. Column types are queryable, so they must be structured in a way
that enables the data to be filtered by the type.

4.3 Dataframe Algebra Layer Design
As we previously mentioned, the algebra presented in Chapter 3 needs some changes to
adapt to real systems. In this section, we provide a concrete design for the algebra. We
now describe each algebraic operator in detail, its parameters, and the implementation
assumptions made. Table 4.1 shows the mapping between a high level classification of
pandas behavior and the dataframe algebra syntax, with an expanded list of public pandas
APIs that follow that pattern included for completeness.

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 40

Table 4.1: Dataframe Algebra mapping to pandas APIs.
Operator Pattern Modin Syntax Exhaustive list of pandas public API Count
Applying a user-
defined function
uniformly element-
wise, column-wise, or
row-wise

map(df, axis, f) abs, astype, clip, eval, isna, isnull, notna,
notnull, fillna, isin, apply, applymap, transform,
fillna, rank, round, unary version of {add, subtract,
etc.}, string manipulations (str), datetime manipulation (dt),
replace

42

Binary function be-
tween two dataframes

map(join(df1,
df2), f)

add, subtract, multiply, divide, eq, floordiv,
where, update, corr, corrwith, combine,
combine_first, cov, dot, ge, gt, lt, pow, radd,
rdiv, rfloordiv, rmod, rmul, rpow, rsub, rtruediv,
sub, truediv

28

Indexing: Queries on
the row labels

mask(df,
row_indices=query)

as_freq, asof, at, at_time, between_time,
drop_level, drop, first, first_valid_index,
iloc, last, last_valid_index, loc, mask, pop, get,
head, tail, iat, lookup, resample, sample, select,
take, truncate

26

Treating metadata as
data, metadata manipu-
lation, and querying

to_labels(map(
from_labels(df),
f), label)

add_prefix, add_suffix, swap_level, melt,
reorder_levels, shift, slice_shift, tshift,
tz_convert, tz_localize

10

Reshaping, transpos-
ing, pivot

[map/groupby](
transpose(df), f)

pivot, pivot_table, stack, unstack, transpose, T 6

One-hot (dummy) en-
coding

transpose(
to_labels(
transpose(map(df,
f, axis=1))))

get_dummies 1

User-defined ag-
gregation of values
per-column

reduction(df, f) all, any, count, agg, aggregate, compound, describe,
duplicated, equals, idxmax, idxmin, kurtosis,
mad, max, mean, median, min, mode, memory_usage,
prod/product, nunique, quantile, sem, skew, std,
sum, var

28

Aligning and joining
two dataframes on row
or column labels

join(
from_labels(df1),
from_labels(df2),
on="index", axis)

align, concat, join, reindex, reindex_axis,
reindex_like

6

Window user-defined
functions (window
size < length of
dataframe)

window(df, axis,
f, size)

bfill, cumsum, cumprod, cummax, cummin, diff, ewm,
expanding, ffill, fillna, interpolate, nLargest,
nsmallest, pct_change, rolling

15

Conditional filter filter(df, f) dropna, drop_duplicates, filter, query 4
Queries on the schema
of the dataframe

filter_by_types(df,
types)

select_dtypes 1

Type Inference and in-
duction

infer_types(df,
columns)

infer_objects, convert_objects 2

Column/row insertion
and assignment, ap-
pending columns/rows

concat(df1,
[df2])

append, assign, concat, insert 4

Groupby with a user-
defined aggregation or
function

groupby(df, by,
f)

groupby

Join on an attribute join(df1, df2,
condition, how)

merge, merge_asof 2

Sorting on labels or
column values

sort_by(df) sort_index, sort_values 2

Expand the number of
rows or columns

explode(df, f) explode 1

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 41

Differences with Dataframe Algebra

Dataframe algebra, as described in Chapter 3, is a minimal set of operators that represent
everything possible in popular dataframe systems like pandas and R. The algebra, however,
relies heavily on TRANSPOSE to perform operations along either axis. While this does
make the algebra compact and expressive, repeatedly transposing the data in practice is
extremely inefficient [87]. Instead, a dataframe implementation should allow all operators
to be applied over either axis with an axis argument to avoid a transposition.

Notice that the API presented here differs slightly from the algebra presented in Chapter
3 in the interest of being explicit and avoiding having to inspect into opaque user-defined
functions. Consider the case of the algebraic operator MAP: since a valid MAP can return
one or more rows for each input row, it would be beneficial for the query optimizer to know
upfront to expect the number of output rows to match the input row count. Rather than
make this a parameter to the MAP implementation, we chose to separate these behaviors into
two different operators in the implementation to encourage developers to choose correctly.

mask

The mask operator is equivalent to a combination of SELECT and PROJECT from SQL.
Dataframes allow users to perform selection and projection on the row and column number
(positional notation), in addition to the row and column labels (named notation), so this
must be exposed at this layer. While it would be possible to convert both positional and
named notation to the same representation at a higher layer and only expose a single mask
notation at this layer, we felt it was critical to the performance of the implementation to
keep them separate. Named notation does not inherently rely on any order, but positional
notation does. If the data is not ordered before a named notation mask operator, it can
remain unordered for the execution. If the data is not ordered before a positional notation
mask operator, it must be ordered first so that the correct rows or columns are selected.

The mask operator in the dataframe algebra allows the fusion of traditionally separate
SELECT and PROJECT operators into a single operator. This simplifies query execution
and planning, especially with the presence of a TRANSPOSE operator.

The interface of mask is as follows:

d e f mask (
df , # i n p u t d a t a f r a m e
r o w _ i n d i c e s =None , # one or more row l a b e l s
r o w _ p o s i t i o n s =None , # one or more row p o s i t i o n s
c o l _ i n d i c e s =None , # one or more column l a b e l s
c o l _ p o s i t i o n s =None , # one o r more column p o s i t i o n s

) −> Data f rame

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 42

The row_indices and col_indices parameters are for providing named notation,
where row_positions and col_positions are for providing positional notation.

This design does not allow users to pass both positional and named notation for the
same axis (columns or rows), even though this is not explicitly forbidden by the algebra.
The design does, however, allow the mixing of positional and named notation across axes
in a single operator, which is useful for operator fusion during query planning.

filter_by_types

One of the primary differences between dataframes and relational tables is the ability to
query metadata. For example, suppose a user wanted to compute the median for each
column that contained DATETIME data. The filter_by_types operator enables the
user to specify a type or set of types by which to filter the columns. Internally, this filter
may be encoded as a mask for the purposes of operator fusion and query planning.

The interface of filter_by_types is as follows:

d e f f i l t e r _ b y _ t y p e s (df , t y p e s) −> Data f rame

The types parameter is an iterator of data types, usually provided as a string name for
the type (e.g., int or float64). A dataframe implementation should be able to query
against the internal representation of data types with these provided types.

map

The map operator applies a user-defined function row-wise (or column-wise if axis=1).
The user-defined function should not change the number of rows or columns, and does not
change the row labels or column labels. There are no restrictions on the output data types
or how the data may be transformed. The output dataframe’s column labels must remain
the same as the input dataframe’s, with the exception of the added columns. The row labels
may not be changed from the input dataframe’s.

There are multiple examples of map style operators in the pandas API.
DataFrame.isna is an example of a map that does not change the output number
of columns, but will change the data types if they were not already boolean.

The interface of map is as follows:

d e f map (
df , # i n p u t d a t a f r a m e
a x i s , # 0 (rows) , 1 (columns) , o r None (any)
f u n c t i o n , # c a l l a b l e f u n c t i o n
r e s u l t _ s c h e m a =None

) −> Data f rame

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 43

The axis argument is for determining which axis to perform the map operation over,
and can be 0, 1, or None. When axis is 0, the function is applied across each row, or
column if axis is 1. When axis is None, the map operation can be applied across either
axis. The axis=None behavior is unique to map. The function argument is a callable
function that is applied. The optional result_schema argument is an iterator of data
types that represent the types of the output dataframe.

filter

The filter operator is equivalent to a SELECT query which does not solely rely on the
dataframes’s labels or position. It is also important to note that this operator also supports
the axis argument, so columns may be dropped conditionally based on the data they
contain. The function argument may only access values within the same row (column if
axis=1), but otherwise has no restrictions outside of the boolean return type.

Filtering rows or columns by the values they contain is a common task in data prepara-
tion and cleaning.

d e f f i l t e r (df , a x i s , c o n d i t i o n) −> Data f rame

One example of the power of this operator is in a case where the user wants to anony-
mously filter across columns that do not meet a threshold of non-null values.

The axis argument is can be 0 or 1. When axis is 0, the condition is applied across
each row, or column if axis is 1. The condition argument is a filter function: row
-> boolean where rows that are evaluated to TRUE are dropped and rows that evaluate
to FALSE are kept.

explode

explode is similar to a map, but it can increase the number of rows instead of columns (or
vice-versa if axis=1). The concept of explode was not present in the algebra presented
in Chapter 3 because it was explicitly introduced into the pandas API after the publication
date. Despite the fact that it is relatively new in pandas, many SQL systems have a concept
of “exploding” columns [97], which converts a single column containing an array or some
other collection into an individual row for each value in the collection, replicating the values
in the other columns in the row.

Notice that explode is still defined in terms of rows in this algebra implementation,
which is the finest-grained level of parallelism possible. This implementation does not
require that there be a column of arrays, nor does it place a hard limit on the number of
rows that can be generated from each row. This is an extension on the traditional view of
SQL EXPLODE implementations, and gives the developer more freedom. The explode
operator does not allow the removal of rows - dropping rows or columns is only allowed via

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 44

filter and mask. The explode operator also may not change the number of columns
(rows if axis=1), only one axis may be expanded at a time. The user-defined function
for explode does not have any restrictions other than that; the types may be transformed
from the input dataframe.

It is common in real-world datasets to have a column containing arrays of values, and
exploding columns into discrete values is a common data preparation task.

The signature for explode is as follows:

d e f e x p l o d e (
df , # i n p u t d a t a f r a m e
a x i s , # 0 (rows) o r 1 (columns)
f u n c t i o n , # c a l l a b l e f u n c t i o n
r e s u l t _ s c h e m a =None

) −> Data f rame

The function argument is a callable function that accepts a row and outputs multiple
rows (columns if axis=1). The optional result_schema argument is an iterator of
data types that represent the types of the output dataframe.

window

The window operator performs a sliding-window operation, but output dataframe’s shape
must match the input dataframe’s shape (number of rows and columns) for this specific
operator. In the case of a window with a GROUP BY style aggregation, we have a separate
operator, window_reduce, explained below. These operators are separated due to the
opaque nature of the function being passed as discussed above.

The sliding window function that is provided to this operator may only access values in
the same column (row with argument axis=1). Drawing from the pandas API, consider
the case where the end-user wants to replace NaN values via a back-filling function, up to a
certain limit. In that case, the developer would use a window_size equal to the limit.

d e f window (
df , # i n p u t d a t a f r a m e
a x i s , # 0 (rows) o r 1 (columns)
f u n c t i o n , # c a l l a b l e f u n c t i o n
window_size , # number o f i n p u t rows f o r ` f u n c t i o n `
r e s u l t _ s c h e m a =None

) −> Data f rame

The function argument accepts a subset of the column values equal to the
window_size argument, and outputs an identical number of values. The window_size

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 45

argument is an integer that represents the number of values that the function argument
accepts. The optional result_schema argument is an iterator of data types that repre-
sents the types of the output dataframe.

window_reduction

The window_reduction operator executes a sliding window operator that acts as a
GROUPBY on each window, which reduces down to a single row (column) per window. It
can be performed along either the column or row axis, specified by the axis argument.
This operator is deliberately specified separately from window to optimize the metadata
during query planning and avoid passing around state or inspecting the reduction function.

Like window, the sliding window of window_reduction moves in the order of
the data. The user-defined reduction function: column -> scalar must reduce each
window’s column (row if axis=1) down to a single value. This differs from the groupby
behavior, described below.

d e f window_reduce (
df , # i n p u t d a t a f r a m e
a x i s , # 0 (rows) o r 1 (columns)
r e d u c t i o n _ f u n c t i o n , # c a l l a b l e f u n c t i o n
window_size , # number o f i n p u t rows
r e s u l t _ s c h e m a =None ,

) −> Data f rame

The reduction_function argument accepts a column of values and outputs a
column of values . The window_size argument is an integer that represents the number
of values that the function argument accepts. The optional result_schema argument
is an iterator of data types that represent the types of the output dataframe.

groupby

The groupby operator will generate groups based on the values in an input column or
columns. Typically, an aggregation is performed during the groupby, but other operations
are also possible, e.g. fillna, where NaN values may be filled based on some properties
of the group.

groupby accepts a user-defined function: dataframe -> dataframe that op-
erates on each group independently. Like SQL, no communication between groups is
allowed in this algebra design. The number of rows (columns if axis=1) returned by the
user-defined function passed to the groupby may be at most the number of rows in the
group, and may be as small as a single row.

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 46

Unlike the pandas API, an intermediate “GROUP BY” object is not present in this
algebra. One argument for exposing such an object is for reusing the groupby parameters
to run different aggregation functions. However, while working with users, we found that
reusing the DataFrameGroupBy object is not common, and presenting such an object
in the algebra does not appear to provide any significant value, but instead exposes more
opportunities for bugs. During the design of this architecture, we discovered cases in pandas
where the state of the DataFrameGroupBy object was mutated during execution, which
would cause different output results depending on the order by which aggregation functions
were applied.

The operator signature for groupby is as follows:

d e f groupby (
df , # i n p u t d a t a f r a m e
a x i s , # 0 (rows) o r 1 (columns)
by , # column (s) t o group by
o p e r a t o r , # c a l l a b l e a l g e b r a i c o p e r a t o r
r e s u l t _ s c h e m a =None

) −> Data f rame

The by parameter is one or more column labels to use for the group by. The operator
parameter is the operation to carry out on each of the groups. The operator is another
algebraic operator with its own user-defined function parameter, depending on the output
desired by the user.

For example, a user may wish to replace null values within each group with a back-fill
function, such that the null value replacements only come from values within that group.
This would use the map operator from Section 4.3.

reduction

The reduction operator is a per-column aggregation, where each column reduces down
to a single value.

In the pandas API, this behavior is directly reflected with multiple aggregations, includ-
ing pandas.DataFrame.count and sum. Unlike SQL systems, each column does
not need to be specified for the aggregation function, it is automatically applied to each
column. The only restriction on the user-defined function for reduction is that it must
reduce to a single value. For some tasks, e.g. counting the number of non-null values in
each column, it is possible to arrive at the result via an efficient tree reduction computation
pattern. However, some user-defined functions may require access to the entire column to
be computed correctly, e.g. computing the median. Every reduction that is possible via tree
reduce is also possible with access to the entire column, so we expose a flag that allows

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 47

the developer to enable the tree reduce paradigm to be applied for efficiency. We chose
a flag instead of a completely new operator because the result will always be correct if
the user-defined function is applied with access to the whole column, and minimizing the
number of operators exposed by the algebra is central to our design principles.

d e f r e d u c t i o n (
df , # i n p u t d a t a f r a m e
a x i s , # 0 (rows) o r 1 (columns)
f u n c t i o n , # c a l l a b l e f u n c t i o n
t r e e _ r e d u c e = F a l s e ,
r e s u l t _ s c h e m a =None ,

) −> Data f rame

The function parameter is a callable function that takes a number of rows and
outputs a single row. For example, the function argument can sum and output the values
of all rows in each column. The tree_reduce flag, as mentioned above, signals that the
function can be applied via the tree_reduce algorithm.

infer_types

This operator was not explicitly exposed by the algebra defined in the previous paper, but
we have found it to be a useful operator for implementations that throw a runtime type error
rather than infer the types. Additionally, this gives the developers the ability to force the
materialization of the unspecified types for use with the user-defined function definitions
supported in many of the algebra operators. This operator serves two main functions: (1) to
look at every type and find the common type among them all and (2) to coerce all of the
types, if needed, to the same overall type or throw a type error in the case of incompatible
types. The coercion rules are left to the implementation, and we omit them from this paper
in the interest of space.

In the pandas API, there is an operator called infer_objects that behaves very
similarly to the infer_types operator from this algebra. In pandas, the default type is
called object, which is the parent data type of all types. If we interpret object as an
unspecified type, then one key difference in the behaviors between the implementation of
infer_types and infer_objects from pandas is that in this design, the operator
can be applied to any subset of columns in the interest of performance and pandas will
attempt to infer the types of every column with “unspecified” types. We expect this operator
to be extremely expensive in terms of execution runtime and communication, so any
implementation should try to put off inferring types for as long as possible. Another key
difference between the algebra design and pandas is that this operator does not modify the
input dataframe’s schema in-place. The data and metadata of a dataframe is immutable, so

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 48

this operator will return a new dataframe with the inferred schema applied to the columns
selected.

d e f i n f e r _ t y p e s (df , c o l u m n _ l i s t) −> Data f rame

The column_list parameter is a list of column labels representing the columns on
which to infer and induce the types.

join

The join operator is analogous to JOIN in SQL. This is the algebra entry point for the
following join types: INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, and
FULL OUTER JOIN. Other join types are not explicitly supported by the current design,
though this design may be extended to support additional join types if an implementation
supports it, e.g. NATURAL JOIN.

The signature of the join operator is as follows:

d e f j o i n (
df , # i n p u t d a t a f r a m e
a x i s , # 0 (rows) o r 1 (columns)
c o n d i t i o n , # c a l l a b l e c o n d i t i o n f u n c t i o n
o t h e r , # t h e o t h e r d a t a f r a m e
j o i n _ t y p e , # t h e t y p e o f j o i n , e . g . " i n n e r "

) −> Data f rame

The condition parameter is a function that is applied to determine which rows
should be joined. The condition can be a simple equality, e.g. "left.col1 ==
right.col1" or can be arbitrarily complex. The other parameter is the data to
join with, and is considered the “right” dataframe where df is considered “left”. The
join_type is the type of join to perform.

concat

The concat operator is analogous to a UNION in SQL, appending the rows of identical
column labels from two dataframes, however it has some key differences. First, concat
does not require that both dataframes have the same number of columns (rows if axis=1),
and there are no restrictions between the labels of the two dataframes, even their types
may be different. Another key difference is that the concat operator can accept multiple
dataframes at a time.

From pandas, this is represented by the pandas.concat utility. In practice, it is
common to have multiple different data sources that need to be concatenated for a larger
analysis, as opposed to join which typically only involves two tables. There are fixed

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 49

overheads to the concat operator, so this algebra places no limit on the number of
dataframes that may be concatenated in this way.

The signature of concat is as follows:

d e f c o n c a t (
df , # i n p u t d a t a f r a m e
a x i s , # 0 (rows) o r 1 (columns)
o t h e r s , # one o r more d a t a f r a m e s

) −> Data f rame

The others parameter is one or more dataframes to concatenate with df.

transpose

The transpose operator logically swaps the row and column axes, but not necessarily
physically. Since it is such an expensive operation, we try to delay it until absolutely
necessary, which is part of the motivation for the axis argument on each operator within
the algebra definition.

Pandas has a transpose operator for its DataFrame object which is commonly
used in cases where data has been laid out incorrectly from the source.

The signature of transpose is as follows:

d e f t r a n s p o s e (d f) −> Data f rame

to_labels

to_labels transforms the input dataframe to replace the row labels with one or more
columns of data. In the case that multiple columns are selected as new labels, a hierarchical
set of labels is created in the order specified in the operator’s parameters. Relational
databases do not have an equivalent abstraction to the row labels in the dataframe data
model, so it cannot be expressed purely in SQL.

The signature for to_labels is as follows:

d e f t o _ l a b e l s (c o l u m n _ l a b e l s) −> Data f rame

The column_labels parameter is one or more column labels that become the new
dataframe’s column labels.

from_labels

The from_labels operator moves labels into the data at position 0 and sets the row
labels to the positional notation. In the case that the dataframe has hierarchical labels, all

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 50

label “levels” are inserted into the dataframe in the order they occur in the labels, with
the outermost level or labels inserted into position 0 and subsequent levels inserted at the
following positions.

The signature for from_labels is as follows:

d e f f r o m _ l a b e l s (d f) −> Data f rame

sort_by

sort_by is an operator that logically reorders the dataframe’s rows (columns if axis=1
by the lexicographical order of the data in a column or set of columns. This is analogous
to the ORDER BY SQL operator. Like its SQL companion, in the case that multiple
columns are provided, columns after the first (in the order provided) will break ties by the
lexicographical order of the earlier columns. The sort may be in ascending or descending
order, depending on the arguments.

In pandas, there are two ways to sort: sort_values and sort_index. The
sort_values call has the same behavior as this algebraic operator. The sort_index
operator sorts the by the lexicographical order of the row (column is axis=1) labels. The
sort_by algebraic operator does not interact with the row or column labels of the data,
so a from_labels operator must be invoked before the sort_by operator to move the
labels into the data so that it may be sorted by the values in those labels. After the sort,
to_labels can then move the columns back into the labels, which will result in matching
behavior to pandas.

The signature for sort_by is as follows:

d e f s o r t _ b y (
df , # i n p u t d a t a f r a m e
a x i s , # 0 (rows) o r 1 (columns)
columns , # one o r more column l a b e l s
a s c e n d i n g =True

) −> Data f rame

The columns parameter is one or more column labels to sort by. The ascending
flag specifies whether or not to sort in lexicographically ascending or descending order.

Generalization of the algebra

The design here is a generalization of what pandas can implement, and can express opera-
tions beyond the pandas API. It is intended to be able to support any dataframe API, from
any system past or future. We do not intend for this design to be user-facing due to the

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 51

heavy reliance on user-defined functions. Instead, we designed this architecture such that
user-facing applications may be built to integrate with it.

Next, we will discuss the design of the metadata management in dataframes.

4.4 Metadata Management
The core function of the metadata management component of this design is to manage the
dataframe’s schema, the logical and physical order mappings, and the dataframe labels. We
now discuss each of these components individually.

Schema Management
The schema in dataframes has unique properties with respect to relational databases which
require extra engineering attention. In dataframes, any or all of the column’s types may be
left unspecified and inferred on-demand. The inference of types is extremely expensive,
requiring up to two passes on the data, as described in Section 4.3. The type inference is
fine-grained and can be applied at a column level, but it may be more efficient to infer the
types of multiple columns that have been unspecified when the inference of one column is
forced. We now go through each operator and its schema mangement requirements.

mask does not force the materialization of the unspecified types in the schema and the
resulting types remain unchanged from the input dataframe.

map will not force the materialization of the types, and the user-defined function may make
assumptions about the type of each column, but these assumptions are not guaranteed by
the algebra. The schema’s data types may be manually inferred and queried by the user-
defined function passed to map: schema inference is invoked through the infer_schema
operator in this algebra and the schema may be directly accessed.

The filter operator does not require materialization of the data types in the schema.
Like map, the condition function may make assumptions about the data types that are
unspecified and the developer may force the inference of types via the infer_types
operator. The types of the resulting dataframe remain the same as the input dataframe.

The explode operator is similar to map in its handling of types: types may be left
unspecified, and can be manually inferred by the developer before invoking explode.
The resulting dataframe’s types may be left unspecified or may be provided as an optional
parameter to the explode operator.

window does not require unspecified types to be inferred and the resulting dataframe’s
types must match the input dataframe’s data types.

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 52

The window_reduction operator does not force the materialization of unspecified
types, but the resulting dataframe’s types may be left unspecified, denoted by an optional
result_schema parameter.

The groupby operator does not force the materialization of unspecified types, but the types
of the resulting dataframe may be left unspecified if not provided via the result_schema
parameter.

reduction does not force the materialization of the types, and the resulting dataframe’s
types may be provided by the developer via the result_schema parameter or left
unspecified.

The infer_types operator by definition will infer the types of the columns selected,
and the resulting dataframe’s schema will reflect the type inference and coercion in this
operators definition.

join will force the inference of unspecified data types when invoked, but only for the
columns involved in the join. The output data types are not transformed from the two input
dataframes’ schemata.

The concat operator will not force type inference, and if types are already specified in
the schemas, they can be inherited from the source dataframes.

transpose does not materialize the types, and the resulting dataframe’s types are left
unspecified after a transpose absent a homogeneous dataframe.

The to_labels operator will force type inference of the columns that will become the
labels in order to to build an indexing structure for fast mask operations. This indexing
structure is not necessarily needed immediately so this type inference operation can be
deferred until the index is built on the new row labels.

from_labels will not force type inference for the resulting dataframes, whether the
types of the labels are known or not. As we mentioned in the description of from_labels
the types of the labels may not be known if no indexing structure has been built against the
labels, and they are not forced into being inferred by this operator.

Logical Order Management
Logical order and position management is a key requirement of dataframe system. The
system must be able to track the user’s order (or directly tie the physical representation to
the logical order) to correctly execute dataframe queries. We now go through each operator
listed above and describe the logical order management rules.

In mask, the materialization of the positional notation values is forced in cases that the
positional notation is used. The order of the resulting dataframe matches the order of the

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 53

input labels, which need not match the input dataframe’s order. An implementation could,
for example, separate mechanisms for reorder and indexing, so if labels are received in a
different order than the input dataframe’s order, the labels are first extracted in order and
the reorder is deferred to optimize performance.

For a map, the order of the columns (rows if axis=1) must be materialized before map
in cases where the user-defined function is relying on the logical order. In practice, an
implementation could materialize the column order when a map is invoked in cases where
it is unclear or challenging to inspect the user-defined function and determine whether order
is necessary in the user’s function. The output order of the dataframe must be the same in
both axes, with new columns (rows if axis=1) being added to the logical end.

In filter, the order of the rows (columns if axis=1) does not need to be materialized,
but the order of the columns (rows if axis=1) must be materialized if the condition
function provided by the developer relies in any way on the order of the columns. Neither
the columns nor the rows are reordered by the filter operation.

In explode, the order of the columns must be induced in the case that the user-defined
function argument relies on the ordering of the columns (rows if axis=1), but row
(column if axis=1) order need not be materialized prior to the invocation of explode.
The explode operator does not directly transform the order of the resulting dataframe
with respect to the input dataframe, but the positional notation values will be updated as
a result of an explode. The positional notation itself does not need to be immediately
materialized after the operator has completed execution, but metadata is maintained to
ensure that the order and positional notation values can be derived as they are needed. It
takes a non-trivial amount of communication to determine the correct logical order and the
precise positional notation if order was not previously materialized, so in these cases an
implementation can defer the precise positional notation calculation until it is needed.

Because sliding window operations directly rely on the order of the data, the order must be
materialized prior to executing the window operator. The logical order of the resulting data-
frame will be the same as the input dataframe’s logical order. For window_reduction
similarly, the resulting logical order will remain the same as the input order, with the
aggregations of each window in their logical locations with respect to the input dataframe.

groupby is value-based, so it does not rely on order. The logical order does not need to be
materialized before the groupby is performed. The logical order of the resulting dataframe
is the lexicographical order of the values in the by columns. The unique combination of
values in the by columns become the row (column if axis=1) labels, and in the case
of multiple by columns, a hierarchical label structure is created. The number of output
columns (rows) is identical to the number of input columns (rows).

CHAPTER 4. A GENERAL DATAFRAME ARCHITECTURE AND DESIGN 54

In a reduction, the logical order of the rows (columns if axis=1) must be materialized
before the user-defined aggregation function can be applied in the case that it relies on the
order of the data. The logical order of the columns (rows if axis=1) does not need to be
materialized for the execution of the reduction operator, but the resulting dataframe’s
logical column (row if axis=1) order will be inherited from the input dataframe. The
result’s column labels (row labels if axis=1) are unchanged from the input dataframe,
and the resulting row label (column label if axis=1) is set to the positional notation, 0 in
this case since a reduction will always result in a single row.

infer_types does not interact with the logical order in any way, so the resulting
dataframe’s order does not need to be materialized and remains unchanged from the input
dataframe.

In a join operation, the order of the resulting dataframe is determined from the two input
dataframes, so the logical order of these dataframes must be materialized for the join to
take place. The output dataframe is ordered by the logical order of occurrence of the left,
followed by the logical order of the right.

For the concat operator, the order of the resulting dataframe is inherited from the left
dataframe first, then in the order they occur in the array of the others parameter. The
logical order of each input dataframe needs to be materialized before this operator can be
applied.

The transpose operator does not rely on order, so the logical order does not need to be
materialized. The logical order is, however, inherited from the input dataframe.

The to_labels operator does not rely on order, so the logical order does not need to be
materialized. The logical order is, however, inherited from the input dataframe.

The resulting dataframe’s types are inherited from the input dataframe. The order is neither
materialized nor updated as a result of the from_labels operator.

4.5 Discussion
In this chapter, we presented our work on an architecture design for dataframes, such that
other implementations may learn and borrow from this work. We presented a set of rules
and optional design decisions to try to account for the more challenging components of the
dataframe data model. Additionally, we discussed ways that relational database systems
can incorporate and implement a subset of the dataframe data model in the architecture
presented here. In the next chapter, we present our reference implementation of this design,
Modin, and several of the low level design and implementation decisions we made to scale
dataframes.

55

Chapter 5

Modin: The Reference Dataframe
Implementation

5.1 Introduction
It is well-known that dataframe systems like pandas are non-interactive on moderate-
to-large datasets, and break down completely when operating on datasets beyond main
memory [87, 102, 55, 59, 60, 107, 114]. These issues represent significant challenges for
users who are unwilling or unable to switch to other, more scalable tools, such as relational
databases. To address these shortcomings, we have been developing Modin, a parallel
dataframe system, acting as a drop-in replacement for pandas, over the past few years.
Modin is already being used by data scientists in the telecommunications, finance, and
the automotive industries, has been downloaded more than 1 Million times, with over 75
contributors across 12+ institutions, and more than 6000 GitHub stars (as of April 2021),
demonstrating the value of such a system to the data science community. Modin’s source
code is open-source at https://github.com/modin-project/modin, with user
and developer documentation at https://modin.readthedocs.io/. To build Mo-
din, we had to address the dual problems of ensuring scalability of the rich set of dataframe
operators when operating on the tolerant data model, while also providing clear, consistent,
and correct semantics to users. In this chapter we operationalize and extend the dataframe
algebra presented in Chapter 3 and the design in Chapter 4 in a real implementation: Modin.
We primarily target two key aspects, each with their associated challenges:
Rule-based Decomposition. Unlike relational operators, dataframe operations can be
carried out at the granularity of rows, columns, or even cells. For example, fillna
accepts an input axis argument that specifies whether NULL values are filled along rows or
columns. To apply dataframe operations in parallel, along rows or columns or cells, we must

https://github.com/modin-project/modin
https://modin.readthedocs.io/

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 56

develop a set of decomposition rules that allow us to flexibly rewrite dataframe operations
on the original dataframe into analogous operations on vertical, horizontal, or block-based
partitions of the dataframe. Unlike in the relational context, these decompositions must
preserve and maintain ordering. Further, they must be tolerant to the fact that the column
types may change in the decomposed dataframes in unpredictable ways, requiring possible
coordination across the decompositions, which is expensive. Moreover, the flexible data
model blurs the boundary between data and metadata, and supports operators that query and
manipulate the data and the metadata at the same time—identifying decomposition rules
for parallelizing such operations is non-trivial. For example, pivot elevates a column of
data into column labels (i.e., metadata used to identify columns) and reshapes the dataframe
based on these new labels. Finally, we need to outline these decomposition rules for a
core set of dataframe algebraic operators, with the understanding that the entire set of
operations (in systems like pandas) can be rewritten using this core set. For this purpose,
we draw on our proposed candidate algebra from Chapter 3, but extend it somewhat to
make it more practically suitable—for example, recognizing that the prior algebra required
us to repeatedly take transposes to apply columnar operations, we instead natively support
columnar versions of operations. Irrespective, distilling the 600+ functions in a system such
as pandas into a small core set of operators still poses a substantial engineering challenge.
Metadata Independence. Dataframe systems such as pandas make several metadata-
related design decisions that both impact scalability and semantics. In particular, they
tightly couple metadata with the physical representation of the dataframe; instead, we strive
for metadata independence, where the metadata is captured at a logical level, with the
physical representation of the metadata being decoupled from the logical. For instance,
dataframe systems such as pandas eagerly determine and materialize the type of each
column at the end of each operation—a time-consuming blocking step that severely slows
down operations on large dataframes. Morover, pandas often coerces types when this may
not be intended by the user, such as casting integers into floats in columns with a mix
of both. Instead, our goal is to develop an independent type system for dataframes that
natively supports mixed types and unspecified types in a column, whereby we can defer
type inference to only when it is needed. Determining which algebraic operators require
type inference is not straightforward. Another important design decision in present-day
dataframe systems is to physically store data in logical order of rows and columns. While
this is convenient in terms of accessing data by row or column number, it also eliminates a
degree of freedom in terms of storage, and requires coordination after each operation to
materialize the ordering information associated with each row and column. Instead, we
need to support order independence wherein the physical order can be made to match the
logical order on demand, but isn’t done unless necessary. Overall, ensuring correct type
and ordering semantics for the massive set of dataframe operators is a big challenge.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 57

Our Approach. In this work, we address the scalability and semantics challenges and
instantiate our ideas in Modin, our first cut at a parallel dataframe system. In Chapter 4,
we formally described a small set of core operators with formalized type and ordering
semantics that we implement within Modin. Our core operators include relational operators
adapted to the dataframe context (e.g., ordered versions of select, project, and join),
operators used to query and manipulate the metadata (e.g., converting data to labels), and
low-level operators that enable the application of system or user-defined functions (e.g.,
map and reduce). To allow these operators to be performed in parallel at scale, we
identify flexible equivalence rules that express each operator on the dataframe as operators
on decompositions or partitions thereof, with a suitable ordered concatenation operator
to “reassemble” the overall dataframe if needed. We formally describe the semantics
of decomposition at various granularities. Modin internally uses these decomposition
rules to rewrite computation, by employing a flexible partitioning scheme along rows,
columns, cells, or blocks of cells, as necessary. We identify two types of optimization
opportunities for significantly improving the system performance by intelligently applying
the decomposition rules. We also propose a dataframe type system as implemented in Mo-
din and describe how typing is inherited across the core operators, and develop techniques
to support label- and order-based access without requiring the physical order to match the
logical order. Overall, Modin provides up to a 100× speedup relative to pandas and Koalas
on a range of workloads including joins, type inference, and row-oriented UDFs.
Related Work. Recent efforts from the database research community has described how
to rewrite dataframe operations into SQL [55, 60, 107]; while these efforts are valuable,
they only rewrite a subset of the pandas API that is expressible as relational operators,
leaving the rest to be executed as is in pandas. However, they do not natively support the
dataframe data model (which supports mixed types, and row/column equivalence) or the
vast majority of operations, which are non-relational (e.g., columnar operations, non-atomic
operations, operations that move data to metadata and vice-versa). We describe other
differences with respect to metadata management in Section 5.5. Koalas [63], Dask [31],
and Ibis [53] are other dataframe implementations which support simple parallelization for
row-oriented operations; however, as we will show in our experiments, they are unable to
support columnar operations, or move data to metadata and vice-versa. Our decomposition
or partitioning schemes (row-, column-, and block-wise partitioning) are analogous to
matrix partitioning [40]; however, the matrix data model (with homogenous data types) and
set of operators are both very different, necessitating different decomposition rules.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 58

Core

 API API [Future] API

Execution
Engine

Execution
Engine

[Future]
Execution

Engine

Modin
Core

API

Execution

Memory DiskStorage

SQL

Core
Operators

Metadata
Manager

Data Layout
Manager

Figure 5.1: The Modin architecture

5.2 Pluggable Interaction Modalities
Modin was architected to address the scalability challenges with dataframes while also
abstracting away system details that data scientists do not need to care about. In this section,
we detail the components of the Modin architecture (shown in Figure 5.1) and present the
challenges we address.

Modin’s API layer is modular in order to support multiple modes of interaction (e.g.,
pandas API, SQL, or Apache Spark DataFrame API [109]). Supporting multiple modes
of interaction is important to ensuring productivity because data scientists often feel more
comfortable performing certain tasks in one language over another. For example, a data
scientist may feel more comfortable writing a JOIN in SQL than pandas. In fact, there are
many questions on StackOverflow [110] that ask “How do I write X in pandas/SQL?” where
X is a SQL or pandas function respectively. To support the multiple modes of interaction,
as well as provide the ability to extend to new ones, we define a compact set of operators
that can be reused to implement existing APIs and define new ones.

Currently, Modin exposes the full pandas API (with 600+ functions) while many popular
dataframe systems, such as Koalas [63] and Dask Dataframe [30], only support a subset
of the pandas API that more directly corresponds to relational operators. Modin provides
the pandas API as a drop-in replacement as-is, without changing its semantics, through
the modin.pandas module. Even though there are many challenges associated with
exposing the pandas API, we found that it is vital to support it exactly as is to include edge
case behaviors, inconsistencies, and error messages—to avoid deviating from expected
behavior for data scientists.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 59

5.3 Modin Core
The Modin Core is the narrow-waist of Modin’s architecture. It contains a set of core
operators, decides the best data layout or partitioning to parallelize the core operators,
and efficiently manages metadata. This design is intended to allow all user-level APIs to
leverage the same performance optimizations. We now describe the structure of the Modin
Core and defer the details of the operator parallelization and metadata sub-components to
later sections.

Core operators and data layout manager
To allow Modin’s core operators to be applied to large dataframes, Modin decomposes
the dataframes into smaller partitions, enabling parallel execution of the operators on
the partitions. However, the breadth of access patterns assumed by a given operator
makes decomposition a challenge: operators that assume access to an entire row may be
followed by operators that assume access to an entire column. Modin’s physical layout
can represent data as row-wise, column-wise, or block-wise partitioning transparently.
Modin’s data layout manager efficiently shuffles the data between these physical layouts to
support challenging operator combinations. We discuss the decomposition rules of each
operator and optimization opportunities that stem from applying the decomposition rules in
Section 5.4.

Metadata manager
The metadata manager is responsible for maintaining the metadata associated with a
dataframe, including data types, column and row labels, and the mapping between logical
order and physical order. We give an overview of metadata management here and discuss
the details in Section 5.5.
Data types. In dataframes, one column can contain values of one or more types. We develop
a dataframe type system to formally define the semantics of querying and manipulating
types in a column. Specifically, our type system organizes types into a tree hierarchy,
where a parent node represents a more general type than its children. We also define how
input types of a dataframe are transformed to output types for each core operator such
that we have a clear semantics of transforming mixed types across a chain of operators.
Since the cost of inferring types is high and the data types are query-able in dataframes,
we additionally perform a few optimizations to improve Modin’s performance, including
delayed type inference and building indexes on data types.
Column and row labels. One of the biggest metadata challenges in dataframes is that
metadata can become data, and vice-versa. For example, it is possible to insert the row

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 60

labels into the data and operate on them as data. In addition to this interchange, users have
expectations for low latency interactions when they lookup rows or columns by labels.
Modin indexes the label metadata and move labels close to data to accelerate querying and
manipulating labels.
Logical order. Modin’s data layout decouples the logical order, also known as the user’s
order, from the physical order through indirection. Though the order of the data is known,
the precise position of each row (i.e., row number) may not necessarily be known at any
given time. For example, for filter, the order is unchanged, but the position of a given
row may change. Since recomputing the specific position is costly and the specific position
is rarely used, Modin will defer calculating position until necessary.

5.4 Modin Operators and Optimization
Modin supports a small set of core dataframe operators to implement the user-level APIs.
This design requires addressing two major challenges. First, these operators need to be
powerful and extensible such that they can be used to quickly implement new APIs or
extend existing ones. Second, we need to identify decomposition rules for each operator
such that the operator can be executed in parallel to reduce interactive latency. Modin
addresses the first challenge by carefully choosing the set of core operators. First, we
include dataframe versions of relational operations (e.g., join) since they are widely used
in data analysis and are the building blocks for many user-level APIs. Second, we include
non-relational operators that query and manipulate metadata (e.g., infer_types and
transpose) to support flexible schema and mixed types. Finally, we include low-level
operators (e.g., map, groupby, and explode) that accept an input function. The input
function can be written by the user, e.g., the apply function in pandas which accepts a
general purpose Python function as input, in which case we call this a user-defined function
(UDF). Or this function can be in-built into the system by the developer implementing the
API in Modin (i.e., the authors and contributors to the Modin codebase), e.g., fillna in
pandas, where NULL values are filled in using a specific approach. We call this a system
predefined function (SPF).

Modin addresses the scalability challenges by parallelizing the aforementioned core
operators. We formally define the semantics of dataframe decompositions and propose
a set of decomposition rules for parallelizing operators over dataframe decompositions.
We show that applying the decomposition rules can significantly improve the performance
of Modin in Chapter 6. More importantly, these rules are independent of the underlying
execution engines (e.g. Ray or Dask) and applicable to new execution engines.

We start by briefly revisiting the dataframe data model we presented in Chapter 3
and formally define semantics of decomposing a dataframe in Section 5.4. Subsequently,

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 61

data

data

data

C-Label-C

R-Label-A

R-Label-B

R-Label-C

C-Label-C

dataR-Label-A

C-Label-A

data data data

data data data

data data data

C-Label-B C-Label-C

R-Label-A

R-Label-B

R-Label-C

R
ow

 la
be

ls

Column labels

C-Label-B

dataR-Label-A
C-Label-A

dataR-Label-A

cell-wise
decomposition

row-wise
decomposition

column-wise
decomposition

data

data

data

C-Label-B

R-Label-A

R-Label-B

R-Label-C

data

data

data

C-Label-A

R-Label-A

R-Label-B

R-Label-C

C-Label-A

data data data

C-Label-B C-Label-C

R-Label-C

C-Label-A

data data data

C-Label-B C-Label-C

R-Label-B

C-Label-A

data data data

C-Label-B C-Label-C

R-Label-A

Figure 5.2: Cell/row/column-wise decomposition

we describe each operator and associated decomposition rules in Section 5.4. Finally,
we illustrate additional optimization opportunities that stem from employing different
decomposition rules for the same set of operators in Section 5.4.

Semantics of Decomposing a Dataframe
A dataframe D is defined as a tuple (A,R,C, T), where A is an m × n array of entries
that represents the dataframe content, R is a vector of m row labels, C is a vector of n
column labels, and T is the type information for each column, as we discussed in Chapter
3. The dataframe entries A are ordered. The operators that process a dataframe can either
maintain the same order or modify it based the semantics of the operator, which will be
described in more detail in Section 5.5. The row labels R and column labels C can be used
to identify the corresponding rows and columns, respectively, and they do not have to be
unique. Users can also use row/column numbers or positions to uniquely identify a specific
row/column. A row/column number represents the natural order of the rows/columns of a
dataframe (e.g., row number 1 represents the first row).

Decomposing a dataframe means dividing the dataframe content A into non-overlapping
partitions, where for each partition Ak, we logically instantiate a new dataframe by
adding the corresponding row labels Rk, column labels Ck, and type information Tk.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 62

We propose five types of decompositions: cell-wise, row-wise, column-wise,
rowGroup-wise, and rowOrderGroup-wise. Figure 5.2 shows the first three types.
The cell-wise decomposition decomposes a dataframe into a set of unit dataframes.
A unit dataframe Dij = (Aij, Ri, Cj, Tj) includes a single value along with the correspond-
ing metadata information. The row-wise and column-wise decomposition decomposes
a dataframe into a set of row and column dataframes, respectively. A row dataframe
Di∗ = (Ai∗, Ri, C, T) means appending all of the unit dataframes with the same row labels
as new columns in order, maintaining the natural order of the dataframe D. We denote this
append operation as

⊕
c.

Di∗ =
n⊕

j=1
c
Dij⊕

c can be generalized to append any dataframes with the same row labels and therefore
the same number of rows.

⊕
r is analogously defined as appending dataframes with the

same column labels as new rows. Therefore, a column dataframe means appending the unit
dataframes with the same column label as new rows. Note that unlike the relational context
where we simply union horizontal partitions of a relation, here, special care must be taken
to preserve the ordering of the dataframe partitions (which are themselves ordered) along
rows and columns. The three types of decomposition, as in Figure 5.2, can be summarized
as follows:

D =
m⊕
i=1

r

n⊕
j=1

c
Dij =

⊕
∗
Dij

=
m⊕
i=1

r
Di∗

=
n⊕

j=1
c
D∗j

The first line represents cell-wise decomposition, for which we use
⊕
∗ as shorthand. The

second and the third line represent row-wise and column-wise decomposition, respectively.
The rowGroup-wise decomposition is a special case of row-wise decomposition, where

we partition the dataframe into groups of rows based on a composite key of a set of columns
cols and each group i includes the rows whose composite key equals a distinct key ki. The
rowGroup-wise decomposition can be represented as

D =
l⊕

i=1
g(cols)

Dki , where Dki = filterr(D, cols = ki)

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 63

cell-wise

row-wise column-wise

rowGroup-wise rowOrderGroup-wise

Figure 5.3: The hierarchy of decompositions: a parent node represents a more general decomposi-
tion than its children.

filterr means selecting the rows whose cols’s composite key equals ki and
⊕

g(cols) means
that the groups are appended in the natural order that they arise in the dataframe. This
decomposition is commonly used in operators such as group-by and equi-join. Another
decomposition is the rowOrderGroup-wise decomposition. Compared to rowGroup, which
uses the natural order, rowOrderGroup orders the groups by the groupby key, which is used
by the sort operator. We will discuss this decomposition in Section 5.4 when we introduce
the sort operator.

Decomposition Rules for Operators
We now describe the core operators in Modin and their associated decomposition rules.
Each decomposition rule uses one or more types of decompositions discussed above. The
five types of decomposition form a tree structure (shown in Figure 5.3) where a parent
node represents a more general decomposition than its child nodes. For example, a row-
wise decomposition can be viewed to be a cell-wise decomposition, but not the other
way around. In addition, since a rowGroup-wise decomposition partitions a dataframe
into groups of rows, it is a special case of the row-wise decomposition. When discussing
the decomposition rules of each operator, we use the most general possible types of
decomposition because replacing this decomposition type by its descendants will also
result in valid decomposition rules for this operator. Note that if an operator processes the
input dataframe at the granularity of rows/columns, we say that it is operating along the
row/column axis, respectively.

We first discuss the low-level operators. Then, we present the decomposition rules for
non-relational operators that query and manipulate metadata. Subsequently, we discuss the
operators adapted from relational operators. We defer discussion on metadata, like type
inference and ordering, to Section 5.5. In the following, we use f to represent a UDF or
SPF (system predefined function) while h is used to represent an SPF.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 64

Rulebox 1: decomposition rules for low-level operators

map : map∗(f
map
∗ , D) =

m⊕
i=1

r

n⊕
j=1

c
fmap
∗ (Dij)

explode : exploder(fexp
r , D) =

m⊕
i=1

r
fexp
r (Di∗)

groupby : gb(op, param, cols,D) =

l⊕
i=1

g(cols)
op(param,Dki)

where Dki = filterr(cols = ki, D)

reduce : reducer(fred
r , D) =

m⊕
i=1

r
fred
r (Di∗)

Low-level operators

The low-level operators include map, explode, groupby, and reduce.
map and explode: The map operator accepts a UDF or SPF to transform an input
dataframe into a new dataframe maintaining the same shape and metadata (e.g., row/column
labels) as the input. If the UDF/SPF fmap

∗ is applied to each cell and outputs a single
value, the map operator can use cell-wise decomposition map∗ as shown in Rulebox 1.
Based on Figure 5.3, map also supports the descendant decompositions (e.g., a row-wise
decomposition, mapr, is also possible if f is applied to each row). One example usage of
map is to implement fillna that fills NULL values using a specified method.

The explode operator uses a UDF/SPF to transform an input dataframe into a new
one with a different shape and metadata from the input. The SPF/UDF can be applied
row-wise or column-wise. When applied row-wise (i.e., f exp

r in Rulebox 1), each row
expands into one or more rows, while maintaining the same column labels. Similarly, f exp

c

can transform a column into one or multiple columns with the same row labels. When new
rows or columns are generated, their corresponding row or column labels are derived from
the input counterparts. Therefore, the explode operator supports row-wise (i.e., exploder
in Rulebox 1) and column-wise decompositions, depending on how it is applied.
groupby: As shown in Rulebox 1, the groupby operator takes a dataframe D, a set of
groupby columns cols, and a Modin operator op with parameters param as input. It groups
the rows of the dataframe based on the composite key of the groupby columns cols, and
applies the input Modin operator op to each group1, thereby supporting the rowGroup-wise
decomposition. One example usage is to replace NULL values in each group with a value
that is based on the key of the groupby columns cols. In this case, a map can be used to
replace NULL values for each group.

1Currently, Modin does not allow operators that change the number of columns or the column labels in a
groupby operator

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 65

Rulebox 2: decomposition rules for metadata operators

inferT : inferT (D) =

n⊕
j=1

c
hinfer
c (D∗j)

filterT : filterT (D, t) =

m⊕
i=1

r

n⊕
j=1

c
mask(hlb

∗ (t,D), Dij)

to_labels : to_labels(cols,D) =

m⊕
i=1

r
hto
r (cols,Di∗)

from_labels : from_labels(D) =

m⊕
i=1

r
hfrom
r (Di∗)

transpose : transpose∗(D) =

m⊕
i=1

r

n⊕
j=1

c
htrans
∗ (Dij)

reduce: The reduce operator aggregates each row/column dataframe into a single value
based on a SPF/UDF (e.g., f red

r in Rulebox 1); one possible SPF could be average. There-
fore, the row-wise decomposition (i.e., reducer in Rulebox 1) breaks the dataframe into row
dataframes Di∗, applies the function f red

r to each one, and outputs a unit dataframe. We note
that for some functions (e.g., sum), one possible optimization is to further decompose a row
dataframe Di∗ into smaller partitions, apply this function for each partition, and aggregate
the results. The column-wise decomposition of reduce is defined symmetrically.

Operators for querying and manipulating metadata

The operators for querying and manipulating metadata include infer_types,
filter_by_types, to_labels, from_labels, and transpose.
infer_types and filter_by_types: Since Modin supports mixed types in a col-
umn, we provide the infer_types operator to infer the type of a column by inspecting
the type of each cell within the column and finding the common type. Modin organizes
the types in a tree structure, where a parent node represents a more generic type than its
child nodes. Section 5.5 introduces a dataframe type system, as implemented in Modin.
The infer_types operator applies a SPF hinfer

c to each column dataframe and gener-
ates a new one with the updated type information (rule inferT in in Rulebox 2). The
filter_by_types operator checks the column types and filters out the columns whose
types are not in a specified list of types (rule filterT in Rulebox 2). It uses a SPF hlb

∗ to
find the column labels whose column types are in the specified types t and adopts a mask
operator to project the corresponding columns. The mask operator extracts cells based on
the specified row/column labels and will be discussed in Section 5.4.
to_labels and from_labels: to_labels replaces the dataframe’s row labels with
one or more columns of data, while from_labels operator converts the row labels into
a column. Both operators support row-wise decomposition, but not column-wise. Their

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 66

Rulebox 3: decomposition rules for relational operators

mask : mask∗(labels,D) =

m⊕
i=1

r

n⊕
j=1

c
hmask
∗ (labels,Dij)

: maskr(rnSet,D) =

m⊕
i=1

r
I[i ∈ rnSet]Di∗

filter : filterr(fflt
r , D) =

m⊕
i=1

r
fflt
r (Di∗)

window : windowr(f
win
r , w,D) =

m⊕
i=1

r

n⊕
j=1

c
fwin
r (

j+w⊕
k=j

c
Dik)

sort : sort(cols,D) =

m⊕
i=1

o(cols)
hsort
o (cols,D[pi,pi+1))

where D[pi,pi+1) = filterr(pi 6 cols < pi+1, D)

join : join(colsl, Dl, colsr, Dr) = join(
⊕

g
Dl

k,
⊕

g
Dr

k)

=
⊕

g
cross_prod(Dl

k, D
r
k)

where Dl
k = filterr(cols

l = k,Dl)
Dr

k = filterr(cols
r = k,Dr)

concat : concatoutr (D1, D2) =
⊕

k∈{1,2}
r

mk⊕
i=1

r
hout
r (labelsout, D

k
i∗)

: concatinr (D1, D2) =
⊕

k∈{1,2}
r

mk⊕
i=1

r
maskr(labelsin, D

k
i∗)

decomposition rules are presented in Rulebox 2. to_labels uses the SPF hto
r to replace

each row dataframe’s row label with the data in columns cols and deletes the cols to
generate a new row dataframe. The new row dataframes are appended to generate the
output. from_labels uses SPF hfrom

r to do the opposite.
transpose: The transpose operator switches the row and column data of a dataframe.
It supports cell-wise decomposition: for each unit dataframe, we swap the row and column
label using a SPF htrans

∗ as shown in Rulebox 2. We note that one system optimization in
Modin is that we do not necessarily physically swap data and labels for the transpose
operator, instead modifying the mapping from physical to logical for a no-shuffle dataframe
transposition.

Relational operators

The dataframe operators that are adapted from relational operators include mask, filter,
window, sort, join, rename, and concat.
mask and filter: The mask and filter operators are adapted from relational oper-
ators project and select. The main difference from their relational counterparts is
that mask and filter can be applied to both the row and column axes, and the output

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 67

d11 d12 d13

d21 d22 d23

d11 d12 d13

d21 d22 d23

d12 d13

d22 d23

reduce each window
for each row

d'
11 d'

12 d'
13

d'
21 d'

22 d'
23

row-wise window
window size = 2

row-wise
decomposition

Figure 5.4: An example of window operator

dataframe maintains the same ordering as the input. The mask operator allows developers
to project and select the entries in a dataframe using column labels and row labels together.
mask also allows developers to specify the row and column numbers. A mask that subse-
lects dataframe entries based on labels supports cell-wise decomposition, that is, for each
unit dataframe, the mask discards this unit dataframe if its corresponding row and column
labels are not in the specified labels. Similarly, a mask that subselects dataframe entries by
specified row numbers also supports cell-wise decomposition, where unit dataframes are
discarded if their row number is not in the specified set. We express this using an indicator
function I[i ∈ rnSet] in Rulebox 3. The column case is symmetric. The filter operator
eliminates rows/columns that do not satisfy certain data-specific conditions (as opposed
to label/order-specific conditions as in mask) as encapsulated in a SPF/UDF. Rulebox 3
shows the decomposition rules for mask and filter.
window: The window operator performs a sliding window operation by grouping data-
frame cells in a column-wise or row-wise manner, and for each set of windowed cells,
uses a SPF/UDF to reduce them to a single value. We use an example in Figure 5.4 to
explain the decomposition rule of window in Rulebox 3. Here, the window size is 2 and
the window operator operates on the row axis. So we use row-wise decomposition and for
each row dataframe, we perform a window operation (i.e., each window includes 2 cells or
less shown in Figure 5.4). For each window of cells (i.e.,

⊕j+w
k=j c Dik in Rulebox 3), we

use a function fwin
r to reduce them into a unit dataframe. The generated unit dataframes

are appended as new columns to generate a new row dataframe (via
⊕n

j=1c). Finally, the
row dataframes are appended as new rows. The column-wise decomposition can be defined
symmetrically and is omitted.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 68

sort, join, rename, and concat: The sort and join operators have the same
semantics as the relational counterparts. Their decomposition rules are shown in Rule-
box 3. The sort operator uses rowOrderGroup-wise decomposition (i.e.,

⊕
o(cols)), where

dataframe rows are range-partitioned based on the sorting columns cols such that the cols
values across partitions are ordered. As shown in Rulebox 3, the cols values of the rows in
one partition i fall into a value range [pi, pi+1), where pi is the minimum key of a partition.
We then use the function hsort

o to sort each partition independently to complete the sort
operation. The join2 operator supports rowGroup-wise decomposition. The rows of input
dataframes are partitioned by the join keys (i.e., colsl and colsr for Dl and Dr in Rulebox 3,
respectively) and each pair of partitions Dl

k and Dr
k is joined locally using cross product

cross_prod. The rename operator replaces the input dataframe’s row and column labels
with the specified new labels. Since rename does not access the dataframe content, it does
not have a decomposition rule.

The concat operator is analogous to union in relational algebra. The difference here
is that concat does not require the input dataframes have the same row or column labels
and can applied on both the column and row axes. Additionally, concat maintains the
row and column ordering of the input dataframes. Our following discussion focuses on
row-wise concat; here, concat appends rows while joining their column labels. Modin
currently supports inner and outer label join. concat with outer label join (i.e., concatout

in Rulebox 3) includes three steps: 1) take the union of the column labels of two input
dataframes (i.e., labelsout); 2) for each row dataframe, use a function to extend its column
labels to the union column labels and filling the newly generated cells with NULL (i.e.,
hout
r (labelsout, D

k
i∗)); 3) append the new rows together. concat using inner label join

takes the intersection of the input column labels (i.e., labelsin) and uses the intersected
column labels to project the input rows (i.e., using maskr(labelsin, D

k
i∗)).

Applying Different Decomposition Rules
We now identify two potential optimization opportunities made possible by intelligently
choosing between decomposition rules. Since some operators can be decomposed in
different ways, we can change the decomposition pattern based on the immediate preceding
or succeeding operator decompositions. For example, a map∗ operator can be rewritten to
mapr or mapc and maintains the same semantics because map∗ is a more general version
of mapr and mapc as shown in Figure 5.3. Choosing different decomposition rules for the
same set of operators can result in different performance. Our experiments in Section 5.4
demonstrate that selecting decomposition rules appropriately can significantly improve the
performance of Modin.

2For simplicity, we assume an equi-join and omit other join types.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 69

mapr map* mapr

mapr mapr mapr

a) eager data pipelining

Rewrite map*

mapr map* mapc

mapr mapc mapc

b) selective data exchange

Rewrite map*

P E

P P

P E

E P

P: data pipeline E: data exchange

Figure 5.5: Optimization opportunities from applying different decomposition rules

Eager data pipelining: This optimization applies the decomposition rules to allow more
data pipelining. Figure 5.5(a) shows an example. Here, users issue three chained map
operators. The SDF/UDFs of the first and the third operator need to be applied to each
row (i.e. mapr) while the second SDF/UDF can be applied to each cell (i.e., map∗).
Independently applying the decomposition rules for each operator results in a plan where
the first and the third operator use row-wise decomposition and the second operator uses
cell-wise decomposition. We can pipeline the data from a row-wise decomposition to a cell-
wise decomposition, but need to exchange [42] data (via data shuffling) if the order of the
two decompositions is reversed because the cell-wise decomposition is more general than
row-wise decomposition. Therefore, the first plan in Figure 5.5(a) requires data exchange
when we pass data from the second to the third operator. One optimization opportunity here
is if we “downgrade” the cell-wise decomposition into a row-wise decomposition, then the
three operators can be pipelined as shown in the second plan of Figure 5.5(a). Therefore,
an interesting optimization here is how to opportunistically rewrite a decomposition into a
more specific one to enable more data pipelining.
Selective data exchange: We can also apply the decomposition rules to swap data exchange
and pipeline across different operators. Data exchange is generally more costly than data
pipelining. Therefore, we prefer to exchange (or shuffle) less data at the cost of pipelining
more data. Figure 5.5(b) shows an example where users issue three map operators. The first
and third one require row-wise (i.e., mapr) and column-wise decomposition (i.e., mapc),
respectively. The second one uses a cell-wise decomposition (i.e., map∗). In this plan,
we need to exchange data between the second and the third operator. An alternative plan
is to rewrite the cell-wise decomposition into a column-wise one (i.e., the second plan
in Figure 5.5(b)). This plan needs to exchange data for the first two operators with the
benefit of pipelining data between the second and the third operators. Depending on the

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 70

Figure 5.6: Performance impact of data pipelining and selective data exchange.

(a) Performance benefit of eager data pipelining (b) Performance benefit of selective data exchange

amount of data passed across the three operators, the two plans prevail in different cases.
The optimization here involves applying the decomposition rules to find the best plan that
reduces the cost of data exchange.

Performance impact of choosing different decomposition rules
We now test the performance impact of choosing different decomposition rules and show
the optimization opportunities from eager data pipelining and selective data exchange
discussed.

We first explore the optimization opportunity from eager data pipelining. Recall that
eager data pipelining pipelines operators that decompose cell-wise in between two operators
that decompose row or column-wise. We test three map operators that are chained as
mapr → map∗ → mapr, where each map operator accepts a UDF that transforms NULL
values in the dataset into a new value depending on the column type. mapr operates on
each row and pipelines data to map∗, which operates on each cell. Since map∗ is followed
by mapr, it needs to do a data exchange. The eager data pipelining technique rewrites this
query into mapr → mapr → mapr because map∗ is a more general decomposition than
mapr. This way, we can pipeline the three operators. Figure 5.6a shows the execution time
of the two plans. We observe that the execution time of the optimized plan is 57% of that
of the original plan. The majority of the overall reduction in the execution time is due to
reduced communication between operators.

The second technique we explore is selective data exchange. Selective data exchange
can occur when an operator that decomposes cell-wise is surrounded by each of the other
two decompositions: row and column, which is a common pattern in regular dataframe

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 71

workloads. We test two plans that have equivalent semantics but different performance.
The first plan is mapr → map∗ → mapc (denoted as PlanA), which includes a data
pipelining for the first two operators and a data exchange for the last two. The first operator
mapr outputs significantly more data than the second operator map∗ because the first
operator converts each input row from the NYC dataset to a row of strings while the
second operator outputs the first character of each input string. The mapc operator converts
strings to numbers if possible, otherwise leaves the value unchanged. An alternative plan is
mapr → mapc → mapc (denoted as PlanB), which enforces exchanging data first and
then pipelining. We expect PlanB to be more costly because it exchanges more data than
PlanA. Figure 5.6b shows the results of the two plans. We see that the two plans have very
different execution times: the execution time of PlanA is 35% of PlanB. Therefore, our
decomposition rules allow more optimization opportunities; how to optimally pick between
decomposition rules is left for future work.

5.5 Metadata Management
Modin manages various types of dataframe metadata: data types, the row/column labels,
and the mapping between the logical order of columns and rows to the physical order. We
now discuss each of these components individually.

Data Types
Unlike relations, columns in a dataframe can have mixed types, which poses multiple
unique challenges. Dataframes must correctly and efficiently decide the type of a column
that includes data of multiple types, as well as define the semantics of how each operator
modifies the type information. Existing dataframe systems do not have a systematic solution
for supporting mixed types. For example, pandas casts all integers to floating point within a
column of mixed floats and integers. In addition, pandas does not support NULL values in
integer columns by default, instead casting those integers to floating point. Consequently,
an outer, left, or right join with missing values can result in a modified data type in pandas.
Additionally, pandas eagerly infers each column type after most operations, significantly
increasing execution time since inferring a column’s type requires inspecting every value in
a column.

We propose a type system for dataframes to address this challenge. We organize types
into a hierarchy, where a parent node is a more general type than its children. Then, we
define how the core operators modify types. With the clear semantics defined, Modin
can defer type inference to when it is absolutely necessary, thereby reducing the cost of
managing mixed types.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 72

Any

Number

Floating
PointInteger

String Datetime User-
Defined
Type

Category

Unspecified

Boolean

Figure 5.7: Dataframe Type System Hierarchy

Dataframe Type System. Our type system enables support for the unique properties
of dataframes: mixed types in a column, unspecified types (i.e., the type information is
only inferred when necessary), and type inference. Types are organized into a hierarchy
and Figure 5.7 shows one instantiation. Here, types including integers, boolean, float are
regarded as a number type. This number type along with string, category, and other types
inherit ANY. We additionally have designation we call UNSPECIFIED, which represents
columns where the type has not been determined yet. In Modin, all types, except ANY and
UNSPECIFIED, are basic types and inherit ANY, but Modin can support more complicated
types using the proposed type system. Our type system defines types only along columns
and follows two invariants.

Invariant 5.5.1. The output column types of the operators that accept a UDF/SDF is either
provided at invocation or designated as UNSPECIFIED and implicitly inferred by the
dataframe system. Type inference is deferred until an operator requires it.

A column type with the designation of UNSPECIFIED can occur after operators that
allow UDF/SDFs (e.g., map). This designation enables the user to apply functions anony-
mously without needing to know what the output type(s) will be, and allows performance
optimizations that avoid calculating and materializing type information when it may never
be needed by the user. We note here that UNSPECIFIED does not inherit ANY, because
UNSPECIFIED is a designation specifically used to defer the materialization and inference
of a given column’s type.

Invariant 5.5.2. A dataframe column i’s type Ti is always correct, even though the type Ti

may not represent the most precise type for that column i.

Modin does not implicitly recalculate types that are already materialized, even if there is
a more specific type that can describe a given column. Suppose a dataframe column has all

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 73

integers except a single string, resulting in a column of type ANY. Here, a data scientist can
remove the string with a filter, resulting in a column where all data values are integers.
In this case, the type of the column remains ANY, despite a more precise type designation
being possible. Modin can match the behavior of pandas by calling infer_types as a
post-processing step to any pandas function. Our type system gives users the flexibility to
choose to defer the type inference for performance, or to match the pandas semantics by
calling infer_types after a given pandas function.
Type Rules by Operator. Each operator described in Section 5.4 has two rules for handling
the column types: 1) whether the input types must be known to perform the operator, and
2) whether the output types are inherited from the input dataframe(s) or the output types
may be specified or are UNSPECIFIED. Table 5.1 describes the data type handling rules
for each operator. The column labeled “Input Types” describes whether the data types
must be specified before that operator is applied. In the case of sort and join, the input
dataframe types must be known upfront to determine whether or not the values can be
compared. The type system will infer and update the types implicitly via infer_types
if the input dataframe’s types are UNSPECIFIED and the operator needs to know the
input types (i.e., “Inferred” in Table 5.1). The “Output Types” column describes how the
output types are derived. “Inherited” means that the output data types will match the input
dataframe’s types or remain UNSPECIFIED. For example, in the case of a filter, types
are not modified, even if they are UNSPECIFIED. This presents an interesting opportunity
where Modin can choose to maintain the lineage of dataframes throughout a workflow
and propagate inferred type information to the related dataframes, so that the types only
need to be calculated once based on this inheritance model. For operators that allow a
UDF/SDF as input, the output types can be specified by the developer (i.e., “Specified”
in Table 5.1), or left unspecified. Suppose, for example, a developer wants to perform a
map with a SDF that returns TRUE for non-NULL values, and FALSE otherwise. Since
all columns in the output are known to be boolean, this information can be provided by
the developer implementing the SDF to the map upfront to avoid costly type inference.
Alternatively, when the types of the output dataframe after a map is not known, it ends up
being UNSPECIFIED for every column.

Another important thing to note is that Modin never implicitly coerces types. Whenever
result_schema is passed as an argument to an operator, Modin infers the schema of
the resultant dataframe, and checks whether it matches the provided result_schema
- raising an exception if it does not. There is no native way to coerce types in Modin.
Developers who wish to coerce types would need to call the map algebraic operator with a
user defined function that encapsulated the coercion logic.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 74

Table 5.1: Type inference and changes by operator.

Operator Input Types Output Types
mask N Inherited
filter_by_types Y Inherited
map N Specified or Unspecified
filter N Inherited
explode N Specified or Unspecified
reduce N Specified or Unspecified
window N Specified or Unspecified
groupby N Inherited
infer_types N Inferred
join Y Inherited
concat N Inherited
transpose N Unspecified
to_labels N Inherited
from_labels N Inherited
sort Y Inherited
rename N Inherited

Dataframe Label and Order Management
We now discuss how Modin manages labels and order.
Dataframe label management. The labels of a dataframe are part of the metadata, but
have unique properties which allow them to be treated as data at any point. This presents
an interesting challenge: the metadata manager must be flexible enough to allow the labels
to move into the data (i.e., to_label) and vise versa (i.e., from_label). In addition to
the flexibility of the labels, there are also latency expectations for mask. This presents the
additional challenge that the system must be able to quickly execute queries on the labels,
while also remaining flexible enough to move the labels into the data. Modin addresses this
challenge by maintaining two sets of labels. One set of labels is placed near the data to
allow fast conversion between labels and data, the other set is maintained externally as an
indexing structure to support querying based on labels. Modin lazily synchronizes the two
sets of labels when one set of labels is changed and the other set is accessed.

Another challenge of dataframe labels is support for duplicate labels. Since row labels
can originate from one or more columns of data, and column labels can originate from row
labels via a transpose, multiple labels with the same value are possible. Some operators
like join and concat do not support duplicate labels in the column axis because there is
no good way to define the correct behavior of these operators in the presence of duplicate
columns.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 75

Table 5.2: Order and position needs and changes by operator.

Operator Input Order Position Output Order & Position
mask N Y* Parameter-Dependent
filter_by_types N N Inherited | Updated
map N Y� Inherited from Inputs
filter N Y� Inherited | Updated
explode N Y� Inherited | Updated
reduce N Y� Inherited
window Y N Inherited
groupby N N Data-dependent
infer_types N N Inherited
join N N Inherited*
concat N N Inherited*
transpose N N Inherited
to_labels N N Inherited
from_labels N Y Inherited
sort N N Data-dependent
rename N N Inherited

Logical Order management. Dataframes are logically ordered, typically with an order
preferred by the user or inherited from data ingestion. The logical order provides an intuitive
and consistent view of the data: after each transformation, the same rows/columns are
shown in the same order. In addition, each row/column is associated with its numeric offset,
or position, and users can select rows/columns based on this position via mask.

In dataframe systems like pandas, the logical and physical layer are tightly coupled,
which can be beneficial at small scales, but quickly breaks down as datasets grow. Instead,
we propose a logical order management system that maintains the logical order and physical
positions separately, that is, Modin will maintain the logical order, but not materialize
the position. Instead, the positions are only computed when requested. Materializing
and maintaining positions is costly, and positions are not frequently used. For example,
filter on the row axis does not change the order of the rows, but changes the positions of
many rows. Maintaining the positions is costly since it requires a full scan of the dataframe.
Our approach of lazily computing the positions avoids the maintenance cost and reduces
the execution time of each operator. In practice, it is also much more likely that the logical
order will be used than it is that the positional notation will be used, so tracking these
separately has performance benefits to a typical workflow as well.

The rules for order and positions materialization and updates for each operator are listed
in Table 5.2. The “Input Order” column specifies whether the column’s order needs to be
known (but not the position) before the operator can be applied. Among the operators,

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 76

window is the only operator that requires order but not position information, because
window parameter SDF/UDFs operate anonymously on the sliding window. The “Position”
column specifies whether the specific positions must be computed before the operator can
be applied. These are distinct requirements because there are cases where the order may be
known implicitly but not the position. For mask, the positions are only needed when the
parameters call for using position as the selection criteria; for label-based mask, positions
are not required. The values marked with a Y� in the “Position” column only require
the position to be materialized on the axis opposite that which the operators are applied.
For example, to apply a map across the rows (mapr), the system need not calculate the
positions for the rows because the operator is decomposed across that axis. In this case,
the column positions are required on the input dataframe because the SDF/UDF can access
values based on position. Operators that decompose cell-wise do not need to calculate the
positions of the input dataframe. Consider a filter which removes rows: the rows will keep
the same order, so it is possible to know the order. In this case, however, the position will be
changed and it requires a non-trivial amount of computation to determine the new position.
Internally, Modin tracks the position and the row order separately in order to avoid costly
calculation of unnecessary metadata. In the case of mask, the position is needed to be
known only if the mask parameters are for positional notation.

The last column of Table 5.2, “Output Order & Position“ shows how the output order is
determined. “Parameter-dependent” means the order and positions are updated based on
the values provided to the operator as parameters. For mask, the order of the parameter
labels (or positions) is the output order and positions are derived from these parameters.
“Inherited | Updated” indicates that the output order is identical to the input dataframe’s
order, but the positions are changed (e.g., filter). “Inherited” means the order and
positions remain unchanged from the input (e.g., map). “Data-dependent” indicates that
the order and positions are derived from the data values, usually due to sorting or grouping.
One example here is groupby, which groups rows/columns and generates a new order
based how groups are generated and appended. The order of join and concat are based
first on the order of the left input dataframe, then on the right input dataframes(s).

5.6 Partitioning
In this section, we describe the partitioning layer and how Modin handles and exposes
partitioning. The unique properties of dataframes that make them easier for users to
manipulate data, like transposability and being able to operate on either rows or columns
arbitrarily, also make distributed implementations more challenging and complex, as we
described in Chapter 3.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 77

Figure 5.8: An example of valid partitioning layout in Modin.

Partition Layer
To solve the unique issues related to the interchangeability of columns and rows in data-
frames, The Modin DataFrame uses a block partitioning schema, which partitions along
both columns and rows. This partitioning approach gives Modin flexibility and scalability
in both the number of columns and the number of rows supported. There is no minimum
partition size, nor is there a maximum: the only restriction on partitioning is that the
partition widths and lengths must match along an axis of partitions. In Figure 5.8, we show
an example of a valid partitioning layout, where the size of each partition represents the
number of rows and columns contained within that partition. As the figure shows, the
number of columns in each column of block partitions is the same width, and the number
of rows in each row of block partitions is the same height. This example shows that Modin
has flexible partitioning, none of the individual partition shapes need to match.

Virtual Partitioning
Partitioning over blocks not only allows us to scale in both directions, but it also enables
support of traditionally difficult or expensive operations, like transpose. However,
partitioning in blocks separates entire rows and columns from each other, and many

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 78

operators in the Modin dataframe algebra are defined such that they require access to an
entire row or column. For example, the user-defined function that is passed to the map
operator assumes it has full row or column access, depending on the axis parameter. To
enable all types of access patterns, we implemented virtual partitioning.

With virtual partitioning, Modin developers are able to write algorithms and opti-
mizations in whatever partitioning format is most natural, no matter the current physical
partitioning. Our motivation for providing this degree of flexibility was to enable faster de-
velopment and implementation of new algorithms, and to lower the barrier to implementing
new algorithms; developers do not even need to understand the partitioning mechanisms or
handle low level details of the partitioning mechanism themselves. Since even distributed
systems developers do not like having to deal with partitioning, we allow them access to
row partitioning and column partitioning via simple internal APIs.

Partition Placement and Shuffling
The internal partitioning mechanisms in the partitioning layer are also responsible for their
physical placement, to include shuffling data between worker nodes. Here we discuss at a
high level the policies in place for data movement. Partitions are first placed in the same
node as those partitions within the same column. The placement policy is programmable,
but we have found that column accesses and manipulations in pandas are far more common
than row manipulations. When the developer requests to perform an operation along the
rows and requires that data be moved between the nodes, the shuffling mechanism will
ensure that all of the data for each row partition is moved to the same node.

Given the flexibility of the partitioning mechanism and the need to potentially shuffle
data between every operator in the worst case, there is a significant amount of future work
that will be needed to enable ideal partitioning and data shuffling for dataframes.

5.7 Execution and Scheduling
The Execution Layer is responsible for serializing and executing code on one or more
input dataframe partitions. This layer is responsible because there is a significant amount
of overlap between task-parallel execution engines and schedulers. For the reference
implementation in Modin, we have enabled support for both Ray and Dask.

In the effort of enabling data scientists to be productive, this layer is also important
because data scientists may not have a choice of what execution engine or cluster resources
they have access to. The purpose of Modin is to allow users to run the same notebooks on
the hardware and systems that are available to them. We now discuss details about Modin’s
execution layer for both Ray and Dask.

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 79

Execution on Ray

Ray is an execution engine that exposes two main abstractions: tasks and actors. The actor
abstraction in Ray allows for stateful computation, and while this may seem like a natural
fit for data-intensive applications, we have found that in practice that there are significant
drawbacks to using Ray’s actor abstraction to implement a distributed dataframe. First,
each actor must have a handle, or line of direct communication, to every other actor for
high performing shuffles. When a new compute node becomes available or goes down, as is
common in elastic clusters or serverless environments, bringing that node up and allowing
it to accept new computation becomes more expensive than anonymous tasks. Additionally,
at the time of evaluation, we found that an implementation on Ray’s actor startup time to
cause performance be roughly 30% slower than anonymous tasks. Ray has a distributed
scheduler, allowing it to scale well and prevent bottlenecks in the driver process.

Modin’s Ray engine currently uses Ray’s object store, but there are efforts planned
to abstract the object store away from the Ray engine implementation in Modin so that
we can also make use of high performance object stores. Ray’s object store is immutable,
which allows us to treat each task’s output independently and aligns with Modin’s overall
architecture.

Ray has a unique Python decorator-style API for remote task submission, so naively
enabling compute kernels to execute against a Ray engine would force us to define functions
independently for Ray. Independently defining compute kernels specific for Ray would
not allow us to reuse code between execution engines, and is altogether extremely code-
intensive and difficult to maintain. Instead, we have one internal remote task declaration
that has the required decorator and we serialize the compute kernel defined in the query
compiler to ship it to the task. When the task receives it, the function gets deserialized
and applied to a partition of specific data. This detail is important to understanding how
Modin’s abstractions allow for runtime-specific details to be implemented without directly
affecting other layers or runtimes.

Execution on Dask

Dask, like Ray, exposes task and actor abstractions. Dask’s API accepts the compiled
compute kernel directly. Dask has a single, global scheduler with no fault tolerance, which
is both a performance bottleneck for scheduling and a single point of failure, but gives .
Given its position in the Python community, many data scientists are either familiar with
Dask or are using it, so it is naturally a backend that would be useful to support in Modin.

Dask stores task outputs as futures within the worker’s Python process memory. In
practice, this means that the objects that are stored as task outputs by Dask are mutable,
and any side effects created by compiled compute kernels can mutate partition data. This

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 80

also means that tasks in Dask are not truly anonymous since any task may modify its input
inplace. This is a problem because users can themselves define functions that modify
dataframes in place via the pandas API apply, which is an essentially unbounded user
defined function. In order to avoid the consequences of destructive UDFs in Dask, we must
first make a copy of the data before a user’s function can be applied.

Execution on Omnisci

Modin also have enabled a purely relational type storage through the inclusion of OmniS-
ciDB as a blackbox. It is not controlled directly through the storage layer API but indirectly
through the execution. All the operations still go from the user facing API through the
compiler API but the storage is completely controlled withing the OmniSci DB engine.
Such an approach is not canonical for Modin but allows to offload the optimizations to the
more performant engine and handle it more effectively in the case of GPU execution.

5.8 Related Work
Historically, many implementations have attempted to solve the problems of scaling data-
frames, but are limited in different aspects: whether it be by not supporting all dataframe
functions, or even by changing the underlying data model altogether. To the best of our
knowledge, Modin is the first dataframe system that supports the dataframe’s flexible data
model and operations with correct and consistent semantics, while enabling dataframe
operations to be parallelized at scale using formalized and flexible decomposition rules.
Systems that support dataframe operations. Original implementations of dataframe
systems include pandas [81] and R [90]. Dataframes first originated in S [20], and was
inherited by R. R dataframes suffer similar limitations to pandas in that they cannot exceed
main-memory [117] and run on a single thread. Projects like Tidyverse [125] remove some
of the properties of R dataframes to make them more like relational tables. R dataframe
operators can be similarly made to run in-parallel via the decomposition rules we describe
in Section 3.4. Dask Dataframe [30] partitions a dataframe along rows to make operations
along the row axis more scalable, similar to a relational database. Vaex [119] is a system
for imperatively querying static memory-mapped HDF5 files, supporting around 35-40%
of the functionalities of the pandas API, similar to embedded databases like SQLite [50]
and DuckDB [91].

There are many systems that support a subset of the pandas API via relational databases
using various flavors of SQL. Koalas [63], an open-source project, translates 55% of
the pandas into the API Spark SQL API via ANSII SQL. Ibis [53] translates a small
subset of the pandas API into a variety of database backends, including ClickHouse [24],

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 81

OmnisciDB [74], and more. Recently, there is work on choosing database backends [55]
and translation into database systems like A-frame [107], Grizzly [59], and AIDA [27].
RIOT [131] achieved similar goals of employing a database backend for operating on R
data beyond main-memory.

Here, we operationalize and extend the algebra in Chapter 3, and introduce formal
decomposition rules and metadata management techniques. We also recently introduced the
notion of opportunistic evaluation where we “batch” dataframe operations together to be
executed in the background asynchronously, prioritizing what the user wants to see [127];
this is orthogonal to the techniques proposed in this paper—we expect both techniques to
work together well.
Parallel/distributed database systems. Many parallel and distributed databases [80],
such as Teradata [115], HadoopDB [4], and SparkSQL [9], partition data into rows using
hash or range-based partitioning to parallelize row-oriented relational operators. Addi-
tionally, column stores, like C-Store [112], Dremel [72], MonetDB [16], BigTable [21],
and HBase [122], partition the data along columns to better compress data and accelerate
large-scale data analysis. Recent parallel relational and non-relational query processing
systems include Google’s BigQuery [71], Amazon’s RedShift [44], Azure Synapse [6],
Snowflake [28], Impala [15], MongoDB [22], among others. While these systems em-
ploy row/column-oriented partitioning to parallelize the query execution, they focus on
unordered row-oriented operators and do not consider metadata operators. Modin needs to
optimize operators that query and update metadata, and operate on the granularity of rows,
columns, and blocks of cells. In addition, efficiently supporting mixed types is not covered
by these systems.
Matrix computing and decomposition. Matrix partitioning and decomposition [132, 17,
79], commonly used to parallelize machine learning and scientific computing applications,
is similar to dataframes in that it needs to support row-wise, column-wise, and cell-wise
decomposition patterns. However, typical matrix decompositions are tailored for sparse
matrices, and these systems generally don’t support operators like joins, filters, group-bys,
or heterogeneous data types. Array databases, like SciDB [111], target structured workloads,
with well defined schemas optimized for scientific workloads, making them ill-suited for
handling the flexible dataframe data model. There is additional work bridging relational
and linear algebra, with a focus on supporting a small kernel of operators spanning both, in
LaraDB [52], which we have drawn inspiration from in our past work.

5.9 Discussion
In this chapter, we targeted the dual challenges of scalability and semantics underlying
dataframes. We introduced multiple flexible rule-based decomposition techniques for

CHAPTER 5. MODIN: THE REFERENCE DATAFRAME IMPLEMENTATION 82

parallelizing dataframe operations across both row and column axes, and label, order, and
type management techniques that help ensure metadata independence. Together, these tech-
niques, as implemented in Modin, enable it to support pandas operations across both rows
and columns at scale, while not compromising on pandas operation coverage, providing
speedups of up to 50-100× relative to other partial and full dataframe implementations as
we will see in Chapter 6.

83

Chapter 6

Evaluation

6.1 Introduction
In this chapter we evaluate Modin against other popular systems. We compare against
Apache Spark/Koalas [9], Dask Dataframe [31], and pandas [81]. These systems were
chosen based on their popularity and breadth of real-world use cases. The experiments
conducted here focus on three system properties - first, we analyze the API parity with
pandas in section 6.2, next we conduct micro benchmarks to compare the performance
of individual dataframe methods in section 6.3, and lastly in section 6.4 we compare the
scalability of each system.

6.2 Functional Evaluation
We first focus on the functional differences between these systems. To our knowledge, this
is the first functional analysis of each systems parity with the pandas API. To determine
whether a given pandas functionality is supported, we visited the documentation of each
system, and in cases where this was inconclusive, we looked at the source code. We separate
the analysis into 3 categories: I/O which focuses on supported data formats, metadata which
focuses on support for metadata operations, and the dataframe API where we focus on
overall coverage of the pandas dataframe API.

I/O
Data ingestion is paramount: it does not matter how fast a query can run if data cannot enter
the system. Table 6.1 shows the implementation of operators provided by pandas. Several
operators are not supported with native implementations in Modin, Dask or Koalas, we list

CHAPTER 6. EVALUATION 84

Table 6.1: I/O operator support in various systems. Operators are only considered if they have
native implementations.

Operator pandas Modin Spark (Koalas) Dask
read_csv × × × ×
read_table × × × ×
read_parquet × × × ×
read_json × × × ×
read_excel × ×
read_feather × ×
read_sql × × ×
read_sql_table × × × ×
read_sql_query × × ×
read_fwf × × ×
read_hdf × × ×
read_orc × ×

Table 6.2: Metadata support in various systems. An asterisk indicates that a significant part of the
operator is not possible in the system’s architecture.

Operator pandas Modin Spark (Koalas) Dask
mask (by label) × × × ×
mask (by position) × × ×
head × × × ×
tail × × ×
User Orders × ×
MultiIndex × ×
to_labels × × × ×
from_labels × × ×

them here: read_clipboard, read_sas, read_html, read_spss, read_gbq,
read_pickle, read_stata.

In this evaluation, we did not consider all possible parameters and extended support
(e.g. reading files from S3) because these details are often not explicit. Therefore, any
support for a format qualifies for Table 6.1.

Metadata
Metadata interaction is common in dataframe workloads. For example, selecting or filtering
by label, finding the intersection of labels between two dataframes, or direct queries and

CHAPTER 6. EVALUATION 85

Figure 6.1: Percent coverage of the pandas dataframe API after deduplication.

manipulation on the labels. Table 6.2 shows the breakdown of the metadata behaviors and
functionalities in dataframes. In each of these systems, to_labels is set_index and
from_labels is reset_index 1.

The mask by label is equivalent to pandas loc operator, and similarly mask by
position is equivalent to pandas iloc operator. Dask’s implementation cannot support
iloc because it does not support the user’s preferred dataframe order.

Dataframe API
Figure 6.1 shows the relative API coverage for pandas, excluding identical behaviors. We
exclude these to avoid skewing results toward implementing simple duplicated APIs. This
also avoids double penalizing systems that are unable to implement duplicated APIs. Each
argument is counted, such that a perfect score reflects that an operator is implemented for
all valid argument combinations. For example, if an implementation is unable to implement
one of the axes for any operator or class of operators, it will be given a 50% score for that
operator provided it can implement the remaining arguments for the axis that is supported.
Anywhere that there was ambiguity, the benefit of doubt was given to an implementation.
The API details were gathered from the documentation pages of each system.

The difference in API coverage between Modin and the others can be mostly attributed
to the architectures. Dask and Spark are both row stores, and so operators that rely heavily
on communication between rows will be extremely inefficient or impossible. Koalas cannot

1In the case of Dask’s implementation of from_labels, we found that it will not set the labels to the
position notation, instead setting the labels within each partition to its local position notation. Since this
violates the definition of from_labels and deviates from the original pandas implementation, we mark it
as not implemented.

CHAPTER 6. EVALUATION 86

support anything outside of ANSII SQL because it is built on Spark SQL. Dask is not tied to
SQL, but it is missing key metadata tracking and other features important for implementing
several of the missing APIs.

Given the results in this section and how they contrast with the way the systems
are marketed (“Pandas API on Spark” and “Pandas in the cloud” for Koalas and Dask,
respectively.) we feel as though the data science and scientific communities would benefit
from a more detailed review of these systems and their capabilities than what can be shown
here.

6.3 Microbenchmark Performance Evaluation
In this section, we focus on individual operator performance of Modin against other systems.

Microbenchmarks against pandas

50 100 150 200 250
Size (GB)

0

100

200

300

Ti
m

e
(s

)

Map

50 100 150 200 250
Size (GB)

Groupby (n)

50 100 150 200 250
Size (GB)

Groupby (1)

50 100 150 200 250
Size (GB)

Transpose
Run Times for Modin and Pandas

System
Pandas
Modin

Figure 6.2: Each function shows runtime and 95% confidence region for both Modin and pandas.
We omit pandas transpose as it is unable to scale beyond 6 GB.

To understand how the optimizations discussed in chapter 5 impact the scalability of
dataframe operators, we perform a small case study evaluating Modin’s performance against
that of pandas using microbenchmarks on an EC2 x1.32xlarge (128 cores and 1,952 GB
RAM) node using a New York City taxicab dataset [77] that was replicated 1 to 11 times to
yield a dataset size between 20 to 250 GB, with up to 1.6 billion rows. We consider four
queries:
• map: check if each value in the dataframe is null, and replace it with a TRUE if so, and
FALSE if not.
• group-by (n): group by the non-null “passenger_count” column and count the number of

rows in each group.
• group-by (1): count the number of non-null rows in the dataframe.

CHAPTER 6. EVALUATION 87

Figure 6.3: Single node performance of various operations on 23GB of data.

• transpose: swap the columns and rows of the dataframe and apply a simple (map)
function across the new rows.

We highlight the difference between group by with one group and n groups, because with n
groups data shuffling and communication are a factor in performance. With group-by(1),
the communication overheads across groups are non-existent. We include transpose to
demonstrate that Modin can handle data with billions of columns. This query also shows
where pandas crashed or did not complete in more than 2 hours.

Figure 6.2 shows that for the group-by (n) and group-by (1) operations, Modin yields
a speedup of up to 19× and 30× relative to pandas, respectively. For example, when
performing a group-by (n) on a 250GB dataframe, pandas takes about 359 seconds and
Modin takes 18.5 seconds, a speedup of more than 19×. For map operations, Modin is
about 12× faster than pandas. These performance gains come from simple parallelization
of operations within Modin, while pandas only uses a single core. During the evaluation of
transpose, pandas was unable to transpose even the smallest dataframe of 20 GB (∼150
million rows) after 2 hours. Through separate testing, we observed that pandas can only
transpose dataframes of up to 6 GB (∼6 million rows) on the hardware we used for testing.

Our preliminary case study and our experience with Modin demonstrates the promise
of integrating simple optimizations to make dataframe systems scalable. Next, we compare
microbenchmarks of Modin against other distributed systems with pandas as a baseline.

Microbenchmarks against other distributed systems
We now present microbenchmark performance of Dask, Koalas, and Modin. For Modin, we
separate the performance plots into “Ray” and “Dask” engines. The Dask engine for Modin
is not to be confused with the Dask dataframe, against which are comparing. Modin is able
to use the Dask distributed scheduler, but does not share any code with Dask dataframe. We

CHAPTER 6. EVALUATION 88

show two plots for performance: one for single node performance on a variety of operators,
and another for multinode performance on the same operators. Aside from the expensive
apply, the operators here were chosen because they are implemented by all systems.

Figure 6.3 shows the results of the microbenchmark performance. These experiments
were run on a x1e.32xlarge with 128 CPUs and 4TB of memory. It is important to note
here that Koalas was not able to run with default settings2, considerable effort was made
to enable and optimize Koalas in this environment. Dask was run with the recommended
settings from the documentation, and many different configurations were attempted. Modin
was run with default settings, and there is still room here for further optimization in the
compute kernels themselves as well as some tuning.

The major differences in the performance come down to architectural decisions made in
the frameworks. Dask and Spark (Koalas) both have chosen a rigid, strict row partitioning
architecture that makes it difficult to handle things like data skew, common in groupby
operations. There is also the issue of order: Spark will often reorder rows during shuffling,
so in order to match the user’s expectation of order, an extra sort would be required.
It is important to mention here that the only sort available in Dask dataframe happens
implicitly when an index is created from a column, which diverges from user expectations
and the dataframe data model. Dask does not allow any order of the data other than the
lexicographical order of the row labels.

Modin offers more functionality than is possible in Dask and Koalas, and has better
performance. There is still significant room for improved performance in Modin from faster
compute kernels to more efficient runtimes and an optimizer. If Spark and Dask dataframe
were modified to have better support for user orders and more flexible partitioning, they
would be able to benefit from the existing optimizations in Modin. We have already
implemented a Dask engine for Modin, however it performs roughly 10-20% slower than
the Ray engine due to the issues described in Section 5.7.

6.4 Scaling Performance against baselines
Our experiments in this section address the following questions:

• Compared to existing dataframe systems, including Koalas [63], Dask Dataframe [30],
and pandas [81], how well does Modin scale dataframe operations over a large number
of CPU cores?

• How much do the optimization techniques, eager data pipelining and selective data
exchange, reduce the execution time? (Section 5.4)

2Koalas consistently ran out of memory or forced all of the data onto a single partition.

CHAPTER 6. EVALUATION 89

All experiments are run on an AWS instance x1e.32xlarge that has 3904 GB of main
memory and 128 vCores. The OS of the test machine is configured to be Ubuntu 20.04.

Experiment setup

Benchmark. We use the NYC Yellow Taxi Dataset 2015 [77] in our experiments. It
includes the history of taxi trips in the city. This dataset has 150 million rows and 20
columns, occupying 23GB on disk. We use this dataset to test the scalability of several
widely-used dataframe functions, including read_csv, fillna, count, groupby
followed by count, join, and median. We choose these functions because they cover
many stages and aspects of a typical data science lifecycle, such as data ingestion (e.g.,
read_csv), data cleaning (e.g., fillna), and data analysis (e.g., join). We addi-
tionally test two Modin operators that query and manipulate metadata: from_labels
and infer_types. We also use this dataset to test the optimization opportunities when
choosing the best rewriting rules, as discussed in Section 5.4.
Baselines. We compare Modin with three popular dataframe systems, pandas [81],
Koalas [63], and Dask Dataframe [30] (denoted as Dask DF in this section)—not to
be confused with the Dask parallel compute framework [31].

Scalability of operators supported by Modin and the baselines
We first test the scalability of Dask DF, Koalas, pandas, and Modin for operators supported
by all systems, including: read_csv, fillna replacing the NULL values for each row,
count counting the non-NULL values for all columns, and groupby.count using the
“passenger_count” column as the group key. We vary the number of vCPUs used by each
system and report the execution time.

It is important to note here that Koalas was not able to run with default settings3, and
considerable effort was made to enable and optimize Koalas in this environment. We
also tuned the Dask DF configurations; the results from the best performing Dask DF
configuration are reported. The difference between the default performance and the best
case performance in Dask DF was between 10× and 40×. Modin is run with default
settings.

Figure 6.4 shows the test results. We see that Modin has the lowest execution time
compared to the baselines for all operators. This is mainly because Modin parallelizes
these operators and lazily computes the metadata (e.g., computing the type information).
pandas does not scale because it runs on a single thread. Koalas and Dask DF can scale

3Koalas consistently ran out of memory or forced all of the data onto a single partition on default settings,
so many attempts at optimization were made to ensure a fair comparison.

CHAPTER 6. EVALUATION 90

(a) read_csv (b) fillna (map along rows)

(c) count (reduce) (d) groupby.count (groupby)

Figure 6.4: Scale test for operations that are supported by all tested systems.

these operators because these operators can be implemented using row-wise decomposition.
Koalas has higher execution time than pandas and other systems for operators fillna,
count, and groupby.count mainly due to the overhead of Spark and an extra phase
of sorting the output rows to maintain the natural order. For example, Koalas parallelizes
fillna by applying fillna function for each partition of rows. Since Spark does not
maintain the ordering information across partitions, Koalas needs to sort the output rows as
the order of the input rows.

Scalability of operators not supported by all baselines
We now test operators that are not supported by all baselines, including median,
from_labels, infer_types, and join. The baselines do not support these op-
erators because they do not support operating on the column axis (e.g., computing the
median for each column), the systems run out of memory (e.g., join for Dask DF), and

CHAPTER 6. EVALUATION 91

Figure 6.5: Performance of operations only supported in Modin and pandas.

(a) median (b) from_labels

(c) infer_types (d) join

they do not support querying and manipulating metadata (e.g., from_labels). We vary
the number of vCPUs and report the execution time of each operator.

Since Dask DF and Koalas are row-store-based dataframe systems, they do not support
computing median for each column. Figure 6.5a shows the scalability of computing the
median for every numeric column. The time reported includes a filter on the types of the
columns to select only numeric columns. In this case, the parallelism Modin can exploit is
limited by the number of column in the dataset, so increasing the number of cores beyond
20 (the number of columns in the dataset) does not improve the performance.

Figure 6.5b and Figure 6.5c show the results of from_labels and infer_types,
respectively. infer_types is configured to infer the types of all columns. Dask DF
and Koalas do not support the two metadata operators. from_labels in Modin has the
overhead of inferring the positions of the labels and inserting them as data compared to

CHAPTER 6. EVALUATION 92

Figure 6.6: Join performance under varied number of rows

pandas, which eagerly materializes the positions. Therefore, at a smaller number of cores,
the overhead of inferring the positions dominates and Modin has higher execution time than
pandas. However, as the number of cores increases, this overhead can be amortized. Modin
can scale this operator and achieve up to a 10x faster runtime than pandas. Modin prevails
over pandas for the infer_types operator because it decomposes and parallelizes the
execution of infer_types and uses indexes in our type system to quickly determine the
type information. We see the performance improvement of Modin over pandas is up to
100×.

We also tested a self-join on the row labels of the NYC dataset. Dask DF runs out of
memory for the join operator, so it is not included in the results shown in Figure 6.5d.
We see that Modin has lower execution time than both pandas and Koalas. While Koalas
can reduce the execution time as the number of cores increases, the overhead of Spark
dominates and Koalas is slower than pandas for join.

To compare the join performance of Dask DF with Modin and other systems, we
perform another experiment that varies the number of rows of the test dataset. Figure 6.6

CHAPTER 6. EVALUATION 93

shows the results. We see that Dask DF runs out of memory when we use more than 15
million rows. For the case of 15 million rows, Modin performs 50× faster than Dask DF.

6.5 Discussion
In this chapter, we evaluated Modin against several established systems: pandas, Dask
Dataframes, and Koalas. Modin was shown to cover more functionalities than the other
systems due to the theoretical foundation and architecture presented in Chapters 3 and
4. We also showed that Modin is able to perform dataframe queries at faster speeds than
established systems due to metadata independence and improved parallelization.

The next chapter explores the potential optimizations unlocked with the architecture pre-
sented in Section 4, with the added benefit of leveraging think time to perform background
computation.

94

Chapter 7

Architecture Case Study: Opportunistic
Evaluation

7.1 Introduction
During the course of Machine Learning (ML) model development, a critical first step
is data validation, ensuring that the data meets acceptable standards necessary for input
into ML training procedures. Data validation involves various sub-tasks, including data
preparation: transforming the data into a structured form suitable for the desired end-goal,
and data cleaning: inspecting and fixing potential sources of errors. These validation
steps of data preparation and cleaning are essential even if the eventual goal is simply
exploratory data analysis as opposed to ML model development—in both cases, the quality
of the eventual end-result, be it models or insights, are highly tied to these steps. This
data validation process is highly exploratory and iterative, as the data scientist often starts
off with a limited understanding of the data content and quality. Data scientists therefore
perform data validation through incremental trial-and-error, with the goals evolving over
time: they make a change, inspect the result (often just a sample) to see if it has improved
or “enriched” the dataset in some way, e.g., by removing outliers or filling in NULL values,
expanding out a nested representation to a flat relational one, or pivoting to organize the
dataset in a different manner more aligned with the analysis goals.

To support this iterative process of trial-and-error, data scientists often use powerful data
analysis libraries such as pandas [81] within computational notebooks, such as Jupyter or
Google Colab [61, 41]. Pandas supports a rich set of incrementally specified operators atop
a tolerant dataframe-based data model, drawn from relational algebra, linear algebra, and
spreadsheets [87] embedded within a traditional imperative programming language, Python.
While the use of dataframe libraries on computational notebooks is a powerful solution for

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION 95

data validation on small datasets, this approach starts to break down on larger datasets [87],
with many operations requiring users to wait for unacceptably long periods, breaking flow.
Currently, this challenge may be overcome by either switching to a distributed dataframe
system (such as Dask [32] and Modin [73]), which introduces setup overhead and potential
incompatibilities with the user’s current workflow, or by users manually optimizing their
queries, which is a daunting task as pandas has over 200 dataframe operations. We identify
two key opportunities for improving the interactive user experience without requiring
changes to user behavior:

• Users often do not want to inspect the entire results of every single step.

• Users spend time thinking about what action to perform next.

Unfortunately, at present, every cell (the unit of execution in a notebook) issued by the
user is executed verbatim immediately, with the user waiting until execution is complete to
begin their next step. Moreover, the system is idle during think time, i.e., when users are
thinking about their next step or writing code. Fundamentally, specification (how the user
writes the query) and execution (what the system executes) are tightly coupled.

In this paper, we outline our initial insights and results towards optimizing dataframe
queries for interactive workloads by decoupling specification and execution. In particular,
dataframe queries are not executed immediately, unless the user intends to inspect the
results, but are deferred to be computed during think time. We distinguish operators that
produce results that users inspect, what we call interactions, from those that do not. We
can then use program slicing to quickly determine what code is critical in that it influences
the interactions, i.e., what the user intends to see immediately, and what is non-critical, in
that it can be computed in the background during think-time to speed up future interactions.
For the critical portions, we further identify if it can be rewritten in ways that allows us
to improve interactivity further. For example, identifying that users often only examine
the first or last few rows/columns of the result allows us to compute this as part of the
critical portion and defer the rest to the non-critical portion. For the non-critical portions,
by deferring the execution of the non-critical portions, we can perform more holistic query
planning and optimization. Moreover, we may also speculatively compute other results
that may prove useful in subsequent processing. We call our framework opportunistic
evaluation, first discussed in Chapter 2. Opportunistic evaluation preserves the benefits of
eager evaluation (in that critical portions are prioritized), and lazy or deferred evaluation (in
that non-critical portions are deferred for later computation). This paper builds on Chapters
3 and 4, wherein we outline our first steps towards establishing a formal framework for
reasoning about dataframe optimization systematically.

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION 96

7.2 Background and Motivation

Key Concepts
Users author dataframe queries in Jupyter notebooks, comprising code cells and output
from executing these code cells. Figure 7.1a shows an example notebook containing
dataframe queries. Each code cell contains one or more queries and sometimes ends
with a query that outputs results. In Figure 7.1a, every cell ends in a query (namely,
df1.describe(), df1.head(), and df2.describe()) that outputs results. Data-
frame queries are comprised of operators such as apply (applying a user defined function
on rows/columns), describe (compute and show summary statistics), and head (re-
trieve the top K rows of the dataframe). Operators such as head and describe, or
simply the dataframe variable itself, are used for inspecting intermediate results. We
call these operators interactions. Users construct queries incrementally by introducing
interactions to verify intermediate results. An interaction usually depends on only a
subset of the operators specified before it. For example, df1.describe() in Fig-
ure 7.1a depends only on df1 = pd.read_csv("small_file") but not df2 =
pd.read_csv("LARGE_FILE"). We call the set of dependencies of an interaction the
interaction critical path. To show the results of a particular interaction, the operators not
on its interaction critical path do not need to be executed even if they were specified before
the interaction.

After an interaction, users spend time inspecting the output and authoring new queries
based on the output. We call the time between the display of the output and the submission
of the next query think time, during which the CPU is idle (assuming there are no other
processes running on the same server) while the user inspects intermediate results and
authors new queries. We propose opportunistic evaluation, an optimization framework that
leverages this think timeto reduce interactive latency. In this framework, the execution of
operators that are not on interaction critical paths, which we call non-critical operators, are
deferred to being evaluated asynchronously during think timeto speed up future interactions.

Motivating Scenarios and Example Optimizations
To better illustrate the optimization potential of opportunistic evaluation, we present two
typical data analysis scenarios that could benefit from asynchronous execution of queries
during think timeto minimize interactive latency. While the user’s program remains the
same, we illustrate the modifications to the execution plan that highlights the transformations
made.

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION 97

Interaction-based Reordering

Consider a common workflow of analyzing multiple data files, shown in Figure 7.1a. The
user, Sam, executes the first cell, which loads both of the files, and is forced to wait for
both to finish loading before she can interact with either of the dataframes. To reduce the
interactive latency (as perceived by the user), we could conceptually re-order the code to
optimize for the immediate output. As shown in Figure 7.1b, the re-ordered program defers
loading the large file to after the interaction, df1.describe(), obviating the need to
wait for the large file to load into df2 before Sam can start inspecting the content of the
small file.

To further reduce the interactive latency, the system could load df2 while Sam is
viewing the results of df1.describe(). This way, the time-consuming process of
loading the large file is completed during Sam’s think time, thus reducing the latency for
interacting with df2.

1
2
3

4
5
6

7

output

output

output

df1[“col1”] = df1[“col1”].apply(UDF1)
df1[“col2”] = df1[“col2”].apply(UDF2)
df1.head()

df2.describe()

df1 = pd.read_csv(“small_file”)
df2 = pd.read_csv(“LARGE_FILE”)
df1.describe()

(a) Original program where user has to wait
for both files to load before viewing any.

user executes the first cell
df1 = pd.read_csv(“small_file”)
df1.describe()
output

execute the following in the background
while the user inspects the output above
df2 = pd.read_csv(“LARGE_FILE”)

user executes the second cell
df1[“col1”] = df1[“col1”].apply(UDF1)
df1[“col2”] = df1[“col2”].apply(UDF2)
df1.head()
output

user executes the third cell
df2.describe()
output

1
3

2

7

(b) Optimized program where the user can view
the smaller file first while the other loads.

Figure 7.1: Example program transformation involving operator reordering.

Prioritizing Partial Results

For any large dataframes, users can only inspect a handful of rows at a time. However the
current evaluation mechanism requires all the rows to be evaluated. Expensive queries such
as those involving user-defined functions (UDFs) could take a long time to fully compute,
as shown in Figure 7.2a.

To reduce interactive latency, one can prioritize computation of only the portion of the
dataframe inspected. This method is essentially an application of predicate pushdown, a
standard technique from database query optimization. Figure 7.2b provides an example
transformation for the particular operator, groupby. While the first cell prioritizes the

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION 98

computation of the inspected rows, the user may still need the result of the entire com-
putation, which is scheduled to be computed later while Sam is still reading the result of
the previous cell, groupNow.head(10), i.e. the think time. A noteworthy attribute of
dataframes is row and column equivalence, introduced in Chapter 3, which means that
predicate pushdown can also happen when projecting columns as well.

output

df = pd.read_csv(“file”)
groups = df.groupby(“col”).agg(expensiveUDF)
groups.head(10)

(a) Original program where the user has to
wait for an expensive UDFs to fully com-
pute.

user executes the code cell
df = pd.read_csv(“file”)
top10Groups = df[“col”].unique()[:10]
groupsNow = df[df[“col”].isin(top10Groups)].agg(expensiveUDF)
groupsNow.head(10)
output

execute the following in the background
while the user inspects the output above
groups = df.groupby(“col”).agg(expensiveUDF)

(b) Optimized program where the user can view a partial
result sooner.

Figure 7.2: Program transformation involving predicate pushdown.

7.3 Assessment of Opportunities with Notebook
Execution Traces

To assess the size of opportunity for our aforementioned optimizations to reduce interactive
latency in computational notebooks, we evaluate two real world notebook corpora.

One corpus is collected from students in the Data 100 class offered at UC Berkeley.
Data 100 is an intermediate data science course offered at the undergraduate level, covering
topics on tools and methods for data analysis and machine learning. This corpus contains
210 notebooks across four different assignments, complete with the history of cell execution
content and completion times captured by instrumenting a custom Jupyter extension.

We also collected Jupyter notebooks from Github comprising a more diverse group
of users than Data 100. Jupyter’s IPython kernel stores the code corresponding to each
individual cell executions in a local history.sqlite file1. We used 429 notebook
execution histories that Macke et al. [67] scraped from Github that also contained pandas
operations.

To assess optimization opportunities, we first quantify think timebetween cell executions,
and then evaluate the prevalence of the code patterns discussed in Section 7.2.

1https://ipython.readthedocs.io/en/stable/api/generated/IPython.core.
history.html

https://ipython.readthedocs.io/en/stable/api/generated/IPython.core.history.html
https://ipython.readthedocs.io/en/stable/api/generated/IPython.core.history.html

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION 99

Think-Time Opportunities
Our proposed opportunistic evaluation framework takes advantage of user think timeto
asynchronously process non-critical operators to reduce the latency of future interactions.
To quantify think time, we measure the time lapsed between the completion of a cell
execution and the start of the next cell execution using the timestamps in the cell execution
and completion records, as collected by our Jupyter notebook extension. Note that the think
timestatistics are collected only on the Data 100 corpus, as the timestamp information is
not available in the Github corpus. Figure 7.3a shows the distribution of think timeintervals,
measured in seconds, between consecutive cell executions across all notebooks, while
Figure 7.3b shows the distribution of the median think timeintervals, measured in seconds,
within each notebook. We removed automatic cell re-execution (“run all”) from the dataset.
We can see that while there are many cells that were executed quickly, there exist cells that
had ample think time—the 75th percentile think timeis 23 seconds.

0 5

10 15 20 25 30 35 40 45 50
+

Think time in seconds (binned)

0

500

1,000

1,500

2,000

co
un

t

(a) Think timebetween cell executions.

0 5

10 15 20 25 30 35 50
+

Median think time per notebook, in seconds

0

20

40

60

80
co

un
t

(b) Median think timeper notebook across
cells.

Figure 7.3: Think timethe average “think time” between cell executions and the average think
timeper notebook.

Program Transformation Opportunities

Interaction-Based Reordering. To assess the opportunities to apply operator reordering
to prioritize interactions, we evaluate the number of non-critical operators specified before
each interaction. We use the operator DAG, to be described in Section 7.4, to determine the
dependencies of an interaction and count the number of operators that are not dependencies,
i.e., non-critical operators, specified above the interaction. Figure 7.4 shows the distributions
for the two datasets. In both cases, non-critical operators present a major opportunity: the
Data 100 and Github corpus have, respectively, 54% and 42% interactions with non-critical
operators.

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION100

0 1 2 3 4 5 6 7 8 9

10
+

Number of non-critical op before interaction

0

2,000

4,000

6,000

co
un

t

(a) Data 100: µ = 4, σ = 5

0 1 2 3 4 5 6 7 8 9

10
+

Number of non-critical op before interaction

0

10,000

20,000

30,000

co
un

t

(b) Github: µ = 7, σ = 11

Figure 7.4: Number of non-critical operators before interactions.

0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
25

Fraction of head/tail

0

5

10

15

20

25

co
un

t

(a) Data 100: µ = 0.04, σ = 0.028

0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
1+

Fraction of head/tail

0

200

400

600

800

co
un

t

(b) Github: µ = 0.11, σ = 0.21

Figure 7.5: Stats for head/tail interactions used in each notebook.

2 3 4 5 6 7 8 9

10
+

Number of Operator reuse

0

1,000

2,000

3,000

co
un

t

(a) Data 100: µ = 5, η = 3, σ = 8

2 3 4 5 6 7 8 9

10
+

Number of Operator reuse

0

2,000

4,000

6,000

8,000

10,000

12,000

co
un

t

(b) Github: µ = 7, η = 3, σ = 14

Figure 7.6: Distribution of number of operators that can benefit from reuse.

Prioritizing Partial Results The optimization for prioritizing partial results via predicate
pushdown can be applied effectively to many cases when predicates are involved in queries
with multiple operators. The most common predicates in the dataframe setting are head()
and tail(), which show the top and bottom K rows of the dataframe, respectively.
Figure 7.5b and Figure 7.5a show the distribution of the fraction of interactions that are
either head or tail in each notebook. We see that partial results views are much more

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION101

common in the GitHub dataset than Data 100. This could be due to the fact that users
on GitHub tend to keep the cell output area short for better rendering of the notebook by
Github, but further studies are needed to corroborate this hypothesis. Lastly, partial views
are not nearly as prevalent as non-critical operators before an interaction, accounting only
for < 20% of the interactions.
Reuse of Intermediate Results Since dataframe queries are incrementally constructed,
with subsequent queries building on top of previous ones, another common query opti-
mization technique that is applicable is caching these intermediate results. To assess the
opportunities to speed up queries by caching, we evaluate the number of times an operator
is shared by different interactions but not stored as a variable by the user. Ideally, we
would also have the execution times of the individual operators, which is not possible
without a full replay. We present an initial analysis that only assesses the existence of reuse
opportunities, as shown in Figure 7.6b and Figure 7.6a. Both the Data 100 and Github
datasets have a median of 3 operators that can benefit from reuse.

Of the types of optimizations explored, operator reordering appears to be the most common.
Thus, we focus our initial explorations of opportunistic evaluation on operator reordering
for asynchronous execution during think time, while supporting preemption to interrupt
asynchronous execution and prioritize interaction.

7.4 System Architecture
In this section, we introduce the system architecture for implementing our opportunistic
evaluation framework for dataframe query optimization within Jupyter notebooks. At a
high level, we create a custom Jupyter Kernel to intercept dataframe queries in order to
defer, schedule, and optimize them transparently. The query execution engine uses an
operator DAG representation for scheduling and optimizing queries and caching results,
and is responsible for scheduling asynchronous query executions during think time. When
new interactions arrive, the execution of non-critical operators is preempted and partial
results are cached to resume execution during the next think time. A garbage collector
periodically uncaches results corresponding to the DAG nodes to avoid memory bloat based
on the likelihood of reuse.

Kernel Instrumentation
Figure 7.7 illustrates the round-trip communication between the Jupyter front-end and the
Python interactive shell. The black arrows indicate how communication is routed normally
in Jupyter, whereas the green and purple arrows indicate how we augment the Jupyter

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION102

Notebook
Server

Python Interactive Shell

run_cell(…)Browser
Kernel
do_execute(…)

Opportunistic Kernel

Notebook File Parser Operator DAG Query Optimizer

code cell

 Garbage Collector

Figure 7.7: Opportunistic Evaluation Kernel Architecture.

Kernel to enable opportunistic evaluation. First, when the code is passed from the front-end
to the kernel, it is intercepted by the custom kernel that we created by wrapping the standard
Jupyter kernel. As shown in the green box, the code is passed to a parser that generates a
custom intermediate representation, the operator DAG. The operator DAG is then passed
to the query optimizer to create a physical plan for the query to be executed. This plan in
then passed to the Python interactive shell for execution. When the shell returns the result
after execution, the result is intercepted by the custom kernel to augment the operator DAG
with runtime statistics as well as partial results to be used by future queries, and the query
results are passed back to the notebook server, as indicated by the purple arrows.

Intermediate Representation: Operator DAG
Figure 7.8 shows an example operator DAG constructed from the code snippet on the left.
The orange hexagons are imports, yellow boxes are variables, ovals are operators, where
green ovals are interactions. The operator DAG is automatically constructed by analyzing
the abstract syntax tree of the code, in the parser component in Figure 7.7. We adopt
the static single assignment form in our operator DAG node naming convention to avoid
ambiguity of operator references, as the same operator can be invoked many times, either on
the same or different dataframes. In the case that the operator DAG contains non-dataframe
operators, we can simply project out the irrelevant operators by keeping only the nodes that
are weakly connected to the pandas import node.

To see how the operator DAG can be used for optimization, consider two simple use
cases:
Critical path identification. To identify the critical path to the interaction
A.value_counts(), we can simply start at the corresponding node and traverse the
DAG backwards to find all dependencies. Following this procedure, we would collect all
nodes in the green region as the critical path to A.value_counts() (corresponding
statements are highlighted in green on the left), slicing out the operators associated with

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION103

import pandas as pd

path = “…”
data = pd.read_csv(path)
data.head()

A = data[‘A’].fillna(data.mean().mean())
B = data[‘B’].fillna(data.mean().mean())
A.value_counts()

pandas

pd

path
data_0

head_0
code: data.head()

data[‘A’]_0

data[‘B’]_0read_csv_0
code: pd.read_csv(path)

mean_2
code: data.mean()

mean_1
code: data.mean().mean()

mean_0
code: data.mean()

mean_3
code: data.mean().mean()

A_0

B_0

fillna_0
code: data[‘A’].fillna(data.mean().mean())

fillna_1
code: data[‘B’].fillna(data.mean().mean())

value_counts_0
code: A.value_counts()

Figure 7.8: Example Code Snippet and Operator DAG.

the statement B = data[‘B’].fillna(data.mean().mean()), which does not
need to be computed for the interaction.
Identifying repeated computation. Note that data.mean().mean() is a common
subexpression in both A and B; recognizing this allows us to cache and reuse the result for
data.mean().mean(), which is expensive since it requires visiting every element in
the dataframe. We assume that operators are idempotent, i.e., calling the same operators on
the same inputs would always produce the same results. Thus, descendants with identical
code would contain the same results. Based on this assumption, we eliminate common
subexpressions by starting at the root nodes and traversing the graph breadth first, merging
any descendants with identical code. We then proceed to the descendants of the descendants
and carry out the same procedure until the leaf nodes are reached. Following this procedure,
we would merge mean_0 with mean_2 and mean_1 with mean_3 in the red dotted
region in Figure 7.8.

Operator Execution & Garbage Collector
When a notebook cell is executed, the opportunistic kernel first parses the code in the cell to
add operators to the operator DAG described above. The DAG is then passed to the query
optimizer, which will either immediately kick off the execution of interaction critical paths,
if they are present in the DAG, or consider all the non-critical operators to determine what
to execute next. We discuss optimizations for non-critical operators in Section 7.5.

After the last interaction is executed and the results are returned, the query optimizer
will continue executing operators asynchronously until the entire DAG is executed. In the
event that an interaction arrives while a non-critical operator is executing, we preempt the
execution of the non-critical operator to avoid delaying the execution of the interaction
critical path. We discuss optimizations for supporting effective preemption in Section 7.5.

While the kernel executes operators, a garbage collector (GC) is working in the back-
ground to uncache results in the operator DAG to control memory consumption. A GC

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION104

event is triggered when memory consumption is above 80% of the maximum memory
allocated to the kernel, at which point the GC inspects the operator DAG to uncache the
set of operator results that are the least likely to speed up future queries. We discuss cache
management in Section 7.5.

7.5 Optimization Framework
The opportunistic evaluation framework optimizes for interactive latency by deferring
to think timethe execution of operators that do not support interactions. The previous
section describes how we use simple program analysis to identify the interaction critical
path that must be executed to produce the results for an interaction. In this section, we
discuss optimizations for minimizing the latency of a given interaction in Section 7.5 and
optimizations for minimizing the latency of future interactions by leveraging think timein
Section 7.5. We discuss how to model user behavior to anticipate future interactions in
Section 7.5.

Optimizing Current Interactions
Given an interaction critical path, we can apply standard database optimizations for single
queries to optimize interactive latency. For example, if the interaction operator is head
(i.e., examining the first K rows), we can perform predicate pushdown to compute only
part of the interaction critical path that leads to the top K rows in the final dataframe. The
rest can be computed during think timein anticipation of future interactions.

The main challenge for optimizing interactive latency in opportunistic evaluation is
the ability to effectively preempt the execution of non-critical operators. This preemption
ensures that we avoid increasing the interactive latency due to irrelevant computation. The
current implementation of various operators within pandas and other dataframe libraries
often involves calling lower-level libraries that cannot be interrupted during their execution.
In such cases, the only way to preempt non-critical operators is to abort their execution
completely, potentially wasting a great deal of progress. We propose to overcome this
challenge by partitioning the dataframe so that preemptions lead to, in the worst case
scenario, only loss of the progress on the current partition.
Dataframe partitioning Partitioning the dataframe in the opportunistic evaluation setting
involves navigating the trade-off between the increase in future interactive latencies due
to loss of progress during preemption and the reduction in operator latency due to missed
holistic optimizations on the entire dataframe. In the setting where interactions are sparse,
a single partition maximizes the benefit of holistic optimization while losing progress on
the entire operator only occasionally due to preemption. On the other hand, if interactions

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION105

are frequent and erratic, a large number of small partitions ensures progress checkpointing,
at the expense of longer total execution time across all partitions. Thus, the optimal
partitioning strategy is highly dependent on user behavior. We discuss how to model user
behavior in Section 7.5.

Without a high-fidelity user interaction model, we can create unevenly sized partitions
to handle the variability in the arrival rate of interactions. First, we create small partitions
for the top and bottom K rows in the dataframe not only to handle the rapid succession of
interactions but also to support partial-result queries involving head and tail that are
prevalent in interactive dataframe workloads. Then, for the middle section of the dataframe,
the partitions can reflect the distribution of think timesuch that the partition sizes are smaller
at intervals where interactions are likely to be issued. For example, if the median think
timeis 20s and the operator’s estimated execution time is 40s, it might be desirable to have
smaller partitions after 50% of the rows have been processed.

The above strategy assumes sequential processing of every row in the dataframe. If,
instead, the prevalent workload is working with a select subset of rows, then it is more
effective to partition based on the value of the attributes that are commonly used for
selection. Of course, partitioning is not necessary if computation started during think
timedoes not block computation for supporting interactions.

Note that another important consideration in generating partial results is the selectivity
of the underlying operators and whether they are blocking operators. For the former, we
may need to employ a much larger partition simply to generate K results. For the latter,
we may need to prioritize the generation of the aggregates corresponding to the groups in
the top or bottom K (in the case of group-by), or to employ algorithms that prioritize the
generation of the K first sorted results (in the case of sorting). In either case, the problem
becomes a lot more challenging.

Optimizing Future Interactions Leveraging Think Time

Non-critical Operator scheduling. We now discuss scheduling non-critical operators.
Recall that these operators are organized in a DAG built from queries. The job of our
scheduler is to decide which source operators to execute. Source operators in the DAG are
those whose precedent operators do not exist or are already executed. We assume an equal
probability of users selecting any operator in the DAG to extend with an interaction.

The scheduler is optimized to reduce the interaction latency; we introduce the notion
of an operator’s delivery cost as the proxy for it. If an operator has not been executed
yet, its delivery cost is the cost of executing the operator along with all of its unexecuted
predecessors. Otherwise, the delivery cost is zero. Our scheduler prioritizes scheduling
the source operator that can reduce the delivery cost across all operators the most. We

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION106

define a utility function U(si) to estimate the benefit of executing a source operator si. This
function, for a node si is set to be the sum of the delivery cost for the source operator and
all of its successors Di:

U(si) =
∑
j∈Di

cj (7.1)

where cj is the delivery cost for an operator j. Our scheduler chooses to execute the one
with the highest U(si). This metric prioritizes those operators that “influence” as many
expensive downstream operators as possible.
Caching for reuse. When we are executing operators in the background, we store the
result of each newly computed operator in memory. However, if the available memory
(i.e., the memory budget) is not sufficient to store the new result, we need to recover
enough memory by discarding materialized results of previously computed operators. If
the discarded materialized results are needed by future operators, we will execute the
corresponding operators to recompute them. Here, the optimization problem is to determine
which materialized results should be discarded given the memory budget. Our system
addresses this problem by systematically considering three aspects of a materialized result,
denoted ri: 1) the chance of ri being reused, pi, 2) the cost of recomputing the materialized
result, ki, and 3) the amount of memory it consumes, mi. We estimate pi by borrowing
ideas from the LRU replacement algorithm. We maintain a counter T to indicate the last
time any materialized result is reused and each materialized result is associated with a
variable ti that tracks the last time it is reused. If one materialized result ri is reused, we
increment the counter T by one and set ti to T . We use the following formula to estimate
pi:

pi =
1

T + 1− ti
(7.2)

We see that the more recently a materialized result ri is reused, the higher pi is. We can use
a cost model as in relational databases to estimate the recomputation cost ki. We note that
we do not always recompute an operator from scratch. Given that the other materialized
results are in memory, our cost model estimates the recomputation cost by considering
reusing existing materialized results. Therefore, we use the following utility function to
decide which materialized result should be discarded.

O(ri) = pi ×
mi

ki
(7.3)

Here, mi

ki
represents the amount of memory we can spare per unit of recomputation cost to

pay. The lower mi

ki
is, the more likely we discard ri. Finally, our algorithm will discard the

ri with the lowest O(ri) value.
Speculative materialization. Our system not only considers caching results generated
by users’ programs, but also speculatively materializes and caches results that go beyond

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION107

what users specify, to be used by future operators. One scenario we observed is that users
intend to explore the data by changing the value of a filter repeatedly. In this case, we
can materialize the intermediate output results before we apply the filter and when users
modify the filter, we can reuse the saved results without computing them from scratch. The
downside of this approach is that it can increase the latency of computing an interaction
when the think timeis limited. Therefore, we enable this optimization only when users’
predicted think timeof writing a new operator is larger than the time of materializing the
intermediate states.

Prediction of User Behavior
The accurate prediction of user behavior can greatly improve the efficacy of opportunistic
evaluation. Specifically, we need to predict two types of user behavior: think timeand
future interactions. Section 7.3 described some preliminary statistics that can be used
to construct a prior distribution for think time. As the system observes the user work,
this distribution can be updated to better capture the behavior of the specific user, as we
expect the distribution of think timeto vary greatly based on the dataset, task, user expertise,
and other idiosyncrasies. These workload characteristics can be factored into the think
timemodel for more accurate prediction. This think timemodel can be used by the optimizer
to decide the size of dataframe partitions to minimize progress loss due to preemption or to
schedule non-critical operators whose expected execution times are compatible with the
think timeduration.

To predict future interactions, we can use the models from Yan et al. [129]. These
models are trained on a large corpus of data science notebooks from Github. Since future
interactions often build on existing operators, we can use the future interaction prediction
model to estimate the probabilities of non-critical operators in the DAG leading to future
interactions, which can be used by the scheduler to pick non-critical operators to execute
next. Let pj be the probability of the children of an operator j being an interaction. We can
incorporate pj into the utility function in Equation 7.1 to obtain the updated utility function:

Up(si) =
∑
j∈Di

cj × pj (7.4)

Of course, the benefits of opportunistic evaluation can lead to modifications in user
behavior. For example, without opportunistic evaluation, a conscientious user might
self-optimize by avoiding specifying expensive non-critical operators before interactions,
potentially at the cost of code readability. When self-optimization is no longer necessary
when authoring queries, the user may choose to group similar operators for better code
readability and maintenance, thus creating more opportunities for opportunistic evaluation
optimizations.

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION108

17.5s 0.122s

0.05s 0.05s

2.3s 3.6s

2.35s 0.05s

22.2s 3.72sTotal

Standard OpportunisticUser Wait time per output

2

1

3

4

5

6

7.4s

8.8s

5.1s

Figure 7.9: An example notebook. Cells that show an output are indicated with a red box.

7.6 Case Study
In this section, we evaluate how opportunistic evaluation will impact the end user through a
case study. Figure 7.9 shows an excerpt from the original notebook, taken from a Kaggle
competition (https://www.kaggle.com/c/home-credit-default-risk).

In this case study, the data scientist first read in the file, and was forced to immediately
wait. Then, the user wanted to see the columns that exist in the dataset. This is often done
when the data scientist first encounters a dataset. They therefore printed the first 5 lines
with data.head(). This inspection is important for data validation: the data scientist
wanted to ensure that the data was parsed correctly during data ingestion. After these two
data validation steps, the data scientist noticed that there were a significant number of null
values in multiple columns.

The cell labeled In[4] shows how the data scientist solved the null values problem:
they decided to drop any column that does not have at least 80% of its values present.
Notice that the data scientist first wanted to see what the results of the query would look
like before they executed it, so they added a .head() to the end of the query that drops
the columns. Likely this was done during debugging, where many different, but similar
queries were attempted until the desired output was achieved. The query was then repeated
to overwrite the data variable. An important note here is that the full dataset is lost at this
point due to the overwriting of the data variable. The data scientist will need to reread
the file if they want access to the full dataset again. After dropping columns with less than
80% of their values present, the data scientist double-checked their work by inspecting
the columns of the overwritten data dataframe. Next, we evaluate the benefits of the
opportunistic evaluation approach by determining the amount of synchronous wait time
saved by leveraging think time.

To evaluate opportunistic evaluation in our case study, think timewas injected into the
notebook from the distribution presented in Figure 7.3. We found that the time that the

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION109

hypothetical data scientist spent waiting on computation was almost none: the read_csv
phase took 18.5 seconds originally, but since the output of the columns and head were
prioritized, they were displayed almost immediately (122ms). The data scientist then
looked at the two outputs from columns and head for a combined 16.2 seconds. This
means the data scientist synchronously waited on the read_csv for approximately 1.3
seconds. Next, the user had to wait another 2.3 seconds for the columns with less than 80%
of their values present to be dropped. Without opportunistic evaluation, the user would
have to pay this time twice, once to see the first 5 lines with head and again to see the
data.columns output in cell In[6].

7.7 Related Work
As we have discussed in other chapters, many open source systems attempt to provide
improved performance or scalability for dataframes. Often, this means only supporting
dataframe functionalities that are simple to parallelize (e.g., Dask [32]), or supporting only
those operations which can be represented in SQL (e.g. Koalas [63] and SparkSQL [88]).
Our project, Modin [73], is the only open source system with an architecture that can
support all dataframe operators.

In the research community, there are multiple notable papers that have tackled dataframe
optimization through vastly different approaches. Sinthong et al. propose AFrame, a
dataframe system implemented on top of AsterixDB by translating dataframe APIs into
SQL++ queries that are supported by AsterixDB [107]. Another work by Yan et al. aims to
accelerate EDA with dataframes by “auto-suggesting” data exploration operations [129].
Their approach has achieved considerable success in predicting the operations that were
actually carried out by users given an observed sequence of operations. More recently,
Hagedorn et. al. designed a system for translating pandas operations to SQL and executing
on existing RDBMSs [45]. In a similar vein, Jindal et. al. built a system called Magpie
for determining the optimal RDBMS to execute a given query [55]. Finally, Sioulas et.
al. describe techniques for combining the techniques from recommendation systems to
speculatively execute dataframe queries [108].

Our proposed approach draws upon a number of well established techniques from
the systems, PL, and DB communities. Specifically, determining and manipulating the
DAG of operators blends control flow and data flow analysis techniques from the PL
community [25]. The optimization of dataframe operators draws inspiration from battle-
tested database approaches such as predicate pushdown, operator reordering, multi-query
optimization, and materialized views [48], as well as compiler optimizations such as
program slicing and common subexpression elimination. Furthermore, we borrow from the

CHAPTER 7. ARCHITECTURE CASE STUDY: OPPORTUNISTIC EVALUATION110

systems literature on task scheduling to take enable asynchronous execution of dataframe
operators during think time.

7.8 Conclusion & Future Work
We proposed opportunistic evaluation, a framework for accelerating interactions with data-
frames. Interactive latency is critical for iterative, human-in-the-loop dataframe workloads
for supporting data validation, both for ML and for EDA. Opportunistic evaluation signif-
icantly reduces interactive latency by 1) prioritizing computation directly relevant to the
interactions and 2) leveraging think timefor asynchronous background computation for
non-critical operators that might be relevant to future interactions. We have shown, through
empirical analysis, that current user behavior presents ample opportunities for optimization,
and the solutions we propose effectively harness such opportunities.

While opportunistic evaluation addresses data validation prior to model training, data
validation challenges are present in other parts of the end-to-end ML workflow. For example,
after a trained model has been deployed, it is crucial to monitor and validate online data
against the training data in order to detect data drift, both in terms of distribution shift
and schema changes. A common practice to address data drift is to retrain the model on
newly observed data, thus introducing data drift into the data pre-processing stage of the
end-to-end ML workflow. Being able to adapt the data validation steps in a continuous
deployment setting to unexpected data changes is an open challenge.

111

Chapter 8

Open source project community
building

Many grad students and professors have asked me for suggestions on how to build a
functioning and thriving open source community while in grad school. I thought it would
be good to include a chapter in my thesis on how to build an open source community given
the success of my open source grad project.

This chapter is part history, part lessons, part advice. I don’t know everything, and the
moderate success of my work does not mean that my advice is automatically good. These
suggestions are based on my experience, so do not take them as absolute truth.

8.1 My History Building a Successful Open
Source Project

During my grad school career, I built Modin (https://github.com/modin-project/modin), a
full dataframe implementation that, as of writing, has over 6,000 GitHub stars. This effort
has been supported by many people over the last few years, so to take all the credit myself
would not be fair to those people. Berkeley is well known for creating some of the most
used and most impactful software on the planet, so I wasn’t starting from nothing.

My approach toward promoting the work has been fairly successful, however I attribute
that largely to luck. The first blog post I published (2018) got a lot of input and feedback
from others working on the project at the time. It ended up getting shared on Twitter and
HackerNews by many people (I had accounts with neither at the time) and generated a lot
of interest. At the time, pandas on Ray (which would become Modin) was a 1 month hack I
put together with help from several undergraduate students at Berkeley. It honestly wasn’t

CHAPTER 8. OPEN SOURCE PROJECT COMMUNITY BUILDING 112

ready for the overwhelming interest it received, and yet it has continued to be developed
and grown into something that I couldn’t have imagined at the time.

8.2 Lessons and Advice
This section is likely to be long and difficult to parse, so I’m going to make my advice
section headers so it’s easier to skim to find the points you’d like to better understand.

[1] Make your system understandable to your target user, and don’t
worry about anyone else
This point is something I think we’ve gotten right from the beginning with Modin. From
the start, we have abstracted away complex details from the user, including in how we
present the system. This has, of course, led many of highly technical people to discount the
complexity of abstracting away these details, but that has never bothered me. I don’t care
if someone thinks Modin is or isn’t technically interesting, I care that it solves a problem.
Because of how I talk about Modin, most people have a simple understanding of the system.
That is by design. While working on Modin, we have formalized a new data model, created
a new dataframe algebra, and created a truly unique data layout and metadata management
system. The people who could understand enough about the underlying system to appreciate
it likely wouldn’t use Modin in the first place, because Modin is targeting a less-technical
group of users. I think this is really important because when people talk about Modin, they
generally focus on the problems it solves rather than the technically interesting parts of the
implementation. I am okay with that, but make sure that you are. Do you want people to
use your work or do you want them to think you’re really smart? Sometimes you can have
both, but often not.

[2] Be prepared to defer your graduation and publications
This point is less applicable if you have a large team managing the open source, but in
my case I was working mostly alone from the open source side. On the research side, we
were able to bring together some of the best in databases and machine learning, but many
deadlines were missed because of things that came up in the open source. I prioritized the
open source community and development over my own graduation and publications. This
is a decision you’ll have to make for your own situation. I’m not completely convinced now
that you need to do this, but at the time I felt like it was necessary to keep the open source
community alive and growing. There’s little overlap between open source community

CHAPTER 8. OPEN SOURCE PROJECT COMMUNITY BUILDING 113

development and grad school requirements. You are going to have to respond to questions,
issues, and promote your work.

[3] The fun parts of open source are front-loaded
At the beginning of any open source project you’re going to be able to move fast. There’s
no technical debt, no new issues, and a lot of energy and excitement. As time goes on, your
time will go from developing new features and building things to answering issues and
emails. If you’re fortunate enough to have a lot of external contributors like Modin does,
you’ll end up spending a lot of time reviewing code. These days, I spend maybe 20% of
my time writing code and debugging. If you want to get into open source, be prepared to
spend a large chunk of time on user issues and support after your project hits a critical mass.
If you are mostly doing it alone, the project momentum can easily screech to a halt and
feel like it’s not moving anywhere for weeks. My recommendations here are to (1) avoid
romanticizing the idea of managing a highly visible open source project and (2) learn to bin
your time. At first, it’s easy to answer issues as they come in, eventually you will not get
anything done if you always answer issues immediately.

[4] Promotion is important
If you want people to use your project, you have to tell them about it. Part of the difficulty in
deciding how to promote is around deciding when. Promotion takes away from development
in a small team, and so there needs to be some good reason to promote. Early on, I had
planned on curating a series of blog posts that could archive the journey. That was quickly
thrown out after the reception from the first blog post. My main advice is to be careful not
to overpromote: each update should be substantial. This is mostly personal taste, but I don’t
like reading a lot of fluffy blogs that have hardly any new content. Honestly, most people
aren’t going to read the blog anyway, they will skim the headers or scroll to the bottom to
read the conclusion. In terms of promotion, getting multiple friendly people to tweet about
your blog is probably the best way to promote. HackerNews is not what I would consider
a good distribution channel, rather a good place for discussion about topics surrounding
a blog’s title and content. Podcasts are another way to spread the word, and they are a
common way that people hear about new projects.

[5] Make your work easy to install and use
The biggest hurdle to using something is getting started, and the lower the barrier the more
people will try it. This might seem obvious but easy means different things to different
people so I’ll try to be concrete here. Do you require users to pull your Docker container?

CHAPTER 8. OPEN SOURCE PROJECT COMMUNITY BUILDING 114

Do you require users to build from source? Does installation change the user’s environment?
Does installation take more than a couple of steps? If you answered yes to any of these
questions you’re going to have a hard time getting people to do more than look at your
README. Making something easy to use is important to getting a community off the
ground, if people don’t use it they won’t tell their friends about it (probably).

The second component to easy use is examples: you need really good useful examples,
not toys. Users want to see what they can do with your tool, and showing them how to do a
trivial map over a list of integers is not going to give users a good idea of what they can do.
Your examples should show off a variety of use cases and capabilities on actual workloads.
Examples overlap a bit with the next point on documentation.

[6] Write documentation
Everyone says this, nobody does it.

[7] Primarily use communication channels that are Googleable
Slack, Gitter, etc. are not internet searchable. When people have a problem they will often
go to Google first to see if others have solved the problem. In Modin, we use GitHub issues
and Discourse boards for discussions to make sure that people looking for solutions can
find them. This also has the nice side effect of being able to point to those pages when
someone asks the same question.

[8] Give talks at small venues and meetups, not just the big ones
Promoting work via talks at big venues does give you more visibility, but ultimately the
smaller more intimate venues are where you’re more likely to make good connections with
people who will actually use your project. It’s tempting at the beginning to try to go straight
for giving talks at the big international conferences, but I’ve found that small meetups are
both more focused (people are more likely to have the problem you’re solving) and more
willing to talk. I gave talks to meetup groups as small as 6 people, and in those meetups I
had more engaging conversations that in the larger venues. You need these relationships
with your users early on to build momentum. Otherwise, once you do talk at these large
venues and people will ask “Who is using your project?”. In the large conferences people
claim to be looking for the next big technology to adopt, but really they just want to use
what everyone else is using. Having users will get you more users, but you need the early
adopters, and often you will meet them in small venues or meetups.

CHAPTER 8. OPEN SOURCE PROJECT COMMUNITY BUILDING 115

[9] Make it easy to reach you
This point will contradict with the point about communication channels being Googleable,
but in general you need to be able to be reached by people who run into problems. Don’t
make the communication overhead of reporting a bug a barrier to discovering the bug exists.
In Modin, for example, we set up a couple of emails and if something went wrong internally
we asked them to email us a bug report as a part of the error message. It has been pretty
successful and there are several bugs we found that weren’t discoverable otherwise. We
rarely get these today, which is a good indication that things are getting more stable.

Generally, to solve the issue of search indexability, I will ask people who email to open
an issue if I triage it to be serious and new. I’ve found people are easier to go back/forth
with over email, so you can get the simple stuff out of the way quickly as well (e.g. user
environment issues or user errors).

[10] Scale your efforts later, build a community first
A lot of what I propose here doesn’t scale, and it will get worse as the number of users
grows. This is by design. Even after you have a critical mass, it’s not likely you’ll have a
large group of contributors outside of your organization (it took roughly 3 years for Modin
to get serious outside contributor groups). Building a community is largely a social effort,
and you need broadcasting on Twitter is not going to be enough to get the ball rolling.
Everyone is doing that. If you want to actually build a community, you need to do things
like talk to individuals and answer individual emails. The personal connections are more
important than trying to make noise in a very noisy world, and they will get you farther
than clicks or views on your tweets and blog posts.

[11] Make it easy to contribute and ask for contributions
Making your project easy to contribute to is a good way to help build a community. There
are always people who are interested in working on projects on the side, and getting these
people involved is important. Often, projects are too difficult to jump into years later. It is
difficult to build a community when you’re the only person who knows how to do anything.
You’re going to need people who can help with issues so you can take some time off every
now and then to recharge. This is obvious, but it takes good design and a lot of DevOps
work, which doesn’t necessarily equate to more code being output. In fact, often helping
others will often reduce your own productivity and the overall code velocity of the project.
This code velocity cost (on an individual basis) may actually never be recouped, but I argue
that there are intangible benefits to working with other people:
• You need to justify your designs

CHAPTER 8. OPEN SOURCE PROJECT COMMUNITY BUILDING 116

• Producing code is not a good metric of productivity–there are more important things
than new features
• Excited contributors often also become evangelists

Adding contributors will not always yield more code or more bugfixes, but it helps build a
community.

8.3 Concluding thoughts
I hope this has been helpful. It’s a lot of work to keep a community going, and the work is
mostly social. There’s a lot of engineering in building something, but actually getting the
word out and keeping in contact with users takes significant effort.

This list is by no means complete, but I hope it’s enough to help you get off the ground.
Grad school is a great time to explore a bunch of different things, including open source
community building and project management. I hope you can be as successful as I was (or
more!) and that this list can help you plan how to execute on your great ideas. Please don’t
hesitate to reach out to me directly if you have any questions. I don’t consider myself an
expert on open source community building, but I will do my best to answer any questions
you might have.

117

Chapter 9

Conclusion

This dissertation takes a ground-up approach to implementing scalable dataframe systems.
We explored the dataframe data model, designed a system architecture, and created an
open-source reference dataframe implementation. In this chapter, we summarize the key
findings of this dissertation and outline future directions for dataframe research.

9.1 Summary of Findings

We now detail the findings of this dissertation, labeled Findings 1 - 2 .

Finding 1 : A definition for a formal dataframe data model and com-
prehensive algebra.
In Chapter 3, we proposed a novel dataframe data model and algebra that generalized
existing dataframe implementations like pandas [81] and the data.frame in R [90]. We
focused on pandas because it is by far the most popular dataframe library, but suffers from a
lack of scalability. We revisit the dataframe data model figure from Chapter 3 in Figure 9.1.

The dataframe data model consists of four components, each with a set of properties
we will discuss here. The figure component labeled Amn is an mXn array that contains
the data. Rm is a vector of row labels. Row labels are used to identify a row, but are not
necessarily unique as with an index in a database. The row labels originate from within the
data itself, meaning dataframe metadata and data are interchangeable. The column labels,
Cn in the figure, are a vector of identifiers for columns, and are also not necessarily unique.
Rows and columns are interchangeable in a dataframe, so properties that are true for rows
must also be true for columns, with the exception of the existence of column types (Dn in
Figure 9.1). Columns have types, but rows do not.

CHAPTER 9. CONCLUSION 118

Cn Column Labels
Dn Column Domains

Array of Data

Amn

Rm
Row Labels

Figure 9.1: The Dataframe Data Model. A copy of this figure can also be found in Chapter 3.

Concretely, dataframes are an abstraction distinct from both relational databases and
matrices. Specifically, when viewed from a relational viewpoint, the dataframe data model
differs in the following ways:

Dataframe Characteristic Relational Characteristic
Ordered table Unordered table
Named rows labels No naming of rows
A lazily-induced schema Rigid schema
Column names of any type Column names from att [3]
Column/row symmetry Columns and rows are distinct
Support for linear alg. operators No native support

When viewed from a matrix viewpoint, the dataframe data model differs in the following
ways:

Dataframe Characteristic Matrix Characteristic
Heterogeneously typed Homogeneously typed
Both numeric and non-numeric types Only numeric types
Explicit row and column labels No row or column labels
Support for rel. algebra operators No native support

These two equivalent viewpoints are exploited to define a set of algebraic operators for
dataframes.

In Chapter 3, we also defined a set of algebraic operators that encompasses the entire
pandas API. In Chapter 4, we proved by exhaustion that these operators are sufficient
to cover the entire pandas API, and are in fact a generalization of pandas in that we can
express even more than pandas with this algebra. The algebraic operators we presented span
relational operators (e.g., join and group by), matrix operators (e.g., transpose),

CHAPTER 9. CONCLUSION 119

Core

 API API [Future] API

Execution
Engine

Execution
Engine

[Future]
Execution

Engine

Modin
Core

API

Execution

Memory DiskStorage

SQL

Core
Operators

Metadata
Manager

Data Layout
Manager

Figure 9.2: The Modin architecture. This figure also appears in Chapter 5.

and dataframe metadata operators (e.g., infer types and from labels). Collec-
tively, these operators provide significant flexibility to the user to carry out operations on
dataframes. The algebra, however, is not a suitable user-facing interface, so we explored an
implementation of the data model and algebra in Finding 2 .

Finding 2 : A scalable implementation of the dataframe.
In Chapter 4, we presented a general dataframe architecture design based on the dataframe
data model and algebra presented in Chapter 3. This design includes a description of each
operator and the nuances in the behavior. The architecture described in Chapter 4 is scalable
by design, and includes possible solutions to key challenges inherent in the dataframe data
model.

In Chapter 5, we presented Modin, our reference dataframe implementation and the
rules we use to determine the optimal parallelism in this implementation. The architecture
of Modin is shown in Figure 9.2 and is designed to support multiple execution backends.
This design decision stems from the goal of supporting data science in all environments,
such that data scientists can use the same notebook with Modin in different operating
environments with the same results. Modin exposes the familiar pandas API to users by
translating pandas operators into the underlying algebra implementation that we discuss in
Chapters 3 and 4. We also discussed low level implementation decisions, with an additional
focus on how we manage metadata in Modin. Each operator manipulates the metadata in

CHAPTER 9. CONCLUSION 120

specific ways, which we explained in Chapter 5. We discussed how we overcome many of
the challenges in having a distributed implementation of a dataframe, including keeping
certain metadata close to the user (e.g., row and column labels) while also trying to keep the
labels close to the data for when they are inevitably operated on as data. Modin’s impact in
the open source community can be measured by the number of GitHub stars (6,000+) and
installs (over one million) [73]. The impact of Modin shows that there is a significant need
for distributed dataframe implementations.

9.2 Future Work
Given how recent the dataframe data model and algebra are, dataframe research remains
an interesting an open area with many interesting directions. The future work here was
initially introduced in prior chapters where it is also contextualized.

Speculative Query Execution
Much of the work presented in this dissertation focuses on making the data scientist, i.e.
the human user, more efficient overall. Speculative query execution is yet another way to
improve the user’s overall productivity. By accurately executing queries before the user
submits them, we can decrease the amount of time the user waits for the query result. One
major challenge in designing a speculative query execution engine is accurately predicting
what the user might do. The user model would likely need to adapt as the data scientist
uses the system to become more accurate. If the speculation is incorrect, it is important that
the user is not penalized. This may mean throwing away partial results for queries that are
never needed, but the highest priority should always be improving the user’s productivity
by decreasing the amount of time the user spends waiting on results.

Query Optimization
The new dataframe algebra provides a lot of interesting future work in designing query
optimizers that can efficiently rearrange the order of operators. Our focus with the algebra
was on expressiveness and minimality, so that any one operation has only one way of being
expressed. In addition to query rewriting and reordering, optimizing the physical layout
of the data remains an interesting open challenge. Avoiding data shuffling and expensive
transpose operations will be key to the scalability of dataframes.

Additionally, multi-query optimization (MQO) through partial result materialization
and reuse should provide a significant improvement to existing users. During a typical
dataframe workflow, users will commonly re-execute the same code or code with very small

CHAPTER 9. CONCLUSION 121

changes. For expensive queries, we can avoid recomputing results to provide an improved
user experiences. If the user makes minor changes, it may be possible to reuse the some or
all of the intermediate results of original query instead of recomputing the entire query. For
example, if the user changes a map operator at the end of a long query to add one instead of
two, we can simply subtract one from the original result in a map instead of rerunning the
entire query from the beginning. The extent to which MQO is possible in the new algebra
is not yet known, but this is likely to be an area that can significantly improve the overall
performance of the system.

9.3 Final Remarks
Dataframes have become universally popular as a means to flexibly represent data in various
stages of structure, and manipulate it using a rich set of operators—thereby becoming an
essential tool in data scientists’ toolbox. However, popular dataframe systems like pandas
scale poorly—and are non-interactive even on moderate to large datasets. In this dissertation,
we take a ground-up approach to improving the scalability and performance of dataframes.
We began with a formalism to ground the discussion in theory. We showed that dataframes
can not only be well defined, but have a unique set of features that make it difficult to scale.
We discussed our experiences developing Modin, our reference parallel dataframe system,
which already has users across several industries, and considerable traction within the open
source GitHub community with over 1M downloads. Modin translates pandas functions
into a core set of operators that are individually parallelized via a set of columnar, row-wise,
and cell-wise decomposition rules that we formalized in this dissertation. With careful
engineering, a dataframe should empower the data scientist without new requirements.
Looking forward, dataframes will continue to be important structures for ad-hoc and
exploratory data analysis, and dataframe systems will need to continue to be improved and
developed to enhance the productivity of the data scientist.

122

Bibliography

[1] Daniel Abadi et al. “The design and implementation of modern column-oriented
database systems”. In: Foundations and Trends® in Databases 5.3 (2013), pp. 197–
280.

[2] Martın Abadi et al. “Tensorflow: a system for large-scale machine learning.” In:
OSDI. Vol. 16. 2016, pp. 265–283.

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Vol. 8.
Addison-Wesley Reading, 1995.

[4] Azza Abouzeid et al. “HadoopDB: an architectural hybrid of MapReduce and
DBMS technologies for analytical workloads”. In: Proceedings of the VLDB En-
dowment 2.1 (2009), pp. 922–933.

[5] Sameer Agarwal et al. “BlinkDB: queries with bounded errors and bounded re-
sponse times on very large data”. In: Proceedings of the 8th ACM European Con-
ference on Computer Systems. ACM. 2013, pp. 29–42.

[6] Josep Aguilar-Saborit and Raghu Ramakrishnan. “POLARIS: The Distributed SQL
Engine in Azure Synapse”. In: Proc. VLDB Endow. 13.12 (2020), pp. 3204–3216.
DOI: 10.14778/3415478.3415545. URL: http://www.vldb.org/
pvldb/vol13/p3204-saborit.pdf.

[7] Daniel Alabi and Eugene Wu. “Pfunk-h: Approximate query processing using
perceptual models”. In: Proceedings of the Workshop on Human-In-the-Loop Data
Analytics. ACM. 2016, p. 10.

[8] Abdallah M Alashqur, Stanley YW Su, and Herman Lam. “OQL: a query language
for manipulating object-oriented databases”. In: Proceedings of the 15th interna-
tional conference on Very large data bases. Morgan Kaufmann Publishers Inc. 1989,
pp. 433–442.

[9] Michael Armbrust et al. “Spark sql: Relational data processing in spark”. In: Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. ACM. 2015, pp. 1383–1394.

https://doi.org/10.14778/3415478.3415545
http://www.vldb.org/pvldb/vol13/p3204-saborit.pdf
http://www.vldb.org/pvldb/vol13/p3204-saborit.pdf

BIBLIOGRAPHY 123

[10] Michael Armbrust et al. “Spark SQL: Relational Data Processing in Spark”. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’15. Melbourne, Victoria, Australia: ACM, 2015, pp. 1383–
1394. ISBN: 978-1-4503-2758-9. DOI: 10.1145/2723372.2742797. URL:
http://doi.acm.org/10.1145/2723372.2742797.

[11] Leilani Battle and Jeffrey Heer. “Characterizing Exploratory Visual Analysis: A
Literature Review and Evaluation of Analytic Provenance in Tableau”. In: Euro-
graphics Conference on Visualization (EuroVis) 2019 38.3 (2019).

[12] Michael Bayer. “SQLAlchemy”. In: The Architecture of Open Source Applications
Volume II: Structure, Scale, and a Few More Fearless Hacks. Ed. by Amy Brown
and Greg Wilson. aosabook.org, 2012. URL: http://aosabook.org/en/
sqlalchemy.html.

[13] Mangesh Bendre et al. “Dataspread: Unifying databases and spreadsheets”. In:
PVLDB 8.12 (2015), pp. 2000–2003.

[14] Mangesh Bendre et al. “Towards a holistic integration of spreadsheets with
databases: A scalable storage engine for presentational data management”. In:
2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE.
2018, pp. 113–124.

[15] MKABV Bittorf et al. “Impala: A modern, open-source sql engine for hadoop”. In:
Proceedings of the 7th biennial conference on innovative data systems research.
2015.

[16] Peter A. Boncz, Marcin Zukowski, and Niels Nes. “MonetDB/X100: Hyper-
Pipelining Query Execution”. In: Second Biennial Conference on Innovative Data
Systems Research, CIDR 2005, Asilomar, CA, USA, January 4-7, 2005, Online Pro-
ceedings. www.cidrdb.org, 2005, pp. 225–237. URL: http://cidrdb.org/
cidr2005/papers/P19.pdf.

[17] Umit V Catalyurek and Cevdet Aykanat. “Hypergraph-partitioning-based decompo-
sition for parallel sparse-matrix vector multiplication”. In: IEEE Transactions on
parallel and distributed systems 10.7 (1999), pp. 673–693.

[18] Don Chamberlin et al. “XQuery 1.0: An XML query language”. In: W3C working
draft 7 (2001).

[19] J. Chambers, T. Hastie, and D. Pregibon. “Statistical Models in S”. In: Compstat.
Ed. by Konstantin Momirović and Vesna Mildner. Heidelberg: Physica-Verlag HD,
1990, pp. 317–321. ISBN: 978-3-642-50096-1.

[20] John M Chambers, Trevor J Hastie, et al. Statistical models in S. Vol. 251.
Wadsworth & Brooks/Cole Advanced Books & Software Pacific Grove, CA, 1992.

https://doi.org/10.1145/2723372.2742797
http://doi.acm.org/10.1145/2723372.2742797
http://aosabook.org/en/sqlalchemy.html
http://aosabook.org/en/sqlalchemy.html
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf

BIBLIOGRAPHY 124

[21] Fay Chang et al. “Bigtable: A distributed storage system for structured data”. In:
ACM Transactions on Computer Systems (TOCS) 26.2 (2008), pp. 1–26.

[22] Kristina Chodorow. MongoDB: the definitive guide: powerful and scalable data
storage. " O’Reilly Media, Inc.", 2013.

[23] Jaeyoung Choi et al. “ScaLAPACK: A scalable linear algebra library for distributed
memory concurrent computers”. In: [Proceedings 1992] The Fourth Symposium on
the Frontiers of Massively Parallel Computation. IEEE. 1992, pp. 120–127.

[24] ClickHouse is a fast open-source OLAP database management system. 2021. URL:
https://clickhouse.tech/.

[25] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier, 2011.

[26] Conor Cunningham, César A Galindo-Legaria, and Goetz Graefe. “PIVOT and
UNPIVOT: Optimization and Execution Strategies in an RDBMS”. In: Proceedings
of the Thirtieth international conference on Very large data bases-Volume 30.
VLDB Endowment. 2004, pp. 998–1009.

[27] Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme. “AIDA - Ab-
straction for Advanced In-Database Analytics”. In: PVLDB 11 (2018), pp. 1400–
1413.

[28] Benoit Dageville et al. “The snowflake elastic data warehouse”. In: Proceedings of
the 2016 International Conference on Management of Data. 2016, pp. 215–226.

[29] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry standard API for
shared-memory programming”. In: IEEE computational science and engineering
5.1 (1998), pp. 46–55.

[30] Dask DataFrame API Reference. https://docs.dask.org/en/latest/
dataframe-api.html. 2021.

[31] Dask Development Team. Dask: Library for dynamic task scheduling. 2016. URL:
https://dask.org.

[32] Dask Documentation. https://docs.dask.org/en/latest/. 2020.

[33] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on
large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[34] Bolin Ding et al. “Sample+ seek: Approximating aggregates with distribution
precision guarantee”. In: Proceedings of the 2016 International Conference on
Management of Data. ACM. 2016, pp. 679–694.

[35] Leonidas Fegaras. “Query unnesting in object-oriented databases”. In: Proceedings
of the 1998 ACM SIGMOD international conference on Management of data. 1998,
pp. 49–60.

https://clickhouse.tech/
https://docs.dask.org/en/latest/dataframe-api.html
https://docs.dask.org/en/latest/dataframe-api.html
https://dask.org
https://docs.dask.org/en/latest/

BIBLIOGRAPHY 125

[36] Philippe Flajolet et al. “Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm”. In: 2007.

[37] Edgar Gabriel et al. “Open MPI: Goals, concept, and design of a next generation
MPI implementation”. In: European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer. 2004, pp. 97–104.

[38] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. “SharedDB: killing
one thousand queries with one stone”. In: PVLDB 5.6 (2012), pp. 526–537.

[39] Roy Goldman and Jennifer Widom. “WSQ/DSQ: A practical approach for combined
querying of databases and the web”. In: ACM SIGMOD Record. Vol. 29. 2. ACM.
2000, pp. 285–296.

[40] Gene H Golub and Charles F Van Loan. Matrix computations. Vol. 3. JHU press,
2013.

[41] Google Colab. colab.research.google.com.

[42] Goetz Graefe. “Volcano/spl minus/an extensible and parallel query evaluation
system”. In: IEEE Transactions on Knowledge and Data Engineering 6.1 (1994),
pp. 120–135.

[43] Goetz Graefe, Ross Bunker, and Shaun Cooper. “Hash joins and hash teams in
Microsoft SQL Server”. In: VLDB. Vol. 98. Citeseer. 1998, pp. 86–97.

[44] Anurag Gupta et al. “Amazon Redshift and the Case for Simpler Data Warehouses”.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. Ed. by
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives. ACM, 2015, pp. 1917–
1923. DOI: 10.1145/2723372.2742795. URL: https://doi.org/10.
1145/2723372.2742795.

[45] Stefan Hagedorn, Steffen Kläbe, and Kai-Uwe Sattler. “Putting Pandas in a Box”.
In: The Conference on Innovative Data Systems Research (CIDR) ().

[46] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. “QPipe:
a simultaneously pipelined relational query engine”. In: Proceedings of the 2005
ACM SIGMOD international conference on Management of data. ACM. 2005,
pp. 383–394.

[47] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. “Online aggregation”. In:
Acm Sigmod Record. Vol. 26. 2. ACM. 1997, pp. 171–182.

[48] Joseph M Hellerstein, Michael Stonebraker, James Hamilton, et al. “Architecture
of a database system”. In: Foundations and Trends® in Databases 1.2 (2007),
pp. 141–259.

colab.research.google.com
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/2723372.2742795

BIBLIOGRAPHY 126

[49] Tony Hey, Stewart Tansley, Kristin M Tolle, et al. The fourth paradigm: data-
intensive scientific discovery. Vol. 1. Microsoft research Redmond, WA, 2009.

[50] Richard D Hipp. SQLite. Version 3.31.1. 2020. URL: https://www.sqlite.
org/index.html.

[51] Dylan Hutchison, Bill Howe, and Dan Suciu. “Lara: A key-value algebra underlying
arrays and relations”. In: arXiv preprint arXiv:1604.03607 (2016).

[52] Dylan Hutchison, Bill Howe, and Dan Suciu. “LaraDB: A minimalist kernel for lin-
ear and relational algebra computation”. In: Proceedings of the 4th ACM SIGMOD
Workshop on Algorithms and Systems for MapReduce and Beyond. ACM. 2017,
p. 2.

[53] Ibis Documentation. 2021. URL: https://ibis-project.org/docs/
index.html.

[54] Ross Ihaka and Robert Gentleman. “R: a language for data analysis and graphics”.
In: Journal of computational and graphical statistics 5.3 (1996), pp. 299–314.

[55] Alekh Jindal et al. “Magpie: Python at Speed and Scale using Cloud Backends”. In:
The Conference on Innovative Data Systems Research (CIDR) ().

[56] Manas Joglekar et al. “Exploiting correlations for expensive predicate evaluation”.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data. ACM. 2015, pp. 1183–1198.

[57] Albert Kim et al. “Optimally leveraging density and locality for exploratory brows-
ing and sampling”. In: Proceedings of the Workshop on Human-In-the-Loop Data
Analytics. ACM. 2018, p. 7.

[58] Albert Kim et al. “Rapid sampling for visualizations with ordering guarantees”. In:
PVLDB 8.5 (2015), pp. 521–532.

[59] Steffen Kläbe and Stefan Hagedorn. “Applying Machine Learning Models to
Scalable DataFrames with Grizzly”. In: BTW 2021 (2021).

[60] Steffen Kläbe and Stefan Hagedorn. “When Bears get Machine Support: Applying
Machine Learning Models to Scalable DataFrames with Grizzly”. In: Datenbanksys-
teme für Business, Technologie und Web (BTW 2021) 13.–17. September 2021 in
Dresden, Deutschland (), p. 195.

[61] Thomas Kluyver et al. “Jupyter Notebooks-a publishing format for reproducible
computational workflows.” In: ELPUB. 2016, pp. 87–90.

[62] Donald Ervin Knuth. The art of computer programming. Vol. 3. Pearson Education,
1997.

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://ibis-project.org/docs/index.html
https://ibis-project.org/docs/index.html

BIBLIOGRAPHY 127

[63] Koalas: pandas API on Apache Spark. https://koalas.readthedocs.
io/en/latest/. Date accessed: 2019-12-27. 2019.

[64] Laks VS Lakshmanan, Fereidoon Sadri, and Iyer N Subramanian. “SchemaSQL-
a language for interoperability in relational multi-database systems”. In: VLDB.
Vol. 96. Citeseer. 1996, pp. 239–250.

[65] Willis Lang et al. “Partial results in database systems”. In: Proceedings of the 2014
ACM SIGMOD international conference on Management of data. ACM. 2014,
pp. 1275–1286.

[66] Stephen Macke et al. “Adaptive sampling for rapidly matching histograms”. In:
PVLDB 11.10 (2018), pp. 1262–1275.

[67] Stephen Macke et al. “Fine-Grained Lineage for Safer Notebook Interactions”. In:
Proceedings of the VLDB Endowment (2021).

[68] Manual: JOOQ v3.12. https://www.jooq.org/doc/3.12/manual-
single-page/. Date accessed: 2019-12-27.

[69] Wes McKinney et al. “Data structures for statistical computing in python”. In:
Proceedings of the 9th Python in Science Conference. Vol. 445. Austin, TX. 2010,
pp. 51–56.

[70] Meet the man behind the most important tool in data science. https://qz.
com/1126615/the-story-of-the-most-important-tool-in-
data-science/. 2017.

[71] Sergey Melnik et al. “Dremel: A Decade of Interactive SQL Analysis at Web
Scale”. In: Proc. VLDB Endow. 13.12 (2020), pp. 3461–3472. DOI: 10.14778/
3415478.3415568. URL: http://www.vldb.org/pvldb/vol13/
p3461-melnik.pdf.

[72] Sergey Melnik et al. “Dremel: interactive analysis of web-scale datasets”. In: Pro-
ceedings of the VLDB Endowment 3.1-2 (2010), pp. 330–339.

[73] Modin Documentation. https : / / modin . readthedocs . io / en /
latest/. 2020.

[74] Todd Mostak. “An overview of MapD (massively parallel database)”. In: White
paper. Massachusetts Institute of Technology (2013).

[75] Barzan Mozafari and Ning Niu. “A Handbook for Building an Approximate Query
Engine.” In: IEEE Data Eng. Bull. 38.3 (2015), pp. 3–29.

[76] Gonzalo Navarro and Kunihiko Sadakane. “Fully functional static and dynamic
succinct trees”. In: ACM Transactions on Algorithms (TALG) 10.3 (2014), pp. 1–39.

https://koalas.readthedocs.io/en/latest/
https://koalas.readthedocs.io/en/latest/
https://www.jooq.org/doc/3.12/manual-single-page/
https://www.jooq.org/doc/3.12/manual-single-page/
https://qz.com/1126615/the-story-of-the-most-important-tool-in-data-science/
https://qz.com/1126615/the-story-of-the-most-important-tool-in-data-science/
https://qz.com/1126615/the-story-of-the-most-important-tool-in-data-science/
https://doi.org/10.14778/3415478.3415568
https://doi.org/10.14778/3415478.3415568
http://www.vldb.org/pvldb/vol13/p3461-melnik.pdf
http://www.vldb.org/pvldb/vol13/p3461-melnik.pdf
https://modin.readthedocs.io/en/latest/
https://modin.readthedocs.io/en/latest/

BIBLIOGRAPHY 128

[77] New York (N.Y.). Taxi And Limousine Commission. New York City Taxi Trip
Data, 2009-2018. eng. 2019. DOI: 10.3886/icpsr37254.v1. URL: https:
//www.icpsr.umich.edu/icpsrweb/ICPSR/studies/37254/
versions/V1.

[78] Christopher Olston et al. “Pig latin: a not-so-foreign language for data process-
ing”. In: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. ACM. 2008, pp. 1099–1110.

[79] Ricardo Otazo, Emmanuel Candes, and Daniel K Sodickson. “Low-rank plus
sparse matrix decomposition for accelerated dynamic MRI with separation of
background and dynamic components”. In: Magnetic resonance in medicine 73.3
(2015), pp. 1125–1136.

[80] M Tamer Özsu and Patrick Valduriez. “Distributed and parallel database systems”.
In: ACM Computing Surveys (CSUR) 28.1 (1996), pp. 125–128.

[81] Pandas API reference. https://pandas.pydata.org/pandas-docs/
stable/reference/index.html. Date accessed: 2019-12-27. 2019.

[82] Aditya Ganesh Parameswaran et al. “Deco: declarative crowdsourcing”. In: Pro-
ceedings of the 21st ACM international conference on Information and knowledge
management. ACM. 2012, pp. 1203–1212.

[83] Yongjoo Park, Michael Cafarella, and Barzan Mozafari. “Visualization-aware sam-
pling for very large databases”. In: 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). IEEE. 2016, pp. 755–766.

[84] Yongjoo Park et al. “VerdictDB: universalizing approximate query processing”. In:
Proceedings of the 2018 International Conference on Management of Data. ACM.
2018, pp. 1461–1476.

[85] Fernando Perez and Brian E Granger. “Project Jupyter: Computational narratives as
the engine of collaborative data science”. In: Retrieved September 11.207 (2015),
p. 108.

[86] Fernando Pérez and Brian E Granger. “IPython: a system for interactive scientific
computing”. In: Computing in Science & Engineering 9.3 (2007).

[87] Devin Petersohn et al. “Towards Scalable Dataframe Systems”. In: arXiv preprint
arXiv:2001.00888 (2020).

[88] PySpark 2.4.4 Documentation: pyspark.sql module. http://spark.apache.
org/docs/latest/api/python/pyspark.sql.html. Date accessed:
2019-12-27.

https://doi.org/10.3886/icpsr37254.v1
https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/37254/versions/V1
https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/37254/versions/V1
https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/37254/versions/V1
https://pandas.pydata.org/pandas-docs/stable/reference/index.html
https://pandas.pydata.org/pandas-docs/stable/reference/index.html
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html

BIBLIOGRAPHY 129

[89] Python’s Explosion Blamed on Pandas, The Register UK. https : / / www .
theregister.co.uk/2017/09/14/python_explosion_blamed_
on_pandas/. Date accessed: 2019-12-27. 2017.

[90] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna, Austria, 2017. URL: https://www.R-
project.org/.

[91] Mark Raasveldt and Hannes Mühleisen. “DuckDB: an Embeddable Analytical
Database”. In: Proceedings of the 2019 International Conference on Management
of Data. 2019, pp. 1981–1984.

[92] Vijayshankar Raman and Joseph M Hellerstein. “Partial results for online query
processing”. In: Proceedings of the 2002 ACM SIGMOD international conference
on Management of data. ACM. 2002, pp. 275–286.

[93] Vijayshankar Raman and Joseph M Hellerstein. “Potter ’ s Wheel : An Interactive
Data Cleaning System”. In: Proceedings of the 27th VLDB Conference (2001).

[94] Vijayshankar Raman, Bhaskaran Raman, and Joseph M Hellerstein. “Online dy-
namic reordering for interactive data processing”. In: VLDB. Vol. 99. 1999, pp. 709–
720.

[95] Reference Guide: QueryDSL v4.1.3. http://www.querydsl.com/static/
querydsl/4.1.3/reference/html_single/. Date accessed: 2019-12-
27.

[96] Matthew Rocklin. “Dask: Parallel computation with blocked algorithms and task
scheduling”. In: Proceedings of the 14th Python in Science Conference. 130-136.
Citeseer. 2015.

[97] Lawrence A Rowe and Michael R Stonebraker. “The POSTGRES data model”. In:
Readings in object-oriented database systems (1990), pp. 461–473.

[98] Prasan Roy et al. “Efficient and extensible algorithms for multi query optimization”.
In: ACM SIGMOD Record. Vol. 29. 2. ACM. 2000, pp. 249–260.

[99] Ruby on Rails. https://rubyonrails.org/. Date accessed: 2019-12-27.

[100] Adam Rule, Aurélien Tabard, and James D. Hollan. “Exploration and Explanation
in Computational Notebooks”. In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. CHI ’18. Montreal QC, Canada: ACM, 2018,
32:1–32:12. ISBN: 978-1-4503-5620-6. DOI: 10.1145/3173574.3173606.
URL: http://doi.acm.org/10.1145/3173574.3173606.

[101] Florin Rusu and Yu Cheng. “A survey on array storage, query languages, and
systems”. In: arXiv preprint arXiv:1302.0103 (2013).

https://www.theregister.co.uk/2017/09/14/python_explosion_blamed_on_pandas/
https://www.theregister.co.uk/2017/09/14/python_explosion_blamed_on_pandas/
https://www.theregister.co.uk/2017/09/14/python_explosion_blamed_on_pandas/
https://www.R-project.org/
https://www.R-project.org/
http://www.querydsl.com/static/querydsl/4.1.3/reference/html_single/
http://www.querydsl.com/static/querydsl/4.1.3/reference/html_single/
https://rubyonrails.org/
https://doi.org/10.1145/3173574.3173606
http://doi.acm.org/10.1145/3173574.3173606

BIBLIOGRAPHY 130

[102] Scaling to Large Datasets, Pandas Documentation. https : / / pandas .
pydata.org/pandas-docs/stable/user_guide/scale.html.
Date accessed: 2019-12-27. 2019.

[103] P Griffiths Selinger et al. In: Proceedings of the 1979 ACM SIGMOD international
conference on Management of data. ACM. 1979, pp. 23–34.

[104] Timos K Sellis. “Multiple-query optimization”. In: ACM Transactions on Database
Systems (TODS) 13.1 (1988), pp. 23–52.

[105] Jayavel Shanmugasundaram et al. “Querying XML views of relational data”. In:
VLDB. Vol. 1. 2001, pp. 261–270.

[106] Manish Singh, Arnab Nandi, and HV Jagadish. “Skimmer: rapid scrolling of
relational query results”. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. ACM. 2012, pp. 181–192.

[107] Phanwadee Sinthong and Michael J Carey. “AFrame: Extending DataFrames
for Large-Scale Modern Data Analysis (Extended Version)”. In: arXiv preprint
arXiv:1908.06719 (2019).

[108] Panagiotis Sioulas et al. “Accelerating Complex Analytics using Speculation”. In:
The Conference on Innovative Data Systems Research (CIDR) ().

[109] Spark DataFrame API Reference. https://spark.apache.org/docs/1.
6.3/api/java/org/apache/spark/sql/DataFrame.html. 2021.

[110] Stack Overflow. 2021. URL: http://stackoverflow.com/.

[111] Michael Stonebraker et al. “SciDB: A database management system for applications
with complex analytics”. In: Computing in Science & Engineering 15.3 (2013),
pp. 54–62.

[112] Mike Stonebraker et al. “C-store: a column-oriented DBMS”. In: Making Databases
Work: the Pragmatic Wisdom of Michael Stonebraker. 2018, pp. 491–518.

[113] R Core Team et al. “R: A language and environment for statistical computing”. In:
(2013).

[114] Ten Things I Hate About Pandas. https://wesmckinney.com/blog/
apache-arrow-pandas-internals/. Date accessed: 2019-12-27. 2017.

[115] Teradata | Data Analytics for a Hybrid Multi-Cloud World. 2021. URL: https:
//www.teradata.com/.

[116] Ashish Thusoo et al. “Hive-a petabyte scale data warehouse using hadoop”. In:
Data Engineering (ICDE), 2010 IEEE 26th International Conference on. IEEE.
2010, pp. 996–1005.

https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html
https://spark.apache.org/docs/1.6.3/api/java/org/apache/spark/sql/DataFrame.html
https://spark.apache.org/docs/1.6.3/api/java/org/apache/spark/sql/DataFrame.html
http://stackoverflow.com/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://www.teradata.com/
https://www.teradata.com/

BIBLIOGRAPHY 131

[117] Tidyverse: R packages for data science. https://www.tidyverse.org/.
Date accessed: 2019-12-27.

[118] John W Tukey. Exploratory data analysis. Vol. 2. Reading, Mass., 1977.

[119] Vaex: Out-of-Core DataFrames for Python. https://github.com/vaexio/
vaex. Date accessed: 2019-12-27. 2019.

[120] Stratis D Viglas and Jeffrey F Naughton. “Rate-based query optimization for stream-
ing information sources”. In: Proceedings of the 2002 ACM SIGMOD international
conference on Management of data. ACM. 2002, pp. 37–48.

[121] Stratis D Viglas, Jeffrey F Naughton, and Josef Burger. “Maximizing the output
rate of multi-way join queries over streaming information sources”. In: Proceedings
of the 29th international conference on Very large data bases-Volume 29. VLDB
Endowment. 2003, pp. 285–296.

[122] Mehul Nalin Vora. “Hadoop-HBase for large-scale data”. In: Proceedings of 2011
International Conference on Computer Science and Network Technology. Vol. 1.
IEEE. 2011, pp. 601–605.

[123] Song Wang, Elke A Rundensteiner, and Murali Mani. “Optimization of nested
xquery expressions with orderby clauses”. In: Data & Knowledge Engineering 60.2
(2007), pp. 303–325.

[124] Why is Python Growing So Quickly? Stack Overflow Blog. https : / /
stackoverflow.blog/2017/09/14/python-growing-quickly/.
Date accessed: 2019-12-27. 2017.

[125] Hadley Wickham. “Tidy data”. In: The Journal of Statistical Software 59 (10 2014).
URL: http://www.jstatsoft.org/v59/i10/.

[126] Catharine M Wyss and Edward L Robertson. “A formal characterization of PIV-
OT/UNPIVOT”. In: Proceedings of the 14th ACM international conference on
Information and knowledge management. 2005, pp. 602–608.

[127] Doris Xin et al. “Enhancing the Interactivity of Dataframe Queries by Leveraging
Think Time”. In: Bulletin of the Technical Committee on Data Engineering. Vol. 4.
IEEE. 2021.

[128] Doris Xin et al. “Helix: Holistic optimization for accelerating iterative machine
learning”. In: PVLDB 12.4 (2018), pp. 446–460.

[129] Cong Yan and Yeye He. “Auto-Suggest: Learning-to-Recommend Data Preparation
Steps Using Data Science Notebooks”. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2020, pp. 1539–1554.

https://www.tidyverse.org/
https://github.com/vaexio/vaex
https://github.com/vaexio/vaex
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
http://www.jstatsoft.org/v59/i10/

BIBLIOGRAPHY 132

[130] Kai Zeng et al. “The analytical bootstrap: a new method for fast error estimation
in approximate query processing”. In: Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM. 2014, pp. 277–288.

[131] Yi Zhang, Herodotos Herodotou, and Jun Yang. “RIOT: I/O-efficient numerical
computing without SQL”. In: arXiv preprint arXiv:0909.1766 (2009).

[132] Tianyi Zhou and Dacheng Tao. “Godec: Randomized low-rank & sparse matrix
decomposition in noisy case”. In: Proceedings of the 28th International Conference
on Machine Learning, ICML 2011. 2011.

	Contents
	List of Figures
	List of Tables
	Introduction
	The Requirements of a Dataframe System
	Chapter Overview
	The Data Science Lifecycle
	Motivating Example
	Intermediate Result Inspection & Think Time
	Prefix and Suffix Inspection
	Incremental Query Construction and Composability
	Debugging & Building Queries

	Dataframe Theoretical Foundation
	Introduction
	History of the Dataframe
	Dataframe Data Model
	Dataframe Algebra
	Data Model Challenges
	Related work
	Discussion

	A General Dataframe Architecture and Design
	Introduction
	Dataframe data model
	Dataframe Algebra Layer Design
	Metadata Management
	Discussion

	Modin: The Reference Dataframe Implementation
	Introduction
	Pluggable Interaction Modalities
	Modin Core
	Modin Operators and Optimization
	Metadata Management
	Partitioning
	Execution and Scheduling
	Related Work
	Discussion

	Evaluation
	Introduction
	Functional Evaluation
	Microbenchmark Performance Evaluation
	Scaling Performance against baselines
	Discussion

	Architecture Case Study: Opportunistic Evaluation
	Introduction
	Background and Motivation
	Assessment of Opportunities with Notebook Execution Traces
	System Architecture
	Optimization Framework
	Case Study
	Related Work
	Conclusion & Future Work

	Open source project community building
	My History Building a Successful Open Source Project
	Lessons and Advice
	Concluding thoughts

	Conclusion
	Summary of Findings
	Future Work
	Final Remarks

	Bibliography

