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Abstract

Geometric Simplification of Optimization Problems in Millimeter-Wave Sensing

by

Anant Gupta

Recent advances in low-cost design and fabrication enable the potential application

of high-accuracy millimeter wave (mmWave) radar sensors to a variety of commercial

sectors, including automotive, drones and robotics [1]. The large bandwidth available

at mmWave band enable high range resolution, while the small wavelength enhances

Doppler resolution. In addition, the small wavelength allows for reduced antenna size

that can be used to synthesize large aperture antenna arrays which provide narrow beams

for high angular resolution. However, such antennas are expensive in terms of both cost

and power consumption. In addition, individual sensors are vulnerable to blockage by

larger objects in vicinity of the sensor. Therefore, an array of widely separated radar

sensors is used to improve localization accuracy while combating blockage at individual

sensors. In this dissertation, we discuss efficient methods for solving the large aperture

antenna design and multi-sensor localization problem by exploiting intrinsic geometric

properties.

We first consider the problem of designing large effective aperture antenna in 2D

for accurate Direction of Arrival estimation. Conventionally, a large effective aperture

antenna is constructed by filling the aperture with patch elements spaced at half the

carrier wavelength or less. However, such dense array designs do not scale well with

increasing aperture area in terms of cost, complexity and power consumption. On the

other hand, compact antenna arrays with a moderately large number of elements can be

realized at relatively low cost, especially as the carrier frequency increases. We propose a

vi



cost-effective synthesis of large apertures (and hence sharp beams) is via sparse placement

of a number of such compact arrays, henceforth termed “subarrays”, optimizing the

placement (and controlling the phases) so as to reduce unwanted grating lobes. We

assess the performance of our designs for the fundamental problem of bearing estimation

for one or more sources which provides a useful tradeoff comparison of the beamwidth

reduction and increase in sidelobe level.

Although mmWave sensors provide high accuracy measurements, individual sensors

are vulnerable to blockage due to the mm-wave propagation characteristics. For safety

critical applications a network of sensors is required to avoid detection issues in case some

sensors suffer from blockage. We study the fundamental limits on localization accuracy

using a network of mm-wave radar sensors. We show that super-resolution algorithms

can be used to achieve good localization accuracy using low cost mmWave sensors.

Finally, we examine the spatial association of observations collected from multiple

sensors in the single snapshot setting. Since the observations collected at each sensor are

unordered, they need to be associated with a common target before they can be combined

for location estimation. We consider the general data association problem where sensor

observation contain range, Doppler information from a single snapshot only. Without

any prior association information, this problem has exponential complexity. However, we

show that inherent geometric relations between sensor measurements and their locations

can be used to drastically reduce this association complexity. Our proposed association

framework provides robustness to detection anomalies caused by blockage and achieves

significant computational savings when large number of sensor are used.
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Chapter 1

Introduction

Recent advances in low-cost design and fabrication of radar sensors have enabled the

exploration of millimeter(mm)-wave band (wavelength between 1 mm and 10 mm). The

FCC has allocated 7 GHz of unlicensed contiguous spectrum in the 60 GHz (V-band) for

various emerging sensing and imaging applications [1]. The wide frequency bandwidth

provides high resolution observations of the environment which make mm-wave radar

sensors appealing for a variety of commercial sectors, including automotive, drones and

robotics [2, 3]. In addition, the small wavelength allows for reduced antenna size that can

be used to synthesize beamforming arrays of reasonable sizes for autonomous application.

Such sensors can measure a variety of target signatures such as range, Doppler, bearing

and micro-Doppler. The key goal in all sensing applications is to achieve good localization

accuracy of targets in a scene by utilizing these measurements.

Many sensing and situational awareness applications (e.g., radar imaging for vehicles

and drones) require highly directional, electronically steerable beams. Reducing beam

width requires expansion of antenna aperture. This is typically accomplished by filling

the aperture with antenna elements spaced at half the carrier wavelength or less, in order

to avoid grating lobes. However, this approach does not scale well with aperture size since
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Introduction Chapter 1

the cost, power consumption and design complexity increases with number of antenna

elements. On the other hand, reducing number of elements involves placement beyond

half wavelength spacing generates unavoidable grating lobes. An intricate optimization

to sparsely distribute array elements can be done to emulates the properties of a large

aperture array while controlling grating lobes. We propose a coherent sparse array of

subarray architecture motivated by recent progress in low-cost hardware realizations of

moderately sized antenna arrays that mitigate these sidelobes arising from sparsity. We

obtain sparse array designs using a multi-objective optimization which results in arrays

that balance sidelobes for reduced bandwidth..

The mm-wave signals are vulnerable to blockage due to high penetration loss and

weaker diffration [4]. Therefore, an extended size object situated close to the sensor can

occlude farther objects in the environment. This creates frequent detection anomalies at

the sensor which is one of the major concerns for safety critical sensing applications. An

array of multiple spatially separated sensors is employed to mitigate the impact of such

anomalies at individual sensors.

In the second part of this dissertation, we consider the problem of localizing multiple

objects in the environment using a network of mm-wave radar sensors. We first analyze

the fundamental limits on range and doppler estimation accuracy and resolution for

low-cost monostatic radar sensors using estimation theoretic analysis. We show that

super-resolution algorithms can be used to extract these range, doppler at individual

sensor with accuracy approaching the estimation theoretic lower bounds. By combining

these measurements over multiple widely separated sensors, we can achieve localization

accuracy sufficient for short to medium range (less than 20 m) situational awareness

applications. However, in multiple target scenario, the measurements obtained at each

sensor are un-ordered i.e. the source of the observations is not known to the sensor.

Therefore the observations from each sensor in the network need to be associated with a
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unique target before fusion of measurements can be performed.

We consider the general spatial association problem where observations collected dur-

ing a single snapshot of the scene need to be associated across multiple sensors. Each

radar sensor is omni-directional and observes only range and doppler of the non-occluded

targets. In this general scenario where no prior association information is available,

complexity of the association problem grows quickly with increasing number of sensors,

objects in the scene. We propose an association framework that exploits geometric rela-

tions between range, doppler observations and the sensor geometry to reduce association

complexity. Our numerical results show this framework performs well in the presence of

detection anomalies at sensors and achieves significant reduction in complexity compared

to traditional methods.

We provide a brief overview of the problems considered in this thesis in Sections 1.1,

1.2 and 1.3 and state our contributions.

1.1 Large effective aperture design using array of

subarray architecture

Chapter 2 of this thesis investigates the problem of synthesizing narrow beams using

a tiled architecture, with a sparse set of subarrays spread over a large physical aperture.

Each subarray is a relatively compact antenna array with a moderate number of elements

at sub-wavelength spacing. This is a modular design, in which each subarray can be

controlled by a radio frequency integrated circuit (RFIC) of moderate complexity, with

multiple RFICs tiled to build up large aperture arrays with a much larger number of

elements compared to that of a single subarray. The resulting array is “sparse” because,

while the total number of antenna elements summed across subarrays is large, this number

3
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is far smaller than that for a classical design with antennas at sub-wavelength spacing

spanning the entire physical aperture. The sidelobes and grating lobes resulting from such

spatial undersampling must therefore be controlled in order for our proposed “array of

subarrays” to be useful. Our goal here is to determine the placement of a given number

of subarrays over a physical aperture in order to optimize multiple beam attributes,

including beam width, maximum sidelobe level, and directivity.

While our framework is general, the design of millimeter wave arrays is of particular

interest to us, because the small carrier wavelength enables synthesis of narrow beams

using relatively compact apertures. As a running example throughout chapter 2, we

consider the design of a 60 GHz array of subarrays created by placing 8 subarrays over

an aperture size of 10 cm by 10 cm (20λ× 20λ for wavelength λ = 0.5 cm), where each

subarray has 4 × 4 elements arranged in uniform rectangular grid with 0.5λ horizontal

spacing and 0.6λ vertical spacing. The total number of antenna elements in such designs

is 128, which is an order of magnitude smaller than the 1600 elements required to cover

the entire aperture at half-wavelength spacing. In addition to optimizing beam character-

istics, our design framework also accounts for practical placement constraints consistent

with existing prototype subarrays. For example, the subarrays need to be aligned along

their axes, assuming that all elements have unidirectional linear polarization. Also, each

subarray tile occupies extra physical area on the plane, which must be accounted for in

the placement procedure. Figure 1.1 shows an example array of subarray configuration.

1.1.1 Contributions

Our contributions are summarized as follows:

1. We formulate the problem of subarray placement as multi-objective optimization

of key performance measures such as beam width (BW), maximum sidelobe level

4
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Directional cosines

z

y

x

DoA

v

Unit Circle

u = sin(θ) cos(φ)
v = sin(θ) sin(φ)

Subarray

Grid

Figure 1.1: 2D Array Geometry and Spherical coordinate system for Direction of
Arrival (DoA) estimation.

(MSLL), eccentricity (ecc) and directivity (GD),

Minimize BW(C,w), MSLL(C,w), ecc(C,w)

Maximize GD(C,w)

subject to AoS(C)

(1.1)

where C is Ns×2 Subarray center position matrix, w is N×1 beamsteering weight

vector and AoS(C) are physical constraints to avoid overlapping subarrays. Note

that orientation of subarrays is not an optimization variable in this architecture,

since the polarization of the elements has to be aligned for beamforming. We

consider minimization of a weighted linear combination of the objectives, focusing

mainly on beamwidth BW and maximum sidelobe level MSLL. The configuration

C that we optimize over is characterized by a set of discrete-valued variables,

and the number of possible values for these variables is combinatorially explosive.

Furthermore, we do not have closed form expressions for the performance measures

5
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as a function of C, hence significant computation is required to evaluate the cost

function for each configuration. In order to control the complexity, we use geometric

heuristics to eliminate similar configurations in the first stage of our algorithm, and

then employ a second stage of refinement using small perturbations around the

first stage solution. We numerically explore the Pareto front for (1.1) by sweeping

through the weights, and illustrate how the beam attributes depend on the weights.

2. We evaluate our designs using estimation-theoretic benchmarks for two-dimensional

(2D) direction of arrival (DoA) estimation. At low signal-to-noise ratio (SNR), large

sidelobes can lead to large errors in the DoA estimate. At high SNR, on the other

hand, the DoA estimation error is governed by beam width. We derive a Ziv-Zakai

bound (ZZB), which captures the effect of both large and small estimation errors,

for DoA estimation for specular paths. The ZZB exhibits a distinct transition in

its behavior from low to high SNR, tending at high SNR to the Cramer-Rao bound

(CRB), which captures the effect of small errors around the true parameter value.

Thus, we use the ZZB transition SNR as a measure of efficacy of sidelobe reduction,

and the CRB as a measure of efficacy of beam width reduction.

3. We report in detail on two array designs, A1 with primary emphasis on reducing

beamwidth and A2 based on joint optimization of beamwidth and maximum side-

lobe level. These designs are compared against two benchmark arrays. The first is

termed a “compact array,” with subarrays packed closely together: this is expected

to have worse beam width but smaller sidelobes than our sparse designs. The sec-

ond is termed a “naive array,” obtained by placing subarrays in diamond pattern

to obtain beamwidth equivalent to that of sparse array A2. Some illustrative nu-

merical results for our running example are as follows. The sparse design A1 is 11

dB better than the compact array in terms of CRB, while degrading less than 1 dB

6
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in terms of ZZB threshold. The sparse design A2 is 4 dB better in terms of CRB

than the “naive array,” while also having a better ZZB threshold.

4. We investigate DoA estimation performance numerically using a state of the art

algorithm for off-grid estimation. The impact of the higher sidelobes due to sparse

placement, and hence that of our optimization procedure, is more evident when

estimating DoA in the presence of multiple interfering targets. We show that,

depending on the strength of interferers, our optimized arrays achieve better esti-

mation accuracy than the “compact” and “naive” benchmark arrays at moderate

to high SNR due to a combination of sharper beamwidth and lower sidelobes. We

also show that the efficacy of DoA estimation using our sparse designs, and the

associated benchmarks, is maintained when we employ compressive measurements.

1.2 Enhanced Estimation accuracy and resolution

While radar-based target localization (i.e., estimation and tracking of position and ve-

locity) is a classical problem with a rich history, it remains an area of active investigation,

including recent work on high-resolution joint estimation of range and Doppler [5], as well

as multi-target tracking [6]. Chapter 3 of this thesis focuses on the range and doppler es-

timation using a single radar sensor. For concreteness, we consider Frequency Modulated

Continuous Wave (FMCW) chirp waveforms, which are the most widely used modulation

scheme for car radars because of the simplicity of hardware and signal processing relative

to, say, pulsed radar, which requires separate delay and frequency estimation for range

and Doppler, respectively. The FMCW beat signal contains both range and Doppler

information embedded in the frequency domain, and is traditionally extracted using an

efficiently implementable 2D Discrete Fourier Transform (DFT), with the “fast time”

dimension along a chirp, and the “slow time” dimension across several chirps. However,

7
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this technique is susceptible to “off-grid” effects[7]: the signal from a target leaks into

several points in the DFT grid, unless it lies exactly on a DFT grid point. While the

location estimate can be refined by using a larger number of chirp sequences and sensors,

accurate one-shot estimation is especially important for automotive applications, given

the importance of timely estimates (which limits the number of frames) and cost/form

factor constraints (which limits the number of sensors) [8]. We establish fundamental

limits on estimation accuracy and resolution and analyze the performance of recently

developed super-resolution algorithms in this single snapshot scenario.

1.2.1 Contributions

Our contributions are listed as follows,

1. We first describe the FMCW signal model for a single sensor and describe the

beat signal processing to extract range and doppler using 2D frequency estimation.

We also describe super-resolution algorithms that can be used to achieve enhanced

accuracy 2D frequency estimates with some additional computational overhead.

2. In order to asses the power requirement at each radar sensor, we calculate the link

budget for our system. We then compute estimation theoretic lower bounds on

the estimation accuracy to establish that we can indeed hope to obtain satisfactory

performance using low cost radar sensors for the short range applications.

3. We show that the super-resolution algorithms approaches the estimation theoretic

bound which allows for cm-scale accuracy in the operating regime. We also analyze

the minimum resolvable distance between targets in proximity. When the range and

doppler of two targets lie close to each other, the estimation algorithms are unable

to detect them properly. We define a minimum separation criteria in the range

doppler space to identify when such anomalies occur.

8



Introduction Chapter 1

1.3 Spatial Association

In Chapter 4, we explore the utility of a network of millimeter (mm) wave radar

sensors in providing timely situational awareness for highly dynamic environments, by

considering estimation of the kinematic state of the scene (i.e., the positions and velocities

of targets) via a single set of measurements obtained by a network of sensors. We do not

rely on tracking targets across time, or on platform motion to synthesize larger apertures.

Y Y Y
l1

z1

z2

(r1 ,d1) 

Y

2

0

1

l2 l3 l4

1 (r2 ,d2) 
1 1

(r1 ,d1) 
2 2(r2 ,d2) 

2

Figure 1.2: 2D System model with linear array of radar sensors placed on
x-coordinates, [l1, l2, l3, l4]. The kinematic states z1, z2 of two targets are to be esti-
mated using the unordered range and doppler observations from sensors.

The specific problem we consider is that of localizing multiple targets in a 2D scene

using a linear array of radar sensors. Figure 1.2 shows a scenario with two targets being

observed with a linear array of four spatially separated sensors positioned along x-axis

(l1 − l2 � λ, where λ is the carrier wavelength). Since precise carrier frequency/phase

synchronization across sensors separated by 10s-100s of wavelengths is difficult, we assume

that that the sensors are monostatic. That is, each sensor collects the relative range and

Doppler observations for the targets in the scene. Since these observations are not ordered

a priori, each range-Doppler measurement must first be associated with a target, and

then the measurements associated with a given target from multiple sensors can be used
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to estimate its position and velocity. Since the number of possible associations grows

exponentially in the number of sensors, it is critical to develop efficient algorithms for

spatial association. It is also important to build in robustness to missed detections, since

millimeter waves can be easily occluded by objects in the scene.

Our goal is to develop robust, computationally efficient algorithms for single snapshot

spatial data association. A key ingredient of our approach is to prune the set of feasible

associations based on geometric relationships. Specifically, we observe and exploit linear

relationships between functions of the range-Doppler observations for a target across the

linear array of sensors. In addition, we are able to discard a significant number of possible

associations by the use of the triangle inequality for the range observations at pairs of

sensors.

1.3.1 Contributions

Our contributions are listed as follows:

1. We first describe the graphical framework used to solve the association problem.

We examine the geometric relations between instantaneous range, Doppler, and

sensor locations and show that the features obtained via those geometric relations

simplify the association problem.

2. We provide a low-complexity solution for the association problem by introducing

a new graph-search based algorithm which exploits geometric fitting error together

with likelihood to deal with missed detection and false alarms while reducing the

complexity. The initial feasible set of measurements is reduced by principled thresh-

olding (based on CRB), and relaxed over further iterations.

3. The performance of this association algorithm is analyzed and compared against

a brute force algorithm and the other algorithms in the literature. We perform

10
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the evaluation in terms of localization accuracy, cardinality errors, robustness, and

complexity. In addition, we analyze the advantage of using an enhanced accuracy

algorithm (i.e., NOMP [9]) and compare the proposed approach with traditional

algorithms.
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Chapter 2

Large effective aperture design using

array of subarray architecture

2.1 Introduction

In this chapter, we investigate synthesis of a large effective aperture using a sparse

array of subarrays. We employ a multi-objective optimization framework for placement

of subarrays within a prescribed area dictated by form factor constraints, trading off the

smaller beam width obtained by spacing out the subarrays against the grating and side

lobes created by sparse placement. We assess the performance of our designs for the

fundamental problem of bearing estimation for one or more sources, comparing perfor-

mance against estimation-theoretic bounds. Our tiled architecture is motivated by recent

progress in low-cost hardware realizations of moderately sized antenna arrays (which play

the role of subarrays) in the millimeter wave band, and our numerical examples are based

on 16-element (4× 4) subarrays in the 60 GHz unlicensed band.

Parts of this chapter are reprinted from our journal paper [10], c©2019 IEEE
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2.1.1 Related Work

There is a rich body of work on sparsifying linear arrays, including minimum redun-

dancy arrays [11], genetic optimization[12], joint Cramér Rao Bound and sidelobe level

optimization [13], and simulated annealing [14]. Most popular design strategies try to

find an element pattern which minimizes beamwidth, along with some notion of DoA

ambiguities such as sidelobe level or probability of DoA outlier. Recent approaches like

Nested 2D arrays [15] and H-arrays [16] utilize the idea of “difference co-array” to reduce

the number of redundant spacings and maximize the randomness of element positions,

so that the number of spatial frequencies being sampled by the array is maximized.

A closely related sparse array design methodology is the sensor selection problem,

wherein a smaller subset of individual antenna positions is to be chosen from a predefined

grid. By employing certain surrogate measures, near-optimal arrays can be obtained

in polynomial time using standard convex relaxation methods[17],[18]. Array thinning

methods such as these are well known to avoid complicated nonlinear optimizations for

linear case [19].

Most existing techniques, however, assume that antenna elements can be placed freely.

Hence, they do not apply in our setting, where element placement within subarrays is

constrained. The prior work most similar to our is [20], which investigates design of

linear arrays with two and three subarrays. However, the focus there is on performance

criteria for comparing a number of sensible designs in a far smaller design space, rather

than searching over a large space of possibilities as we do here.

Our performance evaluation requires implementation of DoA estimation algorithms.

Classical subspace-based algorithms such as MUSIC [21] and ESPRIT [22], as well as their

extensions to arrays of subarrays such as [23, 24, 25, 26], rely on regular array geometries

for efficient computation. Recently developed super-resolution algorithms such as Basis
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Pursuit Denoising (BPDN) [27] and Newtonized Orthogonal Matching Pursuit (NOMP)

[9] are both more general and have better performance. It is worth noting that [28] shows

that, for large arrays, BPDN and other sparse estimation techniques with compressive

measurements outperform subspace-based methods. We employ NOMP in our numerical

experiments, since we have found it to provide better performance than BPDN at lower

complexity. We also show that the performance trends are unchanged under compressive

measurements, consistent with recent general theory [29].

Map of this chapter: We first describe the beam attributes to be optimized while

designing the sparse arrays and discuss constraints for the optimization in Section 2.2.

The geometric heuristics and design approach are described in detail in Section 2.3. We

then provide a brief review of estimation bounds for 2D bearing estimation and discuss

their utility for analyzing the sparse arrays in Section 2.4. Numerical results are provided

in Section 2.5. These include exploration of the Pareto front, and comparison of example

designs against benchmarks in terms of both beam characteristics and DoA estimation.

We show in Section 2.6 that the performance trends hold for compressive DoA estimation

as well.

2.2 Sparse Subarray Design

We formulate the array design problem in terms of jointly optimizing multiple beam

parameters that are expected to affect DoA estimation performance.

2.2.1 Beam Pattern Basics

We use the directional cosines

u = sin(θ) cos(φ), v = sin(θ) sin(φ) (2.1)
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Directional cosines
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u = sin(θ) cos(φ)
v = sin(θ) sin(φ)
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(a) (b)

Subarray

Grid

Figure 2.1: (a) 2D Array Geometry and Spherical coordinate system. (b) ROI: Uni-
form distribution of 2D-DoA u in spherical cap with half angle θmax

to represent the DoA of target. The elevation θ and azimuth φ angles are measured from

the broadside direction (perpendicular to the baseline array plane). The 2D beampattern

R(u, v) in direction (u, v) when the beam is steered towards the broadside is given by

R(u, v) =
1

N2

∣∣∣∣∣
N∑
i=1

ejk(ud
x
i +vdyi )

∣∣∣∣∣
2

(2.2)

where N is the number of array elements; [dxi , d
y
i ]
T , di are the 2D co-ordinates of arrays

elements and k = 2π
λ

is the wavenumber. We assume isotropic antenna elements with ideal

steering weights and far-field sources with normalized response. The term “subarray”

refers to the subset of elements with uniform half-wavelength spacing, while “super-

array” refers to the placement of these subarrays, which is described by the subarray

centers. Since the elements in a subarray are fixed, the array element locations, D can

be expressed in terms of the subarray centers, C, as D = C⊗1Ne +De⊗1Ns , where De

is the fixed 2×Ne matrix containing the subarray element coordinates with respect to its

center, Ns is the number of subarrays, Ne is number of elements in individual subarrays,

1n is an n× 1 column vector of ones, and ⊗ denotes the Kronecker product.
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When beamforming in a general direction (u0, v0) (broadside corresponds to (u0, v0) =

(0, 0)), the beam pattern is given by

R(u0,v0)(u, v) = R(u− u0, v − v0) (2.3)

For Direction of Arrival (DoA) estimation, the ideal beam should have small beamwidth

with minimal sidelobes and high directivity. We consider the following beam attributes,

some of which depend on the steering direction (u0, v0), as key performance metrics to

be optimized:

• 2D beamwidth (BW): Although the main beam of non-uniform array has non-trivial

shape in 2D, we approximate it as an ellipse to define beamwidth. We evaluate the

2D beamwidth in terms of the 3-dB beamwidths along the major and minor axes of

this ellipse, denoted by BWmax and BWmin, respectively. The mean squared error

of DoA estimation depends on the sum of these beamwidths (see Appendix A.1),

hence we define beamwidth as BWDoA =
√

BW2
max + BW2

min.

• Maximum sidelobe level (MSLL): is the relative level of the strongest sidelobe in

the beampattern with respect to the main lobe, MSLL = 10 log (Rmax/Rmsl). Thus,

Rmax and Rmsl are the largest and second largest magnitude local maximas of

beampattern R(u, v) given by

Rmax(u0, v0) = max
u,v

Ru0,v0(u, v) = Ru0,v0(u0, v0) = R(0, 0)

Rmsl = max
u∗,v∗

Ru0,v0(u∗, v∗)

such that (u∗, v∗) 6= (u0, v0),

Ru0,v0(u∗, v∗) ≥ Ru0,v0(Dε(u
∗, v∗))

16
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Figure 2.2: Beam Attributes from array Beampattern.

whereDε(u
∗, v∗) = {(u, v) : |u− u∗| < ε, |v − v∗| < ε} denotes ε-neighborhood. Note

that Rmax does not depend on steering direction (u0, v0), but Rmsl might.

• Directivity (GD): The directivity is the ratio of main lobe power to average power,

GD = 10 log
(

Rmax

Ravg

)
The average power does not have a closed form expression for

general planar arrays, and is evaluated in (u, v) domain by the integral [30]:

Ravg =
2

4π

∫ 1

−1

∫ √1−v2

−
√

1−v2

Ru0,v0(u, v)√
1− u2 − v2

dudv

• Eccentricity (ecc): is a measure of the asymmetry of the main beam. We add

this additional parameter to suppress the trivial linear placement solution, ecc =√
1− (BWmin/BWmax)2

For non-uniform planar arrays, none of these beam parameters have a closed form ex-

pression [31], hence they must be computed numerically. In our simulations, we compute

these beam attributes using a beampattern over a 512× 512 grid in UV space as shown

in Figure 2.2.
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2.2.2 Problem Formulation

In order to develop geometric heuristics for optimization, we first analyze the effect of

increasing aperture width, keeping the number of antenna elements fixed, for linear and

planar arrays, with uniform and subarray-based architectures as shown in the rightmost

section of Figure 2.3. In the plots of beam attributes in Figure 2.3, the dashed line rep-

resents the aperture width for half-wavelength inter-element spacing, when the uniform

and subarray-based configurations match.
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Figure 2.3: Comparison of beam attributes of subarrayed and uniform architecture
with increasing aperture width.

• The MSLL for the array of subarrays increases much faster than for a uniform

configuration due to a grating lobe appearing close to main beam. This attribute

is sensitive to the element distribution and behaves unpredictably for non-uniform

arrays.

• The 3dB Beamwidth (BWmax for planar array) for both array types reduces congru-

ently, confirming that it is inversely proportional to aperture width independent of

the distribution of elements.

18



Large effective aperture design using array of subarray architecture Chapter 2

• Directivity increases as we increase the inter-element spacing, but only up to a cer-

tain limit, and then becomes constant [32]. This generalizes well to planar arrays

as shown in the Figure 2.3. As one can see the directivity for subarrayed config-

urations remains approximately constant with increasing aperture width beyond

standard spacing. We therefore do not include this metric in our cost function.

The objectives that we wish to trade off against each other do not have the same

units: for example, MSLL is measured in dB relative to the maximum for the main lobe,

whereas BW is measured in deg. We therefore normalize each raw objective value, oraw by

its range as follows:

o(C) =
oraw(C)−min

∀C′
{oraw(C ′)}

max
∀C′
{oraw(C ′)} −min

∀C′
{oraw(C ′)}

The range of each objective is computed numerically while constructing the dictionary

of all configurations, C ∈ C, described later in 2.3.1.

The constrained multi-objective optimization can now be formulated as follows:

C∗,w∗ =argmin
∀C,w

f(C,w)

subject to AoS(C)

(2.4)

where

f(C,w) = αBW(C,w) + βMSLL(C,w) + γecc(C,w) (2.5)

is the weighted cost function in terms of the normalized objective functions and [α, β, γ]

are weights that can be used to sweep through the optimal surface for this optimization.

We show some example arrays obtained for different choices of weights in Table 2.1.

Since the cost function f(C,w) is evaluated numerically from its beampattern for

specific values of (C,w), exploring the entire solution space is computationally infeasible.
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This discrete-valued nature of the optimization variables leads to a combinatorial problem

without closed form objectives and constraints. Furthermore, beam characteristics in

general depend on the steering weights w, which in turn depend on the direction (u0, v0)

in which we are steering. We therefore employ two key simplifications:

• We remove the dependence of the cost function on beamforming direction, and

hence on steering weights, by computing the objectives based on an expanded

beam pattern, as discussed in Section 2.2.3.

• We employ geometric heuristics to cut down the solution space to a reasonable size,

as described in Section 2.3.

2.2.3 Invariance to Beamforming Direction

The cost function in (2.5) is evaluated using the beampattern R(u−u0, v−v0), which

depends on the beamsteering direction (u0, v0). It would be prohibitively expensive to

evaluate the beam attributes over all such beampatterns for finding the optimal (C,w).

However, for arrays with isotropic elements, we can define an Expanded Beam pattern

(EBP) which subsumes beampatterns of all steering direction in a Region of Interest

(ROI) [33]. Suppose that our maximum steering angle in the ROI is θmax. From (2.1),

we see that (u0, v0) lies within a circle of radius sin θmax. On the other hand, sidelobes

can appear at any (u, v) within a circle of radius 1. It is easy to see, therefore, that

(u−u0, v−v0) is guaranteed to lie within a circle of radius 1+sin θmax. We can therefore

compute beam attributes using the following EBP:

Rρ(ũ, ṽ) =
1

N2

∣∣∣∣∣
N∑
i=1

ejkρ(ũd
x
i +ṽdyi )

∣∣∣∣∣
2

ρ = 1 + sin(θmax)

(2.6)
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Figure 2.4 shows the EBP, R1.5(ũ, ṽ) for ROI with θmax = 30◦, and the beampattern

for the steering angle ((u0, v0) = (0.3, 0.4)). The shape of the main beam is preserved

under the transformation (2.6), hence beam width and eccentricity can be directly eval-

uated from (2.6). The MSLL evaluated from EBP is a worst-case value, corresponding

to an argument ρ(ũ, ṽ) which, in principle, might not correspond to a feasible value of

(u − u0, v − v0) in (2.3). However, the maximum sidelobe always lies within the main

lobe of the subarray beam pattern, so that physically implausible values of ρ(ũ, ṽ) do not

correspond to large local maxima of the EBP.

Figure 2.4: Expanded Beampattern for ROI (θmax < 30◦)

With the introduction of the EBP, we can, without loss of generality, assume that

the main beam is being steered towards broadside, setting w = 1N . Our problem now

reduces to finding the optimal configuration C∗ as follows,

C∗ = arg min
C

f(C,1N) subject to AoS(C) (2.7)

2.3 Placement Optimization

In order to optimize the placement, we need to evaluate the cost function over all

array configurations. The number of configurations depends on the allowed form factor,

and the size of the subarray module, and an exhaustive search over all configurations is
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computationally infeasible: for example, the number of configurations for a discrete grid

of size 20 × 20 is of the order 1020. We therefore propose a two-stage approach, first

performing a combinatorial search on a reduced search space, and then obtaining the

final solution by searching over perturbations around the solution from the first stage.

2.3.1 Combinatorial search

We reduce the solution space by removing geometrically “similar” arrays. We employ

the covariance of the element positions, and pairwise element separations, as measures

of similarity. The choice of covariance of element positions Σ(C) as similarity metric

is motivated by its inverse proportionality to Cramér Rao Bound on accuracy of DoA

estimation (see Section 2.4.1). However, array configurations with similar array covari-

ance but diverse beam attributes also exist: Figure 2.5 shows an example of two array

configurations with different shapes but the same covariance. The arrays have similar

beamwidth but their MSLL levels are different. We observe that the variance of pairwise

element distances ψ(C) is different for these arrays, and use it as an indicator for these

large scale deviations. This allows us to reduce the dimensionality of the solution space

-10 -5 0 5 10

-5

0

5

ψ(C1)=6.6
ψ(C2)=5.2
MSLL1=-5.2 dB
MSLL2=-1.6 dB

C1 array

C2 array

C1 covariance

C2 covariance

Figure 2.5: Super-arrays with equal covariance but different beam attributes.

from 2 × Ns down to 3 array shape parameters: the eigenvalues (λ1, λ2) of Σ(C) and

ψ(C).
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Subarray Placement Algorithm

We construct a prefix tree dictionary to find feasible solutions using a breadth first

search based enumeration technique. The element position covariance for an array of

subarray can be uniquely represented by the covariance of its subarray centers, ΣD =

ΣC + ΣDe . Hence the super-array center covariance can be used instead of that of the

full array in the Dictionary search algorithm. Each node in the tree stores a subarray

center position, and the path from root to a node at the nth layer of prefix tree represents

a unique configuration of n subarrays. The subarray centers are constrained to lie on a

fixed set of discrete grid points G. The algorithm is described in Algorithm 1. We briefly

Algorithm 1 Prefix Tree Dictionary Search

1: Initialize: C1 =
{
C

(n=1)
i

}
; i ∈ [1, Ninit] ;n = 1

2: while n < Ns do
3: List all vacant Gridpoints Vi = TG(Cn

i ); i ∈ [1, |Cn|]
4: Append subarray at vacancies Vi,

Ĉn+1 =
|Cn|⋃
i=1

Cn
i × Vi

5: Prune: Cn+1 ← Prune
(
Ĉn+1

)
6: n = n+ 1
7: end while
8: Return CNs

discuss the key steps below.

• Initialize: In order to allow for sufficient exploration, we employ multiple random

initializations C1
i of the root node being placed on Ninit different locations on the

grid. (For example, circular configurations cannot be obtained if the root subarray

is fixed at the center.)

• List: Define the operator TG : G|C
n
i | → G|Vi| which maps the set of subarrays

centers Cn
i ∈ Cn to the set of |Vi| vacant gridpoints in G available for placement of
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next subarray which are not blocked by the subarrays already placed at Cn
i . This

operator also accounts for additional surface area occupied by the subarray module

apart from the physical antenna elements (see Appendix A.3 for details).

• Append: The (n + 1)th subarray configuration is constructed from the vacancies,

Cn
i × Vi where × denotes cartesian product of sets. A temporary dictionary Ĉn+1

is formed by inserting |Vi| = κ child nodes for each node in the nth layer.

• Prune: Nodes corresponding to “similar” configurations are deleted based on the

array shape parameters

1. Find eigenvalues (λ1, λ2) of the subarray center covariance matrix, Σ(C) and

variance of array separations, ψ(C) = E [(lij − E[lij])
2], where, lij denotes the

distances betweeen ith and jth elements.

2. Enumerate unique configurations by binning the (λ1, λ2, ψ) triplets over a 3-D

grid with resolution τ and randomly picking one configuration from each bin

(see Appendix A.4 for criteria to choose τ).

This procedure is repeated until the number of dictionary atoms reach the desired number

of subarrays, n = NS. All arrays in the dictionary C obtained from this algorithm satisfy

the AoS(C) constraint by construction. This simplifies the constrained multi-objective

optimization in (2.4) to

C∗ = argmin
C∈C

f(C,1N) (2.8)

2.3.2 Iterative Placement Refinement

In the second stage, we try to improve the cost function (2.8) by applying small local

perturbations (within a bin of the grid G) to the subarray positions obtained from the

combinatorial search in the first stage, as described in Algorithm 2.

24



Large effective aperture design using array of subarray architecture Chapter 2

Algorithm 2 Local Refinements

1: Initialize: C = Cinit; B = oversampled bin.
2: while n < Nref do
3: for i = 1 to Ns do
4: List Find positions available for adjustment, Vi = TB(C \ Ci)
5: Correct: Select position with least cost Ci ← minb∈Vi f ({(C \ Ci), b} ,1)
6: end for
7: n = n+ 1
8: end while
9: Return C
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Figure 2.6: Objective costs variation over iterative refinements.

Figure 2.6 shows a sample of how costs are minimized using sequential refinement

over Ns = 8 subarrays. After running few iterations, the final array has 0.8 dB lower

MSLL, while keeping other beam attributes relatively unchanged.

2.3.3 Computational Complexity

The complexity of this approach is dominated by the construction of the prefix tree

dictionary C in the first stage. Our algorithm progresses by growing leaf nodes of the

tree in a breadth first fashion until a tree depth of Ns is reached. In each step, the key

bottleneck lies in pruning the temporary dictionary Ĉn which lists all possible vacancies

for every leaf node of existing tree.
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Algorithm Complexity

The number of operations at the nth iteration of Algorithm 1 is given by

Tn = |Ĉn+1| =
Ns−1∑
n=1

|Cn|∑
i=1

|Vi| ≤ |G||Cn| (2.9)

where Cn denotes the set of leaf nodes at the nth level of prefix tree, and |Vi| is the number

of vacancies for the ith leaf node. The vacancies are a subset of a grid with cardinality

|G| = (2Rmax
∆g

)2 where Rmax is the radius of the aperture and ∆g is the grid resolution.

The maximum number of array configurations (which correspond to leaves of the

prefix tree) in any given iteration is bounded by the maximum number of unique triplets

(λ1, λ2, ψ), which can be expressed as follows:

|Cn| ≤ |Cnmax| =
λmax1

τmin

λmax2

τmin

ψmax

τmin
(2.10)

where λmax1 , λmax2 , ψmax represent the maximum value of each parameter and τmin =
2∆2

g

Ns

is the minimum bin resolution (using (A.6)). The eigenvalues of the array covariance

are bounded by the maximum aperture radius λmax1 < R2
max, λ

max
2 < R2

max and the array

separation variance can be bounded as

ψ = E
[
(lij − E[lij])

2] ≤ R2
max (∵ 0 ≤ lij ≤ 2Rmax)

Substituting these upper bounds in (2.10) and (2.9), we obtain

|Cnmax| ≤
(
R2
max

τmin

)3

= N3
s

(
R2
max

2∆2
g

)3

=
N3
s |G|3

29

Tn ≤ |G||Cnmax| ≤
N3
s |G|4

29
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Figure 2.7: Complexity over 12 iterations of Prefix Tree Dictionary Search.

Note that the upper bound derived here is conservative, as can be readily verified

through simulations. Figure 2.7 shows the time and space complexity bounds over Ns = 8

iterations for a sample run of the algorithm with |G| = 1600 grid points. We observe

that in practice, computational complexity increases up to Ns = 4 but starts reducing

afterwards. The latter is because of the reduction in the number of vacancies in the

aperture as the space occupied by the existing subarray modules increases.

The total number of operations and space can be upper bounded as follows

TAlgorithm1 =
Ns−1∑
n=1

|Ĉn+1| ≤
Ns−1∑
n=1

|G||Cnmax| ∼ O
(
|G|4N4

s

)
SAlgorithm1 = max

n∈[1,Ns]
|Cn| ≤ |Cnmax| ∼ O

(
|G|3N3

s

)
The resulting dictionary is independent of cost function weights [α, β, γ], and represents

a thinned version of the entire design space. Thus, optimized arrays for different weights

can be evaluated by solving (2.8). The solution of (2.8) has O(|C|) time complexity,

assuming that cost evaluation for each array configuration takes constant time. The

second stage of the algorithm requires cost evaluation of fine perturbations over an over-
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sampled bin of size |B| around each subarray, repeated Nref times. This stage requires

TAlgorithm2 = |B|NrefNs operations using constant space, which is significantly lower com-

pared to first stage. Hence, the overall algorithm complexity is O(|G|4N4
s ) in time and

O(|G|3N3
s ) in space.

We note that the polynomial complexity of proposed algorithm is significantly better

compared to exhaustive search, which exhibits exponential complexity O(|G|Ns). For our

running example, the proposed algorithm’s complexity is TAlgorithm1 = (400× 8)4 ≈ 1014

compared to the complexity of exhaustive search, TExhaustive = (400)8 > 1020.

2.4 Estimation-Theoretic Benchmarks

We now seek to evaluate the efficacy of our sparse designs for the canonical applica-

tion of 2D DoA estimation. We compare different array designs in terms of estimation-

theoretic bounds as well as simulated performance using a super-resolution algorithm.

For clarity in exposition, from here onwards we overload u , [u, v] to denote the DoA.

2.4.1 Signal Model

We model the received signal from K sources in the scene with distinct DoAs Θ =

[u1, u2, · · ·, uk] as

x =
K∑
j=1

αjs(uj) + z (2.11)

where s(uj) =
[
ejku

T
j d1 , . . . , ejku

T
j dN

]T
is the array response, z = [z1, . . . , zN ]T is complex

white noise such that E(zzH) = σ2IN , and {α}Kj=1 are complex gains which are unknown

deterministic constants. The joint probability density of received signal conditioned on
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(Θ, {α}Kj=1) is given by,

p(x|Θ,α) =
∏
uj∈Θ

1

πNσ2
exp

(
−‖x− αjs(uj)‖2

σ2

)
(2.12)

For any DoA estimator Θ̂, the covariance of estimation error is defined as,

Rε(Θ̂) = E

[
K∑
i=1

(u− ûi)(u− ûi)T
]

Rε can be geometrically interpreted by its trace
√
tr(Rε) which represents the expected

overall Root mean square error (RMSE) in DoA estimation (see Appendix A.1). We use

this measure to compare the performance of array designs in Section 2.5. For single source

case (K = 1), the joint maximum likelihood estimator of u and α yields a noncoherent

estimator for u as follows:

ûML = argmax
u

∣∣s(u)Hx
∣∣2 (2.13)

For this case, we derive the Cramer Rao (CRB) and Ziv-Zakai (ZZB) bounds on Rε to

assess the best possible estimation accuracy of different designs. Although derived for

single source case, we use these bounds for multiple source case as well to compare DoA

estimation performance.

Cramér Rao Bound

The Bayesian Cramér Rao Bound for this signal model is given by [33]:

CRB(Rε) = (JF + JP )−1 (2.14)
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where JF , JP denote the Fisher Information Matrix (FIM) contributions from the ob-

servation and the prior distribution of DoA respectively.

(JF )ij = −Ex,u
[
∂2l(x|u)

∂ui∂uj

]
, (JP )ij = −Eu

[
∂2l(u)

∂ui∂uj

]

where l(x|u) and l(u) are the conditional log likelihood and prior log likelihoods, respec-

tively. In addition, the following regularity condition needs to be satisfied,

Ex,u
[
∂l(x|u)

∂u

]
= 0

Ex,u

[
jk

N∑
i=1

di

(
xie

jkuTdi − x∗i e−jku
Tdi
)]

= 0

jk

(
α

N∑
i=1

di − α∗
N∑
i=1

di

)
= jk(α− α∗)

N∑
i=1

di = 0

In order to always satisfy this condition, we enforce the array element positions to be

centered i.e.,
∑N

i=1 di = 0.

For a single source, the FIM is given by,

JF = − 1

σ2
E

[
∂s(u)

∂u

H ∂s(u)

∂u

]
(2.15)

= 2k2γDTD (2.16)

which depends only on the element positions, D and Signal to Noise ratio (SNR) (γ =

|α|2/σ2). Assuming the DoA prior to be uniformly distributed in the ROI (θ ≤ 30◦), the

prior FIM simplifies to JP = 1.343I2.
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Ziv-Zakai Bound

The CRB is a local bound, which accounts for estimation performance dependent

on mainbeam, hence it is only useful at high SNR. In order to better characterize the

estimation performance of Sparse arrays at low SNR, we calculate the Ziv-Zakai Bound

(ZZB) which incorporates the effect of sidelobes and predicts the threshold behavior. For

any directional vector a = [cos ξ, sin ξ]T , the ZZB is given by [34]

aTRεa ≥
∫ ∞

0

V
{

max
δ:aT δ=h

∫
A(u, δ)Pe(u, δ)du

}
hdh

where, A(u, δ) = min {p(u), p(u+ δ)}, V(.) is the valley filling function and Pe(u, δ) is

error probability of the following vector parameter binary detection problem,

H0 : û = u; Pr(H0) =
1

2
,x ∼ p(x|uuu)

H1 : û = u+ δ; Pr(H1) =
1

2
,x ∼ p(x|u+ δu+ δu+ δ)

This error probability can be lower bounded by the minimum probability of error of the

following optimal non-coherent detector:

Decide(u) =


u if ρ1 > ρ2

u+ δ if ρ1 < ρ2

where ρ1 = |xHs(u)| and ρ2 = |xHs(u+δ)|. Given u = u0, ρ1, ρ2 are rician distributed

with scale parameter s = σ2/M and non-centrality parameter ν = |α|N, |αR(δ)|N re-

spectively where R(δ) = R(δx, δy) is the beampattern from (2.2). The error probability
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is given by [35]

Pnc(u, δ) =
1

2
(Pr (ρ1 < ρ2|u) + Pr (ρ1 > ρ2|u+ δ))

= Pr (ρ1 < ρ2|u)

= Q1(a, b)− 1

2
e−

a2+b2

2 I0(ab) (2.17)

where,

a =

√
γN

2

(
1−

√
1− |R(δ)|2

)
b =

√
γN

2

(
1 +

√
1− |R(δ)|2

)

which is not a function of u. For ROI in our case, the maximum error h(max) =(
aTδ

)(max)
= 1. Note that for a uniformly distributed DoA in spherical coordinates

(θ, φ), the distribution of u is not uniform. However for simplicity of analysis, we make

the assumption that u is uniformly distributed on a circular disc. Hence, the ZZB ex-

pression simplifies to

aTRεa ≥
∫ 1

0

V
{

max
δ:aT δ=h

∫
A(u)duPnc(δ)

}
hdh

ZZB(aTRεa) =

∫ 1

0

V
{

max
δ:aT δ=h

Pnc(δ)

}
hdh (2.18)

The maximum error probability over all directions δ cannot be expressed as closed form

expression. However, due to the monotonicity of Marcum’s Q function, Q1(.) and Bessel

function of 0th order, I0(.), the error probability in (2.17) is maximized only when R(δ)

is maximized. Therefore, for each values of h, we compute the maxδ:aT δ=h |R(δ)| numeri-

cally by searching over a discrete set of points on the line segment aTδ = h and substitue

in (2.18).
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2.4.2 DoA estimation algorithm

Grid-based sparse estimation for a set of DoAs models the the received signal (2.11)

as follows:

x = S(Ψ)b+ z (2.19)

where S(Ψ) =
[
s(u1) · · · s(u|Ψ|)

]
contains the array response at discretized set of DoAs

ui ∈ Ψ as columns. The nonzero entries in b point to presence of target in the cor-

responding DoA in Ψ. The DoA and gain pair (ûi, α̂i)
K
i=1 can be estimated by jointly

minimizing the residual power,

T (û, α̂) =

∥∥∥∥∥x−
K∑
j=1

α̂js(ûj)

∥∥∥∥∥
2

The NOMP algorithm summarized below provides a two stage estimator:

1. Detection: Using precomputed S(Ψ), coarse estimates of DoA and complex gain

are obtained

û = argmax
u∈Ψ
|s(u)Hx|2

α̂ = s(u)Hx/N

2. Refinement : The estimates are refined using the Newton method:

û′ = û− (H∇T (û, α̂))−1∇T (û, α̂) (2.20)

α̂′ = s(û′)Hx/N (2.21)

where H∇T and ∇T denote the Hessian and gradient of T (u, α) with respect to u
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at current estimate (û, α̂) (see [36] for details).

The algorithm is repeated with the residual signal, r = x − α̂′s(û′) to estimate other

DoAs. The refinement steps are repeated after each new detection for all DoAs in a

cyclic manner for few rounds to improve accuracy.

The algorithm yields Kest DoA estimates, with estimation performance degrading

when Kest does not match the true number of DoAs, KDoA. Hence, in order to evaluate

the arrays independent of such errors, we implement both algorithm where K = KDoA is

known.

We also run extensive simulations with another state of the art algorithm, BPDN

[27], with default parameters and 5 refinement stages. The computational complexity of

BPDN is significantly higher than that of NOMP. The grid Ψ needs to be adapted at

each iteration for BPDN, depending on the DoAs, whereas it remains fixed for NOMP

S(Ψ), and can be precomputed, which makes it suitable for faster implementation in

large arrays. Since the NOMP algorithm also yields somewhat better estimation accuracy

than BPDN, we only present results obtained with NOMP here.

2.5 Numerical Results

2.5.1 Design of arrays

Using the combinatorial search algorithm, we create a search space of array config-

urations, C ∈ C of size |C| = 657, 000 for Nsub = 8 subarrays. Figure 2.8a shows the

values of two major objectives, MSLL, BW over this space. The beamwidth is improved

by spreading out the subarrays, but this typically leads to a deterioriation in the MSLL.

Figure 2.8a clearly shows the Pareto front corresponding to the multiple solutions of

(2.8), corresponding to different relative weights, trading off these opposing objectives.
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(a) Beam attributes of array dictionary
C, Sample arrays on Pareto optimal
front obtained from first stage dictio-
nary search (�) and second stage iterative
placement refinement (�).

(b) Weighted cost function
f(C,1N ), C ∈ C for weights
(0.1, 0.5, 0.1) as a function of the
eigenvalues of the array covariance
matrix Σ(C).

(c) Array configura-
tion & beampattern
for solution B.

Figure 2.8: Pareto-front exploration and multi-objective optimization.

Figure 2.8b shows the weighted cost function obtained for an example set of weights

(α = 0.1, β = 0.5, γ = 0.1) as a function of the eigenvalues of the array covariance ma-

trix. We observe that for a similar set of eigenvalues, many of the solutions we explore

(shown in yellow) are substantially worse in terms of the weighted cost than the solutions

shown in blue from which we choose our solutions, indicating the complexity of the op-

timization landscape. Choosing one more variable, the variance of the element locations

ψ(C), for binning is therefore crucial for exploring this landscape more thoroughly. Fig-

ure 2.8c shows the array B obtained using the proposed algorithm, and its beampattern.

We mark the locations of B, and of two other Pareto optimal designs, A1 and A2 (to be

discussed shortly) along the Pareto front in Figure 2.8a.

As we change the relative values of weights α, β and γ in exploring the Pareto front,

we can make the following observations regarding the corresponding subarray placements:

• For a larger relative value of α (more importance given to beamwidth), the subar-

rays are widely distributed over the available aperture area.
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• When we increase the relative value of β to suppress MSLL, the array becomes

restricted to a smaller area.

• The relative weight of γ, which corresponds to the objective of reducing eccentricity,

affects both the shape of the main lobe and the positions of the sidelobes. For

positive γ, the solution is not expected to lie on the BW-MSLL Pareto front boundary.

Indeed, Figure 2.8a shows that the solutions from first stage dictionary search lie

slightly away from this boundary. However, the second stage iterative refinement

reduces this gap.

Figure 2.9: Beam patterns (Bottom row) for designed (Left half) & benchmarking
(right half) arrays.

Based on these observations, we set the weights to obtain following sample array config-

urations:

1. A1 : Primary emphasis is given towards minimizing beamwidth by setting α = 1,

β, γ = 0.1.
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2. A2 : In this case, we emphasize all beam attributes by setting all weights equal to

1.

Table 2.1: Sample Array Configurations

Shape α β γ MSLL BW ecc

A1 1 0.1 0.1 -8 dB 5.7◦ 0

A2 1 1 1 -10.2 dB 8◦ 0

Compact - - - -12.8 dB 12.1◦ 0.7

Naive - - - -7.6 dB 7.9◦ 0.0

We compare these array designs against two simple array configurations, 1) a “compact”

array where subarrays are placed together such that overall element pattern becomes a

uniform rectangular array, 2) a “naive” array where subarrays are spread along a diamond

shape such that its resultant beamwidth is equal to that of A2. Table 2.1 lists the weights

and resulting beam attributes of these arrays.

Figure 2.9 shows the array designs obtained using our optimization approach and

their beam patterns. The A2 array has a sharp beamwidth and only 2.6 dB worse

MSLL compared to the compact array. On the other hand, a naive sparse array with

circular arrangement of subarrays yields 2.6 dB higher MSLL compared to A2 for similar

beamwidth. Our designs A1, A2 exhibit several small sidelobes (the highest sidelobe for

A2 is -10.2 dB), whereas the naive array exhibits fewer but more pronounced sidelobes.

Since large sidelobes and grating lobes can cause large errors in DoA estimation, we

expect our designs to yield better estimation performance, which is borne out by the

results presented in the next section.

We note that the sidelobe levels and locations are primarily dependent on the super-

array (i.e., the location of subarray centers C), while the subarray pattern mainly affects

the large-scale beampattern. Therefore, we obtain similar solutions, with similar beam
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characteristics, using our optimization approach with small variations in the subarray

element patterns (e.g, replacement of a rectangular pattern with a plus pattern).

2.5.2 Comparison of Estimation Performance

We evaluate the arrays based on their DoA estimation accuracy at different SNRs

for both single and multiple source cases. We use the RMSE in estimating DoA for

comparison which is given by ε̄ =
√
E[|û− u0)|2] =

√
tr(Rε)/2.
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Figure 2.10: Comparison of estimation theoretic bounds for arrays.

Estimation bounds

The Cramér Rao Bound is evaluated using (2.14), CRB(ε̄) =
√
tr(CRB(Rε))/2 .

The Ziv Zakai Bound is evaluated using (2.18),

ZZB(ε̄) =
√
ZZB(aT1Rεa1) + ZZB(aT2Rεa2)
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where a1, a2 denote the directions of maximum and minimum beamwidths of the array.

We also computed the ML estimation (MLE) error by Monte Carlo simulation using

(2.13) with an overcomplete dictionary of array responses. Figure 2.10 shows the CRB,

ZZB and MLE curves for all the arrays. CRB is proportional to beamwidth (see Appendix

A.2 for details). The ZZB bound converges to CRB at the so-called “ZZB threshold”

SNR: when the SNR is below this threshold, far-ambiguities in DoA estimation caused

by large sidelobes dominate the MSE. The tradeoff between beamwidth and MSLL is

thus expected to translate to one between CRB (better with smaller beamwidth) and

ZZB threshold (worse with larger MSLL). Thus, as expected, “A1 ” array achieves the

lowest CRB, followed by “naive” and “A2 ” with equal CRB, while “Compact” array has

the largest beamwidth and hence highest CRB. The trend in MSLL is weakly reflected in

the ZZB thresholds (for a single target, sidelobes do limited damage): the degradation in

ZZB threshold, relative to that of the compact array for the optimized arrays (A1, A2 )

is less than 1 dB, while the gain in CRB due to smaller beamwidth is 4 dB and 2 dB,

respectively. The MLE error curve also agrees with the threshold behavior predicted by

ZZB. We see in the next set of results, however, that the size of the sidelobes becomes

much more important when we consider multiple targets.

Estimation algorithm performance

We obtain DoA estimates using the NOMP algorithm [9, 36] with a known number

of sources to compare the best case performance of these arrays. (The NOMP algorithm

also performs as well as the brute force MLE for a single target discussed earlier–results

omitted here.) The RMSE is evaluated across N = 1024 DoAs uniformly sampled over

the ROI (spherical cap of half angle 30◦). For evaluating the estimation performance in

presence of multiple targets, (K = 5) we compute the RMS error in the DoA estimate for

a primary target fixed at broadside, while interfering targets are distributed uniformly in
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ROI at separation of ∆u ≥ 0.16 or ∆θ ≥ 9.2◦ away from primary target. This separation

is imposed because the estimation problem is ill-posed for DoAs in close proximity. For

uniform arrays, the minimum separation is typically defined with respect to the DFT bin

size (e.g. ∆DFT = 2π/L for an L-element linear array). Since this quantity cannot be

defined for non-uniform planar arrays, we choose a minimum separation halfway between

the RMS beamwidths of the “compact” and sparse arrays, to capture the effect of both

local errors and far ambiguity errors due to sidelobes.

In addition to RMSE vs SNR curves, we also analyze the distribution of error mag-

nitudes. The complementary cumulative distribution (CCDF) of the estimation errors

is used to compare the “outage probability” corresponding to too large an error, which

captures the impact of large sidelobes.

• With multiple sources, the estimation accuracy is degraded by interference from

other sources, and RMSE does not converge to the single-target CRB. Figure 2.11

shows the estimation performance for strong and weak interference.

1. Weak interference: When the interfering sources are 6 dB weaker than primary

target, sparse arrays offer more than 5 dB SNR gain compared to compact

arrays for SNR > −5 dB. Also, the difference between A2, naive array widens

to about 1 dB in the threshold region indicating the benefit of suppressing

sidelobes.

2. Strong interference: When interfering sources have same magnitude, RMSE

severely degrades for both arrays with high sidelobes (A1, Naive) as well as

arrays with high beamwidth (Compact). On the other hand, A2 has lowest

RMSE at SNR > −5 dB because of the dual benefit of small beamwidth and

lower sidelobes.
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Figure 2.11: Estimation accuracy with multiple targets.

• The increase in estimation errors at high SNR is attributed to ambiguity errors from

sidelobes, hence the overall sidelobe suppression for the arrays can be compared

using the distribution of these error magnitudes. Figure 2.12 shows the CCDF

curves of all arrays at SNR=−5 dB. The initial curvature of these curves (RMSE

upto -22 dB) is expected to depend on local errors, hence the rate of change follows

same order as CRB which is A1 > A2 = naive > compact. But the curvature

reverses order at higher RMSE indicating the tradeoff with far-errors. We can

see that A2 achieves lower outage probability in both scenarios (e.g. for RMSE
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Figure 2.12: CCDF of estimation errors in multiple targets.

threshold set to −15 dB) as it strikes a balance between near and far errors. In

contrast, both A1 and naive exhibit high outage probability due to frequent far

ambiguity errors caused by higher sidelobes.

Therefore, depending on the expected magnitude of interferers either one of the designed

arrays with suitable sidelobe suppression can be selected. For a desired beamwidth

reduction our design algorithm yields an array superior to a naively designed sparse

array.
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2.6 Compressive Estimation

We now evaluate the arrays for sparse estimation using compressive measurements at

each subarray given by:

y = Φx

where x is the full measurement from (2.19) and Φ = diag(Φ1, · · · ,ΦNs) is the M ×N

measurement matrix consisting of the subarrays measurement matrices as its block

diagonals. Each subarray takes Mi compressive measurements with an independent

Φi ∈ CMi×Ne whoose elements are chosen uniformly and independently from QPSK

samples 1√
Mi
{±1,±j}. In addition, columns of Φi have unit norm to preserve signal

norm on average (E [||ΦS(u)||2] = ||S(u)||2) while scaling noise variance by N/M . The

underlying DoA, u can be extracted by minimizing the ML cost:

∥∥∥∥∥y − Φ
K∑
j=1

α̂js(ûj)

∥∥∥∥∥
2

The efficacy of compressive parameter estimation in AWGN depends on preserving the

geometric structure of the parameterized signals [29]. Specifically, if Φ satisfies the 2K

isometry property for discretized basis S(Ψ) [29],

C(1− ε) ≤ |ΦS(Ψ)b|2

|S(Ψ)b|2
≤ C(1 + ε) (2.22)

where C is a constant for any arbitrarily chosen 2K sparse vector b, the performance of

the compressive system follows that for the original system, except for an SNR penalty

of M/N . Figure 2.13 shows the minimum and maximum values of this ratio over 106

random realization of 8 sparse b for sparse array. The ratio is within [−5, 3] dB for
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Figure 2.13: Maximum and minimum values of ratio in (2.22) for sparse array.

M > 32 signifying that 32 compressive measurements are sufficient to estimate K = 4

DoAs.
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Figure 2.14: Estimation performance with Compressive measurements.

Figure 2.14 shows estimation performance with M = 32 compressive measurements

collected across eight subarrays (Mi = 4, i ∈ {1..8}). Comparing with Figure 2.10, we

observe that the estimation algorithms preserve the same characteristics as with full

measurements with approximately 6 dB SNR penalty as expected (N/M = 4).
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Chapter 3

Enhanced Estimation accuracy and

Super-Resolution

3.1 Introduction

Recently developed super-resolution algorithms have demonstrated performance ap-

proaching fundamental estimation-theoretic bounds. These algorithms have significant

potential for applications such as vehicular situational awareness using low-cost, short-

range millimeter wave radar sensors. In this chapter, we show that such algorithms can

approach single-sensor estimation-theoretic bounds for range and Doppler estimation.

We also investigate, the limits of estimation performance of one shot estimation and

investigate the feasibility of using low power sensors for short range applications.

The rest of the chapter is organized as follows. In Section 3.2, we model a single

sensor and describe the FMCW range-doppler processing. In Section 3.3, we discuss

how estimation algorithms, based on adaptation of recently developed super-resolution

algorithms [37, 38, 36] can provide enhanced accuracy range, doppler estimates. In

Parts of this chapter are reprinted from our conference paper [46], c©2016 IEEE
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Section 3.4, we show, via estimation-theoretic bounds, that a typical link budget for a low-

cost sensor suffices to provide accurate range-Doppler estimates and provide numerical

results illustrating the efficacy of the proposed estimation algorithms.

3.2 Per-Sensor Modeling and Design

3.2.1 Signal model

Each radar sensor transmits a Linear Frequency Modulated (LFM) chirp signal with

frequency:

f(t) = f0 + stn

where tn = t −
⌊

t
Tm

⌋
is chirp time and s = BW

Tm
is slope of chirp (we ignore reset time

between chirps). Each chirp sweeps bandwidth B over chirp ramp duration Tm and the

FMCW frame containing Nch such chirps. The transmitted signals across sensors are

assumed to be orthogonal to others for any delay or Doppler shift, hence we can model

the signals for each sensor separately [39].

The transmitted signal from any given sensor is a constant envelope signal with

complex envelope ejφ(t), ignoring scaling. The phase increment relative to the carrier is

given by φ(t) =
∫

2πf(t)dt, where f(t) denotes the instantaneous frequency. Thus, for

the nth chirp, we have f(t) = stn, writing t = tn+nTm for the nth chirp, with tn denoting

“fast time” within the chirp, and n indexing “slow time” across chirps.

The downconverted received signal from K targets is given by

yr(t) =
K∑
k=1

αke
jφ(t−τk)e−2πfcτk + w(t) τk =

2(rk + dkt)

c
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where αk is the complex amplitude of the reflected signal (depends on reflectivity and

range [40]), rk, dk denote the instantaneous range and doppler of kth target, and w(t) is

white complex gaussian noise.

Deramping against the original chirp waveform, we obtain the beat signal

bobs(t) = yr(t)e
−jφ(t) =

K∑
k=1

αke
j2π(−fcτk+stnτk−

sτ2
k

2
) + w(t) (3.1)

Sampling at rate 1/Ts, we obtain, after some simplifications and approximations, the

discrete-time signal

bm,n =
K∑
k=1

αke

j

mTs (Qdk + Prk)︸ ︷︷ ︸
Fast time

+QdkknTm︸ ︷︷ ︸
Slow time


+ wm,n (3.2)

where P = 4πs
c
, Q = 4πfc

c
, m ∈

[
−Ni

2
, Ni

2
− 1
]

is fast time index, Ni = Tm
Ts

, n ∈[
−Nch

2
, Nch

2
− 1
]

is slow time index. (Constant phases are absorbed into the {αk}).

Note that rk, dk correspond to range, doppler of kth target perceived at the frame center

(t = Tframe/2). We assumes an inertial trajectory within single frame which is reasonable

for targeted applications and Tf ∼ 1ms. This compensation is required to observe the

enhanced accuracy of estimation algorithms while comparing against CRLB in 3.4.2.

We can now rewrite in a form that clearly brings out the roles of fast and slow time:

bm,n =
K∑
k=1

αke
j(mωfTs+nωsTm) + wm,n

where ωf = Qdk + Prk, ω
s = Qdk.
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We can consolidate the samples into an observed signal matrix B:

B = A+W (3.3)

A =
K∑
k=1

αk



1 ejω
f
kTs ej2ω

f
kTs · · ·

ejω
s
kTm ej(ω

f
kTs+ω

s
kTm) · · · ...

ej2ω
s
kTm

...
. . .

...

... · · · · · · . . .


Standard range-Doppler estimation amounts to extracting the frequencies ωf across

rows (fast time) and ωs across columns (slow time), typically using a 2D DFT. This is

susceptible to “off-grid” effects and inter-target interference as we show in next section.

System Parameters

The FMCW system parameters used for simulation results are shown in Table 3.1.

Table 3.1: FMCW System Parameters
Carrier Frequency fc = 60 GHz
Sweep Bandwidth B = 0.5 GHz
Frame Duration Tf = 5 ms

IF Sampling Rate fs = 0.82 MHz

The “Rayleigh resolution” limits (which are easily surpassed by super-resolution

algorithms) corresponding to these parameters are as follows [41]: range resolution

∆R = c
2B

= 0.3 m and doppler resolution ∆vr = c
2fcTf

= 0.5 m/s. The maximum

unambiguous range rmax = Ni∆R = 19.2 m and the maximum unambiguous radial

velocity dmax = ± c
4fcTm

= ±16 m/s.
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3.3 Estimation Algorithms

We first discuss algorithms for range-Doppler extraction at each sensor, and then

discuss fusion across multiple sensors.

3.3.1 Per-Sensor Super-Resolution

2D-FFT: The simplest and most widely used method for extracting frequencies of the

rows and columns is to perform 2-D Fourier transform on matrix B.

ω̂sk, ω̂
f
k = F2D(B)

Ideally, all targets should appear as distinct peaks with magnitude proportional to αk

on top of a constant noise floor in the 2-D spectrum. However, these estimates are

constrained to the DFT grid (which can be oversampled) and therefore suffers from

“off-grid” effects and inter-target interference.

Improved algorithms: Traditional frequency estimation methods such as MUSIC give

superior performance at the cost of higher computations. A recent frequency estimation

method, called Newtonized Orthogonal Matching Pursuit (NOMP), combines greedy

pursuit with refinements using Newton’s method [37], outperforms classical MUSIC. This

algorithm has been generalized to 2D for spatial frequency estimation for 2D arrays [36].

We consider this generalization, as well as a simplification thereof, for range-Doppler

estimation with multiple targets. We show that these super-resolution algorithms are far

superior to the FFT, and approach estimation-theoretic bounds.

2D NOMP: The 2D-NOMP algorithm in [36] can be applied to extract frequencies

(ωf , ωs) such that,

ωf , ωs = arg min
ωf ,ωs

∥∥b-a(ωf , ωs)
∥∥2
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where b = a + w is the vectorized form of Eq. 3.3. An initial coarse estimate is obtained

using Interpolated 2D FFT followed by Newton refinement steps to get the final estimate.

NOMP2: The cost function to be minimized in each greedy step of 2D-NOMP can be

expressed as

S2D(g, ωf , ωs) =
∥∥Bres − gu(ωf )vT (ωs)

∥∥2

F

g, ωf , ωs = arg max
g,ωf ,ωs

Re(gHuH(ωf )Bresv
∗(ωs))− 1

2

∥∥gu(ωf )vT (ωs)
∥∥

where,

u(ω) =

[
1 ejωTm · · · ejω(Nch−1)Tm

]T
v(ω) =

[
1 ejωTs · · · ejω(Ni−1)Ts

]T

Instead of using a 2D-FFT to get an initial estimate for (ωf , ωs) as in 2D-NOMP, we

reduce complexity in NOMP2 by employing a rank 1 SVD followed by two 1-D FFTs.

The refinement Newton step remains the same (see [36] for details).

3.3.2 Range-Doppler Estimation Accuracy

Figure 3.1 shows a simulated scene containing 3 targets moving at randomly chosen

range and doppler with amplitude adjusted to have equal SNR.
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Figure 3.1: Range-Doppler response of 3 targets.

Estimation performance of both 2D NOMP and the simplified NOMP2 are similar

(and are therefore not plotted separately), and are significantly better than conventional

methods. The computational cost is compared in Figure 3.2: we see that NOMP2 is

substantially less complex thatn 2D NOMP, while still incurring a higher cost than the

standard FFT-based technique.

NOMP based super-resolution algorithms achieves higher accuracy and approaches

the CRB in the operating SNR region around -10dB.

0 1 2 3 4 5
time(s)

FFT Basic

FFT2 intp.

NOMP

NOMP2

A
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m
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Figure 3.2: Comparison of computational cost.
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3.4 Limits on Range-Doppler Estimation Accuracy

We now establish limits on the achievable performance via link budgets and estimation

theoretic bounds.

3.4.1 Link budget

Our link budget calculations use studies on Radar Cross section of human targets

[42], and typical low-cost 60 GHz CMOS transceiver specifications. The signal to noise

ratio (SNR) for FMCW radar is calculated by [41]:

SNR =
PCWGtGrλ

2σRCS

(4π)3R4LkTFRBIF

where PCW is the average transmitted power, kTFRBIF is the receiver noise power, Gt, Gr

are antenna gains, R is target range, L is system loss, σRCS is the radar cross-section

(RCS), and BIF is the IF Bandwidth.

Considering 0 dBm transmitted power per sensor (which is easily generated at 60

GHz, for example, by CMOS power amplifiers), BIF = 1 MHz and short ranges (R ∼ 10

m), the operating signal to noise ratio (SNR) is above −10 dB. We now use estimation-

theoretic bounds to establish that we can indeed hope to obtain satisfactory performance

in this regime.

3.4.2 Estimation Theoretic lower bounds

In order to understand the best achievable localization accuracy with FMCW radar

sensors, we evaluate lower bounds on the sample covariance of range-Doppler estimates.

The CRB describes the error behavior at medium to high SNR when the estimate is

relatively close to true value. However at low SNR, large errors occur which are not
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effectively captured by CRB. This SNR threshold can be found by computing the Ziv-

Zakai Bound (ZZB) [43].

Cramer-Rao Bound (CRB): The Cramér Rao Bound provides the lower bound,

Cov(θs) ≥ I(θs)
−1 where I(θs) is Fisher Information Matrix (FIM) given by,

I(θs) = E
[(
∇θsL(mobs

s |θs)
) (
∇θsL(mobs

s |θs)
)H]

I(θs) =
∑
m,n

8π2|α2
s|

σ2

 m2

(Niδr)
2

mn
NiNchδrδd

mn
NiNchδrδd

n2

(Nchδd)2

 (3.4)

=
2π2NiNch|α2

s|
3σ2

1/δ2
r 0

0 1/δ2
d

 (3.5)

where L(mobs
s |θs) is the log likelihood of the beat signal for given target range-Doppler

θs and reflection coefficient αs at sthsensor; m,n are fast, slow time indices such that

t = mTs + nTm; δr = c
2B
, δd = c

2fcNchTm
are the Rayleigh resolution of FMCW radar.

The result is analogous to the well known result for range-Doppler FIM in, for example

([44], §10.2).

Ziv-Zakai Bound (ZZB): CRB describes behavior of likelihood function around the

true value of parameter being estimated. However, at low SNR, it is possible to make

large errors in parameter estimation which are not captured by the CRB. The ZZB

captures the effect of large errors at low SNR via a hypothesis testing framework, while

behaving like the CRB at high SNRs. Since the quantity to be estimated is periodic

in nature, we use the vector periodic bound (VPB) result from [45]. The ith diagonal
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element of sample covariance matrix CCC , Cov(r, vr) is bounded as,

Cii ≥
1

2

∫ π

0

max
δδδ:δδδi=h

{Q(δδδ)}hdh, (3.6)

Q(δδδ) ,
∫
ψ∈Ψ

(pθ(ψ) + pθ(ψ+ δ))Pe(ψ,ψ+ δ)dψψψ (3.7)

where, pθ(ψψψ) is the prior probability density, Pe(ψ, ψ + δψ, ψ + δψ, ψ + δ) is the optimal probability of

error for a binary hypothesis testing problem with H0 = ψψψ and H1 = ψ + δψ + δψ + δ. Assuming

uniform prior distribution of ωf , ωs. The optimal error probability is computed as,

Pe(ψ,ψ+ δ) = Q

(∥∥A(ωf , ωs)− A(ωf + δ1, ω
s + δ2)

∥∥
F√

2σ

)

where ‖.‖F is Frobenius norm and δδδ = [δ1, δ2]T . Plugging in A from Section 3.3 and after

some manipulations,

Pe(ψ,ψ+ δ) = Q

 |α|
σ

√√√√NiNch −

∣∣∣∣∣sin(Niδ1
2

)

sin( δ1
2

)

sin(Nchδ2
2

)

sin( δ2
2

)

∣∣∣∣∣


which is invariant to ψψψ and only depends on δδδ. So,

Q(δδδ) = Pe(δδδ)

∫
ψ∈Ψ

2pθ(ψ)dψψψ = 2Pe(δδδ)

Consider i = 1 case i.e. for calculating ZZB bound on ωf

C11 ≥
1

2

∫ π

0

max
δδδ:δ1=h

2Pe(δδδ)
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We readily see that for fixed δ1 = h, Pe(δδδ) is maximum for δ2 = 0,

C11 ≥
∫ π

0

hQ

 |α|
σ

√√√√NiNch

[
1−

∣∣∣∣∣ sin
(
Nih

2

)
Ni sin

(
h
2

)∣∣∣∣∣
] dh (3.8)

Similarly with i = 2, we obtain ZZB bound on ωs

C22 ≥
∫ π

0

hQ

 |α|
σ

√√√√NiNch

[
1−

∣∣∣∣∣ sin
(
Nchh

2

)
Nch sin

(
h
2

)∣∣∣∣∣
] dh (3.9)

Estimation Accuracy

The ZZB and CRB for range estimation are computed numerically and plotted in

Figure 3.3 along with NOMP estimation error. The NOMP estimation accuracy for both

range and doppler achieve CRB for medium to high SNR. The ZZB threshold, defined

as the SNR at which point ZZB converges to CRB indicates the low SNR region where

far errors are present. The required transmitted signal power for location estimation can

be evaluated by checking each sensor operates comfortably beyond the ZZB threshold

at the maximum range of interest. The example link budget in Section 3.4.1 showed

that for a human target at range r = 10m, a received SNR=-10 dB can be obtained

using transmitted power of 0 dBm and typical hardware specifications [46]. This lies

comfortably above the ZZB threshold which is around −22 dB for this case.

By using grid-less estimation algorithms such as NOMP [9], higher accuracy fre-

quency estimate can be achieved. An additional benefit of improved frequency estimate

is observed while subtracting the individual target components from beat to obtain the

residual. The enhanced amplitude estimate helps to effectively cancel out individual

components so that all targets are detected. We benefit from this improvement in not

just localization accuracy but also in association as well as we how in next chapter. See
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Figure 3.3: Per-Sensor range(red) & doppler(green) estimation accuracy.

Section 4.4.3 for details.

Estimation resolution analysis

Note that some targets fail to achieve CRB at high SNR, this happens specifically

for targets which are very close in both range and doppler simultaneously. Since, range,

doppler are extracted using 2D frequencies estimated from the beat signal, whenever two

targets are closer in both dimensions they cannot be resolved. In order to understand

the resolvability of multiple targets we analyze the CRB of target in presence of another

target. The FIM for joint state θ12
s = [θ1

s ,θ
2
s ] is given by

I(θ12
s ) = E

[(
∇θ12

s
L(Ms|θ12

s )
) (
∇θ12

s
L(Ms|θ12

s )
)H]

=

I11 I12

I21 I22
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Assuming reflection coefficients for both targets are equal i.e. |α1
s| = |α2

s|, the FIM blocks

can be expressed using (3.4),

I11 = I22 =
8π2|α2

s|
σ2

∑
m,n

Qmn = I[θ1
s ]

I12 = I21 =
8π2|α2

s|
σ2

∑
m,n

Qmne
j2π
(
m∆r
Niδr

+ n∆d
Nchδd

)
(3.10)

where,

Qmn =

 m2

(Niδr)
2

mn
NiNchδrδd

mn
NiNchδrδd

n2

(Nchδd)2


and ∆r = r1,s − r2,s,∆d = d1,s − d2,s are the separation in range and doppler perceived

at sensor between the two targets. The joint CRB is the inverse of this FIM matrix,

Cov(θ12
s ) ≥ I([θ12

s ])−1

≥ I−1
11 + I−1

11 I12

(
I22 − I21I

−1
11 I12

)−1
I21I

−1
11

We see that in presence of target θ2
s , an extra term gets added to the CRB corresponding

to interference. Notice that as separations ∆r,∆d → 0, the phase shift,
(
m∆r
Niδr

+ n∆d
Nchδd

)
in (3.10) vanishes and I12 → I11 resulting in larger CRB.

We first analyze the resolution of range and doppler independently assuming no sepa-

ration is present in the other dimension. Fig. 3.4 shows the CRB and estimation perfor-

mance as these separations are increased. The CRB increases as range/doppler separation

reduces and estimation error of NOMP algorithms also follows a similar trend. However,

we observe the NOMP algorithm error reduces below CRB at low separation, this is be-

cause at very low frequency separation, both target reflections merge together resulting in
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Figure 3.4: Range, Doppler resolution v/s target separation analysis with two targets.
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a single target detection. The estimation error is dominated by ambiguity errors caused

by this interference until it converges to CRB. The point of convergence increases with the

SNR, which indicates the increasing difficulty in super-resolving closely-spaced targets

due to the proximity with other targets. The estimated number of targets (dotted line)

reaches correct value (NT = 2) at the same point where RMSE diminishes significantly

to −15 dB.

Figure 3.5: Range, Doppler resolution v/s 2D Range-Doppler separation.

When both range and doppler separation are jointly considered, a separation in either

one is sufficient to resolve two targets. Fig. 3.5 shows the simulated estimation error

for NOMP algorithm across various range-doppler separations at reference location z =

[−4, 6, 1,−4]. We observe that the estimation error exceeds the −15 dB threshold when

the separation lies within an elliptical region in ∆r −∆d plane.

Hence, we define a minimum separation condition between the range, doppler sepa-

ration of targets as follows,

r − r′ > δr OR d− d′ > δd
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We use this condition in the next chapter to distinguish scenes which suffer from such

estimation errors due to range-doppler proximity
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Chapter 4

Spatial Association

4.1 Introduction

In this chapter, we investigate the problem of localizing multiple targets using a single

set of measurements from a network of radar sensors. Such “single snapshot imaging”

provides timely situational awareness, but can utilize neither platform motion, as in

synthetic aperture radar, nor track targets across time, as in Kalman filtering and its

variants. This first requires correctly associating the observations collected across sensors

with a unique object. Associating measurements with targets becomes a fundamental

bottleneck in the single snapshot setting.

We present a computationally efficient method to extract 2D position and veloc-

ity of multiple targets using a linear array of FMCW radar sensors by identifying and

exploiting inherent geometric features to drastically reduce the complexity of spatial as-

sociation. The proposed framework is robust to detection anomalies, and achieves order

of magnitude lower complexity compared to conventional methods. While our approach

is compatible with conventional FFT-based range-Doppler processing, we show that more

sophisticated techniques for range-Doppler estimation lead to reduced data association

61



Spatial Association Chapter 4

complexity as well as higher accuracy estimates of target positions and velocities.

4.1.1 Related Work

The majority of prior work addresses temporal data association problem for tracking,

relying on the temporal continuity of target state to assist in associating observations

across multiple frames. While the problem of spatial association studied here has received

relatively less attention, we provide a brief overview of conventional approaches in the

literature that can be extended for the spatial problem.

The association problem between a pair of sensors can be optimally solved using

the well-known Hungarian algorithm [47]. However, a naive approach to extend this

to multiple sensor case by factorizing into pairwise (2D) association over consecutive

sensors does not work well in the presence of detection anomalies such as miss, false

alarm, clutter, and close-target interactions [48].

The multi-sensor association problem can be formulated as the Maximum A-Posteriori

(MAP) estimation of most likely chain of observations across sensors. In order to solve

this problem, a graphical model is defined, where a node represents sensor detection and

an edge represents pairwise association likelihoods [49]. The association between the sen-

sors is obtained by solving the Minimum Cost Maximum Flow (MCF) problem over this

graph. A variety of methods such as Linear Programming [50], Dynamic Programming

[51, 52], and push-relabel maximum flow [49] has been proposed to efficiently solve the

MCF problem.

Although those methods solve the optimization in polynomial time, they require

specialized mechanisms such as expansion of observation set over successive iterations

to resolve detection anomalies. Moreover, the complexity of the MCF problem grows

quickly as O(N3 logN), where N is the number of sensors [49]. In comparison with
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prior work, our approach reduces complexity by leveraging the high accuracy of sensor

observations and their geometric properties.

Probabilistic approaches such as gated Nearest Neighbor (NN) [53] method sequen-

tially associate sensor observations across the sensors. At each sensor, each observation is

associated with its closest match to the state predicted by the chain of observations from

the past sensors. However, using only single most likely observation to form association

is prone to clutter and anomalies in noisy scenarios. Also, a single association error can

cause significant contamination in final state estimate. This problem is well known in

the literature on Simultaneous Localization and Mapping (SLAM), and various improve-

ments such as Multiple Hypothesis Testing [54], K-best assignment [55], and JPDAF [53]

have been proposed. In contrast, we propose an alternative search approach based on

geometric fitting criteria which does not depend on such probabilistic models and avoids

the contamination of state.

Bottom up approaches based on grid search over a set of candidate target states have

been suggested in the literature [56]. In [57], an approach based on enumerating all

possible candidates followed by pruning and merging shows promising results. Random-

ized adaptive search procedures such as random consensus sampling (RANSAC) [58],

Interpretation Tree [59], Joint Compatibility Branch and Bound [60] have been shown

to address the detection anomalies. The methods extract possible association chain by

using branch and bound type search strategies where a heuristic technique is employed

to reduce the search complexity. Our graphical approach also uses similar pruning tech-

niques to perform the graph search, but with the additional use of geometric constraints

and a geometric fitting error metric for guiding the search.
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Map of this chapter

The rest of this chapter is organized as follows. In Section 4.2, we introduce the

association problem in the single snapshot localization setting. Our graph association

algorithm is presented in Section 4.3. Finally, we evaluated the proposed algorithm over

different system parameters and provide comparisons with conventional approaches such

as MCF and NN in Section 4.4.

Notation

a,a, A,A represent scalar, vector, matrix and set respectively. We use [.] to construct

vector, matrix and {.} to construct set. ×,∪,∩ denote the cartesian product, union and,

intersection of two sets and ∅ denotes a NULL value. n(A) represents the number of

non-empty elements in set A. ◦ denotes element-wise multiplication between vectors. AT

denotes transpose of matrix A and ∧ denotes logical “and” operator.

4.2 Problem Description

4.2.1 System Model

Consider a scenario in which a linear array of NS radar sensors locates NT targets

in a two-dimensional (2D) scene as in Figure 4.1. Without loss of generality, we assume

that the sensor array located along x-axis and centered at origin is static and uses its

own odometer information to obtain the absolute kinematic state of the targets.

The kinematic state (i.e., instantaneous position and velocity information of all tar-

gets) of the scene is given by

Z = {zk}NTk=1
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Figure 4.1: 2D System model with linear sensor array.

where zk = (xk, yk, vkx, v
k
y) is the kinematic state of target k with an instantaneous velocity

of (vkx, v
k
y) at position (xk, yk).

Due to the positioning of the sensor array, all sensors in the array perceive the same

kinematic states except x-coordinate information which is given by x − li for sensor i,

where li is the x-coordinate of sensor i. Also, the desired kinematic state of target k,

zk ∈ Z can be uniquely mapped to a Range-Doppler pair Ti(zk) = (rki , d
k
i ) by using

perceived information at sensor i through the following non-linear relations,

rki =
√

(xk − li)2 + (yk)2, dki =
(xk − li)vkx + ykvky

rki
. (4.1)

4.2.2 Single Snapshot Localization

In order to extract range and doppler information of target k, each sensor i uses the

signal (i.e., mobs
i (t)) reflected back from the scene in monostatic mode. In this study, we

focus on localization of the scene using a single snapshot. For that reason, the kinematic

state of the scene is assumed to be constant for a certain time interval and the scene
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localization is performed based on the range and doppler information gathered during

that time interval. Based on those, the Maximum Likelihood Estimator (MLE) for the

scene including all NS sensors can be expressed as,

ẐML = argmax
Z

Ns∏
i=1

L
(
mobs
i |Ti(Z)

)
(4.2)

where mobs
i corresponds to the observed signal in a single snapshot and L

(
mobs
i |Ti(Z)

)
is the conditional log likelihood of the observed signal for scene Z.

The optimization problem in (4.2) is difficult in general since the number of targets

(i.e., NT ) is not known and a brute force search for Z incurs exponential complexity in

the number of targets; that is, n(D(z))NT for a grid D(z). In addition, the observations

contain a variety of anomalies such as clutter, missed detections, and false alarms, which

further complicates the solution.

In order to facilitate the solution of the problem in (4.2), the problem is divided into

two stages as follows:

Estimation

The Range-Doppler pairs of Mi < NT non-occluded targets are estimated from re-

ceived signal mobs
i at sensor i using efficient algorithms proposed in the literature [46].

The estimate at sensor i for kth target can be modeled as follows,

(rki ) = (rki )
true + wRi + b̃ki , (4.3a)

(dki ) = (dki )
true + wDi + b̄ki (4.3b)

where wRi ∼ N (0, σ2
ri

) and wDi ∼ N (0, σ2
di

) denote independent Gaussian distributed

noises with zero mean and b̃ki and b̄ki denote the bias errors introduced due to proximity
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with any other Mi − 1 targets in the scene. The noise variance depends on estimation

accuracy at the given SNR which, in turn, depends on target radar cross section (RCS),

path loss, and antenna directivity. For simplicity, we assume equal received signal power

across all targets in the scene.

We denote the set of estimated range-doppler pairs at sensor i by Θi = {
⋃Mi

k=1 θ
k
i }

where θki =
[
(rji ), (d

j
i )
]T

. It is important to note that the superscript of estimated range-

doppler pairs θki is different from the true target index since we do not know the true

target index that the observation at the sensor belongs to.

Association problem

The estimation of kinematic state Z requires the association of those un-ordered

range doppler pairs, Θi, collected across all sensors. An association chain is defined as

the ordered set of range doppler observations, A : {{θi}NSi=1|θi ∈ Θ̃i} which is constructed

from the NULL augmented sets; that is, Θ̃i = Θi ∪∅. θi = ∅ corresponds to the NULL

state and represents the occurrence of missed detection at sensor i.

The spatial association problem can be formulated as the following maximum a pos-

teriori (MAP) estimation problem,

A∗ = argmax
A⊂Θ̃1×···×Θ̃NS

logP (A)P (Θ|A) (4.4)

such that Ai ∩Aj = ∅ ∀i 6= j, n(Ak) ≥ 2

where Θ =
⋃NS
i=1 Θi denotes the set of all range-doppler observations, A = {A1,A2, · · · }

denotes a subset of association chains chosen from the set of all possible potential chains,

Θ̃1 × Θ̃2 × · · · Θ̃NS . The optimal solution A∗ consists of the set of chains which jointly

maximizes overall log likelihood while the constraints ensure that no two chains share a
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common observation and each chain contains at least two observations.

When the targets are well-separated, the bias terms in (4.3a) and (4.3b) vanish and

the likelihood for the individual targets becomes independent across multiple targets. In

this case, the log likelihood in (4.4) simplifies to,

logP (A)P (Θ|A) =
∑
A∈A

logP (A) + logP (Θ|A)

where P (Θ|A) =
∏NS

i=1 P (Θi|A) is the probability of detecting the range-doppler pairs

which can be modeled by a Bernoulli distribution,

P (Θi|A) =


α , if target missed at sensor i ,Ai = ∅

1− α , else

where α denotes the probability of detection errors in (4.5) and is set to nominal value

α = 0.05 [49]. This model accounts for the occurrence of both miss and false alarms

across the sensors in the likelihood, which is given by,

P (Θ|A) = αNS−n(A)(1− α)n(A)

Also, P (A) is the likelihood of chain modeled using the perceived range-doppler pairs,

(r̂i, d̂i) = Ti (ẑ) for a target state ẑk predicted by the chain (see Section 4.3.2). By ignoring

the constant terms which preserve the MAP solution, we define the normalized negative
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log likelihood as follows,

L(A) =
∑
θi∈A

(
(r̂i − ri)2

σ2
r

+
(d̂i − di)2

σ2
d

)

+ n(A) log
α

1− α
(4.5)

where θi = [ri, di]
T is the observation from ith sensor in the association chain A and σ2

r

and σ2
d are the nominal variance terms for range and doppler, respectively. These values

are set based on the value of CRB at nominal SNR = −20 dB; that is, σ2
ri

= δ2
r/(κSNR)

and σ2
di

= δ2
d/(κSNR) (see Section 3.4.2 for details). The first term in (4.5) denotes

the squared error between the estimated and observed range-doppler pairs in the chain

while the second term penalizes the selection of smaller chains which prevents formation

of duplicate chains for the same target. Hence, the association problem is reduced to the

following constrained minimization problem,

A∗ = argmin
A⊂Θ̃1×···×Θ̃NS

∑
A∈A
L(A) (4.6)

such that Ai ∩Aj = ∅∀i 6= j, n(A) ≥ 2

The joint minimization problem over all potential association chains in (4.6) is difficult

in general. For that reason, we use an iterative approach where the most likely chains of

observations are identified and removed from observation set Θ sequentially,

argmin
A∈Θ̃1×···×Θ̃NS

L(A) such that n(A) ≥ 2 . (4.7)

Without any prior knowledge of association between the nodes, the number of potential

chains Θ1 × Θ2 × · · ·ΘNS still grows exponentially. However, the formulation in (4.7)
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enables the utilization of various network optimization methods to identify the most

likely chain. Once the associated chains of range-doppler observations are found across

sensors, the kinematic state of the scene can be easily obtained by solving the inverse

kinematic problem [x̂, ŷ, v̂x, v̂y] = T−1(A) using Gauss-Newton algorithm [46].

4.3 Graphical Association

In order to solve the association problem in (4.7), we formulate the spatial association

problem using graphical models and present our low-complexity graphical search method

to obtain association chains efficiently via geometric relations.

4.3.1 Graph Generation

Figure 4.2: Target-based observation graph for a scene with 3 targets and 4 sensors.
Sensors 1, 2 observe all 3 targets in different orders. Sensor 3 misses the observation of
target state z2 while sensor 4 contains a false observation. Desired association chain,
A is shown by the shaded set of nodes.
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To begin with, we define a target-based graph to perform data association with fol-

lowing elements:

• Node θki represents the kth range-doppler pair at sensor i. Nodes for a given sensor

are arranged along a single column of the graph as shown in Figure 4.2.

• Edge eklij = [θki ,θ
l
j] denotes the linkage between pairs of observation across sensor i

and sensor j, which can correspond to a feasible target zklij referred to as “Phantom”.

• Chain Aj is represented by the sequence of two or more nodes spanning distinct

sensors, which is associated to a single target, ẑj.

Geometric Constraints A significant portion of the edges can be easily discarded

in the graph generation phase by using the following geometric constraint on target’s

range (for noiseless case),

CG(eij) : (ri − rj < lij) ∧ (ri + rj > lij) (4.8)

where lij = |li − lj| represents the separation between sensor i and sensor j.

The graph G = (V,E) is initialized with vertices for all Range-doppler pairs V =

{Θi}NSi=1 and edges E between any two consecutive nodes that satisfy condition CG(ek,li−1,i),∀k ∈

[1,Mi−1],∀l ∈ [1,Mi] for all i ∈ {2, . . . , NS} given in (4.8).

4.3.2 Spatial Association using Geometric Features

In this subsection, we describe the solution of association problem presented in (4.7)

using the graph G by exploiting geometric relations between range, Doppler, and sensor

geometry. For clarity of exposition, we focus on the association procedure of a single

target z = [x, y, vx, vy] and, therefore, drop the superscript k for the sake of simplicity.
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Geometric Relations

The range of target observed at ith sensor is given by

ri =
√

(x− li)2 + (y)2 (4.9)

The Doppler component is the rate of change of range and it is given by,

di = ṙi =
(x− li)vx + yvy

ri

ridi = (x− li)(vx) + yvy (4.10)

For a linear array of sensors, the range and doppler measurements for a target satisfy the

following relations based on (4.9) and (4.10):

r2
i = r2

j − 2x(li − lj) + (l2i − l2j ) (4.11a)

ridi = rjdj − (vx)(li − lj) (4.11b)

where ri (rj) and di (dj) are the range and doppler estimated at the ith (jth) sensor,

respectively. li (lj) is the x-coordinate of ith (jth) sensor. (4.9) and (4.10) indicate

that for the noiseless setting, the range-doppler products and range squared are linear

with respect to target’s velocity and position at x-coordinate, respectively. Therefore,

the correct associations can be identified by fitting the observations to those geometric

relations.

State Prediction and Fitting Error

The presence of noise in (ri, di) causes high error in these geometric relations due to the

quadratic dependence. An estimate of target state parameters x̂, v̂x can be obtained by
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minimizing that error between observed and predicted range and doppler values. Let q1 =

[ridi|(ri, di) ∈ A] and l = [li|θi ∈ A] denote the vector of range-doppler products using

observations in chain A and the vector of corresponding sensor x-coordinates respectively.

Predicted fit q̂1 can be expressed using the geometric relation in (4.11b) as follows:

q̂1 = −vxl + κ11 = Hs1

where H = [l,1], s1 = [−vx κ1]T , and κ1 is a constant. Then, the least squares estimate

for ŝ1 is obtained as

ŝ1 = argmin
s1

‖q1 −Hs1‖2 (4.12)

= (HTH)−1HTq1 .

Therefore, the least square estimate is obtained as v̂x = uTq1 where u = −H(HTH)−1e1

and e1 = [1, 0]T .

Similarly, let q2 = [r2
i |(ri, di) ∈ A] denote the vector of range squared observations

in chain A, predicted fit q̂2 can be expressed using the geometric relation in (4.11a) as

follows:

q̂2 − l ◦ l = −2xl + κ21 = Hs2

where s2 = [−2x κ2]T and κ2 is a constant. The least squares estimate of x̂ is obtained

as

ŝ2 = argmin
s2

‖q2 − l ◦ l−Hs2‖2 (4.13)

= (HTH)−1HT (q2 − l ◦ l) .
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Hence, we obtain x̂ = uT (q2 − l ◦ l)/2.

The remaining state parameters (i.e., y and vy) are obtained using the geometric

relations in (4.9) and (4.10) as

ŷ =

√
1

n (A)

∑
θi∈A

(r2
i − (x̂− li)2) ,

v̂y =
1

n(A)

∑
θi∈A

ridi − (x̂− li)v̂x
ŷ

.

The normalized geometric fitting error of a chain A can be computed using these

estimates as follows:

F (A) =
‖q1 − q̂1‖2

η1

+
‖q2 − q̂2‖2

η2

(4.14)

=

∥∥(I −H(HTH)−1HT
)
q1

∥∥2

η1

+

∥∥(I −HT (HTH)−1H
)

(q2 − l ◦ l)
∥∥2

η2

(4.15)

where η1 and η2 are normalization constants that are set based on CRB (see Appendix

B.1 for details) and (4.15) is obtained by substituting the predicted fits into (4.14). It

is important to note that the error in (4.15) is additive over the observations in chain

A. Therefore, the extension of the chain cannot reduce the fitting error. In other words,

F (A) is monotonically non-decreasing over the length of chain A. For that reason, the

fitting error provides a simple measure of the geometric consistency of a chain, which can

be used to traverse the graph and extract the chains efficiently.

Geometric Association

We now present a graph search procedure which obtains the associated chains by

minimizing geometric fitting error F (A) in (4.15) and negative log likelihood L(A) in
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(4.5). We apply the geometric relations by adding constraints on the desired chain, A to

the optimization problem in (4.7) as follows,

min
A∈Θ̃1×···×Θ̃Ns

L(A)

such that n(A) ≥ γ, (4.16a)

F (A) < τ
n(A)
f (4.16b)

The constraint in (4.16a) restricts the number of missed observations to be less than

Ns − γ and the constraint in (4.16b) only allows chains with good geometric fit to be

selected. In order to provide a solution for the optimization problem in (4.16), we perform

Depth First Search (DFS) over the graph generated in Section 4.3.1 to extract the chains,

where those additional constraints help in reducing the search complexity. Our complete

Spatial Association using Geometry Algorithm (SAGA) is outlined in Algorithm 3. Here

is a brief description:

1. We start the graph search by setting γ = Ns so that only chains that include

observations from all sensors are extracted. For that reason, we consider a graph

having edges between consecutive sensors only. This helps to reduce the chains

encountered during initial DFS procedure (see Appendix B.2 for details).

2. The DFS is guided by geometric fitting error F (A). After each node is visited,

the fitting error of candidate chain is calculated and the chain is ignored if it

has a fitting error higher than predefined threshold τNsf . Since the fitting error

is non-decreasing over the length of the chain, most of the candidate chains are

eliminated before reaching at the end of the graph, which reduces the complexity

further. Details of DFS are shown in Appendix B.3. At the termination of the

DFS, the corresponding chain of nodes is added to solution A† if it satisfies all
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the constraints in (4.16) and the negative log-likelihood of the association chain

is below a predefined threshold (i.e.,L(A) < τ
n(A)
l ). The nodes belonging to the

selected chains are removed from the graph together with their corresponding edges

to keep subsequent chains disjoint.

3. In order to deal with missed detection cases at sensors, the minimum chain length

constraint (i.e.,γ) is relaxed in steps upto robustness level ρ. Due to that relaxation,

the graph includes not only the edges between consecutive sensors but also the edges

among the nodes that skip over h consecutive sensors. Those edges are called Skip-

h edges where h = NS − γ. Then, the DFS procedure is repeated for different

minimum chain length constraints. Consequently, in this procedure, NULL states

are taken into account and the generated chain does not include any observation

from a sensor that misses the corresponding target by skipping over the observations

of sensor via Skip-h edges. In addition, the DFS procedure implicitly accounts for

NULL state in the beginning and end of a chain by starting searching from different

nodes in consideration of minimum chain length constraint.

4. The thresholds (i.e., τf and τl) for the geometric fitting error and the likelihood

depend on length of the chain n(A) and their initial value is set based on CFAR

criteria (see Appendix B.1 for details). Using a tight initial threshold τf for F (A)

restricts the number of branches to be explored at each node to a smaller set. This

reduces the initial complexity of DFS while allowing only a subset of association

chains A† ⊂ A∗ to be found. The thresholds are later relaxed by a factor of β > 1

to allow the observations contaminated with noise to be selected. The relaxation

is stopped when no further chains with length n(A) ≥ Ns − ρ exist in the graph.

Robustness: During the chain length relaxation, a Skip edge is added between the

observations across sensor i and sensor q if
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Algorithm 3 Spatial Association using Geometric Assistance

1: Input: Graph G, Robustness level ρ
2: Initialize Chains A† = ∅, τ = [τf , τl]init
3: Repeat
4: Remove all Skip edges
5: for h = 0 to ρ do
6: Set minimum chain length: γ = Ns − h
7: Add Skip-h edges to graph G

8: for v ∈ V do
9: DFS from node v: A← GA-DFS(v, γ, τ )

10: if Valid Chain, A is found then
11: A† ← A

12: Remove chain from graph V = V− {A}
13: end if
14: end for
15: end for
16: Relax thresholds: τ ← βτ
17: Until Chains with length n(A) ≥ Ns − ρ exists in G

18: Output: Selected chains A†

1. Observations θi and θq satisfy the geometric constraint CG(eiq) in (B.2), and,

2. The target state predicted by θi and θq differs by a predefined threshold τz from

the ones predicted by using all observations on the paths that connect θi and θq.

CS(eiq) :
∥∥ẑAp − ẑiq∥∥ > τz , ∀Ap : {θi,θq} ∈ Ap (4.17)

where Ap is in the form of Ap = {θi,θj, · · · ,θq} with θi and θq at the edges of the

path, ẑiq indicates the predicted target state based on θi and θq, and ẑAp shows

the predicted target state using the observations in Ap.

Enforcing the condition in (4.17) avoids the formation of multiple chains corresponding

to the same target and avoids unnecessary increase in the number of edges. The amount

of skip connections introduced in the graph is controlled by the robustness level; that is,

0 ≤ ρ ≤ (Ns − 2), which sets the maximum number of missed detections that can be
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tolerated across the sensor array. In this way, addition of such edges provides a flexible

mechanism to provide robustness against missed detection in the sensors while keeping

search space in control.

Complexity: The non-decreasing property of F (A) is used to discard unlikely chains

in the early stages of DFS. This allows for rapid extraction of associations from graph

without requiring search over all possible chains in the graph. The minimum track length

threshold, γ is reset to maximum value after each relaxation. Therefore, the skip edges

in the graph can be removed at the end of inner loop to reduce search complexity further.

Therefore, our approach exploits the geometric structure of observations across multiple

sensors to reduce search complexity. However, in the absence of such structure (e.g., a

scenario including only low-accuracy range-doppler observations), our algorithm visits all

edges in graph. For that reason, it is difficult to calculate the complexity of the proposed

algorithm since we discard branches at the nodes based on the geometric relationships

between the observations. We, therefore, evaluate the relative complexity of our approach

against other methods via simulations in Section 4.4.2.

4.3.3 Brute force Association

Before evaluating the performance of our main algorithm, we describe an iterative

Brute force search method, which relies on the fact that an approximate kinematic state

estimate can be derived by using two connected observations in a graph. In other words, a

state estimate can be obtained for each edge in a graph, which is a part of the association

chain A. Therefore, the search space for the association problem in (4.7) can be reduced

to the set of edges.
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The likelihood of a phantom ze corresponding to an edge e ∈ E can be computed as,

L(ze) =
Ns∑
i=1

[
min
θ∈Θi

(
(r′i − ri)2

σ2
r

+
(d′i − di)2

σ2
d

)]
(4.18)

where [r′i, d
′
i] = Ti(ze) is the perceived range and doppler at sensor i for target state ze.

Then, the most likely phantom can be selected by evaluating (4.18) over all edges and

choosing the one that achieves the minimum negative log likelihood; that is, z∗ = ze∗ for

e∗ = argmine∈E L(ze). Then, the observations associated with z∗ can be identified via

the following neighborhood constraint:

N(z∗) =
Ns⋃
i=1

{(ri, di)|(ri − r∗i ) ≤ δr ∧ (di − d∗i ) ≤ δd}

where [r∗i , d
∗
i ] = Ti(z

∗) are the perceived range-doppler at sensor i and δr and δd are the

range and doppler resolution parameters defined in Section 3.4.2. The algorithm carrying

out this procedure is presented in Algorithm 4.

Algorithm 4 Brute force Spatial Association

1: Initialize Graph with observations Θ: G = (V,E)
2: Augment Graph with skip edges
3: for h = 0 to ρ do
4: Add Skip-h edges to graph G

5: end for
6: Initialize Z = ∅
7: while E 6= ∅ do
8: Find most likely phantom, Z← z∗ from edge z∗ = argmine∈E L(ze)
9: Remove all vertices explained by z∗, V← V−N(z∗)

10: Update edges E

11: end while
12: Return Selected phantoms Z

Since all edges in the graph are checked while selecting the phantoms, this approach

exhibits higher complexity than our proposed algorithm. Moreover, evaluation of state
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likelihood L(ze) in (4.18) is more expensive than evaluation of chain likelihood L(A) in

(4.5) as it involves a minimization over all other observations. We use this algorithm as

a benchmark against our proposed algorithm in Section 4.4.

4.4 Simulation Results

In this section, we evaluate the performance of the proposed spatial association al-

gorithm, SAGA against the brute force search algorithm through various performance

metrics. We consider a linear array of NS FMCW radar sensors each of which collects

range and doppler observations from the scene. The FMCW radar system parameters are

set based on the ones that are used in typical low cost automotive systems at mm-Wave

frequencies [61] where range and doppler resolutions are δr = 0.3 m and δd = 0.5 m/s re-

spectively. In the simulations, a single snapshot of the scene is considered with multiple

targets having equal received SNR at all sensors. The kinematic states of targets are ran-

domly selected based on uniform distributions x ∼ U(−8m, 8m), y ∼ U(2m, 12m), vx ∼

U(−10m/s, 10m/s), vy ∼ U(−10m/s, 10m/s).

It is important to note that when range and doppler separation between two targets

gets small, the estimation algorithm either provides a merged estimate or results in

detection anomalies such as miss and false alarm. In order to differentiate the scenes with

such estimation errors due to range-doppler proximity, we consider two different scenarios

with two different scenes. The well-separated scene is generated by enforcing a minimum

separation between the range and doppler of the targets at all sensors. The adverse

scene does not have such constraints and contains additional missed detection anomalies

by randomly removing measurements from the sensors with probability Pmiss. Unless

stated otherwise, the nominal values of system parameters are presented in Table 4.1.
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Table 4.1: Simulation Parameters
Number of targets NT = 20

Number of radar sensors Ns = 6
SNR −10 dB

Sensor Array Width Lw = 4 m
Max range, doppler 19.2 m, ±16 m/s

Simulated misses Pmiss = 0.05
Robustness Level ρ = 4

4.4.1 Localization Accuracy

In this subsection, we analyze the localization accuracy of kinematic state estimates

obtained using associated sensor observations. This depends on the accuracy of un-

derlying range-doppler estimates. The position and velocity estimation errors for state

estimates Ẑ are computed as follows:

Dp(Ẑ) =
1

n(Ẑ)

∑
ẑ∈Ẑ

min
z∈Ztrue

dp(z, ẑ)2

Dv(Ẑ) =
1

n(Ẑ)

∑
ẑ∈Ẑ

min
z∈Ztrue

dv(z, ẑ)2

where dp(z, z
′) =

√
(x− x′)2 + (y − y′)2 and dv(z, z

′) =
√

(vx − v′x)2 + (vy − v′y)2 are

the errors in position and velocity, respectively. Figure 4.3 shows the Root Mean Square

Error (RMSE) in range-doppler estimated at sensor level for different number of targets

in a well-separated case. The RMSE converges to the CRB bound as SNR increases and

the SNR at which this convergence occurs is called as SNR threshold. The SNR threshold

provides an indicator for the localization performance when multiple targets, NT > 1 are

present. We observe that range, doppler RMSE at individual sensors achieves CRB at

a SNR= −15 dB threshold. The RMSE for position, velocity estimates obtained from

sensor observations also achieve their CRB at the same SNR threshold. This shows that
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association using SAGA does not introduce any additional errors to the localization pro-

cess when SNR is above this threshold. However, the RMSE increases sharply below the

SNR threshold due to the difficulty in associating noisy range-doppler pairs. Therefore,

we use nominal SNR = −10 dB in our simulations to perform further analysis.
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Figure 4.3: Range-Dopper estimation accuracy and Position-Velocity estimation ac-
curacy versus SNR.

Cardinality Error and OSPA: In the case of multiple targets, the number of valid

targets identified by the system is also an important performance metric. An estimated

target ẑ is classified to be valid only if it lies within a region “close” to the true targets,

minz∈Ztrue ‖ẑ − z‖ < d̄ where d̄ sets the maximum error threshold. The cardinality

error is defined as the difference between actual number of targets and the number of

estimated target; that is, NT − Ne = |Ztrue| − |Ẑ|. That error is caused due to the

detection anomalies in the estimation algorithm at sensor level as well as during the

association stage. In such cases, the localization accuracy by itself does not capture the
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true performance of the system. Therefore, we use the OSPA metric [62], which combines

the localization and cardinality error into a single performance metric and is given by,

OSPA(Ẑ) =

√√√√ 1

n(Ẑ)

(
m∑
i=1

min
(
dc(ẑi), d̄

)2
+ |Ne −NT |d̄2

)
(4.19)

where m is the number of valid targets, Ne−NT is the cardinality error and dc(ẑi) is the

localization error computed relative to closest true target given as

dc(ẑi) = min
z∈Ztrue

dp(z, ẑi)
2 + dv(z, ẑi)

2 .

Figure 4.4 shows the OSPA error along with the localization and cardinality errors

with increasing scene density in the well-separated case. Both localization error and car-

dinality error start to increase as the scene gets denser until a breaking point where the

cardinality error increases significantly. At SNR=-15 dB, this breaking point occurs near

NT = 17 for SAGA whereas NT = 21 for Brute force algorithm. Notice that the localiza-

tion error is misleading beyond this point since it only considers the errors in the reduced

set of valid targets. Hence, the OSPA metric effectively combines both quantities so that

it represents localization error only when scene is sparse and cardinality errors when the

scene is dense. We observe that SAGA has slightly worse overall performance compared

to the Brute force search as the number of targets increases. However, the performance

difference reduces as we increase SNR. Moreover, SAGA obtains the association with

significantly lower complexity than Brute force as we show in the next section.

4.4.2 Complexity Reduction

In this section, we analyze the computational savings achieved by the proposed SAGA

algorithm and provide comparison against traditional approaches. In order to effectively
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Figure 4.4: Overall localization accuracy versus number of targets at SNR = −15,−10
dB. The solid and dotted lines represent the performances of SAGA and Brute force
association algorithms, respectively.
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compare the performance, we now consider adverse scenes in which the sensor obser-

vations contain detection anomalies. Figure 4.5 shows the graph truncation over the

iterations of the graph search with different miss probabilities for SAGA and Brute force

search. When miss probability is low, SAGA rapidly extracts all chains. As the missed

detections increase, the robust scheme automatically increases the number of iterations

by allowing the relaxation of constraints in DFS graph search. On the other hand, brute

force search always requires large number of iterations.
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Figure 4.5: (Top) Graph size at end of each iteration of association algorithm for
different Pmiss. SAGA is denoted by solid line while Brute force is denoted by dotted
line. (Bottom) OSPA versus Pmiss with different robustness levels ρ.

SAGA provides robustness to the missed detections by selectively adding skip edges to

the graph. This mechanism reduces the OSPA error in adverse scenarios at the expense

of more computational complexity. The level of robustness can be tuned using parameter

ρ based on the adversity of the scene. Figure 4.5 also shows the estimation performance
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for different robustness levels with increasing scene adversity (i.e., increasing miss detec-

tions). OSPA error reduces with higher robustness levels. However, low robustness level

(e.g., ρ = 1) is sufficient to obtain good performance at typical miss detection probability

Pmiss < 0.05. Similarly, the higher robustness level helps to reduce the cardinality errors

when the scene contains higher number of targets. The highest robustness level is ρ = 4,

which corresponds to the minimum chain length constraint in (4.16a) with n(A) ≥ 2.

Runtime Comparison: We now compare the computational complexity of our ap-

proach against Brute force. Computing the number of operations that occur during the

association process is difficult since the number of chains visited depends on a variety of

factors such as the fitting error thresholds and minimum chain length. However, given

the same sensor estimates for the simulated scenes, we compare the relative complexities

of SAGA against other methods in Figure 4.6 in terms of total number of operations of

Floating Point operations (FLOPS) conducted during association and the total runtime.

We observe that SAGA exhibits an order of magnitude lower complexity reduction com-

pared to the brute force search algorithm. Moreover, this improvement increases as the

number of targets increases, which highlights the advantage of our approach. In addition,

the increase in the robustness level of the proposed algorithm (e.g., from ρ = 0 to ρ = 4)

causes a slight increase in complexity compared to brute force approach.

We also compare the complexity against traditional methods such as gated Nearest

neighbor filter (NN ) and Minimum cost flow (MCF ). The NN association scheme [53]

builds the association chain by starting with a local kinematic state estimate from a

pair of sensor observations and sequentially adding the nearest measurement from other

sensors to update this state. The MCF association scheme [49] identifies the most likely

set of chain by solving the minimum cost maximum flows over the graph. The cost of

each edge is set based on its relative likelihood similar to our brute force method. We

use an optimized implementation [63] of MCF for the comparison purposes.
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Figure 4.6: Association complexity versus the number of targets averaged over 100
trials using nominal parameters with robustness levels ρ = 0 and ρ = 4. Total number
of FLOPS is denoted by blue line while the runtime is in red.

In order to compare the complexity of those algorithms, we count the number of times

the primary objective function (i.e., the likelihood cost in (4.7)) is computed during the

graph search procedure. Figure 4.7 provides that comparison with increasing number of

targets. SAGA has the lowest complexity across all scene densities while NN and MCF

lie between SAGA and Brute force search. Since the NN method is not able to predict

the correct chain due to the greedy criteria and requires repeated search over the graph,

the total complexity of it approaches to the complexity of the Brute Force search as the

scene becomes dense. On the other hand, MCF algorithm predicts the chains relatively

well and its complexity lies between our approach and NN.

Figure 4.8 shows the overall runtime of algorithms for an increasingly denser scene.

We observe that SAGA is faster than the other methods by an order of magnitude. Since,

the FLOPS count is not available from those implementations, we only compare the

overall runtime which follows similar trends as FLOPS count and provides a reasonable

estimate of algorithmic complexity.
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Figure 4.7: Number of evaluations of Likelihood, L(A) (solid) and Geometric fitting
error F (A)(dotted) with increasing number of targets.

0 10 20 30 40

Num Targets

10−1

100

101

102

R
u
n
ti

m
e

(s
)

Algorithm Comparison

MCF

Brute

SAGA

NN

Figure 4.8: Runtime comparison with traditional algorithms.

4.4.3 Benefit of Super-Resolution

Our algorithm extracts the geometric relationships between range-doppler measure-

ments based on the sensor array geometry and builds the association chains by adding

likely observations at new sensors to the existing chains. In this section, we investigate

the role of enhanced accuracy of range and doppler estimates obtained using NOMP [9]

super-resolution algorithm in spatial association by providing comparison against coarse
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estimates obtained using DFT. Figure 4.9 shows the localization and cardinality error for

both cases. From the figure, it is obtained that the localization accuracy using NOMP

estimates achieves the CRB when number of targets are moderate, whereas DFT has

higher RMSE as expected. However, the RMSE of NOMP deviates away from CRB as

the number of targets increases and approaches to the DFT accuracy for dense scenes. It

is important to note that our association algorithm works even with the coarse estimates

even though NOMP provides accuracy boost for our algorithm which identifies more tar-

gets resulting in lower cardinality errors compared to DFT in the presence of multiple

targets.
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Figure 4.9: Estimation accuracy (thin) and cardinality error (thick) versus number of
targets at SNR = -15 dB.

Since NOMP estimates are more accurate, their geometric fitting errors are better

than DFT. This allows the reduction in association time at the expanse of some compu-

tation overhead over DFT during estimation. Figure 4.10 compares the runtime of the

estimation and association stages with different number of sensors for NT = 20 targets.

We observe that the association time with NOMP estimates is more than 10 times lower

than the one with DFT estimates while the estimation overhead is about 2 − 3 times.

This complexity reduction is due to the lower geometric fitting error of association chains
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formed using higher accuracy NOMP estimates. Figure 4.10 also shows that the com-

plexity of association stage becomes more significant than the one of estimation stage

for the overall complexity as the number of targets and the number of sensors increases.

Therefore, the overall complexity reduction achieved via enhanced accuracy estimates

becomes more pronounced with a denser scene and larger number of sensors.
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Figure 4.10: Runtime comparison of association (solid) & estimation (dotted) stages
versus number of sensors.

4.4.4 Array Geometry

In this subsection we analyze the localization performance of linear sensor arrays

from the perspective of data association. We consider the adverse scene with Pmiss = 0.2

to emphasize our findings. The array width and the number of sensors affect both

localization accuracy and association complexity.

Increasing the array width generates more spatial diversity in range-doppler measure-

ments across sensors. This helps to reduce the OSPA error for a given number of sensors.

On the other hand, larger distance among the sensors weakens the pruning criteria for the

graph edges used in (4.8) resulting in a denser graph with a higher number of potential

associations between sensors. Therefore, the overall localization performance improves
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with wider arrays at the expense of slightly more association complexity. The available

sensor width is an important design constraint in practical applications (e.g., length of

side profile of a vehicle). For that reason, we analyze the effect of number of sensors in

the presence of fixed array width LW = 4 m.
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Figure 4.11: Association versus number of sensors for Brute force (thick dotted),
SAGA (thin solid) with different robustness levels.

We find that increasing the number of sensors also improves association performance

as well as association complexity. Figure 4.11 shows OSPA versus number of sensors for

Brute force and SAGA. While the OSPA for Brute force association reduces with more

sensors, we observe that the OSPA for SAGA with robustness level ρ achieves minimum

OSPA with Ns = ρ + 3 sensors, and increases for Ns > ρ + 3. This is caused due to the

missed observations, which prevent formation of chains with minimum length constraint

Ns − ρ. For an array with Ns sensors and a robustness level of ρ, the expected number

of missed targets can be expressed as,

E[miss] =

min (Ns−2,ρ+1)∑
k=1

(
Ns

k

)
P k
miss(1− Pmiss)Ns−k

Figure 4.12 shows that missed targets observed using our approach closely match this
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expected value for various values of ρ,Ns.
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Figure 4.12: Comparison of simulated (solid) and theoretical (dotted) cardinality error.

As a result, we obtain that the robustness level needs to be increased to avoid higher

cardinality errors even though localization error reduces with more sensors. That causes

increase in the complexity of our algorithm; however, it still achieves lower complexity

compared to Brute force algorithm. A more sophisticated method can be devised to

select a subset of sensors only during the association stage to . However, this remains an

open issue beyond our current scope.

92



Chapter 5

Conclusions and Future Work

In this dissertation, we have provided two examples where inherent geometric relations

within an optimization problem were exploited to drastically reduce the computational

complexity. We conclude by discussing some open problems and summarizing the main

contribution,

5.1 Large effective aperture design using array of

subarray architecture

We have shown that a large effective aperture can be designed by an optimized sparse

placement of subarray which produces smaller beam width than a compact placement.

This is achieved by a multi-objective optimization framework that exploits geometric

heuristics to reduce computational complexity. Our results demonstrate that trading off

beam width versus side lobes when synthesizing a large effective aperture does indeed

produce performance gains in bearing estimation. Compared to a naive sparse placement,

the control of side lobes via our optimized placement produces the most significant gains

when estimating the bearing for multiple sources.
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Exploring the application of our framework for communications, where transmit and

receive beamforming gains are fixed by the number of elements, but control of beam

width and sidelobes affects interference, is an interesting direction. In the context of

sensing, our work may be viewed as design of an individual sensor which can be placed

within a more comprehensive architecture, such as a network of sensors for localization

and tracking.

In our tiled architecture, the locations of antenna elements in a subarray are fixed

once we specify the location of the subarray center. This constraint makes it difficult

to adapt the extensive literature on sparse array optimization, which typically considers

elements that can be freely placed, for our present purpose. The difficulty is compounded

by the lack of closed form expressions for beam attributes of interest. However, since the

objectives are only mildly dependent on the configuration of elements within a subarray,

it might be possible to simplify the optimization problem, and possibly adapt ideas from

the literature on sparse array optimization. This is an interesting direction for future

research, especially given the importance of tiled architectures in realizing a large aperture

leveraging low-cost hardware for subarrays with a moderate number of elements.

5.2 Enhanced Estimation accuracy and resolution

The estimation-theoretic bounds computed here indicate the potential of low cost

mmWave sensors to get adequate resolution in short to medium range localization appli-

cations. Super-resolution algorithms for per-sensor range-Doppler estimation yield per-

formance close to the estimation-theoretic bounds. Combining these measurements over

multiple sensors yields accurate position and velocity estimates, as long as the array ge-

ometry is suitably designed. While we have considered a simple point target model here,

more sophisticated extended target models become important at short ranges [64, 65],
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and is an interesting area our future work.

5.3 Low Complexity Spatial Association

We have shown that simple constraints relating range-Doppler observations to sen-

sor geometry can be exploited to significantly reduce the complexity of spatial associa-

tion. Our system-level simulations demonstrate that our framework for spatial associa-

tion based on these geometric constraints is robust to noisy observations and detection

anomalies, and that it scales well with the number of sensors and targets. Our approach

is compatible with standard FFT-based range-Doppler processing, but enhanced accu-

racy estimation at each sensor (i.e., super-resolution of range and Doppler) significantly

improves both localization accuracy and association complexity. Important topics for

future investigation include extending these concepts to more complex target models

(e.g., for extended targets, and targets causing both specular and diffuse reflection), and

combining them with complementary strategies utilizing platform and/or target motion

across multiple snapshots.
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Appendix A

Sparse Array

A.1 Mean square error in 2D DoA estimation

For 2D DoA estimation, the error along any given angle ξ is given by aTRεa, where

a = [cos ξ, sin ξ]T is the directional cosine and Rε is the error covariance matrix. As-

suming that {νi, qi, i = 1, 2}, denote the eigenvalues and eigenvectors of Rε, the MSE

averaged over a (assume ξ uniform over [0, 2π]) is given by

MSE = Ea
[
aTRεa

]
= ν1Ea

[∣∣aTq1

∣∣2]+ ν2Ea
[∣∣aTq2

∣∣2]
= ν1

||q1||2

2
+ ν2
||q2||2

2
= (ν1 + ν2)/2 =

1

2
tr(Rε)

where we have used E[cos2 ξ] = E[sin2 ξ] = 1
2
.

A.2 2D Beamwidth & CRB

We define 2D beamwidth using the Taylor series expansion of beampattern Ruo(u)

around mainlobe Ruo(0). Since the beampattern around the main lobe. and hence the
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beamwidth, is invariant to beamforming direction (see 2.2.3), we assume uo = 0 without

loss of generality, and drop the subscript: R0(u) , R(u). By taking the derivatives of

(2.2), theTaylor series expanision up to second order is obtained as

R(u) ≈ R(0)− k2

N
uTDTDu (A.1)

We define Half Power Beam Contour (HPBC ) as the closed contour around mainbeam

with {u : R(u) = 0.5R(0)}, which is approximated as an ellipse using (A.1) as follows:

uTDTDu =
N

2k2
R(0) (A.2)

Consider the eigendecomposition of DTD given by,

DTD = λ1p1p
T
1 + λ2p2p

T
2 (λ2 ≥ λ1)

The eigenvectors p2,p1 correspond to major and minor axis of HPBC ellipse respectively,

and depend only on the element positions.

ǔo

ǔ1

'

x

y

z

Figure A.1: 2D Beamwidth

Figure A.1 shows the mainlobe of a beam and the dotted shaded region represents
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its HPBC ellipse. ǔo, ǔ
1, ǔ2 correspond to unit vectors in the direction of main beam,

vertex and co-vertex of the HPBC where, ǔ = [u, v,
√

1− u2 − v2] is the unit vector

towards directional cosine u = [u, v]. These can be expressed as,

ǔo =


0

0

1

 , ǔ1 =


sinϑ cosφmax

sinϑ sinφmax

cosϑ

 , ǔ2 =


sinϕ cosφmin

sinϕ sinφmin

cosϕ

 (A.3)

where φmax, φmin are perpendicular azimuthal angles and ϑ, ϕ are the maximum and

minimum beamwidth angles subtended from the major and minor axis of this ellipse to

the mainbeam.

BWmax = ϑ =

(
360

π

)
cos−1 (ǔoǔ1) (A.4)

BWmin = ϕ =

(
360

π

)
cos−1 (ǔo.ǔ2) (A.5)

Substituting the major and minor axis from (A.3) in (A.2), we obtain

λ1 sin2 ϑ =
N

2k2
R(0) =⇒ sinϑ ≈ BWmax ∝ 1/

√
λ1

λ2 sin2 ϕ =
N

2k2
R(0) =⇒ sinϕ ≈ BWmin ∝ 1/

√
λ2

That is, the beamwidths along extremal directions are inversely proportional to the square

roots of the eigenvalues of DTD.
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Relation to CRB

Using (2.15), the error covariance matrix is lower bounded by

Rε ≥ CRB = J−1
F =

N

2k2γ

(
DTD

)−1

=
N

2k2γ

(
1

λ1

p1p
T
1 +

1

λ2

p2p
T
2

)
(using (λ2 ≥ λ1))

Using Appendix A.1, the MSE can be lowerbounded by

MSE ≥ CRB =
1

2
tr(J−1

F ) =
N

4k2γ

(
1

λ1

+
1

λ2

)
=

N

4k2γ

(
sin2(ϑ) + sin2(ϕ)

)
∝ (BWDoA)2

SNR

where BWDoA =
√

BW2
max + BW2

min =
√
ϑ2 + ϕ2 is defined as MSE beamwidth (sin θ ≈

θ for small angles θ).

A.3 Vacancy search operator

Our reference subarray module shown in Figure A.2 occupies space in addition to

antenna elements. In order to keep element polarizations aligned, these modules can be

placed in either up (0◦) or down (180◦) pose. We outline a procedure to list the vacant

gridpoints Vi = T(Cn
i ) where the new subarray can be placed without overlapping with

already placed dormant subarrays at Cn
i . We define the subarray state as the center c

of the element pattern and its pose ν, since vacancies depend on both parameters.

c̃ = {c, ν}∀c ∈ Cn
i , Vi
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The pose variable ν ∈ {νu, νd, νf} denotes whether subarray can be placed in up only(νu),

down only(νd) or free pose (νf , either up or down) at the location c. For a given set of

dormant subarray states, C̃n
i we identify all vacant states Ṽi for placing the new subarray.

Once a new subarray is placed, the states of all dormant subarrays are updated (e.g., a

free pose may switch to an up pose if the down pose becomes infeasible).

Figure A.2: The Subarray module and its two possible poses. Golden section are
copper patch antennas on the green colored chip.

A.4 Perturbation of array

In order to design a bin size for pruning array configurations, we analyze the effect of

perturbing the location of a single array element on the eigenvalues of the array covariance

matrix. Consider a small perturbation υ = [υx, υy] added to ith array element position:

d̄i = di + υ. The covariance for the perturbed array is

ΣD̄ =
(
DTD + υTυ + 2dTi υ

)
/N = ΣD + G + 2H

where

G =
1

N

 υ2
x υxυy

υxυy υ2
y

 , H =
1

N

υxdxi υxdyi

υydxi υydyi


Using Weyl’s inequality [66] for real symmetric matrices, the eigenvalue perturbation
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is bounded as

|λ̄i − λi| ≤ ‖G + 2H‖2 ≤ ‖G‖2 + 2 ‖H‖2

≤ ‖G‖F + 2 ‖H‖F

The frobenius norms of G,H are

‖G‖F =
(
υ2
x + υ2

y

)
/N

‖H‖F = Ri

√(
υ2
x + υ2

y

)
/N

where Ri =
√
d2
xi + d2

yi is the distance of the ith element from the array center. Hence,

the overall variation of eigenvalues with variation ∆e =
√(

υ2
xi + υ2

yi

)
of the ith element

is

|λ̄i − λi| ≤
(2Ri + ∆e)

N
∆e (A.6)

Thus, the eigenvalues are more sensitive to perturbations in the locations of elements

further from the center. For perturbations within one grid size used in our placement

search algorithm, the eigenvalue of the subarray center covariance can vary at most

by (2Ri+
√

2∆g)

Ns

√
2∆g, and we use this as a guideline for discretizing the eigenvalues for

removing geometrically similar configurations.
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Estimation and Association

B.1 Association Constraint Relaxation

The choice of initial stopping thresholds τnf and τnl and scaling factor β for subsequent

relaxations in SAGA algorithm governs the total complexity of association algorithm. In

order to initialize the association algorithm, we set tight thresholds for L(A) and F(A).

Assuming the range-doppler observations have small error (i.e., wRi � ri, w
D
i � di in

(4.3)), the expected negative log likelihood in (4.5) can be approximated as

L(A) ≈
∑
θi∈A

(
(wri )

2

σ2
r

+
(wdi )

2

σ2
d

)
.

Since wRi ∼ N (0, σ2
r) and wDi ∼ N (0, σ2

d) are standard Normal distributed random

variables, L(Ak) has chi-squared distribution, χ2
2n(A) with 2n(A) degrees of freedom.
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Then, the expected fitting error in (4.14) can be approximated as

F (A) =
∑
θi∈A

(
(r̂id̂i)− (ridi)

)2

η1

+
((r̂i)

2 − (ri)
2)

2

η2

≈
∑
θi∈A

(
riw

D
i + diw

R
i

)2

η1

+

(
2riw

R
i

)2

η2

(B.1)

where (r̂i and d̂i) denote the perceived range-doppler pair at sensor i for predicted state z

and θi = (ri, di) denotes the observed range-doppler pair at sensor i. The normalization

factors η1, η2 are set to the variance of numerator terms which is,

(η1)i = Var[riw
d
i + diw

r
i ] ≈ σ2

ri
d2
i + r2

i σ
2
di

+ σ2
ri
σ2
di

(η2)i = Var[2riw
r
i ] ≈ 4r2

i σ
2
ri

Using those values to normalize (B.1) results in F(Ak) ∼ χ2
2n(A) being chi-squared dis-

tributed with 2n(A) degrees of freedom. Hence, the thresholds for the association algo-

rithm are determined as follows,

τ
n(A)
f : Pr(F (A) > τ

n(A)
f ) = PFA

τ
n(A)
l : Pr(L(A) > τ

n(A)
l ) = PFA

where PFA is the nominal false alarm rate set to 0.01.

Note that while the normalization factors η1, η2 depend on ri, di, we set this based

on the maximum range, doppler values to get a conservative initial value. This does not

cause a problem since the sucessive relaxation procedure loosens that threshold so that

chains with high fitting error can be extracted.
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The relaxation factor, β should be set appropriately. Choosing a high value causes

faster convergence but might leads to false chains being identified. On the other hand,

a low value delays the extraction of loose chains. In the simulations, we find that β = 2

performs well.

B.2 Minimum Ambiguity Association

Lemma 1 In the ideal detection scenario (i.e., no miss or false alarms), the phantoms

generated between a pair of sensors is minimum for consecutive sensors.

Proof: Recall that phantom targets are generated when range perceived at a pair of

sensors satisfy conditions (4.8). For a phantom, zpqij generated by incorrectly associated

observations, θpi ,θ
q
j , across consecutive sensors i, j, following relations hold,

rpi − r
q
j < lij, rpi + rqj > lij (B.2)

Now consider q̄th observation at sensor k adjacent to sensor j which corresponds to same

target as θqj , the following relations hold,

rqj − r
q̄
k < ljk (using (4.8))

rqj + ljk > rq̄k (ljk ≥ 0, Triangle inequality)

Using these along with (B.2) we obtain,

rpi − r
q̄
k < lik, rpi + rq̄k > lik

Hence any phantom produced between consecutive sensors i, j also generates a phantom
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between sensors i, k by skipping over intermediate sensor j. Hence,

n(Θi)∑
p=1

n(Θi+1)∑
q=1

n(zpqi,i+1) ≤
n(Θi)∑
p=1

n(Θk)∑
q=1

n(zpqi,k)

Therefore, phantoms generated between a pair of sensors is minimum for consecutive

sensors.

Association complexity is due to the presence of unwanted phantom targets which need

to be discarded based on their likelihood. When a target is observed at all sensors, it

is sufficient to associate observations along consecutive sensors. Lemma 1 states that

the association of observations along consecutive sensors generates the lowest number of

phantoms during graph search. Hence, the number of potential ambiguities are minimized

when the graph search procedure is conducted across consecutive sensors first.

B.3 Depth First Search

A depth first search algorithm is outlined in Algorithm 5. At each node, the DFS

procedure traverses through all branches which have geometric fitting error below the

maximum error threshold τNsf . On reaching the end of the graph, we select the chain if it

satisfies the likelihood, fitting error and minimum chain length constraints. In addition,

we check for possible chain termination at each node after going through all its branches.

This step implicitly accounts for the NULL state at the end of a chain.

B.4 CRB for Position and Velocity

Using the range-doppler model in Section 4.3, we evaluate the single target CRB

for kinematic parameters z̄ using the log likelihood of range-doppler observations A =
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Algorithm 5 Geometry Assisted Depth First Search

1: ProcedureGA-DFSv,A, γ, τ
2: Get list of children of v that geometrically fit, B(v) =

{
vj : F([A, vj]) < τNsf

}
3: if B(v) 6= ∅ then
4: Sort B(v) using geometric fitting error, F ([A, vj])
5: for vj ∈ B(v) do
6: Branch out a new chain Aj : A← vj
7: Ao ← Call GA-DFS(vj,A

j, γ, τ )
8: Exit loop if valid chain Ao is found.
9: end for

10: end if
11: Check if chain can be terminated at v
12: if n(A) ≥ γ,L(A) < τ

n(A)
l , F (A) < τ

n(A)
f then

13: Select Ao ← A,
14: end if
15: Output: Ao

16: EndProcedure

{θi}Nsi=1 given kinematic state z̄, which is

L
(
{θi|z̄}Nsi=1

)
=

Ns∑
i=1

(
(r̄i − ri)2

σ2
ri

+
(d̄i − di)2

σ2
di

)

where θi = (ri, di) are observed range-doppler pair for sensor i, (r̄i, d̄i) = Ti(z̄) is true

range-doppler pair for given target state z̄ and σ2
ri

and σ2
di

are, respectively, the range

and doppler CRBs obtained in (3.5). The FIM for z̄ can be evaluated as

I(z̄) = E
[
∇zL

(
{θi|z̄}Nsi=1

)]
.

The CRB obtained from inverse FIM is used to find position and velocity CRB as follows,

CRBp = I(z̄)−1
(1,1) + I(z̄)−1

(2,2)

CRBv = I(z̄)−1
(3,3) + I(z̄)−1

(4,4)
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The CRB of velocity is a function of both range and doppler variances whereas the CRB

of position only depends on the variance of range. We use the nominal range and doppler

CRB values to set the minimum separation distance threshold, τz = 10
√
CRBp + CRBv

between targets. This threshold is also used to check similarity between chains in the

association algorithm.

B.5 Convergence of SAGA Algorithm

In this section, we show that the solution of proposed algorithm approaches true value

as the chain length increases. Let q∗1 and q∗2 denote the true range-doppler product and

range squared vectors for a chain A, respectively. The resulting error in the estimate of

kinematic parameters found in Section 4.3.2 can be expressed as

e(A) = uT (q − q∗) = uT (ξ) .

Then, the resulting mean square error becomes

E[e2(A)] = E[(uTξξTu]

= uTE[ξξT ]u

≤ λmax ‖u‖ (Courant-Fischer-Weyl)

≤ λmax
eT1 (HTH)−1e1

=
λmax
V ar(l)

where λmax is the maximum eigenvalue of E[ξξT ] which approximately corresponds to the

largest geometric fitting error over all sensors. The estimation error in x, vx is inversely

proportional to the variance of sensor’s x-coordinate, which increases linearly with the

number of sensors and quadratically with the array width.
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