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ABSTRACT

End-to-end simulations play a key role in the analysis of any high-sensitivity CMB experiment, providing high-fidelity systematic
error propagation capabilities unmatched by any other means. In this paper, we address an important issue regarding such simula-
tions, namely how to define the inputs in terms of sky model and instrument parameters. These may either be taken as a constrained
realization derived from the data, or as a random realization independent from the data. We refer to these as Bayesian and fre-
quentist simulations, respectively. We show that the two options lead to significantly different correlation structures, as frequentist
simulations, contrary to Bayesian simulations, effectively include cosmic variance, but exclude realization-specific correlations from
non-linear degeneracies. Consequently, they quantify fundamentally different types of uncertainties, and we argue that they therefore
also have different and complementary scientific uses, even if this dichotomy is not absolute; Bayesian simulations are in general
more convenient for parameter estimation studies, while frequentist simulations are in general more convenient for model testing.
Before BeyondPlanck, most pipelines have used a mix of constrained and random inputs, and used the same hybrid simulations for
all applications, even though the statistical justification for this is not always evident. BeyondPlanck represents the first end-to-end
CMB simulation framework that is able to generate both types of simulations, and these new capabilities have brought this topic to
the forefront. The Bayesian BeyondPlanck simulations and their uses are described extensively in a suite of companion papers. In this
paper we consider one important applications of the corresponding frequentist simulations, namely code validation. That is, we gener-
ate a set of 1-year LFI 30 GHz frequentist simulations with known inputs, and use these to validate the core low-level BeyondPlanck
algorithms; gain estimation, correlated noise estimation, and mapmaking.

Key words. Cosmology: observations, cosmic microwave background, diffuse radiation
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1. Introduction

High-fidelity end-to-end simulations play a critical role in the
analysis of any modern CMB experiment for at least three im-
portant reasons. Firstly, during the design phase of the experi-
ment, simulations are used to optimize and forecast the perfor-
mance of a given experimental design, and ensure that the future
experiment will achieve its scientific goals (e.g., LiteBIRD Col-
laboration et al. 2022). Secondly, simulations are essential for
validation purposes, as they may be used to test data-processing
techniques as applied to a realistic instrument model. Thirdly, re-
alistic end-to-end simulations play an important role in bias and
error estimation for traditional CMB analysis pipelines.

Simulations played a particularly important role in the data
reduction of Planck, and massive efforts were invested in im-
plementing efficient and re-usable analysis codes that were gen-
erally applicable to a wide range of experiments. This work
started with the LevelS software package (Reinecke et al. 2015)
and culminated with the Time Ordered Astrophysics Scalable
Tools1 (TOAST), which was explicitly designed to operate in
a massively parallel high-performance computing environment.
TOAST was used to produce the final generations of the Planck
Full Focal Plane (FFP) simulations (Planck Collaboration XII
2016), which served as the main error propagation mechanism
in the Planck 2015 and 2018 data releases (Planck Collaboration
I 2016, 2020).

For Planck, generating end-to-end simulations represented
by far the dominant computational cost of the entire experiment,
accounting for 25 million CPU in the 2015 data release alone. In
addition, the production phase required massive amounts of hu-
man effort, in terms of preparing the inputs, executing the runs,
and validating the outputs. It is of great interest for any future
experiment to optimize and streamline this simulation process,
and reuse both validated software and human work whenever
possible.

In this respect, the BeyondPlanck end-to-end Bayesian anal-
ysis framework (BeyondPlanck 2022) offers a novel approach
to generating CMB simulations. While the primary goal of this
framework is to draw samples from a full joint posterior distri-
bution for analysis purposes, it is useful to note that the founda-
tion of this approach is simply a general and explicit parametric
model for the full time-ordered data (TOD). When exploring the
full joint posterior distribution, this model is compared with the
observed data in TOD space. The analysis phase is as such nu-
merically equivalent to producing a large number of TOD sim-
ulations, and comparing each of these with the actual observed
data. In this framework, each step of the analysis and simulation
pipelines are thus fully equivalent, and the primary difference is
simply whether the input model parameters are assumed to be
constrained by the data or not.

This latter observation is in fact a key point regarding end-
to-end simulations for CMB experiments in general, and a main
goal of the current paper is to clarify the importance of choosing

1 https://github.com/hpc4cmb/toast

input parameters for a given simulation appropriately. Specifi-
cally, we argue in this paper that two fundamentally different
choices are available; one can either choose parameters that are
constrained directly by the observed data (as is traditionally done
for the CMB Solar dipole or astrophysical foregrounds), or one
can choose parameters that are independent from the observed
data (as is traditionally done for CMB fluctuations or instrumen-
tal noise). We further argue that this choice will have direct con-
sequences for what scientific questions the resulting simulations
are optimized to address.

It is important to note that these ideas were discussed
broadly, but not systematically, within the Planck community
before building the FFP simulations. For instance, one proposal
was to base the large-scale CMB temperature fluctuations at
` ≤ 70 from constrained WMAP realizations (Bennett et al.
2013), and thereby integrate knowledge about the real sky into
the simulations. Another proposal was to use the actually ob-
served LFI gain measurements to generate the simulations. A
third and long-standing discussion revolved around which val-
ues to adopt for the CMB Solar dipole.

The BeyondPlanck framework offers a novel systematic
view on these questions, as our Bayesian approach provides for
the first time statistically well-defined constrained realizations
for all parameters in the sky model, and not only a small sub-
set. Furthermore, when comparing the correlation structures that
arise from the posterior samples with those derived from tra-
ditional simulations, obvious and important differences appear,
both in terms of frequency maps (Basyrov et al. 2022) and CMB
maps (Colombo et al. 2022).

The first main goal of the current paper is to explain these
differences intuitively, and in that process we introduce the con-
cepts of “Bayesian simulations” and “frequentist simulations”.
Bayesian simulations are identical to the posterior samples de-
scribed by BeyondPlanck (2022), and represent simulations that
are constrained by the observed data. In contrast, frequentist sim-
ulations are unconstrained by the data.

The second main goal of this paper is simply to demonstrate
in practice how the BeyondPlanck machinery may be used to
generate frequentist simulations, on a similar footing as TOAST,
and we will use these simulations for one important application,
namely code validation; as discussed by Galloway et al. (2022a)
and Gerakakis et al. (2022), the Commander code that forms the
computational basis of the BeyondPlanck pipeline is explicitly
designed to be re-used for a wide range of experiments. It is
therefore critically important that this implementation is thor-
oughly validated with respect to statistical bias and uncertainties,
and we do that by analyzing well-controlled simulations in this
paper.

The rest of the paper is organized as follows. We first pro-
vide a brief overview of the BeyondPlanck framework and
data model in Sect. 2. In Sect. 3, we introduce the concept of
Bayesian and frequentist simulations, and we discuss their dif-
ference. In Sect. 4 we describe the input parameters and simu-
lation configuration used in this paper, before using these simu-
lations to validate the BeyondPlanck implementation in Sect. 5.
We conclude in Sect. 6.

2. BeyondPlanck data model and Gibbs sampler

As described in BeyondPlanck (2022) and its companion papers,
the single most fundamental component of the BeyondPlanck
framework is an explicit parametric model that is to be fitted to
raw TOD that includes instrumental, astrophysical, and cosmo-
logical parameters. For the current analysis, this model takes the
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following form,

d j,t = g j,tPtp, j

Bsymm
pp′ , j

∑
c

Mc j(βp′ ,∆
j
bp)ac

p′ + B4π
j,t sorb

j + Basymm
j,t sfsl

t

 +

+a1Hz s1Hz
j + ncorr

j,t + nw
j,t. (1)

sample, p denotes a single pixel on the sky, and c represents one
single astrophysical signal component. Furthermore, d j,t denotes
the measured data; g j,t denotes the instrumental gain; Ptp, j is a
pointing matrix; Bpp′, j denotes beam convolution with either the
(symmetric) main beam, the (asymmetric) far sidelobes, or the
full 4π beam response; Mc j(βp,∆bp) denotes the so-called mix-
ing matrix, which describes the amplitude of component c as
seen by radiometer j relative to some reference frequency when
assuming some set of bandpass correction parameters ∆bp; ac

p is
the amplitude of component c in pixel p; sorb

j,t is the orbital CMB
dipole signal, including relativistic quadrupole corrections; sfsl

j,t

denotes the contribution from far sidelobes; s1Hz
j,t denotes the

contribution from electronic 1 Hz spikes; ncorr
j,t denotes correlated

instrumental noise; and nw
j,t is uncorrelated (white) instrumental

noise. The sky model, denoted by the sum over components, c,
in the above expression may be written out as an explicit sum
over CMB, synchrotron, free-free, AME, thermal dust, and point
source emission, as described by Andersen et al. (2022); Sval-
heim et al. (2022b).

On the instrumental side, the correlated noise is associated
with a covariance matrix, Ncorr =

〈
ncorr(ncorr)T

〉
, which may be

approximated as piecewise stationary, and with a Fourier space
power spectral density (PSD), N f f ′ = P( f )δ f f ′ , that for Beyond-
Planck consists of a sum of a classic 1/ f term and a log-normal
term (Ihle et al. 2022),

P( f ) = σ2
0

[
1 +

(
f

fknee

)α]
+ Ap exp

−1
2

(
log10 f − log10 fp

σdex

)2 . (2)

We define ξn = {σ0, α, fknee, Ap} as a composite parameter that is
internally sampled iteratively through an individual Gibbs step,
as described by Ihle et al. (2022); the peak location and width
parameters of the log-normal term, fp and σdex, are currently
fixed at representative values.

Denoting the set of all free parameters in Eqs. (1)–(2) by ω,
we can simplify Eq. (1) symbolically to

d j,t = stot
j,t (ω) + nw

j,t. (3)

The BeyondPlanck approach to CMB analysis simply amounts
to mapping out the posterior distribution as given by Bayes’ the-
orem,

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω), (4)

where P(d | ω) ≡ L(ω) is called the likelihood, P(ω) is some set
of priors, and P(d), the so-called evidence, is effectively a nor-
malization constant for purposes of evaluating ω. The likelihood
is easily defined, and given by Eq. (3) under the assumption that
nw

j is Gaussian distributed,

−2 lnL(ω) =
(
d − stot(ω)

)t
N−1

wn

(
d − stot(ω)

)
. (5)

The prior is less well-defined, and we adopt in practice a com-
bination of informative and algorithmic priors in the Beyond-
Planck analysis (see BeyondPlanck (2022) for an overview).

To explore this distribution by Markov Chain Monte Carlo,
we use the following Gibbs sampling chain (BeyondPlanck
2022),

g ← P(g | d, ξn, a1Hz,∆bp, a, β,C`) (6)

ncorr ← P(ncorr | d, g, ξn, a1Hz,∆bp, a, β,C`) (7)

ξn ← P(ξn | d, g, ncorr, a1Hz,∆bp, a, β,C`) (8)

a1Hz ← P(a1Hz | d, g, ncorr, ξn, ∆bp, a, β,C`) (9)

∆bp ← P(∆bp | d, g, ncorr, ξn, a1Hz, a, β,C`) (10)

β ← P(β | d, g, ncorr, ξn, a1Hz,∆bp, C`) (11)

a ← P(a | d, g, ncorr, ξn, a1Hz,∆bp, β,C`) (12)

C` ← P(C` | d, g, ncorr, ξn, a1Hz,∆bp, a, β ), (13)

where the symbol← denotes setting the variable on the left-hand
side equal to a sample from the distribution on the right-hand
side.

3. Bayesian versus frequentist simulations

End-to-end TOD simulations have become the de-facto industry
standard for producing robust error estimates for high-precision
experiments (e.g., Planck Collaboration XII 2016), and the data
model defined in Eqs. (1)–(2) represents a succinct simulation
recipe for producing such simulations: If ω is assumed to be per-
fectly known, then these equations can be evaluated in a forward
manner without the need for parameter estimation or inversion
algorithms, and the only stochastic terms are the correlated and
white noise, both of which can be easily generated by a com-
bination of standard random Gaussian number generators and
Fourier transforms.

However, in practice ω is of course not perfectly known,
and precisely how ω is specified has direct and strong impli-
cations regarding what the resulting simulations can inform the
user about; for an example of this within the context of Planck
LFI, see Basyrov et al. (2022). In short, the key discriminator
is whether ω is defined using real observed data (and in prac-
tice drawn from the posterior distribution, P(ω | d)) or whether
it is drawn from a data-independent hyper-distribution, for in-
stance informed by theoretical models and/or ground-based lab-
oratory measurements. We will refer to these two approaches as
“Bayesian” and “frequentist” respectively, indicating whether or
not they condition on the true data in question.

We note that both Bayesian and frequentist simulations
specifically refer to time-ordered data in the current paper, not
pixelized maps or higher-level products. That is, we distinguish
between simulation pipelines, which transform ω into timelines,
and analysis pipelines, which transform timelines into higher-
ordered products, such as maps and power spectra.

3.1. Bayesian versus frequentist statistics

Before comparing the two simulation types through a few
worked examples, it is useful to recall the fundamental differ-
ence between Bayesian and frequentist statistics, which may be
summarized as follows: In frequentist statistics, the model M
and its parameters ω are considered to be fixed and known,
while the data d are considered to be the main uncertain quan-
tity. In Bayesian statistics, on the other hand, d is assumed to
be perfectly known, and essentially defined by a list of numbers
recorded by a measuring device, while ω is assumed to be the
main unknown quantity.
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Fig. 1: Comparison of ten frequentist (red) and ten Bayesian (black) simulations in time-domain. Each line represents one inde-
pendent realization of the respective type. The top panel shows sky model (i.e., CMB) simulations and the bottom panel shows
correlated noise simulations.

This difference has important consequences for how each
framework typically approaches statistical inference, and which
questions they are most suited to answer. This is perhaps most
easily illustrated through their most typical mode of operations.
First, the classical frequentist approach to statistical inference
is to construct an ensemble of simulated data sets, di, each
with parameters drawn independently from M(ω). The next
step is to define some statistic, γ(di) : RN → R, that iso-
lates and highlights the important piece of information that the
user is interested in; widely used CMB examples include χ2

statistics, angular power spectrum statistics, or non-Gaussianity
statistics. Finally, one computes γ both for the simulations
and the actual data, and determines the relative frequency for
which γ(dreal) < γ(di), which is often called the p-value or
“probability-to-exceed” (PTE). Values between, say, 0.025 and
0.975 are taken to suggest that the data are consistent with the
model, while more extreme values indicate a discrepancy.

Given this prescription, it is clear that the frequentist ap-
proach is particularly suited for model testing applications; it
intrinsically and directly addresses the question of whether the
data are consistent with the model. As such it has been widely
used in the CMB field for instance for studies of non-Gaussianity
and isotropy. In this case, the null-hypothesis is easy to spec-
ify, namely that the universe is isotropic and homogeneous, and
filled with Gaussian random fluctuations drawn from a ΛCDM
universe with given parameters. Establishing some statistic that
shows that the observed data are inconsistent with this hypoth-
esis would constitute evidence of new physics, and is as such a
high-priority scientific target.

In contrast, Bayesian statistics takes a fundamentally differ-
ent approach to statistical inference. In this case, we consider ω
to be a stochastic and unknown quantity, and want to understand
how the observed data constrains ω. The most succinct summary
of this is the posterior probability distribution itself, P(ω | d),
and the starting point for this framework is therefore Bayes’ the-
orem as given in Eq. (4). The majority of applications of modern
Bayesian statistics thus simply amounts to mapping out P(ω | d)
as a function of ω by any means necessary.

At the same time, it is important to note that the likelihood
L(ω) = P(d | ω) on the right-hand side of Eq. (4) is a fully
classical frequentist statistic, in which ω is assumed to be per-
fectly known, and the data are uncertain. Still, it is important to
note that the free parameter in L(ω) is indeed ω, not d, and L
itself is really just a frequentist statistic that measures the over-
all goodness-of-fit between the data and the model. This statis-
tic may then be used to estimate ω within a strictly frequentist
framework; one popular example of this within the CMB field
are so-called profile likelihoods.

Likewise, the Bayesian approach is also able to address the
model selection problem, and this is most typically done using
the evidence factor, P(d), in Eq. 4. The importance of this fac-
tor becomes obvious when explicitly acknowledging that all in-
volved probability distributions in Eq. (4) actually depend on the
overall modelM, and not only the individual parameter values,

P(ω | d,M) =
P(d | ω,M)P(ω | M)

P(d | M)
. (14)

Mathematically, P(d | M) is simply given by the average likeli-
hood integrated over all allowed parameter values, and classical
Bayesian model selection between modelsM1 andM2 proceeds
simply by evaluating P(d | M1)/P(d | M2); the model with the
higher evidence is preferred.

In summary, the foundational assumptions underlying fre-
quentist and Bayesian methods are different and complementary,
and they fundamentally address different questions. Frequentist
statistics are ideally suited to address model testing problems
(e.g., “is the observed CMB sky Gaussian and isotropic?”), while
Bayesian statistics are ideally suited to address parameter esti-
mation problems (e.g., “what are the best-fit ΛCDM parame-
ters?”). At the same time, this dichotomy is by no means abso-
lute, and either framework is fully capable of addressing both
types of questions if they are carefully posed.
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QQ100FFP 30 QQ100/5PR4 30 QQ100BP 30

UQ100FFP 30 UQ100/5PR4 30 UQ100BP 30

QQ100FFP 44 QQ100DR4 44 QQ100BP 44

UQ100FFP 44 UQ100PR4 44 UQ100BP 44

QQ100FFP 70 QQ100PR4 70 QQ100BP 70

UQ100FFP 70 UQ100PR4 70 UQ100BP 70

−0.05 0.05µK2

Fig. 2: Single column of the low-resolution 30 (top section), 44 (middle section), and 70 GHz (bottom section) frequency channel
covariance matrix, as estimated from 300 LFI DPC FFP10 frequentist simulations (left column); from 300 PR4 frequentist simula-
tions (middle column); and from 3200 BeyondPlanck Bayesian simulations (right column). The selected column corresponds to the
Stokes Q pixel number 100 marked in gray, which is located in the top right quadrant. All covariance matrices are constructed at
Nside = 8. Note that the Planck PR4 30 GHz covariance slice has been divided by a factor of 5, and it is therefore even stronger than
the color scale naively implies.
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3.2. Constrained versus random input parameters in CMB
simulations

We now return to the issue raised in the introduction to this
section, namely how to properly choose ω for CMB inference
based on end-to-end simulations. As discussed by Basyrov et al.
(2022), essentially all CMB analysis pipelines prior to Beyond-
Planck have adopted a mixture of data-constrained and data-
independent parameters for this purpose. Key examples of the
former are the CMB Solar dipole and Galactic foregrounds, both
of which are strongly informed by real measurements. Corre-
spondingly, classical examples of the latter are CMB fluctua-
tions, which are typically drawn as Gaussian realizations from a
ΛCDM power spectrum, and instrumental noise, which is often
based on laboratory measurements. In our notation, these simu-
lations qualify thus neither as pure Bayesian nor pure frequentist,
but rather as a mixture of the two.

In contrast, each sample ofω produced by the BeyondPlanck
Gibbs chain summarized in Eqs. (6)–(13) represents one possible
simulated realization in which all sub-parameters in ω are de-
termined exclusively by the real posterior distribution; not only
the CMB dipole and Galactic model, but also those parameters
that are traditionally chosen from external sources in classical
pipelines, such as the CMB anisotropies and the specific noise
realization.

The difference between these two types of simulation inputs
is illustrated in Fig. 1 which compares ten independent frequen-
tist time-domain realizations (red curves) with ten independent
Bayesian realizations (black curves). The top and bottom pan-
els show the correlated noise ncorr and the sky model ssky, re-
spectively, both plotted as a function of time. Starting with the
frequentist simulations, we see that these are entirely uncor-
related between realizations, and scatter randomly with some
model-specific mean and variance. In particular, the frequen-
tist simulations include so-called cosmic variance, i.e., indepen-
dent realizations have different CMB and noise amplitudes and
phases, even if they are drawn from the same underlying stochas-
tic model. In contrast, Bayesian simulations do not include cos-
mic variance, but rather focus exclusively on structures in the
real data. For the sky signal component shown in the top panel
of Fig. 1, this is seen in terms of two different aspects. First,
the structure of all ten realizations follow very closely the same
overall structure, and this is defined by the specific CMB pat-
tern of the real sky. However, they also explicitly account for the
uncertainty in the sky value at each pixel, and this is seen by
the varying width of the black band; in the middle of the plot,
the width is small, and this implies that the sky has been well
measured here (due to deep scanning), while along the edges of
the plot the width is larger, and this implies that the sky as been
less well measured. The variation between Bayesian simulations
thus directly quantify the uncertainty of the true data. Intuitively
speaking, this point may be summarized as follows: Uncertain-
ties measured by frequentist simulations quantify the expected
variations as observed with a random instrument in a random
universe, while Bayesian simulations quantify the expected vari-
ations of the real instrument in the real universe.

These intuitive differences translate directly into both quali-
tatively and quantitatively different ensemble properties for the
resulting simulations, and correspondingly also into different re-
sulting error estimates. As a real-world illustration of this, Fig. 2
shows slices through the empirical low-resolution polarization
covariance matrix computed for each of the three Planck LFI fre-
quency channels using three different generations of LFI simula-
tions, namely (from left to right columns) Planck 2018 (Planck

Collaboration II 2020), Planck PR4 (Planck Collaboration Int.
LVII 2020), and BeyondPlanck (BeyondPlanck 2022). Row sec-
tions show results for the 30, 44, and 70 GHz channels, respec-
tively, and within each section the two rows show the QQ and
UQ segments of the full matrix, sliced through Stokes Q pixel
number 100, marked in gray in the upper right quadrant. Each
covariance matrix is computed by first downgrading each simu-
lation to a HEALPix2 (Górski et al. 2005) resolution of Nside = 8,
and averaging the outer product over all available realizations;
see Basyrov et al. (2022); Colombo et al. (2022) for further de-
tails. Effectively, these matrices visually summarize the map-
space uncertainty estimates predicted by each simulation set.

Starting with the Planck 2018 simulations, the most strik-
ing observation is that these empirical matrices are very noisy
for all three frequency channels. This is partly a reflection of the
fact that only 300 simulations were actually constructed, and this
leads to a high Monte Carlo uncertainty. However, it is also a re-
flection of the fact that these simulations are largely frequentist
based, with both random CMB and noise properties. Further-
more, the gains that were assumed when generating these simu-
lations exhibited significantly less structure than the real obser-
vations. In sum, there are relatively little common structures be-
tween the various realizations, either from the astrophysical sky,
the instrumental noise, or the gain, and the corresponding covari-
ance structures are therefore weak. Visually speaking, perhaps
the most notable feature is a positive correlation from correlated
noise along the scanning direction that passes through the sliced
pixel seen in the upper right quadrant, but these are significantly
obscured by Monte Carlo uncertainties.

Proceeding to the Planck PR4 simulations summarized in
the middle column, we now see very strong coherent structures
for the 30 GHz channel, while the 44 and 70 GHz channels be-
have similarly to the 2018 case. The explanation for this quali-
tative difference is the Planck PR4 calibration algorithm; in this
pipeline, the 30 GHz channel is calibrated independently with-
out the use of supporting priors, while the 44 and 70 GHz chan-
nels are calibrated by using the 30 GHz channel as a polarized
foreground prior. The net effect of this independent calibration
procedure is a very high calibration uncertainty for the 30 GHz
channel, and these couple directly to the true CMB dipole, which
is kept fixed between all simulations. The result is the familiar
large-scale pattern seen in this figure, which has been highlighted
by several previous analyses as a particularly difficult mode to
observe with Planck (e.g., Planck Collaboration II 2020; Gjer-
løw et al. 2022; Watts et al. 2022).

Turning to the BeyondPlanck simulations summarized in the
right column, we now see coherent and signal-dominated struc-
tures across the full sky in all frequency channels. A part of
this is simply due to more realizations than for the other two
pipelines — in this case 3200 — but even more importantly is
the fact that the simulations are now entirely data-driven. That
is, they correspond to the black curves in Fig. 1, while the previ-
ous pipelines correspond to the red curves. In practice, this has
two main effects. First, it implies that the total parameter volume
that needs to be explored by Monte Carlo sampling is intrinsi-
cally smaller, simply because the posterior distribution does not
include cosmic variance; the simulations only need to describe
our instrument and universe, not any instrument and universe,
and this is a much smaller sub-set. Second, and even more im-
portantly, the Bayesian simulations account naturally for non-
linearity between the various parameters, and these are very of-
ten the dominant contributions in these distributions. As a con-

2 https://healpix.jpl.nasa.gov
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crete example, if the gain happens to scatter either high or low
during a given time period, then the total uncertainty estimate
will be particularly sensitive to the CMB dipole during the same
time period, and it will excite a correlation structure in these
plots that is intimately connected to the satellite scanning strat-
egy. Thus, if one chooses a gain profile that is independent of
other parameters, then those real uncertainties will not be prop-
erly accounted for in the simulation set: Intuitively speaking, the
hot and cold spots in the covariance matrices shown in Fig. 2 will
either appear in the wrong places, or be suppressed when averag-
ing over independent realizations. In general, specifying the in-
strumental model at a sufficiently realistic level represents a real
challenge for frequentist simulations, and great care is required
in order to capture the full error budget. This task is consider-
ably simplified in the Bayesian approach, as each instrumental
parameter is defined directly from the data themselves.

4. Simulation specification

Returning to the data model summary in Sect. 2, we note that
the Commander3 code described by Galloway et al. (2022a), and
used by the BeyondPlanck project to perform Bayesian end-to-
end analysis of the Planck LFI data, is able to produce both
frequentist and Bayesian simulations essentially without mod-
ifications; the only question is whether the parameters used to
generate the TOD, ω, are drawn from the posterior distribution,
or whether they are selected from a data-independent hyper-
distribution. Choosing which type of simulations to generate is
thus only a matter of selecting proper initialization values in the
Commander3 parameter file.

In this paper, we demonstrate the frequentist mode of op-
eration by generating a set of classical frequentist simulations
with Commander3, and we then use these to validate the novel
low-level processing algorithms introduced by Keihänen et al.
(2022); Ihle et al. (2022); Gjerløw et al. (2022) for mapmaking,
correlated noise estimation, and gain estimation, respectively.

We note that the original BeyondPlanck analysis required
670 000 CPU-hours to generate 4000 full Gibbs samples for the
full LFI dataset, which took about three months of runtime to
complete. In the current paper, we are primarily interested in
validating the low-level algorithms themselves, and we therefore
choose to consider only one year of 30 GHz observations in the
following (corresponding to about 10,000 Planck pointing peri-
ods (PIDs), each lasting for about one hour; Planck Collabora-
tion I 2014), rather than the full LFI dataset, and this reduces the
computational cost from 169 to 2.5 CPU-hours per Gibbs sample
(Galloway et al. 2022a). As a result, we are able to produce indi-
vidual chains with 10 000 samples within a matter of days, rather
than months or years, which is useful for convergence analyses.
This also reduces the total volume of the TOD themselves (not
including pointing, flags, etc.) from 638 GB to 22 GB, and the
simulations may therefore be run on a much broader range of
hardware. In fact, subsets of the following simulations have been
produced on more than ten different computing systems all over
the world, using both AMD and Intel processors (e.g., Intel E5-
2697v2 2.7 GHz, Intel Xeon E5-2698 2.3 GHz, Intel Xeon W-
2255 3.7 GHz, AMD Ryzen 9 3950X 2.2 GHz), with between
128 GB and 1.5 TB RAM per node, and using both Intel and
GNU compilers.3

3 The research presented in this paper was undertaken as a part of the
Master- and PhD-level course called “AST9240 – Cosmological com-
ponent separation” in 2021 at the University of Oslo, and individual
students produced and analyzed simulations in their home institutions.
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Fig. 3: Auto-correlation function, ρ, for selected parameters in
the model, as estimated from a single chain with 10 000 samples.
From top to bottom, the various panels show 1) one pixel value
of the CMB component map mCMB; 2) one pixel of the correlated
noise map mncorr ; 3) the temperature quadrupole moment, a2,0; 4)
the PID-averaged total gain g; and 5–8) the PID-averaged noise
PSD parameters σ0, fknee, α, and Ap/σ0. In panels with multiple
lines, the various colors show Stokes T , Q, and U parameters.
In panels with gray bands, the black line shows results averaged
over all PIDs, and the band shows the 1σ variation among PIDs.
The dashed red line marks a correlation coefficient of 0.1, which
is used to define the typical correlation length of each parameter.

Given that we will only consider low-level processing of the
30 GHz channel, we simplify the data model in Eq. (1) to

dsim
j,t = g j,tPtp, jB

symm
pp′, j acmb

p′ + Basymm
pp′, j sorb

j,t + +ncorr
j,t + nw

j,t (15)

= stot
j,t + ncorr

j,t + nw
j,t. (16)

That is, we only include one single sky component, namely the
CMB, and we ignore sub-dominant effects such as far sidelobe
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corrections, 1 Hz electronic spikes, etc. As such, this configura-
tion provides a test of the gain, noise estimation, and mapmaking
parts of the full algorithm, but not the component separation or
cosmological parameter estimation.

The CMB sky realizations used in the following analysis are
drawn from the best-fit Planck 2018 ΛCDM model (Planck Col-
laboration V 2020) using the HEALPix4 (Górski et al. 2005)
synfast utility. All instrumental parameters are drawn from dif-
ferent realizations of the BeyondPlanck ensemble presented in
BeyondPlanck (2022), and these are taken as true input values in
the following.

For the noise terms, we draw a random Gaussian realization
of n j,t = ncorr

j,t + nw
j,t with the noise PSD model given in Eq. (2).

This is done independently for each Planck pointing ID (PID),
and the noise PSD parameters are thus varying in time with the
same structure as the real observations.

5. Validation of low-level processing algorithms

To validate the noise and gain estimation and mapmaking steps
in Commander3 , we analyze the frequentist simulations de-
scribed above with the same Bayesian framework as used for
the main BeyondPlanck processing, and compare the output
marginal posterior distributions with the known true inputs. To
quantify both biases and the accuracy of the uncertainty esti-
mates, we adopt the following normalized residual,

δω =
µω − ω

in

σω
, (17)

where µω and σω are the posterior mean and standard deviation
for parameter ω. For a truly Gaussian posterior distribution with
no bias and perfect uncertainty estimation, this quantity should
be distributed according to a standard normal distribution with
zero mean and unit variance, N(0, 1), while a non-zero value of
δ indicates a bias measured in units of σ. It is of course impor-
tant to note that the full data model in Eq. (1) is highly non-
linear due to the presence of the gain; therefore, the deviations
from N(0, 1) at some level are fully expected, in particular for
signal-dominated quantities. Still, we find that δ serves as a use-
ful quality monitor.

Unless otherwise noted, the main results presented in the
following are derived from a single Markov chain comprising
10 000 samples. Where useful for convergence and mixing as-
sessment, we will also use shorter and independent chains, typi-
cally with 1000 samples in each chain.

5.1. Markov auto-correlations

We are also interested in studying the statistical properties of
individual Markov chains in terms of correlation lengths, de-
generacies, and convergence. We define the Markov chain auto-
correlation for a given chain as

ρω(∆) =

〈(
ωi − µω
σω

) (
ωi+∆ − µω

σω

)〉
, (18)

where i denotes Gibbs sample number, and ∆ is a chain lag pa-
rameter which denotes sample separation.

Figure 3 shows the auto-correlation for a typical set of pa-
rameters. The top four panels show (1) a single CMB map pixel
(in T , Q, and U); (2) a single correlated noise map pixel (in T ,

4 http://healpix.jpl.nasa.gov

Q, and U); (3) the CMB temperature quadrupole moment, a2,0;
and (4) the gain for a single PID. These all have relatively short
correlation lengths, which indicates that we are likely to produce
robust results for these parameters.

In contrast, the parameters in the bottom four panels have
very long correlation lengths, and these correspond to the four
correlated noise PSD parameters within a single PID; σ0, fknee,
α, and Ap/σ0. As discussed by Ihle et al. (2022), the introduc-
tion of the log-normal noise term greatly increases degeneracies
and correlations among these parameters as compared to a stan-
dard 1/ f noise profile, and this makes proper estimation of these
parameters much more expensive. However, it is also important
to note that this is only a challenge regarding the estimation of
the individual noise PSD parameters; the full PSD as a function
of frequency, Pn( f ), is insensitive to these degeneracies, and that
function is the only thing that is actually propagated to the rest of
the system. This explains why the long correlations seen in the
lower half of the plot do not excite long correlations also among
the (far more important) parameters in the top half of the plot.

In fact, the single most important parameter in the entire sys-
tem is the CMB map, shown in the first (for individual pixels)
and third (for the quadrupole moment, a2,0) panels. Indeed, the
correlation length is very short or even non-existent for single
pixels. This is primarily due to the fact that this map is strongly
dominated by white noise on a single-pixel scale for the setup
we consider here. As seen in the third panel, the same does not
hold true for the quadrupole moment, in which case the corre-
lation is in fact higher than 0.3 at a lag of ∆ = 25. The main
driver for this is the gain, as shown in the fourth panel. While
the gain is dominated by white noise on short time-scales (as
seen by the quick drop-off between lags of 1 and 2), there is a
slow drift at higher lags. This is caused by a partial degener-
acy between the CMB map (which acts as a calibration source
in this framework, anchored by the orbital dipole) and the over-
all gain. In the real BeyondPlanck analysis, this degeneracy is
mitigated to a large extent by analyzing all LFI channels jointly,
and also by including WMAP observations to break important
low-` polarization degeneracies (Gjerløw et al. 2022; Basyrov
et al. 2022). Still, even with those additions there are important
long-term drifts in the largest CMB temperature scales, and these
have non-negligible consequences for the statistical significance
of low-` CMB anomalies (Colombo et al. 2022).

5.2. Posterior distribution overview

Next, to build intuition regarding the full set of recovered pa-
rameters, we show in Fig. 4 marginal one- and two-dimensional
posterior distributions for a small set of parameters for two dif-
ferent PIDs. In each panel, the true input values are shown as
dashed lines. The bottom triangle (blue) show posterior results
for one well-behaved PID with good goodness-of-fit statistics,
while the top triangle (orange) shows a less well behaved case
in which the true input values are at the edge of recovered dis-
tributions. Together, these two cases represent the majority of all
PIDs in terms of overall behaviour.

Overall, the true input parameters are recovered reasonably
well in most cases. One of the parameters that is less well re-
covered is the white noise amplitude, σ0. This parameter is a
special case due to the sampling algorithm currently used in the
BeyondPlanck pipeline. As described by Ihle et al. (2022), σ0
is currently determined as the standard deviation of all pairwise
differences between neighboring time samples divided by

√
2.

While this is a commonly used technique in radio astronomy to
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Fig. 4: Recovered posterior distributions for a selected set of parameters from two PIDs and detectors. The contours indicate 68 and
95 % confidence regions, while the dashed lines (in the respective color of the contours) show the true input value of each of the
PIDs. The contours below (blue) and above (orange) the diagonal correspond to PIDs 3003 and 5515, respectively. From left to right
along the horizontal axis, columns show (1)–(3) one arbitrary CMB map pixel in Stokes I, Q, and U; (4)–(6) correlated noise for
the same pixel and Stokes parameters; (7) the CMB intensity quadrupole amplitude a2,0; (8) gain g; and (9)–(12) the four correlated
noise parameters, ξn = {σ0, fknee, α, Ap}. Note that the one-dimensional histograms of the first seven parameters are completely
overlapping since these parameters are independent of PID.

derive an estimate of the white noise that is highly robust against
unmodelled systematic errors, it does not correspond to a proper
sample from the true conditional distribution P(σ0 | d, g, . . .).
In particular, this approach underestimates the true fluctuations
of σ0, which in turn results in the overall uncertainties being
slightly underestimated. This is one of several examples in the

pipeline in which robustness to systematic effects comes at a cost
of statistical rigor. At the same time, it is important to note that
the absolute white noise level is in general very well determined
in these data (Ihle et al. 2022), and a slight under-estimation of
the uncertainty in σ0 has little practical impact on other parame-
ters in the model.
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Looking more broadly at the two-dimensional distributions
in this figure, we see that the parameters split naturally into
two groups, defined by the short and long correlation lengths

76
.8

77
.4

78
.0

78
.6 27M

64
.5

65
.0

65
.5

66
.0

27S

0 2500 5000 7500

62
.5

63
.0

63
.5

28M

0 2500 5000 7500 51
.5

52
.0

52
.5

53
.028S

PID

Ga
in

 [m
V/

K]
Fig. 7: The input gain values (red) over-plotted on the output gain
values (blue). The width of the blue line indicates the sample
standard deviation of the PID in question.

0.
15

0.
30

0.
45

27M= 0.01 ± 0.94

0.
15

0.
30

0.
45

27S= 0.19 ± 1.14

4 2 0 2

0.
15

0.
30

0.
45

28M= 0.36 ± 1.36

4 2 0 2

0.
15

0.
30

0.
45

28S= 0.02 ± 1.04

Deviation,  [ ]

De
ns

ity

Fig. 8: Aggregate standard deviation normalized differences be-
tween the gain sample mean and the input gain values. For each
PID t and detector i we calculate (gin

t,i − gt,i)/σt,i where gin is
the input gain, g is the mean sample value and σ is the sample
standard deviation. We then aggregate all of these values into
the appropriate histogram. The red lines are ideal Gaussian dis-
tribution for comparison. Each subplot also lists the aggregate
deviation from the expected mean of 0 with error bounds.

discussed above. That is, the CMB, correlation noise, and gain
parameters generally exhibit more symmetric distributions than
the noise PSD distributions, which are highly correlated and
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Fig. 10: Histograms of normalized correlated noise residuals, δ for each Stokes parameters (blue distributions). For comparison, the
dashed black line shows a standard N(0, 1) distribution.

non-Gaussian. Once again, this reflects the internal degeneracies
among the noise PSD parameters.

To further illustrate the impact of the slow convergence rate
for several of these parameters, Fig. 5 shows four partial chains,
each with only 1000 samples, for a sub-set of these parameters.
Once again, we see that the input values are reasonably well re-
covered for most cases, but each colored sub-distribution only
cover a modest part of the full posterior volume.

5.3. Gain validation

Going into greater detail on individual parameters, we show in
Fig. 6 a subset of the estimated gain as a function of Gibbs it-
eration for four selected PIDs, one for each radiometer. The red
lines show the true input values. Here we visually observe the
same behaviour as discussed above; on short time scales, these
trace plots are dominated by random fluctuations, while on long
time-scales there are still obvious significant drifts.

Figure 7 compares the estimated gain (blue bands) with the
known input (red curves) as a function of PID. The width of the
blue bands indicates the ±1σ confidence region. At least at a vi-
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Fig. 12: Histograms of normalized CMB intensity residuals, δCMB for each Stokes parameters (blue distributions). For comparison,
the dashed black line shows a standard N(0, 1) distribution.

sual level, the two curves agree well, without obvious evidence
of systematic biases, and the uncertainties appear reasonable.
These observations are made more quantitative in Fig. 8, which
shows histograms of normalized residuals, δg, over all PIDs. Red
lines indicate the standard Gaussian N(0, 1) reference distribu-
tion. Once again, we see that the reconstruction appears good,
as the nominal bias is at most 0.36σ, and the maximum poste-
rior width is 1.36σ. From the shape of the histograms, it is also
clear that a significant fraction of these variations is due Monte
Carlo sample variance from the long gain correlation lengths.
Once again, we note that such deviations will decrease as the
number of frequency bands included in the analysis increases,
since the Solar CMB dipole, which is the main calibrator, will

be much better constrained with more observations; the actual
gain correlation lengths found for the real BeyondPlanck anal-
ysis are shown by Gjerløw et al. (2022), and are notably shorter
than those of this reduced simulation.

5.4. Correlated noise posterior validation

Next we turn to the correlated noise component, and we start
with the specific noise realization, ncorr; the correlated noise PSD
parameters will be discussed separately in Sect. 5.6. To simplify
the visualization, we bin the correlated noise TOD into a sky
map, as illustrated in Fig. 9. The top left panel shows the true
input correlated noise map (temperature component only), while
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Fig. 13: Correlation matrix for selected pixel values of the CMB
map, mCMB, and the correlated noise map, mncorr , for all three
Stokes parameters I, Q, and U. Pixels 1 and 2 are selected to
be neighboring pixels along the same Planck scanning ring and
located near the Ecliptic plane, while pixel 3 is an arbitrarily
selected pixel not spatially associated with the other two.

the top right panel shows the corresponding posterior mean (out-
put) map. The bottom left panel shows the posterior standard
deviation per pixel, and the bottom right panel shows the nor-
malized residual, δcorr.

A visual inspection of the simulation input and posterior
mean correlated noise maps indicates no obvious differences.
In fact, the normalized residual map in the bottom right panel
of Fig. 9 appears fully consistent with white noise. Once again,
this observation is quantified more accurately in Fig. 10, where
we compare the histogram of δcorr over all pixels with the usual
N(0, 1) distribution for each of the three Stokes parameters; in
each case, the agreement is excellent.

5.5. CMB map validation

Figures 11 and 12 show similar plots for the CMB sky map com-
ponent. Once again, the normalized residual in the bottom right
panel appears fully consistent with white noise over most of the
sky — but this time, we actually see a power excess in δCMB
around the Ecliptic poles. These features correspond to regions
of the sky that are particularly deeply observed by the Planck
scanning strategy (Planck Collaboration I 2014). As a result of
these deep measurements, the white noise in these regions is very
low, and the total error budget per pixel is far more sensitive to
the non-linear contributions in the system, in particular the cou-
pling between the gain and the Solar dipole.

This effect does of course not only apply to the Ecliptic “deep
fields”, but to all signal-dominated map pixels at some level, and
it therefore also applies to the full-sky CMB map in tempera-
ture. This statement is made more quantitative in the left panel
of Fig. 12, where we see that the temperature histogram is very
slightly wider than the reference N(0, 1) distribution. To be spe-
cific, the standard deviation of this distribution is about 1.15; at
the same time, the mean of the distribution is consistent with
zero, the non-linear couplings therefore do not introduce a bias,
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Fig. 14: Histograms of the noise parameters over all PIDs and
10 000 samples for radiometer 27M. We show the white noise
level σ0, knee frequency fknee, correlated noise spectral index α,
and log-normal noise amplitude Ap. For reference we show the
standard normal distribution as a black dashed line.

but only a higher variance. For the noise-dominated Stokes Q
and U parameters, for which gain couplings are negligible on a
per-pixel level, both distributions are perfectly consistent with
N(0, 1).

Figure 13 shows Pearson’s correlation coefficients between
the CMB and correlated noise components for three selected pix-
els. Two of the pixels, marked ‘1’ and ‘2’, are located along the
same Planck scanning ring near the Ecliptic plane, where the
Planck scanning strategy is particularly poor. The third pixel is
located far away from these, and on a different scanning ring.
Here we see that correlations are very strong for Stokes pa-
rameters of the same type along the same ring, with correla-
tion coefficients ranging between 0.5 and 0.8. These correla-
tions are induced both by gain and correlated noise fluctuations,
which are tightly associated with the Planck scanning rings.
Stokes parameters of different types (e.g. I and Q) are signifi-
cantly less correlated, typically with anti-correlation coefficients
of ρ . −0.25. Correlations between widely separated pixels are
practically negligible in the current simulation setup, although
for the real analysis, this is no longer true due to additional cou-
plings from, for instance, astrophysical foregrounds, bandpass
corrections, and sidelobes (Galloway et al. 2022b; Svalheim et
al. 2022a; Basyrov et al. 2022; Colombo et al. 2022; Andersen
et al. 2022; Svalheim et al. 2022b).

5.6. Correlated noise PSD validation

Finally, we consider the noise PSD parameters, σ0, fknee, α, and
Ap/σ0, and, as already noted, these are significantly harder to
estimate individually than the previous parameters due to the
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Fig. 15: Comparison of recovered correlated noise PSD in terms
of the functional form, Pn( f ). The top two panels show results
for the same PIDs as in Fig. 4; faint lines indicate individual
Gibbs samples, while the dashed lines show the true input func-
tions. The bottom two panels show the difference between the
posterior mean function and the true input in units of percent
and posterior rms, respectively.

strong correlation between the 1/ f and log-normal terms in
Eq. (2).

As usual, we plot the reduced residual, δ, for each parameter
type in Fig. 14, and in this case we see that the posterior distri-
butions are significantly wider than standard Gaussian distribu-
tion, by as much as a factor of two. The distributions are also
clearly non-Gaussian, with notable skewness and kurtosis. Both
the excess variance and non-Gaussianity stem from the same de-
generacies as discussed above, and are partially due to intrinsic
non-Gaussianities in the model, and partially due to incomplete
Monte Carlo convergence and very long correlation lengths. On
the other hand, the mean bias in these distribution is small, and
the estimated posterior distributions do provide a useful sum-
mary of each parameter individually.

As mentioned above, however, other parameters in the model
are not sensitive to individual ξn values, but only to the total
noise PSD, Pcorr( f ). This function is plotted in the top two pan-
els of Fig. 15 for the same two PIDs and radiometers as shown
in Fig. 4; the blue curves correspond to the well-measured PID,
while the orange curve corresponds to the PID with the marginal
fit. Faint lines in the top two panels show individual Gibbs sam-
ples, corresponding to different combinations of ξn. By eye, the
sampled values appear to span the true input reasonably well,
although the orange line is on the lower edge of the estimated
posterior distribution.

These visual observations are made more quantitative in the
bottom two panels, where the third panel shows the fractional

difference between the output and input PSD functions in units
of percent, and the fourth panel shows the same in units of stan-
dard deviation of the PSD across Gibbs samples, σ. For the well-
behaved (blue) pixel, we see that the posterior mean matches the
true input everywhere to within a few percent; in units of stan-
dard deviations, this is typically less than 2.5σ for most of the
region, except at frequencies above 10 Hz, where the estimated
standard deviation is very small due, and the underestimation
of the uncertainty in σ0 becomes noticeable. For the less well-
behaved case, the recovered PSD is within 2σ at all frequencies
in units of standard deviations, or within 5 %. Overall, the PSD
itself is recovered very well in both cases in absolute terms.

6. Conclusions

End-to-end time-ordered simulations play a key role in estimat-
ing both biases and uncertainties for current and future CMB
experiments. To date, no other practical method has been able to
account for the full and rich set of systematic errors that affect
modern high-precision measurements.

As detailed by BeyondPlanck (2022) and its companion pa-
pers, the BeyondPlanck project has implemented a new ap-
proach to end-to-end CMB analysis in which a global paramet-
ric model is fitted directly to the time-ordered data, allowing
for joint estimation of instrumental, astrophysical, and cosmo-
logical parameters with true end-to-end error propagation. This
approach relies strongly on a sampling algorithm called Gibbs
sampling, which allows the user to draw joint samples from a
complex posterior distribution. Each of these Gibbs samples cor-
respond essentially to one end-to-end TOD simulation, similar
to those produced by classical CMB simulation pipelines, for in-
stance the Planck full focalplane (FFP; Planck Collaboration XII
2016) simulations.

The fundamental difference between these two simulation
pipelines lies in how to define the input parameters used to gen-
erate the simulation. In the BeyondPlanck approach, all param-
eters are constrained directly from the true data, and correspond
as such to samples drawn from the full joint posterior distribu-
tion. In contrast, traditional pipelines uses parameters that are
a mixture of data-constrained and data-independent parameters.
Typical examples of the former include the CMB Solar dipole
and Galactic foregrounds, while typical examples of the latter
include CMB anisotropies and instrumental noise. In this paper,
we have the two types of simulations for “Bayesian” or “fre-
quentist”, respectively, indicating whether or not they condition
on the true data.

The difference between these two types of simulations has
direct real-world consequences for what applications each sim-
ulation type is suitable for. As first argued by Basyrov et al.
(2022), this may be intuitively understood through the following
line of reasoning: Suppose one is tasked with constructing a new
end-to-end simulation for a given experiment. Among the first
decisions that needs to taken concerns the CMB Solar dipole:
Should this correspond to the true dipole, or should it have a
random amplitude and direction? If it is chosen randomly, then
the hot and cold spots in the correlation matrices shown in Fig. 2
in this paper will appear at random positions on the sky, and
eventually be washed out in an ensemble average. In practice,
all current pipelines adopt the true CMB Solar dipole as an in-
put. The next question is, what Galactic model should be used?
Once again, if this is selected randomly, then the Galactic plane
will move around on the sky from realization to realization. In
practice, all current pipelines adopt a model of the true Galactic
signal as an input.
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The third question is, what CMB anisotropies should be
used? At this point, all pipelines prior to BeyondPlanck have
in fact adopted random CMB skies drawn from a theoretical
ΛCDM model. This has two main effects: On the one hand, in the
same way that randomizing the CMB dipole signal would aver-
age out any coherent correlations between the sky signal and the
gain, randomizing the CMB anisotropies also average out, and
non-linear correlations between these structures and the instru-
mental parameters are not accounted for. On the other hand, the
resulting simulations do actually include so-called cosmic vari-
ance, i.e., for the scatter between individual CMB realizations.

Fourth and finally, the same question apply to all the instru-
mental parameters, perhaps most notably correlated noise and
gain fluctuations: Should these be constrained by the real data,
or should they be drawn randomly from a laboratory-determined
hyper-distribution?

It is important to stress that none of these four questions
have a “right” or “wrong” answer. However, whatever choice one
makes, that choice will have direct consequences for what cor-
relation structures appear among the resulting simulations, and
therefore also for which applications they are suitable for. In par-
ticular, if the primary application is traditional frequentist model
testing — for instance asking whether the CMB sky is Gaussian
and isotropic — then it is critical to account for cosmic vari-
ance among the CMB realizations. For those applications, one
must choose data-independent CMB inputs in order to capture
the full uncertainties, and the appropriate choice are frequentist
data-independent simulation inputs.

If, on the other hand, the main application is traditional
parameter estimation, for instance as constraining the ΛCDM
model, then the important point is to properly estimate the total
CMB uncertainty per-pixel on the sky. In this case, it is critical to
properly model all non-linear couplings between the actual sky
signal, the true gain, the true correlated noise, etc. In this case,
the appropriate choice are Bayesian data-dependent simulation
inputs.

In this paper, we note that the novel Commander3 software is
able to produce both frequentist and Bayesian simulations, sim-
ply by adjusting the inputs that are used to initialize the code.
While the Bayesian simulation process has been described in de-
tail in most of the BeyondPlanck companion papers, we present
in the current paper a first application of the frequentist mode
of operation by producing a data-independent time-ordered sim-
ulation corresponding to one year of 30 GHz data, and we then
use this to validate three important low-level steps in the full Be-
yondPlanck Gibbs samples, namely gain estimation, correlated
noise estimation, and mapmaking. Doing so, we find that the re-
covered posterior distribution matches the true input parameters
well.
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