
UC San Diego
Research Theses and Dissertations

Title
Finding Categories

Permalink
https://escholarship.org/uc/item/9x72c5g9

Author
Fulkerson, Brian Daniel

Publication Date
2010-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9x72c5g9
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

Finding Categories 

A dissertation submitted in partial satisfaction 

of the requirements for the degree 

Doctor of Philosophy in Computer Science 

by 

Brian Daniel Fulkerson 

2010 



UMI Number: 3462877 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 3462877 
Copyright 2011 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



© Copyright by 

Brian Daniel Fulkerson 

2010 



The dissertation of Brian Daniel Fulkerson is approved. 

Demetri Terzopoulos 

Deborah Estrin 

Stefano Soatto, Committee Chair 

University of California, Los Angeles 

2010 

11 



TABLE OF CONTENTS 

1 Introduction 1 

1.1 Categorization with Bags of Features 3 

1.1.1 Features 4 

1.1.2 Dictionary 6 

1.1.3 Histogram Construction 6 

1.1.4 Classification 7 

2 BIBO and Structural Stability for Feature Detection 8 

2.1 Introduction 8 

2.1.1 Features 9 

2.2 When are canonized features optimal? 12 

2.3 Stability of feature detectors 16 

2.4 Maximally Stable Extremal Regions 18 

2.4.1 Maximally Structurally Stable Extremal Regions 18 

2.5 The segmentation tree 19 

2.6 Repeatability of nodes in segmentation trees 25 

2.6.1 Segmentation methods 25 

2.6.2 Stability measures 26 

2.6.3 Discussion 26 

2.7 Categorization with superpixel trees 27 

2.7.1 Superpixel tree detector 27 

hi 



2.7.2 Random features 28 

2.7.3 Discussion 30 

2.8 Conclusion 30 

3 Categorization with Segmentation 32 

3.1 Introduction 32 

3.2 Spatial pyramid matching 34 

3.2.1 Feature extraction 34 

3.2.2 Dictionary construction 35 

3.2.3 Spatial histograms 35 

3.2.4 Spatial pyramid matching with a support vector machine . 36 

3.3 Splitting SIFT descriptors 37 

3.4 Experiments 38 

3.4.1 Baseline: Spatial pyramid matching 40 

3.4.2 Ground truth segmentations 41 

3.4.3 Normalized cuts 41 

3.4.4 Active contours without edges 45 

3.5 Discussion 45 

4 Discriminative Dictionaries and Pixel Categorization 47 

4.1 Introduction 47 

4.2 Contributions 48 

4.3 Related work 49 

4.4 Brute-force Localization 51 

IV 



4.4.1 Integral Images 51 

4.5 Informative, Compact, and Efficient Dictionaries 52 

4.5.1 Fast Projection by Hierarchical fc-means 54 

4.5.2 Dictionary Compression 54 

4.6 Experiments 59 

4.6.1 Training 59 

4.6.2 Fast Dense Feature Extraction 60 

4.6.3 Dictionary Construction 62 

4.6.4 Testing 62 

4.6.5 Discussion 63 

4.7 Conclusions 66 

5 Superpixel Categorization 68 

5.1 Introduction 68 

5.2 Related Work 70 

5.3 Superpixel Neighborhoods 72 

5.3.1 Superpixels 72 

5.3.2 Classification 73 

5.3.3 Superpixel Neighborhoods 74 

5.3.4 Refinement with a CRF 75 

5.4 Experiments 76 

5.4.1 Common Parameters 77 

5.4.2 Graz-02 78 

v 



5.4.3 VOC 2007 Segmentation 82 

5.5 Conclusion 83 

6 Conclusion 87 

A Really Quick Shift 89 

A.l Introduction 89 

A.2 Related Work 89 

A.3 Quick shift algorithm 90 

A.3.1 Segmentation specific optimizations 91 

A.4 Quick shift on a GPU 92 

A.5 Evaluation 96 

A.6 Conclusion 100 

B Blocks - An Open Source Experiment Framework 101 

B.l Introduction 101 

B.l.l Related work 102 

B.2 Basic Structure 103 

B.3 Building with Blocks 103 

B.3.1 Parameters 106 

B.3.2 Inputs and Outputs 107 

B.4 Sample Applications 108 

B.5 Conclusion I l l 

References 112 

VI 



LIST OF FIGURES 

1 Bag of Features Pipeline. Here we show the bag of features 

pipeline. The color indicates the major area of each step. Blue 

boxes indicate data, which is partitioned into training and testing 

sets. The light orange boxes involve features, which are extracted 

from both sets. Yellow boxes correspond to steps involving the 

dictionary, including building the dictionary during training and 

quantizing the data using the dictionary for both training and 

testing. Green boxes show histogram construction, and orange 

boxes denote the classifier 3 

2 SIFT Detections. A sample image from the bike category of the 

Graz-02 dataset and its detected SIFT features. The scale of each 

feature is the radius of the circle, and the orientation of the feature 

is denoted by a line through its center 5 

1 Extracting and splitting a SIFT descriptor given a seg­

mentation. From the left: the original image, the gradient of the 

extracted support region, the segmentation information (a mask 

image), the two gradient regions after they have been split, and 

last, the descriptors. The contrast of the gradient has been signif­

icantly boosted here so that the partitioning process may be more 

easily visualized 38 

2 Sample images from Caltech-101. Categories from the top 

left: airplane, accordion, butterfly, bonsai, buddha, dalmatian, 

crocodile head, cup, crab, cougar face, chandelier 39 

vn 



3 Accuracy of our spatial pyramid matching implementa­

tion, as well as the results when ground truth segmenta­

tions are incorporated. The results of Zhang, Berg, Maire & 

Malik [ZBM06] are also included for reference. Our results were 

averaged over 5 runs. This figure is best viewed in color 42 

4 Example segmentations, (a) is the original image, (b) is the 

provided annotation, (c) is the result of a normalized cuts seg­

mentation and (d) corresponds to segmentation by active contours 

without edges 43 

5 Confusion matrix for the spatial pyramid match kernel 

with ground truth segmentations and 30 training images 

per class. This figure is best viewed in color. The most confused 

pairs were Faces with Faces_easy. This is intuitive, because the 

Faces.easy images are just cropped versions of the Faces images. 

The next 3 top confused pairs were (waterJilly, lotus), (lobster, 

crab), (crocodile, crocodile_head) 44 

1 Upper Left: Original image. Middle: Labeling weighted by the 

confidence for the class "person". Lower Left: Labeling weighted 

by the confidence, with low confidence background pixels reclassi­

fied as foreground. Right: Labeling weighted by the confidence, 

with low confidence foreground pixels reclassified as background. 48 

vin 



2 Bag of features with integral images. An illustration showing 

how integral images can be used for histogram construction in a 

bag of features setting. Features extracted on a regular grid have 

been quantized into either red squares or blue circles. Two images 

are constructed, one with occurrences of squares and the other with 

circles. The images are transformed into integral images, which are 

used to construct the histogram for a window covering the bottom 

half of the image 51 

3 Dictionary architecture. We use hierarchical fc-means (HKM) 

to build a vocabulary tree (left, red nodes) of finely quantized 

features by recursively partitioning the data. Next, we use AIB 

to build an agglomerative tree (right, blue nodes) of informative 

words. This architecture is efficient (in training and testing) and 

powerful 53 

4 Results of an experiment showing the performance of AIB 

as the dictionary is compressed. We adopt the framework of 

[ZML06] on Graz-02, extracting SIFT descriptors on salient re­

gions, quantizing them, and classifying the resulting histograms 

with an SVM. We vary the compression of the dictionary, starting 

from the full hierarchical A;-means tree (8,000 leaves, 7^=20) and 

compressing to a dictionary with only 2 elements. In each case, we 

can compress the dictionary by a factor of 8 without losing any ac­

curacy. In some cases (Cars, Bikes) we even increase performance 

slightly 56 

IX 



5 Selected results on Graz-02. Images are first masked by the 

classification then transformed to HSV. The HSV images have their 

V channel weighted by the confidence in the classification, darken­

ing the pixels which are less confident about the class. All images 

shown were generated with the parameter set denoted AIB200RGB 

and classified with an SVM 64 

6 Pixel precision-recall curves. The row corresponds to the cat­

egory and the column specifies which classifier was used. The 

yellow dashed line indicates the performance of random guessing 

of the pixel identity. When the vocabulary size is small, AIB helps 

greatly 65 

1 Aggregating histograms. An illustration of the detail of our 

superpixel segmentation and the effectiveness of aggregating his­

tograms from adjacent segments. From left: the segmentation of 

a test image from Graz-02, a zoomed in portion of the segmen­

tation, the classification of each segment where more red is more 

car-like, and the resulting classification after aggregating all his­

tograms within N = 2 distance from the segment being classified. 70 

x 



2 Graz-02 confidence maps. Our method produces very well lo­

calized segmentations of the target category on Graz-02. Here, a 

dark red classification means that the classifier is extremely con­

fident the region is foreground (using the probability output of 

libsvm), while a dark blue classification indicates confident back­

ground classification. Notice that as we increase the number of 

neighbors considered (N), regions that were uncertain become 

more confident and spurious detections are suppressed. Top two 

rows: Without CRF. Bottom two rows: With CRF 81 

3 PASCAL VOC 2007 + CRF. Some selected segmentations for 

PASCAL. For each test image, the results are arranged into two 

blocks of four images. The first block (left-to-right) shows the re­

sults of the superpixel neighborhoods without a CRF. The second 

block uses the CRF described in section 5.3.4. Colors indicate cat­

egory and the intensity of the color is proportional to the posterior 

probability of the classification 84 

4 PASCAL VOC 2007 Confidence. Confidence maps for PAS­

CAL. The results are arranged into two blocks of four images 

for each test image. The first block contains the input image, 

a category label, and the confidence map for that category for 

N = 0, 2, 4. The second block contains the ground truth labeling 

and our labellings with an intensity proportional to the confidence 

of the classification. Colors indicate category. For example, in the 

upper left we show the confidence for bicycle, and the classification 

which contains mostly bicycle (green) and some motorbike (light 

blue) 85 

X I 



1 Sample quick shift results. Increasing a smoothes the under­

lying estimate of the density, providing fewer modes. Increasing 

r increases the average size of a region as well as the error in the 

distance estimate. The top row of images have a = 2, the bottom 

row a = 10. The left column has r = 10 and the right r = 20. . . 93 

2 Quick shift image segmentation in pseudo-code. The al­

gorithm proceeds in two steps. First it iterates over the image 

creating a Parzen estimate of the density at each pixel. Then, it 

links each pixel to the nearest pixel (in the feature space) which 

increases the estimate of the density 94 

3 Evaluation images. Four images from PASCAL-2007 used to 

evaluate the speed of the proposed algorithm 95 

4 Quick shift CPU vs GPU. The graph shows the time required 

on two different GPUs as the resolution of the image is increased. 

Results are averaged over the four images from PASCAL-2007 

shown in Figure A.3. For this data, a = 6 and r = 10. At 

1024x1024, the speedup compared to the CPU version is 54X. . . 97 

5 Effect of a on density computation time. As in Figure A.4, 

we show that as a is increased, processing time is increased and 

the texture memory-backed GPU version remains the most efficient 

option. Here we fix r = 10 and the image resolution to 512x512. 

Results are averaged over the same four images as before 98 

xn 



A.6 Effect of r on neighbor linking time. We show that as r is in­

creased, the amount of time required for finding the nearest neigh­

bor which increases the density estimate is naturally increased. 

Here we fix a = 6 and the image resolution to 512x512. Results 

are averaged over the same four images as before 99 

B.l Hello world in block form. This code listing shows a minimal 

block which prints "Hello world!" the first time it is executed. . . 104 

B.2 A simple feature extraction block. This block extracts SIFT 

features on a random image of size bk. imsize 105 

B.3 Bag of features in blocks. The blocks used to execute a tra­

ditional bag of features pipeline. Blocks are color coded as in 

Figure 1.1. Blue colored boxes deal with datasets, tan compute 

features, yellow involve dictionary construction, green make his­

tograms, and orange denote the classifier. Arrows indicate the 

direction of data flow, and the dependencies between blocks. . . . 109 

B.4 Superpixel neighborhoods in blocks. The blocks used to cre­

ate the system described in Chapter 5. The color coding is the 

same as Figure B.3. Notice that many of the same blocks are 

shared between the two examples, only when there is something 

specific to the application (blocks that deal with superpixels) are 

new blocks introduced 110 

xm 



LIST OF TABLES 

1 Stability on MSRC. Average percentage of repeatable regions 

under uniform noise on approximately 600 images from MSRC. . . 26 

2 Comparison of detectors for 15 training images on Caltech-

101. For a small number of features, a detector which selects stable 

segments is better than the SIFT detector. However, if we allow 

the number of features to grow significantly (from 200 to 10,000), 

dense features (PHOW) perform best 29 

1 A comparison of the pixel precision-recall equal error rates 

on Graz-02. Although we do not represent shape explicitly, our 

results are competitive with [MS07]. The best performance is 

achieved using our compressed dictionary (Section 4.5) 67 

1 Effect of k. Here we explore the effect of the dictionary size k on 

the accuracy of our method (without a CRF) for varying neigh­

borhood sizes N. Increasing the size of the dictionary increases 

performance until we begin to overfit the data. We pick k = 400 

for our experiments, but a large range of k will work well. Notice 

that even with k = 10 we capture some information, and increasing 

N still provides noticeable improvement 79 

xiv 



5.2 Graz-02 results. The precision = recall points for our experi­

ments on Graz-02. Compared to the former state-of-the-art [FVS08], 

we show a 17% improvement on Cars, a 15% improvement on Peo­

ple and a 6% improvement on Bicycles. N is the distance of the 

furthest neighboring region to aggregate, as described in section 

5.3.3. Our best performing case is always the CRF-augmented 

model described in section 5.3.4 80 

5.3 VOC 2007 segmentation results. Our best overall average 

performance (CRF+Af = 2) performs better than Shotton et al. 

[SJC08] with or without an Image Level Prior (ILP) on 14 out of 21 

categories. Note that we could add ILP to our model. Similarly, 

we do not compare with the Shotton et al. results which used 

TKK's detection results as a Detection Level Prior (DLP) because 

TKK's detections were not available. We expect our method would 

provide a similar performance boost with this information. The 

CRF provides small but noticeable improvements on for all values 

of N 86 

xv 



ACKNOWLEDGMENTS 

My advisor Stefano Soatto has consistently provided a focused lens to view 

problems I've approached. His ability to quickly assess and bring detailed insights 

has often provided clarity when I was uncertain a solution was possible. 

Much of the research in this thesis would have been impossible without my 

frequent collaborator Andrea Vedaldi. Our software collaborations especially 

have been among some of my most useful lessons in grad school. His "never give 

up" mantra kept me inspired and working many late nights before deadlines, and 

our research discussions have always seemed to lead to more fresh ideas than 

anyone could reasonably hope. 

I'm grateful to the members of the Golem Group for giving me a chance to par­

ticipate in a crazy robot race through the desert. Collaborations with members 

of the group, including but certainly not limited to Jim Radford, Eagle Jones, 

and Bill Caldwell have solidified my views on systems and software development. 

Thanks to my friend Kamil Wnuk for convincing me to start surfing. I will 

always remember the vision lab surf colloquiums, which have produced more than 

a few good ideas. 

I want to thank all of the UCLA Vision Lab members with whom I've been 

fortunate enough to interact. Thanks to Jeremi Sudol, Teresa Ko, Michalis Rap-

tis, Alper Ayvaci, Ganesh Sundaramoorthi, Jason Meltzer, and all the other lab 

members who provided an endless supply of good feedback and advice. 

Louka Dlagnekov selflessly provided his editing services for this thesis, in 

addition to his friendship, encouragement, and advise. 

And of course, I want to thank my family. Their unwavering support and 

confidence in me have always been an immeasurable source of strength. 

xvi 



VITA 

1982 Born, San Diego, California, USA. 

2004 B.S., Computer Science and Engineering 

University of California, San Diego 

2004-2006 DARPA Grand Challenge 

Golem Group 

Southern California 

2006 M.S. Computer Science 

University of California, Los Angeles 

2010 Ph.D. Computer Science 

University of California, Los Angeles 

PUBLICATIONS AND PRESENTATIONS 

M. Allen, R. Vargas, E. Graham, W. Swenson, M. Hamilton, M. Taggart, T. 

Harmon, A. Rat'Ko, P. Rundel, B. Fulkerson, and D. Estrin. "Soil Sensor Tech­

nology: Life within a Pixel". BioScience, Vol. 57, No. 10, November 2007. 

B. Fulkerson and S. Soatto. "Really Quick Shift: Image Segmentation on a 

GPU". In Proceedings of the Workshop on Computer Vision using GPUs, held 

with the European Conference on Computer Vision, September 2010. 

xvn 



B. Fulkerson, A. Vedaldi, and S. Soatto. "Class Segmentation and Object Lo­

calization with Superpixel Neighborhoods". In Proceedings of the International 

Conference on Computer Vision, 2009. 

B. Fulkerson, A. Vedaldi, and S. Soatto. "Localizing Objects With Smart Dictio­

naries" . In Proceedings of the European Conference on Computer Vision, 2008. 

E. Jones, B. Fulkerson, E. Frazzoli, D. Kumar, R. Walters, J. Radford, and R. 

Mason. "Autonomous off road driving in the DARPA Grand Challenge". In 

Proceedings of the IEE/ION Position, Location, and Navigation Symposium, 

April 2006. 

R. Mason, J. Radford, D. Kumar, R. Walters, B. Fulkerson, E. Jones, D. Caldwell, 

J. Meltzer, Y. Alon, A. Shashua, H. Hattori, N. Takeda, E. Frazzoli, and S. 

Soatto. "The Golem Group / UCLA Autonomous Ground Vehicle in The DARPA 

Grand Challenge". Journal of Field Robotics, Special Issue on the DARPA Grand 

Challenge, 2005. 

S. Reddy, G. Chen, B. Fulkerson, S.J. Kim, U. Park, N. Yau, J. Cho, M. Hansen, 

and J. Heidemann. "Sensor Internet Share and Search: Enabling Collaboration 

of Citizen Scientists". IPSN DSI, Cambridge, Massachusetts, 2007. 

A. Vedaldi and B. Fulkerson. "VLFeat - An Open and Portable Library of Com­

puter Vision Algorithms". In Proceedings of the 18th annual ACM international 

conference on Multimedia, October 2010. 

xvm 



A. Vedaldi and B. Fulkerson. Tutorial: "VLFeat - An Open and Portable Li­

brary of Computer Vision Algorithms". Part of the Open Source Vision Software, 

Intro and Training Tutorial, held with the Conference on Computer Vision and 

Pattern Recognition, San Francisco, CA, June 2010. 

K. Wnuk, B. Fulkerson, and J. Sudol. "A Scalable Architecture for Multi Agent 

Vision Based Robot Scavenging". Proceedings of the National Conference on 

Artificial Intelligence (AAAI 06) Workshop on Robotics, Boston, MA, 2006. 

xix 



ABSTRACT OF THE DISSERTATION 

Finding Categories 

by 

Brian Daniel Fulkerson 

Doctor of Philosophy in Computer Science 

University of California, Los Angeles, 2010 

Professor Stefano Soatto, Chair 

Assigning categorical labels to objects in images has proven to be a significant 

challenge for automated systems. As cameras rapidly proliferate our society, how­

ever, we will necessarily depend more heavily on computers to help us label and 

sort our images. This work addresses the problem of trying to assign categorical 

labels to images. We contend that to do this task effectively, we should consider 

also which part of the image contains the object. 

We examine the sensitivity of feature detection to nuisances and propose a 

new feature detector based on a tree of segmentations. When a detector is not 

required, we describe a fast adaptation that extracts a popular descriptor (SIFT) 

on a dense grid on the image. Next, we show that a dictionary constructed 

for the task of categorization can be both smaller and more accurate than one 

constructed to represent the data alone. We explore splitting descriptors along 

segmentation boundaries, and show that knowing which part of an image contains 

the object can make a large difference in accuracy. With these pieces, we construct 

a fast and accurate pixel-level categorization technique. Then, we move from 

pixels to small homogeneous collections of pixels (superpixels) and exploit the 

neighborhood structure of these to form precise superpixel-level categorization. 

xx 



Finally, the appendix discusses open software we have developed and released 

including a GPU implementation of a segmentation algorithm (quick shift) and 

a MATLAB experiment framework (Blocks) which implements the techniques 

described in the thesis. 

x x i 



CHAPTER 1 

Introduction 

With the constant emergence of smaller and cheaper cameras, images have be­

come ubiquitous. In 2008 alone, one billion images were uploaded to Flickr, and 

Facebook members added two terabytes of photos to the service every day. Our 

ability to capture images has outpaced our ability to label and sort them. This 

thesis focuses on automatically determining what kinds of things are present in 

an image and where in the image they are located. 

In the literature, the problem of identifying the content of an image goes by 

many names: object recognition, category recognition, (category) localization, 

and class segmentation. In object recognition, we seek to find a specific thing we 

have seen before, for example a specific book. Often, the location of the object 

in the image is often also found. Category recognition instead assumes the image 

contains a single object and tries to assign a category label to it (e.g. book, rather 

than a specific book by a specific author). When we also wish to know roughly 

where an instance of a specific object category is, the task is called localization. 

In this case, we seek to draw one (or more) boxes in the image around objects of 

the category of interest. Finally, class segmentation seeks to label each pixel of 

the image with a class or as background. 

These tasks are related, and so they naturally share many common elements. 

Typically, the image is first reduced to a set of local features which describe 

salient parts of the images in a way that is invariant to nuisance phenomena 

1 



(such as small lighting changes). This set of features and their locations form our 

representation of the image. When we are looking for a specific object (object 

recognition), we can often just look for geometric arrangements of features which 

are consistent with our model of the object. This requirement is relaxed when 

we are looking for an object class, usually by considering histograms of quantized 

features (bags of features [CDD04]). Sometimes, weak geometric constraints are 

imposed on the configuration of the features (e.g. [LSP06]). Any of these ap­

proaches can be adapted to localization in a straightforward fashion by passing a 

fixed size window over the image and computing a score for the class of interest 

at each pixel. The pixel with the best score provides the location of the object 

class. The approaches can be similarly adapted to class segmentation by giving 

each pixel a label corresponding to the window of features around that pixel. 

The next section provides an introduction to the bag of features pipeline as it 

applies to categorization. In subsequent chapters we examine and build on each 

piece of the system. In Chapter 2, we define and examine sensitivity measures for 

feature detection in the context of recognition tasks. Chapter 3 investigates using 

boundary information from segmentations to split features along occluding object 

boundaries for the purpose of improving image categorization, and shows that it 

is important to consider the extent of the object when attempting to do catego­

rization. Chapter 4 focuses primarily on improving the quality of the dictionary 

common to these tasks. It then takes the resulting general purpose discrimi­

native dictionaries, couples them with a novel extraction method for fast dense 

SIFT [Low04] features and produces a pixel-level localization method. Chap­

ter 5 addresses the issue of how to include spatial information in the pipeline. 

It presents a class segmentation problem, and uses a conditional random field 

(CRF) framework on classifiers built on neighborhoods of superpixels to achieve 

robust, detailed results. In Appendix A, we present a GPU implementation of 

2 



Training 
Images 

Detect 
Features 

Test 
images 

Detect 
Features 

Extract 
Descriptors 

1 
Construct 
Dictionary 

Extract 
Descriptors 

Quantize 

1 
Dictionary 

1 
Quantize 

Build 
Histogram 

Build 
Histogram 

Learn 
Classifier 

| 

Classifier 

1 
Classify 

Figure 1.1: Bag of Features Pipeline. Here we show the bag of features 

pipeline. The color indicates the major area of each step. Blue boxes indicate 

data, which is partitioned into training and testing sets. The light orange boxes 

involve features, which are extracted from both sets. Yellow boxes correspond to 

steps involving the dictionary, including building the dictionary during training 

and quantizing the data using the dictionary for both training and testing. Green 

boxes show histogram construction, and orange boxes denote the classifier. 

quick shift [VS08], a mode seeking segmentation algorithm which we use to ob­

tain superpixels in Chapter 5. Finally, we provide reference implementations 

of all algorithms described in this thesis as part of two open source projects: 

VLFeat [VF08, VF10] and Blocks [FV09] (described further in Appendix B). 

1.1 Categorization with Bags of Features 

In this section, we provide the reader with a review of bag of features classifica­

tion [CDD04]. This will form a basic tool that we will modify and use throughout 

the thesis. The application we will focus on is object category recognition, though 

the process can be easily extended to all of the other problems we are interested 

in. A color coded block diagram of the process is shown in Figure 1.1. 

3 



1.1.1 Features 

A large area of research in computer vision focuses on decomposing an image into 

a set of features which are invariant (or at least insensitive) to transformations 

of the image. By adopting these features as our representation of the image, we 

are able to eliminate some nuisance factors (such as small changes in pose or 

lighting) before we proceed with matching. Features that find and describe local 

image regions are by far the most common, though other types are possible (for 

example, features which describe a contour [SBC05] or an edge [MS08]). 

The feature detector seeks to find points of an image that may be reliably 

found in another image. How easily this feature can be found is known as its 

repeatability. Two common examples of feature detectors are the Scale Invari­

ant Feature Transform (SIFT [Low04]) and Maximally Stable Extremal Regions 

(MSER [MCU02]). The output of the detector is typically a set of locations in 

the image and associated regions (often defined by an ellipse). Some example 

SIFT detections are shown in Figure 1.2. In Chapter 2, we propose and examine 

two measures of sensitivity of feature detection for recognition tasks. 

Once we have found a set of features in an image, the feature descriptor 

seeks to form a description of each region that will provide insensitivity to a set 

of transformations and facilitate the matching process. In the bag of features 

setting, the set of these descriptors are the final representation of the image. All 

spatial information is discarded, as though the descriptors have been put in a 

"bag", and comparing images is the same as comparing the contents of the bag 

which represents each image. 

In Chapter 4 we propose a SIFT-like descriptor which may be quickly ex­

tracted on a grid (potentially each pixel of the image). Our publicly available 

library VLFeat [VF08] implements this descriptor as well as SIFT and the MSER 

4 



ir4v> 

mk£J\±> 

? T V ^ Ofe) 0 

Si <H> ,' o o 

o 
o 

o 
M1 o 

c> 

o o o . 
0 c&gj 0-

o* 

o 0 

%© o° (fP V 
'<M 

O O 

<SS>5̂ iL oo0"fo ° <Q "oU7(^-^ 
° o T r ® o 0 i Q 8 

Figure 1 2 SIFT Detections A sample image from the bike category of the 

Graz-02 dataset and its detected SIFT features The scale of each feature is the 

radius of the circle, and the orientation of the feature is denoted by a line through 

its center 

5 



detector. In Chapter 3 we explore "splitting" SIFT descriptors at possible occlu­

sion boundaries found using a segmentation of the image. 

1.1.2 Dictionary 

The fundamental assumption of bag of features classifiers is that the image may be 

represented by a distribution of local features. However, the feature space is often 

quite large, and the number of samples relatively small. With SIFT, descriptors 

are vectors in R128. If we use the SIFT detector we may have approximately 

1000 descriptors per image. In order to compute a statistic on this space, we 

assume its intrinsic dimension is much smaller than R128 and instead compute 

the distribution of features on this reduced space. Often, this reduced space is 

discrete: we form a dictionary from the training data and represent each data 

point with the dictionary element which is closest to it in the feature space. 

Most techniques which perform this projection onto a lower dimensional space 

are generative: they seek to find a representation of the data which is able to 

most closely synthesize the input data. Techniques of this type, such as A;-means, 

are not well suited for the task of recognition. 

In Chapter 4 we propose and explore a discriminative dictionary which uses 

information about class labels to inform the dictionary construction. This allows 

us to create small informative dictionaries without sacrificing performance in the 

recognition task. 

1.1.3 Histogram Construction 

In bag of features, histogram construction is straightforward. We create a bin 

in the histogram for each element in our dictionary, and count the number of 

6 



occurrences of each dictionary element in the image. This is the representation 

of each image we compare during classification. 

In Chapter 4 we extend the concept of integral images to propose a fast 

method for the extraction of histograms on arbitrary sub-windows of an image. 

In Chapter 5, for the task of class segmentation we modify the histogram con­

struction step to include neighborhoods around a local region which are defined 

by the superpixelization of the image. 

1.1.4 Classification 

Once we have reduced the image to a histogram, assign a class label to it becomes 

a machine learning problem. In Chapter 4 we use two of the most popular 

approaches: nearest neighbor and a support vector machine (SVM). In a k-

nearest neighbor classification setting, we measure the distance between our test 

image histogram and our training image histograms, and assign to it the majority 

label of the A;-nearest neighbors. A support vector machine instead attempts to 

find a set of separating hyperplanes in a kernel space that maximize the margin 

between data points with different class labels. In our applications, we most often 

use an exponential \2 kernel. 

7 



CHAPTER 2 

BIBO and Structural Stability for Feature 

Detection 

2.1 Introduction 

Visual decision tasks encompass a range of problems, including detection, local­

ization, categorization and recognition of objects in images or video. These are 

all classification problems, where in some cases the class is a singleton (recog­

nition), in other cases it can be quite general depending on functional or se­

mantic properties of objects (categorization). Conceptually, they all require the 

evaluation and learning of the likelihood of the data (images /) given the class 

label c: p(I\c). Minimizing the conditional risk of classification is equivalent 

to maximizing the posterior p(c\I), which in turn (under equi-probable priors 

P(c = 1) = P(c — 0) = 1/2) is equivalent to maximizing the likelihoodp(I\c): 

c = arg max p(I\c). 
C6{0,1} 

(2.1) 

So, in a sense, the problem of visual decision-making, including detection, local­

ization, recognition, categorization, is encapsulated in (2.1). That would be easy 

enough to solve if we could compute the likelihood. 

The difficulty in visual decision problems arises from the fact that the image 

/ depends on a number of nuisance factors that do not depend on the class, 

and yet affect the data. These depend on the task, and may include viewpoint, 

8 



illumination, partial occlusions, quantization etc. If we could, we would base 

our decision not on the data / , but on the hidden variables £ that comprise the 

defining characteristics of the scene (object, category, location etc.) that depend 

on the class c, through a Markov chain c —> £ —> /. This would correspond to a 

data generation model where by a sample c from P(c) is selected, based on which 

a sample £ from dQc = dP(£\c) is selected, from which a measurement / is finally 

sampled via an image-formation functional / = /i(£). 

However, because of the nuisances, we have to instead consider a generative 

model of the form / = /i(£, i>), where h is a functional that depends on the imaging 

device and u are all the nuisance factors. It is convenient to isolate within the 

nuisance v the additive noise component n arising from the compound effects of 

un-modeled uncertainty and the nuisances that act as a group on the scene, g, 

although we could lump them into the definition of v. If we model the group and 

the noise explicitly, we have 

I = h{g£,v) + n. (2.2) 

Using this model, we wish to find groups of nuisances which we can build co-

variant detectors for, and try to build them such that they are insensitive to 

nuisances we cannot invert. 

2.1.1 Features 

Let a feature be any deterministic function of the data. We call a feature 4> : X —> 

RK;I H-> (f)(1). Note, the decision rule itself, c(I) is a feature. However, it does 

not just depend on the datum / , but also on the entire training set. Therefore, 

we reserve the nomenclature "feature" for statistics that depend on the current 

data, not the training set. 

9 



In general, according to the data processing inequality [Sha98] the use of a 

feature comes with a loss of performance in the decision task. However, there 

are conditions when optimal performance can still be attained, namely when 

the feature is a sufficient statistic. Ideally, one would also want the feature to 

be invariant to the nuisances. One of the many possible ways of designing an 

invariant feature is to use the data / to "fix" a particular group element g(I), 

and then "undo" it from the data. So, we define a (co-variant) feature detector 

to be a functional designed to choose a particular group action g, from which we 

can easily design an invariant feature, often referred to as an invariant (feature) 

descriptor. 

Definition 1 (Co-variant detector) With reference to the model (2.2), we de­

fine a (G-)co-variant detector to be a functional tp '• X x G —• Mdim(G); (I,g) \—> 

tp(I,g) such that 

1. The equation tp(I,g) = 0 uniquely determines a group element g = g(I). 

2. Iftp(I,g) = 0, then tp(I o g,g o g) = 0 V g G G, i.e., tp co-varies with G. 

where by the action log we mean the map (I,g) = (h(£,0),g) i—> h(g£,Q) = log. 

The first condition can be expressed in terms of "transversality" [GP74] of the 

operator tp: i.e., it is equivalent to the determinant of the Jacobian of tp with 

respect to g being non-singular: 

det (^\ = \VtP\ ? 0. (2.3) 

Definition 2 (Canonizability) We say that the image I is G-canonizable (is 

canonizable with respect to the group G), and g e G is the canonical element, if 

there exists a covariant detector tp such that ip(I,'g) = 0. 

10 



Note that, depending on the functional tp, the statistic may be local, i.e. only 

depend on Fyx)\x£BcD, i.e., on a restriction of the image to a subset B of its 

domain D. In the latter case we say that I is locally canonizable, or, with an 

abuse of nomenclature, we say that the region B is canonizable. 

The resulting descriptor is often called a local invariant feature The transversality 

condition (2.3) guarantees that g, the canonical element, is an isolated (Morse) 

critical point [Mil69] of the derivative of the function tp via the Implicit Function 

Theorem [GP74]. So a co-variant detector is a statistic (a feature) that "extracts" 

a group element g. 

With a co-variant detector we can easily construct an invariant descriptor as 

follows: 

Definition 3 (Canonized descriptor) For a given co-variant detector tp that 

fixes a canonical element g via tp(I,~g(I)) = 0 we call the statistic 

4>(I) = I°TX(I) I ?P(l,g(l)) = 0. (2.4) 

an invariant descriptor. 

Theorem 1 (Canonized descriptors are complete features) Lettp be a co-

variant detector. Then the corresponding canonized descriptor (2.4) is an invari­

ant sufficient statistic. 

Proof: To show that the descriptor is invariant we must show that (p(Iog) = (p(I). 

Butcp(Iog) = (Iog)og-x(Iog) = Iogo(gg)~l = I o g o g~xg~l (I) = I og~x(I) 

To show that it is complete it suffices to show that it spans the orbit space T/G, 

which is evident from the definition cp(I) = I o g~l. 

11 



2.2 When are canonized features optimal? 

The use of canonization to design invariant descriptors requires the image to sup­

port "reliable" (in the sense of Definition 1) co-variant detection. The challenge 

in canonization is not when the co-variant detector is unreliable, for that implies 

the image is "insensitive" to the action of G. Instead, the challenge is when the 

covariant detector reliably detects the wrong canonical element g, for instance 

where there are multiple repeated structures that are locally indistinguishable, 

as often the case in cluttered scenes. 

The good news is that, when canonization works, it simplifies visual classifi­

cation by eliminating the group nuisance without any loss of performance. 

Theorem 2 (Invariant classification) If a complete G-invariant descriptor £ = 

cp(I) can be constructed from the data I, it is possible to construct a classifier 

based on the class-conditional distribution dP(t;\c) that attains the same mini­

mum (Bayesian) risk as the original likelihood p(I\c). 

The proof follows from the definitions and Theorem 7.4 on page 269 of [RobOl]. 

The classifier based on the complete invariant descriptor is called equi-variant. 

An important caveat is that we have assumed that the non-invertible nuisance 

is absent, i.e. v = 0, or that, more generally, the canonization procedure for g is 

independent of v, or "commutes" with v, in a sense that we will make precise in 

Definition 4. In general, this cannot be done because some nuisances are clearly 

not invertible (occlusions, quantization, additive noise), and therefore they cannot 

be canonized. Worse, with or without canonization one can simply not construct 

a complete invariant to occlusions or to quantization. And even if only one non-

invertible nuisance exists, once it is composed with other group nuisances, the 

entire composition becomes non-invertible. 

12 



To deal with the interaction between invertible and non-invertible nuisances, 

we relax the condition v = 0 and describe feature detectors that "commute" with 

v. We show that the only subgroup of G that has this property is the isometric 

group of the plane (planar rotations, translations and reflections). Other nui­

sances, groups or not, have to be dealt with by marginalization or extremization 

if one wishes to retain optimal performance. This includes the similarity group 

of rotations translations and scale, that is instead canonized in [Low99], and the 

affine group, that is instead canonized in [MS04]. 

In order to simplify the derivation, we introduce the following notation, in 

part already adopted earlier. If / is the "perfect" image (without nuisances), 

I = /i(f,0), then 

Tog = h(gt,0) (2.5) 

Tou = h{^v). (2.6) 

The operators (• o g) and (• o v) can also be composed, I o g o u = h(g£, v) and 

applied to an arbitrary image; for instance, if / = h(g£,v), then for any other 

g, v we have 

Io~gov = h(ggi,v®v) (2.7) 

where © is a suitable composition operator that depends on the space where the 

nuisance v is defined. Note that, in general, the action of the group and the other 

nuisances do not commute: Iogou^Iovog. When this happens we say that 

the group commutes with the (non-group) nuisance: 

Definition 4 (Commutative nuisance) A group nuisance g G G commutes 

with a (non-group) nuisance v if 

Iogov = Iouog. (2-8) 

13 



Note that commutativity does not coincide with invertibility: A nuisance can be 

invertible, and yet not commutative (e.g. the scaling group does not commute 

with quantization). 

For a nuisance to be canonizable (i.e. eliminated via pre-processing, or via 

a complete invariant feature) it not only has to be a group, but it also has to 

commute with the other nuisances. In the following theorem we show that the 

only nuisances that are canonizable are the isometric group of the plane. While 

it is common, following the literature on scale selection, to canonize it, scale is 

actually not canonizable, so the selection of a single representative scale is not 

advisable. Instead, a description of a region of an image at all scales should be 

considered, since scale, in a quantized domain, is a semi-group, rather than a 

group. 

Theorem 3 (What to canonize) The only nuisance that commutes with quan­

tization is the isometric group of the plane, that is the group of rotations, trans­

lations and reflections. 

Proof: We want to characterize the group g such that Iogou = Iouog where 

v is quantization. For a quantization scale a, we have the measured intensity 

(irradiance) at a pixel xx 

Iou{x%)= \ I(x)dx= / XBa(Xl)(x)I(x)dx = XBa(o)(x-xl)I(x)dx 
JBa(xz) J J 

= I g(x-xl;a)I(x)dx (2 9) 

where Ba(x) is a ball of radius a centered at x, x IS a characteristic function that is 

written more generally as a kernel Q(x; a), allowing the possibility of more general 

quantization or sampling schemes, including soft binning based on a partition of 

14 



unity of D rather than simple functions x- Now, we have 

(I o v) o g(xx) = I Q(x — xl;a)I(x)dx) o g = Q(x — gxt\a)I(x)dx (2.10) 

whereas, with a change of variable x' = gx, we have 

(Iog)ov(Xl)= I Q(x-xl-cj)I(gx)dx= I' g(g~l(x'-gxl)-a)I(x')\Jg\dx' (2.11) 

where \Jg\ is the determinant of the Jacobian of the group G computed at g, so 

that the change of measure is dx' = \Jg\dx. From this it can be seen that the 

group nuisance commutes with quantization if and only if 

Q = Qog 
(2.12) 

14,1 = 1-
That is, the quantization kernel has to be G-invanant, Q(x;o) = Q(gx\a), and 

the group G has to be an isometry. The only isometry of the plane is the set 

of planar rotations and translations (the Special Euclidean group SE(2)) and 

reflections. The set of isometries of the plane is often indicated by E(2). 

Corollary 1 (Do not canonize scale (nor the affine group)) The affine group 

does not commute with quantization, and in particular the scaling and skew sub­

groups. As a consequence, neither do the more general projective group and the 

group of general diffeomorphisms of the plane. Therefore, scale should not be 

(globally) canonized and the scaling sub-group should instead be sampled. 

So, although [Soa09] suggests that invariant sufficient statistics can be devised 

for general viewpoint changes, this is only theoretically valid in the limit when 

there is no quantization and the data is available at infinite resolution. In the 

presence of quantization, canonization of anything more than the isometric group 

is not advisable. 

15 



2.3 Stability of feature detectors 

The design of a feature detector consists of canonizing the canonizable nuisances 

in a way that is the least sensitive (or alternatively, most stable) to the non-

invertible ones. We consider two qualitatively different measures of sensitivity. 

Definition 5 (BIBO stability) A G-covariant detector tp (Definition 1) is bounded-

input bounded-ouput (BIBO) stable if small perturbations in the nuisance cause 

small perturbations in the canonical element. More precisely, V e > 0 3 5 = 5(e) 

such that for any perturbation 5u with \\5u\\ < 5 we have \\5g\\ < e. 

Note that g is defined implicitly by the functional equation tp(I,g(I)) = 0, and 

a nuisance perturbation 5v causes an image perturbation 51 = ^5u. Therefore, 

we have from the Inverse Function theorem1 [GP74] 

dh 
Sg = - I M ' 1 —5v = K5v (2.13) 

av 

where Jg is the Jacobian (2.3) and K is called the BIBO gam. As a consequence 

of the definition, K < oo is finite. The BIBO gain can be interpreted as the 

sensitivity of a detector with respect to a nuisance. Most existing feature detector 

approaches are BIBO stable with respect to simple nuisances. Indeed, we have 

the following 

Theorem 4 (Covariant detectors are BIBO stable) Any covariant detector 

is BIBO-stable with respect to noise and quantization. 

JOne has to exercise some care in defining the proper (Frechet) derivatives depending on 
the function space where ip is defined. The implicit function theorem can be applied to infinite-
dimensional spaces so long as they have the structure of a Banach space (Theorem A.58, page 
246 of [Kir96]). Images can be approximated arbitrarily well in L1(R2), that is Banach. 

16 



Proof: Noise and quantization are additive, so we have ^5u = 5v, and the gam 

is just the inverse of the Jacobian determinant, K = |Jg| - 1 . Per the definition of 

co-varianat detector, the Jacobian determinant is non-zero, so the gam is finite. 

BIBO stability is reassuring, and it would seem that a near-zero gain is de­

sirable, because it is "maximally (BIBO)-stable." However, simple inspection of 

(2.13) shows that K — 0 is not possible without knowledge of the "true signal." In 

particular, this is the case for quantization, when the operator tp must include spa­

tial averaging with respect to a shift-invariance kernel (low-pass, or anti-aliasing, 

filter). However, a non-zero BIBO gam is irrelevant for recognition, because it 

corresponds to an additive perturbation of the domain deformation, which is a 

nuisance to begin with (corresponding to changes of viewpoint [SPV09]). On the 

other hand, structural instabilities are the plague of feature detectors. 

Definition 6 (Structural Stability) A G-covariant detector tp | tp(I,g(I)) = 

0 is Structurally Stable if small perturbations 5u preserve the rank of the Jacobian 

matrix: 

3 5>0 | \Jg\ ^0=> | J ? + ^ | ^ 0 V 5v | HHI < & (2.14) 

with 5g given from (2.13). 

In other words, a detector is structurally stable if small perturbations do not 

cause singularities in canonization. We define the maximum norm of the nuisance 

that does not cause a catastrophic change [PS78] in the detection mechanism the 

structural stability margin. This can serve as a score to rank features. 

Definition 7 (Structural Stability Margin) We call the largest 5 that satis­

fies equation (2.14) the structural stability margin; 

<J* = s u p | | H | I {Jg+KSvl^O (2-15) 

17 



A sound feature detector is one that identifies Morse critical points in G that 

are as far as possible from singularities. Structural instabilities occur where 

spurious extrema in the detector tp arise that do not correspond to extrema in 

the underlying signal. 

2.4 Maximally Stable Extremal Regions 

The stability margins we have described relate to Maximally Stable Extremal 

Regions (MSER) [MCU02], where regions are created from the watershed of the 

intensity image, and "maximally stable" regions are selected based on the vari­

ation of their area as the watershed progresses. More formally, in MSER one 

first computes the connected components of the level sets of the intensity image: 

{Rf^jPx = {x : I(x) < 1} where I is in L = [0, 255]. At each level, a parent-child 

relationship is formed between each region Rl
d and the region which subsumes it 

i?p+1. An (in)stability score v is formed for each region Rly 

» ( * ! ) - p |L, J (2-16) 
\ n j \ 

The region is stable when its (in)stability score is less than a threshold v+. 

The region is "maximally stable" when it is additionally more stable than its 

parent or any of its children. 

2.4.1 Maximally Structurally Stable Extremal Regions 

Intuitively, when v(Rl
J) is small, it means that a region is BIBO stable with K oc v 

for a 5 oc A. While this is useful, v(Rl
J) is related to K, not to 5. In other words, 

all regions which have v(Rl) < v+ are measured to be equally stable in terms of 

5. We define a new stability measure q(Rl
J) which is correlated to the structural 

18 



stability margin defined in (2.14). 

Since we know that what we seek is a score related to 5, and we have observed 

that 5 oc A, we can define q(Ri) to be the largest A which satisfies v(Rlj) < v+: 

q(Rlj) = &rgmaxv(Rl
:i) subject to v(Rl

j) < v+ (2-17) 
A 

This can be computed efficiently in the same union-find algorithm used for 

standard MSER. Once we have detected an extremal region, we continue to check 

all the ancestors of the region until the region grows too large (v(Rlj) > v+). In 

order to maintain the "maximal" part of the algorithm, we still keep the region 

which has the largest q(Rl
J) of its children or parent. We call these regions 

Maximally Structurally Stable Extremal Regions (MSSER). 

2.5 The segmentation tree 

Rather than testing for canonizability (as done customarily in feature detec­

tion [Low99, BTG06]) one can test for stationarity (as done customarily in seg­

mentation) and then construct features from the segmentation tree. The caveat 

is that, because of the interplay of the scale group with quantization, and of 

the translation group with occlusion, no single segmentation can be used as a 

viable canonization procedure, and instead the entire segmentation tree must be 

considered. 

The starting point for this approach to canonization is an approximation 

model of the image as set of simple functions. These are constant functions on a 

compact domain, whose universal approximation properties in several measures 

are guaranteed by Weierstrass' theorem [Rud73]. In particular, let a > 0 be a 

given "scale." Then, given an image, we can find a partition of the domain D 

19 



and constant values such that a combination of simple functions approximates the 

original image (or any statistic computed on it) to within a in each region. Specif­

ically, for a given I E 1 and a, we assume there is N and constants {a\,... ,aN} 

and a partition of the domain {S\,..., S/v} such that 

\I(x) - a3\ < a V x e S3; SlnS3 = SlJ; U ^ S , = D, (2.18) 

where 5ZJ is Kronecker's Delta. Then, if we define the simple functions as char­

acteristic functions of S3 

[ l , \/ xeS, 
Xs3(x) = l (2.19) 

I 0 otherwise 

we can approximate the image with 

N 

T(x) = Y^XS](x)ar (2.20) 

This is true for scalar-valued images, but a similar construction can be followed 

to partition the domain into regions (often called superpixels [RM03]), based on 

cr-constancy of any other statistic, such as color or any other higher-dimensional 

feature tp. So, a superpixelization algorithm can be thought of as a quantizer, 

that is an operator that takes an image / and a parameter a and returns a family 

of domain partitions N = N(a), {Sj}^ with 

{S,}?^ = MI); S, = -Lfl{x)dx (2.21) 

where | <Ŝ  | is the area of Sr We can now use this functional to determine a co-

variant detector tp(I,g). For the case of translation, g = T, we define (multiple) 

canonical elements T3 to be the centroids of the regions S3, T3 = rjijs xdx. 

Making the dependency on the image explicit, we have 

T(I,a)= *g(/) (2.22) 
Hail) ^ 

20 



to which there corresponds the canonizing functional 

tp(I,{T,a})= [ xdx-T f dx. (2.23) 
•AM/) -AM/) 

It can be easily verified that this functional is co-variant. For the case of trans­

lation (fixing a), g = T, we have that, for g that solves tp(I,g) = 0, and for any 

9 

tp(Iog,gog)= xdx - gg dx 
J<t>(I°9) J4>(iog) 

= / xdx - gg 
Jod>(I) Jd> lg<P(I) J<t>{I) 

= I gx'dx' — gg I dx 
h{i) h(i) 

= g I / x1 dx' — g dx) 

= gtP(I,g) = 0 (2.24) 

where we have used the fact that the group g is isometric, so dx = dx'. One may 

also believe that this functional yields isolated extrema, based on the fact that 

\WtP\ = & = [ dx>0. (2.25) 

However, this result, as well as (2.24), is misleading because it assumes that 

the superpixehzation (pa(I) is independent of (small variations in) T. More 

precisely, in order for translation to be canonizable, the canonization process 

has to commute with quantization. If we assume the the underlying "ideal im­

age" I(x), x £ D is continuous, then the "discrete" (quantized) image I(x^) = 

IB (X ) I{x)dx/e, X; 6 A defined on the lattice A, is related to it via the mean-value 

theorem, that guarantees the existence, for each x;, of a translation 5* such that 

T(xi) = j^-r f I(x)dx = I(xx + 6i) = I{xt) + nl = Iou (2.26) 

21 



where u denotes the quantization nuisance. For the canonization process to be 

viable we must have 

(Pa(I) = 4>a(Iov) (2.27) 

which is clearly not the case in general for a superpixehzation algorithm. In 

fact, if we apply small perturbations to the levels nly from (2.26) we get small 

perturbations in the location of the boundaries dS3, and in the location of their 

centroid, T3 —> T3 + 5r. Since n% — WI(xl)5l, we see that for a superpixehzation 

procedure <pa to provide a viable canonization mechanism, it has to place the 

boundaries in such a way that J£ is negligible within each region, and as large as 

possible at region boundaries. We will see this spelled out more in detail shortly. 

The sensitivity of the boundary location as a function of a perturbation can 

be phrased in terms of BIBO stability, introduced in Definition 5. Specifically, 

if (pa is a quantization or superpixehzation operator acting on an e-quantized 

image (2.26), and {S3}^=1 = (pa(I) and {S3}^=1 = (pa(I + n) the corresponding 

partitions, then <pa is BIBO stable if, according to (2.13), 

\\n\\ < a ^ \S3 - Sj\ < e (2.28) 

where \Si — S2I denotes the area of the set-symmetric difference of the two sets 

Si and S2. 

More in general, consider a perturbation of the image I(x) = I(x) + n(x), 

with n(x) assumed to be small in some norm. Then after quantization of the 

domain, using the Mean Value Theorem, we have 

I(xt) = J I(x)dx = I I(x)dx + / \7I(x)dx5% (2.29) 
JBt{xl) JB.ix,) JB.ix,) 

where we have assumed that 5(x) is constant within each quantization region 

B€(xz). Now, if we approximate the piecewise constant function in each B^(x%) 

22 



into a piecewise constant function in the partition {S3}3=1, for a given N, we 

have 
N N N 

Yl *s, (x*)&3 = Yl Xs> (x^ai + J2 Xs> (x») / yi(x)dx5(xz) (2.30) 
3 = 1 3 = \ 3=1 JB*M 

from which we can obtain, defining 5S3 = S3 — S3 the set-symmetric difference 

between corresponding regions, and measuring the area in each region, 

N N 

J2 E X'sAxJa, = J2f VI(x)dx53 (2.3i; 

where we have now assumed that 5(x%) is constant within each xz e S3, and we 

have called that constant 53. So, we have that for a partitioning to be BIBO 

Stable, we must have 

N N . 

] T | ^ | < W \\VI(x)\\dx (2.32) 
3 = l j = l JSJ 

which is guaranteed so long as the image is smooth and the magnitude of the 

gradient is low within each region S3 (but it can be discontinuous across the 

boundary dS3). Indeed, any reasonable segmentation procedure would attempt, 

for any given (fixed) N, to place the discontinuities of the (true underlying) image 

/ at the boundaries dS3, therefore guaranteeing stability of the boundaries with 

respect to small perturbations of the image per the argument above. In particular, 

for N = 2, there are algorithms that guarantee a globally optimal solution [CV01] 

that is, by construction, the most stable with respect to small perturbations of 

the image. These results are summarized into the following statement. 

Theorem 5 (BIBO Stability of the segmentation tree) A quantization / 

superpixehzation operator, acting on a piecewise smooth underlying field and sub­

ject to additive noise, is BIBO stable at a fixed scale for a fixed tolerance e (or 

complexity level N) if and only if it places the boundary of the quantized re­

gions/superpixels at the discontinuities of the underlying field. 

23 



However, our concern is not just stability with respect to the partition {Sj}^ 

for a fixed N, but also stability with respect to structural perturbations that 

change the cardinality of the partition (a phenomenon linked to scale since N = 

N(a)). The superpixehzation procedure should be designed to be stable with 

respect to N, which is not a test we can write in terms of differential operations 

on the image. However, one can use a greedy method to construct a tree which 

is designed to be stable with respect to both regular (bounded) and structural 

perturbations. 

First, form a set of superpixels {Sj}^ at scale a which are, by construction, 

BIBO stable for a given a. These are the leaves of the tree. At each iteration, 

add a new parent to the tree which represents the merging of two nodes which are 

minimally different (e.g. ^ « Q3) . The nodes remaining after any merge form a 

partition of the domain which is itself BIBO stable, for a different a. The "cost" 

of merging two regions at each iteration is a measure of its stability to structural 

perturbations: since the minimal cost merge is always chosen, high cost merges 

represent regions which were structurally stable. 

So we have shown that canonizing translation via the centroid of superpixels 

is automatically viable, per (2.24) and (2.25), but only so long as the super­

pixehzation is stable with respect to additive noise, for instance generated by 

quantization mechanisms. 

Theorem 6 (Canonization via superpixels) Let (pa(I) = {Sj}^ be a par­

tition of the domain into superpixels. Then (2.23) is a (local, translation) co-

variant detector so long as it is BIBO stable. 

That (2.23) is covariant follows from (2.24), provided that (2.13) is satisfied. 

24 



2.6 Repeatability of nodes in segmentation trees 

We now wish to show empirically that under large additive noise, regions which 

we deem structurally stable still persist. To this end, we perform an experiment 

on the MSRC dataset [SWR06]. MSRC contains 592 images of scenes which 

include objects from 21 categories. We take each image and segment it with one 

of two segmentation methods (described in Section 2.6.1) before and after the 

addition of uniformly distributed noise (between -20 and 20 on a 0-255 scale). 

Nodes which are repeated are those whose best match intersection-union score 

is greater than 0.6. We measure the percentage of nodes per image which are 

repeated according to this criteria, and present the average repeatability for the 

leaves of the tree, the full tree, and only structurally stable nodes in Table 2.1. 

The methods we use to identify structurally stable nodes are described in Sec­

tion 2.6.2. 

2.6.1 Segmentation methods 

We chose two BIBO stable superpixehzation methods to form the leaves of our 

tree and form the internal nodes with the iterative merge procedure described in 

section 2.5. The first is mean shift [CM02]. Since we wish to obtain superpixels 

rather than large regions, we set the spatial and range bandwidth parameters to 

be small (both are set to 5), and the minimum region area to 10 pixels. Our second 

method of forming superpixels is Laplacian of Gaussian (LoG) watershed. 

We compute the response of an image to a LoG filter with standard deviation of 

1. We use the watershed transform on this response to form our initial regions. 

25 



Tree type 

Mean shift 

LoG watershed 

Leaves Full tree Cost-iteration Delta-area 

9.0% 8.7% 23.0% 60.8% 

52.4% 34.9% 57.5% 80.7% 

Table 2.1: Stability on MSRC. Average percentage of repeatable regions under 

uniform noise on approximately 600 images from MSRC. 

2.6.2 Stability measures 

Cost-iteration. Here, stability is measured by the cost of a merge times the 

number of iterations between when the child and parent node were formed. Nodes 

which have a high cost and remained unchanged for many iterations are deemed 

stable. This is related to the life-span measure discussed in the persistent topology 

literature [ELZ02]. 

Delta-area. Stability is measured by the cost to merge a node with its 

parent. We iteratively select the most stable node, excluding all nodes which are 

ancestors or descendants of the node which have less than A difference in area. 

In our experiments we set A to 1.2, or in other words we select the most stable 

nodes which differ in area by at least 20%. 

2.6.3 Discussion 

Results of the experiments may be found in Table 2.1. We can see that we have 

introduced a sufficiently large perturbation to cause repeatability problems in a 

single segmentation (the leaves). Further, the percentage of repeated nodes in 

the full tree is worse than the leaves alone. Mean shift trees seem to be less stable 

than trees constructed from LoG regions, leading us to believe that mean shift 

26 



is less BIBO stable than LoG. For both segmentation methods, selecting stable 

nodes using either of our criteria always provides improvement in repeatability. 

The delta-area method is always better, and the best overall repeatability is found 

with LoG superpixels and delta-area stability, so we adopt this combination in 

our categorization experiments which follow. 

2.7 Categorization with superpixel trees 

In this section, we evaluate the effectiveness of the superpixel tree as a detector in 

a full recognition pipeline for Caltech-101. We compare LoG superpixel trees with 

and without stable node selection, the SIFT detector, densely selected features, 

and randomly selected regions using the recognition framework of Vedaldi and 

Fulkerson [VF10]. Once features are detected with the detector we are evaluating, 

descriptors are constructed using the SIFT implementation of VLFeat. Note 

that the orientation is fixed to 0, since we assume all images were taken with 

an upright camera. The features are quantized into a A;-means dictionary with 

k = 600. These quantized features are aggregated into a 4x4 spatial histogram 

which forms the final representation of the image. Histograms are classified using 

a x2 SVM (transformed to a linear one as in [VZ10]). For each category, 15 

random training images and 15 random testing images are selected. 

2.7.1 Superpixel tree detector 

We construct a superpixel tree using LoG seeded watershed regions as described 

in Section 2.6.1. Each node in the tree defines a region, so the set of all nodes in 

the tree may be viewed as a detector. However, before we can use the regions in 

this way, there are a two issues to address. 

27 



First, we need to define the size of the region we intend to describe. We fit a 

circle to the pixels which form the region, and enlarge this circle by 3 times (in the 

SIFT setting, this is called the "magnification" of the descriptor). But, picking 

one size for each region is another way of saying that we canonize scale, which is 

something we should not do. So, we also consider enlarging the enclosing circle 

by a number of different factors and describing each separately. In Table 2.2 we 

show results using both single and multiple scales for each region. 

Second, we need to decide if we should describe all regions in the tree, or 

just the ones we deem to be stable. We select stable regions using the delta-area 

measure of structural stability described in 2.6.2, and the results are shown in 

Table 2.2 for both single and multiple scales. 

2.7.2 Random features 

In Table 2.2, we show that the number of features extracted tends to have a strong 

correlation to the resulting accuracy. When we extract more features, seemingly 

regardless of where they are located, there is an improvement in the precision of 

the resulting classifier. To investigate this effect in the context of our detectors, 

we include results for a random feature detector. The random detector randomly 

samples a number of positions and scales which form the detected features. We 

show results for 200, 1000, 10000, and 40000 features per image both to provide a 

baseline for comparison at the amounts of features which we encounter with our 

other detectors, and to show that the improvement does not continue indefinitely 

(40000 features produce similar results to 10000). 

28 



Method 

SIFT detector 

Delta-area stable nodes 

Delta-area stable nodes (Multi-scale) 

Superpixel tree 

Superpixel tree (Multi-scale) 

Superpixel tree (PHOW) 

PHOW 

200 random features 

1,000 random features 

10,000 random features 

40,000 random features 

Accuracy 

33.14% 

37.98% 

48.89% 

53.07% 

58.04% 

60.65% 

62.68% 

25.95% 

35.39% 

42.03% 

42.61% 

Features per image 

220 

197 

1577 

1331 

10648 

9850 

9285 

200 

1000 

10000 

40000 

Table 2.2: Comparison of detectors for 15 training images on Cal­

tech-101. For a small number of features, a detector which selects stable seg­

ments is better than the SIFT detector. However, if we allow the number of 

features to grow significantly (from 200 to 10,000), dense features (PHOW) per­

form best. 

29 



2.7.3 Discussion 

In Table 2.2 we evaluate the detectors described above on Caltech-101. When 

we only want to extract a small number of features, our stable segment detector 

outperforms the SIFT detector by approximately 5% (33% v.s. 38%). If there is 

no constraint on the number of features allowed, we can improve further both by 

using the whole tree (53%) or multi-scale stable nodes (49%). Using the whole 

tree and features extracted at multiple scales, we have a comparable number 

of features and performance (58%) to the best performing cases which both use 

PHOW. The PHOW (63%) features are extracted on multiple predefined scales on 

a 5x5 grid of the image (after resizing it to be at most 480 pixels tall). Superpixel 

tree PHOW regions (61%) also extract features on a grid, but scale the size of the 

grid and the scale of the features depending on the size and scale of the region 

that is being described. All detectors perform better than random features with 

approximately the same number of features per image. 

2.8 Conclusion 

We have proposed a model for understanding sensitivity to group nuisances in 

feature detection as it applies to recognition tasks. We have shown that one 

should only canonize the isometric group of the plane (rotations, translations, 

and reflection). Two stability criteria for detectors were proposed: the bounded-

input bounded output (BIBO) gain, and structural stability. We showed that 

Maximally Stable Extremal Regions are BIBO stable, and redefined the stabil­

ity score to create Maximally Structurally Stable Extremal Regions, which we 

demonstrated correlated to the empirical stability under perturbations due to 

noise. Finally, we proposed a new feature detector based on a tree of segmen-

30 



tations, and showed that this detector is both stable and better than the SIFT 

detector for categorization tasks. 

31 



CHAPTER 3 

Categorization with Segmentation 

3.1 Introduction 

In image categorization, the methods which are currently among the most suc­

cessful are largely based on the concept of matching unordered collections (bags) 

of features. Typically, features are extracted from training images and passed 

to a machine learning component that tries to learn which features are impor­

tant in discriminating between classes. Approaches that fall into this category 

include [GD06] and [ML06]. Mutch and Lowe [ML06] build a multi-resolution 

patch based feature representation and train a support vector machine to learn to 

discriminate based on the maximal responses of their feature patches. Grauman 

and Darrell [GD06] also use a support vector machine, proposing a new kernel 

which they use for fast, robust approximate matching between SIFT [Low04] 

descriptors. 

But, no matter what machinery is used for learning, bags of features have a 

significant limitation. By design, they completely discard spatial relationships 

between local features even though we know that spatial cues play an important 

role in our perception of objects. To address this, the object category recognition 

community has begun to incorporate spatial information into their techniques. 

On the Caltech-101 dataset [FFP04], all of the best performing algorithms depend 

heavily on spatial information. Zhang et al. [ZBM06] construct a geometric blur 

32 



descriptor which computes a representation of local context sampled along edges 

and combines it with the response of a filter bank as a kernel for their SVM-

KNN classifier. Lazebnik et al. [LSP06], inspired by the multi-scale matching 

of Grauman and Darrell [GD06], construct histograms in a pyramid of spatial 

bins, in effect computing a bag of features representation on subdivided windows 

of each image. Our own Caltech-101 classifier (built into VLFeat [VF10]) uses 

spatial binning of multi-scale dense SIFT features. 

Another limitation of image categorization is that there cannot be excessive 

clutter in the scene. That is, the object of interest is assumed to be prominent and 

the rest of the image is assumed to be simple and homogeneous. Most schemes 

are at least somewhat robust to nuisances such as those described in Chapter 2, 

but none are immune. In fact, there is no way to decide if an image has too many 

nuisances without applying the algorithm to the image and observing the result. 

We contend that even on datasets that have limited clutter and canonical 

object poses such as Caltech-101 [FFP04], nuisance features are still a significant 

problem. To demonstrate this, we adopt the spatial pyramid matching method of 

Lazebnik et al. [LSP06] and alter it to take advantage of segmentations provided 

with the Caltech-101 dataset, as well as two segmentations of our own. 

We show that if we have the correct foreground/background segmentation, 

the results that can be obtained are significantly improved. Unfortunately, not 

just any segmentation will do. We will detail our experiences with two other 

segmentations. 

33 



3.2 Spatial pyramid matching 

Here we describe our implementation of spatial pyramid matching [LSP06], and 

in doing so provide both a reminder of how spatial pyramid matching works and 

our interpretation of the philosophy behind it. 

In spatial pyramid matching, the goal is to match images by aggregating 

information about the locations of quantized local features. Rather than focus 

on how to match the features, this method focuses on how to collect spatial 

information about the features in such a way that it can be easily and robustly 

used in the image matching process. Spatial pyramid matching consists of four 

main steps: features are extracted, a dictionary is constructed, spatial histograms 

are created from the dictionary, and finally a support vector machine with a kernel 

tailored to the spatial histograms is applied. 

3.2.1 Feature extraction 

The first step of spatial pyramid matching is to extract the features that will form 

our image representation. For each image, we extract SIFT descriptors [Low04] 

on a regular 8 x 8 pixel grid at a fixed scale and fixed orientation. We fix the 

support region of the SIFT descriptor at 16 x 16 pixels and the orientation at 

0 degrees. We experimented with allowing SIFT to add rotation invariance by 

calculating the dominant angle of the gradient of each patch and aligning the 

descriptor to that, but this only hurt our performance. Some of our experiments 

use a more dense sampling (a 4 x 4 pixel grid), but the scale of the patches remains 

the same. SIFT descriptors with low norm, which correspond to patches with low 

contrast, are discarded. Since we are extracting fixed scale and fixed orientation 

patches, we can use the fast dense SIFT method described in Chapter 4. 

34 



3.2.2 Dictionary construction 

After the features have been extracted, a small percentage of them (1-2%) are 

sampled from the training set and used to construct a Gaussian mixture model 

with M centers for feature quantization. As in [LSP06], we use M = 200. This 

dictionary is subsequently used to quantize all of the features in the training 

and testing data. Here we could also use fc-means or our compressed dictionary 

described in Chapter 4, but we focus on reproducing the results of the paper 

directly. 

As with any bag of words model, by adopting this scheme we are implicitly 

assuming that any quantized descriptor matches all other descriptors which are 

quantized to the same bin, regardless of their distance in the feature space. We 

will revisit this later, when we discuss splitting SIFT descriptors. 

3.2.3 Spatial histograms 

Once we have quantized the features, we construct the spatial pyramid. At 

the bottom level of the pyramid (L = 0), we simply have a histogram of size 

M containing the quantized feature occurrences over the entire image. At each 

higher level, each image is partitioned into four regions, with each region receiving 

a histogram of size M. In all of our experiments, we use L = 2. 

We normalize the spatial histograms by dividing by the total number of fea­

tures in each image. This accounts for variability in the number of features across 

all images. 

Spatial histograms may be thought of as a coarse encoding of the spatial in­

formation contained in the features. Within the confines of a spatial bin, all of 

the feature locations could be permuted, and from the perspective of the repre-

35 



sentation, everything would be equivalent. In practice, this allows for variability 

in the appearance of a rigid object and minor articulations in an object whose 

pose has changed. 

3.2.4 Spatial pyramid matching with a support vector machine 

At the heart of spatial pyramid matching scheme is a support vector machine 

that uses a modified intersection kernel to compare pairs of spatial histograms. 

The final kernel K(X, Y) is the weighted sum of the intersection of the spatial 

histograms X and Y. The weights are inversely proportional to the level I of the 

histogram. Matches which occur only in larger bins are less discriminative and 

are assigned less weight. The histogram intersection between X and Y at level / 

is denoted by / and is: 

D 

I(Xl,Yl) = ^2min(Xl{i)tY
l(i)) t3 '1) 

where D is the number of histograms at a given level. The pyramid match kernel 

KL(X,Y) is simply the weighted sum of the histogram intersections at each level 

(which are denoted below with the shorthand IL): 

« L ( * y ) = ^ ° + £ ^ T T 7 ' (3-2) 
;=i 

Finally, in order to arrive at a kernel for spatial pyramid matching, we simply 

sum the results of the pyramid match kernel over all of the elements of the 

dictionary M: 

M 

KL(X,Y) = Y^(xr-^Ym) (3.3) 
m=\ 

36 



Interested readers may refer to [GD06] for more details about this process. 

In our implementation, we train a support vector machine for each category 

versus the rest using KL(X, Y) as the kernel function. During test time we try 

all classifiers and give the image of the label of the support vector machine which 

results in the largest positive margin. 

3.3 Splitting SIFT descriptors 

In our experiments, we evaluate splitting SIFT descriptors along region bound­

aries. To understand why we might want to do this, consider how errors in 

descriptor quantization might occur. 

We want the descriptor from one part of an object to always be quantized 

to the same dictionary element (since matching is done by checking the identity 

of the label). But, when the region described crosses an object boundary, some 

portion of the descriptor will describe the object and the rest will describe the 

background. If the background changes, the descriptor may not be quantized to 

the same dictionary element, even if the object appearance is identical. Worse, 

it may form a spurious match with another descriptor, compounding the error. 

A SIFT descriptor which crosses an image boundary is very likely to have been 

computed on an occlusion boundary or other unstable area. By partitioning the 

descriptor along this boundary, we will be less likely to combine information from 

two distinct objects into one descriptor. 

In order to partition the descriptor, we modify the SIFT algorithm as follows. 

First, in addition to accepting a source image to generate SIFT descriptors, we 

take as input a label image which contains pixels labeled by which region they 

belong to in the segmentation (see Figure 3.4 for a few examples). Next, after the 

37 



Figure 3.1: Extracting and splitting a SIFT descriptor given a segmen­

tation. From the left: the original image, the gradient of the extracted support 

region, the segmentation information (a mask image), the two gradient regions 

after they have been split, and last, the descriptors. The contrast of the gradient 

has been significantly boosted here so that the partitioning process may be more 

easily visualized. 

gradient has been computed for our support region, we initialize a descriptor for 

every distinct label value found in the support region. For each labeled descriptor, 

we set the gradient image to zero on all pixels where the label is not equal to our 

desired value and then compute the SIFT descriptor normally. We still discard 

low contrast descriptors, so it is possible for this operation to result in fewer 

descirotors than theie are label values in a sappori, region. See Figure 3.1 foi an 

illustration of this process when there are two labels present. 

3^4 Experiments 

In this section, we report results on the Caltech-101 object category recognition 

dataset. Caltech-101 contains medium resolution images of 102 object categories 

38 



Sure 3.2: Sample images from Caltech-101. Categories from the top left: 

airplane, accordion, butterfly, bonsai, buddha, dalmatian, crocodile head, cup, 

crab, cougar face, chandelier. 

39 



(101 object categories and 1 background category) obtained via Google image 

search. The objects in this dataset have generally been centered in the images, 

aligned for pose, and are approximately the same size in the image. Some exam­

ples may be found in Figure 3.2. 

We first show the results of our implementation of spatial pyramid match­

ing without modifications. Next, we show how these results can be improved 

significantly by adding a ground truth segmentation, and discuss where this im­

provement comes from. Finally, we describe the results of splitting descriptors 

with two different segmentation algorithms: normalized cuts [SMOO] and active 

contours without edges [CV01]. 

For all of the experiments in this section, we adopt the testing method of 

Grauman and Darrell [GD06]: We first select N training images at random from 

each category, then we take the rest of the images to be the testing category. In 

addition, we normalize the results per category and take the average recognition 

rate. This way we are not biased by some of the categories in Caltech-101 which 

are easier but contain a disproportionate number of testing images. 

3.4.1 Baseline: Spatial pyramid matching 

In order to verify our implementation of [LSP06] and provide a performance 

baseline for our later experiments, we evaluated our spatial pyramid matching 

implementation on Caltech-101. In addition to varying the training images, we 

tried two spatial resolutions for our sampling grid: 4x4 pixels and 8x8 pixels. We 

found that as we increased the resolution of our sampling grid, our performance 

increased. 

When our features are sampled on a 4 x 4 grid, our results (62.74% for 30 

training images) are comparable to those found in the work of Lazebnik et al. 

40 



[LSP06]. Having verified this, we now evaluate other schemes. 

3.4.2 Ground truth segmentations 

The creators of the Caltech-101 dataset provides ground truth annotations for 

their images [FFP04]. We take these annotations and convert them to mask im­

ages which correspond to a perfect segmentation of the object and the background 

for each image. See, for example, Figure 3.4. 

With these segmentations we generate SIFT descriptors for the portion of 

the image corresponding to the foreground. When the descriptor contained both 

foreground and background, we split the descriptor as described above and keep 

only the foreground part. Additionally, we rescaled the spatial bins to a bounding 

box defined by the foreground segmentation. This corresponds to removing all of 

the clutter (background) and scaling the object so that it takes up the full image. 

With these simple modifications, our performance jumps dramatically to 

nearly 76% for 30 training images, (see Figures 3.3 and 3.5). We found our results 

for this experiment were best on an 8 x 8 spatial grid of extracted features, the 

4 x 4 grid decreased performance slightly and required more computation time. 

These results indicate that the amount of clutter and scale variability in 

Caltech-101 is not negligible. The performance increase of more than 10% sug­

gests that the clutter in the images was significantly reducing the accuracy of the 

spatial pyramid matching technique. 

3.4.3 Normalized cuts 

Our next experiments involved substituting an automatic segmentation method 

for the ground truth. We first chose normalized cuts [SMOO]. We fixed the 

41 



80 

70 

8 60 
re 
o 

§ 50 
re 
c g 

S>40 

Caltech 101 Mean Recognition Rate 

30 

20 

10 

Spatial Pyramid Matching (4x4) 
—iv— SPM w/ Ground Truth Segmentations (8x8) 

Zhang, Berg, Maire & Malik (CVPR06) 

10 15 20 25 
Number of training images per class 

30 35 

Figure 3.3: Accuracy of our spatial pyramid matching implementation, 

as well as the results when ground truth segmentations are incorpo­

rated. The results of Zhang, Berg, Maire & Malik [ZBM06] are also included for 

reference. Our results were averaged over 5 runs. This figure is best viewed in 

color. 

42 



(a) Original image (b) Ground truth an- (c) Normalized cuts - (d) Active contours 

notation 10 regions without edges 

Figure 3.4: Example segmentations, (a) is the original image, (b) is the 

provided annotation, (c) is the result of a normalized cuts segmentation and (d) 

corresponds to segmentation by active contours without edges. 

number of training images at 30 for this experiment and split descriptors along 

the boundaries between segmented regions. 

Here, we cannot filter out the background descriptors, or rescale the window to 

fit the foreground class because we do not know if a region belongs to foreground 

or background. The only possible source for a performance gain would be from 

the split descriptors reducing quantization error. For 30 training images with 10 

regions per image, we achieve a rate of 62.38%, or in other words, no change from 

the baseline. 

We believe the main reason for this is that our spatial histograms are nor­

malized by the number of features. As more descriptors are added, peaks in 

the histogram which once corresponded to strong signals of a particular class 

are diminished. The extra discriminative power of the split SIFT descriptors 

compensates for this loss, but does not improve things further. 

43 



Figure 3.5: Confusion matrix for the spatial pyramid match kernel with 

ground truth segmentations and 30 training images per class. This figure 

is best viewed in color. The most confused pairs were Faces with Faces_easy. This 

is intuitive, because the Faces_easy images are just cropped versions of the Faces 

images. The next 3 top confused pairs were (waterJilly, lotus), (lobster, crab), 

(crocodile, crocodile_head). 

44 



3.4.4 Active contours without edges 

After experimenting with normalized cuts, we suspected that there was a pos­

sibility that the relatively coarse segmentations it produced (see Figure 3.4 for 

comparative examples) were preventing us from splitting enough descriptors to 

noticeably boost our discriminative power. So, we ran an experiment using the 

segmentation method of Chan et al. [CV01]. The resulting segmentations are 

even less capable of being separated into foreground and background, but have 

the desirable property that nearly all of the major boundaries in the image trans­

late to boundaries in the segmentation. 

We again use 30 training images, and again achieve approximately the same 

rate (62.39%). Finally, we tried using both the split descriptors as well as the 

original descriptor before splitting, but this decreased our performance further 

(61.45%) which supports our hypothesis that more descriptors have a detrimental 

effect by "polluting" the histogram with potentially incorrect matches. 

3.5 Discussion 

We have demonstrated via the ground truth segmentations included in the Caltech-

101 dataset that we can increase our classification accuracy provided that we have 

a reasonably consistent and good segmentation of the image into foreground and 

background regions. Our results suggest that the majority of the improvement 

comes from locating the spatial bins on a bounding box of the object and ignoring 

features that lie on the background. This means that knowing where an object 

is, even in relatively uncluttered images, can improve our ability to discern what 

the object is. 

Recent work in categorization supports this conclusion. In the pair of com-

45 



panion papers by Li et al. [LCSIO] and Carreira et al. [CSIO], the authors propose 

an object recognition system which is guided by the generation of figure-ground 

hypotheses obtained using a constrained parametric min-cuts segmentation al­

gorithm. They generate multiple segmentations into foreground and background 

and evaluate each in turn, choosing the one which is most likely. 

This philosophy will be further explored in the next chapters, where we will 

localize target object classes with informative dictionaries (Chapter 4) and use 

superpixels and a conditional random field to label multi-class segmentations 

(Chapter 5). 

46 



CHAPTER 4 

Discriminative Dictionaries and Pixel 

Categorization 

4.1 Introduction 

Bag of features methods have enjoyed great popularity in object categorization, 

owing their success to their simplicity and to surprisingly good performance com­

pared to more sophisticated models and algorithms. Unfortunately, such methods 

can answer whether an image contains an object of a certain category but do not 

offer much insight as to where that object might be within the image. In other 

words, because the representation discards spatial information, bag of features 

methods cannot be used for localization directly. 

That is, unless one could devise an object categorization method efficient 

enough to test at a window centered on each pixel of an image. In that case, one 

would be able to exploit the co-occurrence of features within a local region and 

localize the object, pixel by pixel. However, with many features detected in each 

image and quantized into thousands or tens of thousands of "words," this does 

not appear to be a viable proposition, especially in light of recent results that 

advocate using very large visual dictionaries [NS06, PCI07, TS07]. 

But what if we could reduce the size of a dictionary from tens of thousands 

of words to a few hundred and maintain improved localization? After all, dic-

47 



Figure 4.1: Upper Left: Original image. Middle: Labeling weighted by the 

confidence for the class "person". Lower Left: Labeling weighted by the confi­

dence, with low confidence background pixels reclassified as foreground. Right: 

Labeling weighted by the confidence, with low confidence foreground pixels re­

classified as background. 

tionaries commonly used in bag of features are not designed for the specific task 

of categorization, so there may be gains to be found in creating "smarter" dic­

tionaries that are tailored to the task. This is precisely what we set out to do. 

With this we can obtain robust, efficient localization and show that our scheme 

performs better than the state of the art [MS07] on a challenging dataset [OP05] 

despite its simplicity. 

4=2 Contributions 

In this section we propose a method for pixel-level category recognition and lo­

calization. We employ a simple representation (bag of features) and contribute 

three techniques that make the categorization process efficient. First, we extend 

integral images [VJOl] to windowed histogram-based classification. Second, we 

48 



construct small dictionaries that maintain the performance of their larger coun­

terparts by using agglomerative information bottleneck (AIB) [ST99]. In order 

to greatly reduce the bottleneck of quantizing features, we construct the large 

dictionaries using hierarchical fc-means (HKM). We also propose an important 

speedup that makes it possible to compute AIB on large dictionaries with ease. 

Third, we show that we can compute SIFT features densely in linear time. 

4.3 Related work 

Lazebnik et al. [LR07] also perform discriminative learning to optimize fc-means, 

but are limited to small dictionaries and visual words which are Voronoi cells. 

Leibe et al. [LMS06] also perform compression, but not in a discriminative sense. 

Finally, Winn et al. [WCM05] do discriminative compression in a similar fashion, 

but we show that we perform better and can scale to larger dictionaries. For the 

task of pixel-level localization, we show that our method outperforms fc-means 

and Winn et al., while being nearly two hundred times faster to construct. We 

compare our method directly to Winn et al. [WCM05] in Section 4.5.2.2. 

Object categorization methods have matured greatly in recent years, going 

beyond bags of features by incorporating a spatial component into their model. 

Approaches are varied but broadly tend to include one of the following: interac­

tions between pairs of features [MS06, LHS07, LS07a], absolute position of the 

features [LSP06], segmentation [CF07, RVG07], or a learned shape or parts model 

of the objects [MS07, LLS04, FMR07]. Our method exploits interaction between 

groups of features (all features in the window), without explicitly represent their 

configuration, in the spirit of achieving viewpoint-invariance for objects of general 

shape [VS05]. 

49 



Regarding object localization, recent works are based on two different ap­

proaches: either they form a shape based model of the object class as in [MS07, 

LLS04], or they enforce spatial consistency using a conditional random field 

(CRF) [SWR06, HZC04]. We focus our comparisons on the method of Marsza-

lek et al. [MS07], who forms a family of shape models for each category from the 

training data and casts these into the target image on sparse feature points to 

find local features that agree on the deformation of one of the learned models. 

Our approach improves performance by simply performing local classification at 

every pixel. 

Along the way, we will construct a small, smart dictionary that is com­

prised of clusters of features from a much larger dictionary using AIB [ST99]. 

Liu et al. [LS07b] proposed a co-clustering scheme maximizing mutual informa­

tion (MMI) for scene recognition. Agarwal et al. [AT05] cluster features to create 

a whole image descriptor called a "hyperfeature" stack. Their scheme repeatedly 

quantizes the data in a fixed pyramid, while our representation allows the compu­

tation of any arbitrary window without incurring any additional computational 

penalty. We can just as easily extract our bag of features for the whole image, 

blocks of the image, or (as we show) each pixel on a grid. 

Lampert et al. [LBH08] use branch-and-bound to search all possible subwin-

dows of an image for the window which best localizes an object. They do not 

seek to localize at the pixel level or handle multiple objects in one image. Shot-

ton et al. [SJC08] perform pixel labeling as we do but use much simpler features 

combined with randomized decision forests. Because they use simple features, 

they must build their viewpoint invariance by synthetically warping the training 

images and providing them as new training examples. Our framework allows for 

that, but our descriptors already exhibit reduced sensitivity to viewpoint. 

50 



0 1 1 0 
0 0 0 0 
1 1 0 1 
0 1 1 0 

10 0 1 
1 1 1 1 
0 0 10 
1 0 0 1 

0 12 2 
0 12 2 
13 4 5 
14 6 7 

1 1 1 2 
2 3 4 6 
2 3 5 7 
3 4 6 9 

Figure 4.2: Bag of features with integral images. An illustration showing 

how integral images can be used for histogram construction in a bag of features 

setting. Features extracted on a regular grid have been quantized into either 

red squares or blue circles. Two images are constructed, one with occurrences 

of squares and the other with circles. The images are transformed into integral 

images, which are used to construct the histogram for a window covering the 

bottom half of the image. 

4.4 Brute-force Localization 

Our method uses bag of features as a "black box" to perform pixel-level category 

recognition. In the simplest case, this involves extracting features from the image 

and then for each window aggregating them into a histogram and comparing this 

histogram with the training data. But, extraction of a histogram at a window 

around each pixel of the image is prohibitively slow. To speed it up, we use 

integral images. However, this alone is not sufficient: Using large dictionaries in 

the setting we propose would be impossible, yet we need our dictionary to remain 

discriminative in order to be useful. To this end, in Section 4.5 we propose a 

method for building a compact, efficient and informative dictionary. 

4.4.1 Integral Images 

Viola et al. [VJOl] popularized the use of integral images for the task of feature 

extraction in boosting, and it has since been used by others [SWR06] for similar 

51 



purposes. Integral images can also be used to quickly count events in image re­

gions [WDS07], and Porikli [Por05] shows how to compute integral histograms in 

Cartesian spaces. We build integral images of spatial occurrences of features and 

use them to efficiently extract histograms of visual words on arbitrary portions of 

the image. For each visual word b in our dictionary, let Ob(x, y) be the number of 

occurrences of b at pixel (x, y) (typically this number is either zero or one). Each 

image Ob is transformed into a corresponding integral image lb by summing over 

all the pixels (x',y') < (x,y) above and to the left of pixel (x,y): 

Ib(x,y) = Y,Y.°^x'^ 
x'<x y'<y 

Let R be a rectangular image region. The histogram Hn(b) is the number of 

occurrences of 6 in R and can be quickly computed as: 

Hii(b) = Ib(xs,ys) + Ib(xe,ye) - Ib(xs,ye) - Ib(xe,ys) 

where (xs,ys) is the upper left corner and (xe,ye) is the lower right corner of R 

(Fig. 4.2). In this way we can extract a histogram of feature occurrences for a 

window of arbitrary size in constant time. The memory required scales with the 

size of the image and the size of the dictionary, and the constant time required 

to construct each histogram scales linearly with the size of the dictionary. This 

precludes the use of very large dictionaries, because each dictionary element that 

is included requires adding an integral image. 

4.5 Informative, Compact, and Efficient Dictionaries 

Our localization method directly benefits from having a small dictionary because 

the complexity is linear in its size. Yet many works [NS06, PCI07, TS07, MTJ06] 

indicate that large or very large dictionaries perform better for both object recog-

52 



Figure 4.3: Dictionary architecture. We use hierarchical A:-means (HKM) to 

build a vocabulary tree (left, red nodes) of finely quantized features by recursively 

partitioning the data. Next, we use AIB to build an agglomerative tree (right, 

blue nodes) of informative words. This architecture is efficient (in training and 

testing) and powerful. 

nition and categorization. However, over-specific visual words should eventually 

over-fit the data, especially in categorization. We argue that one of the rea­

sons why large dictionaries often outperform smaller ones is that dictionaries are 

usually not optimized for discrimination. If visual words could be tailored to 

discriminate different categories, a smaller number of them would be sufficient. 

Motivated by this idea, we seek to gain the performance increases of recent ap­

proaches using large dictionaries without their computational burden. 

Winn et al. [WCM05] introduced the idea of constructing small and infor­

mative visual dictionaries by compressing larger ones. Here we propose a novel 

architecture and compression algorithm that has two key advantages: (i) it is 

very fast to project novel features onto the optimized dictionary and (ii) com­

pression is several orders of magnitude faster, which makes it possible to operate 

on much larger dictionaries and datasets. In addition, we show that our method 

outperforms [WCM05] for the task of pixel level categorization (Section 4.6). 

53 



4.5.1 Fast Projection by Hierarchical A;-means 

In order to project N novel features / £ f C 1 " onto a visual dictionary of L 

elements, the required time is usually O(NL). This is true even if the dictionary 

is eventually compressed into a smaller one [WCM05]. Since a large number of 

features N are typically extracted from an image, mapping features to the visual 

dictionary may become the bottleneck of the recognition pipeline. 

Here we solve this problem by using an hierarchical fc-means (HKM) [NS06] 

tree as the initial visual dictionary. Hierarchical A;-means trees have shown ex­

cellent performance in object recognition [NS06, PCI07]. More importantly, they 

enable efficient projection of novel features, requiring only 0(N log L) operations. 

Combining the HKM tree with the compression tree (Section 4.5.2), yields the 

coarse-to-fine-to-coarse architecture of Fig. 4.3. 

4.5.2 Dictionary Compression 

We compress a visual dictionary by merging visual words in such a way that the 

discriminative power of the dictionary is preserved. The discriminative power can 

be characterized in different ways, yielding different compression algorithms. Here 

we discuss and compare two: Agglomerative Information Bottleneck (AIB) [ST99] 

and the method from [WCM05], which we indicate with WCM. We also contribute 

a modification of the AIB algorithm that makes it feasible to process dictionaries 

of tens of thousands of elements. We show that the same fast algorithm can 

be used to speed-up WCM as well. However, even with this speedup we find 

that WCM is much slower than AIB (to the point of being infeasible for large 

datasets and dictionaries) and performs worse than AIB when applied to pixel-

level categorization. 

54 



4.5.2.1 AIB Compression 

AIB characterizes the discriminative power of the dictionary X as the mutual 

information I(x,c) of the random variables x (visual word) and c (category): 

/(x,C) = ^ f p ( x , c ) l o g ^ . (4.1) 
xex c=\ \ ) \ ) 

The joint probability P(x, c) is estimated from data simply by counting the num­

ber of occurrences of each visual word x E X in each category c e { 1 , . . . , C}. 

AIB iteratively compresses the dictionary X by merging the two visual words x* 

and Xj that cause the smallest decrease Di3 in the mutual information (discrim­

inative power) I(x,c). Denoting [x\i3 the random variable corresponding to the 

dictionary after the merge, the quantity Di3 is 

Di3 = I(x,c)-I([x}i3,c). (4.2) 

The information I(x, c) is monotonically reduced after each merge. Merging is 

iterated until one obtains the desired number of words. 

At test time, projecting a visual word x € X onto the compressed dictionary 

requires constant time (0(1)). So, since we use HKM for the initial dictionary, 

the number of operations required to project N novel features on the compressed 

dictionary is only 0(N log K), where K is the number of leaves of the HKM tree. 

In Fig. 4.4 we show the effectiveness of this technique using a simple experi­

ment on Graz-02. In all cases, we compress the dictionary significantly without 

losing any accuracy. In fact, in two of the three cases the results are slightly 

improved at some compression level. 

55 



Performance vs Compression 

60 1 i , , 1 _ . — , , — . . 1 — • — . . 1 1 

8000 4000 1000 200 20 4 2 
Dictionary Size 

Figure 4.4: Results of an experiment showing the performance of AIB 

as the dictionary is compressed. We adopt the framework of [ZML06] on 

Graz-02, extracting SIFT descriptors on salient regions, quantizing them, and 

classifying the resulting histograms with an SVM. We vary the compression of the 

dictionary, starting from the full hierarchical fc-means tree (8,000 leaves, A'=20) 

and compressing to a dictionary with only 2 elements. In each case, we can 

compress the dictionary by a factor of 8 without losing any accuracy. In some 

cases (Cars, Bikes) we even increase performance slightly. 

56 



4.5.2.2 Fast AIB 

The basic implementation of the AIB algorithm is prohibitively slow for very 

large dictionaries. The implementation proposed in Slonim et al. [ST99] stores 

the symmetric "distance" matrix D = [Dl3] (0(L2) space).1 

Then, at each iteration one only needs to update the row and column i,j of 

D which were involved in the last merge (since only words xr and x3 change). 

This has complexity O(LC). Searching for the minimal matrix element at each 

step is 0(L2), and this process is iterated L times, so the overall complexity is 

0(L(L2 + LC)) time and 0(L2) space [Slo03]. 

A simple modification of the basic algorithm is far more efficient. For each i, 

we cache the index and value (ku D^J of the minimum distance along the row 

and do not store D. This reduces the time spent searching for the minimum 

element (i*,j*) of D from 0(L2) to O(L). Now, when we merge (i*,j*), we must 

update the entries (kz, Dlki) for which either k% = i* or kz = j * . This has time 

complexity 0(L(L + 7LC)), where 7 is the number of entries that need to be 

updated at each iteration. We find empirically that 7 <C L, so in practice the 

amount of time taken is approximately 0(L2C) and the space complexity has 

been reduced to O(L). 

To get a sense of the advantages of this implementation, the original AIB 

algorithm [Slo03] requires L2 elements of memory at each iteration, which meant 

that a 20,000 cluster case would require roughly 3.2GB of memory as opposed to 

320kB with our modified approach. We also note that in the 10,000 cluster cases 

1 Reciprocal Nearest Neighbor Clustering [LMS06] proposes an efficient agglomerative 
clustering algorithm that can be applied whenever the distance matrix D%3 satisfies the reducibil-
ity property Dl3 < min{Djfc, Djk} => mm{Dtk, Djk] < Di~3,k' where 13 denotes the merged 
dictionary entry. Unfortunately, AIB clustering violates this property. For a counter example, 
consider the case C = 3, P{xl) = P{x3) = P{xk) = 1/3, P(c = l\xk) = P(c = 2\xk) = 1/3, 
P(c = l\xt) = P(c = 2|xt) = 2/5 and P{c = 2\x3) = P(c = 3\x3) = 2/5. 

57 



we test, we often find 7 to be on the order of 5 and so the clustering process is 

very fast (about 5 minutes for 10,000 clusters on a 2.3Ghz Core 2 Duo). The 

basic implementation of AIB on the same task requires approximately a day. 

4.5.2.3 W C M compression 

WCM differs from AIB in the way it measures the discriminative power of the 

visual dictionary. This is motivated by the fact that in the bag of features setting 

images are represented by histograms of visual words rather than visual words 

in isolation. Thus, one is more interested in obtaining informative histograms 

than informative visual words. This notion could be captured, for instance, by 

considering the mutual information I(h, c) in place of the information I(x, c) used 

by AIB. 

Due to the high dimensionality of the histograms, estimating I(h, c) is nearly 

impossible without strong assumptions. WCM assumes that histograms are dis­

tributed according to a mixture of Gaussians, with one Gaussian per category. 

Moreover, they characterize the discriminative power of the dictionary by the 

category posterior probability p(c\h) rather than by the information I(h, c). This 

creates a mechanism for model selection which can automatically stop the merg­

ing procedure when a maximum of p(c\h) is attained (in contrast, in AIB the 

information criterion I(x,c) decreases monotonically). Finally, it is also possible 

to extend the fast AIB algorithm introduced in the previous section to WCM 

almost without changes. 

Despite these appealing characteristics, WCM does not perform as well as 

AIB in our setting. First, despite our fast implementation, it is much slower 

than AIB on large datasets (in Section 4.6 we show it requires up to twelve days 

on a task that our fast AIB can solve in about five minutes). WCM is much 

58 



slower because updating an entry of the Di3 matrix requires scanning the data 

to compute the linear correlation of bin i and j . This is due to the fact that 

WCM considers visual words in the context of histograms where AIB does not. 

Although the model assumes that histogram bins are statistically independent, 

they interact when merged. The update operation requires about 0(ML2C), 

where M is the number of training histograms, as opposed to 0(L2C) for AIB. 

Second, WCM model selection is not useful for our localization task as we are 

interested in obtaining dictionaries of a prescribed size (Section 4.6). Third, 

AIB compressed dictionaries result in better categorization results than WCM 

(Section 4.6; Table 4.1). This is probably because in our setting the assumptions 

made by WCM are not satisfied. 

4.6 Experiments 

Graz-02 [OP05] is a challenging dataset consisting of three categories (cars, bi­

cycles, and people) with extreme variability in pose, scale and lighting. Our 

goal is the same as Marszalek et al. [MS07]: We wish to label each image pixel 

as either belonging to one of these categories or not. In order to compare di­

rectly to Marszalek et al. [MS07], we adopt their measure of performance: pixel 

precision-recall. Our features extraction and dictionary compression are imple­

mented within VLFeat [VF08], and the rest of our implementation is available as 

a part of Blocks [FV09] which is described in more detail in Appendix B. 

4.6.1 Training 

We select the same training images as [MS07], namely the first 150 odd numbered 

images from each category. We compute dense SIFT descriptors and quantize 

59 



them using our dictionary (see Section 4.6). Then, for each image we generate two 

histograms: The first aggregates all the features that belong to the background 

(based on the feature center and the ground truth object masks), and the second 

the features that belong to the object. This collection of histograms is used as 

training data for either an SVM classifier with x2 kernel or an inverse document 

frequency (IDF) [NS06] weighted A;-nearest neighbor (KNN) classifier (k = 10). 

4.6.2 Fast Dense Feature Extraction 

We extract a SIFT descriptor [Low04] every four pixels. The support of each de­

scriptor is a 16 x 16 patch. We do not compute the orientation of the descriptor 

since this has been shown to adversely affect other dense bag of features meth­

ods [ZML06]. Features that have low gradient magnitude before normalization 

are discarded as in [LSP06, TS07]. 

We introduce here a novel technique to compute dense SIFT descriptors very 

efficiently. Fast SIFT-like descriptors have been proposed by [BTG06, TS07] and 

recently [TLF08]. Our technique has the advantage of being fully equivalent to 

SIFT and still efficient: The complexity is only 0(Q2R) compared to 0(Q2R2) of 

a direct implementation, where Q2 the area of the image and R2 the area of the 

descriptor support. Moreover, up to a small approximation, we can reduce the 

complexity to 0(Q2), which is independent of the area of the descriptor support. 

Our implementation is included with VLFeat [VF08], an open source feature 

extraction library. 

The idea is to reduce the calculation of the dense descriptors to a number 

of separable convolutions. Recall that the SIFT descriptor at location (x0,y0) 

is a three-dimensional histogram of the gradient VI(x, y) in a circular patch 

surrounding that point [Low04]. The histogram is indexed by the relative position 

60 



(x — xo, y — yo) and orientation ZVI(x, y) of the gradient V/(:r, y) in the patch, 

weighed by the gradient magnitude |V/(x, y)\ and by a Gaussian window centered 

at (xo, yo). The relative positions are quantized in 4 x 4 bins and the orientation 

in 8 bins using bilinear interpolation. For a given orientation, the data for a bin 

b is obtained by computing integrals like: 

d(x0, y0, b) = / g(x - x0, y - y0)hb(x - x0,y - yo)f(x, y) dx dy (4.3) 

where f(x, y) is the mass of the gradient at that particular orientation, g(x, y) 

is the Gaussian window and hb(x,y) is the product of two triangular windows 

resulting from the bilinear interpolation of bin b. Since both h(x,y) and g(x,y) 

are separable, the calculation requires only 0(Q2R) operations. 

Notice that this requires 4 x 4 x 8 separable convolutions in total. However, by 

dropping the Gaussian window g(x, y) (the effect on the computed descriptors is 

modest), convolutions for different spatial bins at the same orientations are iden­

tical up to translation, and only 8 separable convolutions are sufficient. Moreover, 

recall that convolving by a rectangular kernel can be done very efficiently by in­

tegral images. Since convolving by a triangular kernel can be decomposed into 

convolving twice by rectangular ones, we obtain a final complexity of 0(Q2). On 

640 x 480 images, such as those in Graz-02, fast dense feature extraction takes 

0.15 seconds for grayscale and 0.3 seconds for RGB. 

Our RGB SIFT descriptors are formed by first transforming the (R, G, B) 

image into the normalized (r, g, b) space [EHD00] where: 

61 



r — R+G+B v 4-4) 

9 =RS+B (4-5) 

b =RTGTB (4-6) 

SIFT descriptors are then extracted independently from the r and g channels 

and concatenated into one 256 dimensional descriptor. We do not include the b 

channel because the constraint r + g + b = 1 makes it redundant. 

4.6.3 Dictionary Construction 

We sample a large number of feature-category pairs from our training data and 

follow one of two approaches to construct a dictionary. As a baseline, we use k-

means with k = {5,40,200}. Alternatively, we construct a hierarchical A;-means 

dictionary with k = 10 and 10,000 leaf nodes, and then compress this dictionary to 

N = {5, 40, 200} clusters (we experiment with both AIB and WCM). Notice that, 

in our application, the size of the dictionary is the primary factor in determining 

the speed and memory footprint of the classification algorithm. 

4.6.4 Testing 

We test on the first 150 even numbered images from each category. Every 4 pixels, 

we construct a histogram of feature occurrences within a window of 80 x 80 pixels 

using integral images (Section 4.4) and classify using either SVM or KNN. The 

classification returns a label and a score. The magnitude of the score indicates 

the confidence in the label and the sign of the score indicates the class (-1 is a 

fully confident classification of "background"). For pixels which do not lie on the 

grid, we interpolate the score from adjacent pixels. 

62 



We choose a range of confidence thresholds p and for each we classify as object 

all pixels which have a score greater than the threshold. These are compared to 

the ground-truth segmentation which provides us with pixel precision and recall 

for the testing data. We also use this threshold to create Fig. 4.1 and to generate 

the movie included as supplementary material. 

4.6.5 Discussion 

Table 4.1 reports the points where precision and recall are equal and compares 

our results to those of Marszalek et al. [MS07], the previous state of the art 

in pixel accurate localization on Graz-02. We also compare to (and outper­

form) Winn et al. (WCM), and while our dictionaries take roughly 5 minutes 

to construct, Winn et al. takes up to 12 days on this task. Fig. 4.6 shows the 

full precision-recall curves for each category and classification method. Our ap­

proach is fast, the times reported in Table 4.1 include dense feature extraction, 

quantization, and the classification of all pixels. 

Although we do not have shape or even scale in our model, we still perform 

significantly better on all categories. Specifically, our best performing cases are 

4.8% better on bikes, 0.9% better on cars, and 7.3% better on people. In each 

case, the compressed dictionary outperforms the fc-means dictionary of equal size. 

The differences decrease as the final vocabulary size is increased, which is intuitive 

because the variability of the dataset can be better captured by /c-means as we 

increase k, while the descriptive power of our rebuilt dictionary is upper bounded 

by that of the associated HKM tree. 

Our approach naturally provides a confidence measure, so we can quantify 

the uncertainty in classification as shown in Fig. 4.5. 

63 



Figure 4 5 Selected results on Graz-02. Images are first masked by the 

classification then transformed to HSV The HSV images have their V channel 

weighted by the confidence in the classification, darkening the pixels which are less 

confident about the class All images shown were generated with the parameter 

set denoted AIB200RGB and classified with an SVM 

64 



Precision-Recall Bicycles (10NN) Precision-Recall Bicycles (SVM) 

A185 57 4% 
AIB40 61 7% 

— • — AI8200 63 8% 
— • — A1B200RGB 66 4% 
- - -KM5 44 9% 

KM40 59 5% 
» B - KM200 62 6% 
- • - KM200RGB 60 6% 
- - AIB200SBGB 60 5% 

WCM20OSRGB 57 7% 
- 0 - WCM200RGB 59 6% 

Chance 24 5% 

1 
l l g j u ^ 

"C^V^ 
°<* ^ " " " ^ - S S ^ f e * * ^ 

^Ci«5*\ 05 

0 4' 

03 

01 

*""' " " - » AIB5 568% 
AIB40 59 9% 

— « — AIB200 59 9% 
— • — AIB200RGB 65 2% 
- - - KM5 44 9% 

KM40 59 5% 
- B - KM200 58 9% 
- • -KM200RG8 61 4% 

AIB200SRGB 62 0% 
WCM2O0SRGB 59 8% 

- B » WCM200RGB 596% 
Chance 24 5% 

A Tk 
V v '* \^ 

' 

V* 
is^1 

^ » A , 
"s^nHSi 

T- Jr*§ 

01 02 03 

Precision-Recall Cars(10NN) 

A1B5 39 8% 
A1B40 47 5% 

• — AI820Q 50 9% 
••— AIB200RGB 54 7% 
- - KM5 27 1% 

KM40 45 1% 
B -KM200 50 1% 
• - KM200RGB 51 6% 

- AIB200SRGB 53 9% 
WCM200SRGB 52 2% 

• WCM200RGB 54 2% 
Chance 10 3% 

W W -

V. 

• 

s~ 

• 

Precision-Recall 

* S ^ \ -
•VV; X 

\ *\. 

Cars (SVM) 

AIB5 38 5% 
AIB40 44 9% 

•"•a AIB20O 40 1% 
m AIB200RGB 49 4% 

KM5 30 0% 
KM40 37 8% 

- B - KM200 39 3% 
- • - KM200RGB 48 3% 

AIB200SRGB 47 6% 
WCM200SRGB 47 0% 

- O - WCM200RGB 39 8% 
Chance 10 3% 

""""""^•J* \* 

"•••:!yu^ 
^ ^ ^ ^ 

Precision-Recall People (10NN) 

AIB40 47 2% 
"O— AIB200 49 7% 
-•—AIB200RGB 47 1% 

KM5 32 1% 
KM40 42 8% 

• m - KM200 46 5% 
• m - KM200RGB 44 2% 
- - AI8200SRGB 37 9% 

WCM200SRGB 41 2% 
- 0 - WCM2O0RGB 41 1% 

Chance 17 6% 

Precision-Recall People (SVM) 

AIB5 48 2% 
AIB40 49 0% 

— « — AIB200 50 7% 
• • • AIB200RGB 51 4% 

- - - KM5 33 1% 
KM40 45 4% 

- B - KM200 49 3% 
- • - KM200RGB 49 3% 

AIB200SRGB 48 5% 
WCM200SRGB 46 1% 

- B ~ WCM200RGB 46 3% 
Chance 17 6% 

Figure 4.6: Pixel precision-recall curves. The row corresponds to the cate­

gory and the column specifies which classifier was used. The yellow dashed line 

indicates the performance of random guessing of the pixel identity. When the 

vocabulary size is small, AIB helps greatly. 

65 



4.7 Conclusions 

We have described and shown that an object localization framework that uses bag 

of features as a tool can successfully localize objects without making assumptions 

about the shape of the object, or explicitly performing segmentation. In order 

to make this possible, we have also shown a method that efficiently learns a 

dictionary which is tailored for the task of categorization. In spite of its simplicity, 

our approach produces pixel-accurate object localizations which exceed the state 

of the art on a challenging dataset. 

Our experiments show that more care should be exercised in integrating shape 

information into generic object class representations. We believe shape is an 

important discriminant (See [VS05], Theorem 3), but our work should be viewed 

as a baseline method whose performance should be convincingly exceeded before 

justifying the additional complexity a shape-based model might bring. 

66 



object class 

[MS07] no hyp. eval. 

[MS07] no evid. collect. 

[MS07] full framework 

AIB5-KNN 

AIB5-SVM 

KM5-KNN 

KM5-SVM 

AIB40-KNN 

AIB40-SVM 

KM40-KNN 

KM40-SVM 

AIB200-KNN 

AIB200-SVM 

KM200-KNN 

KM200-SVM 

AIB200RGB-KNN 

AIB200RGB-SVM 

WCM200RGB-KNN 

WCM200RGB-SVM 

KM200RGB-KNN 

KM200RGB-SVM 

cars people bicycles time 

40.4% 28.4% 46.6% 

50.3% 40.3% 48.9% 

53.8% 44.1% 61.8% 

39.8% 47.1% 57.4% 0.5s 

38.5% 48.2% 56.8% 0.7s 

27.1% 32.1% 44.9% 2s 

30.0% 33.1% 44.9% 2s 

47.5% 47.2% 61.7% 0.5s 

44.9% 49.0% 59.9% 0.8s 

45.1% 42.8% 59.5% 2s 

37.8% 45.4% 59.5% 2.5s 

50.9% 49.7% 63.8% 1.1s 

40.1% 50.7% 59.9% 3.3s 

50.1% 46.5% 62.6% 2.5s 

39.3% 49.3% 58.9% 5s 

54.7% 47.1% 66.4% 1.4s 

49.4% 51.4% 65.2% 3.7s 

54.2% 41.1% 59.6% 1.4s 

39.8% 46.3% 59.6% 3.7s 

51.6% 44.2% 60.8% 3.5s 

48.3% 49.3% 61.4% 7s 

Table 4.1: A comparison of the pixel precision-recall equal error rates 

on Graz-02. Although we do not represent shape explicitly, our results are 

competitive with [MS07]. The best performance is achieved using our compressed 

dictionary (Section 4.5). 

67 



CHAPTER 5 

Superpixel Categorization 

5.1 Introduction 

Recent success in image-level object categorization has led to significant interest 

on the related fronts of localization and pixel-level categorization. Both areas 

have seen significant progress lately through object detection challenges including 

the PASCAL VOC [EVW]. So far, the most promising techniques seem to be 

those that consider each pixel of an image. 

For localization, sliding window classifiers [DT05, BL08, LBH08] consider a 

window (or all possible windows) around each pixel of an image and attempt to 

find the classification which best fits the model. Lately, this model often includes 

some form of spatial consistency (e.g. [LSP06]). In this way, we can view sliding 

window classification as a "top-down" localization technique which tries to fit a 

coarse global model to each possible location. 

In object class segmentation, the goal is to produce a pixel-level segmentation 

of the input image, so on the surface it seems that classifying each pixel may be 

a sensible thing to do. Most approaches here are built from the bottom up on 

learned local representations (e.g. TextonBoost [SWR06]) and can be seen as an 

evolution of texture detectors. Because of their rather local nature, they often 

introduce a conditional random field [LMP01] or some other model to enforce 

spatial consistency. For computational reasons, this usually operates on a reduced 

68 



grid of the image, abandoning pixel accuracy in favor of speed. A current leader 

of the PASCAL VOC 2007 Segmentation Challenge is a scheme which falls into 

this category ([SJC08]). 

We argue that pixels are discrete structures that are unrelated to the content 

of the image and therefore they represent a level of granularity that is poorly 

suited for operations on objects. Instead, we consider small regions obtained from 

a conservative over-segmentation, or "superpixels," to be the elementary unit of 

detection, categorization and localization schemes [RM03, FH04, MPW08]. 

On the surface, using superpixels as the elementary units seems counter­

productive, because aggregating pixels into groups entails a decision that, in 

general, reduces the performance of any classifier downstream when compared 

to an equivalent one acting directly on the data ([Sha98], page 88 and [RobOl], 

Theorem 7.4). 

However, aggregating pixels into superpixels captures all the "obvious" local 

information. The superpixels we construct are quite conservative, so we minimize 

the risk of merging unrelated pixels. At the same time, moving to superpixels 

allows us to measure feature statistics (in this case: histograms of visual words) 

on a naturally adaptive domain rather than a fixed one, such as a window. Since 

superpixels tend to preserve boundaries, we also have the opportunity to create 

a much tighter segmentation by simply finding the superpixels which are part of 

the object. 

We show that by aggregating neighborhoods of superpixels we can create 

a robust region classifier which exceeds the state-of-the-art on Graz-02 pixel-

localization and on the PASCAL VOC 2007 Segmentation Challenge. Our results 

can be further refined by a conditional random field (CRF) that operates on 

superpixels, which we propose in section 5.3.4. 

69 



Figure 5.1: Aggregating histograms. An illustration of the detail of our super-

pixel segmentation and the effectiveness of aggregating histograms from adjacent 

segments. From left: the segmentation of a test image from Graz-02, a zoomed 

in portion of the segmentation, the classification of each segment where more red 

is more car-like, and the resulting classification after aggregating all histograms 

within N = 2 distance from the segment being classified. 

5.2 Related Work 

Sliding window classifiers have been well explored for the task of detecting the 

location of an object in an image [BL08, LBH08, DT05]. Lambert et al. [LBH08] 

have shown that it is feasible to search all possible sub-windows of an image for 

the one which best matches the object using branch and bound. Meanwhile, 

Blaschko et al. [BL08] present a way to learn a structured classifier whose output 

is a bounding box. However, for our purposes a bounding box is not an acceptable 

f̂ nal output, ever in the case of localization 

Our localization capability is more comparable to Marszalek [MS07] or Fulk­

erson et al. [FVS08] (See also Chapter 4). Marszalek warps learned shape masks 

into an image based on distinctive local features Fulkerson performs bag of fea­

tures classification within a local region, as we do, but the size of the region is 

fixed (a rectangular window) and how to determine the best size for this window 

is not clear. In contrast, our method provides a natural neighborhood size, ex-

70 



pressed in terms of low level image regions (the superpixels). We show that we 

greatly improve on the results of Fulkerson et al. in Table 5.2. 

Class segmentation algorithms that operate at the pixel level are often based 

on local features like textons [SWR06] and are augmented by a conditional ran­

dom field or another spatial coherency aid [HZC04, KH05, HZR06, VT07, RVG07, 

GRC08] to refine the results. In this setting, Shotton et al. [SJC08] constructs 

semantic texton forests for extremely fast classification. Semantic texton forests 

are essentially randomized forests of simple texture classifiers which are them­

selves randomized forests. We compare our results with and without an explicit 

spatial aid (a CRF) with those of Shotton in Table 5.3. Another notable work in 

this area is that of Gould et al. [GRC08] who proposed a superpixel-based CRF 

which learns relative location offsets of categories. We eventually augment our 

model with a CRF on superpixels, but we do not model the relative locations of 

objects explicitly. Instead, we use much stronger local features and learn context 

via the connectedness in the superpixel graph. 

A number of works utilize one or more segmentations as a starting point for 

their task. An early example is Barnard et al. [BDG03], who explore associating 

labels with image regions using simple color features and then merging regions 

based on similarity over the segment-label distribution. Russell et al. [RES06] 

build a bag of features representation on multiple segmentations to automatically 

discover object categories and label them in an unsupervised fashion. Similarly, 

Galleguillos et al. [GBR08] use Multiple Instance Learning (MIL) to localize 

objects in weakly labeled data. Both assume that at least one of their segmen­

tations contains a segment which correctly separates the entire object from the 

background. By operating on superpixels directly, we can avoid this assumption 

and the associated difficulty of finding the one "good" segment. 

71 



Perhaps the most closely related work to this chapter is that of Pantofaru et 

al. [PSH08]. Pantofaru et al. form superpixel-like objects by intersecting multi­

ple segmentations and then classify these by averaging the classification results 

from all of the member regions. Their model allows them to gather classification 

information from a number of different neighborhood sizes (since each member 

segment has a different extent around the region being classified). However, mul­

tiple segmentations are much more computationally expensive than superpixels, 

and we significantly exceed their performance on the VOC 2007 dataset (see 

Table 5.3). 

Additionally, a number of authors use graphs of image structures for vari­

ous purposes, including image categorization [HB07, NTU07] and medical image 

classification [AAB07]. Although we operate on a graph, we do not seek to mine 

discriminative substructures [NTU07] or classify images based on the similarity 

of walks [HB07]. Instead, we use the graph only to define neighborhoods and 

optionally to construct a conditional random field. 

5.3 Superpixel Neighborhoods 

5.3.1 Superpixels 

We use the publicly available implementation of quick shift [VS08] to extract 

superpixels from our input images (See Appendix A for a fast GPU implemen­

tation). Our model is quite simple: we perform quick shift on a five-dimensional 

vector composed of the LUV colorspace representation of each pixel and its lo­

cation in the image. 

Unlike superpixehzation schemes based on normalized cuts (e.g. [RM03]), the 

superpixels produced by quick shift are not fixed in approximate size or number. 

72 



A complex image with many fine scale image structures may have many more 

superpixels than a simple image, and there is no parameter that puts a penalty 

on the boundary, leading to superpixels which are quite varied in size and shape. 

Statistics related to our superpixels (such as the average size and degree in the 

graph) are detailed in Section 5.4. 

This produces segmentations, like the one in Figure 5.1, which consist of many 

small regions that preserve most of the boundaries in the original image. Since 

we perform this segmentation on the full resolution image, we leave open the 

potential to obtain a nearly pixel-perfect segmentation of the object. 

5.3.2 Classification 

We construct a bag of features classifier that operates on the regions defined by 

the superpixels we have found. SIFT descriptors [Low04] are extracted for each 

pixel of the image at a fixed scale and orientation using the fast SIFT framework 

described in Chapter 5 and found in [VF08]. The extracted descriptors are then 

quantized using a A;-means dictionary and aggregated into one histogram for each 

superpixel. Each superpixel is assigned the most frequent class label it contains, 

and a one-vs-rest support vector machine (SVM) with an RBF x2 kernel is learned 

on the labeled histograms. 

The classifier which results from this is very specific. It finds superpixels which 

resemble superpixels that were seen in the training data without considering the 

surrounding region. This means that while a wheel or grill on a car may be 

correctly identified, the nearby hub of the wheel or the headlight can be detected 

with lower confidence or missed altogether (Figure 5.1). 

Another drawback of learning a classifier for each superpixel is that the his­

tograms associated with each superpixel are very sparse, often containing only a 

73 



handful of non-zero elements. This is due to the nature of our superpixels; by def­

inition they cover areas that are roughly uniform in color and texture. Since our 

features are fixed-scale and extracted densely, our superpixels sometimes contain 

tens or even hundreds of descriptors that quantize to the same visual word. 

5.3.3 Superpixel Neighborhoods 

We address both of the problems mentioned in the previous section by introducing 

histograms based on superpixel neighborhoods. Let G(S, E) be the adjacency 

graph of superpixels sz E S in an image, and H® be the unnormalized histogram 

associated with this region. E is the set of edges formed between pairs of adjacent 

superpixels (s,, s3) in the image and D(su s3) is the distance in the graph between 

two superpixels. Then, H^ is the histogram obtained by merging the histograms 

of the superpixel sz and neighbors who are less than N nodes away in the graph: 

»." = £ H° 
sJ |U(s,,S i , )<iV 

Using these histograms in classification addresses both of our previous is­

sues. First, since adjacent superpixels must be visually dissimilar, histograms 

constructed from superpixel neighborhoods contain more diverse features and 

are therefore less sparse. This provides a regularization for our SVM, reducing 

overfitting. It also provides spatial consistency in our classification because as we 

increase N, histograms of adjacent superpixels have more features in common. 

Second, because we are effectively increasing the spatial extent of the region 

considered in classification, we are also providing our classifier with a better 

description of the object. As we increase N, we move from the "part" level to 

the "object" level, and since not all training superpixels will lie on the interior of 

74 



the object, we are also learning some "context". 

However, note that as N becomes larger we will blur the boundaries of our 

objects since superpixels that are on both sides of the object boundary will have 

similar histograms. In the next section, we explore adding a CRF to reduce this 

effect. 

5.3.4 Refinement with a CRF 

In order to recover more precise boundaries while still maintaining the benefits of 

increasing N, we must introduce new information which will allow us to reduce 

misclassifications that occur near the edges of objects. Conditional random fields 

provide a natural way to incorporate such constraints by including them in the 

pairwise edge potential of the model. Let P(c\G; w) be the conditional probability 

of the set of class label assignments c given the adjacency graph G(S, E) and a 

weight w: 

-log(P(c\G;w)) = ^ ^(cjs,) + w ^ ^(^^jls^Sj) 
stes (st,sj)eE 

Our unary potentials ^ are defined directly by the probability outputs pro­

vided by our SVM [CL01] for each superpixel: 

^(CJIS,) = - /op(P(c l | sJ) 

and our pairwise edge potentials $ are similar to those of [SWR06, BJ01]: 

$(c ,c J | s t , s J ) = ( |.S"^J n)h^c3} 
1 -+- ||Sj s31| 

where [•] is the zero-one indicator function and ||sl — s3\\ is the norm of the 

75 



color difference between superpixels in the LUV colorspace. L(s%, s3) is the shared 

boundary length between superpixels s, and s3 and acts here as a regularizing 

term which discourages small isolated regions. 

In many CRF applications for this domain, the unary and pairwise potentials 

are represented by a weighted summation of many simple features (e.g. [SWR06]), 

and so the parameters of the model are learned by maximizing their conditional 

log-likelihood. In our formulation, we simply have one weight w that represents 

the trade-off between spatial regularization and our confidence in the classifica­

tion. We estimate w by cross-validation on the training data. Once our model 

has been learned, we carry out inference with the multi-label graph optimization 

library of [BK04, KZ04, BVZ01] using a-expansion. Since the CRF is defined 

on the superpixel graph, inference is very efficient, taking less than half a second 

per image. 

Results with the CRF are presented in Section 5.4 as well as Figures 5.2 and 

5.3. 

5.4 Experiments 

We evaluate our algorithm for varying N with and without a CRF on two chal­

lenging datasets. Graz-02 contains three categories (bicycles, cars and people) 

and a background class. The task is to localize each category against the back­

ground class. Performance on this dataset is measured by the pixel precision-

recall. 

The PASCAL VOC 2007 Segmentation Challenge [EVW] is an extremely dif­

ficult class segmentation challenge which contains 21 categories and few training 

examples. While the challenge specifies that the detection challenge training data 

76 



may also be used, we use only the ground truth segmentation data for training. 

The performance measure for this dataset is the average pixel accuracy: for each 

category the number of correctly classified pixels is divided by the ground truth 

pixels plus the number of incorrectly classified pixels. 

MATLAB code to reproduce our experiments is available as part of Blocks [FV09] 

(See Appendix B). 

5.4.1 Common Parameters 

Experiments on both datasets share many of the same parameters which we detail 

here. 

SIFT descriptors are extracted at each pixel with a patch size of 12 pixels 

and fixed orientation. These descriptors are quantized into a A;-means dictionary 

learned on the training data. All experiments we present here use k = 400, 

though in Figure 5.1 we show that a wide variety of k produce similar results. 

The superpixels extracted via quick shift are controlled by three parameters: 

A, the trade-off between color importance and spatial importance, a, the scale 

at which the density is estimated, and r, the maximum distance in the feature 

space between members of the same region. We use the same parameters for 

all of our experiments: a = 2, A = 0.5, r = 8. These values were determined 

by segmenting a few training images from Graz-02 by hand until we found a set 

which preserved nearly all of the object boundaries and had the largest possible 

average segment size. In principle, we could do this search automatically on the 

training data, looking for the parameter set which creates the largest average 

segment size while ensuring that the maximum possible classification accuracy is 

greater than some desired level. In practice, the algorithm is not too sensitive 

to the choice of parameters, so a quick tuning by hand is sufficient. Note that 

77 



the number or size of the superpixels is not fixed (as opposed to [GRC08]): the 

selected parameters put a rough bound on the maximum size of the superpixels 

but do not control the shape of the superpixels or degree of the superpixel graph. 

Histograms for varying N are extracted as described in section 5.3.3 and labels 

are assigned to training superpixels by the majority class vote. We randomly 

select an equal number of training histograms from each category as the training 

data for our SVM. 

We learn a one-vs-rest multi-class SVM on the histograms using libsvm [CL01]. 

Our kernel is RBF x2'-

(X-Y)2 

K(X,Y) = e"r-*+^ 

with parameters learned via cross validation on the training histograms. Dur­

ing testing, we convert our superpixel labels into a pixel-labeled map and evaluate 

at the pixel level for direct comparison with other methods. 

In both experiments, we take our final SVM and include it in the CRF model 

described in section 5.3.4. 

5.4.2 Graz-02 

On Graz-02, we use the same training and testing split as Marszalek and Schmid 

[MS07] and Fulkerson et al. [FVS08]. Our segment classifier is trained on 750 

segments collected at random from the category and the background. 

Graz-02 images are 640 by 480 pixels and quick shift produces approximately 

2000 superpixels per image with an average size of 150 pixels. The average degree 

of the superpixel graph is 6, but the maximum degree is much larger (137). 

In Table 5.2, we compare our results for varying size N with those of Fulker-

78 



k = 10 

k= 100 

fc = 200 

k = 40Q 

k = 1000 

0 

37 

48 

49 

50 

49 

Graz-02 N = 

1 

44 

61 

63 

64 

63 

2 

47 

64 

66 

67 

68 

3 

51 

64 

66 

69 

68 

4 

49 

64 

64 

67 

66 

PASCAL 2007 AT = 

0 

10 

13 

13 

14 

14 

1 

10 

19 

20 

21 

22 

2 

12 

23 

25 

25 

27 

3 4 

12 12 

25 25 

26 25 

28 27 

27 26 

Table 5.1: Effect of k. Here we explore the effect of the dictionary size k on 

the accuracy of our method (without a CRF) for varying neighborhood sizes 

N. Increasing the size of the dictionary increases performance until we begin to 

overfit the data. We pick k = 400 for our experiments, but a large range of k 

will work well. Notice that even with k = 10 we capture some information, and 

increasing N still provides noticeable improvement. 

79 



[MS07] full framework 

[FVS08] NN 

[FVS08] SVM 

A = 0 

CRF N = 0 

N = 1 

CRF AT = 1 

N = 2 

CRF N = 2 

N = 3 

CRF AT = 3 

N = 4 

CRF N = 4 

Cars People Bicycles 

53.8% 44.1% 61.8% 

54.7% 47.1% 66.4% 

49.4% 51.4% 65.2% 

43.3% 51.3% 56.7% 

46.0% 54.3% 63.4% 

62.0% 62.7% 67.6% 

69.7% 63.8% 69.7% 

67.1% 65.4% 69.3% 

71.2% 66.3% 71.2% 

68.6% 65.7% 71.7% 

72.2% 66.1% 72.2% 

67.1% 62.7% 71.0% 

71.3% 63.2% 71.3% 

Table 5.2: Graz-02 results. The precision = recall points for our experiments 

on Graz-02. Compared to the former state-of-the-art [FVS08], we show a 17% 

improvement on Cars, a 15% improvement on People and a 6% improvement on 

Bicycles. N is the distance of the furthest neighboring region to aggregate, as de­

scribed in section 5.3.3. Our best performing case is always the CRF-augmented 

model described in section 5.3.4. 

80 



Figure 5.2: Graz-02 confidence maps. Our method produces very well local­

ized segmentations of the target category on Graz-02. Here, a dark red classi­

fication means that the classifier is extremely confident the region is foreground 

(using the probability output of libsvm), while a dark blue classification indi­

cates confident background classification. Notice that as we increase the number 

of neighbors considered (N), regions that were uncertain become more confident 

and spurious detections are suppressed. Top two rows: Without CRF. Bottom 

two rows: With CRF. 

son et al. [FVS08] which uses a similar bag of features framework and Marszalek 

and Schmid [MS07] which warps shape masks around likely features to define 

probable regions. We convincingly improve upon the state-of-the-art in all cate­

gories (+17% on cars, +15% on people, and +6% on bicycles). 

Example localizations may be found in Figures 5.1 and 5 2. Notice that 

although N = 0 produces some very precisely defined correct classifications, there 

are also many missed detections and false positives. As we increase the amount 

of local information that is considered for each classification, regions that were 

81 



classified with lower confidence become more confident, and false positives are 

suppressed. 

Adding the CRF provides consistent improvement, sharpening the boundaries 

of objects and providing further spatial regularization. Our best performing cases 

use N = 2 or N = 3, balancing the incorporation of extra local support with the 

preference for compact regions with regular boundaries. 

5.4.3 VOC 2007 Segmentation 

For the VOC challenge, we use the same sized dictionary and features as Graz-02 

(k = 400, patch size = 12 pixels). The training and testing split is defined in the 

challenge. We train on the training and validation sets and test on the test set. 

Since there are fewer training images per category, for this experiment we train 

on 250 randomly selected training histograms from each category. 

VOC 2007 images are not fixed size and tend to be smaller than those in 

Graz-02, so with the same parameters quick shift produces approximately 1200 

superpixels per image with a mean size of 150 pixels. The average degree of the 

superpixel graph is 6.4, and the maximum degree is 72. 

In Table 5.3 we compare with the only segmentation entry in the challenge 

(Oxford Brookes), as well as the results of Shotton et al. [SJC08], and Panto­

faru et al. [PSH08]. Note that Shotton reports a set of results which bootstrap a 

detection entry (TKK). We do not compare with these results because we do not 

have the data to do so. However, because our classifier is simply a multi-class 

SVM, we can easily add either the Image Level Prior (ILP) or a Detection Level 

Prior (DLP) that Shotton uses. Even without the ILP, we find that we outper­

form Shotton with the ILP on 14 of the 21 categories and tie on one more. Our 

average performance is also improved by 8%. Compared to Shotton without ILP 

82 



or Pantofaru, average performance is improved by 12%. Selected segmentations 

may be found in Figure 5.3. 

This dataset is much more challenging (we are separating 21 categories instead 

of 2, with less training data and more variability) and because of this when N = 0 

everything has very low confidence. As we increase N we start to see contextual 

relationships playing a role. For example, in the upper left image of Figure 5.4 

we see that as the person classification gets more confident, so does the bike and 

motorbike classification, since this configuration (person above bike) occurs often 

in the training data. We also see that larger N tends to favor more contiguous 

regions, which is consistent with what we expect to observe. 

On this dataset, adding a CRF improves the qualitative results significantly, 

and provides a consistent boost for the accuracy as well. Object boundaries 

become crisp, and often the whole object has the same label, even if it is not 

always the correct one. 

5.5 Conclusion 

We have demonstrated a method for localizing objects and segmenting object 

classes that considers the image at the level of superpixels. Our method sig­

nificantly exceeds the state-of-the-art on Graz-02 and the PASCAL VOC 2007 

Segmentation Challenge, even without the aid of a CRF or color information. 

When we add a CRF to include a boundary length penalty and color informa­

tion, we consistently improve both our quantitative and especially our qualitative 

results. 

83 



Figure 5.3: PASCAL VOC 2007 + CRF. Some selected segmentations for 

PASCAL. For each test image, the results are arranged into two blocks of four 

images. The first block (left-to-right) shows the results of the superpixel neigh­

borhoods without a CRF. The second block uses the CRF described in section 

5.3.4. Colors indicate category and the intensity of the color is proportional to 

the posterior probability of the classification. 



Figure 5.4: PASCAL VOC 2007 Confidence. Confidence maps for PASCAL. 

The results are arranged into two blocks of four images for each test image. The 

first block contains the input image, a category label, and the confidence map 

for that category for N = 0,2,4. The second block contains the ground truth 

labeling and our labellings with an intensity proportional to the confidence of the 

classification. Colors indicate category. For example, in the upper left we show 

the confidence for bicycle, and the classification which contains mostly bicycle 

(green) and some motorbike (light blue). 

85 



Brookes 

[PSH08] 

[SJC08] 

[SJC08] + ILP 

N = 0 

CRF+JV = 0 

N = 1 

CRF+iV = 1 

N = 2 

CRF+N = 2 

N = 3 

CRF+N = 3 

N = 4 

CRF+JV = 4 

C «3 /ii 4 J _ 0 *-* >TH 

J> ! -§ ^ . If o , 1 § ^ c fl§ 

78 6 0 0 0 0 9 5 10 1 2 11 0 6 6 29 2 2 0 11 1 

59 27 1 8 2 1 32 14 14 4 8 32 9 24 15 81 11 26 1 28 17 

33 46 5 14 11 14 34 8 6 3 10 39 40 28 23 32 19 19 8 24 9 

20 66 6 15 6 15 32 19 7 7 13 44 31 44 27 39 35 12 7 39 23 

21 14 8 8 17 14 10 7 19 13 13 7 16 9 13 2 10 23 34 17 20 

20 14 8 8 17 14 10 7 19 13 13 7 16 9 13 2 10 23 34 17 20 

27 27 20 17 14 12 18 11 37 18 7 14 26 19 35 18 13 21 25 31 25 

38 32 20 13 17 10 20 11 52 17 7 14 31 21 39 28 14 12 28 42 33 

36 27 26 15 11 5 26 29 42 25 9 15 36 23 58 32 17 11 20 37 29 

56 26 29 19 16 3 42 44 56 23 6 11 62 16 68 46 16 10 21 52 40 

47 22 24 17 11 6 35 25 46 19 8 19 33 29 62 47 16 20 26 37 29 

65 22 28 32 2 4 40 30 61 10 3 20 35 24 72 62 16 23 20 44 30 

51 20 22 18 7 2 39 25 49 15 6 14 36 28 64 56 15 17 21 40 23 

65 20 30 22 2 2 39 25 57 10 3 7 36 23 66 62 15 17 8 46 11 

a> 
> 

< 

9 

20 

20 

24 

14 

14 

21 

24 

25 

32 

28 

30 

27 

27 

Table 5.3: VOC 2007 segmentation results. Our best overall average per­

formance (CRF+Af = 2) performs better than Shotton et al. [SJC08] with or 

without an Image Level Prior (ILP) on 14 out of 21 categories. Note that we 

could add ILP to our model. Similarly, we do not compare with the Shotton et 

al. results which used TKK's detection results as a Detection Level Prior (DLP) 

because TKK's detections were not available. We expect our method would pro­

vide a similar performance boost with this information. The CRF provides small 

but noticeable improvements on for all values of N. 

86 



CHAPTER 6 

Conclusion 

In this dissertation, we have proposed methods for improving image categoriza­

tion, and have focused on those that lend themselves to the task of class segmen­

tation. We briefly review each of the chapters in turn. 

Stability in feature detection. Chapter 2 examines nuisances and shows 

that because of the quantization group in feature detection we can only canonize 

translation and rotation, and not the affine group or scale. We propose a detector 

which uses stable nodes in segmentation trees to define regions, and show that 

on Caltech-101 this detector is more effective than SIFT. 

Categorization with segmentation. Chapter 3 proposes a method to split 

SIFT descriptors along segmentation boundaries. We find that knowing where 

an object is can help in determining what the object is, even for relatively aligned 

and uncluttered datasets like Caltech 101. 

Discriminative dictionaries and pixel categorization. Chapter 4 con­

structs a fast and compact dictionary using agglomerative information bottleneck 

that maintains and sometimes improves in classification performance compared 

to a larger generative dictionary. This discriminative "smart" dictionary is com­

bined with fast dense SIFT features and integral histograms to create a system 

which categorizes a window around each pixel in an image. 

Superpixel categorization. Chapter 5 advocates the use of superpixels as 

87 



the basic unit of a class segmentation scheme. It constructs a classifier on local 

neighborhoods of superpixels and shows these neighborhoods have a regularizing 

effect on the classifier. A conditional random field constructed on the superpixel 

graph assigns the most probable class label to groups of superpixels in an image, 

penalizing adjacent superpixels which have the approximately the same color but 

not the same label. 

Implementations of our work are provided in VLFeat [VF10] and Blocks 

([FV09] and discussed further in Appendix B). In the appendix, we also dis­

cuss a GPU based implementation of quick shift, which may be used to speed up 

the work in Chapter 5. 

88 



APPENDIX A 

Really Quick Shift 

A.l Introduction 

Segmentation algorithms have played an important role in computer vision re­

search, both as an end goal [SMOO, CM02, VS08] and more recently as a prepro­

cessing step for other domains, including stereo [LSY06] and category-level scene 

parsing [FVS09, GRC08]. Breaking the image into smaller components, often 

called superpixels, allows algorithms to consider the image in meaningful chunks, 

rather than at the lowest common denominator (pixels). 

Unfortunately, algorithms developed for segmentation are often quite costly 

in both memory usage and computation. This bottleneck limits the scale of the 

applications and data that they can be applied to. 

In this work, we show that a GPU implementation of quick shift [VS08] can 

improve the performance of an already (relatively) fast segmentation algorithm 

by 10X-50X, opening up a host of potential new applications such as scene un­

derstanding in videos, and improved real time video abstraction [WOG06]. 

A.2 Related Work 

Most related work involving GPUs for segmentation is in the medical imaging do­

main, where the extra dimension of data (a volume instead of an image) has made 

89 



speed a requirement rather than an option [SHN03, CLW04, LCW03, LM08]. 

One notable exception found outside of medical imaging is that of Catanzaro et 

al. [CSS09] who adapt a boundary detection technique (gPb [MAF08]) to the 

GPU. While gPb can be used for segmentation [AMF09], our exact implementa­

tion of quick shift is over ten times faster on similar hardware. 

In recognition, GPU based feature detectors and trackers [SFP06, HMS07] 

have been proposed, as have learning components such as support vector ma­

chines [CSK08] and A;-nearest neighbors [GDB08]. Recently, Wojek et al. [WDS08] 

even proposed a GPU accelerated sliding window categorization scheme. 

Other recent successes in using GPUs for vision include general purpose li­

braries such as OpenVIDIA [FM05], and specific applications which are often cen­

tered around video such as motion detection [YM08] or particle filtering [MT08]. 

Carreira et al. [Car06] have done work on approximating Gaussian Mean Shift 

(GMS) by decreasing the number of iterations required by the algorithm and the 

cost per iteration (by approximating the density). We effectively circumvent 

the need to optimize the number of iterations since quick shift only requires one 

iteration. Instead of approximating the density, we simply exploit the parallelism 

of the density computation to achieve a speedup by using hardware suited for the 

task (a GPU). We note that we could also approximate the density as in [Car06], 

and that would result in further speedups. 

A.3 Quick shift algorithm 

Quick shift is a kernelized version of a mode seeking algorithm similar in concept 

to mean shift [CM02, FH75] or medoid shift [SKK07]. Given N data points 

Xi,... ,XJV, it computes a Parzen density estimate around each point using, for 

90 



example, an isotropic Gaussian window: 

- | | x - i , | | 2 

P{x) = TT7 ^ e 2a" 
1=1 

Once the density estimate P(x) has been computed, quick shift connects each 

point to the nearest point in the feature space which has a higher density estimate. 

Each connection has a distance dx associated with it, and the set of connections 

for all pixels forms a tree, where the root of the tree is the point with the highest 

density estimate. 

Quick shift may be used for any feature space, but for the purpose of this 

paper we restrict it to one we can use for image segmentation: the raw RGB 

values augmented with the (x, y) position in the image. So, the feature space is 

five dimensional: (r,g,b,x,y). To adjust the trade-off between the importance 

of the color and spatial components of the feature space, we simply pre-scale the 

(r, g, b) values by a parameter A, which for these experiments we fix at A = 0.5. 

To obtain a segmentation from a tree of links formed by quick shift, we choose 

a threshold r and break all links in the tree with dx > r. The pixels which are a 

member of each resulting disconnected tree form each segment. 

A.3.1 Segmentation specific optimizations 

In the case where our feature space is restricted to contain components which are 

defined on the image plane, and our set of data points are the set of pixels, we 

can immediately put some useful bounds on both the density computation and 

the neighbor linking process. 

First, when computing the energy we can restrict the domain of pixels we 

consider to a window which is less than 3a pixels away. Beyond this the con-

91 



tribution to the density is guaranteed to be small. Second, when linking the 

neighbors, there is also a natural bound for the search window. Pixels which are 

further than r away in the image plane must be at least that far away in the fea­

ture space. Conceptually we will talk about the density computation and linking 

process as separate components of the algorithm because one (the density com­

putation) must precede the other, and they operate on different domains of data. 

A pseudo-code implementation is shown in Figure A.2, and some segmentations 

with various parameters are shown in Figure A.l. 

A.4 Quick shift on a GPU 

Because quick shift operates on each pixel of an image, and the computation 

which takes place at each pixel is independent of its distant surroundings, it is a 

good candidate for implementation on a parallel architecture. 

We use CUDA 3.0 to develop a first implementation which simply copies the 

image to the device and breaks the computation of the density and the neighbors 

into blocks for the GPU to process. 

Although this is faster than the CPU version, the bottleneck is clearly memory 

latency. Global memory on GPUs is slow, requiring hundreds of cycles to access, 

and for each pixel quick shift needs to access ceil((6 * a)2) neighbors. 

To address this, one option is to load an apron of pixels surrounding the 

block being computed into shared memory, so that when an element of the block 

computes its similarity with a pixel outside of the block, the memory access 

is cached. However, because this operation is not easily separable, the shared 

memory requirement scales quadratically with sigma. Even modest values of 

sigma will quickly exhaust the 16000 bytes of shared memory available on modern 

92 



Figure A 1 Sample qi 

estimate of the density 

size of a region as well as 

have a = 2, the 

r = 20 

results. Increasing o smoothes the undei lying 

.g fewer modes Increasing r increases the average 

error in the distance estimate The top row of images 

a = 10 The left column has r = 10 and the right 



function computeDensityO 

for x in all pixels 

P[x] = 0 

for n in a l l p ixe ls l e ss than 3*sigma away 

P[x] += exp(-(f [x]-f [n])~2 / (2*sigma*sigma)) 

function linkNeighborsO 

for x in a l l p ixe ls 

for n in a l l p ixe ls l e ss than tau away 

if P[n] > P[x] and dis tance(x,n) i s smallest among a l l n 

d[x] = d is tance(x ,n) 

parent [x] = n 

Figure A.2: Quick shift image segmentation in pseudo-code. The algo­

rithm proceeds in two steps. First it iterates over the image creating a Parzen 

estimate of the density at each pixel. Then, it links each pixel to the nearest 

pixel (in the feature space) which increases the estimate of the density. 

94 



Figure A.3: Evaluation images. Four images from PASCAL-2007 used to 

evaluate the speed of the proposed algorithm. 

GPUs 

Instead, we map the image and the estimate of the density to a 3D and 

2D texture, respectively. We have good locality of access because each thread 

accesses a block of pixels around it. The results based of this texture cached 

approach are labeled with a "Tex" suffix in the next section. 

95 



A. 5 Evaluation 

There are two aspects of the algorithm to evaluate: the correctness and the time 

required. To confirm the correctness of the GPU implementation, we compare 

the energy and segmentation to the one returned by the publicly available imple­

mentation of quick shift in VLFeat [VF08]. 

To measure the speed of the algorithm, we pick a few random images from 

the PASCAL-2007 dataset (shown in Figure A.3). The images are cropped and 

up-sampled to 1024x1024. All reported performance numbers are obtained by 

averaging the results from all of the images. 

We explore the effect of each parameter which changes the runtime of the 

algorithm. First, in Figure A.4 we show the performance of the algorithms as 

the resolution of the image is increased while keeping a and r fixed. Next, in 

Figure A.5 we keep the resolution fixed at 512x512, fix r, and adjust a, showing 

how it affects the runtime of just the density computation part of the algorithm. 

Finally, Figure A.6 keeps both the resolution and a fixed and instead adjusts r, 

showing the time required to link the neighbors. 

Hardware. The CPU ground truth version is evaluated on a 2.4Ghz Core 

2 Duo. We show results for two GPUs: a laptop board (GeForce 8600M GT), 

and a mid-range desktop card (GeForce 9800 GT). The 8600M GT has 4 mul­

tiprocessors, 32 cores, and a core clock speed of 475MHz. The 9800 GT has 14 

multiprocessors, 112 cores, a 550MHz core clock speed. Due to limits on the 

runtime of CUDA kernels on the 8600M, in Figures A.5 and A.6 results are not 

reported for the slowest running case because the kernel was stopped before com­

pletion. We note that while newer hardware (such as cards based on the recently 

released FERMI architecture) would undoubtedly be faster, we want to show 

96 



Figure A.4: Quick shift CPU vs GPU. The graph shows the time required 

on two different GPUs as the resolution of the image is increased. Results are 

averaged over the four images from PASCAL-2007 shown in Figure A.3. For this 

data, a = 6 and r = 10. At 1024x1024, the speedup compared to the CPU 

version is 54X. 

what is possible with only limited hardware investment. 

For both GPUs evaluated we use a block size of 16x16, even though it has 

been shown that tuning the block size for a particular GPU can provide a boost 

in performance. 

Our complete source code as well as precompiled binaries for major architec­

tures are available on our website at h t tp : / /v i s ion .uc la .edu /~br ian /qsgpu . 

97 

http://vision.ucla.edu/~brian/qsgpu


100 

0.01 ' ' 
2 4 6 10 

Sigma 

Figure A.5: Effect of a on density computation time. As in Figure A.4, 

we show that as a is increased, processing time is increased and the texture 

memory-backed GPU version remains the most efficient option. Here we fix 

r = 10 and the image resolution to 512x512. Results are averaged over the same 

four images as before. 

98 



10 

Time (s) 

0.01 

A CPU 
-3 8600MGT 

8600M GT-Tex 
• 9800 GT 
• 9800 GT-Tex 

Figure A.6: Effect of r on neighbor linking time. We show that as r is 

increased, the amount of time required for finding the nearest neighbor which 

increases the density estimate is naturally increased. Here we fix a = 6 and the 

linage resolution to 512x512 Results are averaged over the same four ivnages as 

before. 

99 



A.6 Conclusion 

We have shown a GPU implementation of quick shift which provides a 10 to 

50 times speedup over the CPU implementation, resulting in a superpixehzation 

algorithm which can run at 10Hz on 256x256 images. The implementation is an 

exact copy of quick shift, and could be further speeded up by approximating the 

density, via subsampling or other methods. It is likely that the implementation 

would also present similar speedups for exact mean shift. 

100 



APPENDIX B 

Blocks - An Open Source Experiment 

Framework 

B.l Introduction 

In 1995 when the web was still in its infancy, Buckheit and Donoho [BD95] 

introduced a MATLAB toolbox called WaveLab. This key insight of the paper 

associated with this toolbox is: 

An article about computational science in a scientific publication is 

not the scholarship itself, it is merely advertising of the scholarship. 

The actual scholarship is the complete software development environ­

ment and the complete set of instructions which generated the figures. 

- Buckheit and Donoho [BD95] 

In other words: The software which reproduces the results is more important 

than the paper which reports them. In computer vision research, reproducibility 

is crucial. Algorithms developed for the field are often evaluated on one or more 

datasets and judged by their performance. Such an algorithm usually has a num­

ber of adjustable parameters, and the datasets are large, sometimes taking days 

or even weeks to process. Furthermore, as new datasets emerge, without imple­

mentations of previous work it becomes impossible to compare with algorithms 

that already exist on new data. 

101 



We have constructed a MATLAB experiment framework called Blocks [FV09] 

which follows this philosophy. Blocks is a BSD licensed open source framework 

which makes it easier for researchers to produce experimental results that are 

reproducible. It does this by compartmentalizing reusable pieces of an algorithm 

into "blocks" and facilitating the evaluation of these blocks on a dataset. 

B . l . l Related work 

Peng et al. [PDZ06] surveyed papers in epidemiology published in the first half 

of 2005 and found that the vast majority of these papers were not readily repro­

ducible, either because the data was not released or the methods for processing 

the data were not described. 

Gentleman et al. [GT07] propose using a compendium as a container for the 

text of the research as well as the software, and advocate using "literate data 

analysis" [Lei02] to include pieces of code which generate figures directly in the 

document which presents them. 

Stodden [Sto09] explore how the issue of reproducibility should interact with 

open source licenses, and proposed the Reproducible Research Standard (RRS). 

The standard proposes that code should be released under a permissive license 

which requires attribution (e.g. the modified BSD license) and data and figures 

should use the creative commons BY license. 

Sharing code has become even more important as systems (especially in com­

puter vision) are often constructed by assembling many components which are 

non-trivial to implement. The machine learning community has in recent years 

recognized this and a journal and companion website have been dedicated to 

facilitating the release of open source machine learning packages by its mem­

bers [SBO07]. 

102 



We have released a software package called VLFeat [VF10] which complements 

this work, providing the underlying pieces that are used to do fundamental vision 

tasks such as feature detection and clustering. 

B.2 Basic Structure 

A block is a piece of MATLAB code which has inputs (both parameters and 

pointers to other blocks), outputs which can be retrieved by name, and a function 

body to execute when the inputs have changed. Blocks are identified by their 

tag and type and stored in a folder with the same name as their tag located in a 

directory specified by the prefix member of the global wrd. 

Code involving blocks requires (at minimum) three functions: bkini t , bkbegin, 

and bkend. In the hello world example in Figure B.2, we create a block of type 

helloworld with bkini t , then begin the block with bkbegin. At this point, if the 

block is already up to date, we do nothing else. However, if it isn't, we perform 

some computation (say hello) and close the block, saving a data structure to the 

folder at hwtest/helloworldOdef aul t . 

By convention, we typically wrap bkbegin and bk in i t in a block function. 

These functions start with block., and usually perform one task in a pipeline 

(for example, extracting features). A very simple block function is shown in 

Figure B.2. 

B.3 Building with Blocks 

In Section B.2, we showed a basic complete block. Here we will explore block 

functionality in more detail. A basic block consists of a structure with members 

103 



% Define the location where results should be saved 

global wrd; 

wrd.prefix = 'hwtest'; 

% Initialize and run a block of type helloworld. 

bk = bkinit('helloworld'); 

bk.tag = 'helloworldOdefault'; 

[bk dirty] = bkbegin(bk); 

if dirty 

% Do some work 

fprintf('Hello world!\n') 

bk = bkend(bk); 

end 

Figure B.l: Hello world in block form. This code listing shows a minimal 

block which prints "Hello world!" the first time it is executed. 

104 



function bk = block_test(bk, varargin) 

if nargin == 0 

bk = bkinit('test') ; bk.imsize = 50; bk.fetch = Ofetch ; 

return ; 

end 

global wrd; 

[bk, dirty] = bkbegin(bk) ; 

if ~ dirty, return ; end 

output = vl_dsift(single(rand(bk.imsize))); 

save(fullfile(wrd.prefix, bk.tag, 'test.mat'), 'output', '-MAT'); 

bk = bkend(bk) ; 

% Define a function for retrieval of data from the block 

function varargout = fetch (bk, what, varargin) 

global wrd; 

switch lower(what) 

case 'output' 

path = fullfile(wrd.prefix, bk.tag, 'test.mat') ; 

data = load(path, '-MAT') ; 

varargout{l} = data .output ; 

otherwise 

e r r o r ( ' b l o c k _ t e s t : Attempted to fetch unknown t y p e ' ) ; 

end 

Figure B.2: A simple feature extraction block. This block extracts SIFT 

features on a random image of size bk. imsize. 

105 



corresponding to parameters, pointers to inputs, and the block's tag and type. 

B.3.1 Pa ramete r s 

Since each block is implemented as a function, it would be natural to assume that 

parameters might be passed directly to the function. However, one of the main 

goals of the framework is to intelligently check when parameters have changed, 

and in order to do that we must keep a record of them. This record is more 

naturally stored in the structure containing the block. So instead of: 

r e s u l t = block_test(parameter) 

We have: 

block = b lock_ te s t ( ) ; 

block.parameter = parameter; 

block = b lock_tes t (b lock) ; 

The first call to block_test in this example initializes the block with its 

default parameters. When we call block_test we pass the already initialized 

block, which causes the function to determine if there is a need to execute the 

function. The function will be evaluated if any of the parameters have changed 

since its last execution, or if any of its inputs have been updated since its last 

run. Notice that in the above example, we do not return a result, but instead 

the updated block. Results can be retrieved by querying the block, which we 

describe in the next section. 

106 



B.3.2 Inputs and Outpu t s 

In addition to parameters, blocks may have inputs which are pointers to other 

blocks on which they depend. This concept of dependency allows the blocks to 

intelligently update themselves when an input they depend on has been updated. 

For example, in a bag of features application, new histograms must be computed 

when new features are extracted. 

Inputs are managed with bkplug and bkf etch, bkplug connects one block 

to another as in: 

ex .c lass i fy = bkplug(ex.c lass i fy , ' h i s t ' , e x . h i s t . t a g ) ; 

This connects a block structure representing the histograms to a block which 

handles classification, bkplug returns the modified block structure, which now 

contains a field called "hist" containing a pointer to the input tag. We can also 

ensure that required inputs are present using bkin i t inside the definition of the 

block. To ensure that a block of type "feat" has an input named "db", we specify: 

bk = b k i n i t ( ' f e a t ' , ' db ' ) ; 

Once a block has finished executing, its results are stored to disk. To retrieve 

them, we use bkf etch, bkf etch takes an already initialized block or tag spec­

ifying a block and optional arguments and returns the relevant data. Because 

it internally calls a "fetch" function associated with the block, the actual means 

of retrieving the data can be as simple or complex as required. For example, in 

returning features in a block, we can either internally store the descriptors for 

each image to disk and load them when requested, or we can load the image and 

calculate the features each time we need them. This process is opaque to the user 

of the block. 

107 



Blocks are intended to be easily interchangeable. Blocks are not objects, but 

as long as two blocks implement the same interface, they can be interchanged 

transparently. The compressed dictionary block which implements the agglom-

erative information bottleneck dictionary discussed in Chapter 4 has the same 

fetch-able outputs as a A:-means dictionary, so we do not have to modify any of 

the subsequent steps. 

B.4 Sample Applications 

While the architecture used is applicable to any problem which needs to avoid 

repeated computation and keep track of parameters, we include blocks which 

combine to form reference implementations of a bag of features classifier as well 

as the work described in Chapters 4 and 5. 

In Figure B.3 we show the blocks required for a simple bag of features clas­

sifier. block_db builds a database from a particular dataset, and abstracts the 

retrieval of images from the dataset away from the user. block_dbpart imple­

ments the interface of block_db and additionally adds a partition of the dataset. 

In some datasets, this partition is fixed, and for others it is generated randomly. 

block_f eat extracts SIFT descriptors and block_dictionary constructs a dictio­

nary based on them. This dictionary is used to create histograms in block_hist 

and then a kernel is constructed between these histograms with block_ker. 

SVM training and testing are handled in separate blocks (block_train_svm and 

block_test_svm respectively). Finally, block_vis visualizes the results of a sim­

ple classification problem. 

Figure B.4 shows blocks required to construct the class segmentation system 

described in Chapter 5. Blocks with the same name have the same functionality 

108 



block_dbpart 4 -

- • 

block_db 
* 

block_feat 

I 
block_dictionary 

i 
block_hist 

I 
blockjker 

i 
block_train_svm 

+ 
block_Jest_svm 

i 

block_vis 

Figure B.3: Bag of features in blocks. The blocks used to execute a tradi­

tional bag of features pipeline. Blocks are color coded as in Figure 1.1. Blue 

colored boxes deal with datasets, tan compute features, yellow involve dictionary 

construction, green make histograms, and orange denote the classifier. Arrows 

indicate the direction of data flow, and the dependencies between blocks. 

109 



block db 

block_dbpart 

block feat 

block_quickseg 

ox*> block_dictionary 
* 

(oo> block_hist_qseg 

i 

(?> blockjcer 

+ 
0> block_classify_svrn 

+ 
0X*> block_test_segloc 

i 

ox?> block_train_crf 

+ 
0X*> bloek_test_segcrf 

1 
( 2 > block_vismulti 

Figure B.4: Superpixel neighborhoods in blocks. The blocks used to create 

the system described in Chapter 5. The color coding is the same as Figure B.3. 

Notice that many of the same blocks are shared between the two examples, only 

when there is something specific to the application (blocks that deal with super-

pixels) are new blocks introduced. 

110 



as they do in the bag of features example (Figure B.3). block_quickseg builds 

a quick shift superpixehzation of each image in the database. block_hist_qseg 

constructs histograms of superpixel neighborhoods. block_classif y_svm builds 

a complete classifier on superpixels which block_test_segloc uses to score im­

ages from the database. block_train_crf trains a Conditional Random Field 

(CRF) which is applied to the data in block_test_segcrf. The results are 

reported by block_vismulti, which generates a report of the classification per­

formance using various metrics. 

B.5 Conclusion 

We have shown a simple open source framework which allows us to easily create 

reproducible experiments in MATLAB. It does this by breaking computation 

into modular pieces and storing the intermediate results and the parameters 

which generated them. It intelligently recomputes blocks when the input to the 

block has changed. The modular components are easily interchanged, allowing 

evaluations which isolate and evaluate one component (e.g. the dictionary in a 

bag of features pipeline). 

I l l 



REFERENCES 

[AAB07] Emanuel Aldea, Jamal Atif, and Isabelle Bloch. "Image Classification 
Using Marginalized Kernels for Graphs." In Proc. CVPR, 2007. 

[AMF09] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. "From contours to 
regions: An empirical evaluation." In Proc. CVPR, 2009. 

[AT05] A. Agarwal and B. Triggs. "Hyperfeatures - Multilevel Local Coding 
for Visual Recognition." Technical report, INRIA, 2005. 

[BD95] J.B. Buckheit and D.L. Donoho. "Wavelab and reproducible research." 
Wavelets and statistics, p. 55, 1995. 

[BDG03] Kobus Barnard, Pinar Duygulu, Raghavendra Guru, Prasad Gabbur, 
and David Forsyth. "The effects of segmentation and feature choice 
in a translation model of object recognition." In Proc. CVPR, 2003. 

[BJ01] Y. Y. Boykov and M.-P. Jolly. "Interactive Graph Cuts for Optimality 
Boundary & Region Segmentation of Objects in N-D Images." In Proc. 
ICCV, 2001. 

[BK04] Yuri Boykov and Vladimir Kolmogorov. "An Experimental Compar­
ison of Min-Cut/Max-Flow Algorithms for Energy Minimization in 
Vision." In PAMI, 2004. 

[BL08] M. Blaschko and C. Lampert. "Learning to Localize Objects with 
Structured Output Regression." In Proc. ECCV, 2008. 

[BTG06] H. Bay, T. Tuytelaars, and L. Van Gool. "Surf: Speeded up robust 
features." In Proc. ECCV, 2006. 

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. "Efficient Approximate 
Energy Minimization via Graph Cuts." In PAMI, 2001. 

[Car06] MA Carreira-Perpinan. "Acceleration strategies for Gaussian mean-
shift image segmentation." In Proc. CVPR, 2006. 

[CDD04] G. Csurka, C. R. Dance, L. Dan, J. Willamowski, and C. Bray. "Visual 
Categorization with Bags of Keypoints." In Proc. ECCV, 2004. 

[CF07] L. Cao and L. Fei-Fei. "Spatially coherent latent topic model for con­
current object segmentation and classification." In Proc. ICCV, 2007. 

112 



[CLOl] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support 
vector machines, 2001. Software available at h t tp: / /www.csie .ntu . 
edu.tw/~cjl in/ l ibsvm. 

[CLW04] J.E. Cates, A.E. Lefohn, and R.T. Whitaker. "GIST: an interactive, 
GPU-based level set segmentation tool for 3D medical images." Med­
ical Image Analysis, 8(3):217-231, 2004. 

[CM02] D. Comaniciu and P. Meer. "Mean Shift: A Robust Approach Toward 
Feature Space Analysis." PAMI, 24(5), 2002. 

[CS10] J. Carreira and C. Sminchisescu. "Constrained Parametric Min-Cuts 
for Automatic Object Segmentation." In Proc. CVPR, 2010. 

[CSK08] B. Catanzaro, N. Sundaram, and K. Keutzer. "Fast support vector 
machine training and classification on graphics processors." In Pro­
ceedings of the 25th international conference on Machine learning, pp. 
104-111. ACM, 2008. 

[CSS09] B. Catanzaro, B.Y. Su, N. Sundaram, Y. Lee, M. Murphy, and 
K. Keutzer. "Efficient, high-quality image contour detection." In 
Proc. ICCV, 2009. 

[CV01] Tony Chan and Vese. "Active contours without edges." IEEE Trans­
actions on Image Processing, 10(2):266-277, feb 2001. 

[DT05] N. Dalai and B. Triggs. "Histograms of Oriented Gradients for Human 
Detection." In Proc. CVPR, 2005. 

[EHD00] Ahmed Elgammal, David Harwood, and Larry Davis. "Non-
parametric Model for Background Subtraction." In Proc. ECCV, pp. 
751-767, 2000. 

[ELZ02] H. Edelsbrunner, D. Letscher, and A. Zomorodian. "Topological per­
sistence and simplification." Discrete & Computational Geometry, 
28(4):511-533, 2002. 

[EVW] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, 
and A. Zisserman. "The PASCAL Visual Object Classes 
Challenge 2007 (VOC2007) Results." http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html. 

[FFP04] L. Fei-Fei, R. Fergus, and P. Perona. "Learning Generative Visual 
Models from Few Training Examples: An Incremental Bayesian Ap­
proach Tested on 101 Object Categories." In CVPR Workshop, 2004. 

113 

http://www.csie.ntu
http://www.pascal
http://network.org/challenges/VOC/voc2007/workshop/index.html


[FH75] K. Fukunaga and L. D. Hostler. "The Estimation of the Gradient of 
a Density Function, with Applications in Pattern Recognition." IEEE 
Trans, on Information Theory, 21(1), 1975. 

[FH04] P. F. Felzenszwalb and D. P. Huttenlocher. "Efficient Graph-Based 
Image Segmentation." IJCV, 59(2), 2004. 

[FM05] J. Fung and S. Mann. "OpenVIDIA: parallel GPU computer vision." 
In Proceedings of the 13th annual ACM international conference on 
Multimedia, p. 852, 2005. 

[FMR07] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. "A Dis-
criminatively Trained, Multiscale, Deformable Part Model." h t t p : 
/ /people .cs .uchicago.edu/~pff /papers / , 2007. 

[FV09] B. Fulkerson and A. Vedaldi. "Blocks: A MATLAB Experiment 
Framework." ht tp: / /www.vlblocks.org/ , 2009. 

[FVS08] B. Fulkerson, A. Vedaldi, and S. Soatto. "Localizing Objects With 
Smart Dictionaries." In Proc. ECCV, 2008. 

[FVS09] B. Fulkerson, A. Vedaldi, and S. Soatto. "Class Segmentation and 
Object Localization with Superpixel Neighborhoods." In Proc. ICCV, 
2009. 

[GBR08] C. Galleguillos, B. Babenko, A. Rabinovich, and S. Belongie. "Weakly 
Supervised Object Localization with Stable Segmentations." In Proc. 
ECCV, 2008. 

[GD06] K. Grauman and T. Darrell. "Pyramid Match Kernels: Discriminative 
Classification with Sets of Image Features." Technical Report MIT-
CSAIL-TR-2006-020, MIT, 2006. 

[GDB08] V. Garcia, E. Debreuve, and M. Barlaud. "Fast k nearest neighbor 
search using gpu." In Workshop on Computer Vision using GPUs, 
2008. 

[GP74] V. Guillemin and A. Pollack. Differential Topology. Prentice-Hall, 
1974. 

[GRC08] Stephen Gould, Jim Rodgers, David Cohen, Gal Elidan, and Daphne 
Koller. "Multi-Class Segmentation with Relative Location Prior." In 
IJCV, 2008. 

114 

http://www.vlblocks.org/


[GT07] R. Gentleman and D. Temple Lang. "Statistical analyses and repro­
ducible research." Journal of Computational and Graphical Statistics, 
16(l):l-23, 2007. 

[HB07] Zaid Harchaoui and Francis Bach. "Image Classification with Segmen­
tation Graph Kernels." In Proc. CVPR, 2007. 

[HMS07] S. Heymann, K. Mailer, A. Smolic, B. Froehlich, and T. Wiegand. 
"SIFT implementation and optimization for general-purpose GPU." 
In Proc. WSCG, 2007. 

[HZC04] X. He, R. Zemel, and M. Carreira-Perpinan. "Multiscale Conditional 
Random Fields for Image Labeling." In Proc. CVPR, 2004. 

[HZR06] X. He, R. Zemel, and D. Ray. "Learning and Incorporating Top-Down 
Cues in Image Segmentation." In Proc. ECCV, 2006. 

[KH05] Sanjiv Kumar and Martial Hebert. "A Hierachical Field Framework 
for Unified Context-Based Classification." In Proc. ICCV, 2005. 

[Kir96] A. Kirsch. "An Introduction to the Mathematical Theory of Inverse 
Problems." Springer-Verlag, New York, 1996. 

[KZ04] Vladimir Kolmogorov and Ramin Zabih. "What Energy Functions 
can be Minimized via Graph Cuts?" In PAMI, 2004. 

[LBH08] C. Lampert, M. Blaschko, and T. Hofmann. "Beyond Sliding Win­
dows: Object Localization by Efficient Subwindow Search." In Proc. 
CVPR, 2008. 

[LCS10] F. Li, J. Carreira, and C. Sminchisescu. "Object Recognition as Rank­
ing Holistic Figure-Ground Hypotheses." In Proc. CVPR, 2010. 

[LCW03] A. Lefohn, J. Cates, and R. Whitaker. "Interactive, gpu-based level 
sets for 3d segmentation." Medical Image Computing and Computer-
Assisted Intervention-MICCAI 2003, pp. 564-572, 2003. 

[Lei02] F. Leisch. "Sweave: Dynamic generation of statistical reports using 
literate data analysis." In Compstat, pp. 575-580, 2002. 

[LHS07] M. Leordeanu, M. Hebert, and R. Sukthankar. "Beyond Local Ap­
pearance: Category Recognition from Pairwise Interactions of Simple 
Features." In Proc. CVPR, 2007. 

115 



[LLS04] B. Leibe, A. Leonardis, and B. Schiele. "Combined Object Catego­
rization and Segmentation with Implicit Shape Model." In ECCV 
Workshop on Statistical Learning in Comp. Vision, 2004. 

[LM08] Yuping Lin and Gerard Medioni. "Mutual Information Computation 
and Maximization Using GPU." In Workshop on Computer Vision 
using GPUs, 2008. 

[LMP01] John Lafferty, Andrew McCallum, and Fernando Pereira. "Condi­
tional Random Fields: Probabilistic Models for Segmenting and La­
beling Sequence Data." In Proc. ICML, 2001. 

[LMS06] B. Leibe, K. Micolajckzyk, and B. Schiele. "Efficient clustering and 
matching for object class recognition." In Proc. BMVC, 2006. 

[Low99] D. G. Lowe. "Object Recognition from Local Scale-Invariant Fea­
tures." In Proc. ICCV, 1999. 

[Low04] D. G. Lowe. "Distinctive Image Features from Scale-Invariant Key-
points." IJCV, 2(60):91-110, 2004. 

[LR07] S. Lazebnik and M. Raginsky. "Learning Nearest-Neighbor Quantizers 
from Labeled Data by Information Loss Minimization." In Proc. Conf. 
on Artificial Intelligence and Statistics, 2007. 

[LS07a] H. Ling and S. Soatto. "Proximity Distribution Kernels for Geometric 
Context in Category Recognition." In Proc. CVPR, 2007. 

[LS07b] J. Liu and M. Shah. "Scene Modeling Using Co-Clustering." In Proc. 
ICCV, 2007. 

[LSP06] S. Lazebnik, C. Schmid, and J. Ponce. "Beyond Bag of Features: 
Spatial Pyramid Matching for Recognizing Natural Scene Categories." 
In Proc. CVPR, 2006. 

[LSY06] C. Lei, J. Selzer, and Y.H. Yang. "Region-tree based stereo using 
dynamic programming optimization." In Proc. CVPR, 2006. 

[MAF08] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. "Using Contours to 
Detect and Localize Junctions in Natural Images." In Proc. CVPR, 
2008. 

[MCU02] J. Matas, O. Chum, M. Urban, and T. Pajdla. "Robust Wide Baseline 
Stereo from Maximally Stable Extremal Regions." In Proc. BMVC, 
2002. 

116 



[Mil69] J. Milnor. Morse Theory. Annals of Mathematics Studies no. 51. 
Princeton University Press, 1969. 

[ML06] J. Mutch and D. G. Lowe. "Multiclass Object Recognition with 
Sparse, Localized Features." In Proc. CVPR, 2006. 

[MPW08] A.P. Moore, S. Prince, J. Warrell, U. Mohammed, and G. Jones. "Su­
perpixel Lattices." In Proc. CVPR, 2008. 

[MS04] K. Mikolajczyk and C. Schmid. "Scale & affine invariant interest point 
detectors." IJCV, ll(60):63-86, 2004. 

[MS06] M. Marszalek and C. Schmid. "Spatial Weighting for Bag-of-
Features." In Proc. CVPR, 2006. 

[MS07] M. Marszalek and C. Schmid. "Accurate Object Localization with 
Shape Masks." In Proc. CVPR, 2007. 

[MS08] J. Meltzer and S. Soatto. "Edge Descriptors for Robust Wide-Baseline 
Correspondence." In Proc. ICCV, 2008. 

[MT08] Erik Murphy-Chutorian and Mohan M. Trivedi. "Particle Filtering 
with Rendered Models: A Two Pass Approach to Multi-object 3D 
Tracking with the GPU." In Workshop on Computer Vision using 
GPUs, 2008. 

[MTJ06] Frank Moosmann, Bill Triggs, and Frederic Jurie. "Fast Discrimi­
native Visual Codebooks using Randomized Clustering Forests." In 
Proc. NIPS, 2006. 

[NS06] D. Nister and H. Stewenius. "Scalable Recognition with a Vocabulary 
Tree." In Proc. CVPR, 2006. 

[NTU07] Sebastian Nowozin, Koji Tsuda, Takeaki Uno, Taku Kudo, and 
Gokhan Baklr. "Weighted Substructure Mining for Image Analysis." 
In Proc. CVPR, 2007. 

[OP05] A. Opelt and A. Pinz. "Object Localization with Boosting and Weak 
Supervision for Generic Object Recognition." In Proc. SCIA, 2005. 

[PCI07] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. "Object 
retrieval with large vocabularies and fast spatial matching." In Proc. 
CVPR, 2007. 

[PDZ06] R.D. Peng, F. Dominici, and S.L. Zeger. "Reproducible epidemiologic 
research." American Journal of Epidemiology, 163(9):783, 2006. 

117 



[Por05] F. Porikli. "Integral Histogram: A Fast Way to Extract Histograms 
in Cartesian Spaces." In Proc. CVPR, 2005. 

[PS78] T. Poston and I. Stewart. Catastrophe theory and its applications. 
Pitman, London, 1978. 

[PSH08] C. Pantofaru, C. Schmid, and M. Hebert. "Object Recognition by 
Integrating Multiple Image Segmentations." In Proc. ECCV, 2008. 

[RES06] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. 
"Using Multiple Segmentations to Discover Objects and their Extent 
in Image Collections." In Proc. CVPR, 2006. 

[RM03] X. Ren and J. Malik. "Learning a Classification Model for Segmenta­
tion." In Proc. ICCV, 2003. 

[RobOl] C. P. Robert. The Bayesian Choice. Springer Verlag, New York, 2001. 

[Rud73] W. Rudin. Functional Analysis. McGraw-Hill, 1973. 

[RVG07] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Be-
longie. "Objects in Context." In Proc. ICCV, 2007. 

[SBC05] J. Shotton, A. Blake, and R. Cipolla. "Contour-Based Learning for 
Object Detection." In Proc. ICCV, 2005. 

[SBO07] S. Sonnenburg, M.L. Braun, C.S. Ong, S. Bengio, L. Bottou, 
G. Holmes, Y. LeCun, K.R. Miiller, F.Pereira, C.E. Rasmussen, 
G. Ratsch, B. Scholkopf, A. Smola, P. Vincent, J. Weston, and 
R. Williamson. "The need for open source software in machine learn­
ing." Journal of Machine Learning Research, 8:2443-2466, 2007. 

[SFP06] S.N. Sinha, J.M. Frahm, M. Pollefeys, and Y. Gene. "GPU-based 
video feature tracking and matching." In EDGE, Workshop on Edge 
Computing Using New Commodity Architectures, volume 278. Cite-
seer, 2006. 

[Sha98] J. Shao. Mathematical Statistics. Springer Verlag, 1998. 

[SHN03] A. Sherbondy, M. Houston, and S. Napel. "Fast volume segmentation 
with simultaneous visualization using programmable graphics hard­
ware." In Proceedings of the 14th IEEE Visualization 2003 (VIS'03), 
p. 23. IEEE Computer Society, 2003. 

[SJC08] J. Shotton, M. Johnson, and R. Cipolla. "Semantic Texton Forests for 
Image Categorization and Segmentation." In Proc. CVPR, 2008 

118 



[SKK07] Y. A. Sheikh, E. A. Khan, and T. Kanade. "Mode-seeking by medoid-
shifts." In Proc. CVPR, 2007. 

[Slo03] N. Slonim. "IBA.l.O Matlab Code for Information Bottleneck Clus­
tering Algorithms." http://www.princeton.edu/~nslonim/, 2003. 

[SMOO] J. Shi and J. Malik. "Normalized Cuts and Image Segmentation." 
PAMI, 22(8):888, 2000. 

[Soa09] S. Soatto. "Actionable Information in Vision." In Proceedings of the 
International Conference on Computer Vision, October 2009. 

[SPV09] G. Sundaramoorthi, P. Petersen, V. S. Varadarajan, and S. Soatto. 
"On the set of images modulo viewpoint and contrast changes." In 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, June 2009. 

[ST99] N. Slonim and N. Tishby. "Agglomerative Information Bottleneck." 
In Proc. NIPS, 1999. 

[Sto09] V. Stodden. "Enabling reproducible research: licensing for scientific 
innovation." International Journal of Communications Law & Policy, 
13:1, 2009. 

[SWR06] J. Shotton, J. Winn, C. Rother, and A. Criminisi. "TextonBoost: 
Joint Appearance, Shape and Context Modeling for Multi-Class Ob­
ject Recognition and Segmentation." In Proc. ECCV, 2006. 

[TLF08] E. Tola, V. Lepetit, and P. Fua. "A Fast Local Descriptor for Dense 
Matching." In Proc. CVPR, 2008. 

[TS07] T. Tuytelaars and C. Schmid. "Vector Quantizing Feature Space with 
a Regular Lattice." In Proc. ICCV, 2007. 

[VF08] A. Vedaldi and B. Fulkerson. "VLFeat: An Open and Portable Library 
of Computer Vision Algorithms." ht tp: / /www.vlfeat .org/ , 2008. 

[VF10] A. Vedaldi and B. Fulkerson. "VLFeat - An open and portable library 
of computer vision algorithms." In Proceedings of the 18th annual 
ACM international conference on Multimedia, October 2010. 

[VJOl] P. Viola and M. Jones. "Robust Real-time Object Detection." In Sec­
ond International Workshop on Statistical and Computational Theo­
ries of Vision, Vancouver, Canada, 2001. 

119 

http://www.princeton.edu/~nslonim/
http://www.vlfeat.org/


[VS05] A. Vedaldi and S. Soatto. "Features for Recognition: Viewpoint In-
variance for Non-Planar Scenes." In Proc. ICCV, 2005. 

[VS08] A. Vedaldi and S. Soatto. "Quick Shift and Kernel Methods for Mode 
Seeking." In Proc. ECCV, 2008. 

[VT07] J. Verbeek and B. Triggs. "Region Classification with Markov Field 
Aspect Models." In Proc. CVPR, 2007. 

[VZ10] A. Vedaldi and A. Zisserman. "Efficient additive kernels via explicit 
feature maps." In Proc. CVPR, 2010. 

[WCM05] J. Winn, A. Criminisi, and T. Minka. "Object Categorization by 
Learned Universal Visual Dictionary." In Proc. ICCV, 2005. 

[WDS07] X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu. "Shape 
and Appearance Context Modeling." In Proc. ICCV, 2007. 

[WDS08] C. Wojek, G. Dorko, A. Schulz, and B. Schiele. "Sliding-windows for 
rapid object class localization: A parallel technique." Pattern Recog­
nition, pp. 71-81, 2008. 

[WOG06] H. Winnemoller, S.C. Olsen, and B. Gooch. "Real-time video abstrac­
tion." ACM Transactions on Graphics (TOG), 25(3):1226, 2006. 

[YM08] Qian Yu and Gerard Medioni. "A GPU-based implementation of Mo­
tion Detection from a Moving Platform." In Workshop on Computer 
Vision using GPUs, 2008. 

[ZBM06] H. Zhang, A. C. Berg, M. Maire, and J. Malik. "SVM-KNN: Discrim­
inative Nearest Neighbor Classification for Visual Category Recogni­
tion." In Proc. CVPR, 2006. 

[ZML06] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. "Local fea­
tures and kernels for classification of texture and object categories: A 
comprehensive study." IJCV, 2006. 

120 




