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Abstract

Simple recurrent networks have been used extensively in
modelling of learning various aspects of linguistic
structure. We discuss how such networks can be trained,
and empirically compare two training algorithms,
Elman’'s "copyback” regime and back-propagation
through time, on simple tasks. Although these studies
reveal that the copyback architecture has only a limited
ability to pay attention to past input, other work has
shown that this scheme can learn interesting linguistic
structure in small grammars. [n particular, the hidden
unit activations cluster together to reveal linguistically
interesting categories. We explore various ways in which
this clustering of hidden units can be performed, and find
that a wide variety of different measures produce similar
results and appear to be implicit in the statisticsof the
sequences learnt. This perspective suggests a number of
avenues for further research.

Introduction

Simple recurrent neural networks (SRNs) developed by
Jordan (1986) and Eilman (1988) provide a powerful tool
with which to model the learning of many aspects of
linguistic structure (for example, Elman 1990, 1991;
Shillcock, Levy & Chater 1991) and there has been some
exploration of their computational properties (Chater
1989: Cleermans. Servan-Schrieber & McClelland 1989:
Servan-Schrieber, Cleeremans & McClelland 1991). The
presence of recurrent connections allows past activation
1o influence current output, which means that output can
respond sequential structure in the input. The extent to
which such networks can be taught to learn interesting
sequential structure depends on the learning algonthm
employed. A natural approach is to apply the back-
propagauon training algonthm which has proved so
successful in training non-recurrent feedforward
networks to learn interesting static input-output pattems.

The structure of the paper is as follows. First we discuss
a number of ways in which the back-propagation
algorithm can be adapted to train recurrent networks (o
learn sequences. concenmaling on two options, Elman’s
(1990) "copyback™ scheme, and back-propagation
through time (Rumelhart, Hinton & Williams 1986). We
note that there are theoretical reasons to suppose that the
copy-back regime will learn less well. and this
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conclusion is bomne out in our simulations. However, the
copy-back approach is computationally inexpensive and
has provided impressive results in a number of language
processing tasks. We investigate the scope of this
method further, and follow Elman in investigating the
nature of the hidden unit representations developed for a
network which learns to predict the next element in
sequences generated by a simple grammar. A number of
very different measures over the hidden units are found
to generate very similar syntactic/semantic clustering,
and these clusters are also implicit in the statistics of the
sequences learnt. This suggests that network
performance can usefully be analysed in terms of the
statistical structure of the input sequences, and that the
applicability of SRNs to real narural language data can
be assessed by analysing relevant aspects of its
statistical structure

Training SRNs

Backpropagation cannot directly be applied to SRNs
since the algorithm applies only to feedforward
networks. For these. back-propagation performs
gradient descent in the sum-squared error over the finite
number of input-output pairs in the training set. To
apply back-propagation to recurrent networks. the SRN
must be "unfolded” into a feedforward network which is
then trained in the convenuonal way. The most popular
method of training SRNs involves unfolding the network
by providing an additional input - the context units -
which comresponds to the previous valu 's of the hidden
units (Elman 1990) (Figure la, Ic). The context units are
dependent on the previous inputs, among which is the
previous value of the context units. Hence the behaviour
of the network is influenced not just by the current input
but by the sequence of past inputs. While activation is
propagated forwards through the network from arbitrarily
far back in time. error is only propagated back to the
context units.

An alternative approach is to unfold the network through
several time steps (Rumelhart, Hinton & Williams 1986)
so that each weight has several "virtual incamations” and
to back-propagate through the resulting network (Figure
1a, Ic). The overall weight change is simply the sum of
the changes recommended for each incarnation. This



“"back-propagation through time" can in principle be
back-propagated through the entire training history of the
network (Rohwer personal communication) but is
typically implemented by unfolding through a small
number (here we shall use 5) time steps. The copy-back
scheme can be viewed as a special case of back-
propagation through time. in which the back-propagation
of error stops at the first copy of the hidden units - the
context units.

The more the network is unfolded. the better the
approximation of the feedforward network to the
underlying recurrent network. and the better the network
leamns to respond to sequential material. The minimal
unfolding embodied in copy-back scheme should
therefore produce the poorest leaming, although it has

Figure | Unfolding a recurrent neurat network (1a), for
back-propagation through time (1b) and copy-back
fraining (Ic).
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the considerable advantage of being the cheapest
computationally. This is borne out below in the
comparilive studies below.

A natural assumption would be that the number of steps
back that error is propagated will precisely fix the
number of steps "back” the network can leam about. If
this were true, the copy-back scheme would only be able
to respond to the current and previous input. and would
thus not be able to learn any interesting sequences.
However, as long as the relevant temporally distant
information "percolates through”, even in some degraded
form. to a point in the unfolded network to which error is
propagated, the weights forward of that point can be
adjusted to utilize that information successfully. Hence,
the last point in the network to which error is propagated
forms a "bottleneck”. at which temporally more distant
information must pass if the network is to be able to
learn to respond to it (see Figure 2) (Chater 1989).

Figure 2 Back-propagation in the copy-back training
regime.

In many tasks, temporally distant information beyond the
bottleneck, is relevant to predicting intervening material .
This means that the network encodes that infarmation in
its hidden units, 1o predict that more local information,




which forces this information through the bottleneck.
Hence the SRN is able to leam to respond to this distant
information successfully. However, in a task in which
temporally distant information is not correlated with
intervening matenal, such as the task of leaming to be
delay line, reported below, learming  with the copy-back
scheme should be poor.

While our primary interest in this first set of simulations
was comparing the performance of copy-back and back-
propagation through time, a secondary interest was in
the effect of using or not using context units in back-
propagation through time. If the network is unfolded
several tme-steps (5 in the simulation we report), the
contribution of the context units at the bottleneck to the
final output may be very small, and the large number of
intervening layers may make it difficult to learn to
respond to this input, even if it is informauve. From a
theoretical point of view, not using context units is
attractive, since the network can then be viewed as
learning a fixed input-out put set (or a sample from a
fixed distribution), and hence the proof that back-
propagation performance gradient descent is valid. For
most problems, the presence or absence of context units
seems to have little effect on performance, and we
discuss this briefly below.

Copy-Back and Backpropagation Through
Time

We report simulations on two very simple tasks using
binary sequences, discrete XOR and learning to the a
delay line.

Discrete XOR

Consider a binary sequence in which two out of three bits
are generated at random. and the third is the XOR of the
previous two. The task is (o auempt (o predict the next
value in the sequence. This task is difficult, since only
every third bit can is in principle predictable. Optimal
performance is to correctly predict these bits, and to
output 0.5 otherwise.

| Archutecture Hidden Average 1:

I Caits squared errors |
| ] Posn | Posa 2 Posnl !

| copy back | 4 0273 %0003 02730003 0.16=002 |

| ecay back [ 7 10252+0002 0238 <0002 0.11=001 |

| copy back [ 10 10.233=0001 0259 =0002 0.10=00l |

| unfolded with contexts 2 0267 0004 0271 =0.002 020 =002 |

; unfolded with contexts 3 0276 = 0004 0230+000] 016003

| unfolded with contexts | 4 [ 0.273 % 0.004 0.2%9 £ 0.004 0.18 = 0.03

| unfolded with contexts | 5 [/ 0.273 +£0.004 0253 £0.003 0.12 = 0.02

I[_ﬁve unfolds no contexts | 2 §0.263 =0.004 027040004 0.19=0.02

| five unfolds no contexts | 3 | 0.232£0.003 0285 +0003 0.12%0.01

| five unfolds no contexts 4+ ||0251 £0003 023 0003 0.11 =002

| five uafolds oo contexts | 5 [ 0.239 £0.001 0.237 £ 0001 0.089 = 0.004 |

Table | : Performance on the discrete XOR rask with 30 epochs of training

Copy-back and back-propagation schemes (both with and
without context) were trained on XOR (Table 1). The
results were averaged over 50 trials, with 50 training
epochs over 3000 input-output pairs with learning rate
0.1 and momentum 0.9. For back-propagation through
ume, the net was unfolded 5 time steps. The weights
were initialised randomly between -5 and . If the weight
starts are smaller than this, "copyback” leaming is slow,
perhaps because for the copy-back regime, perhaps
because for small inputs the sigmoid activation function
is nearly linear, and hence unable to compute XOR .
Notice that the standard deviations of the errors obtained
are small throughout.

For a network of a given size, performance is far better
with back-propagation through time than using the copy-
back scheme. which require far more hidden units to
attain comparable results. This pattern is consistently
obtained in a comprehensive range of simulations
(Conkey 1991).

Turning to our second concern, performance using back-
propagation through time is not significantly different
with or without context, despite the fact that context
could in principle have provided very useful information.
This is because the no context network may not be able
to determine from just 5 time steps which bits are
predictable and which are not. If the last five bits were

01110

then the third and fifth bits are both the XOR of their
predecessors. In this case it is not in principle possible
for these unfolded nets without context units to know
whether the next bit is the result of an XOR or is random.
Since this ambiguity occurs in almost 60% of cases, the
ability to use past context to disambiguate (effectively
storing a regular "pulse” indicating which bits are
predictable) would be advantageous. However, it does
not appear (o be possible to learn to utilize this
information in practice.

Learning to be a delay line.

The analysis of the copy-back leaming algorithm above
suggested that it should be poor at learning to respond to
temporally distant input. unless the temporally distant
information has been used in intermediaie predictions.
This suggests that while in many interesting problems
(such as that of learning a grammar with some recursive
structure, detailed in Elman (1991)) the net can respond
to temporally distant information, this will extremely
difficult if the nature of the distant dependency is
independent of the intervening material. The simplest
such task is learning to be a delay line - to reproduce a
random binary input siream delayed by several time

Steps.

A recurrent network with n+1 hidden units can act as a
delay line of n. given appropriate weights. One
intwitively attractive solution is for the hidden units to act
as buffers for the input so that one unit has output at time
t of i(t-1), another i(t-2) and so on back to i(t-n). Figure 3



illustrates weights that would implement this solution for
adelay line of 1 and a network with two hidden units.

Table 2 shows a typical sample of results. While back-
propagation through time is able 10 lean the delay line
task quite well (and with only n+1 hidden units for small
delays n), the copy-back scheme can only leam to
respond to small delays with relatively large numbers of
hidden units. This is explicable in t1erms of the theoreucal
discussion above - the more hidden units the more
likelihood that relevant informaton will by chance
percolate through the network and thus that the network
will be able to learn to use this information. Learning
performance is also very much less consistent with the
copy-back regime.

Figure 3 Implementing a delay of n time steps with n+1
hidden units.

The inability of the copy-back scheme to learn to
respond to long time delays contrasts with good
performance reporied predicting dependencies in small
scale language tasks where the intervening material is
relevant (Elman 1991).

The resuits of these experiments bear out the theoretical
analysis that back-propagation through time leads to
better learning than the copy-back scheme. However.
back-propagation through time is computationally more
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expensive. and the copy-back scheme may be able to
learn many interesting tasks. One particularly intriguing
result is that the averaged hidden unit patterns appear to
encode the syntactic/semantic categories for a toy
grammar (Elman; 1990) . The studies reported below
repeat, extend and analyse this result, and argue that such
a clustering is to be expected given the statistics of the
sequences leant,

Average
Architecture | Delay | Hidden | Learning | squared | Passes
units raLe eTTor

copy back 1 2 0.05 0.7 | <100
copy back 1 2 0.10 0.21 < 100
copy back 1 ] 0.05 0.2 < 100
copy back 1 3 0.10 0.16 < 100
copy back 1 i 0.03 013 | <100
copy back l 4 0.10 0.097 | < 100
unfolded 1 2 0.10 0.001 3

copy back 2 3 005 | 0254 | <100
copy back 2 3 0.10 | 025 | <100
copy back 2 4 0.05 0.262 | < 100
copy back 2 4 0.10 0.260 | <100
copy back 2 T 0.05 0.278 | <100
copy back 2 h 0.10 0.264 < 100
copy back 2 0 | 005 | 0160 | <100
copy back 2 10 0.10 0.239 < 100
unfolded 2 | 3 0.0 | 0.0 3

Table 2 : Learning to be a delay line

Incidently Recognising Linguistic Structure

Elman used to copy-back regime to train a net to predict
the next item in a continuous text sequence, generated by
a simple grammar (borrowed from Elman 1988; 1990).
Whereas Elman represented each "word" by a random bit
vector. used a completely localist representation, thus
using 29 input units to represent the 29 words. As in
Elman's simulations there is no explicit marker for the
end of a sentence. [50 hidden units and 150
corresponding context units were used.

Conditional probabilities for the next word. given the
sentence so far were calculated from the data set. The
RMS errors relative to this benchmarkwere 0.2 per
patternin both cases. whereas Elman obtained 0.05. This
difference may be a result of our choice of a localist
input representation. We then followed Elman in cluster
analysing the hidden unit activation evoked on
presentation of each word. These were averaged to give a
single 150 element vector for each of the 29 words.

The results from a typical net (Figure 4) do not give as
good a clustering as that obtained by Elman. There is
poor separation of nouns and verbs, and some confusion
between different classes of each. Clustering on the
basis of current input may not be the best measure, since



the hidden unit values must encode previous input
relevant to prediction, not just the current word. We also
clustered hidden unit states averaged by the entirey
Hence a more attractive alternative is (o average hidden
unit patterns together on the basis of the word predicted.

L o TN
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Figure 4 Clustering by current word

This measure, which completely crosslassifies the data
with respect 1o the original measure, does indeed produce
much bener clusters, shown in Figure 5. Using this
measure the clusters obtained well reflect the underlying
syntactic categories of the grammar, with. for examples,
nouns being separated from verbs. and different kinds of
nouns being very well segrated and verbs segregated
somewhat less precisely.

A further possibility is to cluster not the hidden unit
pattern associated with an incoming word, but the change
in hidden unit representation brought about by that word.
Again a good clustering is obtained (Figure 6),
comparable in quality with that obtained by clustering
with respect to the target word.

It seems that a vanety of measures of hidden unit values
produce clusters corresponding to linguistically
interesting categories. Is there an "optumal” clustering of
this data set to which all of these measures are
approximating? Not really - each of the measures
considered above correspond to statstics of the data sets,
which can be directly measured. For example, Elman's
original measure of averaging hidden units on the basis
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Figure 5 Clustering by predicted word
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Figure 6 Clustering by change of hidden unit pattern



of the past word corresponds to grouping words by the
conditional probabilities of successive words. We
measured this quantity directly, and then cluster analysed
(Figure 7) to produce very similar ressults to those
obtained from the network (Figure 4) - this means that
the network is successfully sampling the relevant
statistic. Similar results can be obtained by companng
the two other measures with stausucal analogues
(clustering words on the basis of the conditional
probabilities of the preceding words. and the change in
conditional probabilities expected after a word is input,
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Figure 7 Conditional probabilities clusiered by
preceding word

respectively). Since the copy-back scheme is sampling
these stanstics successfully, there seems to be no room
for improvement using back-propagation through time.
and thus we predict that the clusters from back-
propagation through time will produce similar results.
The limitation on performance is the structure of the data
rather than nature of the network used.

These results suggests that the hidden unit patterns that
recurrent neural networks develop can be viewed as
reflecting quite directly the staustical structure of the
sequences learnt. Furthermore. particular statistical
measures of hidden unit acuvation may closely
correspond to a related staustic of the sequence itself.
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Conclusion

The first set of simulauons reporied confirmed the
theoretically motivated expectation that the back-
propagation through time is superior 10 (less expensive)
copy-back mraining for learning sequential structure.
Experiments with large copy-back networks suggest that
the hidden unit representation is successfully sampling
statistics of the underlying sequential matenal. and we
predict that back-propagauon through time should.
therefore, produce very similar clusters. Of course, if
the underlying grammar, and hence the relevant
statistics, are more complex, then back-propagation
through time may then be able to sample these statistics
better.

This suggests three interesting avenues for further
research: 1) to investigate further the relationship
between statistical analysis of the hiddenunit
representations and direct analysis of the original data
set, both using the copy-back and back-propagation
through time regimes: 2) to explore real nawral language
data directly by cluster analysing using simple staustics
to explore what peformance can be expected from a
neural network model; 3) 1o investigate if statistics which
are revealing of linguistic structure can be implemented
more directly in a network, so that a full-size network
can be built which is able (0 handle real natural language
data. These last two avenues have recently been
explored by Finch & Chater (1991) with encouraging
results.
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