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Abstract

Conformal Bach Flow

by

Jiaqi Chen

In this thesis, we introduce a new type of geometric flow of Riemannian metrics

based on Bach tensor and the gradient of Weyl curvature functional and coupled

with an elliptic equation which preserves a constant scalar curvature along with

this flow. We named this flow by conformal Bach flow. In this thesis, we first

establish the short-time existence of the conformal Bach flow and its regularity.

After that, some evolution equations of curvature tensor along this flow are derived

and we use them to obtain the L2 estimates of the curvature tensors. After

that, these estimates help us characterize the finite-time singularity. We also

prove a compactness theorem for a sequence of solutions with uniformly bounded

curvature norms. Finally, some singularity model is investigated.

Keywords: Riemannian manifold, Geometric Flow, Bach tensor
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Chapter 1

Introduction

1.1 Weyl Curvature

Weyl curvature, named after Hermann Weyl, plays an important role in mod-

ern physics. It is the trace-free part of Riemann curvature tensor, hence, it won’t

carry any information about the volume change but rather only how the shape of

the body is distorted by the tidal force [54].

One famous hypothesis came out by Penrose in [41]. He argues that the

universe must have been in a low entropy state initially in order for there now

to be a second law of thermodynamics. There is no generally accepted definition

of gravitational entropy but Penrose argues that low gravitational entropy must

mean small Weyl’s L2 norm.

In this thesis, we will investigate a new type of geometric flow defined by the

gradient of the Weyl functional. In dimension 4, such gradient is call Bach tensor,

which was introduced by Rudolf Bach [2] to study conformal geometry in early
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1920’s, and is defined by

Bij =
1

n − 3
∇k∇lWikjl +

1

n − 2
RklWikjl (1.1.1)

In general relativity, such flow is proposed in [5, Chapter 7] to investigate

the Hořava-Lifshitz gravity, but the short time existence of such flow was not

established at that moment. We will present later that some modification is

necessary and the gradient property of such modified flow will be preserved.

1.2 Conformal Geometry

Weyl curvature is also highly related to the sphere theorem in Riemannian

geometry, especially in dimension 4. This theorem states that under what con-

ditions on the curvature can we conclude that a smooth, a closed Riemannian

manifold is diffeomorphic or conformal to the standard sphere?

First result is from the work of Margerin, a sharp pointwise geometric char-

acterisation of the smooth structure of S4. The powerful tool in this approach is

the Ricci flow.

Theorem 1.2.1. [40, Thm 1] Given a closed manifold with positive Yamabe con-

stant and the following curvature pinching condition:

|W |2 + 2|E|2 <
1

6
R2

then M4 is diffeomorphic to standard S
4 or RP

4.

Remark 1.2.2. This theorem is sharp, both (CP2, gF S) and (S3×S
1, gprod) satisfies

the equality.
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This theorem is improved by A.Chang, P.Yang and M.Gursky, a global curva-

ture condition is proposed to obtain the same result.

Theorem 1.2.3. [10, Thm A’] Given a closed manifold with positive Yamabe

constant and the following curvature pinching condition:

∫

M
|W |2 + 2|E|2dµ <

1

6

∫

M
R2dµ

then M4 is diffeomorphic to standard S
4 or RP

4.

Later on, Q.Jie, A.Chang, P.Yang improved this result by directly comparing

the curvature quantity to 16π2.

Theorem 1.2.4. [11, Thm A] There is an ǫ > 0, for any Bach flat manifold

(M4, g) with positive Yamabe type, if

∫

M
−1

2
|E|2 +

1

6
R2dµ > (1 − ǫ)16π2

then (M4, [g])
conf∼= (S4, gS4).

In this theorem, Bach flat condition is assumed, the proof of the theorem builds

upon some estimates in the work of Tian-Viaclovsky [53] on the compactness of

Bach-flat metrics on 4-manifolds.

Will Bach flow helps us here? We will see that both conformal Bach flow and

modified Bach flow we are going to introduced are gradient flows of L2-norm of

Weyl curvature in dimension 4. If we can prove such flow exists for a long time

with small initial data, i.e. L2 norm of Weyl is small, such flow might deform the

manifold to the standard sphere and we have hope to improve the gap theorem in

[11, Thm A] without any assumption on Bach tensor.
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1.3 High Order Geometric Flow

In this section, we introduce some histories in geometric flows.

Ricci Flow

One of the notable geometric flow is Ricci flow introduced by R. Hamilton in

his famous paper [25, Page 259].

Given a Riemannian manifold (Mn, g0), the solution to Ricci flow is a one-

parameter family of metric g(t) defined by



















∂

∂t
g = −2Ric[g]

g(0) = g0

For an arbitrary smooth initial metric, the flow will always exists at least for

a short time, but finite time singularities may occur which causes the flow to

terminate. Ricci flow is used to prove Thurston’s geometrization conjecture and

the Poincaré conjecture in [42] [44] [43].

With a huge success in the Ricci flow, researchers start investigating some

other higher-order geometric flows. These types of flows mostly come from the

gradient of a certain energy functional. Such monotonicity is crucial in many

scenarios.

Calabi Flow

E. Calabi introduces a high order geometric flow in [7][8], he shows that the

Calabi energy is decreasing along with the Calabi flow. It is expected that the

Calabi flow should converge to a constant scalar curvature metric.

In the case of Riemann surfaces, Chruściel [17, Proposition 5.1] shows that the

flow always converges to a constant curvature metric. After that, X.X.Chen [13]

proves the same theorem with a different approach.
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Gradient Flow of L2 Functional of Riemann Curvature

From 2008, Jeffery Streets published a series of papers [51][50] [49][48] to dis-

cuss a geometric flow which deforms metric under the gradient of the following

functional,

F =
∫

M
|Riem|2dµ

Since the equation is fourth-order, maximum principle techniques are not read-

ily available, J. Streets used integral estimate to investigate properties such as long

time stability of this flow. We will discuss some details about J. Streets’ work later.

Ambient Obstruction Flow

Another progress in this field is related to a family of tensors called obstruction

tensor Oij introduced by Fefferman and Graham in [20]. In [3, Theorem C],

Bahuaud and Helliwell studied the following flow



















∂

∂t
g = O + cn(−1)

n
2 (∆

n
2

−1R)gij

g(0) = g0

Short time existence and uniqueness [4] were proved. Since that Bach tensor

is the obstruction tensor in four-dimensional case, the modified Bach flow was

defined by


















∂

∂t
g = B +

1

2(n − 1)(n − 2)
∆Rgij

g(0) = g0

1.4 Outlines

In this thesis, we first introduce some preliminary results in Chapter 2, and

we also provide lots of the calculation details in Appendix. In Chapter 3, we

prove the short time existence of the conformal Bach flow, and we also show the
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uniqueness and regularity in this chapter. In Chapter 4, we derive the integral

estimates for Riemann curvature tensor under the conformal Bach flow, the volume

estimate and finite time singularity are investigated. In Chapter 5, we present the

Cheeger Gromov convergence theorem, and we prove the compactness of solutions

to conformal Bach flow. In the end, we investigate a special singularity model

obtained by re-scaling the metric near singularity.
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Chapter 2

Preliminaries

In this chapter, we will introduce some background in conformal geometry,

properties of Bach tensor and some motivation of conformal Bach flow.

Let’s first recall that on an n-dimensional manifold (Mn, g), where n is at least

4, Bach tensor is introduced by Rudolf Bach [2] to study conformal geometry in

early 1920’s, and is defined by

Bij =
1

n − 3
∇k∇lWikjl +

1

n − 2
RklWikjl (2.0.1)

where Wikjl is the Weyl tensor (A.9.3). We also introduce some equivalent forms

of Bach tensor in (A.11.2) and (A.11.6).

2.1 Bach Tensor in Conformal Geometry

One of the motivations we are interested in the Bach tensor is that Bach tensor

is highly related to the conformal geometry, it is a so-called obstruction tensor

in dimension 4. Such family of tensors comes out naturally in the ambient space

construction, this idea comes from Fefferman and Graham [20].
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Bundle Structure of Conformal Manifold

Consider a conformal manifold (Mn, [g]), we can specify the class [g] as a

subbundle of a bundle of symmetric 2-tensors on Mn. The reason is that for a

conformal class [g], each pair g1 and g2 in [g] is only differed by a smooth positive

function. This induces a trivialization of such subbundle, which is R
+ × M , we

denote it by G. The bundle structure of G is given by the projection and dilation

as follows, for any p ∈ M and s ∈ R
+, we have

π(g|p) = p : G → M and δs(g|p) = s2(g|p)

This metric bundle induces a symmetric 2-tensor on G naturally in the follow-

ing sense. Let z = (α, p) ∈ G, consider the vectors X and Y in the tangent space

TzG, we can define the symmetric 2-tensor by:

g0(X, Y ) := g|p(dπ(X), dπ(Y ))

Remark 2.1.1. This symmetric 2-tensor is homogeneous because δ∗
sg0 = s2g0.

Let S = d
ds

∣

∣

∣

s=1
δs be the vector field generated by the dilation. For any given

representatives g ∈ [g], we can define a natural coordinate of G:

G = {α2g|p : α = R
+, p ∈ Mn} = {(α, p) : α = R

+, p ∈ Mn}

With this definition, the projection and dilation will be:

π(α, p) = p and δs(α, p) = (sα, p)

which gives us the vector field generated by the dilation: S = αdα. The symmetric

2-tensor can also be defined as g0(X, Y ) = α2g|p(dπ(X), dπ(Y )).

8



Remark 2.1.2. this symmetric 2-tensor is not Riemannian, because the projec-

tion will send S to zero. We can think S is in the direction of a single fiber.

Ambient Space Construction

Suppose that (Mn, [g]) is a conformal manifold and G is the metric bundle we

defined before. We consider the space G × R which is identified by the map:

i : G −→ G × R

z ∈ G 7−→ (z, 0) ∈ G × R

(2.1.1)

for any z ∈ G.

Given a coordinate (x1, x2, · · · , xn) on Mn, a representative g ∈ [g], we often

use coordinate (α, x1, x2, · · · , xn, ρ) on G × R. Fefferman and Graham defined

the pre-ambient space which means the coordinate system is normal. This is the

analog to the normal coordinate system on Riemannian manifold. They showed

that such coordinate exists and it is unique. In fact, those two extra coordinates

are defined by shooting geodesic rays, which is also named Fermi coordinates.

Once we have this coordinate system, we can define a so called ambient space.

Definition 2.1.3. [20] A pre-ambient space (G × R, g̃) of a conformal manifold

(Mn, [g]) is called an ambient space if:

(a) when n is odd, Ric[g̃] = 0 to infinite order at ρ = 0

(b) when n is even, Ric[g̃] = O(ρ
n
2

−1)

If we calculate the Ricci curvature directly, we will have the following ordinary

9



differential equation system.







































ρ
[

2g′′
ij − 2gklg′

ikg′
jl + Tr(g′)g′

ij

]

= Tr(g′)gij − (2 − n)g′
ij − 2Rij

1
2
gkl
(

∇kg′
il − ∇ig

′
kl

)

= 0

Tr(g′′) = 1
2
gklgpqg′

kpg′
lq

(2.1.2)

To solve this ODE system, we consider a formal power series expansion as

follows:

gij = g
(0)
ij + ρg

(1)
ij + ρ2g

(2)
ij + ρ3g

(3)
ij + · · · (2.1.3)

combine (2.1.2) and (2.1.3), and we collect terms with the same degree of ρ, then

we will have:






































−Tr(g(1))g
(0)
ij + (2 − n)g

(1)
ij + 2Rij = 0

∇kg
(1)
ik − ∇iTr(g(1)) = 0

2Tr(g(2)) − 1
2
g(1)klg

(1)
kl = 0

(2.1.4)

and

(8 − 2n)g
(2)
ij − 2g

(1)k
i g

(1)
jk − 2Tr(g(2))g

(0)
ij + g(1)klg

(1)
kl g

(0)
ij

= −∇k∇ig
(1)
jk − ∇k∇jg

(1)
ik + ∆g

(1)
ij + ∇i∇jTr(g(1))

(2.1.5)

take trace for the first equation in (2.1.4),

Tr(g(1)) =
R

n − 1
(2.1.6)

where R is the scalar curvature. With this result, we can solve for g(1). It turns

out we have:

g
(1)
ij =

2

n − 2

(

Rij − R

2(n − 1)
g

(0)
ij

)

= 2Aij (2.1.7)
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which is the twice of Schouten tensor(A.9.2).

From the other two equations in (2.1.4), we have the following results which

will help us solve for g(2).



















Tr(g(2)) = 1
4
g(1)klg

(1)
kl = AklAkl

∇kg
(1)
ik = 1

n−1
∇iR

(2.1.8)

Now we can derive g
(2)
ij by plugging previous results (2.1.6), (2.1.7) and (2.1.8).

g(2) satisfies the following equation,

(8 − 2n)g
(2)
ij = 2

(

∆Aij − ∇k∇jAik

)

+ 8AikAk
j − 2AklAklg

(0)
ij

− 2∇k∇iAjk +
1

n − 1
∇i∇jR

By the Ricci identity (A.6.1), we have:

∇k∇iAjk = ∇i∇kAjk − R
p

ikj Apk − R
p

ikk Ajp

=
1

2(n − 1)
∇i∇jR − R

p
ikj Apk + RikAk

j

=
1

2(n − 1)
∇i∇jR − R

p
ikj Apk + (n − 2)AikAk

j +
1

2(n − 1)
RAij

(2.1.9)

By the definition of Weyl tensor (A.9.3), we have:

R
p

ikj Apk = AklWikjl + Akl(A ©∧ g)ikjl

= AklWikjl +
1

n − 1
Aij + 2AklA

klgij − 4AikAk
j

(2.1.10)

With Schouten tensor, Bach tensor can be rewritten as

Bij = ∆Aij − ∇k∇jAik + AklWikjl (2.1.11)

11



In the end, we have:

(4 − n)g
(2)
ij = Bij + (n − 4)AikAk

j (2.1.12)

This result shows that, when n = 4, if the Bach tensor does not vanish, the

expansion is inconsistent. When n is even and greater than 6, such tensor is

called obstruction tensor Oij.

2.2 Property of Bach Tensor

In this section, we will introduce some properties of Bach tensor. We also have

some variant forms for Bach tensor in Sec A.11.

Proposition 2.2.1. Bach tensor is trace free.

Proof. Bach tensor inherits this trace free property from Weyl tensor, which is

the trace free part in Riemann curvature decomposition.

Proposition 2.2.2. Bach tensor is divergence free when n = 4.

Proof. It is well-known that when n ≥ 4, the divergence of Bach tensor is

∇jBij =
n − 4

(n − 2)2
CijkRjk (2.2.1)

where Cijk is Cotton tensor defined by

Cijk = (n − 2)
(

∇iAjk − ∇jAik

)

(2.2.2)

All details are in Proposition A.11.2. This result also shows that when n ≥ 5,

Bach tensor is no longer the gradient of L2 norm of Weyl curvature because the

gradient of any Riemann functional has to be divergence free.

12



Remark 2.2.3. We remark that Cijk is skew-symmetric in the first two indices

and trace-free in any two indices:

Cijk = −Cjik (2.2.3)

gijCijk = gikCijk = 0 (2.2.4)

Proposition 2.2.4. If the Riemannian manifold (Mn, g) is locally conformally

flat or Einstein, then it is Bach flat, i.e., Bij = 0.

Proof. First, we say that a manifold is locally conformally flat if and only if

its Weyl tensor vanishes[16, Page 29 Prop 1.62], therefore, its Bach tensor also

vanishes.

Conversely, if (Mn, g), n ≥ 4, is Einstein, we have

Rij =
R

n
gij (2.2.5)

With Einstein condition (2.2.5), Weyl tensor can be written as:

Wikjl = Rikjl − 1

n − 2
(Rijgkl + Rklgij − Rilgkj − Rkjgil)

+
R

(n − 1)(n − 2)
(gijgkl − gilgkj)

= Rikjl − R

n(n − 1)
(gijgkl − gilgkj)

(2.2.6)

Since Weyl tensor is also trace free, we have:

RklWikjl =
R

n
gklWikjl = 0 (2.2.7)

13



With (2.2.6) and (2.2.7), Bach tensor (2.0.1) will be:

Bij =
1

n − 3
∇k∇l

(

Rikjl − R

n(n − 1)
(gijgkl − gilgkj)

)

=
1

n − 3
∇k∇lRikjl

(2.2.8)

Combines with the second Bianchi identity, we conclude that

∇lRikjl = −∇iRkljl − ∇kRlijl

= −∇iRkj + ∇kRij

= −∇i

R

n
gkj + ∇k

R

n
gij = 0

(2.2.9)

Proposition 2.2.5 (Theorem 1.2, [9]). If (Mn, g) is a Bach flat gradient shrinking

soliton, then it is either locally conformally flat or Einstein.

Proposition 2.2.6. Let (M4, g) be a closed four dimensional manifold, Bach flat

metrics are the critical points of the conformally invariant functional on the space

of metrics.

FW =
∫

M
|Wg|2dVg

Proof. We have all details in Appendix C.4 .

Remark 2.2.7. Another point of view to see the divergence free property of

Bach tensor is that all of the gradients of Riemannian functional are divergence

free(Proposition 4.11 in Page 119 [6]). Therefore, Bach tensor is divergence free

in dimension 4, since it is the gradient of FW . In higher dimension, it is not

divergence free, but the gradient of Weyl functional B remains divergence free.

14



2.3 Gauss Bonnet Chern Formula

Give a closed Riemannian manifold (M4, g), the Riemann curvature decompo-

sition is given by:

|Rm|2 = |W |2 + 2|E|2 +
1

6
R2 (2.3.1)

We also recall the elementary symmetric polynomials

σk(λ1, λ2, · · · , λn) =
∑

i1<i2<···<ik

λi1λi2 · · · λik

where λ′
is are the eigenvalues of the contract tensor g−1A. We note that in di-

mension 4, σ2(g
−1A) = 1

24
R2 − 1

2
|E|2 . For now, we simply write σ2(A) instead of

σ2(g
−1A).

On a closed four manifold M4, the Gauss-Bonnet-Chern formula is:

32π2χ(M4) =
∫

M
|W |2 − 2|E|2 +

1

6
R2dµ (2.3.2)

In terms of σ2, we have:

32π2χ(M4) =
∫

M
|W |2 + 4σ2(Ag)dµ (2.3.3)

Remark 2.3.1. By the conformal invariance of Weyl curvature tensor and Gauss-

Bonnet-Chern, σ2(A) is also conformal invariant.

2.4 Yamabe Problem

For a closed manifold (Mn, g), one basic fact is that on such manifold, the

Yamabe constant Y (M, [g]) can be achieved by a metric g0 ∈ [g] which is called

the Yamabe metric with constant scalar curvature R[g0] = s0. Given a closed
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manifold (Mn, g), the Yamabe constant is defined by:

Y[g] = inf
ĝ∈[g]

∫

M
Rĝdµĝ

V ol(Mn, ĝ)
n−2

n

(2.4.1)

By the work of Trudinger, Aubin[52] and R.Schoen[46], the infimum of Yamabe

functional for any conformal class [g] can be achieved by some metric, and this

so-called Yamabe metric ĝ ∈ [g] has a constant scalar curvature.

For a four manifold with positive Yamabe constant, follow the solution for

the Yamabe problem[52][46], we may assume that g is the Yamabe metric which

achieves Yamabe constant, then we have:

∫

M
σ2(Ag)dµ ≤

∫

M

1

24
R2

gdµ =
1

24

(

∫

M Rgdµ
)2

∫

M dµ
≤ 1

24

(

∫

M Rg4
S

µg4
S

)2

∫

M dµg4
S

= 16π2

(2.4.2)

The equality holds if and only if (M4, g) is conformal equivalent to the standard

four sphere (S4, g4
S
) with V ol(S4) = 8π2

3
and Rg4

S

= 12.

2.5 Sobolev Constant

In this subsection, we introduce the Sobolev inequality on manifold. And we

will show that in dimension 4, L2 Sobolev inequality can be controlled by Yamabe

constant.

Sobolev Inequality

Given a closed Riemannian manifold (Mn, g), we define the Sobolev constant

to be the best constant such that the following inequality holds:

‖u‖
L

2n
n−2

≤ Cs(g)

(

‖∇u‖L2 + V ol
− 2

n
g ‖u‖L2

)

(2.5.1)
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for any function u ∈ C1(M).

Remark 2.5.1. The Sobolev inequality (2.5.1) is scale invariant.

Remark 2.5.2. In four dimension, we have:

‖u‖2
L4 ≤ Cs(g)

(

‖∇u‖2
L2 + V ol

− 1
2

g ‖u‖2
L2

)

(2.5.2)

We also introduce a multiplicative Sobolev inequality[33] here.

Lemma 2.5.3. Given (Mn, g) be a Riemannian manifold, we have the following

multiplicative Sobolev inequality for all function u ∈ C1
0(M)

‖u‖∞ ≤ CSC(m, n, p) ‖u‖1−α

m (‖∇u‖p + ‖u‖p)α (2.5.3)

in which n < p ≤ ∞, 0 ≤ m ≤ ∞ , 0 < α ≤ 1 and satisfied

1

α
=
( 1

n
− 1

p

)

m + 1

Proof. We present the detail proof in Theorem. E.3.1

Sobolev Constant and Yamabe Constant

In four dimension, we have the following conformal change of scalar curvature.

If u is a smooth function defined on manifold (M4, g), let ĝ = u2g, the scalar

curvature is

R̂u3 = (6∆ + R)u

The Yamabe constant can be written as:

Y[g] = inf
u 6=0

∫

M
6|∇u|2 + Rgu2dµg

(

∫

M
u4dµg

)
1
2

17



If we assume that Y[g] > 0, we have:

‖u‖2
L4 ≤ 6

Y[g]

‖∇u‖2
L2 +

maxg∈[g] Rg

Y[g]

‖u‖2
L2

Then we have:

Cs(g) ≤ max{6, RgV
1
2 }

Y[g]

(2.5.4)

Therefore, in dimension 4, if Yamabe constant has a lower bound and RgV
1
2 has

an upper bound, Sobolev constant is bounded above.

2.6 Conformal Ricci Flow

Given a Riemannian manifold (Mn, g), the solution to Ricci flow is a one-

parameter family of metric g(t) defined by



















∂
∂t

g = −2Ric[g]

g(0) = g0

For an arbitrary smooth initial metric, the flow will always last for a short

time, but finite time singularities may occur which causes the flow to terminate.

Ricci flow is used to prove Thurston’s geometrization conjecture and the Poincaré

conjecture in [42][43][44].

In [21], A. Fischer introduced a variation of the classical Ricci flow equation

that modifies the unit volume constraint of that equation to a scalar curvature

constraint. The resulting equations are named the conformal Ricci flow equa-

tions because of the role that conformal geometry plays in constraining the scalar

18



curvature. These new equations are given by



















∂g
∂t

= −2
(

Ric + 1
n
Rg
)

− pg

R[g] = −1

for evolving metric g and a scalar function p. The conformal Ricci flow equations

are analogous to the Navier Stokes equations of fluid mechanics. Because of this

analogy, the time-dependent function p is called a pressure function and it serves

as a Lagrange multiplier to conformally deform the metric flow so as to maintain

the scalar curvature constraint.

A. Fischer proved the short time existence to this flow with restriction to

negative Yamabe type. After that, P. Lu, J. Qing and Y, Zheng proved the short

time existence for all Yamabe type in [38].

2.7 Conformal Bach Flow

Analog to the conformal Ricci flow, we propose the conformal Bach flow as

follows. Suppose that (Mn, g0) is an n-dimensional Riemannian manifold with

constant scalar curvature s0 and n ≥ 4, the conformal Bach flow is a family of

metrics {g(t)}t∈[0,T ] which satisfy



















∂

∂t
g = 2(n − 2)(Bg + pg) on M × [0, T ],

Rg(t) = s0 on M × [0, T ],

(2.7.1)

where p = p(x, t) is a family of functions on M . This is a fourth order evolution

equation. The pressure term p is the “conformal change” which keeps the metric

having constant scalar curvature. One key observation is that the pressure func-
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tion p term also takes care of the role played by the term 1
2(n−1)(n−2)

(∆Rg)g in

[3].

Like conformal Ricci flow system in [21] and [38], we will first derive an equiv-

alent form of conformal Bach flow which is coupled weakly-parabolic and elliptic

equations system.

Proposition 2.7.1. Conformal Bach flow (2.7.1) is equivalent to the following

equations:



















∂

∂t
gij = 2(n − 2)

(

Bij +
1

2(n − 1)(n − 2)
(∆R)gij + pgij

)

−(n − 1)∆p − s0p = (n − 2)AijBij − ∇i∇jBij

(2.7.2)

Proof. Recall the variation of scalar curvature (B.6.1) is :

∂

∂t
R = −∆H + ∇i∇jhij − Rijhij (2.7.3)

In this case, hij = 2(n − 2)
(

Bij + 1
2(n−1)(n−2)

(∆R)gij + pgij

)

and H = trgh =

n
n−1

(∆)R + 2n(n − 2)p, therefore, we have:

∂

∂t
R = −∆2R − 1

n − 1
R∆R

− 2(n − 2)

(

(n − 1)∆p + s0p − ∇i∇jBij + RijBij)

) (2.7.4)

Since scalar curvature maintains a constant, left hand side vanished, so do the

first two terms on the right hand side. Combine with the definition of Schouten

tensor(A.9.2), we have

− (n − 1)∆p − s0p = RijBij − ∇i∇jBij = (n − 2)AijBij − ∇i∇jBij (2.7.5)
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Therefore, (2.7.1) is equivalent to:



















∂

∂t
gij = 2(n − 2)

(

Bij +
1

2(n − 1)(n − 2)
(∆R)gij + pgij

)

−(n − 1)∆p − s0p = (n − 2)AijBij − ∇i∇jBij

(2.7.6)

Remark 2.7.2. If n = 4, we have a simpler version because of the divergence free

property of Bach tensor (2.2.2):



















∂

∂t
gij = 4

(

Bij +
1

12
(∆R)gij + pgij

)

−3∆p − s0p = 2AijBij

(2.7.7)

Next, we will introduce some nice properties of conformal Bach flow.

Lemma 2.7.3. Given a four dimensional closed manifold (M4, g), under the con-

formal Bach flow, the L2 norm of Weyl curvature is non-increasing and the σ2

integral is non-decreasing.

Proof. Let (M4, g(t)) be a solution to the conformal Bach flow, we directly com-

pute:

d

dt

∫

M
|W |2dv =

∫

M
〈−4Bij,

∂

∂t
g(t)ij〉dv = −16

∫

M
|B|2dv

Combine with the Gauss-Bonnet-Chern formula (2.3.3), the result follows.

Lemma 2.7.4. Given a four dimensional close manifold (M4, g), under the con-

formal Bach flow, the volume of the manifold has a lower bound.

Proof. By a simple calculation, we have:

V ol =
∫

M
dµ =

24

R2
g(t)

∫

M

1

24
R2

g(t)dµ ≥ 24

R2
g(t)

∫

M
σ2[g(t)]dµ ≥ 24

R2
g(t)

∫

M
σ2[g(0)]dµ
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Since the σ2 integral is non-decreasing under conformal Bach flow, the volume

of manifold will have a uniform lower bound depends on the initial curvature

quantity.

2.8 Conformal Gradient Flow

In this section, we will introduce another geometric flow which evolves metrics

under gradient of L2 norm of Weyl curvature. On a closed n dimensional manifold,

we define:

FW =
∫

M
|W |2dµ (2.8.1)

First, we recall that gradient of L2 norm of Weyl curvature is given by:

gradFW = −4(n − 3)

n − 2
∆Rij +

2(n − 3)

(n − 1)(n − 2)
∆Rgij +

2(n − 3)

n − 1
∇i∇jR

− 4(n − 4)

n − 2
RpqRipjq + 4RipR

p
j − 4

(n − 1)(n − 2)
RRij

− 2RpqriR
pqr

j +
1

2
|W |2gij

(2.8.2)

The proof in given in Sec C.4. In dimension 4, as we mentioned before, this is Bach

tensor. For the rest of this thesis, we denote B = gradFW . We first introduce two

properties of this tensor.

Proposition 2.8.1. B is trace free and divergence free.

Proof. These two properties comes from direct calculations. Another point of

view to see the divergence free is that we know for any Riemann functional, then

its gradient is divergence free. See details in [6, Definition 4.7, Definition 4.10,

Proposition 4.11, Page 118-119]
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Similar to conformal Bach flow, we first define the conformal gradient flow as:



















∂

∂t
g = 2(n − 2)(− 1

4(n − 3)
B(g(t)) + pg) on M × [0, T ],

Rg(t) = s0 on M × [0, T ],

(2.8.3)

Next, we prove the following equivalent form for conformal gradient flow by

explicit write out the second equation in (2.8.3).

Proposition 2.8.2. The conformal gradient flow is equivalent to the follow system

of partial differential equations.



















∂

∂t
g = 2(n − 2)(− 1

4(n − 3)
B +

1

2(n − 1)(n − 2)
∆Rg + pg) on M × [0, T ],

−(n − 1)∆p − s0p = − 1
4(n−3)

Ric · B on M × [0, T ],

(2.8.4)

Proof. Recall the variation of scalar curvature (B.6.1) is :

∂

∂t
R = −∆H + ∇i∇jhij − Rijhij (2.8.5)

In this case,

h = − n − 2

2(n − 3)
B +

1

(n − 1)
∆Rg + 2(n − 2)pg

and

H = trgh =
n

n − 1
∆R + 2n(n − 2)p

Therefore, (2.8.3) is equivalent to:



















∂

∂t
g = 2(n − 2)(− 1

4(n − 3)
B +

1

2(n − 1)(n − 2)
∆Rg + pg) on M × [0, T ],

−(n − 1)∆p − s0p = − 1
4(n−3)

Ric · B on M × [0, T ],

(2.8.6)
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Remark 2.8.3. We notice that both Bach tensor and B have the same leading

terms up to a constant depending on the dimension of manifold, therefore, in

this thesis, we consider the conformal Bach flow, all of the results are valid for

conformal gradient flow, some of them are even simpler since B is divergence free

for any dimension greater or equal to 4.
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Chapter 3

Short Time Existence to

Conformal Bach Flow

In this chapter, we will prove the short time existence and uniqueness to the

conformal Bach flow. After that, a bootstrap argument will be applied for the

regularity. The main proof relies on the classical DeTurck’s trick, which helps us

deal with non-parabolic issue from Bach tensor. Then we use inverse function

theorem and contractive mapping theorem in functional analysis to derive our

results.

Recall that our conformal Bach flow is defined by:



























































∂

∂t
g = 2(n − 2)(B +

1

2(n − 1)(n − 2)
∆Rg + pg)

−(n − 1)p − s0p = (n − 2)A · B − ∇2B

g(0) = g0

R[g(t)] = s0

(3.0.1)

for some initial data (Mn, g0) with constant scalar curvature R[g0] = s0.
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3.1 Linearization

In this section, we will introduce the symbol of operators. Most of the elemen-

tary definitions can be found in [15], but we will only discuss the Bach tensor and

conformal Bach flow in the text.

Linearization of a Nonlinear Operator

The linearization is defined in analogy with the derivative of a function. For

a nonlinear operator defined on vector bundle V , if u : [0, 1] → C∞(V ) is a time

dependent section with


















u(0) = u0

u′(0) = v

(3.1.1)

we define the linearization of L at u0 to be the linear map D[L] : C∞(V ) → C∞(V )

so that

D[L](v) =
d

dt
L(u(t))

∣

∣

∣

∣

∣

t=0

We now regard the Bach tensor B as a nonlinear partial differential operator on

the metric g, and it defines a map

Bg : C∞(S+
2 T ∗M) −→ C∞(S2T

∗M)

where S+
2 T ∗M is the space of positive definite symmetric 2 tensors.

Proposition 3.1.1. Let g(t) be a one parameter family of Riemannian metric on

Mn such that g(0) = g0 and d
dt

g
∣

∣

∣

t=0
= h, the linearization of Bach tensor at t = 0
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is given by

[D(Bg)(h)]ij =
1

2(n − 2)
(−∆2hij + ∆∇k∇jhik + ∆∇k∇ihjk)

− 1

2(n − 1)(n − 2)
∆
[

∇k∇lhklgij + ∇i∇j(Trg(h)) − ∆Trg(h)gij

]

− 1

2(n − 1)
∇i∇j∇k∇lhkl

Proof. Bach tensor is defined in (2.0.1),

Bij =
1

n − 3
∇k∇lWikjl + AklWikjl

We only need to calculate the first term since it contains fourth order derivatives

of metric. Based on our results in appendix (B.4.1) (B.5.1) and (B.6.1), the result

follows.

Symbol of a Nonlinear Differential Operator

Let V and W be vector bundles over Mn, let

L : C∞(V ) −→ C∞(W )

be a linear differential operator of order k, written as

L(V ) :=
∑

|α|≤k

Lα∂αV

where Lα ∈ Hom(V, W ) is a bundle homomorphism, i.e., a linear map on each

single fiber and α is a multi-index. If ζ ∈ C∞(T ∗M), the we say the total symbol

of differential operator L in the direction ζ is

σ[L](ζ) :=
∑

|α|≤k

Lα(
∏

j

ζj)

27



and the principal symbol of L in the direction ζ is the top degree terms in the

total symbol, which is denoted by

σ̂[L](ζ) :=
∑

|α|=k

Lα(
∏

j

ζj)

Proposition 3.1.2. The principal symbol in the direction ζ of the linear differ-

ential operator D(Bg) is

σ̂[D(Bg)](ζ) : S2T
∗M → S2T

∗M

which is defined by:

[

σ̂[D(Bg)](ζ)(h)
]

ij
=

n − 3

2(n − 2)

(

ζlζlζkζj g̃ik + ζlζlζkζihjk − ζlζlζkζkhij

)

+
n − 3

2(n − 1)(n − 2)

(

ζlζlζkζkTrg(h)gij − ζkζkζiζjTrg(h)
)

− n − 3

2(n − 1)(n − 2)
ζqζqζkζlg̃klgij − n − 3

2(n − 1)
ζiζjζkζlg̃kl

Proof. By the definition of symbols, we simply replace all of the covariant deriva-

tives in (3.1.1) by vectors ζ with the same index.

Ellipticity of a Nonlinear Operator

A linear partial differential operator L is said to be elliptic if its principal

symbol σ̂[L]ζ is an isomorphism whenever ζ is non-zero. Similarly, a nonlinear

differential operator M is said to be elliptic is its linearization DM is elliptic.

However, one key observation is that the principal symbol of Bach tensor has

some degeneracies ,therefore, Bach tensor is not elliptical.

Another way to see this is that from the result of principal symbols in (3.1.2),

we choose ζ = δ1
i ζi, and the principal symbol in this direction will be:
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[σ̂[D(Bg)](ζ)(h)]ij =















































































− n − 3

2(n − 2)
ζ4

1 if i 6= j and i, j 6= 1

− n − 3

2(n − 2)
ζ4

1

(

hii − 1

n − 1

n
∑

k=2

hkk

)

if i = j 6= 1

0 if i = 1 and j 6= 1

0 if j = 1 and i 6= 1

0 if i = j = 1

It is clear that there are lots of degeneracies.

3.2 DeTurck’s Trick

Introduction

For Ricci flow, the local existence and uniqueness on compact manifolds were

first established by Hamilton in [25]. After that, DeTurck provided an elegant

proof in [18], the method is called DeTurck’s Trick nowadays. Essentially, De-

Turck’s trick will eliminate the degeneracy form Ricci curvature tensor by adding

an extra term.

Ricci Flow

We will do a quick review for the DeTurck Ricci flow. The motivation comes

from the linearization of Ricci tensor. Recall this variation formula in (B.5.1):

∂

∂t
Rij = −1

2

(

∆hij + ∇i∇jTrg(h) − ∇p∇ihjp − ∇p∇jhip

)

(3.2.1)

combine with Ricci identity (A.6.1), we have another form of this variation

∂

∂t
Rij = −1

2

(

∆Lhij + ∇i∇jTrg(h) + ∇i∇phpj + ∇j∇phpi

)

(3.2.2)
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where ∆L is called Lichnerowicz Laplacian[36], and defined by

∆Lhij = ∆hij + 2Ripjqh
pq − Riqh

p
j − Rjph

p
i (3.2.3)

The degeneracy comes form the last three terms in (3.2.2). We may write it as

− 2[D(Ricg)(h)]ij = ∆Lhij − ∇iVj − ∇jVi (3.2.4)

in which,

Vi =
1

2
gpq
(

∇phqi + ∇qhpi − ∇ihpq

)

(3.2.5)

This is exact the same as the variation formula of Christoffel symbol(B.3.1).

Ricci DeTurck Flow

Based on this observature, DeTurck modified the Ricci flow by adding an extra

term which cancels last three terms in (3.2.2).



















∂g
∂t

= −2Ric + LV (g)

g(0) = g0

(3.2.6)

V is the vector field defined as

V k = gij
(

Γ(g)k
ij − Γ(g̃)k

ij

)

(3.2.7)

where Γ(g̃)k
ij is the Christoffel symbol with respect to arbitrary fixed metric g̃. We

need a difference of two Christoffel symbols to turn in into a tensor. And this so

called Ricci-DeTurck flow is a parabolic partial differential equation system, the

existence and uniqueness are well understand.

DeTurck Conformal Bach Flow

30



Now we will discuss the conformal Bach flow, which is a little bit different.

Recall that the linearization of Bach tensor is

[D(Bg)(h)]ij =
1

2(n − 2)
(−∆2hij + ∆∇k∇jhik + ∆∇k∇ihjk)

− 1

2(n − 1)(n − 2)
∆
[

∇k∇lhklgij + ∇i∇j(Trg(h)) − ∆Trg(h)gij

]

− 1

2(n − 1)
∇i∇j∇k∇lhkl

Note that schematically the Bach tensor can be written as

Bij =
1

n − 2
∆Rij − 1

2(n − 1)(n − 2)
(∆R)g − 1

2(n − 1)
∇i∇jR+ lower order terms

We notice that the leading term of Bach tensor is ∆Ric, hence we may modify

the standard choice of the vector field in the DeTurck’s trick for Ricci flow by

adding ∆g to eliminate the degeneracy in 1
n−2

∆Rij caused by the symmetry of

diffeomophisms. We define the first vector field to be:

W k
1 = −gij∆g

(

Γk
ij(g) − Γk

ij(g̃)
)

(3.2.8)

for some fixed metric g̃.

The term − 1
2(n−1)(n−2)

(∆R)g has to be taken care of as in [3] which partly

explains why we has that extra term in our conformal Bach flow rather than the

original one

Lastly the term − 1
2(n−1)

∇i∇jR is of Hessian-type and can be taken care off by

modifying the choice of the vector field, we define the second vector field to be:

W k
2 =

n − 2

2(n − 1)
(∇kR) (3.2.9)

Following the choice of the vector fields and fixing a g̃ with enough smoothness
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as a background metric, we define vector field

W k = −gij∆g

(

Γk
ij(g) − Γk

ij(g̃)
)

+
n − 2

2(n − 1)
(∇kR). (3.2.10)

Recall that the Lie derivative (LW g)ij = ∇iWj + ∇jWi. We define the DeTurck

modified conformal Bach flow as



















∂

∂t
g = 2(n − 2)(B +

1

2(n − 1)(n − 2)
∆Rg + pg) + LW g

−(n − 1)p − s0p = (n − 2)A · B − ∇2B

(3.2.11)

We will consider its initial value problem g(0) = g0 where Rg0 = s0.

Suppose we have a solution (g(t), p(t)), t ∈ [0, T ], of (3.2.11) such that each

g(t) is a complete metric, we call g(t) a complete solution. Using the vector field

W we define an one-parameter family of diffeomorphism ϕt : M → M, t ∈ [0, T ],

by solving ordinary differential equations for each x ∈ M

∂

∂t
ϕt(x) = −Wg(t)(ϕt(x)) with ϕ0(x) = x. (3.2.12)

Lemma 3.2.1. Let (g(t), p(t)) be a complete solution of (3.2.11) on manifold Mn

with initial metric g0 whose scalar curvature Rg0 = s0. Let ϕt be the solution of

(3.2.12). We define ĝ(t) = ϕ∗
t g(t) and p̂(x, t) = p(ϕt(x), t). Then (ĝ(t), p̂(t)) is a

solution of conformal Bach flow with initial condition g(0) = g0.

Proof. We denote every operator with respect to ĝ with a hat over it. A direct
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computation gives us:

∂

∂t
ĝ(t) = ϕ∗

t (
∂

∂t
g(t)) +

∂

∂s

∣

∣

∣

s=0
(ϕ∗

t+sg(t))

= 2(n − 2)ϕ∗
t (B +

1

2(n − 1)(n − 2)
(∆R)g + pg)

+ ϕ∗
t (LWg

g) − L(ϕ−1
t )∗Wg

(ϕ∗
t g)g(t))

= 2(n − 2)(B̂ +
1

2(n − 1)(n − 2)
(∆̂R̂)ĝ + p̂ĝ)

This verifies the first equation in (3.0.1). The second equation in (3.0.1) follows

from the same calculation.

Remark 3.2.2. For the conformal gradient flow (2.8.4), the choice of DeTurck’s

terms are exactly the same. We define the DeTurck modified conformal gradient

flow as



















∂

∂t
g = 2(n − 2)(B +

1

2(n − 1)(n − 2)
∆Rg + pg) + LW g

−(n − 1)p − s0p = (n − 2)A · B
(3.2.13)

3.3 Inverse Function Theorem

To prove the short time existence theorem for the conformal Bach flow, we first

prove the existence to the DeTurck conformal Bach flow via the inverse function

theorem we will introduce in this subsection. After that, the lemma(3.2.1) we

proved before will give us the short time existence to the original conformal Bach

flow.

Theorem 3.3.1. Suppose that X and Y are Banach spaces and

M : X → Y
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is at least a C1 map. Let DM be its differential. Suppose that there exists a point

x0 ∈ X and there are positive numbers C and ǫ such that

(a) ‖(DM(x))−1‖ ≤ C, for any x ∈ Bǫ(x0),

(b) ‖DM(x1) − DM(x2)‖ ≤ 1
2C

, for any x1, x2 ∈ Bǫ(x0),

Then if M satisfies

‖M(x0)‖ ≤ ǫ

2C

there is an x ∈ Bǫ(x0) such that M(x) = 0.

Proof. We are using the Newton’s law to construct a convergent sequence both

spaces. We start with x0, let x1 be defined as

x1 = x0 − [DM(x0)]
−1 · M(x0) (3.3.1)

Inductively, we have:

xi+1 = xi − [DM(xi)]
−1 · M(xi) (3.3.2)

We want to show that {xi}∞
i=1 converges to the solution of M(x) = 0. The first

observation is

‖x1 − x0‖ =
∥

∥

∥[DM(x0)]
−1 · M(x0)

∥

∥

∥ ≤
∥

∥

∥[DM(x0)]
−1
∥

∥

∥ · ‖M(x0)‖ =
ǫ

2
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by our assumption. Next, fundamental theorem of calculus tells us

M(x1) = M(x0) +
∫ 1

0
[DM(x0 + t(x1 − x0))] · (x1 − x0)dt

= M(x0) −
∫ 1

0
[DM(x0 + t(x1 − x0))] · [DM(x0)]

−1 · M(x0)dt

= M(x0)
∫ 1

0
[DM(x0) − DM(x0 + t(x1 − x0))] · [DM(x0)]

−1dt

≤ M(x0)
∫ 1

0

1

2C
· Cdt

=
1

2
M(x0)

In summary, we have the following results:

(a) ‖x1 − x0‖ ≤ 1
2
ǫ

(b) M(x1) ≤ 1
2
M(x0)

Therefore, {xi}∞
i=1 converges to some point x ∈ Bǫ(x0) such that M(x) = 0.

3.4 Partial Differential Equation Theorems

In this section, we will introduce the functional spaces we are focusing on and

provide some key theorems we are going to use in our proof of the main theorem.

Parabolic Hölder Space

In this subsection, we will state the convention and notation we adopt for

parabolic Hölder space. There are many books that are good for references in

linear and nonlinear systems of parabolic equations. We will mostly use the book

[39], in particular Theorem 5.1.21 in [39] for existence and standard estimates. We

adopt definitions of parabolic Hölder spaces from [[39], p. 175-177]. We use the

same notations for parabolic Hölder spaces for functions and tensor fields when

there is no confusion. To define the norms for tensor fields we may use the initial

metric and local coordinate charts.
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Let u be a function defined on Ω̄ ⊂ R
n, we define the Banach spaces of Hölder

continuous functions Cα(Ω̄), Ck+α(Ω̄) for k ∈ N and α ∈ (0, 1) to be

Cα(Ω̄) :=
{

u ∈ C(Ω̄) : ‖u‖Cα < ∞
}

(3.4.1)

where the norm ‖·‖Cα defined as follows:

‖·‖Cα = ‖u‖∞ + [u]Cα (3.4.2)

and [f ]Cα is called the semi-norm,

[u]Cα = sup
x,y∈Ω̄

‖u(x) − u(y)‖
|x − y|α (3.4.3)

Consequently, we define the Ck+α(Ω̄) for k ∈ N and α ∈ (0, 1) to be

Ck+α(Ω̄) =
{

u ∈ Ck(Ω̄) : u(k) ∈ Cα(Ω̄)
}

(3.4.4)

and the norm ‖·‖Ck+α is defined as

‖u‖Ck+α =
k
∑

i=0

∥

∥

∥u(i)
∥

∥

∥

∞
+ [u(k)]Cα (3.4.5)

Now, for a non-negative integer k ∈ N and l ∈ {0, 1}, we define the parabolic

Hölder space Ck+α,l(Ω̄ × [0, T ]) to be

Ck+α,l(Ω̄ × [a, b]) =
{

u ∈ Ck,l(Ω̄ × [0, T ]), ‖u‖Ck+α,l < ∞
}

(3.4.6)
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where



































Ck,l(Ω̄ × [a, b]) = u :















u(x, ·) ∈ C l([a, b]) for all x ∈ Ω̄

u(·, t) ∈ Ck(Ω̄) for all t ∈ [a, b]















‖u‖Ck+α,l =
∑k

|α|=0

∥

∥

∥D|α|u
∥

∥

∥

∞
+
∑b

β=0

∥

∥

∥∂
β
t u
∥

∥

∥

∞
+ [Dk,lu]Cα

(3.4.7)

Schauder Estimate for Elliptic and Parabolic PDE

Before we proceeding to the main proof, we need some preparation of Hölder

estimates.

Lemma 3.4.1. Let k ≥ 2 be a constant. There is a constant C independent of T

such that for any function h ∈ Ck+α,1(Mn × [0, T ]) and t1, t2 ∈ [0, T ], we have the

following estimate

‖h(·, t1) − h(·, t2)‖Ck−2+α,0 ≤ C · |t1 − t2| · ‖h‖Ck+α,1 (3.4.8)

In the following lemma, we will introduce a classical Schauder estimate for

parabolic partial differential equation. We denote an elliptic operator of order 2m

by L which defined in local coordinate system as follows,

L =
2m
∑

|α|=0

aαDα

where α = (α1, α2, · · · , αn) is a multi-index and Dα = ∂α1

x1 ∂α2

x2 · · · ∂αn
xn is the spatial

derivative.

Lemma 3.4.2. Let L be a linear elliptic differential operator of order 2m with

Cα,0-coefficients on a closed manifold Mn acting on tensors. Then for every f ∈
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Cα,0(Mn × [0, T ]), there is a unique solution u ∈ C2m+α,1(Mn × [0, T ]) of

∂

∂t
u = Lu + f (3.4.9)

And there is a constant C such that the solution u satisfies the following estimate:

‖u‖C2m+α,1 ≤ C ‖f‖Cα,0 (3.4.10)

Furthermore, if the function f has a better regularity, i.e., f ∈ Ck+α,0(Mn×[0, T ]),

then the existence theorem holds and the estimate will be also improved:

‖u‖C2m+k+α,1 ≤ C ‖f‖Ck+α,0 (3.4.11)

Lemma 3.4.3. Let g(t), t ∈ [0, T ], be a family of C2+α,0−metric such that the

elliptic operator (n−1)∆g(t) +s0 is invertible for all t ∈ [0, T ]. Then the following

elliptic equation

[(n − 1)∆g(t) + s0]p(t) = γ(t) (3.4.12)

has a unique solution p ∈ C2+α,0(Mn × [0, T ]) for each γ(t) ∈ Cα,0(Mn × [0, T ]).

And there is a constant C such that we have the following estimate:

‖p‖C2+α,0 ≤ C ‖γ‖Cα,0 (3.4.13)

Moreover, if g(t), t ∈ [0, T ] is a family of C2+k+α,0−metric and γ ∈ Ck−2+α,0(Mn×
[0, T ]), then the unique solution p also has a better regularity,

‖p‖C2+k+α,0 ≤ C ‖γ‖Ck+α,0 (3.4.14)
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3.5 Short Time Existence

In this section, we are going to prove our main result, the short time existence.

Based on (3.2.1), we focus on the DeTurck conformal Bach flow (3.2.11). This

is a partial differential equation system coupled with a parabolic equation and a

elliptic one. Therefore, we need to decouple the system first.

Decoupling

Let g(t) ∈ C4+α(M) such that the operator (n − 1)∆g(t) + s0 is invertible. We

define an operator P
P : C4+α(M) → C2+α(M) (3.5.1)

such that the image P(g) is a solution to the following elliptic equation

[(n − 1)∆g(t) + s0]p(t) = −(n − 2)Ag(t) · Bg(t) + ∇2
g(t)Bg(t) (3.5.2)

And we have the following lemma.

Lemma 3.5.1. Let Mn be a closed n-dimensional manifold with metric g(t) ∈
C4+α(M × [0, T ]). Suppose that the elliptic operator (n − 1)∆g + s0 is invertible.

Then there are positive constants ǫ and C such that the operator P we defined in

(3.5.1) satisfies the following Lipschitz property

‖P(g1) − P(g2)‖C2+α ≤ C ‖g1 − g2‖C4+α (3.5.3)

Proof. We define T = −(n − 2)A · B + ∇2B to be an operator acting on space of

Riemannian manifold. Let g1, g2 ∈ C4+α(M × [0, T ]), then we have:

[(n − 1)∆gi
]P(gi) = T (gi) (3.5.4)
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for i = 1, 2. By a simple telescoping idea, we have:

[(n − 1)∆g1 ](P(g1) − P(g2)) = (n − 1)(∆g2 − ∆g1)P(g2) + T (g1) − T (g2) (3.5.5)

we see that the right hand side of this equation has the following estimate



















‖(∆g2 − ∆g1)P(g2)‖Cα,0 ≤ C ‖g2 − g1‖C2+α,0

‖T (g1) − T (g2)‖Cα,0 ≤ C ‖g2 − g1‖C4+α,0

(3.5.6)

for some universal constant C. Follow by these two estimate and Lemma (3.4.3),

we have:

‖P(g1) − P(g2)‖C2+α ≤ C ‖g1 − g2‖C4+α

Remark 3.5.2. The second estimate in (3.5.6) is a direct result from lemma

(2.2.2). Recall that the divergence of Bach tensor is given by

∇jBij =
n − 4

(n − 2)2
CijkRjk

The Bach tensor can be viewed as a fourth order operator, but its divergence is

actually of third order, this is why we have the estimate above.

Once we define the operator P , we now rewrite the DeTurck conformal Bach

flow as







































∂
∂t

g − 2(n − 2)(B + 1
2(n−1)(n−2)

∆Rg(t)) − LW g(t) − 2(n − 2)P [g(t)]g(t) = 0

g(0) = g0

R[g(t)] = s0

(3.5.7)
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For our convenience, we define another operator F to be:

F [g(t)] = 2(n − 2)(B +
1

2(n − 1)(n − 2)
∆Rg(t)) + LW g(t) (3.5.8)

and we consider the following decoupled DeTurck conformal Bach flow:







































∂
∂t

g − F [g(t)] − 2(n − 2)P [g(t)]g(t) = 0

g(0) = g0

R[g(t)] = s0

(3.5.9)

Clearly, this equation is equivalent to (3.2.11) and we define the following

operator:

M[g(t)] =
∂

∂t
g − F [g(t)] − 2(n − 2)P [g(t)]g(t) (3.5.10)

Our target is to solve M[g(t)] = 0 by using the inverse function theorem (3.3.1).

Linearization of Operator M
We now compute the linearization of M[g(t)] by computing F [g(t)] and P [g(t)]

separately.

Recall that the definition of linearization. Let gs = g + sh where s ∈ (−ǫ, ǫ)

and h is a symmetric 2 tensor. The linearization of operator M[g(t)] is

DM[g(t)] :=
∂

∂s

∣

∣

∣

∣

∣

s=0

M[g(t)] (3.5.11)

For the first part F [g(t)], we recall that the definition of Bach tensor.

Lemma 3.5.3. The leading term of Bach tensor is

Bij =
1

n − 2
Rij − 1

2(n − 1)
∇i∇jR − 1

2(n − 1)(n − 2)
(∆R)gij + Lower order terms
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Proof. To see this, we use an alternate form of Bach tensor in terms of Schouten

tensor and Weyl curvature.

Bij = ∆Aij − ∇k∇iAjk + AklWikjl

The last term only contains the derivative of metric up to second order, therefore,

we only consider the first two term. With Ricci identity and contracted Bianchi

identity, one can calculate the following results.

∆Aij − ∇k∇iAjk =
1

n − 2

(

∆Rij − 1

2(n − 1)
(∆R)gij

)

− 1

n − 2

(

∇i∇kRjk − 1

2(n − 1)
∇i∇jR

)

+ Lower order terms

=
1

n − 2
∆Rij +

1

2(n − 1)
∇i∇jR − 1

2(n − 1)(n − 2)
(∆R)gij

+ Lower order terms

The lower order terms come from the Ricci identity when we exchange the covari-

ant derivatives.

From above lemma (3.5.3), it is clear that the term 1
2(n−1)(n−2)

(∆R)gij is taken

care of by the modification. As for the first two terms, the DeTurck’s trick will

exactly cancels most of them. Recall that our vector filed is given in (3.2.10).

Schematically, we are doing the same thing as Ricci flow case. We refer the

details in [16] Thm 2.43. By adding the DeTurck term, the linearization of Ricci

flow is

∂

∂s

∣

∣

∣

∣

∣

s=0

(−2Rij + LW g) = ∆Lhij + Lower order terms (3.5.12)

where ∆Lis called Lichnerowicz Laplacian, and defined by (3.2.3).
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Similar to the Ricci curvature, the linearization of F is

∂

∂s

∣

∣

∣

∣

∣

s=0

F [g(t)] = −∆∆Lh +
2
∑

k=0

Mk ∗ ∇kh (3.5.13)

In this result, we replace the lower order terms by
∑2

k=0 Mk ∗ ∇kh where Mk’s

are curvature quantities. One may easily verified this results. Also, in (3.5.13),

the k is not for contraction, it is just the index, and the aster symbol means

contraction of tensor quantities, we will use this symbol a lot through this thesis.

The linearization of P [g(t)] denoted by P ′
g(h) = ∂

∂s

∣

∣

∣

s=0
P [g(t)]. To find P ′

g(h)

we compute the linearization of the both sides in equation ((3.5.2)) with g = gs.

We first have the following lemma:

Lemma 3.5.4. Let gs = g + sh where s ∈ (−ǫ, ǫ) and h is a symmetric 2 tensor.

The linearization of rough Laplacian is

∂

∂s

∣

∣

∣

s=0
∆gs

= −hij∇i∇j − ∇ihij∇j + ∇iTrg(h)∇i (3.5.14)

Proof. Rough Laplacian is defined by

∆g = gij∇i∇j

therefore, the variation will be

∂

∂s

∣

∣

∣

s=0
(gij∇i∇j) = −hij∇i∇j + gij ∂

∂s
Γk

ij∇k

= −hij∇i∇j +
1

2
gijgkl(∇ihjl + ∇jhil − ∇lhij)∇k

= −hij∇i∇j − ∇ihij∇j + ∇iTrg(h)∇i

in which we used (B.1.1) and (B.3.1).
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With this lemma, for the left hand side, we have

d

ds

∣

∣

∣

s=0
[(n − 1)∆g(t) + s0]P [g(t)]

= −(n − 1)hij∇i∇jP(g) − n − 1

2
(2∇ihij − ∇jTrg(h)) ∇jP(g)

+ ((n − 1)∆g + s0)P ′
g(h)

(3.5.15)

For the right hand side, we have

d

ds

∣

∣

∣

s=0

[

− (n − 2)Ag(t) · Bg(t) + ∇2
g(t)Bg(t)

]

=
4
∑

l=0

Pl ∗ ∇lh (3.5.16)

where Pl’s are curvature quantities depend on metric g up to fourth order deriva-

tives by using the fact of divergence of Bach tensor is of fourth order in (2.2.1).

Again, the index l is used to differ terms not for contraction.

Combine with these two results, we have

P ′
g(h) = [(n − 1)∆g + s0]

−1

(

(n − 1)hij∇i∇jP(g)

+
n − 1

2
(2∇ihij − ∇jTrg(h)) ∇jP(g) +

4
∑

l=0

Pl ∗ ∇lh

) (3.5.17)

where we have assumed the invertibility of the elliptic operator (n − 1)∆g + s0.

We summarize the result as the following lemma.

Lemma 3.5.5. Suppose that g(t), t ∈ [0, T ], is a family of C4+α,0-metrics such

that the operator (n−1)∆g(t) +s0 is invertible for all t. Then for the linearization

defined by using gs(t) = g(t) + sh(t) for a family of symmetric 2-tensor h(t) we

have

DM(g(t)) =
∂

∂t
h + ∆g∆Lh −

2
∑

k=0

Mk(g) ∗ ∇k
gh − 2(n − 2)P ′

g(h)g − 2(n − 2)P(g)h

(3.5.18)
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where operator P ′
g(h) is defined by (3.5.17).

Short Time Existence Theorem

The following proof for the short time existence of conformal Bach flow is very

close to the proof for that of conformal Ricci flow in [38, §3.3.2-3.3.3]. First we

need to solve the linearized flow























∂

∂t
h + ∆g∆Lh −

2
∑

k=0

Mk(g) ∗ ∇k
gh − 2(n − 2)P ′

g(h)g − 2(n − 2)P(g)h = γ

h(·, 0) = 0

(3.5.19)

for each γ ∈ Cα,0(M × [0, T ]), namely,

Proposition 3.5.6. Suppose that g(t), t ∈ [0, T ], is a family of C4+α,0-metrics

such that the elliptic operator (n − 1)∆g(t) + s0 is invertible for all t. Then for

each γ ∈ Cα,0(M × [0, T ]) the initial value problem (3.5.19) has a unique solution

h ∈ C4+α,1(M × [0, T ]). Moreover there is a constant C such that

‖h‖C4+α,1 ≤ C ‖γ‖Cα,0 . (3.5.20)

for all γ ∈ Cα,0(M × [0, T ]).

Proof. To use contractive mapping theorem we consider the Banach space

E1([0, T ∗]) = {h̃ ∈ C4+α,0(M × [0, T ∗]) : h̃(·, 0) = 0}

where T ∗ ∈ (0, T ] is a small constant to be chosen below. By Lemma (3.4.2), for
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a given h̃ ∈ E1([0, T ∗]) we can solve the system of linear parabolic equations























∂

∂t
h + ∆g∆Lh −

2
∑

k=0

Mk(g) ∗ ∇k
gh − 2(n − 2)P(g)h = γ̃

h(·, 0) = 0,

(3.5.21)

where γ̃ = γ + 2(n − 2)P ′
g(h̃) ∈ Cα,0.

Hence we define a map which maps all element to the solution

Ψ : E1([0, T ∗]) → E1([0, T ∗]), Ψ(h̃) = h ∈ C4+α,1

With this construction, the fixed point of this mapping will be exactly the

solution. Let h̃i ∈ E1([0, T ∗]), i = 1, 2. Note that if we set

v = Ψ(h̃1) − Ψ(h̃2)

then v satisfies























∂

∂t
v + ∆g∆Lv −

3
∑

k=0

Mk(g) ∗ ∇k
gv − 2(n − 2)P(g)v = 2(n − 2)(P ′

g(h̃1) − P ′
g(h̃2)),

v(·, 0) = 0.

From (3.5.17) and Lemma 3.5.1 we have

∥

∥

∥P ′
g(h̃1) − P ′

g(h̃2))
∥

∥

∥

C2+α,0
≤ C‖h̃1 − h̃2‖C4+α,0 , (3.5.22)

then it follows from Lemma 3.4.2 and g ∈ C4+α,0 that

‖v‖C6+α,1 ≤ C
∥

∥

∥h̃1 − h̃2

∥

∥

∥

C4+α,0
. (3.5.23)
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Hence by Lemma 3.4.1 we have

‖v(·, t1) − v(·, t2)‖C4+α ≤ C · |t1 − t2| ·
∥

∥

∥h̃1 − h̃2

∥

∥

∥

C4+α,0
. (3.5.24)

In particular, using v(·, 0) = 0 we get

∥

∥

∥Ψ(h̃1) − Ψ(h̃2)
∥

∥

∥

C4+α,0
≤ CT ∗

∥

∥

∥h̃1 − h̃2

∥

∥

∥

C4+α,0
(3.5.25)

for all h̃i ∈ E1([0, T ∗]), i = 1, 2.

To apply contractive mapping theorem to Ψ we observe that

∥

∥

∥Ψ(h̃)
∥

∥

∥

C4+α,0
≤ ‖Ψ(0)‖C4+α,0 + CT ∗

∥

∥

∥h̃
∥

∥

∥

C4+α,0
(3.5.26)

by (3.5.25) and for some constant C0

‖Ψ(0)‖C4+α,1 ≤ C0 ‖γ‖Cα,0 (3.5.27)

by Lemma 3.4.2 and the definition of Ψ.

Let R = 2C0 ‖γ‖Cα,0 . Thus when T ∗ is chosen so that CT ∗ ≤ 1
2
, the map

Ψ : BR = {h̃ ∈ E1([0, T ∗]) :
∥

∥

∥h̃
∥

∥

∥

C4+α,0
≤ R} → BR (3.5.28)

is a contractive mapping. We get a fixed point of Ψ on BR which gives the

existence of the solution of equations (3.5.19) on time interval [0, T ∗].

Note that if γ ∈ C2+α,0(M × [0, T ]), then from (3.5.23) the solution h ∈
C6+α,1(M × [0, T ]).

To see the uniqueness of solutions to (3.5.19), suppose that h1 and h2 are

two solutions, it follows from 3.5.25 using h̃i = hi = Ψ(h̃i) and CT ∗ ≤ 1
2

that
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h1 − h2 = 0.

Because (3.5.19) is linear, there will be no short time blowup, one may extend

its solution from [0, T ∗] to [0, T ] by steps over time interval of length T ∗. Note that

when we extend the solution to [T ∗, 2T ∗], we need to make some simple adjustment

to the equations so that the initial condition at T ∗ for new equations is 0. Then

the estimate (3.5.20) follows from the estimates (3.5.26) and (3.5.23).

In summary we have established that the linear operator defined by (3.5.18)

DM(g) :
{

h ∈ C4+α,1(M × [0, T ]), h(·, 0) = 0
}

→ Cα,0(M × [0, T ])

is an isomorphism, provided that g = g(t) satisfies the assumptions in Proposition

3.5.6. By the comment before the proof of the uniqueness in Proposition 3.5.6 we

also have

DM(g) :
{

h ∈ C6+α,1(M × [0, T ]), h(·, 0) = 0
}

→ C2+α,0(M × [0, T ]) (3.5.29)

is an isomorphism.

Now we apply the implicit function theorem 3.3.1 to the nonlinear map defined

by (3.5.9)

M :
{

g ∈ C4+α,1(M × [0, T ]), g(0) = g0

}

→ Cα,0(M × [0, T ]). (3.5.30)

Here g0 will be defined later and we choose the metric g̃ = g0 which is used in our

DeTurck’s term (3.2.10) as the background metric.

We begin with showing that operator M is continuously differentiable.

Proposition 3.5.7. Suppose that Mn is a closed manifold with metrics g(t) ∈
C4+α,1(M × [0, T ]). Suppose that the elliptic operator (n−1)∆g(t) +s0 is invertible
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for all t. Then there is a constant δ0 > 0 such that we have the following estimate

of the norm of the difference of the linear operator

‖DM(g1) − DM(g2)‖L(C4+α,1,Cα,0) ≤ C ‖g1 − g2‖C4+α,1 (3.5.31)

for all gi ∈ C4+α,1(M × [0, T ]) which satisfies ‖gi − g‖C4+α,1 ≤ δ0, i = 1, 2.

Proof. This is another straightforward telescoping argument. For any symmetric

2 tensor h ∈ C1,4+α(M × [0, T ]) and h(0, ·) = 0, we have:

(DM(g1) − DM(g2))(h)

= (∆g1∆L,g1 − ∆g2∆L,g2)h −
3
∑

k=0

(Mk(g1) ∗g1 ∇k
g1

h − Mk(g2) ∗g2 ∇k
g2

h)

− 2(n − 2)
(

P ′
g1

(h)g1 − P ′
g2

(h)g2

)

− 2(n − 2) (P(g1) − P(g2)) h.

Now we will estimate every term in this expression. For the first term, we have

the following estimate:

‖(∆g1∆L,g1 − ∆g2∆L,g2)h‖
Cα,0

≤ ‖(∆g1 − ∆g2)∆L,g1h‖
Cα,0 + ‖∆g2(∆L,g1 − ∆L,g2)h‖

Cα,0

≤C ‖g1 − g2‖C4+α,0 · ‖h‖C4+α,0

(3.5.32)

For each k = 0, 1, 2, 3 we have

∥

∥

∥Mk(g1) ∗g1 ∇k
g1

h − Mk(g2) ∗g2 ∇k
g2

h
∥

∥

∥

Cα,0

≤
∥

∥

∥(Mk(g1) ∗g1 −Mk(g2))∗g2)∇k
g1

h
∥

∥

∥

Cα,0
+
∥

∥

∥Mk(g2) ∗g2 (∇k
g1

h − ∇k
g2

h)
∥

∥

∥

Cα,0

≤C ‖g1 − g2‖C4+α,0 · ‖h‖C4−k+α,0 + C ‖g1 − g2‖C4−k+α,0 · ‖h‖C4−k+α,0

(3.5.33)

From a proof similar to that on the bottom of [38, p.426], we recall the definition
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of P ′
g(h) from (3.5.17)

[(n − 1)∆g + s0]P ′
g(h) = (n − 1)hij∇i∇jP(g)

+
n − 1

2
(2∇ihij − ∇jTrg(h)) ∇jP(g)

+
4
∑

l=0

Pl ∗ ∇lh

(3.5.34)

It is not difficult to evaluate such term. Telescoping again and with Lemma 3.4.2,

we have:

∥

∥

∥P ′
g1

(h) − P ′
g2

(h)
∥

∥

∥

C2+α,0
≤ C ‖g1 − g2‖C4+α,0 · ‖h‖C4+α,0 (3.5.35)

hence

∥

∥

∥P ′
g1

(h)g1 − P ′
g2

(h)g2

∥

∥

∥

C2+α,0

≤
∥

∥

∥

(

P ′
g1

(h) − P ′
g2

(h)
)

g1

∥

∥

∥

C2+α,0
+
∥

∥

∥P ′
g2

(h)(g1 − g2)
∥

∥

∥

C2+α,0

≤C ‖g1 − g2‖C4+α,0 · ‖h‖C4+α,0 + C ‖g1 − g2‖C2+α,0 · ‖h‖C4+α,0

(3.5.36)

where we have used (3.5.22) with h̃2 = 0 to get the last term in the second

inequality. Using Lemma 3.5.1 we have

‖(P(g1) − P(g2)) h‖C2+α,0 ≤ C ‖g1 − g2‖C4+α,0 · ‖h‖C2+α,0 (3.5.37)

The lemma now follows from combining together the inequalities

The invertibility condition for the operator M requires the interior estimate

for strong parabolic system, but we don’t have such condition for arbitrary metric

g(t). By the calculations before, we know that for any metric with constant scalar

curvature, the conformal Bach flow will be a strong parabolic system. In order to

50



apply the inverse function theorem, we need to choose a suitable initial data.

Proposition 3.5.8. There exists a metric ḡ ∈ C4+α,1(M × [0, T ]) such that

‖M(ḡ)‖C0,α ≤ C (3.5.38)

Proof. Let ḡ(t) = g0 + th, then we have:

M(ḡ(t)) = h − F(g0 + th) = h − F(g0) + F(g0) − F(g0 + th) (3.5.39)

Let h = F(g0), since g0 is the initial metric in our geometric flow, its con-

stant scalar curvature is a constant, R[g0] = s0. In fact, h = −2(n − 2)
(

B −
1

2(n−1)(n−2)
∆Rg + pg

)

because the Deturck’s term also vanishes. With the same

calculation, the linearization at ḡ is a strongly parabolic system. Furthermore,

with small t, we have a nice control for the initial data such that:

‖M(ḡ)‖Cα,0 ≤ CT for t ∈ [0, T ] (3.5.40)

With this choice of initial data, we are ready to prove the short time existence

of the conformal Bach flow.

Theorem 3.5.9. Let Mn be a closed manifold. Suppose that g0 is a C8+α-

Riemannian metric on M with constant scalar curvature R = s0 and that the

elliptic operator (n − 1)∆g0 + s0 is invertible. Then there exists a unique C4+α,1-

solution g(t), t ∈ [0, T ], of the decoupled DeTurck CBF (3.5.9) for some T > 0.

Proof. Let

M : {g ∈ C4+α,1(M × [0, T ]), g(0) = g0} → Cα,0(M × [0, T ]) (3.5.41)
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be a map defined in (3.5.10). We define ḡ ∈ C4+α,1(M × [0, T ]) where metrics

ḡ(t) = ḡ(t) = g0 + tF(g0). (3.5.42)

as we defined in Proposition 3.5.8. We will apply inverse function theorem 3.3.1

to map M around ḡ to prove the existence of a solution of equation M(g) = 0.

Note that linear operator (n−1)∆ḡ(t) +s0 is a small perturbation of (n−1)∆g0 +s0

when t is small. Since operator (n − 1)∆g0 + s0 is invertible, we conclude that

(n−1)∆ḡ(t) +s0 is invertible for each t ∈ [0, T ] when T is small enough. In general

metric ḡ(t) does not have constant scalar curvature for t > 0.

Note that

‖M(ḡ)‖Cα,0 ≤ CT for t ∈ [0, T ] (3.5.43)

where C depends on ‖g0‖C10+α . Hence ḡ(t) is an approximate solution when T is

small.

By (3.5.29) we have that for sufficient small T

∥

∥

∥[DM(g)]−1
∥

∥

∥

L(Cα,0,C4+α,1)
≤ C̄ (3.5.44)

for some constant C̄. Let Bǫ(ḡ) = {g ∈ C4+α,1(M × [0, T ]) : ‖g − ḡ‖C4+α,1 ≤ ǫ}.

By the perturbation theory of bounded linear operators and Proposition 3.5.7

there is a constant C0 and a small number ǫ > 0 such that the operator norm

∥

∥

∥[DM(g)]−1
∥

∥

∥

L(Cα,0,C4+α,1)
≤ C0 (3.5.45)

for g ∈ Bǫ(ḡ). By Proposition 3.5.7 we can choose ǫ even smaller if necessarily
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such that for the constant C0 above we have

‖DM(g1) − DM(g2)‖L(C4+α,1,Cα,0) ≤ 1

2C0

(3.5.46)

for all g1, g2 ∈ B(ḡ, δ0). We may choose an even smaller T if necessary to get

‖M(ḡ)‖Cα,0 ≤ ǫ

2C0

(3.5.47)

Hence the short time existence of DeTurck conformal Bach flow is proved by the

inverse function theorem 3.3.1. Furthermore, by Lemma 3.2.1, we finish the proof

of the short time existence of conformal Bach flow.

Remark 3.5.10. We already proved the short time existence for conformal Bach

flow. As for conformal gradient flow (2.8.4), the proof is the identical, and since it

is divergence free, the elliptic equation in conformal gradient flow system is easier

than conformal Bach flow.

3.6 Uniqueness

The proof is standard as the proof of the uniqueness of Ricci flow on closed

manifolds (see, for example, [16, p.117-118]) or the uniqueness proof in [51, p.254-

255]. The basic idea is that given two solutions (gi(t), pi(t)), i = 1, 2, of confor-

mal Bach flow (3.0.1), from Lemma (3.2.1) we have two diffeomorphisms ϕi(t),

i = 1, 2 which are solutions of the parabolic equations (3.2.11) corresponding to

gi(t). Then the pushing-forward metrics (ϕi(t))∗gi(t) are solutions of DeTurck

conformal Bach flow (3.2.11) satisfying the same the initial condition, hence by
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the uniqueness in Theorem 3.5.9, we have

(ϕ1(t))∗g1(t) = (ϕ2(t))∗g2(t) = g∗(t)

Then ϕi(t) are the solutions of ordinary differential equation (3.2.12) for metric

g∗(t) with initial condition

ϕ1(0) = ϕ2(0) = IdM

Hence ϕ1(t) = ϕ2(t) and

g1(t) = ϕ1(t)
∗g∗(t) = ϕ2(t)

∗g∗(t) = g2(t)

3.7 Regularity

In previous theorem, we found that given a suitable initial data, there exist a

solution in C4+α,1(M × [0, T ]) to the conformal Bach flow for some small T . The

regularity theorem implies this solution is actually smooth.

Theorem 3.7.1. If the metric g0 in Theorem 3.5.9 is smooth, then the solution

g(t) is smooth in space and time.

Proof. Let metric g̃ in ((3.2.10)) to be g0. Using local coordinates {xi}n
i=1 we may

rewrite the DeTurck modified conformal Bach flow (3.2.11) in a schematic way



















∂

∂t
gij + (gkl∂k∂l)(g

pq∂p∂q)gij + Aij(g0, g) − 2(n − 2)pgij = 0,

((n − 1)∆g(t) + s0)p = −(n − 2)A(g(t)) · B(g(t)) + ∇2
g(t)B(g(t)),

(3.7.1)

where Aij(g0, g) depends on {gpq} up to their third derivatives. We want to prove
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∂kgij is in C4+α,1(M × [0, T ]) for each k ∈ N by a bootstrap argument. Below we

only consider the the base case k = 1, as an example.

By Theorem 3.5.9, if g ∈ C4+α,1, the right hand side of the second equation in

(3.7.1) is in Cα,0 and hence p ∈ C4+α,0. Since Aij(g0, g) − 2(n − 2)pgij ∈ C1+α,0,

it follows from Lemma 3.4.2 and the smoothness of g0 that g ∈ C5+α,1.

After we have improved the spatial regularity to smoothness, we can use the

equation (3.7.1) to improve the regularity in time to smoothness. The theorem is

proved.
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Chapter 4

Integral Estimate and Long Time

Behavior

In this chapter, we will introduce the integral estimate of Riemann curvature

tensor when the metric is evolving under the conformal Bach flow and discuss the

long time behavior of the solution to conformal Bach flow.

In Sec.4.1, we will calculate some evolution equations for curvature quantity.

Since conformal Bach flow is a fourth order partial differential equation system,

no maximum principle is readily available, and so we cannot expect to easily

bound curvature quantities pointwise. Instead of that, integral estimate is a well

developed approach, we will develop a integral estimate in Sec.4.3 follow the ideas

from[32, Sec.3] and [51, Sec.5]. We will also discuss how the volume changes under

this flow in Sec.4.4. Also, a special case in dimension 4 will be mentioned. Once

we assume the Sobolev inequality, such global estimate can be turned into point-

wise estimate. In Sec.4.5, we will see point-wise estimate of curvatures allows us

to characterize the finite time singularities.

We first introduce some notations in our paper. We denote any possible

contraction between curvatures by Rm ∗ Rm. For example, this can represent
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3RikjlRpqrs or RijR
i
k. Another useful notation in curvature estimate is P m

s (Rm),

which is defined as:

P k
s (Rm) =

∑

Ci1i2···is
∇i1Rm ∗ ∇i2Rm ∗ · · · ∗ ∇isRm

where i1 + i2 + · · · + is = m.

Before we proceeding, we recall that the conformal Bach flow (3.0.1) is



















∂

∂t
g = 2(n − 2)(B + pg)

−(n − 1)∆p − s0p = (n − 2)A · B − ∇2B

From now on, we will drop the modified term which will simplify our calculation.

Also, we recall the definition of Bach tensor with Schouten tensor (2.1.11)

Bij = ∆Aij − ∇k∇iAjk + AklWikjl

=
1

n − 2
∆Rij +

2

n − 2
RklRikjl − n − 4

(n − 2)2
RikRk

j

− n

(n − 1)(n − 2)2
s0Rij − 1

(n − 2)2
|Ric|2gij +

1

(n − 1)(n − 2)
s2

0gij

(4.0.1)

One can verify this equation by using Ricci identity (A.6.1) and the definition

of Weyl tensor (A.9.3). If we preserve the scalar curvature to be constant, the

highest order term in Bach curvature is ∆Rij, the rest term will be quadratic.

And we recall that the gradient of L2 norm of Weyl curvature.

B = −4(n − 3)

n − 2
∆Rij +

2(n − 3)

(n − 1)(n − 2)
∆Rgij +

2(n − 3)

n − 1
∇i∇jR

− 4(n − 4)

n − 2
RpqRipjq + 4RipR

p
j − 4

(n − 1)(n − 2)
RRij

− 2RpqriR
pqr

j +
1

2
|W |2gij

(4.0.2)
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Since these two tensors are similar, in this chapter, we will consider the fol-

lowing differential equation system.



















∂

∂t
g = Cn

(

∆Ric + Rm ∗ Rm + pg
)

−(n − 1)p − s0p = (n − 2)A · B − ∇2B

(4.0.3)

where Cn = 2(n−2) and s0 is a constant for scalar curvature. Here we simply use

A · B, because schematically, B and B are the same. And the double divergence

term ∇2B will vanish when n = 4 in conformal Bach flow and vanish for any

dimension in conformal gradient flow. But this term will not hurt our result, we

decide to keep it. We will see in Sec. 4.2, ∇2B only contains the same type of

curvature quantity as A · B.

4.1 Evolution Equation

In this section, we will derive some evolution equations for Riemann curvature

tensor. Our main goals are deriving the evolution equations for the L2-norm of

Rm.

Commutation of Derivatives

First, we will introduce a basic formula.

Lemma 4.1.1. Let T be a tensor quantity, we have

[∇k, ∆]T = ∇k∆T − ∆∇kT =
k
∑

j=0

∇jRm ∗ ∇k−jT (4.1.1)

Proof. We will use induction argument to prove this formula. The base case k = 1

directly coming from the Ricci identity (A.6.1). Now suppose this formula is true
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for k − 1, then we have

∇k∆T − ∆∇kT

= ∇∇k−1∆T − ∆∇kT

= ∇
(

∆∇k−1T +
k−1
∑

j=0

∇jRm ∗ ∇k−1−jT
)

− ∆∇kT

= ∇∆∇k−1T +
k
∑

j=0

∇jRm ∗ ∇k−jT − ∆∇kT

= ∆∇∇k−1T +
1
∑

j=0

∇jRm ∗ ∇1−j∇k−1T +
k
∑

j=0

∇jRm ∗ ∇k−jT − ∆∇kT

=
k
∑

j=0

∇jRm ∗ ∇k−jT

Evolution Equation of Rm

We first introduce a fundamental formula in curvature estimate.

Lemma 4.1.2. Given (Mn, g(t)) to be the solution of conformal Bach flow (3.0.1),

the evolution equation of Riemann curvature tensor is:

∂

∂t
Rm = −∆2Rm + P 2

2 (Rm) + P 0
3 (Rm) + T (∇2p) + 2(n − 2)pRm (4.1.2)

where

T (∇2p) = (n − 2)
[

∇i∇lpgjk − ∇i∇jpgkl − ∇k∇lpgij + ∇k∇jpgil

]

Here, we ignore all of coefficients by using aster symbol.

Proof. To see this, we recall that the variation of Riemann curvature tensor
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(B.4.1)(also see [16, Page 120 Eq.2.67]), we have:

∂

∂t
Rijkl =

1

2
(∇i∇khjl − ∇i∇lhjk − ∇j∇khil + ∇j∇lhik) +

1

2
(Rijkphpl + Rijplhpk)

where hij = 2(n − 2)(Bij + pgij). We will consider three different types of terms,

i.e.

h = ∆Ric + Rm ∗ Rm + 2(n − 2)pg = h1 + h2 + h3

First, we know that the leading term of Bach tensor is h1 = 2Ric, therefore, if

∂
∂t

g = h1 we have:

∂

∂t
Rijkl = ∇i∇k∆Rjl − ∇i∇l∆Rjk − ∇j∇k∆Ril + ∇j∇l∆Rik

+ Rijkp∆R
p
l + Rijpl∆R

p
k

= ∆
(

∇i∇kRjl − ∇i∇lRjk − ∇j∇kRil + ∇j∇lRik

)

+ Rm ∗ ∇2Rm

= ∆
(

− ∆Rm + Rm ∗ Rm
)

+ Rm ∗ ∇2Rm

= −∆2Rm + P 2
2 (Rm)

(4.1.3)

where we use the result from [16, Page 120 Eq.2.64] to get an extra Laplacian.

We also don’t specify ∆ and ∇2 when it is of the lower order term. And we treat

s0 as a curvature quantity Rm for our convenient.

Second, in the Bach tensor we have some quadratic terms h2 = Rm ∗ Rm,

therefore, if ∂
∂t

g = h2 we have:

∂

∂t
Rijkl = P 2

2 (Rm) + P 0
3 (Rm) (4.1.4)

For the last type, we don’t simplify any term with pressure function. Combin-

60



ing with the previous results, we have:

∂

∂t
Rm = −∆2Rm + P 2

2 (Rm) + P 0
3 (Rm) + T (∇2p) + 2(n − 2)pRm

where

T (∇2p) = (n − 2)
[

∇i∇lpgjk − ∇i∇jpgkl − ∇k∇lpgij + ∇k∇jpgil

]

Evolution Equation for ∇kRm

Next step is raising the covariant derivatives. The key lemma is the following,

about commuting the time derivative and the covariant derivative.

Lemma 4.1.3. Let T be a tensor quantity, we have

∂

∂t
∇kT = ∇k ∂

∂t
T +

k−1
∑

j=0

∇j
(

∇(
∂

∂t
g) ∗ ∇k−1−jRm

)

(4.1.5)

The extra term ∇( ∂
∂t

g) comes from the derivative of Christoffel symbols with

respect to time. With this lemma, we have the following evolution equation.

Lemma 4.1.4. Given (Mn, g(t)) to be the solution of conformal Bach flow (3.0.1),

let k ∈ N, the evolution equation of the k-th order covariant derivative of Riemann

curvature tensor is:

∂

∂t
∇kRm = −∆2∇kRm + P k+2

2 (Rm) + P k
3 (Rm)

+ ∇kT (∇2p) + 2(n − 2)
k
∑

j=1

∇jp∇k−jRm
(4.1.6)
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where

T (∇2p) = (n − 2)
[

∇i∇lpgjk − ∇i∇jpgkl − ∇k∇lpgij + ∇k∇jpgil

]

Here, we ignore all of coefficients by using aster symbol.

Proof. From now on, we simply write Bach tensor as some contractions of Riemann

curvature and its covariant derivatives

∂

∂t
g = ∇2Rm + Rm ∗ Rm + 2(n − 2)pg

With a direct calculation, we have:

∂

∂t

(

∇kRm

)

= ∇k
(

− ∆2Rm + P 2
2 (Rm) + P 0

3 (Rm) + T (∇2p) + 2(n − 2)pRm
)

+
k−1
∑

j=0

∇j

[

∇
(

∇2Rm + Rm ∗ Rm + 2(n − 2)pg
)

∗ ∇k−1−jRm

]

= −∇k∆2Rm + P k+2
2 (Rm) + P k

3 (Rm) + ∇kT (∇2p)

+ 2(n − 2)∇k(pRm) + 2(n − 2)
k−1
∑

j=0

∇j(∇p∇k−1−jRm)

For the last line, we commute the double Laplacian and the k-th order covari-

ant derivative, all of extra terms are absorbed by P k+2
2 (Rm). Now we need to

rearrange the index to simplify the terms with p. First, we notice that

∇p∇k−1−jRm = ∇(p∇k−1−jRm) − p∇k−jRm
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therefore,

k−1
∑

j=0

∇j∇p∇k−1−jRm =
k−1
∑

j=0

∇j
[

∇(p∇k−1−jRm) − p∇k−jRm
]

=
k−1
∑

j=0

∇j+1(p∇k−1−jRm) −
k−1
∑

j=0

∇j(p∇k−jRm)

=
k
∑

j=1

∇j(p∇k−jRm) −
k−1
∑

j=0

∇j(p∇k−jRm)

= ∇k(pRm) − p∇kRm

In the end, we have:

∂

∂t

(

∇kRm

)

= −∇k∆2Rm + P k+2
2 (Rm) + P k

3 (Rm) + ∇kT (∇2p)

+ 4(n − 2)∇k(pRm) − 2(n − 2)p∇kRm

Evolution Equation of |Rm|2 and |∇kRm|2

Lemma 4.1.5. Given (Mn, g(t)) to be the solution of conformal Bach flow (3.0.1),

let k ∈ N, the evolution equations of |Rm|2 and |∇kRm|2 are

∂

∂t
|Rm|2 = −∆2|Rm|2 + 2|∆Rm|2 + 4|∇2Rm|2 + 8〈∇Rm, ∆∇Rm〉

+ P 2
3 (Rm) + P 0

4 (Rm) + 2T (∇2p)Rm − 4(n − 2)p|Rm|2
(4.1.7)

and

∂

∂t
|∇kRm|2 = −∆2|∇kRm|2 + 2|∆∇kRm|2 + 4|∇k+2Rm|2

+ 8〈∇k+1Rm, ∇∆∇kRm〉 + P 2k+2
3 (Rm) + P 2k

4 (Rm)

+ 2∇kRm∇kT (∇2p) + 8(n − 2)∇kRm∇k(pRm)

− 2(k + 6)(n − 2)p|∇kRm|2

(4.1.8)
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where

T (∇2p) = ∇i∇lpgjk − ∇i∇jpgkl − ∇k∇lpgij + ∇k∇jpgil

Here, we ignore all of coefficients by using aster symbol.

Remark 4.1.6. From these two results, we can see that after integrating over a

closed manifold, the first terms in (4.1.7) and (4.1.8) are vanished due to the diver-

gence theorem. And we will see in next section that the following three terms will

contribute negative terms after integration by parts and commuting derivatives.

Proof. From Lemma 4.1.2, we have:

∂

∂t
|Rm|2 =

∂

∂t
〈Rm, Rm〉 +

∂

∂t
g−1 ∗ Rm ∗ Rm

= 2〈Rm,
∂

∂t
Rm〉 − ∂

∂t
g ∗ Rm ∗ Rm

= −2〈Rm, ∆2Rm + P 2
2 (Rm) + P 0

3 (Rm) + T (∇2p) + 2(n − 2)pRm〉

−
(

∇2Rm + Rm ∗ Rm + 2(n − 2)pg
)

∗ Rm ∗ Rm

= −2〈Rm, ∆2Rm〉 + P 2
3 (Rm) + P 0

4 (Rm)

+ 2T (∇2p)Rm − 4(n − 2)p|Rm|2

Since we have:

∆2|Rm|2 = 2〈Rm, ∆2Rm〉 + 2|∆Rm|2 + 4|∇2Rm|2

+ 4〈∇Rm, ∆∇Rm〉 + 4〈∇Rm, ∇∆Rm〉

= 2〈Rm, ∆2Rm〉 + 2|∆Rm|2 + 4|∇2Rm|2

+ 8〈∇Rm, ∇∆Rm〉 + P 2
3 (Rm)
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Combine with these two results, we have:

∂

∂t
|Rm|2 = −2〈Rm, ∆2Rm〉 + P 2

3 (Rm) + P 0
4 (Rm)

+ 2T (∇2p)Rm − 4(n − 2)p|Rm|2

= −∆2|Rm|2 + 2|∆Rm|2 + 4|∇2Rm|2 + 8〈∇Rm, ∆∇Rm〉

+ P 2
3 (Rm) + P 0

4 (Rm) + 2T (∇2p)Rm − 4(n − 2)p|Rm|2

From Lemma 4.1.4, we have:

∂

∂t
|∇kRm|2 = 2〈∇kRm,

∂

∂t
∇kRm〉 + k

∂

∂t
g−1 ∗ ∇kRm ∗ ∇kRm

= −2〈∇k, ∆2∇kRm〉 + P 2k+2
3 (Rm) + P 2k

4 (Rm)

+ 2∇kRm∇kT (∇2p) + 8(n − 2)∇kRm∇k(pRm)

− 2(k + 6)(n − 2)p|∇kRm|2

Another similar argument for ∆|∇kRm|2 is

∆|∇kRm|2 = −2〈∇kRm, ∆2∇kRm〉 + 2|∆∇kRm|2 + 4|∇k+2Rm|2

+ 8〈∇k+1Rm, ∇∆∇kRm〉 + P 2k+2
3 (Rm)

Finally, we have:

∂

∂t
|∇kRm|2 = −∆2|∇kRm|2 + 2|∆∇kRm|2 + 4|∇k+2Rm|2

+ 8〈∇k+1Rm, ∇∆∇kRm〉 + P 2k+2
3 (Rm) + P 2k

4 (Rm)

+ 2∇kRm∇kT (∇2p) + 8(n − 2)∇kRm∇k(pRm)

− 2(k + 6)(n − 2)p|∇kRm|2
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4.2 Integral Estimate of Pressure Function

In this section, we will derive some integral estimate for pressure function p.

We remark that in this section, instead of assuming elliptic operator (n−1)∆g +s0

is invertible, we assume that L2-norm of p is bounded, which is a more desirable

condition.

Lemma 4.2.1. Given (Mn, g(t)) to be the solution of conformal Bach flow (3.0.1),

for any positive constant ǫ, we can find two constant C1 and C2 such that C1 =

C1(n, s0, ǫ). C2 = C2(n), we have the following integral estimate for pressure

function p:

∫

M
|∇p|2dµ ≤ C1

∫

M
|p|2dµ + ǫ ‖Rm‖2

∞

∫

M
|∇2Rm|2dµ + C2 ‖Rm‖4

∞

∫

M
|Rm|2dµ

(4.2.1)

Proof. We first look at the elliptic equation:

[−(n − 1)∆ − s0]p = ∇i∇jBij + AijBij

From (2.2.1) and (2.2.2), we know that the bouble divergence term ∇i∇jBij is

actually a second order term, schematically,

∇i∇jBij + AijBij = ∇Rm ∗ ∇Rm + ∇2Rm ∗ Rm + Rm∗3 = P 2
2 (Rm) + P 0

3 (Rm)

Therefore, the classical energy estimate is following:

−(n − 1)p∆p − s0p
2 = p∇i∇jBij + pAijBij
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Integrate this equation, apply integration by parts, we have:

(n − 1)
∫

M
|∇p|2dµ = s0

∫

M
|p|2dµ +

∫

M
p · P 2

2 (Rm)dµ +
∫

M
p · P 0

3 (Rm)dµ

Then we apply Hölder inequality with exponent 1
2

and Young’s inequality with

constant a and b which are decided later, we have:

∫

M
|∇p|2dµ ≤ s0

n − 1

∫

M
|p|2dµ +

1

n − 1

(

∫

M
|p|2dµ

)
1
2
(

∫

M
P 4

4 (Rm)dµ

)
1
2

+
1

n − 1

(

∫

M
|p|2dµ

)
1
2
(

∫

M
P 0

6 (Rm)dµ

)
1
2

≤ s0 + 1
2a

+ 1
2b

n − 1

∫

M
|p|2dµ +

a

2

∫

M
P 4

4 (Rm)dµ +
b

2

∫

M
P 0

6 (Rm)dµ

Now we directly apply Proposition D.1.6 to the last two terms with (s, k) = (4, 2)

and (s, k) = (6, 0), we have the following estimate.

∫

M
|∇p|2dµ ≤ s0 + 1

2a
+ 1

2b

n − 1

∫

M
|p|2dµ +

a

2

∫

M
P 4

4 (Rm)dµ +
b

2

∫

M
P 0

6 (Rm)dµ

≤ s0 + 1
2a

+ 1
2b

n − 1

∫

M
|p|2dµ +

a

2
Ca ‖Rm‖2

∞

∫

M
|∇2Rm|2dµ

+
b

2
Cb ‖Rm‖4

∞

∫

M
|Rm|2dµ

Now for any positive constant ǫ > 0, we choose constant a to satisfies

a

2
Ca ≤ ǫ

and let C1(s0, a, b, n, ǫ) =
s0+ 1

2a
+ 1

2b

n−1
and C2(b, n) = b

2
Cb, we conclude that

∫

M
|∇p|2dµ ≤ C1

∫

M
|p|2dµ + ǫ ‖Rm‖2

∞

∫

M
|∇2Rm|2dµ + C2 ‖Rm‖4

∞

∫

M
|Rm|2dµ
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Now we estimate the derivatives of pressure function. Note that we have the

following commutator equation:

∇k−1∆p = ∆∇k−1p + ∇k−1(p · Rm) (4.2.2)

Lemma 4.2.2. Given (Mn, g(t)) to be the solution of conformal Bach flow (3.0.1),

let k ∈ N and k ≥ 2, we can find three positive constants Ci = Ci(n, k, s0, ‖Rm‖∞)

for i = 1, 2, 3, such that we have the following integral estimate for pressure func-

tion p:

∫

M
|∇kp|2dµ ≤ C1

∫

M
|∇k+1Rm|2dµ + C2

∫

M
|Rm|2dµ + C3

∫

M
|p|2dµ (4.2.3)

Proof. With the same idea, we can raise the order of derivative of p. Let k ∈ N,and

k > 1, we have the following elliptic equation

−(n − 1)∆∇k−1p − s0∇k−1p = ∇k−1∇2B + ∇k−1(A · B) + ∇k−1(p · Rm)

Multiply this equation by ∇k−1p and integrate over the manifold, we have:

(n − 1)
∫

M
|∇kp|2dµ − s0

∫

M
|∇k−1p|2dµ

=
∫

M
∇k−1p · P k+1

2 (Rm)dµ +
∫

M
∇k−1p · P k−1

3 (Rm) +
∫

M
∇k−1p∇k−1(p · Rm)dµ

Therefore, we have the following estimate by Hölder inequality, Young’s inequality
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and Proposition D.1.6. The first term can be written as:

∫

M
∇k−1p · P k+1

2 (Rm)dµ ≤
(

∫

M
|∇k−1p|2dµ

)
1
2
(

∫

M
|P 2k+2

4 (Rm)|dµ

)
1
2

≤ 1

2

∫

M
|∇k−1p|2dµ +

1

2

∫

M
|P 2k+2

4 (Rm)|dµ

≤ 1

2

∫

M
|∇k−1p|2dµ +

C(n, k)

2
‖Rm‖2

∞

∫

M
|∇k+1Rm|2dµ

(4.2.4)

With the same argument, the second term can be written as:

∫

M
∇k−1p · P k+1

2 (Rm)dµ ≤
(

∫

M
|∇k−1p|2dµ

)
1
2
(

∫

M
|P 2k−2

6 (Rm)|dµ

)
1
2

≤ 1

2

∫

M
|∇k−1p|2dµ +

1

2

∫

M
|P 2k−2

6 (Rm)|dµ

≤ 1

2

∫

M
|∇k−1p|2dµ +

C(n, k)

2
‖Rm‖4

∞

∫

M
|∇k−1Rm|2dµ

(4.2.5)

For the last term, we use integration by parts first

∣

∣

∣

∣

∣

∫

M
∇k−1p∇k−1(p · Rm)dµ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

M
∇2k−2p · p · Rmdµ

∣

∣

∣

∣

∣

(4.2.6)

we use a telescoping formula

∇2k−2p · Rm = ∇k−1(∇k−1p · Rm) − ∇k−2(∇k−1p · ∇Rm) (4.2.7)
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therefore, the last term can be written as

∣

∣

∣

∣

∣

∫

M
∇k−1p∇k−1(p · Rm)dµ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

M
∇k−1(∇k−1p · Rm) · pdµ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

M
∇k−2(∇k−1p · ∇Rm) · pdµ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

M
∇k−1p · Rm · ∇k−1pdµ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

M
∇k−1p · ∇Rm · ∇k−2pdµ

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

∫

M
∇k−1p · Rm · ∇k−1pdµ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

M
∇kp · Rm · ∇k−2pdµ

∣

∣

∣

∣

∣

≤ 2 ‖Rm‖∞

∫

M
|∇k−1p|2dµ +

1

2

∫

M
|∇kp|2dµ +

1

2
‖Rm‖2

∞

∫

M
|∇k−2p|2dµ

(4.2.8)

where we use Young’s inequality at the last line. Now we collect all of these

results, we have:

(n − 3

2
)
∫

M
|∇kp|2dµ ≤ (1 + s0 + 2 ‖Rm‖∞)

∫

M
|∇k−1p|2dµ

+
1

2
‖Rm‖2

∞

∫

M
|∇k−2p|2dµ

+
1

2
C(n, k) ‖Rm‖2

∞

∫

M
|∇k+1Rm|2dµ

+
1

2
C(n, k) ‖Rm‖4

∞

∫

M
|∇k−1Rm|2dµ

(4.2.9)

From here, we iterate this result, in the meantime, we use Proposition D.1.4 to

raise any
∫

M
|∇jRm|dµ to

∫

M
|∇k+1Rm|dµ, in the end, for any ǫ ≥ 0, we can find

three positive constant Ci = Ci(n, k, s0, ‖Rm‖∞) for i = 1, 2, 3, such that

∫

M
|∇kp|2dµ ≤ C1

∫

M
|∇k+1Rm|2dµ + C2

∫

M
|Rm|2dµ + C3

∫

M
|p|2dµ (4.2.10)
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4.3 Integral Estimate of Curvatures

After deriving some key evolution equations and an estimate of pressure func-

tion, we are proceeding to the classical integral estimate of curvatures. In this

section, we rely on interpolation inequalities which are derived in Appendix D.1,

we also refer most of interpolation inequalities to [25, Sec 12]. Such integral es-

timates were showed on several papers to deal with higher order geometric flows

[30, Sec.3][51, Sec.5][37, Sec.4].

Integral Estimate for
∫

M
|Rm|2dµ

First, we have the following lemma to convert
∫

M |∆Rm|2dµ to
∫

M |∇2Rm|2dµ

Lemma 4.3.1. Let (Mn, g) be a closed n-dimensional manifold and T is any

tensor defined on M , we have the following inequality:

∫

M
|∇2T |2dµ =

∫

M
|∆T |2dµ+

∫

M
∇T ∗∇T ∗Rmdµ+

∫

M
∇2T ∗T ∗Rmdµ (4.3.1)

Proof. This equation comes from the integration by parts and Ricci identity

(A.6.1).

∫

M
〈∇2T, ∇2T 〉dµ =

∫

M
〈∇i∇jT, ∇i∇jT 〉dµ

=
∫

M
〈∇i∇jT, ∇j∇iT 〉dµ +

∫

M
∇2T ∗ T ∗ Rmdµ

= −
∫

M
〈∇jT, ∇i∇j∇iT 〉dµ +

∫

M
∇2T ∗ T ∗ Rmdµ

= −
∫

M
〈∇jT, ∇j∇i∇iT 〉dµ +

∫

M
∇T ∗ ∇T ∗ Rmdµ

+
∫

M
∇2T ∗ T ∗ Rmdµ

=
∫

M
|∆T |2dµ +

∫

M
∇T ∗ ∇T ∗ Rmdµ +

∫

M
∇2T ∗ T ∗ Rmdµ
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With this lemma, combine with our previous result in Lemma 4.1.2, we have

Lemma 4.3.2. Given (Mn, g(t)) to be the compact solution to conformal Bach

flow (3.0.1), we have the following integral estimate for Riemann curvature tensor:

∂

∂t

∫

|Rm|2dµ +
3

2

∫

M
|∇2Rm|2dµ ≤ C(n)(‖Rm‖∞ + ‖Rm‖2

∞)
∫

M
|Rm|2dµ

+ C(n)
∫

M
|p|2dµ

(4.3.2)

where C(n) is a constant depends on dimension of manifold.

Proof. Under the conformal Bach flow, we have:

Trg

( ∂

∂t
gij

)

= 2(n − 2)
(

Tr(Bij) + pTr(gij)
)

= 2n(n − 2)p

Therefore, from Lemma 4.1.5, we have

∂

∂t

∫

|Rm|2dµ = 2
∫

M
〈Rm,

∂

∂t
Rm〉dµ +

1

2

∫

M
|Rm|2Tr(

∂

∂t
g)dµ

= −2
∫

M
|∆Rm|2dµ +

∫

M
P 2

3 (Rm)dµ +
∫

M
P 0

4 (Rm)dµ

+
∫

M
Rm · T (∇2p)dµ + (n − 4)(n − 2)

∫

M
p|Rm|2dµ

Now we apply Lemma 4.3.1 and interpolation inequality D.1.6, we have the fol-

lowing estimate:

∂

∂t

∫

|Rm|2dµ ≤ −2
∫

M
|∇2Rm|2dµ + C1 ‖Rm‖∞

∫

M
|∇Rm|2dµ

+ C2 ‖Rm‖2
∞

∫

M
|Rm|2dµ +

∫

M
Rm · T (∇2p)dµ

+ (n − 4)(n − 2)
∫

M
p|Rm|2dµ

Also, we have the following observation, from the definition of T (∇2p) in Lemma
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4.1.2, we have

∫

M
Rm · T (∇2p)dµ = (n − 2)

∫

M
Rijkl∇i∇lpgjk + Rijkl∇j∇jpgildµ

= −(n − 2)
∫

M
Ril∇i∇lp + Rjk∇j∇jpdµ

After using integration by part, this term actually vanishes since we preserve the

constant scalar curvature under this flow.

For the rest terms, we use interpolation inequality (D.1.4) and Hölder inequal-

ity again, we have:

∫

M
|∇Rm|2dµ ≤ ǫ

∫

M
|∇2Rm|2dµ + C(n, ǫ)

∫

M
|Rm|2dµ

we can simply choose ǫ = 1
2
. And

∫

M
p|Rm|2dµ ≤

(

∫

M
|p|2dµ

)
1
2
(

∫

M
|Rm|4dµ

)
1
2

≤ 1

2

∫

M
|p|2dµ +

1

2
‖Rm‖2

∞

∫

M
|Rm|2dµ

Combine all of these results, we have:

∂

∂t

∫

|Rm|2dµ +
3

2

∫

M
|∇2Rm|2dµ ≤ C(n)(‖Rm‖∞ + ‖Rm‖2

∞)
∫

M
|Rm|2dµ

+ C(n)
∫

M
|p|2dµ

here we don’t specify the constants but both of them only depend on the dimension

of manifold.

Estimate for
∫

M
|∇kRm|2dµ

Now we are ready to estimate the higher order derivatives of Riemann curva-

ture, we have the following proposition.
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Lemma 4.3.3. Given (Mn, g(t)) to be the compact solution to conformal Bach

flow (3.0.1), let k ∈ N, we can find two constants C1 and C2 depend on s0, n, k and

‖Rm‖∞ such that we have the following integral estimate for kth order derivative

of Riemann curvature tensor:

∂

∂t

∫

M
|∇kRm|2dµ +

∫

M
|∇k+2Rm|2dµ ≤ C1

∫

M
|Rm|2dµ + C2

∫

M
|p|2dµ

(4.3.3)

Proof. From Proposition 4.1.5, we have:

∂

∂t

∫

M
|∇kRm|2dµ = −2

∫

M
|∆∇kRm|2dµ +

∫

M
P 2k+2

3 (Rm)dµ +
∫

M
P 2k

4 (Rm)dµ

+ 2
∫

M
∇kRm ∗ ∇k[T (∇2p)]dµ +

∫

M
∇kRm ∗ ∇k(pRm)dµ

Now we can estimate the right hand side term by term. First, we have the leading

term, with Lemma 4.3.1,

−2
∫

M
|∆∇kRm|2dµ = −2

∫

M
|∇k+2Rm|2dµ+

∫

M
P 2k+2

3 (Rm)dµ+
∫

M
P 2k

4 (Rm)dµ

(4.3.4)

The last two terms are absorbed and we use interpolation inequality in Proposition

D.1.6, we have the following two estimates:

∫

M
P 2k+2

3 (Rm)dµ ≤ C(n, k) ‖Rm‖∞

∫

M
|∇k+1Rm|2dµ (4.3.5)

and
∫

M
P 2k

4 (Rm)dµ ≤ C(n, k) ‖Rm‖2
∞

∫

M
|∇kRm|2dµ (4.3.6)

We don’t specify the constants in these two estimates but both of them depend on

the dimension and the order of covariant derivatives. For the next term, we first
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use integration by parts twice, then Young’s inequality gives us desirable result.

∫

M
∇kRm ∗ ∇k[T (∇2p)]dµ =

∫

M
∇k+2Rm ∗ ∇k−2[T (∇2p)]dµ

≤
(

∫

M
|∇k+2Rm|2dµ

)
1
2
(

∫

M
|∇kp|2dµ

)
1
2

≤ 1

2

∫

M
|∇k+2Rm|2dµ +

1

2

∫

M
|∇kp|2dµ

(4.3.7)

For the last term, we have

∫

M
∇kRm ∗ ∇k(pRm)dµ =

∫

M
∇2kRm ∗ pRmdµ (4.3.8)

with a telescoping argument, we have:

∇2kRm ∗ Rm =
k
∑

j=0

∇2k−jRm ∗ ∇jRm −
k−1
∑

j=0

∇k+jRm ∗ ∇k−jRm

= ∇k(∇kRm ∗ Rm) − ∇k−1(∇kRm ∗ ∇Rm)

(4.3.9)

therefore, we rewrite (4.3.8) to be

∣

∣

∣

∣

∣

∫

M
∇kRm ∗ ∇k(pRm)dµ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

M
∇k(∇kRm ∗ Rm) ∗ pdµ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

M
∇k−1(∇kRm ∗ ∇Rm) ∗ pdµ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

M
∇kRm ∗ Rm ∗ ∇kpdµ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

M
∇kRm ∗ ∇Rm ∗ ∇k−1pdµ

∣

∣

∣

∣

∣

(4.3.10)
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We have the following estimates

∣

∣

∣

∣

∣

∫

M
∇kRm ∗ Rm ∗ ∇kpdµ

∣

∣

∣

∣

∣

≤ ‖Rm‖∞

∣

∣

∣

∣

∣

∫

M
∇kRm ∗ ∇kpdµ

∣

∣

∣

∣

∣

≤ 1

2
‖Rm‖2

∞

∫

M
|∇kRm|2dµ +

1

2

∫

M
|∇kp|2dµ

(4.3.11)

and

∣

∣

∣

∣

∣

∫

M
∇kRm ∗ ∇Rm ∗ ∇k−1pdµ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

M
∇k+1Rm ∗ Rm ∗ ∇k−1pdµ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

M
∇kRm ∗ Rm ∗ ∇kpdµ

∣

∣

∣

∣

∣

≤ ‖Rm‖∞

∫

M
|∇k+1Rm ∗ ∇k−1p|dµ + ‖Rm‖∞

∫

M
|∇kRm ∗ ∇kp|dµ

≤ 1

2
‖Rm‖2

∞

(

∫

M
|∇k+1Rm|2dµ +

∫

M
|∇kRm|2dµ

)

+
1

2

(

∫

M
|∇k−1p|2dµ +

∫

M
|∇kp|2dµ

)

(4.3.12)

Collecting the results from (4.3.5)-(4.3.7),(4.3.11) and (4.3.12), we have

∂

∂t

∫

M
|∇kRm|2dµ +

3

2

∫

M
|∇k+2Rm|2dµ

≤
(

C(n, k) ‖Rm‖∞ +
1

2
‖Rm‖2

∞

)

∫

M
|∇k+1Rm|2dµ

+
(

C(n, k) + 1
)

‖Rm‖2
∞

∫

M
|∇kRm|2dµ +

3

2

∫

M
|∇kp|2dµ +

1

2

∫

M
|∇k−1p|2dµ

(4.3.13)

With Lemma 4.2.2 and Proposition D.1.4, we have the following estimate:

∂

∂t

∫

M
|∇kRm|2dµ +

∫

M
|∇k+2Rm|2dµ ≤ C1

∫

M
|Rm|2dµ + C2

∫

M
|p|2dµ

(4.3.14)

76



where we choose a suitable ǫ such that the top order term on the right hand side

can be absorbed by
3

2

∫

M
|∇k+2Rm|2dµ on the left. The remaining constants C1

and C2 depend on s0, n, k, ‖Rm‖∞.

4.4 Volume Estimate

In this section, we will derive a volume estimate of manifold under the confor-

mal Bach flow and conformal gradient flow. In general, the volume growth only

depends on the pressure function due to the trace free property for both Bach

tensor and gradient of L2 norm of Weyl curvature. But for the conformal gradient

flow, a more desirable volume estimate is that using the gradient property, that

is L2 norm of Weyl curvature is non-increasing. Furthermore, in dimension 4,

this monotonicity combine with Gauss-Bonnet-Chern formula (2.3.3) provides a

better estimate for us.

Volume Estimate

In this subsection, we will discuss the volume estimate for manifold deforming

under conformal Bach flow and conformal gradient flow. In the following lemma,

we will see that the volume growth only depends on the L2 norm of pressure

function. Furthermore, in dimension 4, we obtain a volume estimate without any

assumption on pressure function.

Lemma 4.4.1. Given (Mn, g(t)) to be a closed solution to conformal Bach flow

(3.0.1) or conformal gradient flow (2.8.4), we have the following volume estimate:

vol(t) ≤
(n(n − 2)t

2

∫

M
p2dµ

)
1
2 (4.4.1)

Proof. By the variation formula of Riemann volume form (B.2.1), for both flows,
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we have

d

dt
vol(t) =

d

dt

∫

M
dµ = n(n − 2)

∫

M
pdµ

by Hölder inequality, we have

d

dt

∫

M
dµ ≤ n(n − 2)

(

∫

M
p2dµ

)
1
2
(

∫

M
dµ
)

1
2

Therefore, we have:

vol(t) ≤
(n(n − 2)t

2

∫

M
p2dµ

)
1
2 (4.4.2)

From here, we can see that if we assume the L2 norm of pressure function is

bounded, then we have the volume control, volume growth is at most proportional

to t
1
2 .

Next, we will discuss the volume estimate for conformal gradient flow with

monotonicity property of L2 norm of Weyl curvature.

Volume Estimate for Conformal Gradient flow

Lemma 4.4.2. Given (Mn, g(t)) to be the closed solution to conformal Bach flow

(2.8.4), we have the following volume estimate

vol(t) ≤ eCt
(

vol(0) +
1

2

∫

M
|W [g(0)]|2dµ

)

(4.4.3)

where C = n2(n−2)2

2s2
0

‖Rm‖2
∞, vol(0) is the initial volume, and W [g(0)] is the initial

Weyl curvature.
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Proof. With the same calculation, we have

d

dt
vol(t) = n(n − 2)

∫

M
pdµ

≤ n(n − 2)

|s0|
∫

M
Ric · gradFW dµ

≤
(

n2(n − 2)2

s2
0

∫

M
|Ric|2dµ

)
1
2
(

∫

M
|gradFW |2dµ

)
1
2

≤ n2(n − 2)2

2s2
0

∫

M
|Ric|2dµ +

1

2

∫

M
|gradFW |2dµ

≤ n2(n − 2)2 ‖Rm‖2
∞

2s2
0

∫

M
dµ +

1

2

∫

M
|gradFW |2dµ

= C(n, s0, ‖Rm‖∞)vol(t) +
1

2

∫

M
|gradFW |2dµ

Therefore, we obtain a differential inequality, and we have:

d

dt

[

e−Ctvol(t)
]

= e−Ct
[ d

dt
vol(t) − Cvol(t)

]

≤ 1

2
e−Ct

∫

M
|gradFW |2dµ

≤ 1

2

∫

M
|gradFW |2dµ

Integrating this inequality from 0 to t, we have:

e−Ctvol(t) − vol(0) ≤ 1

2

∫ t

0

∫

M
|gradFW |2dµds

=
1

2

∫

M
|W [g(0)]|2dµ − 1

2

∫

M
|W [g(t)]|2dµ

≤ 1

2

∫

M
|W [g(0)]|2dµ

In the end, we conclude that the volume estimate is

vol(t) ≤ eCt
(

vol(0) +
1

2

∫

M
|W [g(0)]|2dµ

)

(4.4.4)
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This result shows that under the conformal gradient flow, the volume growth

is related to initial metric and ‖Rm[g(t)]‖∞. In next lemma, we will investigate

the case when dimension is 4. In dimension 4, conformal Bach flow and conformal

gradient flow coincide. Also, we are going to use Gauss-Bonnet-Chern theorem to

handle the curvature term showed up in previous lemma.

Volume Estimate in Dimension 4

Lemma 4.4.3. Given (M4, g(t)) to be the closed solution to conformal Bach flow

(3.0.1), suppose that the initial metric g0 satisfies

∫

M
σ2[g(0)] ≥ 0

then we have the following volume estimate

vol(t) ≤ e
8
3

t
(

vol(0) +
1

2

∫

M
|W [g(0)]|2dµ

)

(4.4.5)

Proof. The calculation is similar to the previous lemma. We replace the Ricci

curvature by traceless Ricci curvature and we have:

d

dt
vol(t) = 8

∫

M
pdµ

≤ 8

|s0|
∫

M
E · gradFW dµ

≤
(

64

s2
0

∫

M
|E|2dµ

)
1
2
(

∫

M
|gradFW |2dµ

)
1
2

≤ 32
∫

M

|E|2
s2

0

dµ +
1

2

∫

M
|gradFW |2dµ

Recall the Gauss-Bonnet-Chern’s formula(2.3.3):

32π2χ(M4) =
∫

M
|W |2 + 4σ2(Ag)dµ (4.4.6)
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where σ2(Ag) = 1
24

R2 − 1
2
|E|2. By the property of conformal Bach flow in dimen-

sion 4,
∫

M σ2dµ is non decreasing, that is:

∫

M
σ2[g(t)]dµ ≥

∫

M
σ2[g(0)]dµ ≥ 0 (4.4.7)

Therefor, we have:
∫

M

1

24
R2 − 1

2
|E|2dµ ≥ 0 (4.4.8)

for all t, and we conclude that

∫

M

|E|2
s2

0

dµ ≤ 1

12
vol(t) (4.4.9)

and

d

dt
vol(t) ≤ 8

3
vol(t) +

1

2

∫

M
|gradFW |2dµ (4.4.10)

By the same argument before, we have the volume estimate

vol(t) ≤ e
8
3

t
(

vol(0) +
1

2

∫

M
|W [g(0)]|2dµ

)

(4.4.11)

In dimension 4, the volume growth depends only on initial metric g0 and t.

In dimension 4, one direct result from the volume estimate is the following

consequence of Sobolev constant.

Corollary 4.4.4. Given (M4, g(t)) to be the compact solution to conformal Bach

flow (3.0.1), suppose that the initial metric g0 satisfies

∫

M
σ2[g(0)] ≥ 0
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and

Y [M, g] > 0

The Sobolev constant Cs[g(t)] remains bounded.

Proof. To see this, we recall that in dimension 4, we derived the following inequal-

ity (2.5.4)

Cs(g) ≤ max{6, RgV
1
2 }

Y[g]

(4.4.12)

Under the conformal Bach flow, the volume has an upper bound by our previous

estimate. We only need to show that Yamabe constant has a lower bound, then

we can conclude that Sobolev constant has an upper bound.

To see this, under conformal Bach flow, we have

∫

M
σ2[g(0)] ≤

∫

M
σ2[g(t)]dµ ≤

∫

M

1

24
R2

g(t)dµ =
1

24

(

∫

M Rgdµ
)2

∫

M dµ
(4.4.13)

therefore, we have a uniform lower bounded for Yamabe constant such that

1

24
Y 2

[g] ≥
∫

M
σ2[g(0)] ≥ 0 (4.4.14)

and we conclude that Sobolev constant has an upper bound.

4.5 Long Time Behavior

In this section, we will discuss the long time behavior of conformal gradient

flow under some assumptions. Since this is the gradient flow for L2 norm of Weyl

curvature in any dimension, which is more interesting than conformal Bach flow.

We are going to prove a long time behavior theorem, under certain conditions,

the conformal gradient flow will exist for a long time. Our proof follows [15, §7.2].
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We will use a proof by contradiction, if the solution to conformal gradient flow

only exists on a finite time interval [0, T ) and T < ∞, and all of three conditions

in Theorem 4.5.1 hold, we will see that when t approaches to T , the metric g(t)

converges to a smooth metric g(T ) such that the flow passes T .

To show this, we first realize that Sobolev inequalities helps us convert all

global bounds for curvature and its derivatives to their point-wise bounds. That

is |∇kRm|g(t) and |∇kp|g(t) are bounded. Such bounds induce the bounds for

|∇̃kRm|g̃ and |∇̃kp|g̃ for some fixed background metric g̃. Under these conditions,

Lemma 4.5.4 shows that g(t) converges to a continuous metric g(T ), and next

lemma show that this metric g(T ) is actually smooth which allows us to extend

the solution pass T and contradicts to our assumption.

Theorem 4.5.1. Let (Mn, g(t), p(t)), t ∈ [0, T ), x ∈ M be a smooth solution of

conformal gradient flow on a closed manifold Mn with constant scalar curvature

s0. We assume that there is a constant K > 0 such that the curvature of g(t) and

potential function p(t) satisfy the following conditions

(a) sup
x∈M

|Rm(x, t)|g(t) ≤ K for t ∈ [0, T )

(b) the best Sobolev constant satisfies CS(g(t)) ≤ K

(c) the elliptic operator (n − 1)∆g(t) + s0 is uniformly invertible, that is

∥

∥

∥(n − 1)∆g(t) + s0

∥

∥

∥

L(Cα,C2+α)
≤ CE

for some constant CE.

Then (Mn, g(t), p(x, t)) can be extend to a solution of conformal gradient flow on

[0, T + δ) for some δ > 0.
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Our proof follows [15, Prop.6.48; Lemma 6.49; §7.2]. Before we prove this main

theorem, we state some key elements in this proof as following lemmas. First, we

show that under these conditions, all curvatures and their derivatives are bounded

in L∞ sense. After that, we will show that the metric g(t) converges to a smooth

metric g(T ), which allows us to extend the flow.

Lemma 4.5.2. Given (Mn, g(t)) to be the compact solution to conformal gradient

flow (2.8.4), which satisfies all condition in Theorem 4.5.1. Let k ∈ N, we can

find constants Ck = Ck(n, k, g0, vol(0), ‖Rm‖∞ , T ) such that such that we have

the following estimate for kth order derivative of Riemann curvature tensor:

∫

M
|∇kRm|2dµ ≤ Ck (4.5.1)

Proof. Recall that by our volume estimate for conformal gradient flow Lemma

4.4.1, we simply use a constant C = C(n, g0, vol(0), ‖Rm‖∞ , T ) to be the volume

bound. Therefore, we immediately obtain

∫

M
|Rm|2dµ ≤ ‖Rm‖2

∞ C ≡ C0

For higher order derivatives, recall the integral estimates we derived in Lemma

4.3.3:

∂

∂t

∫

M
|∇kRm|2dµ +

∫

M
|∇k+2Rm|2dµ ≤ C1

∫

M
|Rm|2dµ + C2

∫

M
|p|2dµ (4.5.2)

which depends on
∫

M |Rm|2dµ and
∫

M |p|2dµ. We assume that the elliptic operator
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is invertible, that means there is a constant C such that:

∫

M
|p|2dµ ≤ ‖p‖W 2,2 ≤ CE

∫

M
|P 2

2 (Rm)2dµ + CE

∫

M
|P 0

3 (Rm)2dµ

≤ CEC1(n) ‖Rm‖2
∞

∫

M
|∇2Rm|2dµ

+ CEC2(n) ‖Rm‖4
∞

∫

M
|Rm|2dµ

(4.5.3)

where we use the interpolation inequality (D.1.6). Combine (4.5.2) and (4.5.3),

using the interpolation inequality (D.1.4) to raise derivative, for any k ≥ 1, we

have the following estimate:

∂

∂t

∫

M
|∇kRm|2dµ ≤ C(n, k, g0, vol(0), ‖Rm‖∞ , T ) (4.5.4)

Therefore, we find constant Ck for k ∈ N such that

∫

M
|∇kRm|2dµ ≤ Ck (4.5.5)

Remark 4.5.3. With this result, all of L2 norms of pressure function and its

derivatives are immediately bounded.

In the next lemma, we prove that under certain condition, when t approached

to the maximal time T , the metric converges to a continuous metric which is

equivalent to the initial metric.

Lemma 4.5.4. Let Mn be a closed Riemannian manifold. For t ∈ [0, T ), where

T ≤ ∞, let g(t) be a one-parameter family of metric on Mn depends on space and

time smoothly. If there is a constant C > 0 such that

∫ T

0

∣

∣

∣

∣

∣

∂

∂t
g(x, t)

∣

∣

∣

∣

∣

g(t)

dt ≤ C
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for all x ∈ M , then

e−Cg(x, 0) ≤ g(x, t) ≤ eCg(x, 0) (4.5.6)

for all x ∈ M and t ∈ [0, T ). Furthermore, as t approaches to T , the metrics g(t)

converge uniformly to a continuous metric g(T ) such that for all x ∈ M ,

e−Cg(x, 0) ≤ g(x, T ) ≤ eCg(x, 0) (4.5.7)

Proof. For any (x, t0) ∈ Mn × [0.T ), let V ∈ TxM be any vector in tangent space.

The length of this vector |V |g(t) = g(x,t0)(V, V ), we have

∣

∣

∣

∣

∣

log
(g(x,t0)(V, V )

g(x,0)(V, V )

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t0

0

∂

∂t
log

[

g(x,t)(V, V )
]

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t0

0

∂
∂t

g(x,t)(V, V )

g(x,t)(V, V )
dt

∣

∣

∣

∣

∣

≤
∫ t0

0

∣

∣

∣

∣

∣

∂

∂t
g(x,t)(

V

|V | ,
V

|V |)
∣

∣

∣

∣

∣

dt

≤
∫ t0

0

∣

∣

∣

∣

∣

∂

∂t
g(x, t)

∣

∣

∣

∣

∣

dt

≤ C

we have

e−Cg(x, 0) ≤ g(x, t0) ≤ eCg(x, 0) (4.5.8)

This shows that for any t ∈ [0, T ), g(t) is equivalent to g(0). Therefore, we can

find a constant C ′ such that

∫ T

0

∣

∣

∣

∣

∣

∂

∂t
g(x, t)

∣

∣

∣

∣

∣

g(0)

dt ≤ C ′ (4.5.9)

Now we define

g(x, T ) = g(x, 0) +
∫ T

0
g(x, t)dt (4.5.10)
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with this definition, we have:

lim
t→T

|g(x, T ) − g(x, t)|g(0) ≤ lim
t→T

∫ T

t

∣

∣

∣

∣

∣

∂

∂t
g(x, s)

∣

∣

∣

∣

∣

g(0)

ds (4.5.11)

from where we see that metric g(t) converges to g(T ) for any x ∈ M . Since M is

compact, we conclude that this is a uniformly convergence, so g(T ) is continuous,

furthermore, it is also equivalent to g(0).

Now we are ready to apply previous lemma to conformal gradient flow.

Proposition 4.5.5. Let (Mn, g(t), p(t)), t ∈ [0, T ), x ∈ M be a smooth solution of

conformal gradient flow on a closed manifold Mn with constant scalar curvature s0.

We assume that the conditions in Theorem 4.5.1 hold, then metric g(t) converges

uniformly to a continuous metric g(T ) when t approaches to T , furthermore, g(T )

is equivalent to g(0).

Proof. We want to directly apply Lemma 4.5.4, it is suffice to verified that | ∂
∂t

g| is

bounded point-wisely. Recall that (Mn, g) is a closed Riemannian manifold, the

Sobolev constant CS is the best constant such that for any function u ∈ C1
0(M),

we have (2.5.1)

‖u‖
L

2n
n−2

≤ CS

(

‖∇u‖L2 + V ol− 1
n ‖u‖L2

)

(4.5.12)

We also have the following multiplicative Sobelev inequality (2.5.3). For u ∈
C1

0(M), n < p ≤ ∞, 0 ≤ m ≤ ∞, we have

‖u‖∞ ≤ CS · C(n, m, p) ‖u‖1−α

m

(

‖∇u‖p + ‖u‖p

)α
(4.5.13)

where 0 < α ≤ 1 and 1
α

=
(

1
n

− 1
p

)

m + 1.

Our aim is to derive the L∞ bound for all derivatives of curvatures, which

requires the Lp bound for curvatures, in which p is strictly greater than the di-
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mension of manifold.

To derive this estimate, we will iterate the Sobolev inequality. For example,

see [51, Page 266], we have

‖u‖2
8 =

(

∫

|u2|4
)

1
4

≤ Cs

( ∥

∥

∥∇|u2|
∥

∥

∥

2
+ V ol−1

∥

∥

∥u2
∥

∥

∥

2

)

≤ Cs · C
(

∫

|u∇u|2
)

1
2 + Cs · V ol−1 ‖u‖

1
2
4

≤ Cs · C

(

‖u‖4 + ‖∇u‖4

)

+ Cs · V ol−1 ‖u‖
1
2
4

≤ C(Cs) ‖u‖W 2,3

As for the Lp estimate of derivative of u, we need to combine with the Kato’s

inequality: |∇|∇u||2 ≤ |∇2u|2, the prove will be identical.

Therefore, these assumptions combine with the integral estimate for curvatures

in Lemma 4.5.2, we have:

∣

∣

∣

∣

∣

∂

∂t
g(x, t)

∣

∣

∣

∣

∣

g(t)

= 2n(n − 2)|B + pg|g(t) ≤ C (4.5.14)

in which C is a constant depends on n, K, T, CS and Ck in Lemma 4.5.2. Then

the result follows.

Now we want to prove that g(T ) is actually smooth. We start with the follow-

ing lemma, then the smoothness of g(T ) will be a direct consequence.

Lemma 4.5.6. Let (Mn, g(t), p(x, t)), t ∈ [0, T ), x ∈ M be a smooth solution of

conformal gradient flow on a closed manifold Mn with constant scalar curvature

s0. We assume that the conditions in Theorem 4.5.1 hold, Let U ⊂ M be a local
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coordinate patch, for all k ∈ N , (x, t) ∈ U × [0, T ), we have:

|∂kg| ≤ C (4.5.15)

for some constant C depends on k, n, s0, K, CS, T . And we simply choose the norm

to be Euclidean norm.

Proof. For our convenience, we define some constant C̃k such that for every k ∈ N,

we have |∇kRm|g(t) ≤ C̃k and |∇kp|g(t) ≤ C̃k.

In local coordinate system, we have:

0 = ∇igjk =
∂

∂xi
gjk − Γl

ijglk − Γl
ikgjl (4.5.16)

that is

∂

∂xi
gjk = Γl

ijglk + Γl
ikgjl (4.5.17)

Since g in uniformly bounded on the time interval [0, T ), we have:

∣

∣

∣

∣

∣

∂

∂x
g

∣

∣

∣

∣

∣

≤ C|Γ| (4.5.18)

for some constant C. To obtain an estimate for Christoffel symbol, we look at its

time derivative, and we adopt the aster symbol ∗ from previous proof. By the

variation of Christoffel symbol (B.3.1), we have:

∂

∂t
Γk

ij =
1

2
gkl
(

∇iBjl + ∇jBil − ∇lBij

)

+
1

2
gkl
(

∇ipgjl + ∇jpgil − ∇lpgij

)

(4.5.19)

therefore, we have

∂

∂t
Γ = C(∇B + ∇pg) = C(P 3

2 (Rm) + P 1
3 (Rm) + ∇pg) (4.5.20)
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The right hand side is clearly bounded since we have L∞ bound for all derivatives

of Rm and p. Also, for any two tensor quantities A and B

|A ∗ B| ≤ |A| · |B| (4.5.21)

Therefore,

∣

∣

∣

∣

∣

∂

∂t
Γ

∣

∣

∣

∣

∣

≤ C(g(0), C̃0, C̃1, C̃2, C̃3) (4.5.22)

Integrating over time interval, we have

|Γ| ≤ C(g(0), C̃0, C̃1, C̃2, C̃3, T ) (4.5.23)

Therefore, ∂g is bounded, where ∂ is the ordinary spatial derivative. Inductively,

let k ∈ N and α is a multi-index of length k, β1, and |β2| are multi-index with

length j and k − j, we have:

∂k

∂x|α| g =
k−1
∑

j=1

∂j

∂x|β1| Γ ∗ ∂k−j

∂x|β2| g (4.5.24)

and

∂

∂t

∂k

∂x|α| Γ = P 3+k
2 (Rm) + P k+1

3 (Rm) + ∇k+1pg (4.5.25)

With the same argument,

∣

∣

∣

∂k

∂x|α| Γ
∣

∣

∣ ≤ C(g(0), C̃0, · · · , C̃k+3, T ) (4.5.26)

and the result follows.
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Now we are ready to prove the main theorem. In Lemma 4.5.4, we show that

when t approaches to T , the metric g(t) converges to a continuous metric g(T ).

We are going to show that this metric is in fact smooth, and use it as a new initial

condition, we are able to extend the flow forward.

Proof of Theorem 4.5.1. Suppose that all conditions hold. Suppose that the so-

lution to conformal gradient flow exists on a finite interval [0, T ). Fix a local

coordinate around arbitrary point x ∈ M , let t ∈ [0, T ),by Proposition 4.5.5, a

continuous metric g(T ) exists and defined as

g(x, T ) = g(x, t) +
∫ T

t

∂

∂s
g(x, s)ds (4.5.27)

For any k ∈ N, let α be a multi-index with length k, by Lemma 4.5.6, ∂kg is

uniformly bounded, so is ∂kRm, therefore, we have:

∂k

∂xα
g(x, T ) =

∂k

∂xα
g(x, t) +

∫ T

t

∂k

∂xα

∂

∂s
g(x, s)ds (4.5.28)

Since k is arbitrary, it shows that g(x, T ) ∈ C∞(Mn), and

∣

∣

∣

∣

∣

∂k

∂xα
g(x, T ) − ∂k

∂xα
g(x, t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

t

∂k

∂xα

∂

∂s
g(x, s)ds

∣

∣

∣

∣

∣

≤ C(T − t) (4.5.29)

for some constant C, which shows that g(t) → g(T ) in C∞ sense when t approaches

to T . Now, with a new initial condition g0 = g(T ), the conformal gradient flow

can be extended by the short time existence theorem 3.5.9, this contradicts to our

assumption that T is the maximal time, and we complete the proof.

Remark 4.5.7. In dimension 4, by Corollary 4.4.4, we don’t need to assume the

Sobolev constant since it comes naturally.
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Chapter 5

Compactness and Singularity

Models

In this chapter, we will prove a compactness theorem for conformal gradient

flow, we will follow Hamilton’s compactness theorem for solutions of the Ricci flow

[26, Theorem 1.2]. Some similar results can be found in [51, §7] and [37, §7].

In Sec.5.1, we will introduce some definitions and state Cheeger Gromov com-

pactness theorem. Some results in Ricci flow will also be stated. In Sec.5.2, we

will prove our main result. In Sec.5.3, we will discuss some singularity models

obtained by re-scaling metric.

Throughout this chapter, we will follow the notations and conventions in [14,

Chapter 3]. We use m for mth order derivatives. We use subscript k for any

quantities depending on metric gk, for example, | · |k, ∇k and Rmk denote the

norm, covariant derivative and Riemann curvature tensor with respect to gk. All

other quantities without any subscript will be with respect to a fixed background

metric g.
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5.1 Introduction

In this section, we will introduce the Cheeger Gromov compactness theorem

and some historical results.

Convergence on Compact Sets

We first introduce what is convergence on compact sets in manifold. Most of

definitions come form [14, Chapter 3].

Definition 5.1.1 (Definition 3.1, Page 128, [14]). Let V ⊂ Mn be a compact

set in manifold Mn, fix an arbitrary background metric g on V , let {gk}k∈N be a

sequence of metric on V , we say that {gk}k∈N uniformly converges to a metric g∞

on this in Cp sense if for any ǫ > 0, exists an index k0 depending on ǫ such that

for all k ≥ k0, we have

sup
0≤α≤p

sup
x∈V

|∇α
g (gk − g∞)|g ≤ ǫ (5.1.1)

For a non-compact case, especially such manifold comes from re-scaling, we

must ensure that this convergence still makes sense. In order to define convergence

on such manifold, we use an exhaustion on manifold.

Definition 5.1.2 (Page 128, [14]). Given a manifold Mn, we say that a sequence

of open sets {Uk}k∈N to be an exhaustion of Mn if for any compact set V ⊂ Mn,

there exists an index k0 ∈ N such that for any k ≥ k0, V ⊂ Uk.

With an exhaustion, we have the following definition about the C∞ conver-

gence.

Definition 5.1.3 (Definition 3.2, Page 129, [14]). Let {Uk}k∈N be an exhaustion

on a manifold Mn, and gk are Riemannian metric on Uk. We say that (Uk, gk)
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uniformly converges to in C∞ sense on a compact set in manifold if for any com-

pact set V ⊂ Mn, and any p > 0, there exists an index k0 depending on p and V

such that {gk}k≥k0 converges in Cp sense to g∞ on V .

Pointed Manifolds and Solutions

We introduce the so called pointed manifold and the pointed solution to con-

formal gradient flow.

Definition 5.1.4 (Definition 3.3, Page 129, [14]). A complete pointed Riemannian

manifold is a 4-tuple (Mn, g, O, F ) where O ∈ Mn is a chosen point called base

point and F is a frame at point O.

Remark 5.1.5. In the rest of this thesis, we define a complete pointed Riemannian

manifold to be a 5-tuple (Mn, g, p, O, F ) instead of 4-tuple. Also, we say that this

tuple is a complete pointed solution to conformal gradient flow if (Mn, g(t)) is a

solution to conformal gradient flow (3.0.1).

Cheeger-Gromov Compactness

We first introduce what is Cheeger Gromov convergence. This definition states

that a sequence of metrics is convergent after diffeomorphisms.

Definition 5.1.6 (Page 120, [23]). [Cheeger-Gromov Convergence] Let {(Mn
k , gk)}k∈N

be a sequence of smooth compact Riemannian n-manifolds. We say that this se-

quence converges to a limit manifold (M∞, g∞) in Cheeger Gromov sense if there

exists a sequence of diffeomorphisms Φk : M∞ → Mk such that the sequence of the

pull-back metrics {Φ∗
k(gk)}k∈N converges to g∞ in Ck+α.

The next theorem states that under certain condition, this convergence hap-

pens subsequentially. This theorem consider a space of smooth compact Rieman-

nian n-manifolds under certain conditions on curvatures, diameters and volume,

and such space is pre-compact.
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Theorem 5.1.7 (Theorem 8.25,8.28, [24]). [Cheeger-Gromov Compactness The-

orem] Let MCG be a space of smooth compact Riemannian n-manifolds satisfies:

(a) |sec(Mn)| ≤ K

(b) diam(Mn) ≤ D

(c) τ(x) ≥ τ0

for some constants K, D, v0. Here, sec(Mn) is the sectional curvature, diam(Mn)

is the diameter and τ(x) is the injective radius for any point in Mn. Then for any

sequence {(Mk, gk)}k∈N, there is a sub-sequence and a C1+α-Riemannian manifold

(M∞, g∞) with a C2+α atlas of coordinate charts such that there exists a sequence

of C2+α diffeomorphisms Φk : M∞ → Mk such that the pull-back metrics Φ∗
k(gk) →

g∞ in C1+α sense with respect to a fixed C2+α atlas on M∞.

Historically, this theorem showed up on several papers [22][23][45] in 1980’s,

all of them can trace back to the original idea of Gromov [24] and Cheeger [12].

On can modify the last condition by assuming the volume lower bound since

the following Cheeger’s theorem.

Theorem 5.1.8 (Corollary 2.2, [12]). Let MCG be a space of smooth compact

Riemannian n-manifolds satisfies:

(a) |sec(Mn)| ≤ K

(b) diam(Mn) ≤ D

(c) τ(x) ≥ τ0

for some constants K, D, v0. Then there is a constant C = C(K, D, v0, n) such

that the injective radius has a lower bound, τ ≥ C.
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Cheeger-Gromov Compactness(Pointed Manifolds)

Next, we state a definition about the convergence complete pointed manifolds.

Definition 5.1.9 (Definition 3.5, Page. 129, [14]). [Cheeger-Gromov Convergence

for Pointed Manifolds] Let {(Mn
k , gk, Ok, Fk)}k∈N be a sequence of complete pointed

Riemannian n-manifolds. We say that this sequence converges to a limit space

(M∞, g∞, O∞, F∞) in Cheeger Gromov sense if

(a) there exists an exhaustion {Uk}k∈N of M∞ with Ok ∈ Uk

(b) there exists a sequence of diffeomorphisms Φk : Uk → Vk := Φk(Uk) ⊂ Mk

such that Φk(O∞) = Ok

such that
(

Uk, Φ∗
k

[

gk

∣

∣

∣

Vk

])

converges in C∞ to (M∞, g∞) uniformly on compact set

in M∞.

The corresponding definition for sequence of complete pointed solution to con-

formal Bach flow is given by following.

Definition 5.1.10 (Definition 3.6, Page. 130, [14]). [Cheeger-Gromov Conver-

gence for Pointed Manifolds Solutions] Let {(Mn
k , gk(t), pk(t), Ok, Fk)}k∈N, t ∈

(α, ω), be a sequence of complete pointed Riemannian n-manifolds. We say that

this sequence converges to a limit space (M∞, g∞(t), p∞(t), O∞, F∞) , t ∈ (α, ω),

in Cheeger Gromov sense if

(a) there exists an exhaustion {Uk}k∈N of M∞ with Ok ∈ Uk

(b) there exists a sequence of diffeomorphisms Φk : Uk → Vk := Φk(Uk) ⊂ Mk

such that Φk(O∞) = Ok

such that
(

Uk, Φ∗
k

[

gk(t)
∣

∣

∣

Vk

])

converges in C∞ to (M∞, g∞(t)) and pk(t) converges

in C∞ to p∞(t) uniformly on compact set in M∞ × (α, ω).
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Cheeger-Gromov Compactness(Hamliton’s Results)

In this subsection, we will introduce the convergence theorem proved by Hamil-

ton in [26].

Theorem 5.1.11 (Theorem 2.3 [26]). Let {(Mn
k , gk, Ok, Fk)}k∈N be a sequence of

complete pointed Riemannian n-manifolds that satisfies

(a) Uniformly bounded covariant derivative of Rm

|∇m
k Rmk|k ≤ Cm

on every Mn
k , for all m ∈ N and Cm ≥ 0 is a sequence of constants inde-

pendent of k.

(b) Injective radius lower bound

injgk
(Ok) ≥ τ0

for some constant τ0

Then there exists a subsequence {kj}j∈N such that the sequence {(Mn
kj

, gkj
, Okj

, Fkj
)}j∈N

converges to a complete pointed Riemannian manifold (M∞, g∞, O∞, F∞).

We will use this theorem to prove our result in next section.

5.2 Compactness

In this section, we will prove a compactness theorem to the pointed solution

of conformal Bach flow.

Theorem 5.2.1. Let {Mn
k , gk(t), pk(t), Ok, Fk}k∈N be a sequence of pointed solu-

tions to conformal Bach flow on a time interval (α, ω) such that for all t ∈ (α, ω)
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(a) Uniformly bounded curvature

sup
x∈Mk

|Rmk|k ≤ C

(b) Uniformly bounded L2 norm of pressure function p(t)

∫

Mk

|pk(t)|2dµ ≤ C

(c) Uniformly bounded Sobolev constant

CS(gk(t)) ≤ C

Then there exists a subsequence {Mn
kj

, gkj
(t), pkj

(t), Okj
, Fkj

}j∈N converges in C∞

Cheeger-Gromov sense to a complete pointed solution (Mn
∞, g∞, p∞, O∞, F∞) to

conformal Bach flow.

Remark 5.2.2. In this theorem, we don’t assume all covariant derivative of Rie-

mann curvature bounded since that combine with our integral estimate in Lemma

4.3.3, volume estimate in Lemma 4.4.1 and Sobolev inequality, we are able to

obtain the covariant derivative bound for Riemann curvature.

Remark 5.2.3. In this theorem, we don’t assume injective radius because the

assumption on Sobolev constant directly implies the lower bound of injetive radius.

We will see this in next subsection.

We also outline our proof here. In Hamilton’s compactness theorem 5.1.11,

it only focuses at a fixed time. In order to prove our main theorem, we first see

that at a single time slice, say t = 0, this convergence holds. Next, we need to

show such convergence still holds for all t ∈ (α, ω), for which we need to extend
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bounds on covariant derivatives and time derivative of metric g at t = 0 to the

whole time interval. This is proved in Lemma 5.2.5. Once we achieve this result,

Arzela-Ascoli theorem shows that such bounds imply a subsequence converges to

a solution of conformal Bach flow. This is proved in Lemma 5.2.7.

Injective Radius

In this subsection, we will sketch a proof to show that the upper bound of

Sobolev constant implies the lower bound of injective radius. We refer our proof

to several different chapters in [16]. The main theorem we use is the following.

Theorem 5.2.4 (Theorem 5.4.2, Page. 199, [16]). [Cheeger-Gromov-Taylor The-

orem] Let (Mn, g) be a complete Riemannian manifold with |sec(M)| ≤ 1. For

any positive constants c, r0, there is a positive constant τ0 if p ∈ Mn satisfies

vol(Bp(r))

rn
≥ c (5.2.1)

for all r ∈ (0, r0], then the injective radius at point p has a lower bound, injg(p) ≥
τ0.

In order to apply this theorem to obtain the lower bound of injective radius, we

first realize that the Sobolev inequality (2.5.1) implies the log Sobolev inequality

[16, Page 184, Lemma 5.8, Remark 5.10]. The proof is just the Hölder inequality.

Next, log Sobolev inequality is equivalent to the lower bound of Perelman’s entropy

W , this is a direct result from the definition of this entropy functional, we refer

this result to [16, Page 190, §4.2, §4.3]. W functional lower bound is equivalent

to volume ratio lower bound[16, Page 195, Prop 5.37], by Cheeger-Gromov-Taylor

theorem, we have the injective radius lower bound.

Uniformly Bounded for Derivative of Metric for All Time

Lemma 5.2.5. Let (Mn, g) be a Riemannian manifold and let U be a compact
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subset of M. Let {gk}k∈N be a collections of Riemannian metrics that are solutions

to conformal Bach flow on U ×[α, ω] and t0 ∈ [α, ω]. Let us denote ∇ and ∇k to be

the covariant derivative with respect to the background metric g and the sequential

metric gk, and the norms | · | and | · |k follow the same rule. Suppose that:

(a) gk(t0) is equivalent to g(t0) for all k ∈ N. That is for x ∈ M and for all

V ∈ TxM ,

C−1g(V, V ) ≤ gk(t0)(V, V ) ≤ Cg(V, V )

for some constant C independent of U, k.

(b) The mth order covariant derivatives of metric gk with respect to the metric

g are all uniformly bounded at t = t0 on the compact set U . That is

|∇mgk(t0)| ≤ Cm

for all m ∈ N and some constants Cm independent of k.

(c) The mth order covariant derivatives of Riemann curvature Rmk with respect

to the metric gk are all uniformly bounded on U × [α, ω].

|∇m
k Rmk|k ≤ C ′

m

for all m ∈ N and some constants C ′
m independent of k.

(d) Sobolev constant CS(gk(t)) and L2 norm of pressure function pk(t) are uni-

formly bounded.

CS(gk(t)) ≤ C

∫

M
|pk|2dµ ≤ C

for some constant C independent of k.
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Then we have the following conclusions:

(a) metric gk’s are uniformly bounded with respect to g on U × [α, ω], that is:

B−1(α, ω)g ≤ gk(t) ≤ B(α, ω)g

for some constants

B(α, ω) = CeC̄(ω−α)

independent of k.

(b) the time derivative and covariant derivative of metric gk(t) with respect to

g are uniformly bounded on U × [α, ω], that is for every pair (p, q) where

p, q ∈ N, there is a constant C̃p,q independent of k such that

∣

∣

∣

∣

∣

∂q

∂tq
∇pgk(t)

∣

∣

∣

∣

∣

≤ C̃p,q

Proof. For the conclusion (a), for any t1 ∈ [α, ω], we have:

∣

∣

∣

∣

∣

∫ t1

t0

∂

∂t
ln gk(t)dt

∣

∣

∣

∣

∣

≤
∫ t1

t0

∣

∣

∣

∣

∣

∂

∂t
ln gk(t)

∣

∣

∣

∣

∣

dt =
∫ t1

t0

∣

∣

∣

∣

∣

∂
∂t

gk(t)

gk(t)

∣

∣

∣

∣

∣

dt (5.2.2)

Note that we have:

∂

∂t
gk(t) = C(n)

(

∇2
kRmk + Rmk ∗ Rmk + pkgk

)

(5.2.3)

where C(n) is a constant depends on dimension n. Therefore, the right hand

side of (5.2.2) is bounded by a constant C̄ which depends on all constants in

assumption and independent of k. This argument is the same as Proposition
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4.5.5. And we have:
∣

∣

∣

∣

∣

∫ t1

t0

∂

∂t
ln gk(t)dt

∣

∣

∣

∣

∣

≤ C̄(t1 − t0) (5.2.4)

which implies

gk(t0)e
−C̄(t1−t0) ≤ gk(t1) ≤ gk(t0)e

C̄(t1−t0) (5.2.5)

But gk(t0) is equivalent to g by our assumption, then the result follows. We define

a constant

B(α, ω) = CeC̄(ω−α)

such that we have:

B−1(α, ω)g ≤ gk(t) ≤ B(α, ω)g

For conclusion (b), we will prove it after the following lemma.

Lemma 5.2.6 (Page 134, Eq. 3.7 [14]). Let gk and g be metrics, and ∇k, Γk are

covariant derivative and Christoffel symbol with respect to gk, ∇, Γ are covariant

derivative and Christoffel symbol with respect to g. Under the same assumptions

in Lemma 5.2.5, the tensors ∇gk and Γk − Γ are equivalent.

Proof. With a direct calculation, in local coordinate, we have:

∇a(gk)bc =
∂

∂xa
(gk)bc − Γd

ab(gk)dc − Γd
ac(gk)bd

Then we have:

(gk)ec
[

∇a(gk)bc + ∇b(gk)ac − ∇c(gk)ab

]

= 2(Γk)e
ab − Γe

ab − (gk)ecΓd
ac(gk)bd − Γe

ab

− (gk)ecΓd
bc(gk)ad + (gk)ecΓd

ac(gk)bd + (gk)ecΓd
bc(gk)ad

= 2(Γk)e
ab − 2Γe

ab
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Therefore, we have:
∣

∣

∣Γk − Γ
∣

∣

∣

k
≤ 3

2
|∇gk|k (5.2.6)

For another direction, we have:

∇a(gk)bc = (gk)eb

[

(Γk)e
ac − Γe

ac

]

+ (gk)ec

(

(Γk)e
ab − Γe

ab

)

(5.2.7)

Then we have:
∣

∣

∣Γk − Γ
∣

∣

∣

k
≥ 1

2
|∇gk|k (5.2.8)

In fact, since ∇g = 0, we can write the conclusion as

1

2
|∇gk − ∇g|k ≤

∣

∣

∣Γk − Γ
∣

∣

∣

k
≤ 3

2
|∇gk − ∇g|k (5.2.9)

Proof for Lemma 5.2.5 part b.

Now we continue the proof to Lemma 5.2.5. We will prove the second statement

inductively. For our convenience, we define constants Ĉm to be the bounds

|∇m
k Rmk|k ≤ Ĉm and |∇m

k pk|k ≤ Ĉm (5.2.10)

for m ∈ N, and Cm is independent of k.

We first prove the case for
∣

∣

∣∇gk(t)
∣

∣

∣, which is equivalent to
∣

∣

∣∇gk(t)
∣

∣

∣

k
because

we already proved the first statement. Base on previous lemma, we only need to

bound Γk − Γ. We have:

∣

∣

∣

∂

∂t
(Γk − Γ)

∣

∣

∣

k
= C(n)

∣

∣

∣∇kBk + (∇kpk)gk

∣

∣

∣

k
≤ C(n)(Ĉ3 + Ĉ1Ĉ0 + Ĉ1) = C̄0

(5.2.11)
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Therefore, we have:

∣

∣

∣(Γk)(t1) − Γ
∣

∣

∣

k
≤
∣

∣

∣

∣

∣

∫ t1

t0

∂

∂t
(Γk − Γ)dt

∣

∣

∣

∣

∣

−
∣

∣

∣(Γk)(t0) − Γ
∣

∣

∣

k

≤
∫ t1

t0

∣

∣

∣

∣

∣

∂

∂t
(Γk − Γ)

∣

∣

∣

∣

∣

dt +
∣

∣

∣(Γk)(t0) − Γ
∣

∣

∣

k

≤ C̄0(t1 − t0) + 3C1

≤ C̄0(α − ω) + 3C1

(5.2.12)

and

|∇gk(t)| ≤ B(ω, α)
3
2 |∇gk(t)|k ≤ 2B(ω, α)

3
2

∣

∣

∣Γk − Γ
∣

∣

∣

k
≤ C̃1,0 (5.2.13)

where the 3
2

comes from the type of tensor, we view ∇gk to be a (2, 1)-tensor.

For higher order case, we are going to derive a Grönwall type differential

inequality for |∇Ngk(t)|2k. Recall that we have the following telescoping identity

for any tensor T:

∇NT =
N
∑

i=1

∇N−i(∇ − ∇k)∇i−1
k T + ∇N

k T (5.2.14)

Also, from here, we simply use constant Dm for

∣

∣

∣

∣

∣

∇m
k

∂

∂t
gk(t)

∣

∣

∣

∣

∣

k

=

∣

∣

∣

∣

∣

∇m
k (Bk + pkgk)

∣

∣

∣

∣

∣

k

≤ Dm (5.2.15)

We first claim the follow inequality in true.

|∇m∂tgk(t)| ≤ C ′
m|∇mgk(t)| + C ′′

m (5.2.16)
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When m = 1, we have:

|∇∂tgk(t)| = |(∇ − ∇k)∂tgk(t) + ∇k∂tgk(t)|

≤ B(ω, α)
3
2

(

|Γ − Γk|k|∂tgk(t)|k + |∇k∂tgk(t)|k
)

≤ B(ω, α)
3
2 D0|∇gk(t)|k + B(ω, α)

3
2 D1

≤ B(ω, α)
3
2 CD0|∇gk(t)| + B(ω, α)

3
2 D1

(5.2.17)

Inductively, suppose that (5.2.16) holds for m = 1, 2, 3, ·, N − 1, for N , we have:

|∇N∂tgk(t)| ≤ |
N
∑

i=1

∇N−i(∇ − ∇k)∇i
k∂tgk(t)| + |∇N

k ∂tgk(t)|

≤ B(ω, α)CN |∇N−1(∇ − ∇k)∇k∂tgk(t)|k

+ B(ω, α)CN |
N
∑

i=2

∇N−i(∇ − ∇k)∇i
k∂tgk(t)|k + B(ω, α)CN D1

(5.2.18)

With the induction hypothesis, the results follows. Therefore, we have the follow-

ing differential inequality:

∂

∂t
|∇mgk|2 = 2〈∂t∇mgk, ∇mgk〉

≤ 2|∂t∇mgk|2 + |∇mgk|

≤ (1 + 2(C ′
m)2)|∇mgk| + 2(C ′′

m)2

(5.2.19)

The Gröwall type differential inequality give us the desired result. This complete

the prove for q = 0. For q > 0, the proof is identical by exchange the time

derivatives and covariant derivatives.

Subsequentially Convergence

Once we extend all the bounds over the whole interval, the following Arzela

Ascoli theorem allows us to extract a subsequence converges to a limit manifold.
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Lemma 5.2.7 (Lemma 3.14, Page 137, [14]). Let X be a σ-compact, locally com-

pact Hausdorff space. If {fk}k∈N is an equi-continuous, point-wise bounded se-

quence of continuous functions fk : X → R, then there exists a sub-sequence

which converges uniformly on compact sets to a continuous function f∞ : X → R

In this theorem, σ-compact means the space is a countable union of compact

sets, hence, a complete Riemannian manifold satisfies such assumption.

Corollary 5.2.8 (Corollary 3.15, Page 137, [14]). Let Mn be a Riemannian man-

ifold let U ⊂ Mn be a compact set. Let m ∈ N and g a fixed background metric

on U . If {gk}k∈N is a sequence of Riemannian metric on U such that

sup
0≤i≤m+1

sup
x∈U

|∇igk| ≤ C < ∞ (5.2.20)

and if gk is equivalent to g, then there is a sub-sequence {gkj
}j∈N such that gkj

converges to a Riemannian metric g∞ in Cm sense.

Now we are ready to proof the main theorem 5.2.1

Proof. Throughout this proof, we don’t specify the sub-sequence {gkj
}j∈N. We

also drop the local frame Fk for our convenience.

Under the assumption, at t = 0, we have a sub-sequence {(Mn
k , gk(0), pk(0), Ok)}k∈N

converges to {(Mn
∞, g∞, p∞, O∞)}. We shall extend this convergence to all time

interval (α, ω) such that g∞(0) = g∞.

Since {(Mn
k , gk(0), pk(0), Ok)}k∈N converges to {(Mn

∞, g∞, p∞, O∞)}, there are

diffeomorphisms Φk : Uk → Vk where Uk ⊂ M∞ and Vk ⊂ Mk such that the pull

back Φ∗(gk(0)) converges to g∞ uniformly on a compact set.

We are going to apply Lemma 5.2.5 with t0 = 0 and the background metric is

g∞ and Φ∗gk(t) is the sequence of metrics.
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We apply Arzela Ascoli theorem and its corollary to {Φ∗gk(t) + dt2}k∈N, and

fix the back ground metric g∞ +dt2 on M∞ ×(α, ω). Therefore we extract another

subsequence {Φ∗gk(t)+dt2}k∈N which converges to g∞(t)+dt2. Since all derivatives

of metric converges, {pk}k∈N also converges to p∞.

Then we conclude that {(Mn
k , gk(t), pk(t), Ok)}k∈N sub-sequentially converges

to (M∞, g∞, p∞, O∞) which is also a solution to conformal Bach flow.

5.3 Singularity Models

As our first corollary of the compactness Theorem 5.2.1, we show that under

suitable conditions, we can obtain a singularity model for the conformal gradient

flow. Similar argument can be found in [49, Theorem 1.5] and [37, Theorem 1.4]

Before we discussing such singularity model, we first look at the scale property

of conformal Bach flow.

Proposition 5.3.1. Suppose (Mn, g(t), p(t)) is a compact solution to conformal

Bach flow, if g̃ = λg( t
λ2 ) for some positive constant λ, by the scale property of

curvatures, (Mn, λg( t
λ2 ), λ−2p(t)) is also a solution to conformal Bach flow.

Proof. To see this, we have the following scale properties for curvatures. Under

the scaling, g̃ = λg, we have: R̃m = λRm, R̃ic = λRic, R̃ = λ−1R, and B̃ =

λ−1B, then we conclude that (Mn, λg( t
λ2 ), λ−2p(t)) is a solution to conformal Bach

flow.

Remark 5.3.2. We also notice that under this scaling,

∫

M
p̃2dµ̃ = λ

n
2

−4
∫

M
p2dµ

By this remark, we see that the L2 norm of pressure function is decreasing when
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the dimension is less than 7. We restrict our singularity model in 4 dimension

since our integral estimate relies on the L2 norm of p.

Theorem 5.3.3. Let (M4, g(t)) be a closed solution to conformal Bach flow on a

max time interval [0, T ) with T < ∞. Suppose that

(a) Y [M, g] > 0,

(b)
∫

M
σ2[g(0)]dµ > 0,

(c)
∫

M
p2dµ ≤ K for t ∈ [0, T ),

for some constant K. Let {(xi, ti)}i∈N be a sequence of points in M4 × [0, T ) such

that ti → T and |Rm(xi, ti)| = sup
M4

Rm(x, ti). Let λi = |Rm(xi, ti)| and λi → ∞.

Then the sequence of solutions to conformal Bach flow {(M4, gi(t), pi(t), xi)}i∈N

with

gi(t) = λig(ti +
t

λ2
i

) pi(t) =
1

λ2
i

p(t) for t ∈ [−λ2
i ti, λ2

i (T − ti)) (5.3.1)

sub-sequentially converges to a limit space (M∞, g∞(t), p∞(t), x∞) on time interval

(−∞, a] in Cheeger Gromov sense, which is a non flat, non compact, complete

pointed manifold with zero scalar curvature. Here a = limi→∞ λ2
i (T − ti) ≥ 0. And

the limit space satisfies the following flow:

∂

∂t
g∞ = B∞ (5.3.2)

for t ∈ (−∞, 0]. Furthermore, on the limit space M∞, it satisfies E∞ · B∞ = 0

Proof. First we see that under the assumption on σ2[g(0)], by Corollary 4.4.4, the

Sobolev constant has an upper bound, and this bound is scale invariant.
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Under the scaling, we have |Rm|gi
≤ 1 for all points on manifold. Furthermore,

if
∫

M
p2dµ ≤ K, after scaling, we have

∫

M
p2dµ = 0.

We simply choose time interval to be (−1, 0], and there is an integer k such

that when i ≥ k, λ2
i ti ≥ 1. We take the sub-sequence {(Mn, gi(t), pi(t), xi)}i≥k and

relabel it as {(Mn, gi(t), pi(t), xi)}i∈N. This sequence consists complete pointed

solutions to conformal Bach flow. We then replace (α, ω) in Theorem 5.2.1 by

(−1, 0]. There is no hurt we take the closed interval since we can find a subsequence

for (−1, −ǫi) and send ǫi to zero by taking a further subsequence. Thus we apply

the compactness theorem and we obtain a subsequence converges to a limit space

(M∞, g∞(t), p∞(t), x∞)

This limit space is clearly non flat since re-scaling, we know that at x∞ ∈ M∞,

we have |Rm∞(x∞)|g∞
= 1.

On this limit space, the conformal Bach flow will be:



















∂

∂t
g∞ = B∞ + p∞g∞

−3∆∞p∞ = A∞B∞

(5.3.3)

where B∞ = 1
λ∞

B, A∞ = A, ∆∞ = 1
λ∞

∆. Therefore, the conformal Bach flow on

limit space is modified as follows.



















∂

∂t
g∞ = B∞ + p∞g∞

∆∞p∞ = 0

(5.3.4)

We see that p∞ is a harmonic function. By our assumption, the L2 norm of p∞

is zero, by mean value property of harmonic function, for any ball with radius r
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centered at arbitrary point x ∈ M∞, we have:

|p∞(x)| ≤ 1

V ol(Bx(r))

∫

Bx(r)
|p∞(y)|dy =

1

V ol(Bx(r))1
2

(

∫

Bx(r)
|p∞(y)|2dy

)
1
2

(5.3.5)

Here we use Hölder inequality on the right hand side and we see that p∞ = 0.

Therefore, the conformal Bach flow on the limit space is

∂

∂t
g∞ = B∞ (5.3.6)

and by re-scaling, the product of Ricci tensor and Bach tensor will vanish.

Next, we state another theorem about s special case of singularity models. We

will see that under a low energy assumption, the limit space is Bach flat.

Theorem 5.3.4. Let (M4
0 , g(t)) be a closed solution to conformal Bach flow on

a max time interval [0, T ) with T < ∞. Suppose that there exists some constant

K > 0 and a small constant ǫ > 0 such that

(a) Y [M0, g] > 0,

(b)
∫

M
σ2[g(0)]dµ > 0,

(c)
∫

M0

p2dµ ≤ K for t ∈ [0, T ),

(d)
∫

M0

|W |2 + 2|E|2dµ ≤ ǫ for t ∈ [0, T ),

By the same re-scaling in Theorem 5.3.3, we denote the limit space as M , this

limit space will be Bach flat.

Proof. Throughout this proof, we denote the manifold before re-scaling by M0 and

the limit space by M instead of M∞. All of the curvature quantities are referred
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to the limit space M . By re-scaling, on the limit space M , we have the following

equation:

EijBij = 0 (5.3.7)

Recall that in dimension 4, the Bach tensor is

Bij =
1

2
∆Rij − 1

12
∆Rgij − 1

6
∇i∇jR + RklRikjl − 1

4
|Ric|2gij +

1

12
R2gij − 1

3
RRij

(5.3.8)

Since the limit space is scalar flat, we have:

Bij =
1

2
∆Eij + EklRikjl − 1

4
|E|2gij (5.3.9)

Therefore, we have:

EijBij =
1

2
Eij∆Eij + EijEklRikjl = 0 (5.3.10)

Here we don’t specify the Ricci tensor and traceless Ricci tensor since they are

the same. Furthermore, by Riemann curvature decomposition, we have:

Rikjl = Wikjl +
1

2
(E ©∧ g)ikjl (5.3.11)

thus, the second term will be:

EijEklRikjl = EijEklWikjl +
1

2
EijEkl(E ©∧ g)ikjl

= EijEklWikjl − EijE
ikE

j
k

(5.3.12)
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Combine all of these results, we have:

− 1

2
Eij∆Eij = EijEklWikjl − EijE

ikE
j
k (5.3.13)

We denote the quantity EijE
ikE

j
k by TrE3. And in dimension 4, we have a sharp

inequality(Page 129, [10]):

TrE3 ≥ − 1√
3

|E|3 (5.3.14)

Therefore, we have:

− Eij∆Eij = 2EijEklWikjl − 2EijE
ikE

j
k ≤ 2|E|2|W | +

2√
3

|E|3 (5.3.15)

To derive the Bach flat result, we only need to show that the limit space is Ricci

flat. To see this, we have:

−|E|∆|E| = −1

2
∆|E|2 + |∇|E||2 = −Eij∆Eij − |∇E|2 + |∇|E||2 (5.3.16)

Here we use Kato’s inequality |∇|E||2 ≤ |∇E|2, then we have:

− |E|∆|E| ≤ −Eij∆Eij (5.3.17)

Let φ be a cutoff function which will be chosen later. With integration by parts,

we have:

∫

M
φ2|∇|E||2dµ + 2

∫

M
φ∇φ|E|∇|E| = −

∫

M
φ2|E|∆|E|dµ (5.3.18)
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Therefore,

∫

M
φ2|∇|E||2dµ + 2

∫

M
φ∇φ|E|∇|E| ≤

∫

M
2φ2|E|2|W | +

2√
3

φ2|E|3dµ (5.3.19)

Use the Yamabe quotient, we apply the Hölder inequality:

(

∫

M
|φ|E||4dµ

)
1
2

≤ Y

∫

M
|∇φ|E| + ∇|E|φ|2dµ

≤ Y

∫

M
|∇φ|2|E|2dµ + 2

∫

M
φ2|E|2|W |dµ +

2√
3

∫

M
φ2|E|3dµ

(5.3.20)

For the second term, by the same argument:

2
∫

M
φ2|E|2|W |dµ ≤ 2

(

∫

M
|φ|E||4dµ

)
1
2
(

∫

M
|W |2dµ

)
1
2

(5.3.21)

For the last term, we have:

2√
3

∫

M
φ2|E|3dµ ≤ 2√

3

(

∫

M
|φ|E||4dµ

)
1
2
(

∫

M
|E|2dµ

)
1
2

(5.3.22)

We conclude that:

(

∫

M
|φ|E||4dµ

)
1
2

≤ C

∫

M
|∇φ|2|E|2dµ (5.3.23)

where C is a constant defined by:

C =
Y

1 − 2 ‖W‖2 − 2√
3

‖E‖2

(5.3.24)
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Therefore, if

2
∫

M
|W |2dµ +

2√
3

∫

M
|E|2dµ ≤ ǫ (5.3.25)

such that 1 − 2 ‖W‖2 − 2√
3

‖E‖2 > 0, we choose the cut-off function φ as:

φ =







































1 for x ∈ Br

0 for x ∈ M\B2r

|∇φ| ≤ 1
r

for x ∈ B2r\Br

(5.3.26)

with φ ∈ [0, 1], we have:

(

∫

M
|φ|E||4dµ

)
1
2

≤ C

∫

M
|∇φ|2|E|2dµ ≤ C

r2
· 2√

3
ǫ (5.3.27)

By taking r to ∞, we have |E| ≡ 0 on M , and M is Bach flat.

In fact, this type of singularity will not happen. To see this, we first introduce a

gap theorem for non-compact complete Bach flat manifolds in dimension 4, which

is proved in [28].

Theorem 5.3.5 (Theorem 1, [28]). Let (M4, g) be a non-compact complete Bach-

flat Riemannian 4-manifold with zero scalar curvature and the Yamabe constant

Y [M ] > 0. Then there exists a small number c0 such that if

∫

M
|W |2 + 2|E|2dµ ≤ c0

then M4 is flat.

With this gap theorem, we have the following corollary.

Corollary 5.3.6. Under the low energy assumption in Theorem 5.3.4, the singu-

larity will not happen, that is, the curvature tensor |Rm| will remain bounded as
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t approaches to the maximal time T .

Proof. By the rigidity theorem 5.3.5, the limit space satisfies all conditions in the

gap theorem, and has to be flat, but we know that at a specific point x ∈ M , we

have |Rm| = 1, which leads to a contradiction.
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Chapter 6

Further Remarks

In this thesis, we study a fourth order geometric flow. Its shot time existence,

uniqueness and regularity are established. We also derive integral estimates and

volume estimates for this flow. Based on these results, we characterize the finite

time singularity. A compactness property of the solutions to this flow is proved,

and we study a singularity model obtained by re scaling the metric.

We remark some possible improvement in this chapter. In [50, Theorem 1.3], a

long time existence of the geometric flow is proposed by assuming the small initial

energy, i.e, a small initial L2 norm instead of the point-wise bound of curvature. To

obtain a similar result, we need a refinement for our integral estimate in Chapter

4, without assuming the L∞ norm of curvature. Such condition is desirable since

under our flow, the Weyl functional is non increasing. The monotonicity property

might help us prove the gap theorem we mentioned in Chapter 1. Another remark

is about the singularity model, in our theorem 5.3.3 and 5.3.4, we assume that L2

norm of pressure function is bounded, we may ask to questions here. One is why

this quantity remains bounded. Notice that we don’t discuss the invertibility of the

elliptic operator in this theorem, we might need to investigate some details about

it. The other question is that what if the L2 norm of pressure function blows up?

116



We might rescale the metric based this quantity instead of the Riemann curvature

tensor.
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Appendix A

Formulae in Riemannian

Geometry

In this chapter, we will list some basic formulae in Riemannian geometry and

we will use the same convention as [16].

Let (Mn, g) be an n-dimensional Riemannian manifold. Let x ∈ M be a fixed

point, let {xi}n
i=1 be a local coordinate system.

A.1 Christoffel Symbol

Under the local coordinate system, the Levi-Civita connection is given by

∇i∂j = Γk
ij∂k (A.1.1)

where Γk
ij is called Christoffel symbol and defined as follows

Γk
ij =

1

2
gkl
(

∂igjl + ∂jgil − ∂lgij

)

(A.1.2)
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A.2 Normal Coordinate

For any point x ∈ M , we consider the normal coordinate system {∂i}n
i=1 around

this fixed point x. We have gij = δij and ∂kgij = 0, therefore, the Christoffel

symbol vanishes, i.e., Γk
ij = 0.

A.3 Covariant Derivative

Let T
j1j2···jn

i1i2···im
be a tensor object on manifold, the covariant derivative is given

by

∇kT
j1j2···jn

i1i2···im
= ∂kT

j1j2···jn

i1i2···im
+

n
∑

s=1

T
j1j2···p···jn

i1i2···im
Γjs

kp −
m
∑

t=1

T
j1j2···jn

i1i2···q···im
Γq

kit
(A.3.1)

It is clear that if we choose a normal coordinate, the covariant derivative is

the same as the normal derivative in calculus.

A.4 Riemann Curvature Tensor and Symmetry

To measure the deviation of a metric from a flat metric, we define the Riemann

curvature operator:

R(u, v)w = −∇u∇vw + ∇v∇uw + ∇[u,v]w (A.4.1)

In local coordinate system, we have:

R(∂i, ∂j)∂k = ∇j∇i∂k − ∇i∇j∂k = R l
ijk ∂l (A.4.2)
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where

R l
ijk = ∂jΓ

l
ik − ∂iΓ

l
jk + Γl

jsΓ
s
ik − Γl

ksΓ
s
ij (A.4.3)

Note that we choose to upper the last index as our convention.

We can lower the index by:

Rijkl = glmR m
ijk (A.4.4)

The symmetries of Riemann curvature tensor are the following equalities. It

is symmetric for switching the first pair of indices and the last ones, and it is

anti-symmetric for flipping each pair of indices.

Rijkl = Rklij = −Rjikl = −Rijlk (A.4.5)

A.5 Bianchi Identities

The following two formulae are the first and second Bianchi identities.

Rijkl + Riljk + Riklj = 0 (A.5.1)

Fix the first index and the cyclic permutation sum for the last three indices is

zero.

∇mRijkl + ∇lRijmk + ∇kRijlm = 0 (A.5.2)

Fix the first two indices and the cyclic permutation sum of the last three indices

is zero. From here, by contracting indices, we have two direct consequences. The

divergence of Riemann curvature tensor is

∇jRikjl = ∇iRkl − ∇kRil (A.5.3)
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The divergence of Ricci curvature tensor is

∇jRij =
1

2
∇iR (A.5.4)

A.6 Ricci Identity

Ricci identity is a general case of Bianchi identity, it tells us how to exchange

covariant derivatives. For arbitrary tensor object Tk1k2···kn
, we have

∇j∇iTk1k2···kn
− ∇i∇jTk1k2···kn

= −
n
∑

s=1

R l
ijks

Tk1···ks−1lks+1kn
(A.6.1)

A.7 Ricci Curvature and Scalar Curvature

We define the Ricci curvature by contracting the second and fourth indices in

Riemann curvature.

Rij = gklRikjl (A.7.1)

And the scalar curvature is the trace of Ricci curvature.

R = gijRij (A.7.2)

A.8 Kulkarni Nomizu Product

In the mathematical field of differential geometry, the Kulkarni-Nomizu prod-

uct is defined for two (0,2)-tensors and gives as a result a (0,4)-tensor.

(T ©∧ S)ikjl = TijSkl + TklSij − TilSkj − TkjSil (A.8.1)

121



From here, we have the following formulae:

(g ©∧ g)ikjl = 2gijgkl − 2gilgkj (A.8.2)

(T ©∧ g)ikjlg
kl = 2Tij + Trg(T )gij (A.8.3)

A.9 Traceless Ricci Curvature and Weyl Curva-

ture

We define the traceless Ricci curvature by subtracting the trace part in Ricci

curvature.

Eij = Rij − 1

n
Rgij (A.9.1)

We also introduce the Schouten tensor, which is a second-order tensor introduced

by Jan Arnoldus Schouten.

Aij =
1

n − 2

(

Rij − R

2(n − 1)
gij

)

(A.9.2)

The Weyl curvature tensor equals the Riemann curvature tensor minus the Kulka-

rni Nomizu product of the Schouten tensor with the metric.

Wikjl = Rikjl − (A ©∧ g)ikjl (A.9.3)

Proposition A.9.1. The divergence of Weyl curvature is

∇jWikjl = (n − 3)
(

∇iAkl − ∇kAil

)

(A.9.4)

Proof. Follow the previous result, combine with the divergence of Riemann cur-
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vature tensor (A.5.3) and Ricci curvature tensor (A.5.4), we have

∇jWikjl = ∇jRikjl − ∇j
(

A ©∧ g
)

ikjl

= ∇iRkl − ∇kRil − 1

2(n − 2)
∇iRgkl − ∇iAkl − ∇kAil +

1

2(n − 2)
∇kRgil

= (n − 3)
(

∇iAkl − ∇kAil

)

A.10 Riemann Curvature Decomposition

With Weyl curvature and traceless Ricci curvature, we have the following

Riemann curvature decomposition.

Proposition A.10.1. Let Rikjl be the Riemann curvature, we have the following

decomposition:

Rikjl = Wikjl + (A ©∧ g)ikjl (A.10.1)

Rikjl = Wikjl +
1

n − 2
(E ©∧ g)ikjl +

1

2n(n − 1)
R(g ©∧ g)ikjl (A.10.2)

where Wikjl is the Weyl curvature. Note, these two are orthogonal decomposition.

Proposition A.10.2. We also have the following quadratic decomposition:

|Rm|2 = |W |2 +
4

n − 2
|Ric|2 − 2

(n − 1)(n − 2)
R2 (A.10.3)

and

|Rm|2 = |W |2 +
4

n − 2
|E|2 +

2

n(n − 1)
R2 (A.10.4)
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A.11 Bach Tensor

We define Bach tensor as:

Bij =
1

n − 3
∇k∇lWikjl +

1

n − 2
RklWikjl (A.11.1)

With Schouten tensor, we have the following equivalent formula which shows that

the leading term in Bach tensor contains ∆Rij:

Bij = ∆Aij − ∇k∇iAjk + AklWikjl (A.11.2)

Remark A.11.1. ∇k∇iAij is symmetric about i and j.

From here, one can calculate Bach tensor in terms of Riemann curvature, Ricci

curvature and scalar curvature.

Bij = ∆Aij − ∇k∇iAjk + AklWikjl

=
∆Rij

n − 2
− ∆Rgij

2(n − 1)(n − 2)
− ∇k∇iRjk

n − 2
+

∇k∇iRgjk

2(n − 1)(n − 2)

+
1

n − 2
Rkl

(

Rikjl − (A ©∧ g)ikjl

)

(A.11.3)

For the third term, we use Ricci identity A.6.1 as follows:

∇k∇iRjk = ∇i∇kRik − R l
ikj Rlk − R l

ikk Rjl

=
1

2
∇i∇jR − RklRikjl + RikRk

j

(A.11.4)
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For the last term, we have:

1

n − 2
Rkl

(

Rikjl − (A ©∧ g)ikjl

)

=
1

n − 2
RklRikjl − 1

(n − 2)2

(

RRij − 1

2(n − 1)
R2gij

)

− 1

(n − 2)2

(

|Ric|2gij − 1

2(n − 1)
R2gij

)

+
2

(n − 2)2

(

RikRk
j − 1

2(n − 1)
RRij

)

(A.11.5)

Combine all of these results, we obtain:

Bij =
1

n − 2
∆Rij − 1

2(n − 1)(n − 2)
∆Rgij − 1

2(n − 1)
∇i∇jR

+
2

n − 2
RklRikjl − n − 4

(n − 2)2
RikRk

j − 1

(n − 2)2
|Ric|2gij

+
1

(n − 1)(n − 2)2
R2gij − n

(n − 1)(n − 2)2
RRij

(A.11.6)

Specially, in dimension 4, we have:

Bij =
1

2
∆Rij − 1

12
∆Rgij − 1

6
∇i∇jR + RklRikjl − 1

4
|Ric|2gij +

1

12
R2gij − 1

3
RRij

(A.11.7)

We will show that in dimension 4, Bach tensor is the gradient of L2 norm of Weyl

curvature in Appendix C.

Proposition A.11.2. The divergence of Bach tensor is given by:

∇jBij =
n − 4

(n − 2)2
RjkCijk (A.11.8)

where Cijk is Cotton tensor defined by

Cijk = (n − 2)
(

∇iAjk − ∇jAik

)

(A.11.9)
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Proof. First, we derive some useful identities about the Schouten tensor. Recall

that Schouten tensor is

Aij =
1

n − 2

(

Rij − 1

2(n − 2)
Rgij

)

(A.11.10)

The trace of Schouten tensor is

Trg(A) =
1

2(n − 1)
R (A.11.11)

The divergence of Schouten tensor is

∇jAij =
1

2(n − 1)
∇iR (A.11.12)

In terms of Schouten tensor and Weyl curvature, we have:

∇jBij = ∇j∇k∇kAij − ∇j∇k∇jAik + ∇j
(

AklWikjl

)

= ∇j∇k∇kAij − ∇k∇j∇kAij + ∇j
(

AklWikjl

)

= −R l
kjk ∇lA

j
i − R l

kji ∇kA
j
l − R

jl
kj Ail + ∇j

(

AklWikjl

)

= −∇jAklRikjl + ∇j
(

AklWikjl

)

We relabel some redundant indices and apply the Ricci identity (A.6.1) in this

equation. Next, we use the Riemann curvature decomposition (A.10.1) to this

result, combine with the divergence of Weyl curvature (A.9.4), we have:

∇jBij = −∇jAklRikjl + ∇j
(

AklWikjl

)

= −∇jAklRikjl + ∇jAklWikjl + Akl∇jWikjl

= −∇jAkl
(

A ©∧ g
)

ikjl
+ (n − 3)Akl

(

∇iAkl − ∇kAil

)
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For the first term, we have:

∇jAkl
(

A ©∧ g
)

ikjl
= ∇jAkl

(

Aijgkl + Aklgij − Ailgkj − Akjgil

)

=
1

2(n − 1)
Aik∇iR + Akl∇iAkl − 1

2(n − 1)
Ail∇lR − Akj∇jAik

= Akl∇iAkl − Akl∇lAik

In the last line, we changed the redundant index. Then we conclude that the

divergence of Bach tensor is

∇jBij = −Akl∇iAkl + Akl∇lAik + (n − 3)Akl
(

∇iAkl − ∇kAil

)

= (n − 4)Akl
(

∇iAkl − ∇kAil

)

=
n − 4

(n − 2)2
RklCikl
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Appendix B

Variations of Curvatures

In this Chapter, we will give the details of calculation of the first variation

formulae of metric, Christoffel symbol and curvatures.

Let (Mn, g) be an n-dimensional Riemannian manifold, and g(t) = g + th be a

one-parameter family of metrics. where h is a symmetric 2-tensor. That is ∂g
∂t

= h.

For any point x ∈ M , we consider the normal coordinate system {∂i}n
i=1 around

this fixed point x. We have gij = δij and ∂kgij = 0, therefore, the Christoffel

symbol vanishes, i.e., Γk
ij = 0. In this chapter, we will do calculations with the

normal coordinate.

B.1 Riemannian Metric

Proposition B.1.1. Variation of metric inverse

ġij = −hij (B.1.1)
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Proof. By a direct calculation, we differentiate the equation gikgkj = δi
j, we have:

ġikgkj = −gikhkj

ġik = −gkjhi
j

ġik = −hik

B.2 Volume Form

Proposition B.2.1 (Equation 2.11, Page 104, [16]). Variation of Riemann vol-

ume form
∂

∂t
dµ =

1

2
Trg(h)dµ (B.2.1)

where Trg is the trace with respect to g.

Proof. Recall that the Riemann volume form is given by [34] (Proposition15.31.)

dµ =
√

det(gij)dx1 ∧ dx2 · · · ∧ dxn (B.2.2)

In order to derive (B.2.1), we need to calculate the variation of determinant of a

matrix A, which is given by the original definition of determinant and chain rule.

For a fixed element Apq, we have:

∂

∂Apq

det(A) =
∂

∂Apq

(

∑

σ∈Sn

sgn(σ)
n
∑

i=1

Ai,σi

)

=
∑

σ∈Sn

sgn(σ)
∑

i6=p,σi 6=q

Ai,σi
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which is exactly the adjugate element at index (p, q). Therefore, we have:

∂

∂t
det(g) =

n
∑

i=1

n
∑

j=1

∂g

∂gij

∂gij

∂t

=
n
∑

i=1

n
∑

j=1

adjijhij

= det(g)g−1h

At last line, we use the definition of the inverse of matrix. With this result, we

have:

∂

∂t
dµ =

∂

∂t

√

det(gij)dx1 ∧ dx2 · · · ∧ dxn

=
1

2

1
√

det(gij)
det(gij)g

ijhijdx1 ∧ dx2 · · · ∧ dxn

=
1

2
Trg(h)dµ

B.3 Christoffel symbols

Proposition B.3.1 (Lemma 2.27, Page 108, [16]). Variation of Christoffel symbol

∂

∂t
Γk

ij =
1

2
gkl(∇ihjl + ∇jhil − ∇lhij) (B.3.1)

Proof. We have:

∂

∂t
Γk

ij =
1

2
gkl ∂

∂t

(

∇jgil + ∇igjl − ∇lgij

)

=
1

2
gkl
(

∇jhil + ∇ihjl − ∇lhij

)
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B.4 Riemann Curvature Tensor

Proposition B.4.1 (Equation 2.66 2.67, Page 120, [16]). Variation of Riemann

curvature tensor

∂

∂t
Rijkl =

1

2















∇j∇ihkl + ∇j∇khil − ∇j∇lhik

−∇i∇jhkl − ∇i∇khjl + ∇i∇lhjk















+ Rijkph
p
l (B.4.1)

Proof. With a direct calculation,

∂

∂t
glpR

p
ijk = glp

(

∂j

∂

∂t
Γp

ik − ∂i

∂

∂t
Γp

jk

)

+ Rijkph
p
l

=
1

2
g

p
l

(

∇j∇ihkp + ∇j∇khip − ∇j∇phik

− ∇i∇jhkp − ∇i∇khjp + ∇i∇phjk

)

+ Rijkph
p
l

=
1

2

(

∇j∇ihkl + ∇j∇khil − ∇j∇lhik

− ∇i∇jhkl − ∇i∇khjl + ∇i∇lhjk

)

+ Rijkph
p
l

With Ricci identity (A.6.1), we have:

∂

∂t
glpR

p
ijk =

1

2

(

∇j∇khil − ∇j∇lhik − ∇i∇khjl + ∇i∇lhjk

)

+
1

2

(

Rijkph
p
l − Rijlph

p
k

)

(B.4.2)
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B.5 Ricci Curvature Tensor

Proposition B.5.1 (Equation 2.31, Page 109, [16]). Variation of Ricci curvature

∂

∂t
Rik = −1

2

(

∆hik + ∇i∇kTrg(h) − ∇p∇ihkp − ∇p∇khip

)

(B.5.1)

Proof. This follows from the formula (B.4.1) by contracting the first and third

indices. We use rough Laplacian ∆ = gpq∇p∇q here.

B.6 Scalar Curvature

Proposition B.6.1 (Lemma 2.7, Page 99, [16]). Variation of scalar curvature

∂

∂t
R = −∆Trg(h) + ∇p∇qhpq − hpqRpq (B.6.1)

Proof. This follows from formula (A.7.2) and (B.1.1),

∂

∂t
R =

∂

∂t
gijRij

= −hijRij − 1

2
gij

(

∆hij + ∇i∇jTrg(h) − ∇p∇ihjp − ∇p∇jhip

)

= −∆Trg(h) + ∇p∇qhpq − hpqRpq

(B.6.2)
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Appendix C

Gradient of Energy Functionals

In this chapter, we will calculate the gradients of some L2 norms of curvatures.

All of the results can be found in [6]. Let (Mn, g) be an n dimensional closed

manifold, T a tensor on this manifold, we define the energy functional to be

FT =
∫

M
|T |2dµ

Let g be a family of metric defined as g = g0 + th, where h is a symmetric

2 tensor. The gradient of this energy functional will be denoted by gradFT and

defined in the following way.

∂

∂t
FT =

∫

M
〈gradFT , h〉dµ

With this manner, we define the following energy functionals, and we will go

through details and derive their gradient.

(a)

FRm =
∫

M
|Rm|2dµ
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(b)

FRic =
∫

M
|Ric|2dµ

(c)

FR =
∫

M
|R|2dµ

(d)

FW =
∫

M
|W |2dµ

C.1 Riemann Curvature

Proposition C.1.1 (Prop 4.70, Page 134, [6]).

gradFRm = −4∆Rij + 2∇i∇jR − 4RpqRipjq + 4RipR
p
j − 2RpqriR

pqr
j +

1

2
|Rm|2gij

(C.1.1)

Proof. With our previous calculation about the variation of Riemann curvature

(B.4.1), and the variation of Riemannian volume form (B.2.1)

∂

∂t
FRm = 2

∫

M
〈Rijkl,

∂

∂t
Rijkl〉dµ +

∫

M
〈1

2
|Rm|2gij − 4RpqriR

pqr
j, hij〉dµ

=
∫

M
〈Rijkl, (∇j∇i − ∇i∇j)hkl〉dµ + 2

∫

M
〈RpqriR

pqr
j, hij〉dµ

+
∫

M
〈Rijkl, ∇j∇khil〉dµ +

∫

M
〈Rijkl, −∇j∇lhik〉dµ

+
∫

M
〈Rijkl, −∇i∇khjl〉dµ +

∫

M
〈Rijkl, ∇i∇lhjk〉dµ

+
∫

M
〈1

2
|Rm|2gij − 4RpqriR

pqr
j, hij〉dµ

We apply integration by parts, Ricci identity (A.6.1) and Bianchi identity

(A.5.1) to this equation.
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For the first term, we have

∫

M
〈Rijkl, (∇j∇i − ∇i∇j)hkl〉dµ

=
∫

M
〈∇i∇jRijkl − ∇j∇iRijkl, hkl〉dµ

=
∫

M
〈−R

j ip
i Rpjkl − R

ijp
j Ripkl − R

ji p
k Rijpl − R

ji p
l Rijkp, hkl〉dµ = 0

(C.1.2)

At the last line, we simplified all of terms by contracting indices.

The next four terms are the same, we only look at one of them.

∫

M
〈Rijkl, ∇j∇khil〉dµ

=
∫

M
〈∇k∇jRijkl, hil〉dµ

=
∫

M
〈∇k

(

− ∇kRijlj − ∇lRijjk

)

, hil〉dµ

=
∫

M
〈−∆Rij + ∇p∇jRip, hij〉dµ

=
∫

M
〈−∆Rij + ∇j∇pRip − RpqRipjq + RipR

p
j , hij〉dµ

=
∫

M
〈−∆Rij +

1

2
∇i∇jR − RpqRipjq + RipR

p
j , hij〉dµ

(C.1.3)

Combine (C.1.2) and (C.1.3), we have

gradFRm = −4∆Rij + 2∇i∇jR − 4RpqRipjq + 4RipR
p
j − 2RpqriR

pqr
j +

1

2
|Rm|2gij

C.2 Ricci Curvature

Proposition C.2.1 (Prop 4.66, Page 133, [6]).

gradFRic = −∆Rij − 1

2
∆Rgij + ∇i∇jR − 2RpqRipjq +

1

2
|Ric|2gij (C.2.1)

135



Proof. Follow the same calculation, use (B.5.1), we have

∂

∂t

∫

M
|Ric|2dµ =

∫

M
〈Rij,

∂

∂t
Rij〉dµ +

∫

M
〈1

2
|Ric|2gij − 2RipR

p
j , hij〉dµ

=
∫

M
〈Rij, −∆hij〉dµ +

∫

M
〈Rij, −∇i∇jTrg(h)〉dµ

+
∫

M
〈Rij, ∇p∇ihjp〉dµ +

∫

M
〈Rij, ∇p∇jhip〉dµ

+
1

2

∫

M
〈|Ric|2gij, hij〉dµ

Use integration by parts again, the result follows.

C.3 Scalar Curvature

Proposition C.3.1 (Prop 4.66, Page 133, [6]).

gradFR = −2∆Rgij + 2∇i∇jR − 2RRij +
1

2
R2gij (C.3.1)

Proof. Follow the same calculation, use (B.6.1), we have

∂

∂t

∫

M
|R|2dµ = 2

∫

M
〈R,

∂

∂t
R〉dµ +

1

2

∫

M
〈|R|2gij, hij〉dµ

= 2
∫

M
〈R, −∆Trg(h)〉dµ + 2

∫

M
〈R, ∇i∇jhij〉dµ

− 2
∫

M
〈R, Rijhij〉dµ +

1

2

∫

M
〈|R|2gij, hij〉dµ

then the result follows.

C.4 Weyl Curvature

Now, we are ready to derive the gradient for L2 norm of Weyl curvature.
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Proposition C.4.1.

gradFW = −4(n − 3)

n − 2
∆Rij +

2(n − 3)

(n − 1)(n − 2)
∆Rgij +

2(n − 3)

n − 1
∇i∇jR

− 4(n − 4)

n − 2
RpqRipjq + 4RipR

p
j − 4

(n − 1)(n − 2)
RRij

− 2RpqriR
pqr

j +
1

2
|W |2gij

(C.4.1)

Proof. From the Riemann curvature decomposition (A.10.3), we have:

grad

∫

M
|W |2dµ = grad

∫

M
|Rm|2 − 4

n − 2
|Ric|2 +

2

(n − 1)(n − 2)
R2dµ

= −4∆Rij + 2∇i∇jR − 4RpqRipjq + 4RipR
p
j − 2RpqriR

pqr
j

+
1

2
|Rm|2gij − 4

n − 2

(

− ∆Rij − 1

2
∆Rgij + ∇i∇jR

− 2RpqRipjq +
1

2
|Ric|2gij

)

+
2

(n − 1)(n − 2)

(

− 2∆Rgij

+ 2∇i∇jR − 2RRij +
1

2
R2gij

)

= −4(n − 3)

n − 2
∆Rij +

2(n − 3)

(n − 1)(n − 2)
∆Rgij +

2(n − 3)

n − 1
∇i∇jR

− 4(n − 4)

n − 2
RpqRipjq + 4RipR

p
j − 4

(n − 1)(n − 2)
RRij

− 2RpqriR
pqr

j +
1

2
|W |2gij

(C.4.2)

Proposition C.4.2 (Equation 4.77, Page 135, [6]). In dimension 4, we the gra-

dient of FW is Bach tensor.

Proof. In dimension 4, we have:

grad

∫

M
|W |2dµ = −2∆Rij +

1

3
∆Rgij +

2

3
∇i∇jR + 4RipR

p
j − 2

3
RRij

− 2RpqriR
pqr

j +
1

2
|W |2gij

(C.4.3)
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Also, in dimension 4, we have the following identity:

RipqrR
pqr
j − 1

4
|Rm|2gij =

1

3
REij + 2RpqWipjq (C.4.4)

therefore, for the last two terms, we have:

RipqrR
pqr
j − 1

4
|W |2gij = 2RpqWipjq +

1

3
REij +

1

2
|E|2 +

1

24
R2 (C.4.5)

With this result, we have:

grad

∫

M
|W |2dµ = −2∆Rij +

1

3
∆Rgij +

2

3
∇i∇jR + 4RipR

p
j − 2

3
RRij

− 2
(

2RpqWipjq +
1

3
REij +

1

2
|E|2gij +

1

24
R2gij

)

(C.4.6)

In (A.11.5), we have:

RpqWipjq = Rpq
(

Ripjq − (A ©∧ g)ipjq

)

= RpqRipjq − 1

2

(

RRij − 1

6
R2gij

)

− 1

2

(

|Ric|2gij − 1

6
R2gij

)

+
(

RipR
p
j − 1

6
RRij

)

= RpqRipjq − 2

3
RRij +

1

6
R2gij − 1

2
|Ric|2gij + RipR

p
j

(C.4.7)

and we conclude that

grad

∫

M
|W |2dµ = −4

[1

2
∆Rij − 1

12
∆Rgij − 1

6
∇i∇jR

+ RpqWipjq − |Ric|2gij +
1

12
R2gij − 1

3
RRij

]

= −4Bij

(C.4.8)

Remark C.4.3. We use a different definition with Equation 4.77 in Page 135 [6]
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by a factor −4. This definition is adopted today.

Proposition C.4.4 (Equation 4.72, Page 134, [6]). In dimension 4, we have the

following identity

RipqrR
pqr
j − 1

4
|Rm|2gij =

1

3
REij + 2RpqWipjq (C.4.9)

Proof. This formula is a direct consequence of the following identity

WipqrW
pqr
j =

1

4
|W |2gij (C.4.10)

then we have

RipqrR
pqr
j =

[

Wipqr + (A ©∧ g)ipqr)
][

W
pqr
j + (A ©∧ g)pqr

j

]

= WipqrW
pqr
j + Wipqr(A

q
jg

pr + Aprg
q
j − Ar

jg
pq − Apggr

j )

+ Wjpqr(A
q
i g

pr + Aprg
q
i − Ar

i g
pq − Apggr

i )

+ (Aiqgpr + Aprgiq − Airgpq − Apggir)(A
q
jg

pr + Aprg
q
j − Ar

jg
pq − Apggr

j )

= WipqrW
pqr
j + 4WikjlA

kl + 4Tr(A)Aij + 2|A|2gij

= WipqrW
pqr
j + 2WikjlE

kl +
1

3
REij +

1

2
|E|2 +

1

24
R2

combine with the curvature decomposition, the result follows.
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Appendix D

Interpolation Inequality

In this chapter, we will introduce some interpolation inequalities which plays

an important roll in the integral estimate in geometric analysis. In general, these

inequalities say that any order derivative can be controlled by higher order and

lower order derivatives. This is why they are named by ’interpolation’. Most of

results can be found in [25, Chapter 12].

We only consider a closed manifold as our model which allows us to use inte-

gration by parts. But all of these inequalities has the same local form with some

suitable cut-off function. These local estimates can be found in [30, P.332] and

[51, P.270].

D.1 Interpolation Inequality

Proposition D.1.1 (Theorem 12.1, Page 291, [25]). Let (Mn, g) be a closed n-

dimensional manifold and T is any tensor defined on M . Suppose that 1
p

+ 1
q

= 1
r
,

where r ≥ 1, then there exists a constant C = C(n, r), such that:

{

∫

|∇T |2rdµ

}
1
r

≤ C

{

∫

|∇2T |pdµ

}
1
p
{

∫

|T |qdµ

}
1
q

(D.1.1)
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Proof. With integration by parts, we have:

∫

|∇T |2rdµ =
∫

〈∇iTj, ∇iTj〉〈∇kTl, ∇kTl〉r−1dµ

= −
∫

〈Tj, ∆T 〉〈∇kTl, ∇kTl〉r−1dµ

− 2(r − 1)
∫

〈Tj∇i∇kTl, ∇iTj∇kTl〉|∇T |2r−4dµ

≤ n

∫

|T ||∇2T ||∇T |2r−2dµ + 2(r − 1)
∫

|T ||∇2T ||∇T |2r−2dµ

= C(r, n)
∫

|T ||∇2T ||∇T |2r−2dµ

Note that 1
p

+ 1
q

− r−1
r

= 1, apply Hölder inequality to the right hand side, we

have:

∫

|∇T |2rdµ ≤ C(r, n)

{

∫

|∇2T |pdµ

}
1
p
{

∫

|T |qdµ

}
1
q
{

∫

|∇T |2rdµ

}
r−1

r

Then the result follows.

Proposition D.1.2 (Corollary 12.2, Page 292, [25]). Let (Mn, g) be a closed n-

dimensional manifold and T is any tensor defined on M . There exists a constant

C = C(n, p), such that:

{

∫

|∇T |2pdµ

}
1
p

≤ C max
M

|T |
{

∫

|∇2T |pdµ

}
1
p

(D.1.2)

Proof. From (D.1.1), let p = r and q = ∞.

Proposition D.1.3. Let (Mn, g) be a closed n-dimensional manifold and T is

any tensor defined on M . For any ǫ > 0, there exists a constant C = C(n, ǫ),

such that:
∫

|∇T |2dµ ≤ ǫ

∫

|∇2T |2dµ + C

∫

|T |2dµ (D.1.3)

Proof. From (D.1.1), let r = 1 and p = q = 2. After that, apply Young’s inequality
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with ǫ.

Proposition D.1.4 (Corollary 12.7, Page 294, [25]). Let (Mn, g) be a closed n-

dimensional manifold and T is any tensor defined on M . For any ǫ > 0, there

exists a constant C = C(n, ǫ), such that:

∫

|∇kT |2dµ ≤ ǫ

∫

|∇k+1T |2dµ + C

∫

|T |2dµ (D.1.4)

Proof. We prove this by induction. The base case is from previous lemma, assume

that this inequality hold for all k ≤ s − 1, then we have:

∫

|∇sT |2dµ =
∫

|∇(∇s−1T )|2dµ

≤ ǫ

∫

|∇s+1T |2dµ + C

∫

|∇s−1T |2dµ

≤ ǫ1

∫

|∇s+1T |2dµ + ǫ2

∫

|∇sT |2dµ + C

∫

|∇T |2dµ

Then the result follows.

Proposition D.1.5 (Corollary 12.6, Page 293, [25]). Let (Mn, g) be a closed n-

dimensional manifold and T is any tensor defined on M . For any k ∈ N, k ≥ 1,

and 1 ≤ i ≤ k, there exists a constant C = C(n, k, i) such that we have the

following inequality:

∫

|∇iT | 2k
i dµ ≤ C ‖T‖ 2k

i
−2

∞

∫

|∇kT |2dµ (D.1.5)

Proposition D.1.6. Let (Mn, g) be a closed n-dimensional manifold and T is

any tensor defined on M . For any k ∈ N, k ≥ 1, and i1 + i2 + · · · + is = 2k, there

exists a constant C = C(n, k) such that we have the following inequality:

∫

|∇i1T ∗ ∇i2T ∗ · · · ∗ ∇is |dµ ≤ C ‖T‖s−2
∞

∫

|∇kT |2dµ (D.1.6)
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Proof. We start with the Hölder inequality, since i1

2k
+ i2

2k
+ · · · + is

2k
= 1, we have:

∫

|∇i1T ∗ ∇i2T ∗ · · · ∗ ∇is |dµ ≤
{

∫

|∇i1T |
2k
i1

}

i1
2k

· · ·
{

∫

|∇i1T | 2k
is

}
is
2k

For each term, we apply previous Proposition (D.1.5), we have:

{

∫

|∇ij T |
2k
ij

}

ij

2k

≤ Cj ‖T‖1− ij

k
∞

{

∫

|∇kT |2dµ

}

ij

2k

therefore,

∫

|∇i1T ∗ ∇i2T ∗ · · · ∗ ∇isT |dµ ≤
{

∫

|∇i1T |
2k
i1

}

i1
2k

· · ·
{

∫

|∇i1T | 2k
is

}
is
2k

≤ C ‖T‖s−2
∞

∫

|∇kT |2dµ
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Appendix E

Sobolev Inequality

In this chapter, we will introduce the Sobolev inequality on manifold. In Sec.1,

we will introduce the general Sobolev inequality in R
n, in Sec.2, we will move to

manifold, and in this case, we will focus on L2 Sobolev inequality, some variants

of Sobolev inequality will also be mentioned. In Sec. 3, we will show that how to

obtain the L∞ control by iterating the L2 Sobolev inequality.

E.1 Sobolev Inequality in Euclidean Space

In this section, we will prove the Sobolev inequality for Euclidean space. All

of the results comes from [19, §5.6, Page.275]

Motivation

In this subsection, we assume that 1 ≤ p < n, and we want to establish the

following inequality

‖u‖Lq(Rn) ≤ C ‖Du‖Lp(Rn)

for some constants C > 0, 1 ≤ q < ∞ and all function u ∈ C∞
0 (Rn).

Since we want the inequality to be scale invariant, the choice of constant q
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is not arbitrary. Choose arbitrary function u(x), a positive constant λ, if the

inequality above holds for u(x), we consider a new function uλ := u(λx), then we

have:

LHS = ‖uλ‖Lq(Rn) = λ
− n

q ‖u‖Lq(Rn) (E.1.1)

and

RHS = ‖Duλ‖Lp(Rn) = λ
p−n

q ‖Du‖Lp(Rn) (E.1.2)

Therefore, the scale invariant property comes from the choice of q with q = np
n−p

.

Sobolev Inequality

Now we are ready to state the Sobolev inequality we state before. Historically,

this inequality was first proved by Sobolev [47].

Theorem E.1.1 (Theorem 1, Page. 277, [19]). [Gagliardo-Nirenberg-Sobolev In-

equality] Assume that 1 ≤ p < n, there exists a constant C depending only on n, p,

such that

‖u‖
L

n−p
np (Rn)

≤ C ‖u‖Lp(Rn) (E.1.3)

for all u ∈ C1
c (Rn).

Remark E.1.2. This constant C does not depend on the size of the compact

support domain.

For an open bounded subset in R
n, we have the following Sobolev inequality.

Theorem E.1.3 (Theorem 2, Page 279, [19]). Let U be a bounded, open subset of

R
n, and suppose that ∂U is C1. Assume that 1 ≤ p < n and u ∈ W 1,p(U). Then

u ∈ L
np

n−p (U), with the following estimate:

‖u‖
L

np
n−p (U)

≤ C ‖u‖W 1,p(U) (E.1.4)

the constant C depends on n, p and the domain U .
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Remark E.1.4. This is the Sobolev inequality we want to used in manifold. Be-

cause smooth Riemannian manifolds are locally diffeomorphic to an open set in

R
⋉

E.2 Sobolev Inequality on Manifolds

In this section, we introduce the Sobolev constant on Riemannian manifold.

We refer the following results to [35].

Theorem E.2.1 (Lemma 2, [35]). Given a closed Riemannian manifold (Mn, g).

There exists a constant CS(Mn, g) ≥ 0 such that

‖u‖
L

2n
n−2 (M)

≤ CS

(

‖u‖L2(M) +
1

vol
2
n (M)

‖u‖L2(M)

)

(E.2.1)

Remark E.2.2. The volume term in this L2 Sobolev inequality will guarantee it

is scale invariant.

E.3 Multiplicative Sobolev Inequality

In this section, we present a multiplicative Sobolev inequality. This inequality

allows us to convert global bounds to point-wise bound.

Theorem E.3.1 (Theorem 2.2, Page 62, [33]). Let (Mn, g) be a close Riemannian

manifold with unit volume. For u ∈ C1
0(M), 4 < q ≤ ∞,0 ≤ m ≤ ∞, we have:

‖u‖∞ ≤ CS · C(m, n, p) ‖u‖1−α

m

(

‖u‖p + ‖∇u‖p

)α
(E.3.1)

Proof. The proof also can be found in several papers. In [30, Theorem 5.6, Page

336], author proves this inequality for surface, in [49, Theorem 19, Page 354],
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author proves this inequality for four dimensional manifold.

We assume that the manifold has unit volume, and we also rescale the function

u such that

CS(‖u‖p + ‖∇u‖p) = 1 (E.3.2)

for a fixed number p.

Consider the function u1+ω for some positive constant ω, by the L2 Sobolev

inequality, we have:

∥

∥

∥u1+ω
∥

∥

∥

2n
n−2

≤ CS

(
∥

∥

∥u1+ω
∥

∥

∥

2
+
∥

∥

∥∇u1+ω
∥

∥

∥

2

)

≤ CS(1 + ω)
(

‖uω · u‖2 + ‖uω · ∇u‖2

)

≤ CS(1 + ω) ‖uω‖q

(

‖u‖p + ‖∇u‖p

)

= (1 + ω) ‖uω‖q

(E.3.3)

in which we use Hölder inequality and q = 2p
p−2

. Therefore, we have:

‖u‖ 2n(1+ω)
n−2

≤ (1 + ω)
1

1+ω ‖u‖ ω
1+ω
ωq (E.3.4)

We define j with jq = 2n
n−2

, and we have:

‖u‖jq(1+ω) ≤ (1 + ω)
1

1+ω ‖u‖ ω
1+ω
ωq (E.3.5)

Now we try to iterate this inequality by defining a sequence of constants. Let

ω0 = m
q

and ωi+1 = j(1 + ωi), we also set Ci = (1 + ωi)
1

1+ωi and δi = ωi

1+ωi
. With

this setting, we have a sequence of inequalities

‖u‖ωi+1q ≤ Ci ‖u‖δi

ωiq
(E.3.6)
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Therefore, we have:

‖u‖ωiq
≤
(

i−1
∏

k=0

C
δk+1

k

)

‖u‖δ0δ1···δi−1

m (E.3.7)

We observe that 1 + ωi = jiω0 +
∑i

k=0 jk, therefore, we can find a constant C =

C(m, n, p) such that

1

C
ji ≤ 1 + ωi ≤ Cji (E.3.8)

with this estimate, we have:

log
i−1
∏

k=0

C
δk+1

k =
i−1
∑

k=0

1

1 + ωi

log(1 + ωi) ≤
i−1
∑

k=0

Cj−kklog(j) ≤ C (E.3.9)

where we use the fact the j > 1. We also have:

∞
∏

k=0

δk = lim
k→∞

jk ω0

1 + ωk

= lim
k→∞

ω0

ω0 + j
j−1

= 1 − α (E.3.10)

Then we finish the proof.
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