
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Symmetric Cryptography: New Definitions and Schemes

Permalink
https://escholarship.org/uc/item/9x75r04r

Author
Ng, Ruth Ii-Yung

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9x75r04r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Symmetric Cryptography: New Definitions and Schemes

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Ruth Ii-Yung Ng

Committee in charge:

Professor Mihir Bellare, Chair
Professor David Cash
Professor Alin Deutsch
Professor Farinaz Koushanfar
Professor Daniele Micciancio
Professor Deian Stefan

2021

Copyright

Ruth Ii-Yung Ng, 2021

All rights reserved.

The Dissertation of Ruth Ii-Yung Ng is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2021

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . x

Acknowledgements . xi

Vita . xiii

Abstract of the Dissertation . xiv

Introduction . 1

Chapter 1 Nonces are Noticed: AEAD Revisited . 5
1.1 Introduction . 5
1.2 Preliminaries . 16
1.3 Two frameworks for nonce-based encryption . 19
1.4 Some general results . 26
1.5 Usage of NBE1: The Transmit-Nonce transform . 31
1.6 Basic transforms . 34

1.6.1 Preliminaries . 34
1.6.2 The HN1 transform . 35
1.6.3 The HN2 transform . 40
1.6.4 The HN3 transform . 45

1.7 Advanced transforms . 48
1.7.1 Advanced security of HN1 . 48
1.7.2 Advanced security of HN2 . 50
1.7.3 The HN4 transform . 53
1.7.4 The HN5 transform . 57

1.8 Dedicated transform for GCM . 62
1.9 A real-world perspective . 74
1.10 Acknowledgements . 74

Chapter 2 Improved Structured Encryption for SQL Databases via Hybrid Indexing . . 76
2.1 Introduction . 76
2.2 Preliminaries . 79
2.3 Structured Indexing for SQL data types . 80

2.3.1 SQL Data Types . 84
2.3.2 Constructing StE for SQL Data Types Using Encrypted Indexes 87

2.4 Partially Precomputed Joins . 90

iv

2.4.1 Indexing of Non-Recursive Joins . 90
2.4.2 PP indexing for recursive queries . 95

2.5 Hybrid indexing . 110
2.6 Simulations on Real-World Datasets . 117
2.7 Conclusion . 122
2.8 Acknowledgements . 124

Chapter 3 Composition of Structured Encryption and its Relation to Key-Dependent
Security . 125

3.1 Introduction . 125
3.2 Preliminaries . 129
3.3 StE for Double-Level Indexing . 132
3.4 “Composite” Double-Level Indexing . 136

3.4.1 Inconsistent simulators in prior work. 141
3.5 “Monolithic” Double-Level Indexing via Key-

Dependent AYE . 143
3.6 KD-Secure StE for Broader Function Classes . 156

3.6.1 KD-security of Response-Revealing AYE . 158
3.6.2 KD-security of Response-Hiding AYE . 160
3.6.3 KD-security of Response-Flexible AYE . 169

3.7 Acknowledgements . 169

Bibliography . 170

v

LIST OF FIGURES

Figure 1.1. Game defining (multi-user) PRF security for function family F. 19

Figure 1.2. Game defining AE1-security of NBE1 scheme SE1, game defining AE2-
security of NBE2 scheme SE2, and some classes of adversaries, leading to
different security notions, where x ∈ {ae1,ae2}. 21

Figure 1.3. Games defining authenticity of NBE1 scheme SE1 (left) and NBE2 scheme
SE2 (right). 25

Figure 1.4. Games used in proving Theorem 1 (left) and Theorem 1 (right). 28

Figure 1.5. Pseudocode and pictorial descriptions of NBE2 schemes’ algorithms. From
top to bottom: SEHN1 = HN1[SE1,F], SEHN2 = HN2[SE1, ℓ,E,Spl] and
SEHN3 = HN3[SE1,F]. 36

Figure 1.6. Adversary A1 used in proving Equation (1.1). 37

Figure 1.7. Games and adversaries used in proof of Equation (1.1). FIN is common to
all games. 38

Figure 1.8. Adversary A1 used in proving Equations (1.3) and (1.8). 43

Figure 1.9. Games and adversaries used in proof of Equation (1.4). G0,G1 are also
used in the proof of Equation (1.9). FIN are common to all games. 44

Figure 1.10. Games and adversaries used in proof of Equation (1.5). FIN is common to
all games. 47

Figure 1.11. Pseudocode and pictorial descriptions of NBE2 schemes constructed using
our advanced transforms. From top to bottom: SEHN4 = HN4[SE1, ℓ,F]
and SEHN5 = HN5[TE, ℓ, ℓz]. 49

Figure 1.12. Games G2,G3 used in proof of Equation (1.9). 51

Figure 1.13. Games and adversaries used in proof of Equation (1.11). Note that F.D=
SE1.NS×SE1.MS×SE1.HS, as required in th definition of HN4 in Sec-
tion 1.7. 55

Figure 1.14. Games and adversaries used in proof of Equation (1.12). 56

Figure 1.15. Game defining (multi-user) PRF security for tweakable cipher TE (left)
and game defining (multi-user) PRP-CCA security for TE (right). 58

Figure 1.16. Adversaries used in the proof of Theorem 10. 60

vi

Figure 1.17. Encryption and decryption algorithms of NBE1 scheme SE1= CAU1[E,
H, ℓ] and NBE2 scheme SE2= CAU2[E,H, ℓ]. SE2’s encryption algorithm
uses that of SE1 as a subroutine. 63

Figure 1.18. Game defining AXU security for function family H. 66

Figure 1.19. First set of games used in proof of Theorem 12. Next to procedure names,
we indicate the games to which they belong. Unannotated procedures
belong to all games in the Figure. 68

Figure 1.20. On the top are further games used in the proof of Theorem 12. Lines may
be annotated with the names of games which include them, procedures
whose names are unannotated belonging to all games. On the bottom left
is a final game and on the bottom right is the axu-adversary. 71

Figure 2.1. Games used in defining IND$ security of SE scheme SE (right) and PRF
security of function family F (left) . 80

Figure 2.2. Algorithms for RH dictionary encryption scheme Dyeπ and RR multimap
encryption scheme Mmerr

π . 82

Figure 2.3. Games used in defining correctness for StE (structured encryption scheme
for ADT) and semantic security for StI (structured indexing scheme for
ADT) with respect to leakage algorithm L and simulator S. 83

Figure 2.4. Examples of SQL relations R1,R2 and the output of join (▷◁) and select (σ)
operations on them. 86

Figure 2.5. Algorithms and for structured encryption scheme StE= SqlStE[StI,SE,F]
expressed both in pseudocode (top) and diagrammatically (bottom), and
its leakage algorithm L (middle). Dyeπ is the RH dictionary encryption
scheme Dyeπ in Section 2.3 and Li is StI’s leakage profile. 88

Figure 2.6. Simulator, adversaries and games used in the proof of Theorem 13. 91

Figure 2.8. Simulators (right) and adversaries (left) used in the proof of Theorem 14. . 95

Figure 2.9. Algorithms for PpSj the StI scheme for SjDT using PP indexing. 98

Figure 2.10. Algorithms for FpSj, the StI scheme for SjDT using FP indexing. 100

Figure 2.11. Leakage profile for PpSj where RS,L,HF,QP compute the recursion struc-
ture leakage, Mme’s leakage profile, hashset filtering results and hashset
query pattern respectively. 103

vii

Figure 2.12. Simulator (top) and adversaries (bottom) used in the proof of Theorem 15.
In Sp, S is a simulator for Mme. Note that when Af (from Theorem 15) is
run it randomly selects one of A1,A2 and runs it. 106

Figure 2.13. Leakage profile for FpSj. Here, L is the leakage algorithm for Mmerr
π and

subroutines IJ,HF,QP,RS compute the leakage associated to internal joins,
hashset filtering, hashset query patterns and query recursion structures. . . 108

Figure 2.14. Simulator used in the proof of Theorem 16 where S is a simulator for
Mmerr

π . 109

Figure 2.15. Data/ query processing in unencrypted SQL databases (left) and the analo-
gous processes using SqlStE with hybrid indexing (right). 110

Figure 2.16. Algorithms for HybStI, the StI scheme for HybDT using hybrid indexing.
HybFinalize is a recursively called subroutine used in HybStI.Fin. 112

Figure 2.17. Leakage algorithm used in Theorem 17, the proof of security for hybrid
StI scheme HybStI. The subroutines HF, IJ,QP are given in Fig. 2.13. 114

Figure 2.18. EvalBW algorithm (left) defined in terms of precomputed statistics (right)
stored on the client. Our heuristic assumes that q incurs bandwidth
∑i∈B.LblsB[i] where B = EvalBW(q). 115

Figure 3.2. Leakage profiles for “standard” RR and RH AYE, and an example of each
such scheme. 135

Figure 3.3. Algorithms (left), leakage algorithm (middle) and simulator (right) for
“composite” StE scheme Com= ComT[Ayeh,Ayer] for DLdt. Here, Ayeh,
Ayer are RH and RR AYEs respectively with leakage algorithms and simu-
lators Lh,Sh,Lr,Sr. Com is secure if Ayer has content oblivious leakage. . 137

Figure 3.4. Top: Algorithms (left) and leakage profile (right) for RF AYE scheme
Ayef = RfT[Ayer,SE,F] where Ayer,SE,F is a RR AYE scheme (with leak-
age algorithm L), a symmetric encryption scheme and a function family
respectively. Bottom: “monolithic” StE scheme Mon= MonT[Ayef] 143

Figure 3.5. Left: Game defining adaptive F -semantic security of StE for function class
F with respect to L,S,A. Right: Leakage algorithm (top) and simulator
(bottom) for “monolithic” StE scheme Mon= MonT[Ayef] where Ayef is
an RF AYE scheme (with respect to Lf,Sf). 145

Figure 3.6. Adversaries and games used in proof of Theorem 19. Here, Enc,Tok are
the algorithms used in the definition of Aye as a PRF-based scheme. 147

viii

Figure 3.7. Simulator (top left) and adversaries used in proof of Theorem 20. In Ase,
M is the maximum number of queries response-hiding queries A makes to
TOK. 149

Figure 3.8. Games used in proof of Theorem 20. 150

Figure 3.9. Adversary used in proof of Theorem 21. 153

Figure 3.10. Key-storing adversary used in Theorem 22 (left) and token forgery game
(right) where StE is an StE scheme for DT with leakage algorithm L and
simulator S. 157

Figure 3.11. Adversaries and games used in proof of Theorem 22. Ayer is a RR AYE
scheme, L is a leakage algorithm and S is a simulator. 159

Figure 3.12. Key-exfiltration game (left) where StE is an StE scheme for DT and key-
retrieving adversary Ah (right) which runs key-exfiltration adversary Ae. . 160

Figure 3.13. Adversaries and games used in in the proof of Theorem 23 where Ae is
a key-exfiltration adversary for RH AYE scheme Ayeh, L is a leakage
algorithm and S is a simulator. 162

Figure 3.14. Algorithms (left) and leakage algorithm (right) for Fff-secure RH AYE
scheme Ayeff = FfT[Aye,SE] constructed using AYE scheme Aye (with
leakage algorithm L) and KDM-secure SE scheme SE. 165

Figure 3.15. Adversaries and games used in proof of Theorem 24. 166

ix

LIST OF TABLES

Table 1.1. Security attributes of the NBE2 schemes defined by our HN transforms. A
blank entry in the Basic column means the transform is not for that purpose.
Note that the advanced security of HN1 and HN2 only hold under certain
conditions. 12

Table 2.1. Summary statistics for the Chicago (left) and Sakila (right) data used in our
simulations. 118

Table 2.2. Simulated server storage for each data set using each of our schemes in
terms of multimap (MM) labels/ values and hashset (HS) values broken
down by the query type being indexed (i.e. relation retrievals, non-recursive/
recursive joins, or selections). 120

Table 2.3. Breakdown of all possible non-recursive join queries which returns at least
one row by join types. For each type, we simulated the number of rows that
would be sent using FP and PP indexing, and report the minimum, average
and maximum overhead incurred. 121

Table 2.4. On randomly generated queries involving the indicated number of joins
(▷◁) and selects (σ), we report the minimum, average and maximum ratios
of rows sent using each indexing technique compared to the theoretical
minimum possible. 123

Table 2.5. On randomly generated queries involving the indicated number of joins (▷◁)
and selects (σ), we report the accuracy of our heuristic under different client
storage. When a suboptimal query execution plan is returned, we report the
point at which our heuristic fails (with R3 being the closest to success). . . . 123

x

ACKNOWLEDGEMENTS

I want to thank all those who contributed to my PhD in one way or another. There are

so many people without whom I would not have made it here. Of these, I especially thank the

following people:

My advisor, Mihir Bellare, for his support and guidance during this PhD process. I have

the highest admiration for his critical thinking and attention to detail, and consider it a great

honor to have been advised by him.

David Cash for his guidance in the projects we have done together. Through his leadership

and bountiful patience for me, I have learned so much about how to be a better researcher.

Khoongming Khoo and Ariel Feldman who introduced me to research and aided me in

getting to UCSD.

All who have researched with me these years: Mihir Bellare, David Cash, Francesca

Falzon, Alexander Hoover, William Hoover, Adam Rivkin, Jiahao Sun and Björn Tackmann.

Your ideas and hard work inspire me and I would not be here without you all.

The incredibly supportive computer science communities I have been a part of at UCSD

and UChicago. In particular, I thank the graduate students I have talked research (and so much

more) with all these years for their companionship and camaraderie.

DSO National Laboratories in Singapore which has financially supported the entirety of

my PhD process.

My family and friends for their encouragement and love. Thanks especially to Patrick

Chen who has been right there beside me this entire PhD journey.

Chapter 1, in full, is a reprint of the material as it appears in Advances in Cryptology –

CRYPTO 2019. Bellare, Mihir; Ng, Ruth; Tackmann, Björn, Springer Lecture Notes in Computer

Science volume 11692, 2019. The dissertation author was the primary investigator and author of

this paper.

Chapter 2, in full, is a reprint of the material as it appears in International Conference on

Applied Cryptography and Network Security – ACNS 2021. Cash, David; Ng, Ruth; Rivkin,

xi

Adam, Springer Lecture Notes in Computer Science volume 12727, 2021. The dissertation

author was the primary investigator and author of this paper.

Chapter 3, in full, is currently being prepared for publication of the material. Cash, David;

Hoover, Alexander; Ng, Ruth. The dissertation author was the primary investigator and author of

this paper.

xii

VITA

2015 Bachelor of Arts, University of Chicago

2015 Bachelor of Science, University of Chicago

2018 Master of Science, University of California San Diego

2021 Doctor of Philosophy, University of California San Diego

xiii

ABSTRACT OF THE DISSERTATION

Symmetric Cryptography: New Definitions and Schemes

by

Ruth Ii-Yung Ng

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Mihir Bellare, Chair

We say that cryptographic schemes are “symmetric” whenever the sender and receiver

share the same key. In this work we consider and evaluate two forms of such: authenticated

encryption (AE) and structured encryption (StE).

AE is used to encrypt messages in a way that guarantees the privacy and integrity of the

data therein. Our work draws attention to a gap between the theory and usage of nonces with

regard to how nonces are communicated from sender to receiver. We bridge this with a new

nonce-hiding treatment of authenticated encryption and propose simple, efficient schemes that

conform to these new definitions.

StE is used to encrypt a large database for storage on an untrusted server in such a way

xiv

that the client retains the ability to perform fast query-based search on the data. We first study the

problem of indexing joins in encrypted SQL databases using StE. We introduce a new technique

called partially precomputed joins which achieves lower leakage than existing techniques. We

devise a hybrid indexing scheme which uses both indexes and provide a client-side leakage aware

query optimization heuristic with which the client can choose which index to use at query time.

We evaluate our indexing method and heuristic with simulations on real datasets.

We then revisit the idea of Chase and Kamara (ASIACRYPT 2010) to build more complex

StE schemes from simple ones via the composition of dictionary and multimap StE. We show

that the intuitive composition can run into some subtle issues related to the coordination of

their simulators. We then address this situation in two ways. First, we provide a sufficient

condition called content obliviousness under which this issue can be resolved. Second, we

suggest an alternate monolithic approach that avoids composition altogether which uses a single

data structure that supports more complex queries. To analyze this construction, we need a

basic form of key-dependent security for StE, so we initiate a theoretical study of such by giving

impossibility results, constructing generic transforms and evaluating existing schemes.

xv

Introduction

Symmetric cryptography is used on a daily basis by almost everyone for securely trans-

mitting or storing data. This includes the secure communication of web data when one accesses

an HTTPS website or the secure storage of files using cloud storage systems.

More formally, a symmetric cryptography scheme will encrypt and decrypt data using

the same key. These procedures may be called by different people or by the same person. An

example of the former is when Alice sends Bob an encrypted file. In this case, Alice encrypts

and Bob decrypts the file with a shared key. An example of the latter is when Alice is using a

cloud storage service hosted by Bob. Here, Alice will encrypt and upload her data using a key

not known to Bob. She will later download her data and decrypt it using this same key.

In this work, our goal is to model real-world use-cases of symmetric cryptography. In

each case, we use the same general process which starts with defining a formalism within the

widely-used game-playing framework of Bellare and Rogaway [30]. This consists of a syntax

and a security notion. Syntax provides the “nuts and bolts” of the primitive by detailing the

algorithms within the model. This includes their inputs and outputs, access to randomness,

correctness conditions and more. The security notion captures an intuitive goal which usually

mirrors desirable security properties in the real world. The next step is to actualize these

formalisms with cryptographic schemes. These schemes define algorithms in accordance to the

syntax and provably achieve the desired security notions outlined by the formalism. Finally, one

can evaluate and compare the security and efficiency of these schemes either experimentally (e.g.

simulations on real data) or theoretically (e.g. asymptotic bounds).

1

Nonce-based authenticated encryption.

The model address first is a simple one: Alice encrypts a message of her choice and

sends it to Bob over an insecure channel. This encryption scheme should protect both the privacy

and integrity of the message until Bob decrypts it (i.e. it cannot be read or tampered with by an

attacker). Our formalism is an extension of Rogaway’s nonce-based notion [120, 122] where

encryption is deterministic but also takes a non-repeating quantity called a nonce.

In Rogaway’s syntax, which we call NBE1, decryption also receives the nonce as an input

which gives rise to a gap between the theory and usage of nonce-based encryption surrounding

how this nonce should be communicated to Bob. The theory (NBE1) assumes that this nonce

transmission “out-of-band” [122] and therefore “outside of the model” [120]. However, usage

cannot so dismiss it and often send this nonce in the clear along with the ciphertext to Bob. We

demonstrate that the latter approach can compromise data privacy and propose a modified syntax,

called NBE2, where nonce communication is incorporated into the formalism. We conclude

this work with a portfolio of transforms which build NBE2 schemes from NBE1 schemes. This

enables the existing systems to cheaply “upgrade” the cryptography they use and avoid the

danger posed by sending nonces in the clear.

Join indexing in encrypted SQL systems.

In our second model, Alice is the administrator of a SQL database and Bob is an honest-

but-curious cloud service provider. The syntax allows Alice to encrypt and store her database

on Bob’s server, then later makes select and join SQL queries to this data via query-specific

tokens. We use a semantic security notion in this formalism to allow for efficient symmetric

constructions where Bob is allowed some controlled leakage on the database. More specifically,

the security notion is parametrized using a leakage profile which upper-bounds what Bob can

learn about the data from Alice’s encrypted database and query tokens.

Our work introduces a new (secure) indexing technique which we call partially precom-

puted (PP) joins. This is an extension of Kamara and Moataz’s fully precomputed join indexing

2

[89]. We show that when Alice issues join queries of the form “select ∗ from T1 join T2 on

at1 = at2”, PP indexing incurs strictly less leakage and bandwidth, meaning it has superior

security and efficiency compared to FP indexing.

We then incorporate PP joins into the state-of-the-art indexing schemes thereby broaden-

ing our query support to allow recursion, selections and cluster joins. In doing so, we notice that

while PP indexing still results in a scheme with strictly less leakage, it has significantly worse

bandwidth on certain classes of complex queries.

To address this, we propose a hybrid indexing scheme where Alice stores both indexes

on Bob’s server and decides, at query time, which she will use. We then provide such a heuristic

which helps Alice select a query execution plan that offers her the best-possible security without

exceeding a predetermined bandwidth budget for each query.

We conclude our work with simulations on real-world datasets. These back-up our

comparisons between FP and PP indexing and demonstrate the effectiveness of our heuristic.

Composition and key-dependent structured encryption.

Our third model is also in the client-server model but with a slightly modified syntax:

Alice’s data is now a data structure with “double-leveled indexing”. An example of such is

an encrypted file system which allows document retrieval via keywords. This can be indexed

using two dictionaries – the first associates a document identifier to each file’s contents while the

second maps each keyword to the list of relevant document identifiers. To store this index on the

server, a natural approach would be to use two dictionary encryption schemes (also known as

Searchable Symmetric Encryption schemes), composed in the manner proposed by Chase and

Kamara [52].

In our work, we demonstrate that standard semantic security for the primitive dictionary

encryption schemes does not enable some straightforward reductions that may appear to work

at first glance, and identify some steps in prior work that exhibit this gap. We then address the

double-level indexing problem in two ways. First, we give an extra condition on the primitives’

3

leakage profiles which we call content obliviousness and show that the prior proof approach can

be recovered using this. Our second approach is to give a monolithic solution to the problem

which pre-processes data into a single data structure and employ a single dictionary encryption

primitive. This approach has strictly better security than using CK’s composition technique using

standard primitives.

In analyzing the security of this monolithic approach, another proof challenge comes:

we need to store key-dependent (KD) material in the data structure. Such issues have arisen in

other forms of encryption, and have been well studied under various notions of KD message

security. We adapt this line of thinking and give a new KD notion of semantic security and show

that many state-of-the-art dictionary encryption primitives achieve it. We then show that such

scheme suffice to render the monolithic solution secure with no additional assumptions.

We believe a broader variant of our KD security notion may be of independent interest

and therefore provide a set of foundational results on this. In doing so, we encounter some subtle

issues which do not appear in prior KD security notions.

4

Chapter 1

Nonces are Noticed: AEAD Revisited

1.1 Introduction

This paper revisits nonce-based symmetric encryption, raising some concerns, and then

addressing them, via a new syntax, a new framework of security definitions, and schemes that

offer both usability and security benefits.

Background.

As the applications and usage of symmetric encryption have evolved and grown, so has a

theory that seeks to support and guide them. A definition of symmetric encryption (as with any

other primitive) involves a syntax and then, for this syntax, definitions of security. In the first

modern treatment [24], the syntax asked the encryption algorithm to be randomized or stateful.

Security for these syntaxes evolved from asking for various forms of privacy [24] to asking for

both privacy and authenticity [29, 26, 96], inaugurating authenticated encryption (AE). The idea

that encryption be a deterministic algorithm taking as additional input a non-repeating quantity

called a nonce seems to originate in [124] and reached its current form with Rogaway [120, 122].

NBE1 and AE1-security.

We refer to the syntax of this current form of nonce-based symmetric encryption [120,

122] as NBE1. An NBE1 scheme SE1 specifies a deterministic encryption algorithm SE1.Enc

that takes the key K, a nonce N, message M and a header (also called associated data) H to return

5

what we call a core ciphertext C1. Deterministic decryption algorithm SE1.Dec takes K,N,C1,H

to return either a message or ⊥.

Security asks for privacy of M and integrity of both M and H as long as nonces are

unique, meaning not re-used. Rogaway’s formalization [120] asks that an adversary given oracles

for encryption (taking nonce, message and header) and decryption (taking nonce, core ciphertext

and header) be unable to distinguish between the case where they perform their prescribed tasks

under a hidden key, and the case where the former returns random strings and the latter returns

⊥, as long as the adversary does not repeat a nonce across its encryption queries. We will refer

to this as basic AE1-security.

NBE1 providing basic AE1-security has been the goal of recent schemes, standards

and proposed standards, as witnessed by GCM [105, 61] (used in TLS), OCB [124, 121, 99],

CAESAR candidates [33] and RFC 5116 [104]. The security of NBE1, which we revisit, is thus

of some applied interest.

The gap.

Our concern is a gap between theory and usage that can result in privacy vulnerabilities

in the latter. Recall that the decryption algorithm SE1.Dec, to be run by the receiver, takes as

input not just the key K, core ciphertext C1 and header H, but also the nonce N. The theory says

that how the receiver gets the nonce is “outside of the model” [120] or that it is assumed to be

communicated “out-of-band” [122]. Usage cannot so dismiss it, and must find a way to convey

the nonce to the receiver. The prevailing understanding, reflected in the following quote from

RBBK [124], is that this is a simple matter— if the receiver does not already have the nonce N,

just send it in the clear along with the core ciphertext C1:

The nonce N is needed both to encrypt and to decrypt. Typically it would be
communicated, in the clear, along with the (core) ciphertext.

RFC 5116 is a draft standard for an interface for authenticated encryption [104]. It also considers

it fine to send the nonce in the clear:

6

... there is no need to coordinate the details of the nonce format between the
encrypter and the decrypter, as long the entire nonce is sent or stored with the
ciphertext and is thus available to the decrypter ... the nonce MAY be stored or
transported with the ciphertext

To repeat and summarize, the literature and proposed standards suggest transmitting what we

call the “full” ciphertext, consisting of the nonce and the core ciphertext. Yet, as we now explain,

this can be wrong.

Nonces can compromise privacy.

We point out that communicating a nonce in the clear with the ciphertext can damage, or

even destroy, message privacy. One simple example is a nonce N = F(M) that is a hash —under

some public, collision-resistant hash function F— of a low-entropy message M, meaning one,

like a password, which the attacker knows is likely to fall in some small set or dictionary D.

Given a (full) ciphertext C2 = (N,C1) consisting of the core ciphertext C1 = SE1.Enc(K,N,M,

H) together with the nonce N = F(M), the attacker can recover M via “For M′ ∈D do: If F(M′)

= N then return M′.” To take a more extreme case, consider that the nonce is some part of the

message, or even the entire message, in which case the full ciphertext clearly reveals information

about the message.

The concern that (adversary-visible) nonces compromise privacy, once identified, goes

much further. Nonces are effectively meta-data. Even recommended and innocuous-seeming

choices like counters, device identities, disk-sector numbers or packet headers reveal information

about the system and identity of the sender. For example, the claim that basic-AE1-secure NBE1

provides anonymity —according to [123, Slide 19/40], this is a dividend of the requirement that

core ciphertexts be indistinguishable from random strings— is moot when the nonce includes

sender identity. Yet the latter is not only possible but explicitly recommended in RFC 5116 [104],

which says: “When there are multiple devices performing encryption ... use a nonce format

that contains a field that is distinct for each one of the devices.” As another concrete example,

counters are not a good choice of nonce from a user privacy perspective, as pointed out by

7

Bernstein [32] and the ECRYPT-CSA Challenges in Authenticated Encryption report [14].

The above issues apply to all NBE1 schemes and do not contradict their (often, proven)

AE1-security. They are not excluded by the unique nonce requirement or by asking for misuse

resistance [125], arising in particular for the encryption of a single message with a single

corresponding nonce.

A natural critique is that the privacy losses we have illustrated occur only for “pathologi-

cal” choices of nonces, and choices made in practice, such as random numbers or counters, are

“fine.” This fails, first, to recognize the definitional gap that allows the “pathological” choices.

With regard to usage, part of the selling point of NBE1 was exactly that any (non-repeating,

unique) nonce is fine, and neither existing formalisms [120] nor existing standards [104] preclude

nonce choices of the “pathological” type. Also, application designers and users cannot, and

should not, carry the burden of deciding which nonces are “pathological” and which are “fine,” a

decision that may not be easy. (And as discussed above, for example, counters may not be fine.)

Finally, Section 1.9 indicates that poor choices can in fact arise in practice.

Our perspective is that the above issues reflect a gap between the NBE1 formalism and

the privacy provided by NBE1 in usage. Having pointed out this gap, we will also bridge it.

Contributions in brief.

The first contribution of this paper is to suggest that the way NBE1 treats nonces can result

(as explained above) in compromise of privacy of messages or users. The second contribution is

to address these concerns. We give a modified syntax for nonce-based encryption, called NBE2,

in which decryption does not get the nonce, a corresponding framework of security definitions

called AE2 that guarantee nonce privacy in addition to authenticity and message privacy, and

simple ways to turn NBE1 AE1-secure schemes into NBE2 AE2-secure schemes.

AE2-secure NBE2 obviates application designers and users from the need to worry about

privacy implications of their nonce choices, simplifying design and usage. With AE2-secure

NBE2, one can use any nonce, even a message-dependent one such as a hash of the message,

8

without compromising privacy of the message. And the nonces themselves are hidden just as

well as messages, so user-identifying information in nonces doesn’t actually identify users.

Our NBE2 syntax.

In an NBE2 scheme SE2, the inputs to the deterministic encryption algorithm SE2.Enc

continue to be key K, nonce N, message M and header H, the output C2 now called a ciphertext

rather than a core ciphertext. The deterministic decryption algorithm SE2.Dec no longer gets a

nonce, taking just key K, ciphertext C2 and header H to return either a message M or ⊥.

Just as an interface, NBE2 already benefits application designers and users, absolving

them of the burden they had, under NBE1, of figuring out and architecting a way to communicate

the nonce from sender to receiver. The NBE2 receiver, in fact, is nonce-oblivious, not needing to

care, or even know, that something called a nonce was used by the sender. By reducing choice

(how to communicate the nonce), NBE2 reduces error and misuse.

We associate to a given NBE1 scheme SE1 the NBE2 scheme SE2= TN[SE1] that sets

the ciphertext to the nonce plus the core ciphertext: SE2.Enc(K,N,M,H) = (N,SE1.Enc(K,N,

M,H)) and SE2.Dec(K,(N,C1),H) = SE1.Dec(K,N,C1,H). We refer to TN as the Transmit

Nonce transform. This is worth defining because it will allow us, in Section 1.5, to formalize the

above-discussed usage weaknesses in NBE1, but SE2= TN[SE1] is certainly not nonce hiding

and will fail to meet the definitions we discuss next.

Our AE2-security framework.

Our AE2 game gives the adversary an encryption oracle ENC (taking nonce N, message

M and header H to return a ciphertext C2) and decryption oracle DEC (as per the NBE2 syntax,

taking ciphertext C2 and header H but no nonce, to return either a message M or ⊥). When the

challenge bit is b = 1, these oracles reply as per the encryption algorithm SE2.Enc and decryption

algorithm SE2.Dec of the scheme, respectively, using a key chosen by the game. When the

challenge bit is b = 0, oracle ENC returns a ciphertext that is drawn at random from a space

9

SE2.CS(|N|, |M|, |H|) that is prescribed by the scheme SE2 and that depends only on the lengths

of the nonce, message and header, which guarantees privacy of both the nonce and message.

(This space may be, but unlike for AE1 need not be, the set of all strings of some length, because

NBE2 ciphertexts, unlike NBE1 core ciphertexts, may have some structure.) In the b = 0 case,

decryption oracle DEC returns ⊥ on any non-trivial query. The adversary eventually outputs a

guess b′ as to the value of b, and its advantage is 2Pr[b = b′]−1.

We say that SE2 is AE2[A]-secure if practical adversaries in the class A have low

advantage. Let Aae2
u-n be the class of unique-nonce adversaries, meaning ones that do not reuse a

nonce across their ENC queries. We refer to AE2[Aae2
u-n]-security as basic AE2-security. As the

nonce-hiding analogue of basic AE1-security, it will be our first and foremost target.

Before moving to schemes, we make two remarks. First that above, for simplicity, we

described our definitions in the single-user setting, but the definitions and results in the body of

the paper are in the multi-user setting. Second, the framework of a single game with different

notions captured via different adversary classes allows us to unify, and compactly present, many

variant definitions, including basic, advanced (misuse resistance), privacy-only and random-

nonce security, and in Section 1.3 we give such a framework not just for AE2 but also for

AE1.

Our general results.

The analysis of schemes is simplified by some general results we give in Section 1.4.

Foremost is a decomposition theorem that tightly bounds the ae-advantage of a given adversary in

terms of the advantage of a privacy-only adversary (no decryption queries) and a very restricted

type of authenticity adversary that we call orderly— it needs only verification queries (not

decryption queries) and these follow its encryption queries and are all made in parallel. Here

we are following Bose, Hoang and Tessaro (BHT) [39], who gave such a result for basic AE1-

security. Theorem 1 slightly improves their bound and also extends the result to both advanced

security and AE2, our single theorem thus capturing four results. Additionally, Theorem 2 states

10

the standard reduction of mu security to su security and Theorem 3 reduces security for random

nonces to security for unique nonces.

Our transforms.

In the presence of a portfolio of efficient AE1-secure NBE1 schemes supported by

proofs of security with good concrete bounds [124, 105, 33, 99, 84, 133, 108, 75, 115, 74,

39, 82], designing AE2-secure NBE2 schemes from scratch seems a step backwards. Instead

we give simple, cheap ways to transform AE1-secure NBE1 schemes into AE2-secure NBE2

schemes, obtaining a corresponding portfolio of AE2-secure NBE2 schemes and also allowing

implementors to more easily upgrade deployed AE1-secure NBE1 to AE2-secure NBE2.

Since NBE2 schemes effectively take care of nonce communication, we expect ciphertext

length to grow by at least SE1.nl, the nonce length of the base NBE1 scheme. The ciphertext

overhead is defined as the difference between the ciphertext length and the sum of plaintext

length and SE1.nl. All our transforms have zero ciphertext overhead. One challenge in achieving

this is that nonce lengths like SE1.nl = 96 are widely-used but short of the block length 128

of many blockciphers, precluding inclusion of an extra blockcipher output in the ciphertext.

With regard to computational overhead, the challenge is that it should be constant, meaning

independent of the lengths of the message and header for encryption, and of the ciphertext and

header for decryption. All our transforms have constant computational overhead.

The following discussion first considers achieving basic security and then advanced

security. Security attributes of our corresponding “Hide-Nonce (HN)” transforms are summarized

in Figure 1.1. In the table SE1 denotes an NBE1 scheme, F a PRF, E a block cipher, and TE

a variable-length tweakable block cipher. Spl is a splitting function, and ℓ,ℓz are non-negative

integer parameters. Note that the advanced security of HN1 only holds when ciphertexts are

sufficiently large (e.g. 128 bits), and HN2’s depends on the length of the stolen ciphertext.

11

Table 1.1. Security attributes of the NBE2 schemes defined by our HN transforms. A blank entry
in the Basic column means the transform is not for that purpose. Note that the advanced security
of HN1 and HN2 only hold under certain conditions.

NBE2 scheme
AE2-security provided
Basic Advanced

HN1[SE1,F] Yes Yes
HN2[SE1, ℓ,E,Spl] Yes Yes if ℓ≥ 128
HN3[SE1,F] Yes No
HN4[SE1, ℓ,F] Yes
HN5[TE, ℓ, ℓz] Yes

Basic HN transforms.

We prove that all the following transforms turn a basic-AE1-secure NBE1 scheme SE1

into a basic-AE2-secure NBE2 scheme SE2. (Recall basic means nonces are unique, never

reused across encryption queries.) Pseudocode and pictures for the transforms are in Figure 1.5.

Having first produced a core ciphertext C1 under SE1, the idea of scheme SE2 =

HN1[SE1,F] is to use C1 itself as a nonce to encrypt the actual nonce in counter mode un-

der PRF F. A drawback is that this requires the minimal core-ciphertext length SE1.mccl to be

non-trivial, like at least 128, which is not true for all SE1. Scheme SE2 = HN2[SE1, ℓ,E,Spl]

turns to the perhaps more obvious idea of enciphering the nonce with a PRF-secure blockcipher

E. The difficulty is the typicality of 96-bit nonces and 128-bit blockciphers, under which naı̈ve

enciphering would add a 32-bit ciphertext overhead, which we resolve by ciphertext stealing,

ℓ representing the number of stolen bits (32 in our example) and Spl an ability to choose how

the splitting is done. Scheme SE2= HN3[SE1,F] uses the result of PRF F on the actual nonce

as a derived nonce under which to run SE1. This is similar to SIV [125, 108]; the difference

is to achieve AE2 rather than AE1 and to apply the PRF only to the nonce (rather than nonce,

message and header) to have constant computational overhead.

12

Advanced HN transforms.

Unique nonces are easier to mandate in theory than assure in practice, where nonces may

repeat due to errors, system resets, or replication. In that case (returning here to NBE1), not only

does basic AE1-security give no security guarantees, but also damaging attacks are possible for

schemes including CCM and GCM [86, 131]. Rogaway and Shrimpton’s misuse resistant NBE1,

which we refer to as advanced-AE1-secure NBE1, minimizes the damage from reused nonces,

retaining AE1-security as long as no nonce, message, header triple is re-encrypted [125]. This still

being for the NBE1 syntax, however, the concerns with adversary-visible nonces compromising

message and user privacy are unchanged. We seek the NBE2 analogue, correspondingly defining

and achieving advanced-AE2-secure NBE2 to provide protection against reused nonces while

also hiding them.

With our framework, the definition is easy, calling for no new games; the goal is simply

AE2[Aae2
u-nmh]-security where Aae2

u-nmh is the class of unique-nonce, message, header adversaries,

meaning ones that do not repeat a query to their ENC oracle. The presence of well-analyzed

advanced-AE1-secure NBE1 schemes [125, 80, 75, 74, 39] again motivates transforms rather

than from-scratch designs.

We start by revisiting our basic-security preserving transforms, asking whether they also

preserve advanced security, meaning, if the starting NBE1 scheme is advanced-AE1-secure, is

the transformed NBE2 scheme advanced-AE2-secure? We show that for HN1, the answer is

YES. We then show that it is YES also for HN2 as long as the amount ℓ of stolen ciphertext is

large enough. (In practical terms, at least 128.) For HN3, the answer is NO.

That HN1 and HN2 have these properties is good, but we would like to do better.

(Limitations of the above are that HN1 puts a lower bound on SE1.mccl that is not always met,

and setting ℓ= 128 in HN2 with typical 96-bit nonces will call for a 224-bit blockcipher.) We

offer HN4 and HN5, showing they provide advanced AE2-security. Pseudocode and pictures are

in Figure 1.11.

Scheme SE2 = HN4[SE1, ℓ,F] uses the result of PRF F on the actual nonce, message

13

and header as a derived nonce for SE1. The difference with SIV [125, 108] is that what is

encrypted under SE1 includes the actual nonce in order to hide it. The computational overhead

stays constant because SE1 need provide only privacy, which it can do in one pass. Scheme SE2

= HN5[TE, ℓ, ℓz] is different, using the encode-then-encipher paradigm [29] to set the ciphertext

to an enciphering, under an arbitrary-input-length, tweakable cipher TE, of the nonce, message

and ℓt-bits of redundancy, with the header as tweak. Instantiating TE via the very fast AEZ

tweakable block cipher [80] yields correspondingly fast, advanced-AE2-secure NBE2.

Dedicated transform for GCM.

While our generic transforms are already able, with low overhead, to immunize GCM

[105, 61] —by this we mean turn this basic-AE1-secure NBE1 scheme into a basic-AE2-secure

NBE2 scheme— we ask if a dedicated transform —one that exploits the structure of GCM—

can do even better. The goal is not just even lower cost overhead, but minimization of software

changes. We show that simply pre-pending a block of 0s, of length equal to the nonce length,

to the message, and then GCM-encrypting, provides basic-AE2-security. This means no new

key materiel needs to be added, and existing encryption software can be used in a blackbox way.

Ciphertext overhead remains zero. Decryption software does however need a change.

The proceedings version of our paper [27] had claimed basic-AE2-security of our GCM

variant assuming the blockcipher E was prp-cca secure (also called strong prp-security, this

means the adversary is allowed both forward and backward queries) and the hash family H was

AXU. In this version, we do better, reducing the assumption on E to just PRF security, and that on

H to computational AXU. The proof of security is greatly simplified by establishing privacy and

authenticity separately, which suffices courtesy of our general decomposition result (Theorem 1).

Privacy is easily reduced (Theorem 11) to that of GCM itself, allowing us to conclude it via

known results on the latter [105, 84, 31, 103, 82] and in particular to inherit the good bounds

of [82]. The proof of Theorem 12, establishing authenticity, is more invasive and in our view the

most non-trivial proof in this paper.

14

Related work.

In a 2013 mailing list message, Bernstein [32] argues that the security definitions for

authenticated encryption fail to fully capture practical requirements, giving sequence privacy

leakage via sequence-number nonces as an explicit example. AE2-secure NBE2 addresses these

concerns. Bernstein also proposed a solution that can be seen as a specific instantiation of our

HN2 transformation.

As a technical step in achieving security against release of unverified plaintext (RUP),

Ashur, Dunkelman and Luykx (ADL) [13] use a syntax identical to NBE2, and their techniques

bear some similarities with ours that we discuss further in Section 1.8.

The CAESAR competition’s call for authenticated encryption schemes describes a

syntax where encryption receives, in place of a nonce, a public message number (PMN) and a

secret message number (SMN), decryption taking only the former [44]. The formalization of

Namprempre, Rogaway and Shrimpton (NRS) [109] dubs this “AE5.” In this light, an NBE1

scheme is a AE5 scheme without a SMN and an NBE2 scheme is an AE5 scheme without a

PMN.

Possible future work.

The concerns we have raised with regard to a gap between theory and usage, and privacy

vulnerabilities created by adversary-visible nonces in the latter, arise fundamentally from the

choice of syntax represented by NBE1, and as such hold also in other contexts where an

NBE1-style syntax is used. This includes AE secure under release of unverified plaintext [8],

KDM-secure AE [25, 34, 55], robust AE [64], online AE [65, 81], committing AE [72, 60],

indifferentiable AE [17], subtle AE [19], leakage-resilient AE [18, 34] and MiniAE [107]. A

direction for future work is to treat these with an NBE2-style syntax (decryption does not get the

nonce) to provide nonce hiding.

While our transforms can be applied to promote the advanced-AE1-secure AES-GCM-

SIV NBE1 scheme [74] to an advanced-AE2-secure NBE2 scheme, the bounds we get are inferior

15

to those of [39]. Bridging this gap to get advanced-AE2-secure NBE2 with security bounds

like [39] is a direction for future work. Another is to prove better bounds for the authenticity of

our AE2-secure version of GCM, in the vein of those for GCM [103, 82].

1.2 Preliminaries

Notation and terminology.

By ε we denote the empty string. By |Z| we denote the length of a string Z. If Z is a

string then Z[i.. j] is bits i through j of Z if 1≤ i≤ j ≤ |Z|, and otherwise is ε . By x∥y we denote

the concatenation of strings x,y. If x,y are equal-length strings then x⊕y denotes their bitwise

xor. If i is an integer then ⟨i⟩n ∈ {0,1}n denotes the representation of i mod 2n as a string of

(exactly) n bits. (For example, ⟨3⟩4 = 0011.) If S is a finite set, then |S| denotes it size. We

say that a set S is length-closed if, for any x ∈ S it is the case that {0,1}|x| ⊆ S. (This will be a

requirement for message, header and nonce spaces.)

If D,R are sets and f : D→ R is a function then its image is Im(f) = { f (x) : x ∈D} ⊆ R.

By FUNC(D,R) we denote the set of all functions f : D→ R. If |D|= |R| then by BFUNC(D,R)

we denote the set of all bijections f : D→ R. Then PERM(D) = BFUNC(D,D) is the set of all

permutations π : D→ D.

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and

assigning it to x. Algorithms may be randomized unless otherwise indicated. If A is an algorithm,

we let y← AO1,...(x1, . . . ;ω) denote running A on inputs x1, . . . and coins ω , with oracle access

to O1, . . ., and assigning the output to y. By y←$ AO1,...(x1, . . .) we denote picking ω at random

and letting y← AO1,...(x1, . . . ;ω). We let [AO1,...(x1, . . .)] denote the set of all possible outputs

of A when run on inputs x1, . . . and with oracle access to O1, An adversary is an algorithm.

Running time is worst case, which for an algorithm with access to oracles means across all

possible replies from the oracles. We use ⊥ (bot) as a special symbol to denote rejection, and it

is assumed to not be in {0,1}∗.

16

Games.

We use the code-based game-playing framework of BR [30]. A game G (see Fig. 1.1

for an example) starts with an optional INIT procedure, followed by a non-negative number of

additional procedures called oracles, and ends with a FIN procedure. Execution of adversary

A with game G consists of running A with oracle access to the game procedures, with the

restrictions that A’s first call must be to INIT (if present), its last call must be to FIN, and it can

call these procedures at most once. The output of the execution is the output of FIN. By Pr[G(A)]

we denote the probability that the execution of game G with adversary A results in this output

being the boolean true.

Note that our adversaries have no output. The role of what in other treatments is the

adversary output is, for us, played by the query to FIN.

Different games may have procedures (oracles) with the same names. If we need to

disambiguate, we may write G.O to refer to oracle O of game G.

In games, integer variables, set variables boolean variables and string variables are

assumed initialized, respectively, to 0, the empty set /0, the boolean false and ⊥.

Reductions.

Proofs give reductions that take a G2-adversary A2 and specify (construct) a G1-adversary

A1 that runs A2 as a subroutine, itself responding to oracle queries of A2. Let INIT,O11, . . . ,

O1n1,FIN denote the oracles of G1 and INIT,O21, . . . ,O2n2,FIN the oracles of G2. Then we

may write pseudocode of the form

Adversary A
INIT,O11,...,O1n1 ,FIN

1

...

A
INIT∗,O2∗1,...,O2∗n2

,FIN∗

2 // Run A2 with specified subroutines as oracles
...

procedure INIT∗ // Subroutine simulating G2.INIT

17

...

procedure O2∗1(. . .) // Subroutine simulating G2.O21

...

Here INIT∗,O2∗1, . . . ,O2∗n2
,FIN∗ are subroutines, given in the code of A1, that are responsible

for simulating the corresponding oracles for A2 in G2, and will invoke A1’s oracles to do so. We

adopt the convention that if a simulation is trivial, meaning O2∗i (x) returns O1 j(x), then, in the

superscripts to A2, we simply write O1 j in place of O2∗i , and do not give code for the simulated

oracle.

Multi-user security.

There is growing recognition that security should be considered in the multi-user (mu)

setting [21] rather than the traditional single-user (su) one. Our main definitions are in the mu

setting. The games provide the adversary a NEW oracle, calling which results in a new user

being initialized, with a fresh key. Other oracles are enhanced (relative to the su setting) to take

an additional argument i indicating the user (key). We assume that adversaries do not make

oracle queries to users (also called sessions) they have not initialized.

Function families.

A function family F specifies a deterministic evaluation algorithm F.Ev :{0,1}F.kl×F.D

→ {0,1}F.ol that takes a key K and input x to return output F.Ev(K,x), where F.kl is the key

length, F.D is the domain and F.ol is the output length. We say that F is invertible if there is an

inversion algorithm F.In :{0,1}F.kl×{0,1}F.ol→ F.D∪{⊥} such that for all K ∈ {0,1}F.kl we

have (1) F.In(K,F.Ev(K,x)) = x for all x∈ F.D, and (2) F.In(K,y) =⊥ for all y ̸∈ Im(F.Ev(K, ·)).

We say that F is a permutation family if it is invertible and F.D= {0,1}F.ol. In that case, we also

refer to F as a block cipher and to F.ol as the block length of F, which we may denote F.bl.

18

Game Gprf
F

procedure INIT

b←${0,1}

procedure NEW

v← v+1
If (b = 1) then Kv←${0,1}F.kl ; fv← F.Ev(Kv, ·)
Else fv←$ FUNC(F.D,{0,1}F.ol)

procedure FN(i,X)

Return fi(X)

procedure FIN(b′)

Return (b = b′)

Figure 1.1. Game defining (multi-user) PRF security for function family F.

PRF security.

We define (multi-user) PRF security [23] for a function family F and adversary A via the

game Gprf
F (A) in Fig. 1.1. Here b is the challenge bit. It is required that any FN(i,X) query of A

satisfies i≤ v and X ∈ F.D. The PRF advantage of adversary A is Advprf
F (A) = 2Pr[Gprf

F (A)]−1.

1.3 Two frameworks for nonce-based encryption

We give definitions for both AE1-secure NBE1—current nonce-based encryption [124,

120, 122]— and AE2-secure NBE2—our new nonce-based encryption. In each case there is

a single security game, different variant definitions then being captured by different adversary

classes. This allows a unified and compact treatment.

NBE1.

An NBE1 scheme SE1 specifies several algorithms and related quantities, as follows.

Deterministic encryption algorithm SE1.Enc :SE1.KS×SE1.NS×SE1.MS×SE1.HS→{0,1}∗

takes a key K in the (finite) key-space SE1.KS, a nonce N in the nonce-space SE1.NS, a message

M in the message space SE1.MS and a header H in the header space SE1.HS to return what

we call a core ciphertext C1. This is a string of length SE1.ccl(|N|, |M|, |H|), where SE1.ccl is

the core-ciphertext length function. SE1 also specifies a deterministic decryption algorithm

SE1.Dec :SE1.KS×SE1.NS×{0,1}∗×SE1.HS→ SE1.MS∪{⊥} that takes key K, nonce N,

19

core ciphertext C1 and header H to return an output that is either a message M ∈ SE1.MS, or⊥. It

is required that SE1.NS,SE1.MS,SE1.HS are length-closed sets as defined in Section 1.2. Most

often nonces are of a fixed length denoted SE1.nl, meaning SE1.NS= {0,1}SE1.nl. Decryption

correctness requires that SE1.Dec(K,N,SE1.Enc(K,N,M,H),H) = M for all K ∈ SE1.KS, N ∈

SE1.NS, M ∈ SE1.MS and H ∈ SE1.HS.

AE1 game and advantage.

Let SE1 be an NBE1 scheme and A an adversary. We associate to them the game Gae1
SE1(A)

shown on the top left of Fig. 1.2. (We use the name “AE1” to associate the game with the NBE1

syntax). The AE1-advantage of adversary A is Advae1
SE1(A) = 2Pr[Gae1

SE1(A)]− 1. The game is

in the multi-user setting, oracle NEW allowing the adversary to initialize a new user with a

fresh key. It is required that any ENC(i,N,M,H) query of A satisfy 1≤ i≤ v, N ∈ SE1.NS, M

∈ SE1.MS and H ∈ SE1.HS. When the challenge bit b is 1, the encryption oracle will return

a core ciphertext as stipulated by SE1.Enc, using the key for the indicated user i. In the b = 0

case, ENC will return a random string of length SE1.ccl(|N|, |M|, |H|). The array M is assumed

to initially be ⊥ everywhere, and holds core ciphertexts returned by ENC. It is required that

any DEC(i,N,C1,H) query of A satisfy 1 ≤ i ≤ v, N ∈ SE1.NS and H ∈ SE1.HS. When the

challenge bit b is 1, the decryption oracle will perform decryption as stipulated by SE1.Dec,

using the key for the indicated user i. In the b = 0 case, DEC will return⊥ on any core ciphertext

not previously returned by the encryption oracle.

AE1 security metrics.

AE1-security is clearly not achievable without restrictions on the adversary. For example,

if A repeats a query i,N,M,H to ENC, then, when b = 1 it gets back the same reply both times,

while if b = 0 it likely does not, allowing it to determine b with high probability. We define

different classes of adversaries, summarized by the table at the bottom of Figure 1.2, with the

superscript “x” here being ae1. We say that NBE1 scheme SE1 is AE1[A]-secure if adversaries

20

Game Gae1
SE1

procedure INIT

b←${0,1}

procedure NEW

v← v+1 ; Kv←$SE1.KS

procedure ENC(i,N,M,H)

If (b = 1) then
C1← SE1.Enc(Ki,N,M,H)

Else C1←${0,1}SE1.ccl(|N|,|M|,|H|)

M[i,N,C1,H]←M ; Return C1

procedure DEC(i,N,C1,H)

If (M[i,N,C1,H] ̸=⊥) then return M[i,N,C1,H]

If (b = 0) then M←⊥
Else M← SE1.Dec(Ki,N,C1,H)

Return M

procedure FIN(b′)

Return (b = b′)

Game Gae2
SE2

procedure INIT

b←${0,1}

procedure NEW

v← v+1 ; Kv←$SE2.KS

procedure ENC(i,N,M,H)

If (b = 1) then
C2← SE2.Enc(Ki,N,M,H)

Else C2←$SE2.CS(|N|, |M|, |H|)
M[i,C2,H]←M ; Return C2

procedure DEC(i,C2,H)

If (M[i,C2,H] ̸=⊥) then return M[i,C2,H]

If (b = 0) then M←⊥
Else M← SE2.Dec(Ki,C2,H)

Return M

procedure FIN(b′)

Return (b = b′)

Ax
u-n

Unique nonce adversaries — A ∈Ax
u-n does not repeat a user-nonce

pair i,N across its ENC queries

Ax
u-nmh

Unique nonce-message-header adversaries — A ∈Ax
u-nmh does not

repeat a query to ENC

Ax
priv Privacy adversaries — A ∈Ax

priv makes no DEC queries

Ax
1 Single-user adversaries — A ∈Ax

1 makes only one NEW query

Ax
r-n

Random-nonce adversaries — The nonces in the ENC queries of
A ∈Ax

r-n are distributed uniformly and independently at random

Figure 1.2. Game defining AE1-security of NBE1 scheme SE1, game defining AE2-security of
NBE2 scheme SE2, and some classes of adversaries, leading to different security notions, where
x ∈ {ae1,ae2}.

21

inA have low AE1-advantage. The definition is in the multi-user setting, but restricting attention

to adversaries in the class Aae1
1 allows us to recover the single-user setting. Different security

notions in the literature are then captured as AE1[A]-security for different classes of adversaries

A, as we illustrate below:

• Aae1
u-n is the class of adversaries whose ENC queries never repeat a user-nonce pair.

AE1[Aae1
u-n∩Aae1

1]-security is thus AEAD as defined in [120, 122].

• AE1[Aae1
u-n]-security is the extension of this to the multi-user setting as defined in [31],

which we have referred to as basic AE1-security in Section 1.1.

• Adversaries in Aae1
u-nmh ⊇Aae1

u-n are allowed to re-use a user-nonce pair across ENC queries

as long as they never repeat an entire query. AE1[Aae1
u-nmh ∩Aae1

1]-security is misuse

resistant AE [125].

• AE1[Aae1
u-nmh]-security is the extension of this to the multi-user setting [39], which we have

referred to as advanced-AE1-security in Section 1.1.

• Adversaries in Aae1
r-n pick the nonces in their ENC queries uniformly and independently

at random from SE1.NS. If A ∈AaeX
r-n then there is another adversary A, called the core

adversary, such that A runs as follows:

Adversary ANEW,ENC,DEC

ANEW,ENC∗,DEC

procedure ENC∗(i,M,H)

N←$SE.NS ; C← ENC(i,N,M,H)

Return (N,C)

No restriction is placed on how the adversary picks nonces in DEC queries. AE1[Aae1
r-n ∩

Aae1
1]-security is thus classical randomized AE [26] for schemes which make encryption

randomness public, which is the norm.

• Sometimes, in the unique-nonce setting, we consider schemes that provide only privacy, not

authenticity, and, rather than giving a separate game, can capture this as AE1[Aae1
priv∩Aae1

u-n]-

security. AE1[Aae1
priv∩Aae1

u-n∩Aae1
1]-security is IND$-CPA security, as defined in [120].

22

Further adversary classes can be defined to capture limited nonce reuse [39] or other resource

restrictions.

We believe our (above) AE1 framework (single game, many adversary classes) is of

independent interest, as a way to unify, better understand and compactly present existing and

new notions of security for NBE1 schemes. We give a similar framework for AE2 next.

NBE2 syntax.

An NBE2 scheme SE2 specifies several algorithms and related quantities, as follows.

Deterministic encryption algorithm SE2.Enc :SE2.KS×SE2.NS×SE2.MS×SE2.HS→{0,1}∗,

just like for NBE1, takes a key K in the (finite) key-space SE2.KS, a nonce N in the nonce-

space SE2.NS, a message M in the message space SE2.MS and a header H in the header space

SE2.HS to return a ciphertext C2 that is in the ciphertext space SE2.CS(|N|, |M|, |H|). SE2

also specifies a deterministic decryption algorithm SE2.Dec :SE2.KS×{0,1}∗× SE2.HS→

SE2.MS∪{⊥} that takes key K, ciphertext C2 and header H to return an output that is either a

message M ∈ SE2.MS, or ⊥. (Unlike in NBE1, it does not take a nonce input.) It is required that

SE2.NS,SE2.MS,SE2.HS are length-closed sets as defined in Section 1.2. Most often nonces

are of a fixed length denoted SE2.nl, meaning SE2.NS = {0,1}SE2.nl. Decryption correctness

requires that SE2.Dec(K,SE2.Enc(K,N,M,H),H) = M for all K ∈ SE2.KS,N ∈ SE2.NS,M ∈

SE2.MS and H ∈ SE2.HS.

AE2 game and advantage.

Let SE2 be an NBE2 scheme and A an adversary. We associate to them the game Gae2
SE2(A)

shown on the top right of Fig. 1.2. (We use the name “AE2” to associate the game with the

NBE2 syntax). The AE2-advantage of adversary A is Advae2
SE2(A) = 2Pr[Gae2

SE2(A)]− 1. The

game is in the multi-user setting, oracle NEW allowing the adversary to initialize a new user with

a fresh key. It is required that any ENC(i,N,M,H) query of A satisfy 1≤ i≤ v, N ∈ SE2.NS, M

∈ SE2.MS and H ∈ SE2.HS. When the challenge bit b is 1, the encryption oracle will return a

23

ciphertext as stipulated by SE2.Enc, using the key for the indicated user i. When b = 0, ENC

will return a random element of the ciphertext space SE2.CS(|N|, |M|, |H|). The array M is

assumed to initially be ⊥ everywhere, and holds ciphertexts returned by ENC. It is required that

any DEC(i,C2,H) query of A satisfy 1≤ i≤ v and H ∈ SE2.HS. When the challenge bit b is 1,

the decryption oracle will perform decryption as stipulated by SE2.Dec, using the key for the

indicated user i. When b = 0, DEC will return ⊥ on any ciphertext not previously returned by

the encryption oracle.

AE2 security metrics.

As with AE1-security, restrictions must be placed on the adversary to achieve AE2-

security, and we use adversary classes to capture restrictions corresponding to different notions

of interest. The classes are summarized by the table at the bottom of Figure 1.2, with the

superscript “x” now being ae2. The classes and resulting notions are analogous to those for

AE1. Thus, AE2[Aae2
1]-security recovers the single-user setting. Aae2

u-n is the class of adversaries

whose ENC queries never repeat a user-nonce pair, so AE2[Aae2
u-n]-security is what we have

referred to as basic AE2-security in Section 1.1. Adversaries in Aae2
u-nmh ⊇ Aae2

u-n are allowed

to re-use a user-nonce pair across ENC queries as long as they never repeat an entire query,

so AE2[Aae2
u-nmh]-security is what we have referred to as advanced AE2-security in Section 1.1.

Adversaries inAae2
r-n pick the nonces in their ENC queries uniformly and independently at random

from SE2.NS. AE2[Aae2
priv]-security is privacy only.

Discussion.

The main (small but important) change in the syntax from NBE1 to NBE2 is that in

the latter, the decryption algorithm no longer gets the nonce as input. It is up to encryption

to ensure that the ciphertext contains everything (beyond key and header) needed to decrypt.

Nonces are thus no longer magically communicated, making the interface, and the task of

application designers, simpler and less error-prone, reducing the possibility of loss of privacy

24

Game Gauth1
SE1

procedure NEW

v← v+1 ; Kv←$SE1.KS

procedure ENC(i,N,M,H)

C1← SE1.Enc(Ki,N,M,H)

S ← S ∪{(i,N,C1,H)} ; Return C1

procedure VF(i,N,C1,H)

M← SE1.Dec(Ki,N,C1,H)

If (M ̸=⊥)∧ ((i,N,C1,H) /∈ S) then
win← true

Return (M =⊥)

procedure FIN

Return win

Game Gauth2
SE2

procedure NEW

v← v+1 ; Kv←$SE2.KS

procedure ENC(i,N,M,H)

C2← SE2.Enc(Ki,N,M,H)

S ← S ∪{(i,C2,H)} ; Return C2

procedure VF(i,C2,H)

M← SE2.Dec(Ki,C2,H)

If (M ̸=⊥)∧ ((i,C2,H) /∈ S) then
win← true

Return (M =⊥)

procedure FIN

Return win

Figure 1.3. Games defining authenticity of NBE1 scheme SE1 (left) and NBE2 scheme SE2
(right).

from poor choices of nonces and opening the door to nonce-hiding security as captured by AE2.

Another change is that, rather than a ciphertext length function, an NBE2 scheme specifies a

ciphertext space. The reason is that a ciphertext might have some structure, like being a pair

(C,C′). Ciphertexts like this cannot be indistinguishable from random strings, but they can be

indistinguishable from pairs of random strings, which is captured by defining the ciphertext

space correspondingly. This follows [72], in whose committing AE definition the same issue

arose.

Nonce-Recovering NBE2.

A natural subclass of NBE2 schemes are those which recover the nonce explicitly during

decryption. We provide definitions to capture such schemes. We say that an NBE2 scheme

SE2 is nonce-recovering if there exists a deterministic nonce-plus-message recovery algorithm

SE2.NMR such that for any (K,C2,H) ∈ SE2.KS×{0,1}∗×SE2.HS, if SE2.NMR(K,C2,H) ̸=

⊥ then it parses as a pair (M,N) ∈ SE2.MS×SE2.NS satisfying SE2.Dec(K,C2,H) = M and

25

SE2.Enc(K,N,M,H) =C2. Most of our transforms from NBE1 scheme to NBE2 schemes yield

nonce-recovering NBE2 schemes.

1.4 Some general results

We give a few general results that we will use.

Priv+Auth implies AE.

Early definitions of authenticated encryption gave separate privacy and authenticity

requirements [26]. Above, in the style of [120], a single game captures a joint privacy-and-

authenticity requirement. Bose, Hoang and Tessaro (BHT) [39] showed that, for basic-secure

AE1, separate, privacy-alone and authenticity alone conditions imply the joint condition. Here

we extend this to both advanced security and AE2. This is useful because (1) It can be easier to

establish the simpler, separate requirements than the joint one, and (2) Proven bounds can differ

for privacy and authenticity, which is not visible if one only gives results for the joint notion.

Proceeding, the definition for privacy alone is already present, obtained above by re-

stricting to adversaries in the classes AE1[Aae1
priv] (for NBE1) or AE2[Aae2

priv] (for NBE2). To

define authenticity-alone, consider the games Gauth1
SE1 and Gauth2

SE2 in Fig. 1.3, where SE1 is a NBE1

scheme and SE2 is an NBE2 scheme. The auth1-advantage of adversary A is Advauth1
SE1 (A) =

Pr[Gauth1
SE1 (A)]. The auth2-advantage of adversary A is Advauth2

SE2 (A) = Pr[Gauth2
SE2 (A)].

As for AE, different notions of security are captured by considering different classes of

adversaries. For x ∈ {auth1,auth2} we define:

• Ax
u-n is the class of adversaries whose ENC queries never repeat a user-nonce pair.

• Adversaries in Ax
u-nmh ⊇Ax

u-n are allowed to re-use a user-nonce pair across ENC queries

as long as they never repeat an entire query.

• Adversaries in Ax
r-n pick the nonces in their ENC queries uniformly and independently

at random from the nonce space of the scheme. Adversary B ∈ AauthX
r-n , analogous to

26

A ∈AaeX
r-n defines a core adversaries B and works as follows:

Adversary BNEW,ENC,VF

BNEW,ENC∗,VF

procedure ENC∗(i,M,H)

N←$SE.NS ; C← ENC(i,N,M,H)

Return (N,C)

• Ax
ord is the class of adversaries that are orderly. An adversary is orderly if two conditions

hold. First, it makes its VF queries after all its ENC queries. (That is, once it has made a VF

query, it does not make any more ENC queries.) Second, the VF queries are non-adaptive,

meaning a VF query does not depend on the answer to a prior VF query. (But the VF

queries can depend on answers to the prior ENC queries). Intuitively, think of an orderly

adversary as first making a bunch of ENC queries, and then a bunch of VF queries in

parallel.

The following theorem says that AE-security decomposes into privacy plus authenticity.

The statement covers AE1 and AE2 (via the choice of X) and basic and advanced (via the choice

of y) security, so that the single statement encompasses four results.

BHT [39] give and prove this result for basic AE1 secure NBE1. Our bound is slightly

better than theirs, dropping an added term, and we generalize to AE2 and advanced security. As

with BHT [39], the theorem allows us to restrict attention to orderly authenticity adversaries,

which later makes proving authenticity simpler.

Theorem 1 Let X ∈ {1,2} and y ∈ {n,nmh}. Let SE be a NBEX scheme. Let A ∈AaeX
u-y be an

adversary. Then, we can construct adversaries B ∈AaeX
priv∩AaeX

u-y and C ∈AauthX
ord ∩AauthX

u-y such

that:

AdvaeX
SE (A)≤ AdvaeX

SE (B)+AdvauthX
SE (C) .

Adversary B preserves the resources of A. Adversary C is orderly. Additionally, it preserves

query resources to NEW,ENC, its queries to VF are those that A makes to DEC, and it preserves

running time.

27

Games G0 , G1

procedure INIT

b←${0,1}

procedure NEW

v← v+1 ; Kv←${0,1}SE.kl

procedure ENC(i,N,M,H)

If (b = 1) then C2← SE.Enc(Ki,N,M,H)

Else C2←$SE.CS(|N|, |M|, |H|)
Return C2

procedure DEC(i,C2,H)

M←⊥
If (b = 1) then

M∗← SE.Dec(Ki,C2,H)

If (M∗ ̸=⊥) then bad← true ; M←M∗

Return M

procedure FIN(b′)

Return (b = b′)

Adversary BINIT,NEW,ENC,FIN

AINIT,NEW,ENC,DEC∗,FIN

procedure DEC∗(i,C2,H)

Return ⊥
Adversary CNEW,ENC,VF,FIN

AINIT∗,NEW,ENC,DEC∗,FIN∗

procedure INIT∗

INIT ; S← /0

procedure DEC∗(i,C2,H)

S← S∪{(i,C2,H)} ; Return ⊥

procedure FIN∗

For all (i,C2,H) ∈ S
do d← VF(i,C2,H)

FIN

Figure 1.4. Games used in proving Theorem 1 (left) and Theorem 1 (right).

28

Proof. We give the proof for X=2, meaning for AE2. The proof for AE1 is analogous.

We assume that A makes no trivial queries. So it does not query DEC(i,C2,H) if

M[i,C2,H] is already defined. In the y=n case, it does not repeat a nonce-user pair in an ENC

query, and in the y=nmh case, it does not repeat an ENC query. Games G0,G1 in Fig. 1.4 are

identical-until-bad so using the Fundamental Lemma of Game Playing [30] we have

AdvaeX
SE (A) = 2Pr[G0(A)]−1

= 2Pr[G1(A)]−1+2(Pr[G0(A)]−Pr[G1(A)])

≤ 2Pr[G1(A)]−1+2Pr[G1(A) sets bad] .

In Fig. 1.4, we specify adversary B such that

2Pr[G1(A)]−1≤ AdvaeX
SE (B) .

Adversary B, being a privacy adversary, makes no DEC queries, so we omit this oracle from the

list in its superscript. It simulates all queries of A directly, except for additionally returning ⊥ in

response to any DEC query made by A.

In game G1, flag bad can only be set if b = 1, so

Pr[G1(A) sets bad] =
1
2
·Pr[G1(A) sets bad |b = 0]+

1
2
·Pr[G1(A) sets bad |b = 1]

=
1
2
·Pr[G1(A) sets bad |b = 1] .

In Fig. 1.4, we specify adversary C such that

Pr[G1(A) sets bad |b = 1]≤ AdvauthX
SE (C) .

Putting all this together concludes the proof. □

29

From single- to multi-user security.

The usual hybrid argument can be used to show that single-user security implies multi-

user security up to a factor qn degradation in advantage where qn is the number of users, meaning

the number of NEW queries of the adversary. As much as possible we will not rely on this but

rather treat multi-user security directly, so as to avoid the degradation in the bound, but in some

cases it will be easier to treat single-user security and take the hit in the bound. Accordingly we

state the result here. We omit the proof since it is standard.

Theorem 2 Let X ∈ {1,2} and y ∈ {n,nmh}. Let SE be a NBEX scheme. Let A ∈ AaeX
u-y be

an adversary making qn calls to its NEW oracle and qe,qd calls per user to its ENC and DEC

oracles, respectively. Then, we can construct adversary A ∈AaeX
1 ∩AaeX

u-y such that:

AdvaeX
SE (A)≤ qn ·AdvaeX

SE (B) .

Adversary B makes 1 query to its NEW oracle and qe,qd queries to its ENC,DEC oracles,

respectively.

Security under random nonces.

The following says that AE2[Aae2
u-n]-security (resp. AE1[Aae1

u-n]) implies AE2[Aae2
r-n]-

security (resp. AE1[Aae1
r-n]) with a degradation in advantage corresponding to the probability that

a nonce repeats for some user. We will refer to this later. We omit the (obvious) proof.

Theorem 3 Let X ∈ {1,2}. Let SE be a NBEX scheme. Let Arn ∈AaeX
r-n be an adversary making

qn calls to its NEW oracle and qe calls per user to its ENC oracle. Then, we can construct

adversary Aun ∈AaeX
u-n such that

AdvaeX
SE (Arn)≤ AdvaeX

SE (Aun)+
qnqe(qe−1)

2SE.nl
.

Adversary Aun preserves the resources of Arn.

30

Saying Aun preserves the resources of Arn means that the number of queries to all oracles are the

same for both, as is the running time.

1.5 Usage of NBE1: The Transmit-Nonce transform

With AE1-secure NBE1, the nonce is needed for decryption. But how does the decryptor

get it? This is a question about usage not addressed in the formalism. The understanding,

however, is that the nonce can be communicated in the clear, with the core ciphertext. One might

argue this is fine because, in the AE1-formalism, the adversary picks the nonce, so seeing the

nonce again in the ciphertext cannot give the adversary an advantage.

We have discussed in the introduction why this fails to model cases where the nonce is

chosen by the user, and why, at least in general, nonce transmission may violate message privacy.

But the claim, so far, was informal. The reason was that transmitting the nonce represents a

usage of NBE1 and we had no definitions to capture this. With AE2-secure NBE2, that gap is

filled and we are in a position to formalize the claim of usage insecurity.

Some readers may see this is unnecessary, belaboring an obvious point. Indeed, the

intuition is clear enough. But formalizing it serves also as an introduction to exercising our

framework. We capture the usage in question as an NBE2 scheme SETN = TN[SE1] built from a

given NBE1 scheme SE1 by what we call the transmit-nonce transform TN. We detail the (rather

obvious) claim that SETN fails to meet AE2-security, and discuss how it will also fail to meet

other, weaker privacy goals.

The TN transform.

Our TN (Transmit Nonce) transform takes an NBE1 scheme SE1 and returns the NBE2

scheme SETN = TN[SE1], that, as the name suggests, transmits the nonce in the clear, mean-

ing the SETN ciphertext is the nonce together with the SE1 core ciphertext. In more detail,

encryption algorithm SETN.Enc(K,N,M,H) lets C1← SE1.Enc(K,N,M,H) and returns cipher-

text C2← (N,C1). Decryption algorithm SETN.Dec(K,C2,H) parses C2 as a pair (N,C1) with

31

N ∈ SE1.NS —we write this as (N,C1)← C2— returning ⊥ if the parsing fails, and else re-

turning M ← SE1.Dec(K,N,C1,H). NBE2 scheme SETN has the same key space, message

space and header space as SE1, and we define its ciphertext space via SETN.CS(ℓn, ℓm, ℓh) =

SE1.NS×{0,1}SE1.ccl(ℓn,ℓm,ℓh) for all ℓn, ℓm, ℓh ≥ 0. Usage of SE1 in which the nonce is sent in

the clear (along with the core ciphertext) can now be formally modeled by asking what formal

security notions for NBE2 schemes are met by SETN = TN[SE1].

Insecurity of TN[SE1].

Let SE1 be any NBE1 scheme. It might, like GCM, be AE1[Aae1
u-n]-secure, or it might

even be AE1[Aae1
u-nmh]-secure. Regardless, we claim that NBE2 scheme SETN = TN[SE1] fails to

be AE2[Aae2
priv∩Aae2

u-n]-secure, meaning fails to provide privacy even for adversaries that do not

reuse a nonce. This is quite obvious, since the adversary can test whether the nonce in its ENC

query matches the one returned in the ciphertext. In detail:

Adversary ANEW,ENC

INIT

Pick some (N,M,H) ∈ SE1.NS×SE1.MS×SE1.HS with |N| ≥ 1

NEW // Initialize one user

(N∗,C1)←$ ENC(1,N,M,H) // Ciphertext returned is a pair

If (N∗ = N) then b′← 1 else b′← 0

FIN(b′)

This adversary has advantage Advae2
SETN

(A)≥ 1−1/2 = 1/2, so represents a violation of AE2[

Aae2
priv∩Aae2

u-n]-security.

Discussion.

The attack above may be difficult to reconcile with SE1 being AE1[Aae1
u-n]-secure, the

question being that, in the AE1 game, the adversary picks the nonce, and thus already knows

it, so why should seeing it again in the ciphertext give the adversary extra information? The

32

answer is that in usage the adversary does not know the nonce a priori and seeing may provide

additional information. This is not modeled in AE1 but is modeled in AE2. To be clear, the

above violation of AE2 security does not contradict the assumed AE1-security of SE1.

One might (correctly) argue that AE2 is a strong requirement so failing it does not

represent a concerning violation of security, but it is clear that SETN will fail to meet even much

weaker notions of privacy for NBE2 schemes that one could formalize in natural ways, such

as message recovery security or semantic security. (The nonce could be message dependent,

in the extreme equal to the message.) One might also suggest that the losses of privacy occur

for pathological choices of nonces, and nonce transmission is just fine if the nonce is a random

number or counter, to which there are two responses. (1) The pitch and promise of AE1[Aae1
u-n]-

secure NBE1 is that any (non-repeating) nonce is fine. For example RBBK [124] says

The entity that encrypts chooses a new nonce for every message with the only
restriction that no nonce is used twice

and RFC 5116 says

Applications SHOULD use the nonce formation method defined in Section 3.2,
and MAY use any other method that meets the uniqueness requirement.

It is important to know (both to prevent misuse and for our understanding) that in usage of NBE1,

security requires more than just uniqueness of nonces; one must be concerned with how they

are conveyed to the receiver. (2) A counter nonce can lead to loss of user privacy, for example

revealing identity information, that is resolved by moving to AE2[Aae2
u-n]-secure NBE2, which is

nonce hiding.

Privacy violations of the type discussed here, and captured by TN, occur only when the

nonce is transmitted in the clear. They do not arise in TLS, where the nonce is not transmitted.

(It is a counter that is held, and locally updated, by both sender and receiver.)

33

1.6 Basic transforms

We have explained that AE2-secure NBE2 offers valuable security and usability benefits

over current encryption. So we now turn to achieving it. We follow the development path

of NBE1, first, in this section, targeting basic AE2-security —no user reuses a nonce, which

in our framework corresponds to adversaries in the class Aae2
u-n— and then, in Section 1.7,

targeting advanced AE2-security —misuse resistance, where nonce-reuse is allowed, which in

our framework corresponds to adversaries in the class Aae2
u-nmh.

Significant effort has gone into the design and analysis of basic-AE1-secure NBE1

schemes. We want to leverage rather than discard this. Accordingly, rather than from-scratch

designs, we seek transforms of basic-AE1-secure NBE1 schemes into basic-AE2-secure NBE2

ones. This section gives three transforms that are simple and efficient and minimize quantitative

security loss.

1.6.1 Preliminaries

We assume for simplicity that the NBE1 schemes provided as input to our transforms have

nonces of a fixed length, meaning that SE1.NS = {0,1}SE1.nl. This holds for most real-world

AE1-secure NBE1 schemes. All our transforms can be adapted to allow variable-length nonces.

Core ciphertexts in practical NBE1 schemes tend to be no shorter than a certain min-

imal value, for example 96 bits for typical usage of GCM with AES [61]. We refer to this

value as the minimal core-ciphertext length of the scheme SE1, formally defining SE1.mccl=

minN,M,H{SE1.ccl(|N|, |M|, |H|)}where the minimum is over all (N,M,H)∈ SE1.NS×SE1.MS

×SE1.HS. This is relevant because some of our transforms need SE1.mccl to be non-trivial to

provide security.

All transforms here use two keys, meaning the key for the constructed NBE2 scheme

SE2 is a pair consisting of a key for a PRF and a key for SE1. An implementation can, starting

from a single overlying key, derive these sub-keys and store them, so that neither key size nor

34

computational cost increase. This is well understood and is done as part of OCB, GCM and

many other designs.

The ciphertext overhead is the bandwidth cost of the transform. We now discuss how

to measure it. In the NBE2 scheme SE2 constructed by any of our transforms from an NBE1

scheme SE1, the ciphertext space is the set of strings of some length, SE2.CS(ℓn, ℓm, ℓh) =

{0,1}SE2.cl(ℓn,ℓm,ℓh). Since NBE1 decryption gets the nonce for free while NBE2 decryption must,

effectively, communicate it via the ciphertext, the “fair” definition of the ciphertext overhead of

the transform is the maximum, over all possible choices of ℓn, ℓm, ℓh, of

SE2.cl(ℓn, ℓm, ℓh)−SE2.ccl(ℓn, ℓm, ℓh)−SE1.nl .

Another way to put it is that the ciphertext overhead is how much longer ciphertexts are in SE2

than in TN[SE1]. All our transforms have ciphertext overhead zero, meaning are optimal in

terms of bandwidth usage.

1.6.2 The HN1 transform

The idea of our first transform is that a piece of the core ciphertext may be used as a

nonce under which to encrypt the actual nonce. Let SE1 be an NBE1 scheme and F a function

family with F.ol= SE1.nl, so that outputs of F.Ev can be used to mask nonces for SE1. Assume

SE1.mccl ≥ F.il, so that an F.il-bit prefix of a core ciphertext can be used as an input to F.Ev.

Invertibility of F is not required, so it can, but need not, be a blockcipher. Our HN1 transform

defines NBE2 scheme SEHN1 = HN1[SE1,F] whose encryption and decryption algorithms are

shown in Figure 1.5. A key (KF,K1) for SEHN1 is a pair consisting of a key KF for F and a

key K1 for SE1, so that the key space is SEHN1.KS= {0,1}F.kl×SE1.KS. The message, header

and nonce spaces are unchanged. The parsing Y∥C1←C2 in the second line of the decryption

algorithm SEHN1 is such that |Y |= SE1.nl. The ciphertext overhead is zero. The computational

overhead is one call to F.Ev for each of encryption or decryption.

35

SEHN1.Enc((KF,K1),N,M,H)

C1← SE1.Enc(K1,N,M,H)

x←C1[1..F.il] ; P← F.Ev(KF,x)
Y ← P⊕N ; C2← Y∥C1

Return C2

SEHN1.Dec((KF,K1),C2,H)

If (|C2|< SE1.nl+F.il) then return ⊥
Y∥C1←C2 ; x←C1[1..F.il] ; P← F.Ev(KF,x)
N← P⊕Y ; M← SE1.Dec(K1,N,C1,H)

Return M

SEHN2.Enc((KE,K1),N,M,H)

C1← SE1.Enc(K1,N,M,H)

(x,y)← Spl.Ev(ℓ,C1)

C2,1← E.Ev(KE,N∥x)
C2←C2,1∥y ; Return C2

SEHN2.Dec((KE,K1),C2,H)

If (|C2|< E.bl) then return ⊥
N∥x← E.In(KE,C2[1..E.bl])
y←C2[(E.bl+1)..|C2|] ; C1← Spl.In(x,y)
M← SE1.Dec(K1,N,C1,H) ; Return M

SEHN3.Enc((KF,K1),N,M,H)

N1← F.Ev(KF,N)

C1← SE1.Enc(K1,N1,M,H)

C2← N1∥C1 ; Return C2

SEHN3.Dec((KF,K1),C2,H)

If (|C2|< F.ol) then return ⊥
N1∥C1←C2 ; M← SE1.Dec(K1,N1,C1,H)

Return M

HN1[SE1,F] HN2[SE1, ℓ,E,Spl] HN3[SE1,F]

Figure 1.5. Pseudocode and pictorial descriptions of NBE2 schemes’ algorithms. From top to
bottom: SEHN1 = HN1[SE1,F], SEHN2 = HN2[SE1, ℓ,E,Spl] and SEHN3 = HN3[SE1,F]. .

36

Adversary ANEW,ENC,VF,FIN
1

ANEW∗,ENC∗,VF∗,FIN
2

procedure NEW∗

v← v+1 ; KF,v←${0,1}F.kl ; NEW

procedure ENC∗(i,N,M,H)

C1← ENC(i,N,M,H) ; x←C1[1..F.il] ; Y ← N⊕F.Ev(KF,i,x) ; C2← Y∥C1
Return C2

procedure VF∗(i,C2,H)

If (|C2|< SE1.nl+F.il) then return ⊥
Y∥C1←C2 ; x←C1[1..F.il] ; N← Y⊕F.Ev(KF,i,x) ; Return VF(i,N,C1,H)

Figure 1.6. Adversary A1 used in proving Equation (1.1).

Theorem 4 below says that if the starting NBE1 scheme SE1 is basic-AE1-secure and F

is a PRF then the NBE2 scheme SEHN1 returned by the transform is basic-AE2-secure. We show

authenticity and privacy separately —taking advantage of Theorem 1 to obtain joint security—

not just for simplicity, but because the bounds and assumptions under which security can be

established are different. Authenticity of SEHN1 reduces tightly to that of SE1 and does not

require PRF-security of F, as indicated by Equation (1.1). PRF-security of F is only required for

privacy, where there is also an added term in the bound, as indicated by Equation (1.2).

Theorem 4 Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given adversary A2 ∈Aauth2
u-n

we construct adversary A1 ∈Aauth1
u-n such that

Advauth2
SEHN1

(A2) ≤ Advauth1
SE1 (A1) . (1.1)

Adversary A2 preserves the resources of A1. Also, given adversary A2 ∈Aae2
u-n∩Aae2

priv, making qn

queries to its NEW oracle and qe queries per user to its ENC oracle, we construct adversaries

A1 ∈Aae1
u-n∩Aae1

priv and B such that

Advae2
SEHN1

(A2) ≤ Advae1
SE1(A1)+Advprf

F (B)+
qnqe(qe−1)

2F.il+1 . (1.2)

37

procedure FIN(b′) // For all games

Return (b′ = 1)

Games G0, G1

procedure NEW

v← v+1 ; K1,v←$SE1.KS

KF,v←${0,1}F.kl ; fv← F.Ev(KF,v, ·) // Game G0

fv←$ FUNC({0,1}F.il,{0,1}F.ol) // Game G1

procedure ENC(i,N,M,H)

C1← SE1.Enc(K1,i,N,M,H)

x←C1[1..F.il] ; P← fi(x) ; Y ← P⊕N
C2← Y∥C1 ; Return C2

Games G2, G3

procedure NEW

v← v+1
fv←$ FUNC({0,1}F.il,{0,1}F.ol)

procedure ENC(i,N,M,H)

C1←${0,1}SE1.ccl(|N|,|M|,|H|)

x←C1[1..F.il] ; P← fi(x) ; Y ← P⊕N

If (x ∈ Si) then bad← true ; Y←${0,1}F.ol

Si← Si∪{x}
C2← Y∥C1 ; Return C2

Adversary BINIT,NEW,FN,FIN

AINIT,NEW∗,ENC∗,FIN
2

procedure NEW∗

v← v+1 ; K1,v←$SE1.KS

NEW

procedure ENC∗(i,N,M,H)

C1← SE1.Enc(K1,i,N,M,H)

x←C1[1..F.il] ; P← FN(i,x) ; Y ← P⊕N
C2← Y∥C1 ; Return C2

Adversary AINIT,NEW,ENC,FIN
1

AINIT,NEW∗,ENC∗,FIN
2

procedure NEW∗

v← v+1
fv←$ FUNC({0,1}F.il,{0,1}F.ol)
NEW

procedure ENC∗(i,N,M,H)

C1←$ ENC(i,N,M,H)

x←C1[1..F.il] ; P← fi(x) ; Y ← P⊕N
C2← Y∥C1 ; Return C2

Figure 1.7. Games and adversaries used in proof of Equation (1.1). FIN is common to all games.

38

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its NEW oracle

and qe queries per user to its FN oracle. Adversary B has about the same running time as A2.

Proof. Adversary A1 for the authenticity claim is in Figure 1.6. Adversary A1’s simulation

of ENC queries is faithful. We need to check not only Equation (1.1) but also that A1 belongs to

Aauth1
u-n . We claim that when a VF query of A2 is winning (accepting and new) in its game, then the

corresponding VF query of A1 is winning (accepting and new) in its game. This comes down to

the following. Fix KF and C1, let x =C1[1..F.il] and let Y,Y ′ ∈ {0,1}F.ol. Let N =Y⊕F.Ev(KF,x)

and N′ = Y ′⊕F.Ev(KF,x). Then Y = Y ′ iff N = N′. Intuitively, with KF,C1 fixed, there is a one-

to-one correspondence between full ciphertexts Y∥C1 and nonce, core-ciphertext pairs (N,C1)

where N = Y⊕F.Ev(KF,C1[1..F.il]).

For the proof of privacy, consider the games in Fig. 1.7. Oracle DEC is dropped, since

the privacy adversary makes no queries to it. Game G0 is the real game. Game G1 switches from

F to random functions, which the adversary will not notice due to the assumed PRF security of F.

Game G2 switches to random core ciphertexts, which the adversary will not notice due to the

assumed privacy of SE1. Game G3 switches to random full ciphertexts. Games G2,G3 differ

only in the boxed code, so that the adversary notices the switch only when two calls to ENC pick

the same value of x. This is exactly the probability that bad is set. Proceeding to the details, we

have:

Advae2
SEHN1

(A2) = Pr[G0(A2)]−Pr[G3(A2)]

= (Pr[G0(A2)]−Pr[G1(A2)]) + (Pr[G1(A2)]−Pr[G2(A2)]) + (Pr[G2(A2)]−Pr[G3(A2)]) .

Let adversaries A1 and B be as in Fig. 1.7. For simplicity we show A1 as picking fv at random,

but for efficiency (meaning, to keep the running time to the same as that of A2) this must be

39

implemented via lazy sampling. Then:

Pr[G0(A2)]−Pr[G1(A2)] = Advprf
F (B) ,

Pr[G1(A2)]−Pr[G2(A2)] = Advae1
SE1(A1) ,

Pr[G2(A2)]−Pr[G3(A2)]≤ Pr[G2(A2) sets bad]

≤ qnqe(qe−1)
2F.il+1 .

The third inequality above used the Fundamental Lemma of Game Playing [30]. Putting the

above together yields Equation (1.1). □

1.6.3 The HN2 transform

Splitting.

This transform employs ciphertext stealing [106] to get zero ciphertext overhead. There

are many choices with regard to how to implement stealing, for example whether one steals

from the first part of the core ciphertext or the last, and implementations may have different

preferences. Accordingly, we do not pin down a choice but instead parameterize the transform by

a splitting algorithm responsible for splitting a given string X (the core ciphertext) into segments

x (the stolen part, of a prescribed length ℓ) and y (the rest). Formally, splitting scheme Spl

specifies a deterministic algorithm Spl.Ev that takes an integer ℓ≥ 0 and a string X with |X | ≥ ℓ,

and returns a pair of strings (x,y)← Spl.Ev(ℓ,X) with |x|= ℓ. If (x,y) ∈ Im(Spl.Ev(|x|, ·)) —the

image of a function was defined in Section 1.2— then X ← Spl.In(x,y) recovers the unique X

such that Spl.Ev(|x|,X) = (x,y), and otherwise returns X =⊥.

This isn’t enough because for security we want that if X is random then so are x,y. A

simple way to ensure this is to require that the split sets x to some bit positions of X and y to

the rest, with the choice of positions depending only on |X |. Formally, we require that there is

a (deterministic) function Spl.St that given integers ℓ,n with n≥ ℓ≥ 0 returns a starting index

40

s = Spl.St(ℓ,n) in the range 1 ≤ s ≤ n− ℓ+ 1, and Spl.Ev(ℓ,X) returns x = X [s..(s+ ℓ− 1)]

and y = X [1..(s−1)]∥X [(s+ ℓ)..|X |] for s = Spl.St(ℓ, |X |). The most common choices are that

Spl.St(ℓ,n) = 1, so that x = X [1..ℓ] is the ℓ-bit prefix of X and y = X [(ℓ+ 1)..|X |] is the rest

(corresponding to stealing from the first part of X), or Spl.St(ℓ,n) = n− ℓ+ 1, so that x =

X [(|X |− ℓ+1)..|X |] is the ℓ-bit suffix of X and y = X [1..(|X |− ℓ)] is the rest (corresponding to

stealing from the last part of X), but other choices are possible. Notice that now, assuming it is

given inputs of the right lengths, as it will in our usage, Spl.In will not return ⊥.

The HN2 transform.

The starting idea of this transform is that our NBE2 scheme can encrypt under the given

NBE1 scheme and then also include in the ciphertext an enciphering, under a blockcipher E,

of the nonce. We enhance this to encipher, along with the nonce, ℓ bits stolen from the core

ciphertext. The stealing has two dividends. First, nonces are often shorter than the block length

of E —for example SE1.nl = 96 and E.bl = 128 for AES-GCM and OCB [124, 99]— so in

the absence of stealing, the nonce would be padded before enciphering, leading to ciphertext

overhead. Second, while we show here (Theorem 5) that the scheme preserves basic security

regardless of the amount ℓ stolen, we show later (Theorem 8) that it preserves even advanced

security if ℓ is non-trivial (128 bits or more). We now proceed to the full description.

Let SE1 be an NBE1 scheme, Spl a splitting scheme and ℓ≥ 0 the prescribed length of

the stolen segment of the core ciphertext. We assume the minimal core-ciphertext length of

SE1 satisfies SE1.mccl ≥ ℓ, which ensures that core ciphertexts are long enough to allow the

desired splitting. Let E be a blockcipher with block length E.bl= SE1.nl+ℓ. Our HN2 transform

defines NBE2 scheme SEHN2 = HN2[SE1, ℓ,E,Spl] whose encryption and decryption algorithms

are shown in Figure 1.5. The parsing in the second line of the decryption algorithm SEHN2 is

such that |N| = SE1.nl. A key (KE,K1) for SEHN2 is a pair consisting of a key KE for E and a

key K1 for SE1, so that the key space is SEHN2.KS= {0,1}E.kl×SE1.KS. The nonce, message

and header spaces are unchanged. The length of ciphertext C2 is E.bl+ |C1|− ℓ= |C1|+SE1.nl,

41

so the ciphertext space is SEHN2.CS(ℓn, ℓm, ℓh) = {0,1}SE1.nl+SE1.ccl(ℓn,ℓm,ℓh). The ciphertext

overhead is zero. The computational overhead is an extra blockcipher call for encryption and a

blockcipher inverse for decryption.

A typical instantiation for basic security is E= AES, so that E.bl= 128. Nonces would

have length SE1.nl= 96. We then set ℓ= 32 and Spl.St(ℓ,n) = 1 for all n. This means SE1.mccl

must be at least 32, which is true for all real-world schemes we know. This reduction in the

required value of SE1.mccl for security is a benefit that HN2 offers over HN1. Recall the latter

needs F.il≥ SE1.mccl, and hence by Theorem 4 needs SE1.mccl≥ 128, for the same security

that HN2 can offer with SE1.mccl≥ 32.

Theorem 5 below says that if the starting NBE1 scheme SE1 is basic-AE1-secure and E is

a PRF, then the NBE2 scheme SEHN2 returned by the transform is basic-AE2-secure. (This holds

regardless of the value of ℓ.) We establish authenticity and privacy separately to showcase the

difference in assumptions. Thus authenticity, as per Equation (1.3) does not require security of

the blockcipher E and reduces tightly to the authenticity of SE1. For privacy, which relies on PRF

security of E, Equation (1.4) shows that the reduction is tight, the added term of Equation (1.2)

no longer present. This better bound is another benefit of HN2 over HN1.

Theorem 5 Let SEHN2 = HN2[SE1, ℓ,E,Spl] be obtained as above. Then, given adversary A2

∈Aauth2
u-n we construct adversary A1 ∈Aauth1

u-n such that

Advauth2
SEHN2

(A2) ≤ Advauth1
SE1 (A1) . (1.3)

Adversary A2 preserves the resources of A1. Also, given adversary A2 ∈Aae2
u-n∩Aae2

priv, making qn

queries to its NEW oracle and qe queries per user to its ENC oracle, we construct adversaries

A1 ∈Aae1
u-n∩Aae1

priv and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1)+Advprf

E (B) . (1.4)

42

Adversary ANEW,ENC,VF,FIN
1

ANEW∗,ENC∗,VF∗,FIN
2

procedure NEW∗

v← v+1 ; KE,v←${0,1}E.kl ; NEW

procedure ENC∗(i,N,M,H)

C1← ENC(i,N,M,H) ; (x,y)← Spl.Ev(ℓ,C1) ; C2,1← E.Ev(KE,i,N∥x)
C2←C2,1∥y ; Return C2

procedure VF∗(i,C2,H)

If (|C2|< E.bl) then return ⊥
N∥x←E.In(KE,i,C2[1..E.bl]) ; y←C2[(E.bl+1)..|C2|] ; C1← Spl.In(x,y)
Return VF(i,N,C1,H)

Figure 1.8. Adversary A1 used in proving Equations (1.3) and (1.8).

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its NEW oracle

and qe queries per user to its FN oracle. Adversary B has about the same running time as A2.

Proof. Adversary A1 for the authenticity claim of Equation (1.3) is in Figure 1.8.

For the proof of privacy, consider the games in Fig. 1.9. Oracle DEC is dropped, since

the privacy adversary makes no queries to it. Game G0 is the real game. Game G1 switches from

E to random functions, which the adversary will not notice due to the assumed PRF security of E.

Game G2 switches to random core ciphertexts, which the adversary will not notice due to the

assumed privacy of SE1. Game G2 also has random full ciphertexts due to the uniqueness of

nonces. Proceeding to the details, we have:

Advae2
SEHN2

(A2) = Pr[G0(A2)]−Pr[G2(A2)]

= (Pr[G0(A2)]−Pr[G1(A2)]) + (Pr[G1(A2)]−Pr[G2(A2)]) .

Let adversaries A1 and B be as in Fig. 1.9. For simplicity we show A1 as picking fv at random, but

for efficiency (meaning, to keep its running time the same as that of A2) this must be implemented

43

procedure FIN(b′) // For all games

Return (b′ = 1)

Games G0, G1

procedure NEW

v← v+1 ; K1,v←$SE1.KS

KE,v←${0,1}E.kl ; fv← E.Ev(KE,v, ·) // Game G0

fv←$ FUNC({0,1}E.bl,{0,1}E.bl) // Game G1

procedure ENC(i,N,M,H)

C1← SE1.Enc(K1,i,N,M,H)

(x,y)← Spl.Ev(ℓ,C1) ; C2,1← fi(N∥x)
C2←C2,1∥y ; Return C2

Game G2

procedure NEW

v← v+1 ; fv←$ FUNC({0,1}E.bl,{0,1}E.bl)

procedure ENC(i,N,M,H)

C1←${0,1}SE1.ccl(|N|,|M|,|H|)

(x,y)← Spl.Ev(ℓ,C1) ; C2,1← fi(N∥x)
C2←C2,1∥y ; Return C2

Adversary BINIT,NEW,FN,FIN

AINIT,NEW∗,ENC∗,FIN
2

procedure NEW∗

v← v+1 ; K1,v←$SE1.KS

NEW

procedure ENC∗(i,N,M,H)

C1← SE1.Enc(K1,i,N,M,H)

(x,y)← Spl.Ev(ℓ,C1) ; C2,1← FN(i,N∥x)
C2←C2,1∥y ; Return C2

Adversary AINIT,NEW,ENC,FIN
1

AINIT,NEW∗,ENC∗,FIN
2

procedure NEW∗

v← v+1
fv←$ FUNC({0,1}E.bl,{0,1}E.bl)
NEW

procedure ENC∗(i,N,M,H)

C1←$ ENC(i,N,M,H)

(x,y)← Spl.Ev(ℓ,C1) ; C2,1← fi(N∥x)
C2←C2,1∥y ; Return C2

Figure 1.9. Games and adversaries used in proof of Equation (1.4). G0,G1 are also used in the
proof of Equation (1.9). FIN are common to all games.

44

via lazy sampling. Then:

Pr[G0(A2)]−Pr[G1(A2)] = Advprf
E (B) ,

Pr[G1(A2)]−Pr[G2(A2)] = Advae1
SE1(A1) .

Putting the above together yields Equation (1.4). □

1.6.4 The HN3 transform

Our third transform uses what we call nonce-based nonce-derivation, in which encryption

is performed under SE1 using as nonce the result N1 = F(KF,N) of a PRF F on the actual nonce N.

The idea comes from SIV [125] but differences include that: (1) SIV constructs an AE1-secure

NBE1 scheme while we construct an AE2-secure NBE2 scheme. (2) SIV decryption needs to

have the original nonce. (3) Our synthetic nonce N1 is a function only of the actual nonce while

the one in SIV is also a function of the message and header.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function family with

F.ol= SE1.nl, meaning outputs of F.Ev can be used as nonces for SE1. Invertibility of F is not

required, so it can, but need not, be a blockcipher. Our HN3 transform defines NBE2 scheme

SEHN3 = HN3[SE1,F] whose encryption and decryption algorithms are shown in Figure 1.5. A

key (KF,K1) for SEHN3 is a pair consisting of a key KF for F and a key K1 for SE1, so that the key

space is SEHN3.KS= {0,1}F.kl×SE1.KS. The message and header spaces are unchanged, and

the nonce space is SEHN3.NS= {0,1}F.il, meaning inputs to F are nonces for SE2. The parsing

in the second line of the decryption algorithm SEHN3 of Figure 1.5 is such that |N1|= SE1.nl.

Note that the decryption algorithm does not use F or KF.

As with HN1 and HN2, the HN3 transform has zero ciphertext overhead. The compu-

tational overhead for encryption is one invocation of F. Advantages emerge with decryption,

where there is now no computational overhead. Indeed decryption in SEHN3 is effectively the

same as in SE1. In particular, in the typical case that F is a blockcipher on which SE1 is itself

45

based, decryption (unlike with HN2) no longer needs to implement its inverse, which can be a

benefit in hardware and for reducing code size.

The assumed PRF security of F means that the nonce N1 provided to SE1.Enc is effectively

random. This makes it simple and natural, in proving security, to assume SE1 is AE1[Aae1
r-n]-

secure (recall this is AE1-security for the class of adversaries that pick the nonce at random).

Theorem 6 below accordingly says that if the starting NBE1 scheme SE1 is AE1[Aae1
r-n]-secure

and F is a PRF then the NBE2 scheme SEHN1 returned by the transform is basic-AE2-secure.

The gap to the assumed basic-AE1-security of SE1 is bridged by applying Theorem 3.

Theorem 6 Let SEHN3 = HN3[SE1,F] be obtained as above. Then, given adversary A2 ∈Aae2
u-n,

making qn queries to its NEW oracle and qe queries per user to its ENC oracle, we construct

adversaries A1 ∈Aae1
r-n and B such that

Advae2
SEHN3

(A2) ≤ Advae1
SE1(A1)+Advprf

F (B) . (1.5)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its NEW oracle

and qe queries per user to its FN oracle. Adversary B has about the same running time as A2.

Proof. We assume A2 does not make trivial queries, meaning it does not make query

DEC(i,C2,H) if it has previously received C2 in response to an ENC(i, ·, ·,H) query. Consider the

games in Fig. 1.10. Game G0 is the real game. Game G1 switches from F to random functions,

which the adversary will not notice due to the assumed PRF security of F. Game G2 switches to

random core ciphertexts and ⊥ replies to DEC queries, which the adversary will not notice due

to the assumed AE1[Aae1
r-n]-security of SE1. Game G2 also has random full ciphertexts due to the

uniqueness of nonces. Proceeding to the details, we have:

Advae2
SEHN3

(A2) = Pr[G0(A2)]−Pr[G2(A2)]

= (Pr[G0(A2)]−Pr[G1(A2)]) + (Pr[G1(A2)]−Pr[G2(A2)]) .

46

procedure FIN(b′) // For all games

Return (b′ = 1)

Games G0, G1

procedure NEW

v← v+1 ; K1,v←$SE1.KS

KF,v←${0,1}F.kl ; fv← F.Ev(KF,v, ·) // Game G0

fv←$ FUNC({0,1}F.il,{0,1}F.ol) // Game G1

procedure ENC(i,N,M,H)

N1← fi(N) ; C1← SE1.Enc(K1,i,N1,M,H)

Return N1∥C1

procedure DEC(i,C2,H)

N1∥C1←C2 ; M← SE1.Dec(K1,i,N1,C1,H)

Return M

Game G2

procedure NEW

v← v+1 ; K1,v←$SE1.KS

fv←$ FUNC({0,1}F.il,{0,1}F.ol)

procedure ENC(i,N,M,H)

N1← fi(N) ; C1←${0,1}SE1.ccl(|N1|,|M|,|H|)

Return N1∥C1

procedure DEC(i,C2,H)

M←⊥ ; Return M

Adversary BINIT,NEW,FN,FIN

AINIT,NEW∗,ENC∗,DEC∗,FIN
2

procedure NEW∗

v← v+1 ; K1,v←$SE1.KS

NEW

procedure ENC∗(i,N,M,H)

N1← FN(i,N)

C1← SE1.Enc(K1,i,N1,M,H)

Return N1∥C1

procedure DEC∗(i,C2,H)

N1∥C1←C2

M← SE1.Dec(K1,i,N1,C1,H)

Return M

Adversary AINIT,NEW,ENC,DEC,FIN
1

AINIT,NEW∗,ENC∗,DEC∗,FIN
2

procedure NEW∗

v← v+1
fv←$ FUNC({0,1}F.il,{0,1}F.ol)
NEW

procedure ENC∗(i,N,M,H)

N1← fi(N) ; C1←$ ENC(i,N1,M,H)

Return N1∥C1

procedure DEC∗(i,C2,H)

N1∥C1←C2 ; M← DEC∗(i,N1,C1,H)

Return M

Figure 1.10. Games and adversaries used in proof of Equation (1.5). FIN is common to all
games.

47

Let adversaries A1 and B be as in Fig. 1.10. For simplicity we show A1 as picking fv at random,

but for efficiency (meaning, to keep the running time to the same as that of A2) this must be

implemented via lazy sampling. Adversary A1 is in the class Aae1
r-n because the nonces it uses in

its ENC queries are results of fi on unique nonces, and are hence random and independent. Then:

Pr[G0(A2)]−Pr[G1(A2)] = Advprf
F (B) ,

Pr[G1(A2)]−Pr[G2(A2)] = Advae1
SE1(A1) .

Putting the above together yields Equation (1.5). □

1.7 Advanced transforms

We now turn to achieving AE2-security in the nonce-misuse setting, which we formalized

as AE2[Aae2
u-nmh]-security. We discuss various transforms for this purpose.

1.7.1 Advanced security of HN1

We showed in Theorem 4 that HN1 preserves basic security. It turns out that it also

preserves advanced security. Theorem 7 below says that if the starting NBE1 scheme SE1 is

advanced-AE1-secure and F is a PRF then the NBE2 scheme SEHN1 returned by the transform is

advanced-AE2-secure. The change in the statement compared to Theorem 4 is only with regard

to the adversary classes changing from unique nonce (basic security) to unique nonce-message-

header (advanced security). Again, Equation (1.6) tightly reduces authenticity of SEHN1 to that

of SE1 and makes no security assumptions on F, while the privacy claim of Equation (1.7) relies

on PRF-security of F. The proof is very similar to that of Theorem 4 so we omit it for brevity.

Theorem 7 Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given adversary A2 ∈

Aauth2
u-nmh we construct adversary A1 ∈Aauth1

u-nmh such that

Advauth2
SEHN1

(A2) ≤ Advauth1
SE1 (A1) . (1.6)

48

SEHN4.Enc((KF,K1),N,M,H)

N1← F.Ev(KF,(N,M,H))

C1← SE1.Enc(K1,N1,N∥M,H)

C2← N1∥C1

Return C2

SEHN4.Dec((KF,K1),C2,H)

If (|C2|< F.ol) then return ⊥
N1∥C1←C2 ; X ← SE1.Dec(K1,N1,C1,H)

If (X =⊥) then return ⊥
N∥M← X ; T ← F.Ev(KF,(N,M,H))

If (T = N1) then return M else return ⊥

SEHN5.Enc(KTE,N,M,H)

C2← TE.Ev(KTE,H,0ℓz∥N∥M)

Return C2

SEHN5.Dec(KTE,C2,H)

X ← TE.In(KTE,H,C2) ; If X [1..ℓz] ̸= 0ℓz then return ⊥
N∥M← X [(ℓz +1)..|X |] ; Return M

HN4[SE1, ℓ,F] HN5[TE, ℓ, ℓz]

Figure 1.11. Pseudocode and pictorial descriptions of NBE2 schemes constructed using our
advanced transforms. From top to bottom: SEHN4 =HN4[SE1, ℓ,F] and SEHN5 =HN5[TE, ℓ, ℓz].

49

Adversary A2 preserves the resources of A1. Also, given adversary A2 ∈Aae2
u-nmh∩Aae2

priv, making

qn queries to its NEW oracle and qe queries per user to its ENC oracle, we construct adversaries

A1 ∈Aae1
u-nmh∩Aae1

priv and B such that

Advae2
SEHN1

(A2) ≤ Advae1
SE1(A1)+Advprf

F (B)+
qnqe(qe−1)

2F.il+1 . (1.7)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its NEW oracle

and qe queries per user to its FN oracle. Adversary B has about the same running time as A2.

1.7.2 Advanced security of HN2

We showed in Theorem 5 that HN2 preserves basic security regardless of the amount ℓ

of stolen core-ciphertext, even ℓ= 0. For small ℓ, however, HN2 can leak information about the

nonce in the advanced (misuse resistance) setting, so that the resulting scheme does not provide

AE2[Aae2
u-nmh]-security.

To see how HN2 can reveal information about the nonce, consider the case that ℓ= 0.

Now if two different message-header pairs are encrypted with the same nonce, then the first part

of the ciphertext is the same, leading to an Aae2
u-nmh-adversary with advantage 1−2−E.bl. The

advantage of this attack however decreases (exponentially) as ℓ increases. The following theorem

says that once ℓ is non-trivial (say, 128 bits or more), the transform actually preserves advanced

security as well. The proof is very similar to that of Theorem 5 so we omit it for brevity.

Theorem 8 Let SEHN2 = HN2[SE1, ℓ,E,Spl] be obtained as above. Then, given adversary A2

∈Aauth2
u-nmh 1 we construct adversary A1 ∈Aauth1

u-nmh such that

Advauth2
SEHN2

(A2) ≤ Advauth1
SE1 (A1) . (1.8)

Adversary A2 preserves the resources of A1. Also, given adversary A2 ∈Aae2
u-nmh∩Aae2

priv, making

qn queries to its NEW oracle and qe queries per user to its ENC oracle, we construct adversaries

50

Games G2, G3

procedure NEW

v← v+1 ; Sv← /0 ; fv←$ FUNC({0,1}E.bl,{0,1}E.bl)
procedure ENC(i,N,M,H)

C1←${0,1}SE1.ccl(|N|,|M|,|H|) ; (x,y)← Spl.Ev(ℓ,C1) ; C2,1← fi(N∥x)
If (x ∈ Si) then bad← true ; C2,1←${0,1}ℓ+|N|

Si← Si∪{x} ; C2←C2,1∥y ; Return C2

procedure FIN(b′)
Return (b′ = 1)

Figure 1.12. Games G2,G3 used in proof of Equation (1.9).

A1 ∈Aae1
u-nmh∩Aae1

priv and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1)+Advprf

E (B)+
qnqe(qe−1)

2ℓ+1 . (1.9)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its NEW oracle

and qe queries per user to its FN oracle. Adversary B has about the same running time as A2.

Proof. The proof of Theorem 8 is very similar to that of Theorem 5.

The adversary A1 used in proving Equation (1.8) is the same one depicted in Fig. 1.8.

Note that if A2 ∈Aauth2
u-nmh then A1 ∈Aauth1

u-nmh, meaning that A1 is in the desired adversary class.

For the proof of privacy, we will make use of games G0,G1 from the proof of Theorem 8

(Fig. 1.9), but define the new games G2,G3 shown in Fig. 1.12). As before, G0 is the real game,

while game G1 switches from E to random functions, which the adversary will not notice due

to the assumed PRF security of E. Game G2 switches to random core ciphertexts, which the

adversary will not notice due to the assumed privacy of SE1. Since we can no longer assume that

nonces are unique, however, the full ciphertexts may not be random. They will be, however, if

the x values do not repeat, allowing us to switch to game G3 with a loss that is the probability of

such a repeat.

Proceeding to the details, assume as usual that A2 does not make repeat or trivial queries.

51

Then we have

Advae2
SEHN2

(A2) = Pr[G0(A2)]−Pr[G3(A2)]

= (Pr[G0(A2)]−Pr[G1(A2)]) + (Pr[G1(A2)]−Pr[G2(A2)]) + (Pr[G2(A2)]−Pr[G3(A2)]) .

To conclude the proof of Equation (1.9), we have

Pr[G0(A2)]−Pr[G1(A2)] = Advprf
E (B) ,

Pr[G1(A2)]−Pr[G2(A2)] = Advae1
SE1(A1) ,

Pr[G2(A2)]−Pr[G3(A2)]≤ Pr[G3(A2) sets bad] (1.10)

≤ qnqe(qe−1)
2ℓ+1 .

Adversaries B,A1 for the first two equations above are those depicted in Fig. 1.9, and now

A2 ∈ Aae2
u-nmh because A1 ∈ Aae1

u-nmh. As before, we assume A1 implements the fi via lazy

sampling. Games G2,G3 are identical-until-bad, so Equation (1.10) is by the Fundamental

Lemma of Game Playing [30]. □

The above-sketched attack for the ℓ= 0 case can be extended to an attack (adversary)

that for arbitrary ℓ achieves an advantage of about qnq2
e ·2−ℓ, showing the bound of Theorem 8 is

essentially tight. The idea is that the adversary can win when the ℓ stolen bits are the same across

two ciphertexts encrypted to the same user. This extends an attack of [126] on Meyer-Matyas

ciphertext stealing.

The result of Theorem 8, however, is not ideal, because security would need ℓ = 128,

which requires SE1.mccl ≥ 128 (not always true) and also, assuming 96-bit nonces, would

require that the blockcipher E have block length 128+96=224, which precludes AES. We now

give further transforms that do better.

52

1.7.3 The HN4 transform

The HN3 transform clearly does not provide advanced-AE2-security because, if a nonce

is repeated, the resulting ciphertexts have the same synthetic nonce, and hence the same first parts,

which an adversary can notice. The starting idea for HN4 is to obtain the synthetic nonce N1 by

applying the PRF F, not just to the actual nonce N as in HN3, but, as in SIV [125], to (N,M,H).

If we now encrypt with N1 under an NBE1 scheme SE1, we can indeed show that AE2[Aae2
u-nmh]-

security is achieved, assuming SE1 is AE1[Aae1
u-nmh]-secure. The latter assumption, however, is

not satisfactory here because AE1[Aae1
u-nmh]-security (typically achieved via SIV itself) already

requires two passes through the entire input, so our computation of N1 adds another entire pass,

resulting in significant (non-constant) computational overhead. To avoid this we ask whether it

would be enough for SE1 to provide only privacy, meaning be AE1[Aae1
r-n ∩Aae1

priv]-secure, because

this can be achieved in one pass. Indeed, this is what SIV assumes, but the difficulty is that SIV

decryption makes crucial use of the original nonce N to provide authenticity, recomputing it and

checking that it matches the one in the ciphertext. But to be nonce hiding, we cannot transmit N.

We resolve this by including N as part of the message encrypted under SE1.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function family with

F.ol= SE1.nl, meaning outputs of F.Ev can be used as nonces for SE1, and also with SE1.NS

×SE1.MS×SE1.HS⊆ F.D, meaning triples (N,M,H) can be used as inputs to F. Let ℓ≥ 1 be

an integer prescribing the nonce length of the constructed scheme. Our HN4 transform defines

NBE2 scheme SEHN4 = HN4[SE1, ℓ,F] whose encryption and decryption algorithms are shown

in Figure 1.11. A key (KF,K1) for SEHN4 is a pair consisting of a key KF for F and a key K1

for SE1, so that the key space is SEHN4.KS = {0,1}F.kl× SE1.KS. The message and header

spaces are unchanged, and the nonce space is SEHN4.NS= {0,1}ℓ. The parsing in the second

line of the decryption algorithm SEHN4 of Figure 1.5 is such that |N1|= SE1.nl. The ciphertext

overhead is zero, and if SE1 is a standard one-pass privacy only scheme like counter-mode, then

the computational overhead is constant.

53

Security, as with SIV, requires that SE1 satisfies tidiness [108]. Formally, for all K,N,C1,

H, if SE1.Dec(K,N,C1,H) = M ̸=⊥ then SE1.Enc(K,N,M,H) =C1. Our assumption on SE1

is AE1[Aae1
r-n ∩Aae1

priv]-security. (Privacy only, and again, for convenience, for random nonces.)

By Theorem 3 this is implied by AE1[Aae1
u-n∩Aae1

priv]-security. Assuming additionally that F is a

PRF, the following says that HN4[SE1, ℓ,F] is AE2[Aae2
u-nmh]-secure.

As we have often done before, we consider privacy and authenticity separately to show

that the assumptions required, and bounds obtained, differ. Namely, assuming F is a PRF (1)

privacy of SEHN4 = HN4[SE1, ℓ,F] is inherited from that of SE1 with a tight reduction and (2)

authenticity of SEHN4 assumes only the tidiness (not privacy) of SE1.

Theorem 9 Let SEHN4 =HN4[SE1, ℓ,F] be obtained as above, and assume SE1 satisfies tidiness.

Then, given adversary A2 ∈Aae2
u-nmh∩Aae2

priv making qn queries to its NEW oracle and qe queries

per user to its ENC oracle, we construct adversaries A1 ∈Aae1
r-n ∩Aae1

priv and B1 such that

Advae2
SE2(A2)≤ Advprf

F (B1)+Advae1
SE1(A1) . (1.11)

Adversary A1 preserves the resources of A2 up to increasing the lengths of messages in ENC

queries by ℓ. Adversary B1 makes qn queries to its NEW oracle, and qe queries to its FN oracle

per user, and its running time is about that of A2. Also, given adversary A2 ∈Aauth2
u-nmh making qn

queries to its NEW oracle, qe queries per user to its ENC oracle and qv queries per user to its

VF oracle, we construct adversary B2 such that

Advauth2
SE2 (A2)≤ Advprf

F (B2)+
qnqv

2SE1.nl
. (1.12)

Adversary B2 makes qn queries to its NEW oracle, and qe +qv queries per user to its FN oracle,

and its running time is about that of A2.

Proof. For the proof of privacy, we will make use of the games G0,G1,G2 in Fig. 1.13.

Game G0 is the real game, game G1 switches to using random functions, which the adversary

54

Games G0, G1,G2

procedure NEW

v← v+1 ; K1,v←$SE1.KS

KF,v←${0,1}F.kl ; fv← F.Ev(KF,v, ·) // Game G0

fv←$ FUNC(F.D,{0,1}F.ol) // Games G1,G2

procedure ENC(i,N,M,H)

N1← fi((N,M,H))

C1← SE1.Enc(K1,i,N1,N∥M,H) // Games G0,G1

C1←${0,1}SE1.ccl(|N1|,|N|+|M|,|H|) // Game G2

Return N1∥C1

procedure FIN(b′)

Return (b′ = 1)

Adversary BINIT,NEW,FN,FIN
1

AINIT,NEW∗,ENC∗,FIN
2

procedure NEW∗

v← v+1 ; K1,v←$SE1.KS ; NEW

procedure ENC∗(i,N,M,H)

N1← FN(i,(N,M,H))

C1← SE1.Enc(K1,i,N1,N∥M,H)

Return N1∥C1

Adversary AINIT,NEW,ENC,FIN
1

AINIT,NEW∗,ENC∗,FIN
2

procedure NEW∗

v← v+1
fv←$ FUNC(F.D,{0,1}F.ol) ; NEW

procedure ENC∗(i,N,M,H)

N1← fi((N,M,H))

C1←$ ENC(i,N∥N1,M,H)

Return N1∥C1

Figure 1.13. Games and adversaries used in proof of Equation (1.11). Note that F.D =
SE1.NS×SE1.MS×SE1.HS, as required in th definition of HN4 in Section 1.7.

55

Games G0 , G1

procedure NEW

v← v+1 ; K1,v←$SE1.KS

KF,v←${0,1}F.kl ; fv← F.Ev(KF,v, ·) // Game G0

fv←$ FUNC({0,1}F.il,{0,1}F.ol) // Game G1

procedure ENC(i,N,M,H)

N1← fi((N,M,H))

C1← SE1.Enc(K1,i,N1,N∥M,H)

Return N1∥C1

procedure VF(i,C2,H)

N1∥C1←C2 ; X ← SE1.Dec(K1,i,N1,C1,H)

If (X =⊥) then return false

N∥M← X ; T ← fi((N,M,H))

If (T = N1) then win← true

Return (T = N1)

procedure FIN

Return win

Adversary BINIT,NEW,FN,FIN
2

AINIT,NEW∗,ENC∗,VF∗,FIN∗

2

procedure NEW∗

v← v+1 ; K1,v←$SE1.KS ; NEW

procedure ENC∗(i,N,M,H)

N1← FN(i,(N,M,H))

C1← SE1.Enc(K1,i,N1,N∥M,H)

Return N1∥C1

procedure VF∗(i,C2,H)

N1∥C1←C2

X ← SE1.Dec(K1,i,N1,C1,H)

If (X =⊥) then return false

N∥M← X ; T ← FN(i,(N,M,H))

If (T = N1) then win← true

Return (T = N1)

procedure FIN∗

If win= true then b′← 1 else b′← 0
FIN(b′)

Figure 1.14. Games and adversaries used in proof of Equation (1.12).

will not notice due to the assumed PRF security of F, and game G2 switches to random core

ciphertexts. Adversaries B2,A1 are also depicted in Fig. 1.13. Adversary A2, being a privacy

adversary, makes no DEC queries, so we omit giving oracle DEC in the games as well as when it

is run by other adversaries. As usual, we assume that A1 implements fi using lazy sampling for

efficiency. Because we assumed the nonce-message-header triples provided to fi by A2 do not

repeat, G2 has random full ciphertexts and A1 ∈Aae1
r-n . From here, we can derive Equation 1.11:

Advae2
SEHN4

(A2) = Pr[G0(A2)]−Pr[G2(A2)]

= (Pr[G0(A2)]−Pr[G1(A2)]) + (Pr[G1(A2)]−Pr[G2(A2)])

= Advprf
F (B) + Advae1

SESE1
(A1) .

56

Now we proceed to the authenticity proof. As before, we assume that A2 does not make

repeat or trivial queries. Games G0,G1 and adversary B2 are depicted in Fig. 1.14. As before,

the difference is that G1 switches the fv functions to random. We have

Advauth2
SESEHN4

(A2) = Pr[G0(A2)]

= Pr[G1(A2)]+(Pr[G0(A2)]−Pr[G1(A2)]) .

To complete the proof, we claim that

Pr[G0(A2)]−Pr[G1(A2)]≤ Advprf
F (B2)

Pr[G1(A2)]≤
qnqv

2SE1.nl
. (1.13)

Equation (1.13) is due to the assumed tidiness of SE1, as follows. Suppose ⊥ ≠ X = N∥M.

Tidiness plus the assumption that A2 makes no trivial queries say that (i,N,M,H) was not a prior

query to ENC, which means that T = N1 with probability at most 2−SE1.nl. □

1.7.4 The HN5 transform

Our final transform HN5 is different. It does not start from an NBE1 scheme but

rather from a (arbitrary-input-length) tweakable cipher, extending the encode-then-encipher

paradigm [29] to provide advanced-AE2-security. Instantiation via a fast tweakable cipher like

AEZ [80] results in correspondingly fast advanced-AE2-secure NBE2.

We encipher the nonce, message and some redundancy, using the header as the tweak.

The change from [80] is to move the nonce from tweak to an input so as to hide it, which we will

show is enough to confer AE2-security.

Tweakable ciphers.

These are the basic tool for this transform, so we recall definitions. A tweakable ci-

pher TE [102, 80] specifies a deterministic evaluation algorithm TE.Ev :{0,1}TE.kl×TE.TS×

57

Game Gprf
TE

procedure INIT

b←${0,1}

procedure NEW

v← v+1
If b = 1 then

Kv←${0,1}TE.kl

For all T ∈ TE.TS do
fv,T ← TE.Ev(Kv,T, ·)

Else For all T ∈ TE.TS do
fv,T←$ LFUNC

procedure FN(i,T,X)

Return fi,T (X)

procedure FIN(b′)

Return (b = b′)

Game Gprp-cca
TE

procedure INIT

b←${0,1}

procedure NEW

v← v+1
If b = 1 then

Kv←${0,1}TE.kl

For all T ∈TE.TS do πv,T ←TE.Ev(Kv,T, ·)
Else For all T ∈ TE.TS do πv,T←$ LPERM

procedure FN(i,T,X)

Return πv,T (X)

procedure FN−1(i,T,Y)

Return π
−1
i,T (Y)

procedure FIN(b′)

Return (b = b′)

Figure 1.15. Game defining (multi-user) PRF security for tweakable cipher TE (left) and game
defining (multi-user) PRP-CCA security for TE (right).

{0,1}∗→{0,1}∗ and a deterministic inversion algorithm TE.In :{0,1}TE.kl×TE.TS×{0,1}∗

→{0,1}∗. Here, TE.kl is the key length and TE.TS is the tweak space. We require that for all

K ∈ {0,1}TE.kl, T ∈ TE.TS and X ∈ {0,1}∗ we have |TE.Ev(K,T,X)| = |X | and TE.In(K,T,

TE.Ev(K,T,X)) = X .

We define (multi-user) PRF security for tweakable cipher TE via the game Gprf
TE(A) in

Fig. 1.15. Here LFUNC is the set of all length-preserving functions f :{0,1}∗→{0,1}∗. It is

required that any FN(i,T,X) query of the adversary A satisfies i≤ v, T ∈ TE.TS and X ∈ {0,1}∗.

The (multi-user) PRF advantage of A is Advprf
TE(A) = 2Pr[Gprf

TE(A)]−1

We define (multi-user) PRP-CCA security [102] for tweakable cipher TE via the game

Gprp-cca
TE (A) in Fig. 1.15. Here LPERM is the set of all length-preserving bijections π :{0,1}∗→

{0,1}∗. (Note that for any such π and any n, restricting π to {0,1}n yields a permutation on

{0,1}n.) It is required that any FN(i,T,X) or FN−1(i,T,Y) query of adversary A satisfies i≤ v,

T ∈ TE.TS and X ,Y ∈ {0,1}∗. The (multi-user) PRP-CCA advantage of A is Advprp-cca
TE (A) =

58

2Pr[Gprp-cca
TE (A)]−1.

The HN5 transform.

Proceeding to the details, let TE be a tweakable cipher as defined in Section 1.2. Let

ℓ ≥ 1 be an integer prescribing the nonce length of the constructed scheme. Let ℓz ≥ 0 be

the number of bits of redundancy we introduce to provide authenticity [29]. Our transform

defines NBE2 scheme SEHN5 = HN5[TE, ℓ, ℓz] whose encryption and decryption algorithms are

shown in Figure 1.11. The key space of SEHN5 is the key space of TE. The message space is

{0,1}∗. The header space SEHN5.HS is set to the tweak space TE.TS of TE. The nonce space

is SEHN5.NS = {0,1}ℓ. The length of ciphertext SEHN5.Enc(K,N,M,H) is ℓz + |N|+ |M|, so

SEHN5.CS(ℓn, ℓm, ℓh) = {0,1}ℓz+ℓ+ℓm . Ciphertext overhead, in this case, is not relative to an

underlying NBE1 scheme, since there isn’t any, but we see that ciphertexts are longer than

message plus nonce by just ℓz bits, which is effectively optimal [80].

With this transform, it is helpful to establish privacy and authenticity separately because

the security notions required to tightly bound them differ. The privacy of SEHN5 reduces to the

PRF security of TE while its authenticity depends on TE being an PRP-CCA secure tweakable

cipher and ℓz being sufficiently large. The following theorem captures this formally.

Theorem 10 Let SEHN5 = HN5[TE, ℓ, ℓz] be obtained as above. Then, given adversary A2 ∈

Aae2
u-nmh∩Aae2

priv, making qn queries to its NEW oracle and qe queries per user to its ENC oracle,

we construct adversary B1 such that

Advae2
SEHN5

(A) ≤ Advprf
TE(B1) . (1.14)

Adversary B makes qn queries to its NEW oracle and qe queries per user to its FN oracle, and its

running time is about that of A. Also, given adversary A2 ∈Aauth2
u-nmh making qn queries to its NEW

oracle and qe,qv queries per user to its ENC,VF oracles respectively, with qe+qv ≤ 2ℓ+ℓz−1, we

59

Adversary BINIT,NEW,FN,FIN
1

AINIT,NEW,ENC∗,FIN

procedure ENC∗(i,N,M,H)

C2← FN(i,H,0ℓz∥N∥M)

Return C2

Adversary BINIT,NEW,FN,FN−1,FIN
2

INIT

ANEW,ENC∗,VF∗,FIN∗

2

procedure ENC∗(i,N,M,H)

C2← FN(i,H,0ℓz∥N∥M) ; Return C2

procedure VF∗(i,C2,H)

X ← FN−1(i,H,C2)

If (X [1..ℓz] ̸= 0ℓz) then return false

Else win← true ; Return true

procedure FIN∗

If (win= true) then b′← 1 else b′← 0
FIN(b′)

Figure 1.16. Adversaries used in the proof of Theorem 10.

construct adversary B2 such that

Advauth2
SEHN5

(A2) ≤ Advprp-cca
TE (B2)+

2qnqd

2ℓz
. (1.15)

Adversary B2 makes qn queries to its NEW oracle and qe,qv queries per user to its FN,FN−1

oracles respectively, and its running time is about that of A2.

Proof. Adversary B1 referred to in Equation (1.14) is in Fig. 1.16. INIT,FIN and NEW

are all unchanged, and ENC is simulated as shown. Since A is a privacy adversary, we do not

need to simulate a decryption oracle.

Adversary B2 referred to in Equation (1.15) is also presented in Fig. 1.16. As before, we

assume A2 neither makes repeat encryption or verification queries, nor makes trivial verification

queries, meaning it does not make query VF(i,C2,H) if it has previously received C2 in response

to an ENC(i, ·, ·,H) query and also |C2| ≥ ℓ+ ℓz in any VF(i,C2,H) query.

Let b be the challenge bit of game Gprp-cca
TE and let b′ be the bit that B2 queries to

60

Gprp-cca
TE .FIN. Then,

Advprp-cca
TE (B2) = Pr[b′ = 1 |b = 1]−Pr[b′ = 1 |b = 0] .

To complete the proof, we claim that

Pr[b′ = 1 |b = 1]≥ Advauth2
SEHN5

(A2) (1.16)

Pr[b′ = 1 |b = 0]≤ 2qnqv

2ℓz
. (1.17)

Note that b′ = 1 if and only if some query of A2 to VF∗ returns true. If b = 1 then this happens

if A2 wins Gauth2
SEHN5

, justifying Equation (1.16). Now suppose b = 0. Consider a particular user i

and the j-th VF query to that user. Let C2 be the ciphertext in that query and assume s queries to

ENC have been made to user i prior to this VF query. Then the probability that this VF query

sets win to true is at most

2|C2|−ℓz− s
2|C2|− (s+ j−1)

≤ 2|C2|−ℓz

2|C2|− (qe +qv−1)

=
1

2ℓz
· 1

1− (qe +qv−1) ·2−|C2|
.

But |C2| ≥ ℓ+ ℓz for any ciphertext C2 in a VF query, and we assumed qe + qv ≤ 2ℓ+ℓz−1, so,

across all queries, the probability that win is set to true is at most

qnqv

2ℓz
· 1

1− (qe +qv−1) ·2−(ℓ+ℓz)
≤ qnqv

2ℓz
· 1

1−2(ℓ+ℓz−1) ·2−(ℓ+ℓz)

=
qnqv

2ℓz
· 1

1−2−1 ,

□

61

1.8 Dedicated transform for GCM

We have shown that our generic transforms allow us to immunize NBE1 schemes with

low overhead. We now present a transform specific to the GCM NBE1 scheme which is used in

TLS. Our transform takes advantage of the underlying structure of GCM to further minimize

overhead. We also minimize changes to the scheme so that existing hardware and software can

easily adapt.

Padding function.

Let π :{0,1}n→{0,1}n be a function. (In the scheme it will be E.Ev(K, ·) for a block-

cipher E.) We want to run it in counter mode, defining a function Padπ
s,t that takes a nonce

N ∈ {0,1}∗ of length at most n to return a string (the pad) of length t, with t not necessarily

a multiple of n. Integer s ≥ 0 is the starting point. Recall that if i is an integer then as per

Section 1.2, ⟨i⟩m is the m-bit representation of i mod 2m. Now we can define:

Padπ
s,t(N)

L← ⌊t/n⌋ ; e← t−nL ; X ← ε

For i = 0, . . . ,L−1 do X ← X ∥π(N∥⟨s+ i⟩n−|N|)

X ← X ∥π(N∥⟨s+L⟩n−|N|)[1..e]

Return X

The CAU1 transform.

Following [31], we generalize GCM via a transform CAU1. (We add the “1” to indicate

that it is an NBE1 scheme.) Let E be a blockcipher. Let H be a function family with H.D =

{0,1}∗×{0,1}∗ and H.ol = H.kl = E.bl. Let 1 ≤ ℓ < E.bl be an integer indicating the nonce-

length. We associate to these the NBE1 scheme SE1 = CAU1[E,H, ℓ] whose encryption and

decryption algorithms are shown at the top of Fig. 1.17. The key K is a key for E, meaning

SE1.KS= {0,1}E.kl. The header space is SE1.HS= {0,1}∗. The message space SE1.MS is the

62

SE1.Enc(K,N,M,H)

P← PadE.Ev(K,·)
2,|M| (N)

C∗1 ←M⊕P
KH← E.Ev(K,0E.bl)
h← H.Ev(KH,(C∗1 ,H))

τ ← h⊕E.Ev(K,N∥⟨1⟩E.bl−ℓ)
C1← τ∥C∗1 ; Return C1

SE1.Dec(K,N,C1,H)

τ∥C∗1 ←C1 ; P← PadE.Ev(K,·)
2,|C∗1 |

(N)

M←C∗1⊕P
KH← E.Ev(K,0E.bl)
h← H.Ev(KH,(C∗1 ,H))

τ ′← h⊕E.Ev(K,N∥⟨1⟩E.bl−ℓ)
If (τ = τ ′) then return M else return ⊥

SE2.Enc(K,N,M,H)

C2← SE1.Enc(K,N,0ℓ∥M,H)

Return C2

SE2.Dec(K,C2,H)

τ∥C∗1 ←C2 ; KH← E.Ev(K,0E.bl) ; h← H.Ev(KH,(C∗1 ,H))

y← E.In(K,τ⊕h) ; N∥w← y
P← PadE.Ev(K,·)

2,|C∗1 |
(N) ; M∗←C∗1⊕P ; x∥M←M∗

If ((x = 0ℓ) and (w = ⟨1⟩E.bl−ℓ)) then return M else return ⊥

Figure 1.17. Encryption and decryption algorithms of NBE1 scheme SE1 = CAU1[E,H, ℓ]
and NBE2 scheme SE2 = CAU2[E,H, ℓ]. SE2’s encryption algorithm uses that of SE1 as a
subroutine.

set of strings of length at most E.bl · (2E.bl−ℓ−2). The nonce space is SE1.NS= {0,1}ℓ. In the

pseudocode of Fig. 1.17, the parsing τ∥C∗1 ←C1 is such that |τ|= E.bl, and if parsing fails it is

understood that the algorithm returns ⊥.

AES-GCM, as proposed by McGrew and Viega [105] and standardized by NIST [61],

is obtained by setting E = AES (so E.bl = 128), H = GHASH and ℓ = 96. It is widely used in

practice and proven to provide basic AE1-security (i.e. AE1[Aae2
u-n]-security). SE1 has a fixed-

length nonce, reflecting the standardized version of GCM, but a variant with variable-length

nonces can be obtained by pre-processing the nonce, as discussed in [105, 84].

Our CAU2 transform.

To provide nonce hiding security, we exploit a feature of NBE1 scheme SE1 =

CAU1[E,H, ℓ], namely that the nonce can be obtained from the authentication tag τ . In particular,

if τ∥C∗1 ← SE1.Enc(K,N,M,H) and KH = E.Ev(K,0E.bl) then the nonce N can be recovered as

63

the first ℓ bits of

y = E.In(K,τ⊕H.Ev(KH,(C∗1 ,H))) .

Therefore, in our NBE2 variant SE2 = CAU2[E,H, ℓ], we don’t explicitly communicate the

nonce but rather have the receiver use the tag to compute y as above, rejecting if the last E.bl− ℓ

bits of y are not ⟨1⟩E.bl−ℓ and otherwise setting N to the first ℓ bits of y. This can be seen as

exploiting the “parsimoniousness” of TN[SE1] [28]. Unfortunately, merely doing this results in

a loss of authenticity because the decryption procedure will succeed for any given ciphertext

with probability 2−E.bl+ℓ, since this is the probability that some nonce with suffix ⟨1⟩E.bl−ℓ is

recovered. This would be unacceptable in GCM since an adversary would be able to forge

valid ciphertexts with probability 2−32. So in order to retain security, we add redundancy to the

message before encrypting, specifically prepending it with 0ℓ. Decryption will check that the

message returned by SE1.Dec indeed starts with such a string of 0s. We expect that decryption

with a “wrong” nonce leads to a ciphertext that lacks the redundancy. A similar technique is used

by ADL [13] in their scheme, GCM-RUP, but for a slightly different variant of GCM.

More formally, let E,H, ℓ be as for CAU1 above. Our transform CAU2 defines an NBE2

scheme SE2 = CAU2[E,H, ℓ] whose encryption and decryption algorithms are shown at the

bottom of Fig. 1.17. The key, header and nonce spaces are the same as for SE1= CAU1[E,H, ℓ].

To allow room for the redundancy, the maximum message length is reduced by ℓ bits, so the

message space is the set of all strings of length at most E.bl · (2E.bl−ℓ−2)− ℓ. In the pseudocode

of Fig. 1.17, the parsing N∥w← y is such that |N|= ℓ and |w|= E.bl−ℓ. The parsing x∥M←M∗

is such that |x|= ℓ, and if parsing fails it is understood that the algorithm returns ⊥.

Of course an AE2-secure CAU2[E,H, ℓ] scheme could be obtained from CAU1[E,H, ℓ]

via our basic transforms of Section 1.6, but CAU2[E,H, ℓ] has the following advantages over

these schemes. It does not change the key, adding no new key materiel. For encryption the code

of CAU1[E,H, ℓ] can be invoked in a blackbox way, so existing (often extensively optimized)

implementations may be reused and existing hardware and software can more easily adapt.

64

Decryption, however, requires more extensive implementation changes.

In the following, we establish basic AE2 security of CAU2[E,H, ℓ] assuming PRF-security

of E and AXU-security of H. This result improves on the one claimed in the preliminary version

of our paper [27], which had needed the stronger assumption that E is a strong PRP. (Meaning, a

PRP when the adversary can query both the function and its inverse.) Theorem 1 allows us to

consider privacy and authenticity separately. As Theorem 11 below indicates, privacy is trivially

inherited from CAU1[E,H, ℓ]. The proof for authenticity, namely that of Theorem 12, is more

invasive and non-trivial.

Privacy of CAU2[E,H, ℓ].

For privacy of a scheme, only the encryption algorithm is relevant; how decryption is

performed makes no difference. Now, as Figure 1.17 indicates, the encryption algorithm of

SE2= CAU2[E,H, ℓ] simply runs that of SE1= CAU1[E,H, ℓ] with 0ℓ prepended to the message.

As a result, privacy of SE2 follows directly from that of SE1:

Theorem 11 Let SE1= CAU1[E,H, ℓ] and SE2= CAU2[E,H, ℓ] be obtained as above. Then,

given adversary A2 ∈Aae2
priv∩Aae2

u-n we construct A1 ∈Aae1
priv∩Aae1

u-n such that

Advae2
SE2(A2) ≤ Advae1

SE1(A1) . (1.18)

Adversary A1 preserves the resources of A2 up to an increase of ℓ in the lengths of any messages

queried to ENC.

Proof. When A2 makes a query (i,N,M,H) to its encryption oracle, A1 queries

(i,N,0ℓ∥M,H) to its encryption oracle and returns the result to A2. Since these are privacy

adversaries, there are no decryption queries to consider. When A2 makes its query to its FIN

oracle, adversary A1 makes the same query to its own FIN oracle. □

This allows us to conclude privacy of SE2= CAU2[E,H, ℓ] based on known proofs and bounds

for SE1= CAU1[E,H, ℓ] from prior work [105, 84, 31, 103, 82]. In particular this allows SE2

65

Game Gaxu
H

procedure INIT

L←${0,1}H.kl

procedure FIN((x1,y1),(x2,y2),z)

h1← H.Ev(L,(x1,y1)) ; h2← H.Ev(L,(x2,y2))

Return ((h1⊕h2 = z) and ((x1,y1) ̸= (x2,y2)))

Figure 1.18. Game defining AXU security for function family H.

to inherit the high-quality bounds shown for SE1 shown by Hoang, Tessaro and Thiruven-

gadam [82].

AXU security.

The authenticity of SE2 = CAU2[E,H, ℓ] assumes axu security of H. We will define a

weaker, computational version of the usually information-theoretic definition of [100, 98, 5, 31],

and show that this suffices, which makes our results stronger.

Let H be a function family with H.D = {0,1}∗×{0,1}∗. Consider game Gaxu
H of Fig-

ure 1.18, and let C be an adversary, that we call an axu-adversary, playing this game. Note that

the key L chosen in INIT is not returned to the adversary. The adversary has no oracles. To

win, it must find, and submit to FIN, a pair (x1,y1),(x2,y2) of distinct messages, together with

the value z of the xor of H.Ev(L, ·) on these messages. We let Advaxu
H (C) = Pr[Gaxu

H (C)] be the

probability that the adversary wins.

The advantage of C will depend on the lengths of the inputs in its FIN query. These are

accordingly quantified in Theorem 12. The computational element of this AXU treatment is that

Theorem 12 constructs an adversary C with bounded (and specified) resources.

The AXU family GHASH underlying GCM fits in our framework, so our results apply to

it. But, unlike prior results, ours apply to other families as well. For example, we could set H

to be a PRF or a collision-resistant hash function like SHA256, choices whose security is only

computational.

Authenticity of CAU2[E,H, ℓ].

We exploit our general results to reduce to as simple a case as possible. (Better bounds

66

may be possible by direct approaches.) First, Theorem 2 allows us to restrict attention to a single

user. Now, still with a single user, Theorem 1 allows us to bound the auth2 advantage for adver-

saries that are orderly. Finally, a trivial hybrid argument says that, for orderly adversaries, we can

assume just one VF query. Thus, below, the given adversary A2 against SE2= CAU2[E,H, ℓ] is

assumed to be orderly, to make one NEW query (single user) and to make one VF query.

The proof of this result is non-trivial because the natural approach to this proof is to begin

by switching E.Ev(K, ·) to a random permutation. This would need us to assume prp-cca (strong

prp) security because the inverse function is computed in VF. Instead our proof delays the switch,

staying with E.Ev(K, ·) and exploiting its being a permutation to move to a game in which VF

does not need to compute the inverse E.In(K, ·). Once this is done, we can switch E.Ev(K, ·) to a

random function and rely only on the PRF assumption. Then, another game sequences is used to

reduce to the assumed axu-security of H.

Theorem 12 Let SE2 = CAU2[E,H, ℓ] be obtained as above. Then, given adversary A2 ∈

Aauth2
u-n ∩Aauth2

ord making one query to its NEW oracle, qe queries to its ENC oracle and one query

to its VF oracle, we construct adversaries B,C such that

Advauth2
SE2 (A2)≤ 2 ·Advprf

E (B)+qe ·Advaxu
H (C)+

1
2ℓ
.

Let σ be the total number of blocks across the messages queried by A2 to ENC. Let m be the

maximum, over all these queries, of the length of the message plus the length of the header in the

query. Let m′ be the length of the ciphertext plus the length of the header in the VF query. Then

adversary B makes σ +qe queries to its FN oracle and its running time is about that of A2. The

messages submitted by C to FIN have lengths at most max(m+E.bl,m′) and the running time of

C is about that of A2.

67

Games G0, G1 , G2, G3

procedure NEW

K←${0,1}E.bl ; π ← E.Ev(K, ·) // Games G0,G1,G2

π←$ FUNC({0,1}E.bl) // Game G3

L← π(0E.bl)

procedure ENC(1,N,M,H)

i← i+1 ; Ni← N ; Mi←M ; Hi← H ; Pi← Padπ

2,ℓ+|M|(N) ; M∗← 0ℓ∥M ; C∗1,i←M⊕Pi

hi← H.Ev(L,(C∗1,i,Hi)) ; pi← π(Ni∥⟨1⟩E.bl−ℓ) ; P ←P ∪{pi} ; N ←N ∪{Ni∥⟨1⟩E.bl−ℓ}
τi← hi⊕ pi ; Return τi∥C∗1,i
procedure VF(1,C2,H) // Games G0, G1

τ∥C∗1 ←C2 ; h← H.Ev(L,(C∗1 ,H)) ; p← τ⊕h

If (p ∈ P) then bad← true ; p←${0,1}E.bl \P
y← π−1(p) ; N∥w← y ; P← Padπ

2,|C∗1 |
(N) ; M∗←C∗1⊕P ; x∥M←M∗

win← (x = 0ℓ) and (w = ⟨1⟩E.bl−ℓ) ; Return false

procedure VF(1,C2,H) // Games G2,G3

τ∥C∗1 ←C2 ; y←${0,1}E.bl \N ; N∥w← y
P← Padπ

2,|C∗1 |
(N) ; M∗←C∗1⊕P ; x∥M←M∗

win← (x = 0ℓ) and (w = ⟨1⟩E.bl−ℓ) ; Return false

procedure FIN

Return win

Figure 1.19. First set of games used in proof of Theorem 12. Next to procedure names, we
indicate the games to which they belong. Unannotated procedures belong to all games in the
Figure.

Proof. Consider the games of Figure 1.19. We claim that:

Advauth2
SE2 (A2) = Pr[G0(A2)] (1.19)

= Pr[G1(A2)]+(Pr[G0(A2)]−Pr[G1(A2)])

≤ Pr[G1(A2)]+Pr[G1(A2) sets bad] . (1.20)

Let us now explain games G0,G1 and justify the above. Adversary A2, by assumption,

makes a single query to its NEW oracle, initializing the single user under consideration. Our

games pick, for this user, a key K for E, and let L be the corresponding key for H. The adversary

68

then makes qe queries to ENC. Since all are directed at user 1, we hardwire 1 as the first input

to the oracle, and can think of the adversary queries as triples (N1,M1,H1), , . . . ,(Nqe ,Mqe,Hqe).

The games compute replies correctly according to the encryption algorithm of the scheme. Its

ENC queries completed, the adversary makes its single DEC query, which we view as a pair

(C2,H), hardwiring the user number 1 in the oracle. What is returned to the adversary as response

does not matter, since the only further action of the adversary is its mandated call to FIN(), and

accordingly all our games return false in reply to the DEC query. But internally the games set the

win flag, and its value is what FIN() returns as the game output. We assume the adversary’s DEC

query is non-trivial, meaning (τ∥C∗1 ,H) ̸∈ { (τi∥C∗1,i,Hi) : 1≤ i≤ qe }. Game G0 excludes the

boxed code, and thus sets win correctly, justifying Equation (1.19). We will get to the meaning

of the boxed code later; for now what matters is that, games G0,G1 being identical-until-bad, the

Fundamental Lemma of Game Playing [30] justifies Equation (1.20). This leaves us with two

tasks: (1) to bound Pr[G1(A2)] and (2) to bound Pr[G1(A2) sets bad].

We start with (1). Game G2 changes only procedure VF, which, rather than setting

y← π−1(p), picks y at random from {0,1}E.bl\N . We claim this does not change the probability

of winning, meaning

Pr[G1(A2)] = Pr[G2(A2)] . (1.21)

The justification of Equation (1.21) is that in game G1, the point p is chosen uniformly at random

from {0,1}E.bl \S, and π is a permutation, so y← π−1(p) is distributed uniformly at random

in {0,1}E.bl \N . Note that this claim does not rely on any security property of, or security

assumption about, the blockcipher E, but only on the fact that π = E.Ev(K, ·) is a permutation,

which can be regarded as fixed in this argument.

Game G3 switches π from E.Ev(K, ·) to a random function, the change being in procedure

69

NEW alone, and we have

Pr[G2(A2)] = Pr[G3(A2)]+(Pr[G2(A2)]−Pr[G3(A2)]) .

It is now easy to build a prf-adversary B0 such that

Pr[G2(A2)]−Pr[G3(A2)]≤ Advprf
E (B0) .

The design of B0 is standard and we omit the details, but we note that the elimination of the

computation of π−1 was important to be able to rely only on prf security of E, rather than needing

to make the stronger assumption that E is prp-cca (also called strong prp) secure.

We are now in a position to exploit the 0ℓ redundancy that our scheme adds to the

message. We claim that

Pr[G3]≤
1
2ℓ

. (1.22)

To justify Equation (1.22), we first claim that if game G3 returns true then N ̸∈ {N1, . . . ,Nqe}. If so

(we will justify this claim in a bit), π is being invoked on new points (ones to which it has not been

already applied in ENC queries) in the computation P← Padπ

2,|C∗1 |
(N), yielding Equation (1.22).

Returning to the claim, assume game G3 returns true. Then it must be that w= ⟨1⟩E.bl−ℓ. Assume

towards a contradiction that N = Ni for some i. Then y = N∥w = Ni∥⟨1⟩E.bl−ℓ, putting y in N ,

but y was drawn from outside N , which is the desired contradiction establishing the claim.

Putting the above together, we have now shown that

Pr[G1(A2)]≤ Advprf
E (B0)+

1
2ℓ

. (1.23)

70

Games G4, G5, G6

procedure NEW

K←${0,1}E.bl ; π ← E.Ev(K, ·) // Games G4,G5

π←$ FUNC({0,1}E.bl,{0,1}E.bl) // Game G6

L← π(0E.bl)

procedure ENC(1,N,M,H)

i← i+1 ; Ni← N ; Mi←M ; Hi← H ; Pi← Padπ

2,ℓ+|M|(N) ; M∗← 0ℓ∥M ; C∗1,i←M⊕Pi

hi← H.Ev(L,(C∗1,i,Hi)) ; pi← π(Ni∥⟨1⟩E.bl−ℓ) ; P ←P ∪{pi} ; τi← hi⊕ pi ; Return τi∥C∗1,i
procedure VF(1,C2,H)

τ∥C∗1 ←C2 ; h← H.Ev(L,(C∗1 ,H)) ; p← τ⊕h ; Return false

procedure FIN // Game G4

Return (p ∈ P)

procedure FIN // Games G5,G6

Return (∃ i : ((h⊕hi = τ⊕τi) and (C∗1 ,H) ̸= (C∗1,i,Hi)))

Game G7

procedure NEW

L←${0,1}E.bl

procedure ENC(1,N,M,H)

i← i+1 ; Hi← H ; C∗1,i←${0,1}ℓ+|M|

τi←${0,1}E.bl ; Return τi∥C∗1,i
procedure VF(1,C2,H)

τ∥C∗1 ←C2 ; h← H.Ev(L,(C∗1 ,H)) ; Return false

procedure FIN

For j = 1, . . . , i do hi← H.Ev(L,(C∗1,i,Hi))

Return (∃ i : ((h⊕hi = τ⊕τi) and (C∗1 ,H) ̸= (C∗1,i,Hi)))

Adversary CINIT,FIN

INIT

ANEW∗,ENC∗,VF∗,FIN∗

2

procedure NEW∗

Return

procedure ENC∗(1,N,M,H)

i← i+1 ; Hi← H
C∗1,i←${0,1}ℓ+|M| ; τi←${0,1}E.bl

Return τi∥C∗1,i
procedure VF∗(1,C2,H)

τ∥C∗1 ←C2 ; Return false

procedure FIN∗

j←${1, . . . ,qe}
FIN((C∗1 ,H),(C∗1, j,H j))

Figure 1.20. On the top are further games used in the proof of Theorem 12. Lines may be
annotated with the names of games which include them, procedures whose names are unannotated
belonging to all games. On the bottom left is a final game and on the bottom right is the axu-
adversary.

71

Next we give adversaries B1,C such that

Pr[G1(A2) sets bad]≤ Advprf
E (B1)+qe ·Advaxu

H (C) . (1.24)

For this, consider the games of Figure 1.20. We claim

Pr[G1(A2) sets bad] = Pr[G4(A2)] (1.25)

= Pr[G5(A2)] . (1.26)

Game G4 results from moving the condition setting bad in G3 to FIN() and dropping unused

code, justifying Equation (1.25). To justify Equation (1.26), we show that if p ̸∈ P then there

exists i such that (C∗1 ,H) ̸= (C∗1,i,Hi) but h⊕τ = hi⊕τi, meaning there is a (non-trivial) xor

computed for H.Ev(L, ·). That p ∈ P means there is some i such that p = pi. (This i need not

be unique.) So h⊕τ = hi⊕τi. Now assume towards a contradiction that (C∗1 ,H) = (C∗1,i,Hi).

Since h = H.Ev(L,(C∗1 ,H)) and hi = H.Ev(L,(C∗1,i,Hi)), we get h = hi. But we already had

h⊕τ = hi⊕τi, so we have τ = τi. This means (τ∥C∗1 ,H) = (τi∥C∗1,i,Hi), which contradicts the

assumption that the DEC query of the adversary is non-trivial. This concludes the justification of

Equation (1.26).

Game G6 switches π from E.Ev(K, ·) to a random function, the change being only in

NEW, and we have

Pr[G5(A2)] = Pr[G6(A2)]+(Pr[G5(A2)]−Pr[G6(A2)]) .

Now we can design adversary B1 such that

Pr[G5(A2)]−Pr[G6(A2)]≤ Advprf
E (B1) . (1.27)

The design of B1 is standard and omitted. With π a random function in G6, the hash key L, and

72

the ciphertexts returned in G6 in response to ENC queries, are random, so game G7 directly picks

them that way. This allows it to delay computing the hashes to FIN(). We have

Pr[G6(A2)] = Pr[G7(A2)] .

The bottom right of Figure 1.20 shows our axu-adversary C. It runs A2, responding to ENC

queries with random strings, as per game G7. It returns, as its two messages, the hash-input for

the VF query, and a random one of the qe hash-inputs for the ENC queries. We have

Advaxu
H (C)≥ 1

qe
·Pr[G7(A2)] . (1.28)

Putting the above together we have Equation (1.24).

At this point we have shown

Advauth2
SE2 (A2)≤ Advprf

E (B0)+Advprf
E (B1)+qe ·Advaxu

H (C)+
1
2ℓ

. (1.29)

We merge B0,B1 into a single adversary B as follows. Let B pick c←${0,1} and run Bc. Then

Advprf
E (B) =

1
2
·Advprf

E (B0)+
1
2
·Advprf

E (B1) . (1.30)

Putting together Equations (1.29) and (1.30) concludes the proof. □

A bound on the auth2-advantage of an adversary that makes multiple NEW and VF

queries can be obtained, as noted above, by combining our general results with Theorem 12. An

interesting open question is to directly analyze such an adversary and obtain a bound better than

ours on its auth2-advantage.

73

1.9 A real-world perspective

In addition to bridging the gap between theory and usage, our framework allows us to

formalize weaknesses of real-world schemes which communicate nonces in the clear.

First, it allows us to formalize an intuitive fact: pathologically chosen nonces cannot

be communicated in the clear. It may seem obvious that message or key-dependent nonces

violate security but such pathological nonce choices have occurred in the wild. For instance,

CakePHP, a web framework, used the key as the nonce [1] when encrypting data. The use of a

hash of a message has also been proposed, and subsequently argued as insecure, in an Internet

forum [118].

Second, it disallows metadata leakage through the nonce. Implicit nonces with a device

specific field, such as those recommended in RFC 5116 [104] enable an adversary to distinguish

between different user sessions. Even the “standard” nonce choices are not safe against these

adversaries. A counter will allow an adversary distinguish between sessions with high traffic and

low traffic, and a randomly chosen nonce can detect devices with poor entropy (RSA public keys

were used to a similar end by HDWH [79]).

1.10 Acknowledgements

We thank the anonymous reviewers (of the many conferences to which this paper was

submitted before finally being accepted at Crypto 2019) for their feedback and suggestions.

Bellare was supported in part by NSF grants CNS-1526801 and CNS-1717640, ERC Project

ERCC FP7/615074 and a gift from Microsoft. Ng was supported by DSO National Labs.

Tackmann was supported in part by the Swiss National Science Foundation (SNF) via Fellowship

No. P2EZP2 155566 and NSF grant CNS-1228890.

This chapter, in full, is a reprint of the material as it appears in Advances in Cryptology –

CRYPTO 2019. Bellare, Mihir; Ng, Ruth; Tackmann, Björn, Springer Lecture Notes in Computer

Science volume 11692, 2019. The dissertation author was the primary investigator and author of

74

this paper.

75

Chapter 2

Improved Structured Encryption for SQL
Databases via Hybrid Indexing

2.1 Introduction

SQL applications are often deterred from using cloud storage solutions because they do

not wish to grant a third party access to their sensitive data. Yet, in-house solutions often are less

convenient than these large-scale ones and are vulnerable to compromise as well. This calls for a

cryptographic solution which allows data on the cloud to be end-to-end encrypted so that the

server never “sees” the sensitive data. This in turn poses a challenge when the server is called

upon to perform SQL operations on the data.

Most current offerings of this technology depend heavily on property-revealing encryp-

tion (PRE), making them vulnerable to leakage abuse attacks (LAAs). For example, Always

Encrypted either deterministically encrypts columns or stores them with an ordered index [9].

These techniques have been shown to offer little-to-no privacy in certain practical scenarios

[110, 73].

A more promising approach is structured encryption (StE) which uses auxiliary encrypted

data structures (e.g. encrypted multimaps) to support a subset of SQL queries [52]. This is done

by translating the SQL query into tokens which can be passed to the server to query the auxiliary

structures. The outputs of this are compiled, decrypted and processed to retrieve the SQL query

result. Security is measured by leakage profiles, which characterize what information a curious

76

server can learn. In particular, StE-based constructions leak equal or less than PRE-based

constructions and resist most known LAAs [59, 110, 35, 37, 71, 73, 76].

Our contributions.

Our work can be grouped into three main contributions:

1. Partially precomputed joins: We introduce a new way to index (equi)joins which stems

from the simple observation that when the server fully precomputes (FP) joins, the client

has to download and decrypt a quadratic number of rows and the server learns the equality

pattern of said rows. In our approach, the server partially precomputes (PP) joins: instead

of indexing exactly which rows from the input table should be concatenated and returned,

it just stores the set of rows from each input table that appears anywhere in the join output.

At query time, the client downloads these sets and computes the join. When this is used to

support SQL queries of the form “select * from id1 join id2 on at1 = at2”, PP outperforms

FP in both leakage and bandwidth at the cost of a logarithmic factor of client computation

(in the worst case).

2. Hybrid indexing: When we incorporate PP joins into state-of-the-art StE schemes, we

discover that some queries (e.g. those with a selection subquery) cannot be computed in

the same way because the server does not know the equality pattern on the join columns

(i.e. how the rows “match up”). So while PP joins are still the more secure choice, they

sometimes incur more bandwidth than FP. To address this, we develop a hybrid StE scheme

with both forms of indexing. The client chooses which to use at query time. We provide

the first heuristic (that we are aware of) to enable this type of leakage-aware client-side

query planning, helping the client decide how to minimize leakage without exceeding a

given bandwidth budget.

3. Simulations on real data: We quantify the effect of using FP and PP join indexing on

bandwidth incurred by simulating our constructions on data from the City of Chicago’s

77

Data Portal and MySQL’s sample Sakila database [3, 4]. On simple (non-recursive)

join queries, PP’s bandwidth is on average 231 times less than FP’s but more complex

(recursive) queries are split down the middle as to which option used less bandwidth. We

also demonstrate the accuracy of our heuristic under different client storage constraints.

Assuming client storage comparable to that which is used in SQL Server, our heuristic

chose a query plan with the maximal number of PP joins 79% of the time, and the optimal

query plan 68% of the time.

Related work.

Encrypted databases have been treated from a variety of perspectives. Structured encryp-

tion (StE) was defined by Chase and Kamara (CK) and is a special case of SSE, which was first

defined by SWP [128].

We see our work as a direct extension and improvement upon SPX and OPX, two schemes

which applied StE to the problem of indexing SQL databases [52, 89, 92]. Both our scheme and

OPX address a similar query class to the one introduced in SPX, but lower leakage by using the

hashset technique from OXT and primitives inspired by CJJJKRS [48, 49]. In particular, our

FpSj scheme in Section 2.4.2 bears many similarities to OPX with minor leakage improvements

from using a single indexing data structure. Our PpSj and HybStI schemes (in Section 2.4.2 and

Section 2.5 respectively) introduce a new technique which further lowers leakage and server

storage. For non-recursive queries, there are also substantial bandwidth savings.

PRE-based solutions achieves higher query support at the cost of higher leakage [116, 70,

2, 62, 134], and are particularly susceptible to leakage abuse attacks [59, 110, 35, 37, 71, 73, 76].

Finally, encrypted search has also been attempted using alternate models and architectures

including the database-provider model [77], MPC [53, 20], ORAM [66] and trusted execution

environments [95, 45, 16].

Other works have also partially delegated computation to the client, to reduce leakage or

increase query support, though none have applied it to joins [130, 54, 57].

78

2.2 Preliminaries

We denote the empty string with ε . Given positive integer n, let [n] = {1,2, ... ,n}. Given

tuples t1 =(x1, ... ,xn) and t2 =(y1, ... ,ym) we write t1∥t2 as a shorthand for (x1, ... ,xn,y1, ... ,ym).

We extend set operations ∩,∪ ∈,⊆ from sets to tuples by interpreting the tuples as sets.

Our algorithms often make use of dictionaries D which map labels ℓ ∈ {0,1}∗ to values

D[ℓ] ∈ {0,1}∗ ∪ {⊥}. We also adopt the shorthand D.Lbls = {ℓ ∈ {0,1}∗ : D[ℓ] ̸= ⊥}. A

multimap M is an dictionary where M[ℓ] is either a set of strings or ⊥.

Pseudocode.

In pseudocode, we will assume that all integers , strings and sets are initialized to 0 , ε

and /0 respectively. For dictionaries and multimaps, they are initialized with all labels mapping to

⊥. If S is a set or dictionary value, we write S ∪←− x in pseudocode as a shorthand for S← S∪{x},

initializing it first to /0 if necessary. If t is a tuple, we similarly mean t← t∥(x) by writing

t← t ∪←− x. Finally, we will write “Define X : pred” to set X (a function or constant) in such

a way that the predicate pred is true. If there are undefined variables in pred we treat it as a

random variable and expect that X is defined such that pred will always be true.

Games.

Our work uses the code-based game-playing framework of BR [30]. Let G be a game

and A an adversary. Then, we write Pr[G(A)] to denote the probability that A plays G and the

latter returns true. G may provide oracles to A, and if so we write AO1,... ,On to denote that A is

run with access to oracles O1, ... ,On.

Symmetric Encryption, IND$-security.

Symmetric Encryption (SE) scheme SE defines key set SE.KS, encryption algorithm

SE.Enc and decryption algorithm SE.Dec. Encryption is randomized, taking a key Ke ∈ SE.KS

and a message M ∈ {0,1}∗ and returns a ciphertext C ∈ {0,1}∗. Decryption is deterministic and

79

Game Gind$
SE (A)

b←${0,1} ; Ke←$SE.KS

b′←$ AENC ; Return b = b′

Alg ENC(m)

c1←$SE.Enc(Ke,m)

c0←${0,1}|c1| ; Return cb

Game Gprf
F (A)

b←${0,1} ; Kf←$F.KS

b′←$ AFN ; Return b = b′

Alg FN(X)

If C[X] =⊥ then C[X]←${0,1}F.ol

c1←$F.Ev(Kf,X) ; c0← C[X] ; Return cb

Figure 2.1. Games used in defining IND$ security of SE scheme SE (right) and PRF security of
function family F (left)

takes a key and ciphertext, returning a message. SE also defines a ciphertext length function SE.cl.

We require that if C←$SE.Enc(Ke,M) then |C| = SE.cl(|M|) and Pr[SE.Dec(Ke,C) = M] = 1.

We want our SE schemes to protect the privacy of M, so ciphertexts should be indistinguishable

from a random string of length SE.cl(|M|). We capture this with the game Gind$
SE in Fig. 2.1 and

say that a scheme is IND$-secure if Advind$
SE (A) = 2Pr[Gind$

SE (A)]−1 is small for all adversaries

A.

Function Families, PRF-security.

A function family F defines a key set F.KS and an output length F.ol. It defines a

deterministic evaluation algorithm F.Ev : F.KS×{0,1}∗→{0,1}F.ol. We define PRF security

for function family F via the game Gprf
F depicted in Fig. 2.1. We say that F is a PRF if Advprf

F (A) =

2Pr[Gprf
F (A)]−1 is small for all adversaries A.

2.3 Structured Indexing for SQL data types

We now generalize CK’s definition of structured encryption and provide a new framework

for modeling encrypted SQL systems [52].

Abstract Data Types.

An abstract data type ADT defines a domain set ADT.Dom, a query set ADT.QS, and a

deterministic specification function ADT.Spec : ADT.Dom×ADT.QS→{0,1}∗.

An example is the dictionary ADT DyAdt. DyAdt.Dom,DyAdt.QS contain all possible

80

dictionaries D and labels respectively (as defined in Section 2.2), and DyAdt.Spec(D, ℓ) = D[ℓ].

Multimap ADT MmAdt is defined analogously.

Structured Indexing.

We generalize Structured Encryption (StE) schemes (as defined by CK [52]) to structured

indexing (StI) schemes. These are StE schemes without a decryption algorithm. The intuition

here is that the handling of outsourced data often indexes the data in addition to encrypting it and

we would like these encrypted indexes, whatever form they take, to achieve semantic security as

well. Later, we show how this primitive allows us to modularize StE schemes. A StI scheme StI

for ADT defines a set of keys StI.KS and the following algorithms:

• Randomized encryption algorithm StI.Enc which takes a key K′ ∈ StI.KS and an element

of ADT.Dom and returns an updated key K and index IX∈ {0,1}∗. This syntax generalizes

that of CK by allowing key generation to occur within or outside StI.Enc.

• Possibly randomized token generation algorithm StI.Tok which takes a key and a query

from ADT.QS, and returns fixed length token tk ∈ {0,1}StI.tl.

• Deterministic evaluation algorithm StI.Eval which takes a token and index, and returns a

ciphertext string C ∈ {0,1}∗.

• Finalization algorithm StI.Fin which takes K,q and an input string, and returns an output

string.

Intuitively, the client indexes his data then encrypts this index with StI.Enc, storing IX on the

server. At query time, the client uses StI.Tok to generate a token and sends it to the server who

runs StI.Eval, returning C to the client. StI.Fin can be used for client-side post-processing of the

data. Note that the output of StI.Eval need not be the input to StI.Fin. In our indexing schemes

the server will use the output of StI.Eval as “pointers” to retrieve rows of SQL data stored in a

different data structure which in turn form the input to StI.Fin.

81

Alg Dyeπ .Enc
(
(Kf,Ke),D

)
Pad all values in D to the same length
For ℓ ∈ D.Lbls do D′[F.Ev(Kf, ℓ)]←$SE.Enc(Ke,D[ℓ])

Return
(
(Kf,Ke),D′

)
Alg Dyeπ .Tok

(
(Kf,Ke), ℓ

)
tk← F.Ev(Kf, ℓ) ; Return tk

Alg Dyeπ .Eval(tk,D′)
Return D′[tk]
Alg Dyeπ .Dec

(
(Kf,Ke),C

)
Unpad and return SE.Dec(Ke,C)

Alg Mmerr
π .Enc(Kf,M)

Pad all values in M to the same length
For ℓ ∈M.Lbls do

Ke← F.Ev(Kf, ℓ∥0) ; K← F.Ev(Kf, ℓ∥1)
For v ∈M[ℓ] do

D[F.Ev(K,ctr)]←$SE.Enc(Ke,v) ; ctr← ctr+1
Return (Kf,D)

Alg Mmerr
π .Tok(Kf, ℓ)

Return
(
F.Ev(Kf, ℓ∥0),F.Ev(Kf, ℓ∥1)

)
Alg Mmerr

π .Eval
(
(Ke,K),D

)
While D[F.Ev(K,ctr)] ̸=⊥ do

x← SE.Dec
(
Ke,D[F.Ev(K,ctr)]

)
ctr← ctr+1 ; Unpad x then S ∪←− x

Return S

Figure 2.2. Algorithms for RH dictionary encryption scheme Dyeπ and RR multimap encryption
scheme Mmerr

π .

Structured Encryption.

We can now define StE as a special cases of StI. Intuitively, an StE scheme is an StI

scheme where the data structure is also used to store query responses (as opposed to just indexing

them). The output of evaluation can be fed into finalization for decryption and should return

the query result. To highlight this, StE schemes have a decryption algorithm StE.Dec in place

of a finalization algorithm which takes as input K,q,C and returns the query result. We define

correctness via game Gcor
StE in Fig. 2.3 and say that StE is correct if the advantage of all adversaries

A, defined Advcor
StE(A) = Pr[Gcor

StE(A)], is low. The correctness of our schemes will depend on the

collision resistance of their function family primitives. Since we assume these are PRFs to prove

security, we will also assume that their key-lengths are sufficient to ensure correctness.

We subdivide StE schemes into two types. We say that a scheme StErr is response

revealing (RR) if evaluation itself returns the query result. In other words, decryption must be

such that StErr.Dec(K,q,C) =C for all K,q,C. An StE scheme that is not RR is response hiding

(RH).

82

Game Gcor
StE(A)

(DS,st)←$ A(s) ; K′←$StE.KS

If DS /∈ ADT.Dom then return false

(K,EDS)←$StE.Enc(K′,DS)
ATOK(g,EDS,st) ; Return win

Oracle TOK(q)

If q /∈ ADT.QS then win← false

C← StE.Eval(StE.Tok(K,q),EDS)
M← StE.Dec(K,C)

If ADT.Spec(DS,q) ̸= M then win← false

Return tk

Game Gss
StI,L,S(A)

(DS,(q1, ... ,qn),st)←$ A(s)
b←${0,1} ; K′←$StI.KS

If DS /∈ ADT.Dom or {qi}n
i=1 ̸⊆ ADT.QS then

Return false

If b = 1 then
(K, IX)←$StI.Enc(K′,DS)
For i ∈ [n] do tki←$StI.Tok(K,qi)

Else
(IX,(tk1, ... , tkn))←$S(L(DS,(q1, ... ,qn)))

b′←$ A(g, IX,(tk1, ... , tkn),st) ; Return (b = b′)

Figure 2.3. Games used in defining correctness for StE (structured encryption scheme for ADT)
and semantic security for StI (structured indexing scheme for ADT) with respect to leakage
algorithm L and simulator S .

Dictionary/Multimap Encryption.

We refer to StE for the multimap and dictionary data types as multimap and dictionary

encryption (MME/DYE) respectively.

Our constructions make use of a specific dictionary encryption scheme Dyeπ adapted from

CJJ+’s SSE scheme ∏bas (2Lev in the Clusion library) [48, 101]. In this scheme, the encrypted

data structure is itself a dictionary D′. We start by padding all values in the input dictionary to

the same length, then for each label-value pair ℓ,D[ℓ], we do D′[F.Ev(Kf, ℓ)]← SE.Enc(Ke,D[ℓ])

where F is a pseudorandom function family and SE is a symmetric encryption scheme. The

pseudocode for Dyeπ is given in Fig. 2.2. The primitives (given as input to SqlStE) used in Dyeπ

are symmetric encryption scheme SE and function family F. Note that Dyeπ .KS= F.KS×SE.KS.

Our constructions also make use of a generic RR multimap encryption scheme. We

adapt Dyeπ to Mmerr
π (using a counter and label-dependent Ke) as an example of such a scheme.

Its algorithms are also in Fig. 2.2. The primitives are as in Dyeπ but we require that SE.KS=

{0,1}F.ol. Note that Mmerr
π .KS= F.KS.

Semantic security.

We define semantic security for StI using game Gss
StI,L,S depicted in Fig. 2.3, where StI is

83

a StI scheme for ADT and L,S are algorithms we refer to as the leakage algorithm and simulator

respectively. The adversary runs in a setup and guessing phase, as indicated by the first argument

to it. Its advantage is Advss
StI,L,S(A) = 2Pr[Gss

StI,L,S(A) = 1]−1. Note that when StI is an StE

scheme we recover CK’s non-adaptive security notion.

2.3.1 SQL Data Types

We now describe our notation for SQL data, queries and operations. We then define a

class of ADTs we call SQL data types to construct StE schemes for.

SQL relations, databases, schemas.

SQL relation R defines a tuple of distinct attributes R.Ats= (at1, . . . ,atn). Each attribute

is a bitstring at ∈ {0,1}∗ and represents a “column” in the relation. R also defines a table

R.T consisting of n-tuples of bitstrings representing the “rows” in the relation. Given a row

(x1, . . . ,xn) = r ∈ R.T, we refer to the i-th entry of the row with r[ati] = xi. We can initialize a

relation with NewRltn(at) which returns the relation with R.Ats= at and no rows.

We define a database to be a set of relations with disjoint attributes and their (distinct)

identifiers, i.e. a set of the form DB= {(id1,R1), . . . ,(idN ,RN)} where i ̸= j implies idi ̸= id j

and Ri.Ats∩R j.Ats= /0. We denote the identifier set of such a database as DB.IDs= {idi}i∈[N]

and retrieve relations by identifier using DB[idi] =Ri. Since database attributes are non-repeating,

we allow the retrieval of a table by any of its attributes using getID (i.e. if getID(at,DB) = id

then at ∈ DB[id].Ats). Similarly, if t⊆ DB[id].Ats, then getID(t,DB) = id.

We require that each (id,R) ∈ DB has a unique key attribute uk(id) ∈ R.Ats. This

functions as a “row number” which uniquely identifies each row. In other words, for all

distinct r,r′ ∈ R.T, we have r[uk(id)] ̸= r[uk(id′)]. Given some r ∈ DB[id] we refer to the

tuple (id,r[uk(id)]) as its coordinates and note that it uniquely identifies that row within the

database. Additionally, we refer to the values in a “column” with rng(at,DB) = {r[at] : r ∈

DB[getID(at,DB)]}.

84

A database’s schema communicates all information about DB except the tables:

Schema(DB) = {(id,R.Ats) : (id,R) ∈ DB}. As shorthand, if scma = Schema(DB) then

scma[id] = DB[id].Ats and getID(at,scma) = getID(at,DB). In our schemes, the client stores

Schema(DB) as part of the key in order to appropriately format data returned by the server. This

is a result of our explicit handling of schemas, coordinates and attributes, something which was

left implicit in prior work.

SQL operations.

In our work, we address the secure computation of SQL (equi)joins and (equality)

selections. These operations work as follows.

The selection operation is parametrized by a pair of bitstrings (at,x), takes a relation R1

with at ∈ R.Ats as input, and returns R= σ(at,x)(R1) where:

R.Ats= R1.Ats and R.T= {r ∈ R1.T : r[at] = x}.

In Fig. 2.4, we provide an example of such a selection on a relation in a database.

The join infix operation is a function parametrized by two equal-length tuples of attributes

t1, t2. It takes two relations R1,R2 with disjoint attribute sets where (at i
1, ... ,at i

n) = ti ⊆ Ri.Ats.

It returns R= R1 ▷◁t1,t2 R2 where:

R.Ats= R1.Ats∥R2.Ats and

R.T= {r1∥r2 : r1 ∈ R1.T, r2 ∈ R2.T,∀i ∈ [n],r1[at1
i] = r2[at2

i]}.

In the case of a join on singleton tuples, we abbreviate ▷◁(at),(at ′) as ▷◁at,at ′ . In Fig. 2.4, we

provide an example such a join. Attribute tuples can be empty in which case it returns the

Cartesian product of the input rows. This is also known as the “cross” operation ×.

85

R1.T

uk(id1) at1
aa Alice

bb Alice

cc Bob

dd Charlie

ee David

R2.T

uk(id2) at2 at3
11 Alice Math

22 Alice Chem

33 Bob CS

44 Eve CS

55 Eve Bio

(
σat2,Eve(R2)

)
.T

uk(id2) at2 at3
44 Eve CS

55 Eve Bio

(
σat3,CS(R1 ▷◁at1,at2 R2)

)
.T

uk(id1) at1 uk(id2) at2 at3
cc Bob 33 Bob CS

(R1 ▷◁at1,at2 R2).T

uk(id1) at1 uk(id2) at2 at3
aa Alice 11 Alice Math

aa Alice 22 Alice Chem

bb Alice 11 Alice Math

bb Alice 22 Alice Chem

cc Bob 33 Bob CS

Figure 2.4. Examples of SQL relations R1,R2 and the output of join (▷◁) and select (σ) operations
on them.

86

ADT for SQL databases.

We say that an ADT SqlDT is a SQL data type if its domain elements DB ∈ SqlDT are

SQL databases which take the form DB = (DB,α) where DB is as defined in Section 2.3.1 and

α ∈ {0,1}∗ is the auxiliary data. The purpose of α is to allow annotations on DB consistent with

real world applications. In this work, we use α to indicate the allowed joins, and SqlDT.Spec

always returns either a relation or ⊥.

2.3.2 Constructing StE for SQL Data Types Using Encrypted Indexes

Our end goal is structurally encrypted databases supporting response-hiding SQL queries.

We build these by constructing StI schemes for classes of SQL queries, then converting these

into StE schemes for SQL data types via a generic transform. We now describe this conversion,

then dedicate the remainder of this work to the abovementioned StI schemes.

StE, StI for SqlDT.

Intuitively, our StE schemes handle the indexing and storage of SQL data separately. We

do the former with an StI scheme and the latter with an RH dictionary encryption scheme. This

modularization simplifies pseudocode and reduces the problem of designing secure StE schemes

to that of StI schemes.

More formally, we construct an StE scheme for SQL data type SqlDT using the transform

SqlStE which which takes uses an StI scheme for SqlDT1 (described below), symmetric encryp-

tion scheme SE and function family F. We capture the syntax and pseudocode of StE’s algorithms

in Fig. 2.5. Note that StE.KS= StI.KS and Dyeπ is the RH dictionary encryption scheme given

in Section 2.3 which uses SE,F as primitives. It is used in EncRows,EvalRows,DecRows, which

encrypt, retrieve and decrypt the rows of database DB. We used a specific RH dictionary encryp-

tion scheme because pathological alternatives may introduce circular security issues, preventing

a more general approach.

We now describe how the algorithms in StI and StE= SqlStE[StI,SE,F] work. During

87

Alg StE.Enc(K′i ,DB)
(Kd,ED,DS)←$EncRows(DB) ; (Ki, IX)←$StI.Enc(K′i ,DS) ; Return

(
(Kd,Ki),(ED, IX)

)
Subroutine EncRows

(
(DB,α)

)
For (id,R) ∈ DB do

For r ∈ R.T do D[(id,r[uk(id)])]← r
(Kd,ED)←$Dyeπ .Enc(D)
For (id,R) ∈ DB do

For r ∈ R.T do ℓ← (id,r[uk(id)]) ; T[ℓ]← Dyeπ .Tok
(
Kd, ℓ

)
Return

(
Kd,ED,(DB,α,T)

)
Alg StE.Tok

(
(Kd,Ki),q

)
tk←$StI.Tok(Ki,q) ; Return tk

Alg StE.Eval
(
tk,(ED, IX)

)
P← StI.Eval(tk, IX) ; Return EvalRows(P,ED)

Subroutine EvalRows
(
(P1, ... ,Pn),ED

)
For i ∈ [n] do Ci←{(c1, ... ,cn′) : (rt1, ... , rtn′) ∈ Pi , c j = Dyeπ .Eval(rt j,ED)}
C← (C1, ... ,Cn) ; Return C

Alg StE.Dec
(
(Kd,Ki),q,C

)
Return StI.Fin(Ki,q,DecRows(Kd,C))

Subroutine DecRows
(
Kd,(C1, ... ,Cn)

)
For i ∈ [n] do Mi←{(m1, ... ,mn′) : (c1, ... ,cn′) ∈ Pi , m j = Dyeπ .Eval(rt j,ED)}
M← (M1, ... ,Mn) ; Return M

Alg L
(
DB,(q1, ...,qn)

)
(K,ED,DS)←$EncRows(DB) using a random function in place of F.Ev(Kf, ·)
Let L,N be the max row length and # of rows in DB
lki←$Li(DS,(q1, ... ,qn)) ; Return (lki,N,L)

Figure 2.5. Algorithms and for structured encryption scheme StE= SqlStE[StI,SE,F] expressed
both in pseudocode (top) and diagrammatically (bottom), and its leakage algorithm L (middle).
Dyeπ is the RH dictionary encryption scheme Dyeπ in Section 2.3 and Li is StI’s leakage profile.

88

StE.Enc, algorithm EncRows will store the rows of DB in an encrypted dictionary ED using

Dyeπ .Enc. It also prepares a token dictionary T which maps each row coordinate to a token for

Dyeπ . SQL data type SqlDT1 is the same as SqlDT except that its domain elements now take

the form DS= (DB,α,T) where (DB,α) ∈ SqlDT.Dom. The output of StE.Enc is ED and the

index returned by StI.Enc(DS).

StE’s tokens are those generated by StI. As such, the server’s first step in StE.Eval is to

run StI.Eval. We require that StI.Eval returns a pointer tuple P = (P1, ... ,Pn) which is a tuple

of sets of tokens. The tokens in each Pi come from T and point to rows from the same table.

Algorithm EvalRows replaces each token with relevant (encrypted) row from ED and returns

ciphertext tuple C = (C1, ... ,Cn), the output of StE.Eval.

During StE.Dec, algorithm DecRows decrypts each ciphertext to get plaintext tuple

M = (M1, ... ,Mn). StI.Fin takes these decrypted rows and performs any final client-side post-

processing, returning the final output relation R.

In this work, we will define three different SQL data types, each with its own StI

scheme(s). To demonstrate that all of these can be used to construct secure RH StE for their

respective data type via SqlStE, we demonstrate that the semantic security of StE reduces to that

of its primitives. The proof follows a standard hybrid argument.

Theorem 13 Let StE = SqlStE[StI,SE,F] be a correct StE scheme for SqlDT. Then given

algorithms Li,S i and adversary A we can define L as in Fig. 2.5 and construct S,As,Af,Ai such

that:

Advss
StE,L,S(A)≤ Advind$

SE (As)+Advprf
F (Af)+Advss

StI,Li,S i(Ai).

Proof. The adversaries, simulator and games G0,G1,G2,G3 are given in Fig. 2.6.

Notice that the EncRows algorithm used in the adversaries and games is given at the top, and

uses two oracles ENC,FN which the algorithms define. Let b be the challenge bit selected in

Gss
StE,L,S(A).

Notice that we can express Advss
StE,L,S(A) = Pr[Gss

StE,L,S(A)|b = 1]−Pr[Gss
StE,L,S(A)|b =

89

0] = Pr[G3]−Pr[G0]. In b = 1 case, this follows directly from the definition of Ai. In the b = 0

case, this follows from the definition of Li,S i.

The only difference between G0 and G1 is whether IX, tk1, ... , tkn are generated using

StI’s algorithms or S. In both cases, D′’s values are encrypted using SE.Enc. This is the

same differentiation going on in the semantic security game so Gss
StI,Li,S i(Ai) = Pr[G1]−Pr[G0].

Similarly the difference between G1 and G2 is whether the values in D′ are the output of

SE.Enc or random strings which is what is going on in the IND$-security game Gind$
SE (As), so

Advind$
SE (As) = Pr[G2]−Pr[G1]. Once again, the difference between G2 and G3 is whether the

labels in D′ (i.e. the tokens in Dyeπ .Enc) are generated using F.Ev or a random function which is

what is going on in the PRF-security game Gprf
F (Af), so Advprf

F (Af) = Pr[G3]−Pr[G2].

Combining all the above equations gives the desired bound on Advss
StE,L,S(A).

2.4 Partially Precomputed Joins

We demonstrate our framework from Section 2.3 in action with two SQL data types:

JnDT and SjDT. The former only supports non-recursive join queries and is presented for the

purpose of introducing partially precomputed (PP) join indexing. The latter allows recursive

queries, cluster joins and equality selections, and demonstrates how OPX’s techniques can be

modified to use PP joins.

2.4.1 Indexing of Non-Recursive Joins

Join data type JnDT.

We define JnDT.Dom to contain (DB,α) such that DB is a database and α is the set of

join queries supported (i.e. if A is the set of attributes in DB that are not unique key attributes, then

α ⊆ {(at1,at2) ∈ A×A : getID(at1,DB) ̸= getID(at2,DB)}. Our goal here is to capture SQL

queries of the form “id1 join id2 on at1 = at2” where id1, id2 ∈ DB.IDs and ati ∈ DB[idi].Ats.

We allow queries to be any pair of attributes (i.e. JnDT.QS= {(at1,at2) : ati ∈ {0,1}∗}),

90

Alg S
(
lki,N,L

)
(IX,(tk1, ... , tkn))←S i(lki)

P←
⋃

i∈[n]StI.Eval(tki, IX)

For rt ∈
⋃

rt∈P rt do D′[rt]←${0,1}SE.cl(L)

While |D′.Lbls|< N do
rt←${0,1}F.ol ; D′[rt]←${0,1}SE.cl(L)

Return
(
(IX,D′),(tk1, ... , tkn)

)

Subroutine EncRowsENC,FN((DB,α))

For (id,R) ∈ DB do
For r ∈ R.T do D[(id,r[uk(id)])]← r

Pad all values in D to the same length
For ℓ ∈ D.Lbls do

T[ℓ]←$ FN(ℓ) ; D′[T[ℓ]]←$ ENC(D[ℓ])

Return (D′,α,T)

Adversary Ai(s)

(DB,q,st)←$ A(s)
Ke←$SE.KS ; Kf←$F.KS

Define ENC : ENC(x) = SE.Enc(Ke, ·)
Define FN : FN(x) = F.Ev(Kf, ·)
(D′,α,T)←$EncRowsENC,FN(DB)
Return

(
(D′,α,T),q,(D′,st)

)
Adversary Ai

(
g, IX, tk,(D′,st)

)
b′←$ A

(
g,(IX,D′), tk,st

)
Return b′

Adversaries AENC
s , AFN

f

(DB,q,st)←$ A(s) ; Kf←$F.KS

Define FN : FN(x) = F.Ev(Kf, ·)

Let ENC : {0,1}L→{0,1}SE.cl(L) be a random function

(D′,α,T)←$EncRowsENC,FN(DB)
lki←$Li(DS,q)
(IX,(tk1, ... , tkn))←S i(lki)

b′←$ A
(
g,(IX,D′),(tk1, ... , tkn),st

)
Return b′

Games G0(A) , G1(A)

(DB,q,st)←$ A(s)
Ke←$SE.KS ; Kf←$F.KS

Define ENC : ENC(x) = SE.Enc(Ke, ·)
Define FN : FN(x) = F.Ev(Kf, ·)
(D′,α,T)←$EncRowsENC,FN(DB)
K′i←$StI.KS

(Ki, IX)←$StI.Enc(K′i ,DS)
For i ∈ [n] do tki←$StI.Tok(Ki,qi)

lki←$Li(DS,(q1, ... ,qn))

(IX,(tk1, ... , tkn))←S i(lki)

b′←$ A
(
g,(IX,D′),(tk1, ... , tkn),st

)
Return b′ = 1

Games G2(A) , G3(A)

(DB,q,st)←$ A(s) ; Kf←$F.KS

Let ENC : {0,1}L→{0,1}SE.cl(L) be a random function
Define FN : FN(x) = F.Ev(Kf, ·)

Let FN : {0,1}∗→{0,1}F.ol be a random function

(D′,α,T)←$EncRowsENC,FN(DB)
lki←$Li(DS,(q1, ... ,qn))

(IX,(tk1, ... , tkn))←S i(lki)

b′←$ A
(
g,(IX,D′),(tk1, ... , tkn),st

)
Return b′ = 1

Figure 2.6. Simulator, adversaries and games used in the proof of Theorem 13.

91

Algs FpJn.Enc
(
K′m,(DB,α,T)

)
, PpJn.Enc

(
K′m,(DB,α,T)

)
For (at1,at2) ∈ α do

For r ∈
(
DB[getID(ati,DB)] ▷◁at1,at2 DB[getID(ati,DB)]

)
.T do

rt1← T[(id1,r[uk(id1)])] ; rt2← T[(id2,r[uk(id2)])]

M[(at1,at2)]
∪←− (rt1, rt2) ; For i ∈ {1,2} do M[(at1,at2, i)]

∪←− rti

(Km, IX)←$Mme.Enc(K′m,M) ; Return
(
(Km,Schema(DB)), IX

)
Alg FpJn.Tok

(
(Km,scma),q

)
Return Mme.Tok

(
Km,q

)
Alg FpJn.Eval(tk, IX)

Return
(
Mme.Eval(tk, IX)

)
Alg FpJn.Fin

(
(Km,scma),q,(M)

)
at1← scma[getID(at1,scma)]

at2← scma[getID(at2,scma)]

R← NewRltn(at1∥at2)

R.T←{r1∥r2 : (r1,r2) ∈M}
Return R

Alg PpJn.Tok
(
(Km,scma),(at1,at2)

)
mt1←$Mme.Tok

(
Km,(at1,at2,1)

)
mt2←$Mme.Tok

(
Km,(at1,at2,2)

)
Return (mt1,mt2)

Alg PpJn.Eval
(
(tk1, tk2), IX

)
Return (Mme.Eval(tk1, IX),Mme.Eval(tk2, IX))

Alg PpJn.Fin
(
(Km,scma),(at1,at2),(M1,M2)

)
For i = 1,2 do
Ri← NewRltn

(
scma[getID(ati,scma)]

)
Ri.T←{r : (r) ∈Mi}

Return R1 ▷◁at1,at2 R2

Alg Lf(DS,(q1, ... ,qn))

Construct M as in FpJn.Enc(·,DS)
Return Lm(M,(q1, ... ,qn))

Alg Lp
(
DS,((at1,at ′1), ... ,(atn,at ′n))

)
Construct M as in PpJn.Enc(·,DS)
For i ∈ [n] do

q2i−1← (ati,at ′i ,1) ; q2i← (ati,at ′i ,2)
Return Lm(M,(q1, ... ,q2n))

Figure 2.7. Algorithms of StI schemes FpJn,PpJn (top) and their leakage algorithms (bottom)
where Mme is a RR multimap encryption scheme. Note that in the encryption algorithm, boxed
code belongs only to the respective algorithm.

but JnDT.Spec only computes the join if (at1,at2) ∈ α:

JnDT.Spec
(
(at1,at2),(DB,α)

)
= DB[getID(at1,DB)] ▷◁at1,at2 DB[getID(at2,DB)]

and returns⊥ otherwise. From here on we assume that all queries made are “non-trivial” meaning

they return relations with at least one row.

FP indexing.

FpJn is an StI scheme that “fully precomputes” joins and is modeled after SPX’s handling

92

of “type-2 selections” and OPX’s handling of “leaf joins” [89, 92]. The intuition here is that

the output relation for each possible join query is precomputed and pointers to the rows therein

are stored as an entry in a RR encrypted multimap. FpJn’s detailed algorithms and leakage

profile are given in Fig. 2.7. Note that FpJn.KS=Mme.KS and that each row in the output of a

particular join is indexed as a pair of pointers to rows in DB.

Since join queries are handled directly by Mme the leakage and efficiency of FpJn

depends entirely on Mme. For the rest of this discussion, we will assume Mme is one of the

mainstream multimap encryption schemes (e.g. [48, 56, 52]) with the “standard” leakage profile

consisting the label space size |M.Lbls|, multimap size ∑ℓ∈M.Lbls |M[ℓ]|, query pattern (equality

pattern of queries ℓ1, ... , ℓn) and query responses M[ℓ1], ... ,M[ℓn].

Notice that when a query (at1,at2) is made in FpJn, the query responses reveal the

equality pattern of columns at1,at2 for rows that appear in the join output. To illustrate, if the

query is made on DB= {(id1,R1),(id2,R2)} where R1,R2 are as depicted in Fig. 2.4, the server

learns that the first two rows of each Ri all have the same value in their at1,at2 columns, but

won’t reveal anything about the last two rows of each Ri apart from the fact that they are not

returned in the join. Note that in the worst case, the join returns all rows from both relations

and the search pattern leakage reveals the entire equality pattern of both columns. This leakage

is comparable to PRE-based techniques like deterministic encryption or adjustable joins (an

observation also made by DPPS [59]). This is significant because, as discussed in Section 2.1,

LAAs are highly effective against PRE and can be applied in this case. Beyond the worst case,

FP indexing leaks strictly less than PRE-based solutions but this does not make them immune

to LAAs. In particular, we believe that attacks (such as those using ℓp-optimization or graph

matching [110, 35]) can be extended to make use of partial equality patterns and cross column

correlations, and be effective against FpJn’s leakage.

We also note that FpJn achieves lower leakage than the analogous indexing in SPX or

OPX because it uses a single multimap. The latter schemes had one encrypted multimap for each

attribute (i.e. Mat1 indexes all joins (at1,at2) ∈ α) this leaks additional metadata and tells the

93

adversary when two queries join on the same at1.

PP indexing.

We introduce a new StI scheme PpJn which performs “partially precomputed” indexing,

whose algorithms are also depicted in Fig. 2.7. PpJn.Enc proceeds in the same way as FpJn.Enc

but we store the rows from each input relation separately. In other words, if Mf,Mp are the

multimaps constructed in the respective setup algorithms, then Mp[(at1,at2, i)] = {rti : (rt1, rt2)∈

Mf[(at1,at2)]} for i= 1,2 and (at1,at2)∈α . Notice that this means the client needs to reassemble

the output relation from the two sets of rows in StI.Fin. We recommend that the client do so by

sorting then joining the columns, avoiding the quadratic time nested loop join where rows are

compared pairwise.

This small change in indexing technique has substantial impact on bandwidth and security.

In the worst case, the number of rows sent with FP is quadratic while PP’s is linear. This

bandwidth reduction occurs because two sets of rows are sent instead of their cross product.

Notice that modulo some metadata information (i.e. the multimap sizes), the PP leakage can be

derived from the FP leakage meaning that PP indexing is no worse than FP indexing. In fact, if

more than one row is returned to any query PP leakage is strictly lower. To illustrate, when join

query (at1,at2) is made to the aforementioned database in Fig. 2.4, the adversary sees that the

first three rows of both tables were returned and can infer that each row has at least one matching

value in the other column – nothing specific about their equality patterns.

In summary, PpJn is the superior indexing choice for JnDT because its leakage is strictly

lower, bandwidth is no worse and efficiency is comparable.

Semantic security.

The security of FpJn,PpJn reduce to that of Mme. The proof follows directly from the

definition of Mme’s semantic security.

Theorem 14 Let L,S be the leakage algorithm and simulator for Mme. Let Lf,Lp be the

94

Adversary Am(s)

Return A(s)

Adversary Am(g, IX,(tk1, ... , tk2n),st)

tk←
(
(tk1, tk2), ... ,(tk2n−1, tk2n)

)
b′←$ A(g, IX, tk,st) ; Return b′

Alg Sp(lkm)

(EM,(tk1, ... , tk2n))←Sm(lkm)

tk←
(
(tk1, tk2), ... ,(tk2n−1, tk2n)

)
Return (EM, tk)

Figure 2.8. Simulators (right) and adversaries (left) used in the proof of Theorem 14.

leakage algorithms given in Fig. 2.7. Then, given adversary A these exists adversary Am and

simualtor Sp such that:

Advss
FpJn,Lf,S(A)≤ Advss

Mme,L,S(A) and Advss
PpJn,Lp,Sp(A)≤ Advss

Mme,L,S(Am).

Proof. The first result follows directly from the definition of FpJn,Lf. The second

result requires us to define Am,Sp, which we do in Fig. 2.8. In both of these, tokens are

just concatenated and deconcatenated as needed by the definition of PpJn. The result follows

immediately.

2.4.2 PP indexing for recursive queries

SjDT data type.

We expand the query support of JnDT to include equality selections, cluster joins (joins

on more than one attribute) and recursively defined queries. The resultant query class is similar

to the SPJ algebra defined by CM [51] except for the omission of the projection operation which

we note can be handled as a post-processing step requiring no cryptographic techniques.

We capture this via the SQL data type SjDT. Its domain is unchanged from JnDT.Dom

except that α allows tuple pairs in addition to attribute pairs. SjDT.QS’s queries are recursively

defined and can be divided into three types. Below, we describe these as well as their evaluation

and SQL equivalent. These are defined recursively so qi,qi are themselves SjDT and SQL

queries respectively:

95

• Relation retrieval queries: These are queries (r, id) ∈ SjDT.QS which model SQL

queries of the form “select * from id”. These are evaluated as follows:

SjDT.Spec
(
(r, id),DB

)
= DB[id] where DB = (DB,α).

• (Equality) selections queries: These are queries (s,at,x,q1) ∈ SjDT.QS which model

SQL queries of the form “select * from q1 where at = c”. These are evaluated as follows:

SjDT.Spec
(
(s,at,x,q1),DB

)
= σ(at,x)(SjDT.Spec(q1,DB)).

• (Equi)joins queries: These are queries (j, t1, t2,q1,q2) ∈ SjDT.QS which model SQL

queries of the form “select * from q1 join q2 on t1 = t2”. These are evaluated as follows:

SjDT.Spec
(
(j, t1, t2,q1,q2),DB

)
= (SjDT.Spec(q1,DB)) ▷◁t1,t2 (SjDT.Spec(q2,DB)).

We say that queries of the form (r, id), (s,at,x,(r, id)) or (j, t1, t2,(r, id1),(r, id2)) are

non-recursive and all others are recursive. We require that all attributes in each ti come from the

same relation in DB (i.e. ti ⊆ DB[id].Ats for some id ∈ DB.IDs). While allowing cluster joins

may lead to an exponential-size index, a judicious database administrator would not allow this –

cluster joins are rarely used and usually known in advance.

Hashset filtering.

To minimize the leakage of recursive queries in our StI schemes we employ the filtering

hashset technique introduced in OXT [49]. We now review this technique and establish some

notation for it.

This filtering hashset is a set denoted HS containing outputs of a function family F where

F.KS= {0,1}F.ol. In our algorithms, the hashset will be used to associate predicate bitstrings

96

with a row tokens (from T). Later, given a predicate p’s key K = F.Ev(Kf, p) we can filter a

set of row tokens, retaining only those which satisfy the predicate. We formalize this via the

following algorithms:

Alg HsEnc(Kf,SET)

For (p, rt) ∈ SET do
HS

∪←− F.Ev
(
F.Ev(Kf, p), rt

)
Return HS

Alg HsFilter(K,(P1, ... ,Pn),HS)

For i ∈ [n] do
For rt ∈ rt ∈ Pi if F.Ev(K, rt) ∈ HS then S ∪←− rt
If S ̸= /0 then Pi← S

Return (P1, ... ,Pn)

For notational convenience in our pseudocodes, HsFilter takes as input a tuple set P =

(P1, ... ,Pn). It then attempts to filter each Pi and retain only the tuples where at least one rt

satisfies the predicate. However, if no such tuple exists, it does not perform the filtering at all.

PP indexing for SjDT.

We are now ready to extend the PP indexing technique introduced in Section 2.4 to

construct StI for SjDT. On a high level, we do so by using an inverted index (similar to those

used for SSE) to handle selections and a filtering hashset to handle recursively defined queries.

The result is StI scheme PpSj whose algorithms are depicted in Fig. 2.9.

Now we provide some intuition for PpSj’s algorithms. The scheme has two server-side

data structures: an encrypted multimap and a hashset. The multimap is used to index non-

recursive queries my mapping a query-derived label to the relevant rows in the database. For

example, the label for relation retrieval query (r, id) is the query itself and its values are row

tokens associated to rows in DB[id] (i.e. {(T[(id,r[uk(id)])]) : r ∈ DB[id].T}). Note that the

latter are singleton tuples because we required that pointer tuples be made out of tuples of

tokens. The hashset is used to filter the sets in a pointer tuple during a recursive query. For

example, when processing the query (j, t1, t2,(s,at,x,(r, id1)),(r, id2)) (a select followed by

a join), the server would use the multimap to retrieve row tokens for each of the non-recursive

subqueries (i.e. (s,at,x,(r, id1)) and (r, id2)). The token would also include two keys which

can be used with HsFilter which tests if the rows being pointed to (in DB[id1] or DB[id2]) are in

97

Alg PpSj.Enc
(
K′m,(DB,α,T)

)
For all (id,R) ∈ DB and r ∈ R.T do
rt← T[(id,r[uk(id)])] ; M[(r, id)] ∪←− (rt)

For at ∈ R.Ats where at ̸= uk(id) do
M[(s,at,r[at])] ∪←− (rt) ; SET ∪←−

(
(s,at,r[at]), rt

)
For (t1, t2) ∈ α do

id1← getID(t1) ; id2← getID(t2)

For r ∈
(
DB[id1] ▷◁t1,t2 DB[id2]

)
.T do

For i = 1,2 do
rt← T[(idi,r[uk(idi)] ; M[(j, t1, t2, i)]

∪←− (rt)

SET
∪←−
(
(j, t1, t2, i), rt

)
(Km,EM)←$Mme.Enc(K′m,M)

Kf←$F.KS ; HS← HsEnc(Kf,SET)

Return
(
(Schema(DB),Km,Kf),(EM,HS)

)
Alg PpSj.Tok

(
(scma,Km,Kf),q

)
If q = (r, id) then return

(
r,Mme.Tok(Km,(r, id))

)
Else if q = (s,at,x,(r, id)) then

Return
(
r,Mme.Tok(Km,(s,at,x))

)
Else if q = (s,at,x,q1) then
tk1←$PpSj.Tok

(
(scma,Km,Kf),q1

)
Return

(
s,F.Ev(Kf,(s,at,x)), tk1

)
Else if q = (j, t1, t2,q1,q2) then

For i = 1,2 do
If qi = (r, idi) then tki←$

(
r,Mme.Tok(Km,(j, t1, t2, i))

)
Else
tk′←$PpSj.Tok

(
(scma,Km,Kf),qi

)
tki←

(
s,F.Ev(Kf,(j, t1, t2, i), tk′)

)
Return (j, tk1, tk2)

Alg PpSj.Eval(tk, IX)

(EM,HS)← IX

If tk= (r, tk1) then
Return (Mme.Eval(tk, IX))

Else If tk= (s,K, tk1) then
P← PpSj.Eval(tk1, IX)

Return HsFilter(K,P,HS)
Else if tk= (j, tk1, tk2)

For i = 1,2 do
Pi← PpSj.Eval(tki, IX)

Return P1∥P2

Alg PpSj.Fin(Ki,q,(M1))

(scma,Km,Kf)← Ki

If q = (r, id) then
R← NewRltn(scma[id])
R.T← r : (r) ∈M1 ; Return R

Else if q = (s,at,x,q1) then
Return PpSj.Fin(Ki,q1,(M1))

Else if q = (j, t1, t2,q1,q2) then
Define M1,M2 : M1∥M2 = M1,

M1 has as many Mi as qi has
subqueries of the form (r, id)

For i = 1,2 do
Ri← PpSj.Fin(Ki,qi,Mi)

Return R1 ▷◁t1,t2 R2

Figure 2.9. Algorithms for PpSj the StI scheme for SjDT using PP indexing.

98

DB[id1] ▷◁t1,t2 DB[id2].

FP indexing for SjDT.

We analogously extend FpJn introduced in Section 2.4 to construct FpSj, an StI for SjDT.

Just like with PpSj, non-recursive queries will be added to the encrypted multimap that is used

to index the non-recursive joins while all recursive queries are filtered using the hashset. The

only subtlety in this extension is the handling of “internal joins” which are queries of the form

q = (j, t1, t2,(r, id),q1) (or q = (j, t1, t2,q1,(r, id))) because we want to limit the row tokens

leaked from id to those who join with some row returned by q1. Similar to OPX, we construct

an index where each row token returned in the subquery will “point to” the tokens of the rows

joined to in DB[id]. As alluded to in Section 2.3.2, this self-referential indexing (where Mme

tokens are stored in M) may introduce circular security issues if pathological Mme primitives are

used. We avoid this by indexing internal joins with a specific, non-pathological primitive (as was

done in OPX). To avoid the increased leakage and complexity of an additional data structure,

we will assume that Mme is the Mmerr
π scheme recounted in Section 2.3 and co-locate this index

with the one used for non-recursive queries. Notice that this subtlety does not come up in PpSj

because we do not reveal join equality patterns so all recursive joins can be handled similarly.

The resultant StI scheme is FpSj whose algorithms are depicted in Fig. 2.10. Notice

that FpSj.KS=Mmerr
π .KS= F.KS. The flags iij,ij used come from the terms used for query

classification by KMZZ in [92] where recursive joins are split into “internal joins” (i.e. queries of

the form (j, t1, t2,(r, id1),q2) or (j, t1, t2,(r, id1),q2) and “intermediate internal joins” (i.e.those

of form (j, t1, t2,q1,q2)). We handle the internal joins described above by manually adding

entries to the server-side data structure of Mmerr
π (i.e. dictionary D) to index them.

We note that the StE scheme StE= SqlStE[FpSj,SE,F] is essentially the same as OPX

with minor improvements in leakage (analogous to those described in our discussion of FpJn in

Section 2.4) and a slightly revised approach to “internal joins”.

99

Alg FpSj.Enc
(
Km,(DB,α,T)

)
For all (id,R) ∈ DB and r ∈ R.T do
rt← T[(id,r[uk(id)])] ; M[(r, id)] ∪←− (rt)

For at ∈ R.Ats where at ̸= uk(id) do
M[(s,at,r[at])] ∪←− (rt) ; SET ∪←−

(
(s,at,r[at]), rt

)
For (t1, t2) ∈ α do

id1← getID(t1) ; id2← getID(t2)

For r ∈
(
DB[id1] ▷◁t1,t2 DB[id2]

)
.T do

For i = 1,2 do rti← T[(idi,r[uk(idi)])]

M[(j, t1, t2)]
∪←− (rt1, rt2) ; M1[(t1, t2, rt1,1)]

∪←− rt2

M1[(t1, t2, rt2,2)]
∪←− rt1

SET
∪←−
(
(iij, t1, t2),(rt1, rt2)

)
(Km,D)←$Mmerr

π .Enc(Km,M)

For (t1, t2, rt, i) ∈M1.Lbls do
For j = 0,1 do K j← F.Ev(F.Ev(Km,(ij, t1, t2, i)), rt∥ j)
{rt1, ... , rtn}←M1[(t1, t2, rt, i)]
For k ∈ [n] do

Pad rtk to M’s max. value length
D[F.Ev(K0,k)]←$SE.Enc(K1, rtk)

Kf←$F.KS ; HS← HsEnc(Kf,SET)

Return
(
(Schema(DB),Km,Kf),(D,HS)

)
Alg FpSj.Tok(Ki,q)

(scma,Km,Kf)← Ki

If q = (r, id) then return (r,Mmerr
π .Tok(Km,(r, id)))

Else if q = (s,at,x,(r, id)) then
Return

(
r,Mmerr

π .Tok(Km,(s,at,x))
)

Else if q = (s,at,x,q1) then
Return

(
s,F.Ev(Kf,(s,at,x)),FpSj.Tok(Ki,q1)

)
Else if q = (j, t1, t2,(r, id1),(r, id2)) then

Return
(
r,Mmerr

π .Tok(Km,(j, t1, t2))
)

Else if q = (j, t1, t2,q1,(r, id)) then
Return (ij,F.Ev(Km,(ij, t1, t2,1)),1,FpSj.Tok(Ki,q1))

Else if q = (j, t1, t2,(r, id),q1) then
Return (ij,F.Ev(Km,(ij, t1, t2,2)),2,FpSj.Tok(Ki,q1))

Else if q = (j, t1, t2,q1,q2) then
For i = 1,2 do tki←$FpSj.Tok(Ki,qi)

Return
(
iij,F.Ev(Kf,(iij, t1, t2)), tk1, tk2

)

Alg FpSj.Eval(tk,(D,HS))

If tk= (r,mt) then
Return (Mmerr

π .Eval(mt,D))

Else if tk= (s,K, tk1) then
P← FpSj.Eval(tk1,(D,HS))

Return HsFilter(K,P,HS)
Else if tk= (ij,K, i, tk1) then
(P1)← FpSj.Eval(tk1,(D,HS))

For rt ∈ rt ∈ P1 do
For j = 0,1 do

K j← F.Ev(K, rt∥ j)
x← D[F.Ev(K0,crt)]
While x ̸=⊥ do

S ∪←− (SE.Dec(K1,x),rt)
crt← crt+1
x← D[F.Ev(K0,crt)]

If i = 1 then
P1←{(rt)∥rt : (rt,rt) ∈ S}

Else
P1←{rt∥(rt) : (rt,rt) ∈ S}

Return (P1)

Else if tk= (iij,K, tk1, tk2) then
For i = 1,2 do
(Pi)← FpSj.Eval(tki,(D,HS))

For rt1 ∈ P1 and rt2 ∈ P2 do
For rt1 ∈ rt1 and rt2 ∈ rt2 do

If F.Ev(K,(rt1, rt2)) ∈ HS then
P0

∪←− rt1∥rt2

Return (P0)

Alg FpSj.Fin(Ki,q,(M1))

(scma,Km,Kf)← Ki

Using scma and q, compute the
attributes at in SjDT.Spec(q,DS)

R← NewRltn(at)
For (m1, ... ,mn) ∈M1 do
R.T

∪←− m1∥...∥mn

Return R

Figure 2.10. Algorithms for FpSj, the StI scheme for SjDT using FP indexing.

100

PpSj leakage discussion.

While a pseudocode description of PpSj’s leakage profile may seem convoluted, we

believe the intuition behind it enables helpful comparisons with FpSj and OPX [92]. As such, we

aim to give some intuition by describing the components of PpSj’s leakage profile via a running

example, before giving a full description of PpSj’s leakage algorithm and the associated security

proof. Below, we assume that MME primitives have the “standard” leakage profile (as described

in Section 2.3).

Our example database contains R1,R2 from Fig. 2.4. If no queries are made, the server-

side data structures reveal only metadata leakage. This includes the number of values in the

multimap, the maximum-length of a value in the multimap and the number of F outputs in

the hashset. The leakage of FpSj is comparable but on OPX it is higher because different data

structures are used to index different SQL operations.

We will refer to all other forms of leakage as “query dependent leakage”. This is where

PP indexing has substantial savings over FP and OPX.

Now lets assume the client makes the following queries: q1 = (s,at3,CS,(r, id2)), q2 =

(s,at2,Eve,(r, id2)), q3 = (r, id1) and q4 =
(
j,at1,at2,(r, id1),(s,at3,CS,(r, id2))

)
. The server

will receive four tokens, where tk1, tk2, tk3 are such that tki = (r,mti) and tk4 =
(
j,(r,mt4),

(j,K,mt5)
)
. Here, each mti is a token for Mme while K is a hashset key. Just from inspecting

these, the adversary learns the recursion structure of the queries. Specifically, he learns that the

first three queries were non-recursive while q4 was a join followed by a select. This leakage

is slightly lower in FpSj,PpSj compared to OPX because the adversary cannot differentiate

between non-recursive selections and relation retrievals.

The Mme tokens leak the multimap query pattern and multimap responses. The former

reveals whenever the associated query or subquery is repeated. In our case, the adversary learns

that mt1,mt5 are associated to the same query. Note that this does not extend to mt3,mt4 because

the latter is in a join. From the multimap query responses he “sees” the row tokens that are

returned by each Mme.Eval(mti,EM). This reveals the equality pattern of the rows returned

101

by each associated query/subquery. For example, this reveals that q1,q2 both return two rows,

one of which is shared. On join queries, we enjoy similar leakage savings as described in the

non-recursive case. For example, tk4 will reveal that three rows are returned from the left relation

(i.e. id1) but doesn’t say anything about whether they are in the final output relation or how they

“match up” with rows from the right relation. In FpSj and OPX, both of the above are revealed.

Finally, the hashset keys reveal the hashset key query pattern and hashset filtering results.

The former reveals when the exact same predicate is repeated and is detectable because the keys

would be the same. The latter is because the adversary is free to apply hashset keys (in the

tokens) to filter all the row tokens he can retrieve from EM thereby learning the hashset filtering

results. This means that using K he can learn that one row returned by q2 satisfies the predicate

associated to K even though it is not in the output of q4. Similarly, he learns that two rows

returned by q1 satisfies the predicate but only one is returned by q4. Using FpSj the adversary

would additionally learn which row returned in q3 is “paired up” with this row in the q4 output.

Leakage comparison.

From the above discussion, one might expect decreasing query-dependent leakage from

PpSj to FpSj to OPX. While the leakage for FpSj can always be derived from OPX, the compar-

ison of PpSj to FpSj is not as straightforward because they sometimes do not return the same

rows when recursive queries are made (which we discuss in more detail below).

However, when restricted to non-recursive queries, PpSj’s query-dependent leakage is

strictly superior for the same reasons that PpJn was superior in Section 2.4. Extending this, we

can upper bound the leakage lkp of PpSj on queries q1, ... ,qn with its leakage lk′p on the minimal

set of non-recursive queries q′1, ... ,q
′
m with which the server can still deduce the pointer tuples

it should return on q1, ... ,qn. Doing the same for FpSj, we have lkf ≤ lk′f as well. Then, via

the above observation about non-recursive queries we have lk′p ≤ lk′f, with the inequality being

strict if at least one join query with at least two rows is made. Our being able to bound PpSj’s

query-dependent leakage lower than FpSj’s gives credence to the intuition that PpSj is the more

102

Alg Lp
(
DS,(q1, ... ,qn)

)
Construct M,SET as in PpSj.Enc(·,DS)
For i = 1, ... ,n do
(ri,q,p,cq,cp)← RS(qi,q,p,cq,cp)

r← (r1, ... ,rn) ; lk←$L(M,q)
SET′← HF(p,

⋃
q∈q M[q],SET)

Return (r, lk,QP(p),cp,SET
′, |SET′|)

Subroutine HF
(
(p1, ... , pn),S,SET

)
For all i ∈ [n] and rt ∈ S do

If (pi, rt) ∈ SET then SET′
∪←− (i, rt)

Return SET′

Subroutine QP
(
(p1, ... , pn)

)
For all i, j ∈ [n] if pi = p j then

P[i, j]← 1 else P[i, j]← 0
Return P

Subroutine RS(q,q,p,cq,cp)

If q = (r, id) then q ∪←− (r, id) ; r← (m,cq) ; cq← cq +1
Else if q = (s,at,x,(r, id)) then

q ∪←− (s,at,x) ; r← (m,cq) ; cq← cq +1
Else if q = (s,at,x,q1) then
(r1,q,p,cq,cp)← RS(q1,q,p,cq,cp)

p ∪←− (s,at,x) ; r← (p,cp,r1) ; cp← cp +1
Else if q = (t1, t2,q1,q2) then

For i = 1,2 do
If qi = (r, id) then

q ∪←− (j, t1, t2, i) ; ri← (m,cq) ; cq← cq +1
Else

(r′i,q,p,cq,cp)← RS(qi,q,p,cq,cp)

p ∪←− (j, t1, t2, i) ; ri← (p,cp,r′i) ; cp← cp +1
r← (j,r1,r2)

Return (r,q,p,cq,cp)

Figure 2.11. Leakage profile for PpSj where RS,L,HF,QP compute the recursion structure
leakage, Mme’s leakage profile, hashset filtering results and hashset query pattern respectively.

secure variant in practice.

Security Proofs.

For completeness, we now give the leakage algorithms associated to FpSj,PpSj, and their

associated security proofs.

The leakage algorithm for PpSj is Lp in Fig. 2.11. It calls the three subroutines which

compute the query-dependent leakage. RS is first called on each of the q1, ... ,qn. Through this,

counters cq,cp are maintained which count the number of accesses to M (to retrieve a value) and

HS (to filter based on a predicate). The labels or predicates associated to each of these subqueries

are logged in the vectors q,p. The r1, ... ,rn returned during these calls are part of the leakage. It

reveals the “structure” of each query that was made.

Vector q are the queries made to the multimap primitive and is therefore an input to L.

The output of this makes up the multimap leakage (e.g. multimap query equality pattern) and

will be returned by Lp. Vector p is given as input to QP and HF which compute the equality

pattern and filtering results on the hashset predicates respectively.

103

We can now state and prove PpSj’s security with respect to Lp.

Theorem 15 Let L,S be the leakage algorithm and simulator for Mme respectively. Let Lp,Sp

be as defined in Fig. 2.11 and let F be the function family used. Then for all adversaries A there

exists adversaries Am,Af such that:

Advss
PpSj,Lp,Sp(A)≤ Advss

Mme,L,S(Am)+(p+1) ·Advprf
F (Af).

Here, p is the number of distinct predicates used in constructing HS.

Proof. Adversary Am is given in Fig. 2.12. In the same diagram, we see A1,A2 which are both

PRF adversaries playing Gprf
F . We define Af to randomly pick one at run time and use it.

Now we can proceed via a standard hybrid argument. Let bp,bf,bm be the challenge bits

in Gss
PpSj,Lp,Sp , Gprf

F and Gss
Mme,L,S respectively.

From the various advantage definitions, we have that

Advss
PpSj,Lp,Sp(A) = Pr[Gss

PpSj,Lp,Sp(A)|bp = 1]−Pr[Gss
PpSj,Lp,Sp(A)|bp = 0],

Advss
Mme,L,S(Am) = Pr[Gss

Mme,L,S(Am)|bm = 1]−Pr[Gss
Mme,L,S(Am)|bm = 0],

Advprf
F (A1) = Pr[Gprf

F (A1)|bf = 1]−Pr[Gprf
F (A1)|bf = 0].

Notice also that

Pr[Gprf
F (A2)|bf = 0,c = i] = Pr[Gprf

F (A2)|bf = 1,c = i+1]

for i ∈ [p−1] and

Pr[Gprf
F (A2)|bf = 1,c = j]−Pr[Gprf

F (A2)|bf = 1,c = j]≤ Advprf
F (A2)

104

for j ∈ [p]. This means that

p ·Advprf
F (A2)≥ Pr[Gprf

F (A2)|bf = 1,c = p]−Pr[Gprf
F (A1)|bf = 0,c = 1].

Notice that Am in Gss
Mme,L,S uses the game to simulate multimap encryption and performs

the rest itself as it happens in the “real world” of Gss
PpSj,Lp,Sp(A). This gives

Pr[Gss
PpSj,Lp,Sp(A)|bp = 1] = Pr[Gss

Mme,L,S(Am)|bm = 1].

Similarly, A1 simulates multimap encryption as in the “ideal world” of Gss
Mme,L,S and defers the

filtering key production to FN which gives us Pr[Gss
Mme,L,S(Am)|bm = 0] = Pr[Gprf

F (A1)|bf = 1].

When A2 plays Gprf
F (A2), if c = p then all the Ki will be randomly selected. This means

Pr[Gprf
F (A1)|bf = 0] = Pr[Gprf

F (A2)|bf = 1,c = p]. Over p hybrids, we get to the version where all

the F.Ev(Ki, ·) (where Ki is not revealed to the adversary) are simulated with random functions,

giving us Pr[Gprf
F (A1)|bf = 0,c = 1] = Pr[Gss

PpSj,Lp,Sp(A)|bp = 0] because this selects all of HS

elements as Sp does.

The leakage algorithm Lf for FpSj is given in Fig. 2.13.

As mentioned in Section 2.4.2, the differences between this and Lp all stem from their

different handling of joins. As depicted in Fig. 2.11, we break down the latter’s query-dependent

leakage into the recursion structure (r computed by RS), leakage due to queries to the underlying

multimap encryption scheme (lk computed using L), hashset filtering results (SET′ computed

using HF), hashset query patterns (computed using QP(p)) and the total number of hashset

predicates made (cp). For examples and intuition of each of these forms of leakage, see the

examples given in Section 2.4.2.

With Lf, we must compute leakage due to three different types of join queries (leaf,

internal or internal intermediate). For leaf joins, the difference in leakage for the two SjDT StI

schemes is exactly that of the two JnDT schemes given in Section 2.4. For internal intermediate

105

Alg Sp((r1, ... ,rn), lk,P,cp,SET
′,N)

(EM,mt)←$S(lk)
For i = 1, ... ,cp do

If ∃c ∈ [i] where P[c, i] = 1 then Ki← Kc

else Ki←$F.KS

For (i, rt) ∈ SET′ do HS
∪←− F.Ev(Ki, rt)

While |HS|< N do x←${0,1}F.ol ; HS ∪←− x

For i = 1, ... ,n do
tki← QuerySim

(
ri,mt,(K1, ... ,Kcp)

)
Return

(
(EM,HS),(tk1, ... , tkn)

)

Subroutine QuerySim(r,(mt1, ... ,mtcq),(K1, ... ,Kcp))

If r = (m, i) then return (r,mti)

Else if r = (p, i,r1) then
Return

(
s,Ki,QuerySim(r1,mt,k)

)
Else if r = (j,r1,r2)

For i = 1,2 do
If ri = (m, i) then tki← (r,mti)

Else if ri = (p, j,r′) then
tk′← QuerySim(r′,mt,k) ; tki←

(
s, tk′,K j

)
Return (j, tk1, tk2)

Alg Am(s)

(DS,(q1, ... ,qn),st)←$ A(s)

Construct M,SET as in PpSj.Enc(·,DS)
For i = 1, ... ,n do
(ri,q,p,cq,cp)← RS(qi,q,p,cq,cp)

Return (M,q,(SET,p,(r1, ... ,rn),st))

Alg Am(g,EM,mt,(SET,p,r,st))

(p1, ... , pcp)← p
(r1, ... ,rn)← r
Kf←$F.KS

For i = 1, ... ,cp do
Ki← F.Ev(Kf, pi)

k← (K1, ... ,Kcp)

For i ∈ [n] do
tk ∪←− QuerySim(ri,mt,k)

Return A(g,(EM,HS), tk,st)

Alg AFN
1 , AFN

2

(DS,(q1, ... ,qn),st)←$ A(s)

Construct M,SET as in PpSj.Enc(·,DS)
For i = 1, ... ,n do (ri,q,p,cq,cp)← RS(qi,q,p,cq,cp)

(EM,mt)←$S(L(M,q))
(p1, ... , pcp)← p ; c←$ [p] ; ctr← 1
For (p, rt) ∈ SET do

If Kp = ε then Kp←$ FN(p)
HS

∪←− F.Ev
(
Kp, rt

)
If Kp = ε then

If ctr < c or p ∈ p then Kp←$F.KS ; ctr← ctr+1
Else if ctr = c then Kp←⊥ ; ctr← ctr+1

If Kp = ε then x←${0,1}F.ol ; HS ∪←− x
Else if Kp =⊥ then HS

∪←− FN(rt)

Else HS
∪←− F.Ev(Kp, rt)

For i ∈ [n] do tk ∪←− QuerySim(ri,mt,(Kp1 , ... ,Kpcp))

Return A(g,(EM,HS), tk,st)

Figure 2.12. Simulator (top) and adversaries (bottom) used in the proof of Theorem 15. In Sp,
S is a simulator for Mme. Note that when Af (from Theorem 15) is run it randomly selects one
of A1,A2 and runs it.

106

joins, these are handled entirely using hashset filtering, much like the recursive joins in PpSj. As

such, the leakage is comparable (in that we reveal the equality pattern and filtering results of the

predicates) with the only subtlety coming from the fact that FpSj associates the join predicate

with a pair of row tokens, thereby leakage the equality pattern of the join (but restricted to the

rows that have been retrieved by the subqueries).

This leaves the leakage from internal intermediate joins. Recall that the indexing of

such joins involved manual additions to the output of Mmerr
π .Enc (i.e. D). As such, the leakage

algorithm must include information to simulate these entries. This includes the final number

of values in D (i.e. M), the length of these values (i.e. ℓ), the query pattern of such joins (i.e.

QP(j)), query responses to these (i.e. I) and the number of such joins (i.e. cj).

The security of FpSj Its security is given in Theorem 16 below, which uses the simulator

S f given in Fig. 2.14.

Theorem 16 Let L,S be the leakage algorithm and simulator for Mmerr
π respectively (given in

[48]). Let F,SE be the primitives used in Mmerr
π and FpSj’s algorithms. Let Lf,S f be as defined

in Fig. 2.13 and Fig. 2.14 respectively. Then for all adversaries A there exists adversaries Af,As

such that:

Advss
PpSj,Lp,Sp(A)≤ (m+m1)Advind$

SE (As)+(m+m1 + p+1).

Here, m,m1 are the number of labels in M,M1 respectively and p is the number of distinct

predicates used in constructing HS.

Proof. This proof is quite similar to Theorem 15, except that we can now reduce security straight

to SE,F because we assumed the use of the Mmerr
π multimap encryption scheme. We therefore

omit a full description of the adversaries and proof except to say that the multiplicative factors in

the bound come from the number of SE and F keys that are used in FpSj.Enc (including those

which are an output of F.Ev).

107

Alg Lf
(
DS,(q1, ... ,qn)

)
Construct M,M1,SET as in FpSj.Enc(·,DS)
For i = 1, ... ,n do
(ri,q,p, j,cq,cp,cj)← RS(qi,q,p, j,cq,cp,cj)

r← (r1, ... ,rn) ; lk←$L(M,q) ; S←
⋃

q∈q M[q]
While S ̸= S′ do S← S′ ; (SET,S′,I)← IJ(j,S′,I)
SET′← HF(p,S,SET)
Define M : # of vals in M and M1

Define ℓ : max. length val in M,M1

Return (r, lk,QP(p),cp,SET
′, |SET′|,I,M, ℓ,QP(j),cj)

Subroutine IJ
(
(j1, ... , jn),S,I

)
For i ∈ [n] rt ∈ S do
(t1, t2,k)← ji
If M1[(t1, t2, rt, i)] ̸=⊥ then

S′← S′∪M1[(t1, t2, rt, i)] ; I[(rt, i)]←M1[(t1, t2, rt, i)]
Return (S′,I)

Subroutine HF(p,S,SET)
(p1, ... , pn)← p
For all i ∈ [n]

If pi = (iij, t1, t2) then
For rt ∈ S×S do

If (pi,rt) ∈ SET then
SET′

∪←− (i,rt)
Else

For rt ∈ S do
If (pi, rt) ∈ SET then
SET′

∪←− (i, rt)
Return SET′

Subroutine QP
(
(t1, ... , tn)

)
For all i, j ∈ [n] if ti = t j then

T[i, j]← 1 else T[i, j]← 0
Return T

Subroutine RS(q,q,p, j,cq,cp,cj)

If q = (r, id) then q ∪←− (r, id) ; r← (m,cq) ; cq← cq +1
Else if q = (s,at,x,(r, id)) then q ∪←− (s,at,x) ; r← (m,cq) ; cq← cq +1
Else if q = (s,at,x,q1) then
(r1,q,p, j,cq,cp,cj)← RS(q1,q,p, j,cq,cp,cj) ; p ∪←− (s,at,x) ; r← (s,cp,r1) ; cp← cp +1

Else if q = (t1, t2,(r, id1),(r, id2)) then q ∪←− (j, t1, t2) ; r← (m,cq) ; cq← cq +1
Else if q = (t1, t2,q1,(r, id)) or q = (t1, t2,(r, id),q1) then
(r1,q,p, j,cq,cp,cj)←RS(q1,q,p, j,cq,cp,cj) ; If q= (t1, t2,q1,(r, id)) then i= 1 else i= 2
j ∪←− (t1, t2, i) ; r← (ij,cj, i,r1) ; cj← cj +1

Else if q = (t1, t2,q1,q2) then
For i = 1,2 do (ri,q,p, j,cq,cp,cj)← RS(qi,q,p, j,cq,cp,cj)

p ∪←− (iij, t1, t2) ; r← (iij,cp,r1,r2) ; cp← cp +1
Return (r,q,p, j,cq,cp)

Figure 2.13. Leakage profile for FpSj. Here, L is the leakage algorithm for Mmerr
π and subrou-

tines IJ,HF,QP,RS compute the leakage associated to internal joins, hashset filtering, hashset
query patterns and query recursion structures.

108

Alg S f(r, lk,P,cp,SET
′,N,I,M, ℓ,J,cj)

(r1, ... ,rn)← r ; (D,mt)←$S(lk)
For i = 1, ... ,cp do

If ∃c ∈ [i] where P[c, i] = 1 then Ki← Kc else Ki←$F.KS

For (i,x) ∈ SET′ do HS
∪←− F.Ev(Ki,x)

While |HS|< N do x←${0,1}F.ol ; HS ∪←− x
For (rt, i) ∈ I.Lbls do

If ∃c ∈ [i] where J[c, i] = 1 then K′i ← K′c else K′i←$F.KS

{rt′1, ... , rt′n}← I[(rt, i)]
For k = 0,1 do K′′k ← F.Ev(K′i , rt∥k)
For k ∈ [n] do

Pad rt′k to length ℓ

D[F.Ev(K′′0 ,k)]← SE.Enc(K′′1 , rt
′
k)

While |D.Lbls|< M do x←${0,1}F.ol ; D[x]←${0,1}ℓ

For i = 1, ... ,n do
tki← QuerySim(ri,mt,(K1, ... ,Kcp),(K

′
1, ... ,K

′
cj
))

Return
(
(D,HS),(tk1, ... , tkn)

)

Subroutine QuerySim(r,mt,k,k′)
(mt1, ... ,mtcq)←mt
(K1, ... ,Kcp)← k ; (K′1, ... ,K

′
cj
)← k′

If r = (m, i) then return (r,mti)

Else if r = (p, i,r1) then
tk← QuerySim(r1,mt,k,k′)
Return (s,Ki, tk)

Else if r = (ij, i, j,r1) then
tk← QuerySim(r1,mt,k,k′)
Return (ij,K′i , j, tk)

Else if r = (iij, i,r1,r2) then
For j = 1,2 do
tk j← QuerySim(r j,mt,k,k′)

Return (iij,Ki, tk1, tk2)

Figure 2.14. Simulator used in the proof of Theorem 16 where S is a simulator for Mmerr
π .

Efficiency drawback of PpSj.

Comparing the bandwidth of PpSj,FpSj is also not clear cut: On non-recursive queries,

PpSj will perform equal or better than FpSj but on recursive queries the converse is sometimes

true.

Consider the query q = (s,at3,CS,(j,at1,at2,(r, id1),(r, id2))) in our toy example. With

FpSj, the server returns pointers to the two rows that feature in the output relation (i.e. those with

coordinates (id1,cc),(id2,33)) but PpSj returns four (i.e. with coordinates (id1,aa),(id1,bb)

,(id1,cc),(id2,33)) because without the equality pattern over the join columns and it cannot

filter out the first and second rows of R1.

More generally, this overhead may occur anytime that a recursive query (involving at

least one join) is made and grows with query complexity. Depending on the data and query

workload, this overhead ranges from negligible to quite substantial, something we explore further

in Section 2.6.

109

Figure 2.15. Data/ query processing in unencrypted SQL databases (left) and the analogous
processes using SqlStE with hybrid indexing (right).

2.5 Hybrid indexing

We showed that the choice between FP and PP indexing depends heavily on query load.

This motivates our hybrid StI scheme that postpones this decision till query time. We first cover

the technical details of supporting both indexing techniques, then give a heuristic for the client to

choose between them.

Hybrid data processing.

We give a new ADT where each join in a query is annotated with the desired index-

ing technique, HybDT. This ADT is equivalent to SjDT except that its join queries take the

form (op, t1, t2,q1,q2) where op ∈ {fp,pp}. When evaluating HybDT.Spec, these are both

functionally equivalent to the analogous SjDT join query’s (j, t1, t2,q1,q2).

The hybrid system we envision makes the same assumption as in (unencrypted) SQL

DBMSes – that client queries are unoptimized and have no canonical form – and therefore

mirrors its data flow as depicted in Fig. 2.15. It also borrows its architecture (i.e. use of a

client-side proxy) from existing encrypted SQL solutions [116, 130]. The client’s SjDT query is

annotated using a heuristic optimizer to get a HybDT query. This latter query is then tokenized,

evaluated and decrypted using hybrid indexing scheme HybStI in StE= SqlStE[HybStI,SE,F].

As best we know, no existing work has looked into query optimization in StE schemes.

We believe this area to be of independent interest because unlike encrypted systems where

110

optimization runs on the server (with full access to the data) and is solely interested in maximizing

efficiency, optimization in encrypted SQL DBMSes should be done (at least partially) by the

proxy with only precomputed statistics about the data and may additionally seek to minimize

leakage. We initiate this study with our heuristic below.

HybStI details.

This StI merges FpSj,PpSj by essentially storing both kinds of indexes on the server.

More specifically, HybStI.Enc will merge the multimaps and hashsets generated by PpSj,FpSj

(avoiding repetition where possible) so that it can take join tokens of either form. When a HybDT

join query is made, the client indicates which index to use in its query with op.

We believe the intuition for how HybStI works is straightforward. The full pseudocode

of HybStI’s algorithms is given in Fig. 2.16. Note that HybFinalize is a subroutine recursively

called by HybStI.Fin to perform client-side (i.e. PP) joins.

The only subtlety comes when a query contains both FP and PP joins. Notice that pointer

tuples in this case will contain more than one Pi (unlike FpSj) and the tuples in at least one Pi

will contain more than one rt (unlike PpSj). As such, after the client performs the PP joins in

HybStI.Fin some column reordering may be necessary. This is done within HybStI.Fin which

can use scma,q to compute the desired order of attributes in the output relation.

HybStI leakage.

We will describe HybStI’s leakage profile in comparison to that of PpSj and FpSj. The

metadata leakage is comparable, with each size (multimap or hashset) being the sum of respective

FpSj and PpSj sizes. The recursion structure leakage is technically higher but only because we

leak the join annotations that weren’t present in the other two schemes.

For the same reason that PpSj and FpSj’s query-dependent leakages were not directly

comparable, they also cannot be compared with that of HybStI. However, like we did in

Section 2.4.2, we can upper bound HybStI’s query-dependent leakage on q1, ... ,qn ∈ HybDT.QS

111

Alg HybStI.Enc
(
Km,(DB,α,T)

)
For all (id,R) ∈DB and r ∈ R.T do

rt← T[(id,r[uk(id)])] ; M[(r, id)] ∪←− (rt)

For at ∈ R.Ats where at ̸= uk(id) do
M[(s,at,r[at])] ∪←− (rt) ; SET ∪←−

(
(s,at,r[at]), rt

)
For (t1, t2) ∈ α do

id1← getID(t1) ; id2← getID(t2)

For r ∈
(
DB[id1] ▷◁t1 ,t2 DB[id2]

)
.T do

For i = 1,2 do
rti← T[(idi,r[uk(idi)])]

M[(pp, t1, t2, i)]
∪←− (rti)

SET
∪←−
(
(pp, t1, t2, i), rti

)
M[(fp, t1, t2)]

∪←− (rt1, rt2)

M1[(t1, t2, rt1,1)]
∪←− rt2 ; M1[(t1, t2, rt2,2)]

∪←− rt1

SET
∪←−
(
(fp, t1, t2),(rt1, rt2)

)
(Km,D)←$Mmerr

π .Enc(Km,M)

For (t1, t2, rt, i) ∈M1.Lbls do
For j = 0,1 do

K j ← F.Ev(F.Ev(Km,(ij, t1, t2, i)), rt∥ j)
{rt1, ... , rtn}←M1[(t1, t2, rt, i)]
For k ∈ [n] do

Pad rtk to M’s max. value length
D[F.Ev(K0,k)]←$SE.Enc(K1, rtk)

Kf←$F.KS ; HS←HsEnc(Kf,SET)

Return
(
(Schema(DB),Km,Kf),(D,HS)

)
Alg HybStI.Tok(Ki,q)

(scma,Km,Kf)← Ki

If q = (r, id) then return
(
r,Mmerr

π .Tok(Km,(r, id))
)

Else if q = (s,at,x,(r, id)) then
Return

(
r,Mmerr

π .Tok(Km,(s,at,x))
)

Else if q = (s,at,x,q1) then
Return

(
s,F.Ev(Kf,(s,at,x)),HybStI.Tok(Ki,q1)

)
Else if q = (pp, t1, t2,q1,q2) then

For i = 1,2 do
If qi = (r, idi) then

tki←$
(
r,Mmerr

π .Tok(Km,(pp, t1, t2, i))
)

Else
tk′←$HybStI.Tok(Ki,qi)

tki←
(
s,F.Ev(Kf,(pp, t1, t2, i)),tk′

)
Return (pp,tk1,tk2)

Else if q = (fp, t1, t2,(r, id1),(r, id2)) then
Return

(
r,Mmerr

π .Tok(Km,(fp, t1, t2))
)

Else if q = (fp, t1, t2,q1,(r, id)) then
Return (ij,F.Ev(Km,(ij, t1, t2,1)),HybStI.Tok(Ki,q1))

Else if q = (fp, t1, t2,(r, id),q1) then
Return (ij,F.Ev(Km,(ij, t1, t2,2)),HybStI.Tok(Ki,q1))

Else if q = (fp, t1, t2,q1,q2) then
For i = 1,2 do tki←$HybStI.Tok(Ki,qi)

Return
(
iij,F.Ev(Kf,(fp, t1, t2)),tk1,tk2

)

Alg HybStI.Eval(tk, IX)

(D,HS)← IX

If tk= (r,tk1) then return (Mmerr
π .Eval(tk, IX))

Else If tk= (s,K,tk1) then
Return HsFilter

(
K,HybStI.Eval(tk1, IX),HS

)
Else if tk= (pp,tk1,tk2)

Return HybStI.Eval(tk1, IX)∥HybStI.Eval(tk2, IX)

Else if tk= (ij,K,tk1) then
(P1, ... ,Pn)←HybStI.Eval(tk1, IX)

Define j : ∃rt ∈ rt ∈ Pj

where D[F.Ev(F.Ev(K, rt∥0),0)] ̸=⊥
For rt ∈ rt ∈ Pj do

For i = 1,2 do Ki← F.Ev(K, rt∥i)
While D[F.Ev(K0,crt)] ̸=⊥ do

rt ∪←− SE.Dec(K1,D[F.Ev(K0,crt)])
P′ ∪←− rt ; crt← crt+1

Return P\{Pj}∥(P′)
Else if tk= (iij,K,tk1,tk2) then

For i = 1,2 do
(Pi

1, ... ,P
i
ni
)←HybStI.Eval(tki,(D,HS))

Define j1, j2 : ∃rti ∈ rti ∈ Pi
ji

where F.Ev(K,(rt1, rt2)) ∈HS

For rt1 ∈ rt1 ∈ P1
j1 and rt2 ∈ rt2 ∈ P2

j2 do

If F.Ev(K,(rt1, rt2)) ∈HS then P′ ∪←− rt1∥rt2

If P′ ̸= /0 then return P1 \{P1
j1}∥P2 \{P2

j2}∥(P
′)

Alg HybStI.Fin
(
(scma,Km,Kf),q,(M1, ... ,Mn)

)
Using scma and q, compute at1, ... ,atn,at, the attri-

butes in M1, ... ,Mn,HybDT.Spec(q,DS) respectively
For i ∈ [n] do

Ri←NewRltn(ati)

Ri.T←{m1∥...∥mn′ : (m1, ... ,mn′) ∈Mi}
R←HybFinalize

(
q,(R1, ... ,Rn)

)
If R.Ats ̸= at then reorder attributes in R accordingly
Return R

Subroutine HybFinalize(q,R)

If q = (r, id) then (R)← R ; Return R

Else if q = (s,at,x,q1) then return HybFinalize(q1,R)

Else if q = (fp, t1, t2,q1,q2) then
(R1, ... ,Rn)← R
Define j : t1 ∪ t2 ⊆ R j.Ats

Partition R\{R j} into R1,R2 where Ri contains
all the attributes in HybDT(qi,DS)

R←HybFinalize(q1,R1∥(R j))

R←HybFinalize(q2,R2∥(R))
Else if q = (pp, t1, t2,q1,q2) then

Partition R into R1,R2 where Ri contains all
attributes in HybDT(qi,DS)

Return HybFinalize(q1,R1) ▷◁t1 ,t2 HybFinalize(q2,R2)

Figure 2.16. Algorithms for HybStI, the StI scheme for HybDT using hybrid indexing.
HybFinalize is a recursively called subroutine used in HybStI.Fin.

112

with that of q′1, ... ,q
′
m, the minimal set of non-recursive queries in HybDT.QS (with consistent

join annotation) with which the server can still compute its output on q1, ... ,qn. This leakage

is no better than the analogous bound in PpSj and no worse than that of FpSj, this confirms

the intuition that hybrid indexing achieves an intermediate level of query-dependent leakage

compared to solely using FP or PP indexing.

For completeness, the leakage profile of HybStI is described via pseudocode in Fig. 2.17.

This leakage algorithm merges our two previous ones (i.e. Lf and Lp) in the straightforward

way. In particular, the only difference between Lf (Fig. 2.13) and Lh is the recursion structure of

partially precomputed joins which are handled in the style of Lp (Fig. 2.11).

The proof of HybStI’s security (with respect to Lh) is also very similar to the result for

Theorem 16. As such, we state the security bound below but omit the proof for brevity.

Theorem 17 Let L be the leakage algorithm and simulator for Mmerr
π (given in [48]) and Lh be

as defined in Fig. 2.17. Let F,SE be the primitives used in Mmerr
π and HybStI’s algorithms. Then

for all adversaries A there exists Af,As,Sh such that:

Advss
HybStI,Lh,Sh(A)≤ (m+m1)Advind$

SE (As)+(m+m1 + p+1).

Here, m,m1 are the number of labels in M,M1 respectively and p is the number of distinct

predicates used in constructing HS.

Leakage-aware query planning.

The join annotation selected by our query planning heuristic will minimize leakage

without exceeding a predetermined bandwidth limit. More specifically, suppose the user supplies

a query q ∈ SjDT with J joins and a bandwidth limit L indicating the maximum number of rows

from ED that can be returned in the ciphertext tuple. We estimate the bandwidth of all possible

HybDT queries, then select an annotation by:

1. Eliminating options which exceed L rows. If none remain, return ⊥.

113

Alg Lh
(
DS,(q1, ... ,qn)

)
Construct M,M1,SET as in FpSj.Enc(·,DS)
For i = 1, ... ,n do (ri,q,p, j,cq,cp,cj)← RS(qi,q,p, j,cq,cp,cj)
r← (r1, ... ,rn) ; lk←$L(M,q) ; S←

⋃
q∈q M[q]

While S ̸= S′ do S← S′ ; (SET,S′,I)← IJ(j,S′,I)
Define M : # of vals in M and M1
Define ℓ : max. length val in M,M1
Return (r, lk,QP(p),cp,HF(p,S,SET), |SET′|,I,M, ℓ,QP(j),cj)

Subroutine RS(q,q,p, j,cq,cp,cj)

If q = (r, id) then q ∪←− (r, id) ; r← (m,cq) ; cq← cq +1
Else if q = (s,at,x,(r, id)) then q ∪←− (s,at,x) ; r← (m,cq) ; cq← cq +1
Else if q = (s,at,x,q1) then
(r1,q,p, j,cq,cp,cj)← RS(q1,q,p, j,cq,cp,cj) ; p ∪←− (s,at,x) ; r← (s,cp,r1) ; cp← cp +1

Else if q = (pp, t1, t2,q1,q2) then
For i = 1,2 do

If qi = (r, id) then
q ∪←− (pp, t1, t2, i) ; ri← (m,cq) ; cq← cq +1

Else
(r′i,q,p, j,cq,cp,cj)← RS(qi,q,p, j,cq,cp,cj)

p ∪←− (pp, t1, t2, i) ; ri← (p,cp,r′i) ; cp← cp +1
r← (pp,r1,r2)

Else if q = (fp, t1, t2,(r, id1),(r, id2)) then q ∪←− (fp, t1, t2) ; r← (m,cq) ; cq← cq +1
Else if q = (fp, t1, t2,q1,(r, id)) or q = (fp, t1, t2,(r, id),q1) then
(r1,q,p, j,cq,cp,cj)← RS(q1,q,p, j,cq,cp,cj)
If q = (fp, t1, t2,q1,(r, id)) then i = 1 else i = 2
j ∪←− (t1, t2, i) ; r← (fp,cj, i,r1) ; cj← cj +1

Else if q = (fp, t1, t2,q1,q2) then
For i = 1,2 do (ri,q,p, j,cq,cp,cj)← RS(qi,q,p, j,cq,cp,cj)

p ∪←− (fp, t1, t2) ; r← (iij,cp,r1,r2) ; cp← cp +1
Return (r,q,p, j,cq,cp,cj)

Figure 2.17. Leakage algorithm used in Theorem 17, the proof of security for hybrid StI scheme
HybStI. The subroutines HF, IJ,QP are given in Fig. 2.13.

114

Alg EvalBW(q)

If q = (r, id) then B[(id)]←N (id)
Else if q = (s,at,x,q1) then

B← EvalBW(q1) ; id← getID(at,scma)

B[(id)]← B[(id)] ·Hat(x)
Else if q = (op, t1, t2,q1,q2) then

B← EvalBW(q1)∪EvalBW(q2)

For i = 1,2
Define ii : getID(ti,scma) ∈ ii ∈ B.Lbls

If op = fp then
N← F(t1,t2)·B[i1]·B[i2]

N (getID(t1,scma))·N (getID(t2,scma))

B[i1∥i2]← 2 ·N
B[i1]←⊥ ; B[i2]←⊥

Else if op = pp then
For i = 1,2 do

B[ii]←Pi(t1, t2) · B[ii]
N (getID(ti,scma))

Return B

Schema scma

Return Schema(DB)

Table size N (id)

Return |DB[id].T|

Freq. histogramHat(x)

R← σ(at,x)(DB[getID(at,scma)])

Return |R.T|
N (id)

FP join size F(t1, t2)

For i = 1,2 do idi← getID(ti,scma)

R← DB[id1] ▷◁t1,t2 DB[id2]

Return |R.T|

PP join sizes P j(t1, t2)

For i = 1,2 do idi← getID(t j,scma)

R← DB[id1] ▷◁t1,t2 DB[id2]

Return |{r[uk(id j)] : r ∈ R.T}|

Figure 2.18. EvalBW algorithm (left) defined in terms of precomputed statistics (right) stored on
the client. Our heuristic assumes that q incurs bandwidth ∑i∈B.LblsB[i] where B = EvalBW(q).

2. Maximize number of PP joins

3. If multiple choices remain, minimize bandwidth.

We argue that our setup is realistic because (1) we expect the J joins made in a query to be

modest enough for the client to evaluate all 2J HybDT queries, (2) bandwidth measurement can

be reduced to the number of rows from ED sent as they are padded to the same length, and (3) is

it common for SQL applications to limit bandwidth to prevent the client from maxing out its

memory.

To complete this setup, we need a way for the client to estimate the bandwidth of a

query with only partial information about DB computed during setup. These precomputed

statistics are listed on the right of Fig. 2.18 and the bandwidth estimation algorithm is EvalBW.

Intuitively, EvalBW will populate a dictionary B with entries B[i] representing the bandwidth

for the ciphertext set containing rows from all DB[id] where id ∈ i. We estimate that a query

q ∈ HybDT.QS incurs bandwidth ∑i∈B.LblsB[i] where B = EvalBW(q). We will next explore the

tradeoffs involved in storing these statistics.

115

Memory tradeoffs.

Notice that the client storage required for the precomputed statistics (as given in Fig. 2.18)

increases with number of joins (i.e. |α|) and size of histograms (i.e. |rng(at,DB)| for each at).

In practice, data may be too complex or client devices may be too memory strapped (e.g. mobile

devices) to store this in full. We describe two tradeoffs application designers can explore to

better fit their system requirements.

When it is unfeasible to store full frequency histograms for some at, the client can

partition rng(at,DB) into ranges and store this bucketed frequency histogram. EvalBW will

approximate Hat(x) by assuming that values within a bucket are uniformly distributed. This

approach is used in SQL server and the literature recommends 200 equiDepth (as opposed to

equiWidth) buckets [127, 43]. In the extreme case, the client uses a single bucket and needs only

store |rng(at,DB)| and usesHat(x)≈ 1
|rng(at,DB)| . Note that this only works when the elements

of rng(at,DB) can be closely approximated and ordered. For example, this may not work with a

“name” column because the names in rng(at,DB) are not dense in any easily enumerated set. In

general, bucketing sacrifices the accuracy of EvalBW to reduce client memory. We study this

tradeoff more in Section 2.6.

Above, we assumed the client would pre-compute and store the join sizes. When this

is infeasible due to memory constraints, the client can alternatively compute join sizes using

table sizes and theHat(x) during EvalBW whenever rng(at) is enumerable. Notice that we can

express each co-occurrence frequency as a function of the relevant occurrence frequencies. With

a single attribute join, let X = rng(at1,DB)∩ rng(at2,DB), Ni =N (getID(ati,scma)) then

F(at1,at2) = N1 ·N2 ·∑
x∈X
Hat1(x) ·Hat2(x) and P j(at1,at2) = N j ·∑

x∈X
Hat j(x).

We can extend this to a cluster join (t1, t2) where t j = (at j
1, ... ,at j

n). We substitute the above his-

togram values forHt j(x1, ... ,xn) and take the sum over all (x1, ... ,xn) where xi ∈ rng(at1
i ,DB)∩

rng(at2
i ,DB). These frequencies are approximated by assuming that columns are independently

116

distributed: Hti(x1, ... ,xn)≈∏i∈[n]Hat j
i
(xi). Note also that accuracy issues are compounded if

frequency histograms are themselves estimated using bucketing. In general, approximating join

sizes trades efficiency (of EvalBW) and accuracy (for cluster joins) to reduce memory.

2.6 Simulations on Real-World Datasets

To get some indication of how our schemes would fare in practice we simulate the storage

and bandwidth they would incur in a real-world context. We show that in practice, PP indexing

is likely to be more storage efficient than FP. We also confirm three claims made in this work: (1)

PP indexing has equal or better bandwidth than FP on non-recursive joins (i.e. JnDT queries),

(2) On recursive selects and joins (i.e. SjDT queries), the analogous choice is data and query

dependent, and (3) our heuristic is accurate in finding optimal hybrid query execution plans.

We note that our goal here is not to make broad statements about all SQL data nor to

perform a full system evaluation. We see our simulations more as a sanity check which might

motivate large-scale implementations of our schemes. Additionally, we are not aware of any

benchmarks with just join and select queries so we generate our own as described below.

Simulation data.

Our simulations uses data from the Chicago Open Data Portal and the MySQL Sakila

benchmark. The Data Portal stores each Chicago relation separately and intends each relation

to be useful on its own – independent from the other relations. The Sakila database also has

15 relations, with a total of 46,238 rows and 88 attributes. Unlike the Chicago database, the

Sakila relations have a clear logical structure in the schema such that each relation has a role

defined relative to the other relations. Details about the Sakila schema can be found on the

MySQL website. By including one example database without a structured schema and one with,

we hope to model two different use cases – one where the DBA treats each relation as existing

independently and one where the DBA carefully pre-plans the entire organization.

To give an idea of the data distribution in our data sets, we give some summary statistics

117

Table 2.1. Summary statistics for the Chicago (left) and Sakila (right) data used in our simula-
tions.

Chicago
R name

|R.Ats| |R.T| at densities
Min Ave Max

Bike Racks 12 5164 4e-4 0.53 1.0
Census Data 9 78 0.72 0.91 1.0
Crimes 2019 30 1.7e5 6e-6 0.17 1.0

Employee Debt 7 1.4e4 3e-3 0.10 0.46
Fire Stations 7 92 0.01 0.65 1.0

Grafitti 5 67 0.09 0.68 1.0
Housing 14 915 0.03 0.32 0.56

IUCR Codes 4 404 5e-3 0.51 1.0
Land Inventory 19 2.0e5 3e-4 0.41 1.0

Libraries 9 81 0.01 0.63 1.0
Lobbyists 7 1537 0.03 0.22 0.66

Police Stations 15 23 0.04 0.87 1.0
Reloc Vehicles 20 2672 2e-3 0.51 1.0
Street Names 7 2582 2e-3 0.31 1.0
Towed Vehicles 10 3339 1e-3 0.19 0.99

Sakila
R name

|R.Ats| |R.T| at densities
Min Ave Max

Address 8 603 2e-3 0.93 1.0
Actor 4 208 0.02 0.56 1.0

Category 3 16 0.06 0.69 1.0
City 4 600 2e-3 0.55 1.0

Country 3 109 0.01 0.67 1.0
Customer 10 599 2e-3 0.5 1.0

Film 14 1002 1e-3 0.37 1.0
Film Actor 3 5462 1e-4 0.07 0.18
Film Cat 3 1000 1e-3 0.34 1.0
Inventory 4 5481 2e-4 0.30 1.0
Language 3 6 0.17 0.72 1.0
Payment 7 1.6e4 1e-4 0.44 1.0
Staff 11 2 0.5 0.86 1.0
Store 4 2 0.5 0.88 1.0
Rental 7 1.6e4 1e-4 0.47 1.0

118

about each in Table 2.1. We report each relation’s name, number of attributes, number of rows,

and minimum, mean, and maximum attribute densities. The density of an attribute is the average

occurrence frequency of the values in that column. In other words, for relation DB[id] at’s

attribute density is |rng(at)|
|DB[id].T| .

Simulation setup.

Our simulation dataset uses all relations from the MySQL Sakila benchmark 1 and the

following fifteen frequently accessed relations from Chicago’s Open Data Portal:

Bike Racks, Census Data, Crimes 2019, Employee Debt, Fire Stations, Grafitti

, Housing, IUCR Codes, Land Inventory, Libraries, Lobbyists, Police Stations

, Reloc Vehicles, Street Names, Towed Vehicles.

In total, our setup involved 30 relations, 175 attributes and 219,992 rows. We provide a full,

annotated source code for our simulations in [119].

We include in α all single-attribute joins that return at least one row. This helps to filter

out meaningless join queries (e.g. joining on “language” and “actor”). We consider joins within

the Sakila relations and joins within the Chicago relations, but we do not attempt joins between

the two independent sources. We generate recursive queries with J joins and S selections by

selecting uniformly at random J distinct joins from α as well as S attributes and elements of

their domains, discarding queries that return no rows. When J ≥ 2 we only use input tables with

less than 1000 rows to avoid very large output relations.

Server storage.

With the above setup we can get an idea of how much server-side storage would be

required by each of our indexing schemes. Recall that our schemes make use of a RR multimap

primitive and/or a hashset filtering primitive. Therefore, in Fig. 2.2 we report the number of

multimap 2 labels and values as well as the values in hashset HS for each of our StI schemes.

1We excluded the film text relation since it is a subset of the film relation
2Note that in the case of FpSj,HybStI, this includes the multimap for internal joins.

119

Table 2.2. Simulated server storage for each data set using each of our schemes in terms of
multimap (MM) labels/ values and hashset (HS) values broken down by the query type being
indexed (i.e. relation retrievals, non-recursive/ recursive joins, or selections).

Query
Type

Indexed
Data

Chicago data set Sakila data set
JnDT SjDT HybDT JnDT SjDT HybDT

FpJn PpJn FpSj PpSj HybStI FpJn PpJn FpSj PpSj HybStI
Non-recur-

sive join
MM lbls 1249 2498 1249 2498 3747 631 1262 631 1262 1893
MM vals 1.495e10 2.796e7 1.495e10 2.796e7 1.498e10 5.103e8 2.201e6 5.103e8 2.201e6 5.125e8

Recursive
join

MM lbls – – 2.796e7 – 2.796e7 – – 2.202e6 – 2.202e6
MM vals – – 1.496e10 – 1.496e10 – – 5.107e8 – 5.107e8
HS vals – – 7.477e9 2.796e7 7.505e9 – – 2.552e8 2.201e6 2.574e8

Relation
retrieval

MM lbls – – 15 15 15 – – 15 15 15
MM vals – – 4.010e5 4.010e5 4.010e5 – – 4.409e4 4.409e4 4.409e4

Select
MM lbls – – 1.082e6 1.082e6 1.082e6 – – 1.190e5 1.190e5 1.190e5
MM vals – – 5.749e6 5.749e6 5.749e6 – – 2.945e5 2.945e5 2.945e5
HS vals – – 5.749e6 5.749e6 5.749e6 – – 2.945e5 2.945e5 2.945e5

Total
MM lbls 1249 2498 2.905e7 1.085e6 2.905e7 631 1262 2.321e6 1.203e5 2.322e6
MM vals 1.495e10 2.796e7 2.991e10 3.412e7 2.994e10 5.103e8 2.201e6 1.021e9 2.540e6 1.023e9
HS vals – – 7.483e9 3.371e7 7.511e9 – – 2.555e8 2.496e6 2.577e8

We present our simulation results for the two datasets separately since the Chicago data set

contains many more rows and would dominate the Sakila statistics. Additionally, we also show a

breakdown of these statistics in terms of the queries they index to better understand the cost of

each type of query support.

A number of observations can be made from this data. In our simulation we see that even

though there are more selections to index (as evidenced by the number of labels), the multimap

size (i.e. number of values) is dominated by join indexes. We expect this cost to be lower in a

real system because a judicious database administrator can reduce the set of supported joins (α)

to a smaller number than we did. Our simulation also brings forth another advantage of PP join

indexing – it is more storage efficient by several orders of magnitude. This is because each row

token is stored at most once per join (the same thing which causes PP to have better bandwidth)

and, in the case of SjDT, there is no need for the “internal join” indexing which essentially

doubles the multimap’s labels and values. Finally, for the above reason, the storage overhead of

hybrid indexing over FP indexing is very small so systems which currently use indexing schemes

like FP (e.g. OPX or SPX) can upgrade its security at low cost.

Join categories.

We partition joins into three classes which behave quite differently: one-one, one-many

and many-many. We say that a join R← R1 ▷◁at1,at2 R2 is one-one if each row in R1,R2 occurs

at most once in R. It is one-many if the above is true for one relation but not for the other. It is

120

Table 2.3. Breakdown of all possible non-recursive join queries which returns at least one row
by join types. For each type, we simulated the number of rows that would be sent using FP and
PP indexing, and report the minimum, average and maximum overhead incurred.

Join category # joins
Ratio of FpJnto PpJn BW
Min Ave Max

One-one 237 1.0 1.0 1.0
One-many 711 1.0 1.8 2.0

Many-many 932 1.5 465 8000

many-many if there exists rows in both R1,R2 which occur more than once in R. We record the

breakdown of these classes in our datasets in Fig. 2.3.

StI for JnDT.

In Section 2.4 we showed that PP indexing has superior bandwidth on non-recursive join

queries. We demonstrate that these savings by computing all 1880 possible joins in α and report

our findings in Fig. 2.3. As one would expect, PP indexing always performs equal or better to

FP – they perform equally for one-one joins but there are moderate and significant savings for

one-many and many-many joins respectively.

StI for SjDT.

In Section 2.4.2 we noted that neither PP nor FP joins are strictly superior when it comes

to recursive SjDT queries. We demonstrate this using our datasets. For each combination of 1 to

3 joins and 0 to 2 selects, we randomly sampled 25 queries and report the results in Fig. 2.4. As

can be seen, neither scheme can reliably achieve the optimal bandwidth. While FpSj performed

better on average, its maximum overhead exceeds that of PpSj in about half the cases.

Hybrid StI.

In Section 2.5 we provided a heuristic for client-side leakage-aware query planning. We

demonstrate its efficacy when frequency histograms are estimated via three bucketing options:

B = |rng(at,DB)| (full histograms), B = 200 and B = 1. We use the same 225 queries as the

SjDT simulations and set the bandwidth limit L for each q ∈ SjDT to be the mean incurred by all

121

2J possible HybDT queries to ensure that the optimization is non-trivial. Additionally, join sizes

F ,P1,P2 are estimated using the histogram. Therefore, our simulation is conservative and we

expect our heuristic to perform better in applications with a fixed L and precomputed join sizes.

In Fig. 2.5 we show how our heuristic performed for each query type and histogram

estimation technique. When the optimal join annotation is not returned we note which “level”

the heuristic failed at, where the levels are defined in relation to our definition of “optimality”

given in Section 2.5. In particular, an R1 failure means the returned q′ exceeds bandwidth limit

L when StE.Eval is run, an R2 failure means q′ used more FP joins than was necessary to reduce

bandwidth below L and an R3 failure means q′ was not the smallest bandwidth option which

uses the minimal number of FP joins while meeting L.

Unsurprisingly, there is a direct tradeoff between client memory and the heuristic’s

accuracy: across all 225 queries, the heuristic returned the optimal q′ on 198 with full histograms

but only 143 and 76 when B = 200 and B = 1 respectively. More interestingly, our heuristic

seems to improve when the search space increases: when there is one join the heuristic performed

slightly better averaged across all three B values than guessing (58.7% vs 50%) but when there

are three it performs significantly better (56.4% vs 12.5%). This demonstrates that our heuristic

works when it is most needful since we expect the bandwidth overhead from an incorrect choice

to increase with query complexity.

2.7 Conclusion

Our work introduces partially precomputed join indexing and incorporates it into a hybrid

StE scheme. While we did not explore it in this work, we believe that our schemes can be

extended to support dynamic queries and adaptive security via multimap primitives of the same

kind. We believe the former can be achieved in a similar way to KM’s extension of SPX to SPX+.

To achieve the latter, our schemes can be reframed in JN’s model for adaptive compromise

[85]. Future work can also extend our query support, possibly by incorporating cryptographic

122

Table 2.4. On randomly generated queries involving the indicated number of joins (▷◁) and
selects (σ), we report the minimum, average and maximum ratios of rows sent using each
indexing technique compared to the theoretical minimum possible.

Query
type

Ratio of BW to ideal
FpSj PpSj

Min Ave Max Min Ave Max
1 ▷◁, 0 σ 1.0 9.6 37 1.0 1.0 1.0
1 ▷◁, 1 σ 1.0 1.6 4.0 1.0 60 302
1 ▷◁, 2 σ 1.0 1.3 2.0 1.0 90 500
2 ▷◁, 0 σ 1.0 3.3 57 1.3 13 54
2 ▷◁, 1 σ 1.0 15 201 1.0 41 201
2 ▷◁, 2 σ 1.0 14 121 1.0 93 535
3 ▷◁, 0 σ 1.0 7.2 48 2.4 9.1 17
3 ▷◁, 1 σ 1.0 6.5 63 2.6 23 60
3 ▷◁, 2 σ 1.0 5.0 61 2.3 30 84

Table 2.5. On randomly generated queries involving the indicated number of joins (▷◁) and
selects (σ), we report the accuracy of our heuristic under different client storage. When a
suboptimal query execution plan is returned, we report the point at which our heuristic fails (with
R3 being the closest to success).

Query
type

Bucketed B = 1 Bucketed B = 200 Full histograms

Correct
Wrong

Correct
Wrong

Correct
Wrong

R1 R2 R3 R1 R2 R3 R1 R2 R3
1 ▷◁, 0 σ 14 11 0 0 25 0 0 0 25 0 0 0
1 ▷◁, 1 σ 6 17 0 6 12 0 12 1 16 0 8 1
1 ▷◁, 2 σ 5 0 0 20 14 0 1 10 15 0 0 10
2 ▷◁, 0 σ 5 0 0 20 21 3 0 1 25 0 0 0
2 ▷◁, 1 σ 15 0 1 9 18 6 1 0 24 0 1 0
2 ▷◁, 2 σ 17 8 0 0 20 0 1 4 23 0 0 2
3 ▷◁, 0 σ 5 20 0 0 8 10 7 0 21 2 2 0
3 ▷◁, 1 σ 2 23 0 0 19 1 5 0 25 0 0 0
3 ▷◁, 2 σ 7 18 0 0 16 4 5 0 24 0 1 0

123

techniques for range queries or aggregations [63, 78]. Higher query support would also enable

more rigorous testing using real-world applications and query benchmarks. Stronger security

can be achieved using lower-leakage indexing primitives [88, 114, 91].

We also introduce leakage-aware query planning which we believe to be of independent

interest as it incorporates structured indexing into DBMS architecture, which may help StE

become a part of commercial DBMSes. Future work could improve our heuristic’s efficiency

and accuracy, or develop analogous hybrid schemes for other query classes.

2.8 Acknowledgements

We thank Mihir Bellare and Francesca Falzon for discussions and insights.

This chapter, in full, is a reprint of the material as it appears in International Conference

on Applied Cryptography and Network Security – ACNS 2021. Cash, David; Ng, Ruth; Rivkin,

Adam, Springer Lecture Notes in Computer Science volume 12727, 2021. The dissertation

author was the primary investigator and author of this paper.

124

Chapter 3

Composition of Structured Encryption
and its Relation to Key-Dependent Secu-
rity

3.1 Introduction

Structured encryption (StE) [52] allows one to encrypt a data structure and then delegate

the ability to run queries via query-specific tokens. While many techniques can be fit into the

definitional framework of StE, much research has been on simple, efficient constructions from

basic symmetric encryption with few rounds of interaction. This efficiency is enabled by allowing

for some controlled leakage to the party holding the encrypted data structure, which may include

sizes, access patterns, and other information. Formally, one can use simulation-style definitions,

where the simulator is given the output of a so-called leakage algorithm.

In their work introducing the StE framework, Chase and Kamara gave a vision building

more advanced StE via composition. Recent work has leveraged composition to support large

and complex subsets of SQL queries on several tables [89, 92]. As a simpler example, consider

the case of an encrypted file system which allows document retrieval via keywords. This can

be implemented using two StE schemes StE1,StE2, where StE1 will map keywords to lists of

document identifiers, and StE2 will map these identifiers to document payloads. Using compo-

sition, one can assemble them into a larger StE which takes keywords and returns documents

125

(in Section 3.3 we formalize this as double-level indexing and treat it in detail). To prove the

security of this aggregate construction, one builds a simulator from the simulators for StE1,StE2

with leakage that depends on the leakages of StE1 and StE2. The utility of this generic compo-

sition result, as Chase and Kamara point out, is that the component StEs can be swapped out

to fit the application or as new constructions are designed. For example, recent volume-hiding

constructions [90, 114] might be used without requiring new proofs.

This paper.

We consider composition of StE schemes, and in particular of StE for dictionaries and

multimaps. We begin by observing that standard semantic security for StE does not enable some

straightforward reductions that may appear to work at first glance. The issue arises when the

tokens of one StE are stored in another (or in another instance of itself), like in the double-level

indexing problem above. The technical problem is that the reduction must run a pair of simulators

that need to work together. In Section 3.4 we provide a minimal example of a proof exhibiting

this problem, and identify some steps in prior work that exhibit this gap.

We then address the double-level indexing problem in two ways. First, we give an extra

condition which we call content obliviousness for a leakage profile, and show that the prior proof

approach can be recovered for such leakage functions. Roughly, a content oblivious leakage

algorithm will ensure that inputs with the same “shape” will have the same leakage profile. This

resolves the coordination problem because our larger simulator can now select and input values

into the simulators of its primitives to ensure they return consistent query outputs. We also show

that this condition is easy to satisfy, and that most StE constructions have content oblivious

leakage.

Our second approach is to give a monolithic solution to the double-level indexing problem.

Our idea is to avoid the division of data into multiple StEs when possible, and instead pre-process

data into a single, monolithic data structure and use a single StE. To compute a query, the

evaluator will actually query the monolithic StE multiple times, feeding outputs back in as

126

inputs. In addition to possibly being more efficient than managing multiple StEs, the monolithic

construction will be shown to have strictly less leakage since it leaks only the aggregate total

size of the data, rather than the sizes of two component data structures, a distinction that can

easily be meaningful in practice.

In analyzing the monolithic construction, another proof challenge comes up: existing

definitions of semantic security for StE do not allow for the storage of data (like tokens) that

depend on the secret key used for encryption. Such issues have arisen with symmetric- and

public-key encryption, and have been well studied under various notions of key-dependent (KD)

message security. We adapt this line of thinking to the StE for dictionaries/multimaps, with a

new definitions of KD security, and then use our KD notion to analyze our monolithic solution.

We show that many state-of-the-art dictionary/multimap StE primtives with pseudorandomly

generated tokens achieve this notion of KD security with no additional assumptions, meaning

that they can be securely adapted for use in the monolithic construction.

KD security of StE may be of interest beyond enabling constructions like ours. Systems

may choose to manage access control by inserting keys into the data structure being encrypted,

or may do so accidentally (say if StE is used to manage disk backups, and the key may have been

swapped to disk).

Thus, in the final part of this paper we provide a set of foundational results. We observe

that KD security behaves differently for response-revealing (RR) and response-hiding (RH)

dictionary/ multimap StE, due to the revelation of key-dependent responses, and thus investigate

both in detail.

In the case of RH, we show that “full” KD security is impossible without the significant

storage and bandwidth overheads of volume-hiding primitives and ORAM. However, when we

restrict the KD adversary to key-independent labels and fixed-length values (we formalize this

as “fixed format” outputs in Section 3.6) this can be achieved with non-trivial efficiency. We

demonstrate this with a general transform using KD-secure symmetric encryption as a primitive,

and also that KD-security can come “for free” if KD-secure encryption is used in specific

127

dictionary/ multimap StE schemes from the literature when the underlying encryption is KD

secure. In the case of RR, however, KD security is impossible for even the restricted class we

identify above (thereby implying that “full” KD security is also impossible). In both the RH

and RR cases, our results are more subtle than those of symmetric encryption because we need

to handle edge-case schemes with extreme leakage profiles. For example, the impossibility

of “full” KD-security in the RR case may be intuitively true (given that the adversary can see

unencrypted values from the dictionary/ multimap) but given a trivial StE scheme which performs

no encryption (accompanied by a leakage profile which leaks everything) KD security is indeed

feasible (but meaningless).

Related work.

StE was first introduced by CK [52] as a generalization of symmetric searchable encryp-

tion which was first introduced by SWP and formalized by CGKO [128, 56]. The StE framework

can and has been used to capture many real-world use cases including encrypting SQL data

[89, 92] and supporting rich keyword queries in document storage systems [48, 49, 132, 63].

Added functionality and security has been studied for specific forms of StE, including

support for dynamic data structures [94, 93], volume hiding queries [90, 112, 111], models for

adaptive compromise [85], costs of minimizing leakage [113, 91] and many more [67, 22, 50,

129, 40, 11, 41, 87, 7, 12, 58].

StE has been subject to so-called leakage-abuse attacks which can sometimes recover

damaging information about queries and encrypted data [83, 110, 47, 117, 135]. The attacks work

against proven-secure constructions by exploiting the permitted leakage, so they are independent

of possible gaps in proofs due to composition. However reducing leakage in order to limit

leakage abuse has been a common goal.

Key dependent message (KDM) security was first introduced in BRS [36]. The special

case of circular security was subsequently studied, mainly for public-key encryption [46, 38, 6,

10, 42, 15, 69, 97, 68]. Historically, KD security has focused on applications such as encrypting

128

a key on a disk and other forms of circular security.

3.2 Preliminaries

We denote the empty string with ε and the empty tuple with (). Given positive integer

n, let [n] = {1, ... ,n}. Given a set S or tuple t, we write S ∪←− x as a shorthand for S← S∪{x}

and t ∪←− x for t← t∥(x). Given a string s ∈ {0,1}∗ and integer len we write s←
〈
s
〉
len

to pad s’s

length up to a multiple of len and write s1∥...∥sn← s to parse it into blocks of that length.

Pseudocode.

In pseudocode, we will assume that all integers, tuples, strings and sets and arrays

are initialized to 0, (), ε and /0 respectively. We also often present pseudocode for multiple

algorithms at the same time, indicating differences in the code with boxes. In this case, unboxed

code belongs to all algorithms and code in either a solid or dashed box belongs only to the

respective algorithm. (For an example of this, see the games for SE in Fig. 3.1).

Additionally, we will “Define X : pred” to set X (a function or constant) in such a way

that the predicate pred is true. If there are undefined variables in pred we treat it as a random

variable and expect that X is defined such that pred will always be true.

Games.

We use the code-based game-playing framework of BR [30]. Given oracle O and

adversary A, we write x←$AO(x1, ... ,xm) to denote that A, a possibly randomized algorithm,

is run with inputs x1, ... ,xm and its output is x. It has black-box access to O and can make as

many queries as it likes. Given game G we write Pr[G(A)] to denote the probability that A plays

G and the latter returns true. If G contains pseudocode saying “Require pred”, it means that

the game will evaluate the predicate pred at that point and if it returns false so will G (i.e. the

adversary automatically loses).

129

Data Types, Structured Encryption.

The following definitions follow CK’s formalism [52].

A data type DT defines domain set DT.Dom, query set DT.QS, and a deterministic

specification function DT.Spec : DT.Dom×DT.QS→{0,1}∗∪{⊥}.

A structured encryption scheme for DT defines a non-empty key set StE.KS and the

following algorithms:

• Randomized encryption algorithm StE.Enc which takes as input a data structure DS ∈

DT.Dom and a key K ∈ StE.KS. It returns an encrypted data structure ED ∈ {0,1}∗.

• Possibly randomized token generation algorithm StE.Tok which takes as input a key and a

query q ∈ DT.QS, and it returns fixed length token tk ∈ {0,1}StE.tl.

• Deterministic secure evaluation algorithm StE.Eval which takes as input a token and an

encrypted data structure, and returns a ciphertext c ∈ {0,1}∗ or ⊥.

• Deterministic decryption algorithm StE.Dec which takes a key and a ciphertext, and returns

a query output s ∈ {0,1}∗ or ⊥.

The correctness condition is that Pr[StE.Dec(K,c) =DT.Spec(DS,q)] = 1 where the probability

is taken over all K ∈ StE.KS, DS ∈ DT.Dom and q ∈ DT.QS and the random variables are

defined via ED←$StE.Enc(DS), tk←$StE.Tok(K,q), and c← StE.Eval(tk,ED).

StE schemes are usually classified into two response types: response revealing (RR) and

response hiding (RH). In a RR scheme the server learns the query result from the evaluation

algorithm. In other words, for all DS∈DT.Dom and q∈DT.QS we have that DT.Spec(DS,q) =

c = StE.Dec(K,c) (where the random variables are defined as in the correctness condition). Any

scheme that is not RR is RH1.

While we allow StE.Eval and StE.Dec to return ⊥, this is to handle malformed input.

Unless otherwise stated, we will leave implicit the handling of such in StE’s pseudocode and

1In Section 3.5 we introduce a third response type: response flexible StE.

130

Game Gss
StE,L,S(A)

K←$StE.KS ; b←${0,1} ; (DS,Sta)←$A(s)
Require DS ∈ DT.Dom

If b = 1 then ED←$StE.Enc(K,DS)
Else
(lk,St)←$L(s,DS) ; (ED,St ′)←$S(s, lk)

b′←$ATOK(q,ED,Sta) ; Return b = b′

Oracle TOK(q)

Require q ∈ DT.QS

If b = 1 then tk←$StE.Tok(K,q)
Else
(lk,St)←$L(q,q,St)
(tk,St ′)←$S(q, lk,St ′)

Return tk

Game Gprf
F (A)

b←${0,1} ; K←$F.KS

b′←$AFN ; Return b = b′

Oracle FN(X)

If C[X] =⊥ then C[X]←${0,1}F.ol

c1←$F.Ev(K,X) ; c0← C[X]

Return cb

Games Gind$
SE (A), Gkdm

SE (A)

b←${0,1} ; K←$SE.KS

b′←$AENC ; Return b = b′

Oracles ENC(m), ENC(f)

m← f (K) ; c1←$SE.Enc(K,m)

c0←${0,1}|c1| ; Return cb

Figure 3.1. Games used in defining adaptive semantic security of StE (top), PRF security of
function family F (bottom left) and IND$-security or KDM -security of symmetric encryption
scheme SE (bottom right). Here, A is an adversary, StE is a structured encryption scheme for
data type DT, L is a leakage algorithm and S is a simulator.

assume that adversaries do not make queries which will trigger this behavior.

Semantic security.

CK defines adaptive semantic security for StE using game Gss
StE,L,S where L,S are the

leakage algorithm and simulator respectively. In Gss
StE,L,S(A), all three algorithms (i.e. A,L,S)

have a setup phase and a query phase. We use the first argument to the algorithm – s or q – as a

flag to indicate the phase to run in. The details of Gss
StE,L,S are given in Fig. 3.1. The advantage

of A is Advss
StE,L,S(A) = 2Pr[Gss

StE,L,S(A)]−1.

The above security definition applies to both RR and RH StE schemes. Notice that with

a RR scheme, in order for S’s tokens to be indistinguishable from those generated with StE.Tok

the leakage must reveal the query responses (i.e. DT.Spec(q,DS)) to S for it to run S(q,q,Sta).

Therefore, we will assume WLOG that if (lk,St)←$L(q,q,St) then lk = (DT.Spec(q,DS), lk′)

for some lk′.

131

Function families, PRF security.

A function family F defines a key set F.KS and output length F.ol. It defines an evaluation

algorithm F.Ev : F.KS×{0,1}∗→{0,1}F.ol. We define PRF security for function family F via

the game Gprf
F depicted in Fig. 3.1. Given adversary A, let Advprf

F (A) = 2Pr[Gprf
F (A)]−1 be its

PRF advantage.

Symmetric Encryption, IND$ and KDM security.

A symmetric encryption scheme SE defines key set SE.KS, encryption algorithm SE.Enc

and decryption algorithm SE.Dec. and ciphertext length function SE.cl. We require that if

C←$SE.Enc(K,M) then |C|= SE.cl(|M|) and SE.Dec(K,C) = M.

We define two notions of security for SE: IND$ and KDM 2 security depicted in games

Gind$
SE , Gkdm

SE in Fig. 3.1. In the latter game, we require that f provided to the ENC oracle is a “fixed-

length” function, meaning that | f (K1)|= | f (K2)| for all K1,K2 ∈ SE.KS. Given adversary A, let

Advind$
SE (A) = 2[Pr[Gind$

SE (A)]− 1 be its IND$ advantage and Advkdm
SE (A) = 2Pr[Gind$

SE (A)]− 1

be its KDM advantage.

3.3 StE for Double-Level Indexing

As discussed in Section 3.1, we want to model a system with an index mapping indexing

labels to payload labels where the latter are each associated with a payload value. We do so within

CK’s StE framework, which we reviewed in Section 3.2, using the new double-level indexing

data type DLdt. We also introduce the array data type Adt which subsumes the “dictionary”

and “multimap” data types of prior work and discuss how array encryption (StE for Adt) can

be achieved using known techniques. These array encryption (AYE) schemes will be used as

building blocks for our DLdt StE constructions.

2This KDM definition is slightly stronger than the definition given by BRS [36], because we require indis-
tinguishablity from random strings, while their definition only requires indistinguishability from encryptions of
0|m|.

132

Array Data Type.

We define an array A as a mapping from labels ℓ∈ {0,1}∗ to values A[ℓ]∈ {0,1}∗∪{⊥}.

We define A’s “label set” to be the set of labels not mapping to ⊥, which we write as A.Lbls=

{ℓ ∈ {0,1}∗ : A[ℓ] ̸=⊥}. We define A.Vals= {A[ℓ] : ℓ ∈ A.Lbls} as the analogous “value set”.

In pseudocode, all entries in an arrays are assumed to be initialized to ⊥.

We now formalize arrays as a data type Adt. This data type defines a fixed block length

bLen such that for all A ∈ Adt.Dom and ℓ ∈ A.Lbls we have |A[ℓ]|= n ·bLen for some integer n.

Then, we define Adt.QS= {0,1}∗ and Adt.Spec(A, ℓ) = A[ℓ]. We will assume that all arrays in

this work belong to Adt.Dom and that bLen is fixed.

We note that arrays can be used to store arbitrary data so long as it can be encoded to

and parsed from bitstrings whose length is a multiple of bLen. In this work, we sometimes store

sets as array values, leaving implicit the encoding, parsing and padding. We stress that this is

distinct from interpreting array values as blocks of length bLen which is sometimes necessary in

our schemes (i.e. B1∥...∥Bn←
〈
A[ℓ]

〉
bLen

).

This definition serves as a generalization of dictionary and multimap data sets formalized

in the literature (e.g. in [89]). The former is a mapping from labels to strings and depending on

the formalism either assumes bLen= 1 meaning all values are allowed or bLen= maxv∈A.Vals |v|

meaning the values are all padded to the maximum size. Multimaps are a mapping from labels to

sets or tuples which we interpret as strings and interpret this string in terms of blocks.

Intuitively, when these arrays are encrypted bLen presents a tradeoff between storage

overhead and security. Notice that a larger bLen may result in extra padding when translating

data into array values, but will also result in less volume leakage (as discussed in Section 3.5, we

assume that when a query is made, schemes leak the number of blocks returned). In practice, we

expect bLen to be chosen in an application-specific manner.

We also use bLen to define what it means for two arrays to be “similar”. Intuitively, this

means that they have the same label set and that values under the same label have the same

length. More formally, we say that two array A,A′ are homomorphic if A.Lbls = A′.Lbls and

133

|A[ℓ]|= |A′[ℓ]| for all ℓ ∈ A.Lbls.

Array encryption.

We refer to StE for Adt as array encryption (AYE). Techniques in the literature handling

Searchable Symmetric Encryption (SSE), dictionary encryption or multimap encryption can all

be applied to achieve semantically secure AYE. We use AYE schemes as a primitive to build

more complex StE.

None of our schemes will require specific AYE primitives, nor specific leakage profiles.

However, it is useful to contextualize the security of our schemes using the leakage profile of

state-of-the-art schemes from the literature. Intuitively, the setup leakage of this profile reveals

the total number of blocks among all values in the array. The query leakage includes the query

and access patterns. The former is the equality pattern of all the queries made thus far. In a RR

scheme the latter is just the query response but in a RH scheme the latter is the number of blocks

returned.

Now we detail these leakage algorithms and give example AYE schemes that achieve it

derived from CJJ+’s ∏bas SSE scheme [48] and 2Lev from the Clusion library [101]. In Fig. 3.2,

Lπ
r (resp. Lπ

h) is the RR (resp. RH) leakage algorithm for Ayeπ
r (resp. Ayeπ

h). The primitives

used in Ayeπ
r ,Aye

π
h are symmetric encryption scheme SE and function family F. We require that

SE.KS= {0,1}F.ol. Note that Ayeπ
h .KS= SE.KS×F.KS and Ayeπ

r .KS= F.KS.

Double-level indexing.

In this data type, each domain element is a tuple of arrays we call the payload and indexing

arrays. The former maps payload labels to payload values while the latter maps indexing labels

to payload labels. The data type’s queries are the indexing labels. The specification function

134

Algs Lπ
r
(
s,A

)
, Lπ

h

(
s,A

)
For ℓ ∈ A.Lbls do

n← n+
⌈
SE.cl(|A[ℓ])|

bLen

⌉
Return

(
n,(A)

)
Algs Lπ

r
(
q, ℓ, l

)
, Lπ

h

(
q, ℓ, l

)
(ℓ1, ... , ℓn−1,A)← l ; ℓn← ℓ ; x← min

ℓi=ℓn
i

lk← (A[ℓ],x) ; lk←
(⌈

SE.cl(|A[ℓ])|)
bLen

⌉
,x
)

Return
(
lk,(ℓ1, ... , ℓn,A)

)
Alg Ayeπ

r .Enc(K
f,A)

For ℓ ∈ A.Lbls do
For i = 0,1 do Ki← F.Ev(Kf, i∥ℓ)
B1∥...∥Bn←

〈
SE.Enc(K1,A[ℓ])

〉
bLen

For i ∈ [n] do A′[F.Ev(K0, i)]←$ Bi

Return A′

Alg Ayeπ
r .Tok(K

f, ℓ)

Return (F.Ev(Kf,0∥ℓ),F.Ev(Kf,1∥ℓ))
Alg Ayeπ

r .Eval
(
(K0,K1),A′

)
While A[F.Ev(K0,n)] ̸=⊥ do

Bn← A[F.Ev(K0,n)] ; n← n+1
Return SE.Dec

(
K1,B0∥...∥Bn

)
Alg Ayeπ

h .Enc
(
(Kf,Ks),A

)
For ℓ ∈ A.Lbls do

B1∥...∥Bn←
〈
SE.Enc(Ks,A[ℓ])

〉
bLen

For i ∈ [n] do A′[F.Ev(F.Ev(Kf, ℓ), i)]←$ Bi

Return A′

Alg Ayeπ
h .Tok

(
(Kf,Ks), ℓ

)
Return F.Ev(Kf, ℓ)

Alg Ayeπ
h .Eval(K,A′)

n← 1
While A[F.Ev(K,n)] ̸=⊥ do

Bn← A′[F.Ev(K,n)] ; n← n+1
Return B1∥...∥Bn

Alg Ayeπ
h .Dec

(
(Kf,Ks),c

)
Return SE.Dec(Ks,c)

Figure 3.2. Leakage profiles for “standard” RR and RH AYE, and an example of each such
scheme.

135

returns a set of payloads. More specifically:

DLdt.Dom= {(P,I) : P,I ∈ Adt.Dom,S⊆ P.Lbls for all S ∈ I.Vals},

DLdt.QS= {0,1}∗ and DLdt.Spec
(
(P,I), ℓ

)
=

{P[ℓ′] : ℓ′ ∈ I[ℓ]} if I[ℓ] ̸=⊥

⊥ otherwise.

Naı̈ve StE for DLdt.

One natural approach to StE for DLdt is to construct an array which maps the indexing

labels to the payload values directly (i.e. A[ℓ] = {P[ℓ′] : ℓ′ ∈ I[ℓ]}), then encrypting it with an

RH AYE scheme.

The scheme sketched above is correct and secure (with respect to an intuitive leakage

profile derived from AYE’s) but is space inefficient whenever most payload values exceed their

labels in length and are referenced more than once in I’s sets. This is unfortunately true in all

the applications we discussed in Section 3.1. For example, in encrypted SQL application the

payloads are rows in the database and instead of storing pointers to rows in, say, a join in I we

are instead storing the entire joined relation in P (which often contains many duplicate rows).

3.4 “Composite” Double-Level Indexing

In this section, we review the “intuitive” composition technique and highlight how

inconsistent simulators create a problem in proving it secure. We then provide a sufficient

condition – content oblivious leakage algorithms – on the indexing AYE to recover this proof

approach.

“Composite” approach.

We refer to the technique used in the literature to construct StE for DLdt as the composite

approach. The name stems from the use of one AYE scheme per array – an RH scheme for P

136

Alg Com.Enc
(
(Kh,Kr),(P,I)

)
For all ℓ ∈ I.Lbls and ℓ′ ∈ I[ℓ] do

tk← Ayeh.Tok(Kh, ℓ′) ; I′[ℓ]← I′[ℓ]∥tk
EDh←$Ayeh.Enc(Kh,P)
EDr←$Ayer.Enc(Kr,I′)
Return (EDh,EDr)

Alg Com.Tok
(
(Kh,Kr), ℓ

)
Return Ayer.Tok(Kr, ℓ)

Alg Com.Eval
(
tk,(EDh,EDr)

)
tk1∥...∥tkn←

〈
Ayer.Eval(tk,EDr)

〉
Aye.tl

S′←{Ayeh.Eval(tki,EDh) : i ∈ [n]}
Return S′

Alg Com.Dec
(
(Kh,Kr),S′

)
S←{Ayeh.Dec(Kh,c) : c ∈ S′}
Return S

Alg Lc
(
s,(P,I)

)
(lkh,Sth)←$Lh(s,P) ; Kh←$Ayeh.KS

For all ℓ ∈ I.Lbls and ℓ′ ∈ I[ℓ] do
tk← Ayeh.Tok(Kh, ℓ′) ; I′[ℓ]← I′[ℓ]∥tk

(lkr,Str)←$Lr(s,I′)
Return

(
(lkh, lkr),(Sth,Str,I)

)

Alg Lc
(
q, ℓ,(Sth,Str,I)

)
(lkr,Str)←Lr(q, ℓ,Str)
For ℓ′ ∈ I[ℓ] do
(lkh,Sth)←$Lh(q, ℓ

′,Sth)
lk ∪←− lkh

Return
(
(lkr, lk),(Sth,Str,I)

)
Alg Sc

(
s,(lkr, lkh)

)
(EDh,St ′h)←$Sh(s, lkh)

(EDr,St ′r)←$Sr(s, lkr)

Return
(
(EDh,EDr),(St ′h,St ′r)

)
Alg Sc

(
q,(lkr,(lk1, ... , lkn)),(St ′h,St ′r)

)
For i ∈ [n] do
(tk′,St ′h)←$Sh(q, lkh,St ′h) ; s← s∥tk′

(s′, lk)← lkr

(tk,St ′r)←$Sr(q,(s, lk),St ′r) ; Return tk

Figure 3.3. Algorithms (left), leakage algorithm (middle) and simulator (right) for “composite”
StE scheme Com= ComT[Ayeh,Ayer] for DLdt. Here, Ayeh,Ayer are RH and RR AYEs respec-
tively with leakage algorithms and simulators Lh,Sh,Lr,Sr. Com is secure if Ayer has content
oblivious leakage.

and a RR scheme for I. Intuitively, this scheme replaces the payload labels ℓ′ ∈ I[ℓ] with their

respective AYE token, then encrypts P,I with the primitives. This technique is reminiscent of

those used in SPX, OPX and LabGraph [89, 92, 52].

Now on to the details. The scheme sketched above is derived via a transform with

Com= ComT[Ayeh,Ayer] where Ayeh,Ayer are AYE schemes that are RH and RR respectively.

It’s key set is the product of the primitives’ (i.e. Com.KS= Ayeh.KS×Ayer.KS). The algorithms

for Com are given in Fig. 3.3.

137

Com’s security.

Intuitively, one would expect to be able to compose the leakage algorithms for Ayeh,Ayer

in some straightforward way to derive a leakage algorithm under which Com can be proven

secure. While this is true when Ayeh,Ayer have the “standard” leakage profile (see Section 3.3),

we demonstrate that pathological leakage prevent this intuition from working in full generality.

The proof issue boils down to the problem of composing the leakage algorithms and

simulators of Ayeh,Ayer to get one for Com. In Fig. 3.3 we give a composition inspired by those

used in prior work3 Intuitively, Lc
(
s,(P,I)

)
will construct I′ in the same way Com.Enc (using

a random Kh) then return the setup leakage of P,I′ as computed by the respective schemes.

Lc
(
q, ℓ,St

)
will return the leakage associated to querying Ayer with ℓ, and querying Ayeh with

the ℓ′ ∈ I[ℓ].

Meanwhile, Sc’s algorithms channel their inputs into the primitives’ and compose their

outputs. Recall that because Ayer is response-revealing, lkr in Lc,Sc’s query algorithms takes

the form (I′[ℓ], lk) for some lk where I′ is as constructed in Lc
(
s,(P,I)

)
. Before this leakage

is passed to Sr, the first argument is replaced with s – the tokens returned by Sh. This is done

so that Ayer.Eval(tk,EDr) returns tokens tk′ for which Ayeh.Eval(tk′,EDh) ̸=⊥. This switch is

necessary because the tokens in I′[ℓ] are generated with Kh selected in the leakage algorithm. Sh

has no knowledge of this key so we can expect that these tokens are unlikely to “work” with the

simulated EDh. However, this switch also means that the behavior of Sr in Sc is no longer well

defined because Ayer’s semantic security only promises that Sr(q,(I′[ℓ], lk′),St ′r) returns a token,

not Sr(q,(s, lk′),St ′r).

Content oblivious leakage.

We say that an RR AYE scheme has content oblivious leakage if homomorphic arrays

have the same leakage (modulo query responses). Let A1,A2 ∈ Adt.Dom be homomorphic (as

defined in Section 3.3), ℓ1, ... , ℓn ∈ {0,1}∗ be labels and Ayer be a RR AYE scheme with leakage

3An alternative approach to Lc is to generate the tokens in I′ using Sr. We note that even with this leakage
profile, the proof fails for similar reasons.

138

algorithm L. Then, we say that L is content oblivious if there exists lk0, lk1, ... , lkn such that for

i = 1,2 and all random coins:

(lk0,Sti)←$L(s,Ai)(
(Ai[ℓ1], lk1),Sti

)
←$L(q, ℓ1,Sti)

...
...(

(Ai[ℓn], lkn),Sti
)
←$L(q, ℓn,Sti).

Query obliviousness is sufficient to ensure that Com is semantically secure via the proof sketched

above because it would guarantee that the substitution of s′ with s in the input to Sr will return a

token which can be evaluated to the desired result. This gives us:

Theorem 18 Let Ayer be an RR AYE with content oblivious leakage and Ayeh be an RH AYE.

Then, given adversary A, leakage algorithms Lr,Lh and simulators Sr,Sh, one can construct

Ar,Ah,Sc such that

Advss
Com,Lc,Sc

(A)≤ Advss
Ayeh,Lh,Sh

(Ah)+Advss
Ayer,Lr,Sr

(Ar)

where Com= ComT[Ayeh,Ayer],Lc are as described in Fig. 3.3.

Note that Ayeπ
r (in Fig. 3.2) has content oblivious leakage. Its setup leakage is the number

of blocks in A′ which is constant for homomorphic arrays because SE’s ciphertext length function

is message independent. The query leakage (apart from the query response) is the query equality

pattern (which is independent of A).

Counterexample.

To complete our analysis, we give a leakage algorithm Lr and simulator Sr for Ayer which

renders Com= ComT[Ayeh,Ayer] insecure with respect to the leakage algorithm Lc which calls

Lr.

139

Given Ayer and leakage algorithms L,S, define Lr,Sr to work as follows:

Lr(s,Ayer) = L(s,Ayer) and Sr(s, lk) = S(s, lk)

Lr(q, ℓ,St) = (s,(s, lk)) where L(q, ℓ,St) = (s, lk)

Sr(q,(s1,(s2, lk)),St ′) =

S(q,(s1, lk),St ′) if s1 = s2

⊥ otherwise.

Notice that because the second part of the query leakage contains s, the query output, it is not

content oblivious. Further, notice that Ayer security under Lr,Sr means it is also secure with

respect to L,S because the simulator in Gss
Ayer,Lr,Sr

is always given input with s1 = s2.

At the same time, when used in Lc,Sc, simulator Sr will (with high probability) return

⊥ whenever it is asked to simulate token generation because the two si presented to Sr in

Gss
Com,Lc,Sc

are strings of tokens generated with different Ayeh keys and are unlikely to be equal

(for “standard” choices of Ayeh). This never happens in the “real” world, so the adversary that

requests a valid token then returns 0 (i.e. guesses that it is in the simulated world) whenever

tk =⊥ has high advantage.

It is worth noting the simulator Sr presented here is not the only simulator which satisfies

the security definition of a response revealing data structure (for example S also works). This

illustrates that the issue is not necessarily an issue of the leakage function. The leakage function

presented here could work in the proof, so long as the proof isn’t using a “misbehaving” simulator

like Sr. This observation allows us to solve the “bug” in prior proofs with a weaker assumption

than content oblivious leakage. Specifically, we could change the security definition for response

revealing data structures to stating a formalization of “there must exist a simulator that doesn’t

misbehave on inputs modified in this way.” After this modification, we could prove security

for even non-content oblivious leakage and use these simulators in composition. However, all

simulators for structures which are secure under content oblivious leakage cannot misbehave

140

on inputs of the form above, and “standard” structured encryption is already secure under the

content oblivious leakage definition. So, we make the decision to explicitly focus on the sufficient

leakage assumption rather than introduce a modified security definition.

We leave open the problem of classifying structured encryption schemes, which can have

misbehaving simulators, and classifying schemes where all simulators satisfying the security

definition must misbehave. Since, standard schemes are already content oblivious, this is not a

pressing problem, but one of potential theoretical interest.

3.4.1 Inconsistent simulators in prior work.

The leakage algorithms and security proofs of SPX, OPX and LabGraph in [89, 92,

52] follow a similar technique to the one discussed above. However, they make insufficient

assumptions about the underlying component schemes, leakage algorithms or simulators meaning

that their proofs are “buggy”. Assuming content oblivious leakage is a sufficient condition to

resolve the issues in their proofs though, meaning that their security results still hold when

standard primitives are used. Note that in our discussions below, our references (to sections,

appendices, definitions, theorems) and notation follow that of the papers in question.

Bug in SPX/OPX.

Although the bug does occur multiple times in SPX and OPX [89, 92], we will only

outline a single occurrence for brevity. The other occurrences can be fixed using the same content

oblivious assumption. We note that this issue is not resolved by the authors assumptions on their

AYE primitives4.

The relevant definition for the following error is Definition 4.3 at the end of Section

4 in SPX. In the ideal game of this definition, the simulator only receives inputs of the form

(DS(qi),LQ(DS,qi)) to generate tokens.

We observe in the actual proof, the simulator SMM is not fed inputs of the same form

4In particular, their assumption that one of the primitives in OPX be Σπ (an AYE very similar to Ayeπ
h).

141

as in the security definition. The occurrence we focus on is in section “Appendix F: Proof

of Theorem 6.1” of SPX. The base simulator SMM is the simulator which exists based on the

security Definition 4.3.

In describing the simulator, the authors write,

rtkr←SMM((ct j) j∈[#r],Lmm
Q (MMR,χ(r)))

And, then in the proof pass these rtkr into another simulator,

tki, j←SMM((rtkr)r∈DBatti, j=Xi, j
,Lmm

Q (MMV ,χ(atti, j)))

However, there is no guarantee that this input to SMM fits the input form required by Definition

4.3, because (rtkr)r∈DBatti, j=Xi, j
(tokens for MMR) are not necessarily the same tokens contained

in MMV (χ(atti, j)). Unless the leakage from the generation of the simulated rtkr leaks the tokens

in MMR or a way to generate them, then it is unlikely over a random key choice the rtkr generated

correspond to the the values stored in MMV .

Note, this is not a necessary behavior of SMM, but one that is not ruled out. Either the

content obliviousness assumption or modified security definition illustrated above would avoid

this issue and allow the proof to go through.

Bug in LabGraph.

In LabGraph, the same bug is made in the proof of Theorem 6.2 [52]. At the beginning

of the proof, the authors outline a simulator S. In step 2b, S feeds in vw generated from other

simulators to generator a token τw. However, these simulators may not necessarily generate

stored tokens τ+ and τ− with high probability.

It is worth noting these authors require their structured encryption algorithms to be

“chainable,” which places restrictions on both the setup and query leakage. However, the security

definition (Definition 4.2) indicates the simulator for queries will receive input of the form

142

Alg Ayef.Enc
(
(Kr,Kf),F

)
For ℓ ∈ F.Lbls where ℓ= 0∥ℓ′ do

c←$SE.Enc
(
F.Ev(Kf, ℓ),F[ℓ]

)
Pad F[ℓ]← ⟨c⟩bLen

Return Ayer.Enc(Kr,F)
Alg Ayef.Tok

(
(Kr,Kf), ℓ

)
Return Ayer.Tok(Kr, ℓ)

Alg Ayef.Eval(tk,ED)

Return Ayer.Eval(tk,ED)

Alg Ayef.Dec
(
(Kr,Kf),c

)
Return unpadded SE.Dec(F.Ev(Kf, ℓ),c)

Alg Lf
(
s,F

)
Kf←$F.KS

For ℓ ∈ F.Lbls where ℓ= 0∥ℓ′ then
c←$SE.Enc

(
F.Ev(Kf, ℓ),F[ℓ]

)
Pad F[ℓ]← ⟨c⟩bLen

(lk,St)←$L(s,F) ; Return
(
lk,(St)

)
Alg Lf

(
q, ℓn,(ℓ1, ... , ℓn−1,St)

)(
(X , lk),St

)
←$L(q, ℓn,St)

b∥ℓ← ℓn

If b = 0 then X ←
(

min
ℓi=ℓn

i , |F[ℓn]|
bLen

)
Return

(
(X ,b∥lk),(ℓ1, ... , ℓn,St)

)
Alg Mon.Enc

(
K,(P,I)

)
For ℓ ∈ P.Lbls do F[0∥ℓ]← P[ℓ]
For all ℓ ∈ I.Lbls and ℓ′ ∈ I[ℓ] do

F[1∥ℓ]← F[1∥ℓ]∥Ayef.Tok(K,0∥ℓ′)
Return Ayef.Enc(K,F)
Alg Mon.Tok(K, ℓ)

Return Ayef.Tok(K,1∥ℓ)

Alg Mon.Eval(tk,ED)

tk1∥...∥tkn←
〈
Ayef.Eval(tk,ED)

〉
Ayef.tl

S←{Ayef.Eval(tki,ED) : i ∈ [n]}
Return S

Alg Mon.Dec(K,S)

Return {Ayef.Dec(K,c) : c ∈ S}

Figure 3.4. Top: Algorithms (left) and leakage profile (right) for RF AYE scheme Ayef =
RfT[Ayer,SE,F] where Ayer,SE,F is a RR AYE scheme (with leakage algorithm L), a symmetric
encryption scheme and a function family respectively. Bottom: “monolithic” StE scheme
Mon= MonT[Ayef] .

(L2(δ ,q),vI) where I := Query(δ ,q). But, the restrictions on the query leakage function in

their Definition 6.1 (Chainability) do not rule out the existence of a simulator fitting the security

definition but which behaves in an unspecified way on mismatched input. As with SPX and OPX,

either our sufficient assumption or a modified security definition would eliminate this proof bug.

3.5 “Monolithic” Double-Level Indexing via Key-
Dependent AYE

Now we give an approach to StE DLdt that differs from those used in the literature which

we call the monolithic approach. Evaluating its security requires a new KD-security notion

143

which allows the adversary to compute and store tokens in their array data structures. We show

that many AYE schemes from the literature achieve this notion of security and argue that the

monolithic approach is superior to the composite one from Section 3.4.

Response-flexible StE.

We start by formalizing a third response type for StE schemes then describe AYE can

achieve it. Intuitively, a response flexible (RF) StE scheme allows the client to indicate their

desired response type (RH or RR) using the first bit of the query. More formally, if StE for DT is

RF, then if DS,q, tk,ED are as defined in StE’s syntax then StE.Eval(tk,ED) =DT.Spec(DS,q′)

whenever q = 1∥q′. We will assume that StE.Dec is only called when queries of the form

q = 0∥q′ are made.

In our monolithic scheme, we need a RF AYE, so we give an example of such a scheme

Ayef which is defined using transform RfT. Let SE,F be a symmetric encryption scheme and

function family such that {0,1}F.ol = SE.KS. Intuitively, when ℓ = 0∥ℓ′, Ayef “hides” F[ℓ]

by symmetrically encrypting it under a key derived using ℓ and F. We define Ayef.KS =

Ayer.KS× F.KS and detail its algorithms in Fig. 3.4. Later, we prove its security under a

KD-security notion with respect to the leakage algorithm Lf in Fig. 3.4.

Monolithic solution.

Armed with the above new primitive, a natural way to improve the composite solution is

to merge the contents of P and I′ into a single array F then encrypt this using an RF AYE scheme

with labels that are one bit longer. We refer to this as the “monolithic approach” to StE for

DLdt since a single monolithic data structure is used for both payload storage and indexing. The

scheme Mon is constructed via transform MonT which takes as input a RF AYE scheme Ayef.

Mon’s key set is Ayef.KS and its algorithms are depicted in Fig. 3.4. We note that, using standard

primitives such as those in Fig. 3.2, it is important that F’s values are padded to a multiple of

bLen, then encrypted, then padded again to avoid padding oracle attacks.

144

Game GF -ss
StE,L,S(A)

K←$StE.KS ; b←${0,1}
(f0,Sta)←$A(s)
If b = 1 then

ED←$StE.Enc(K, f0(K))

Else
(lk0,St)←$L(s,DS)
(ED,St ′)←$S(s, lk0)

b′←$ATOK(q,ED,Sta)
Require (f0, f1, ... , fn) ∈ F
Return (b = b′)

Oracle TOK(f)

n← n+1 ; fn← f
If b = 1 then

tki←$StE.Tok(K, fn(K))

Else
(lkn,St)←$L(q, fn(K),St)
(tkn,St ′)←$S(q, lkn,St ′)

Return tkn

Alg Lm
(
s,(P,I)

)
K←$Ayer.KS

For ℓ ∈ P.Lbls do F[0∥ℓ]← P[ℓ]
For all ℓ ∈ I.Lbls and ℓ′ ∈ I[ℓ] do

F[1∥ℓ]← F[1∥ℓ]∥Ayef.Tok(K,0∥ℓ′)
(lk,St)←$Lf

(
s,F

)
; Return

(
lk,(St,I)

)
Alg Lm

(
q, ℓ,(St,I)

)
(lk,St)←Lf

(
q,1∥ℓ,St

)
For ℓ′ ∈ I[ℓ] do
(lk′,St)←$Lr(q,0∥ℓ′,St) ; lk ∪←− lk′

Return
(
(lk, lk),(St,I)

)
Alg Sm

(
s, lk

)
(ED,St ′)←$Sf

(
s, lk

)
; Return (ED,St ′)

Alg Sm
(
q,((S′, lk), lk),St ′

)
For lk′ ∈ lk do
(tk′,St ′)←$Sf

(
q, lkr,St ′

)
; S ∪←− tk′

(tk,St ′)←$Sf
(
q,(S, lk),St ′

)
; Return tk

Figure 3.5. Left: Game defining adaptive F -semantic security of StE for function class F with
respect to L,S,A. Right: Leakage algorithm (top) and simulator (bottom) for “monolithic” StE
scheme Mon= MonT[Ayef] where Ayef is an RF AYE scheme (with respect to Lf,Sf).

Intuitively, Mon should be superior to Com under standard primitives because the mono-

lithic array has lower setup leakage. In particular, using Com the adversary will learn the number

of blocks in two arrays (I′,P) while with Mon it learns the number of blocks in only one (F).

However, because F stores tokens to its own content we need a game which allows the client

to submit submit key-dependent data structures to show that Com is secure. We do this by

generalizing our notion of semantic security to Key-Dependent (KD) security below.

KD semantic security.

We define semantic security for StE schemes with respect to a function class F , leakage

algorithm L and simulator S using the game GF-ss
StE,L,S depicted in Fig. 3.5. This game generalizes

the semantic security notion given in Section 3.2 by computing the data structure DS and queries

145

q1, ... ,qn using adversary-provided (deterministic) functions f0, f1, ... , fn.

We define the universal function class Fall for DT to include all (f0, f1, ... , fn) where

f0(K) ∈ DT.Dom and fi(K) ∈ DT.QS for all i ∈ [n]. We require that F ⊆ Fall so that GF-ss
StE,L,S

is syntactically sound. We can also recover CK’s notion of semantic security by restricting the

function class to the set of key independent functionsFkInd which is defined as all (f0, f1, ... , fn)∈

Fall where all the fi are constant functions.

Token generating function class.

We define a function class Ftok for AYE scheme Aye which allows the adversary to

encrypt arrays which depend on AYE tokens. This can be used, for example, to construct arrays

whose values are tokens.

If (f0, f1, ... , fn) ∈ Ftok then f1, ... , fn are constant functions and f0(K) = fAye.Tok(K,·)
tok

where ftok is a function that generates DS with access to a token-generating oracle.

Constructing Ftok-secure AYE.

We show that many mainstream AYE schemes are Ftok-secure then discuss how these

can be used to construct Ftok-secure RF AYE schemes using RfT. We observed that many AYE

schemes (such as those in [48, 56]) sselect a function family key Kt and use this exclusively for

generating tokens. We demonstrate that such schemes are Ftok-secure.

If Aye is a PRF-based AYE scheme (of any response type), then there exists function

family F, key set KS, and algorithms Enc,Tok such that Aye.KS= F.KS×KS and:

Aye.Enc
(
(Kt,K),DS

)
= EncF.Ev(K

t,·)(K,DS),

Aye.Tok
(
(Kt,K), ℓ

)
= TokF.Ev(K

t,·)(ℓ).

Then, Aye’s FkInd-security (i.e. semantic security as defined in Section 3.2) implies its

Ftok-security because F.Ev(Kt, ·) is indistinguishable from a (key-independent) random function

φ : {0,1}∗→{0,1}F.ol (assuming F is a PRF).

146

Adversary AFN
f

(f0,Sta)←$A(s)
Define ftok : f0((Kt,K)) = f F.Ev(K

t,·)
tok

A← f FN(·)
tok

ED←$EncFN(·)(K,A)

Return ATOK(q,ED,Sta)

Oracle TOK(f)

Define x : f (Ka) = x
Return TokFN(·)(x)

Adversary Ast(s)

(f0,Sta)←$A(s)
Pick random φ : {0,1}∗→{0,1}Aye.tl

Define ftok : ((Kt,K)) = f F.Ev(K
t,·)

tok

A← f φ(·)
tok ; Return (A,Sta)

Adversary ATOK
st (q,ED,Sta)

Return ATOK∗(q,ED,Sta)

Oracle TOK∗(f)

Define x : f (Ka) = x
Return TOK(x)

Games G0 , G1

(f0,Sta)←$A(s) ; (Kf,K)←$Aye.KS

Define f0 : f0((Kt,K′)) = f F.Ev(K
t,·)

tok
Pick random φ : {0,1}∗→{0,1}Aye.tl

A← f F.Ev(K
f,·)

tok

ED←$EncF.Ev(K
f,·)(K,A)

A← f φ(·)
tok

ED←$Encφ(·)(K,A)

b′←$ATOK(q,ED,Sta) ; Return b′ = 1

Oracle TOK(f)

Define x : f (Ka) = x

Return TokF.Ev(K
f,·)(x) Tokφ(·)(x)

Game G2

Ka←$Aye.KS

(f0,Sta)←$A(s)
(lk,St)←L(s, f0(Ka))

(ED,St ′)←$S(s, lk)
b′←$ATOK(q,ED,Sta)
Return b′ = 1

Oracle TOK(f)

Define x : f (Ka) = x
(lk,St)←L(q,x,St)
(tk,St ′)←$S(s, lk,St ′)
Return tk

Figure 3.6. Adversaries and games used in proof of Theorem 19. Here, Enc,Tok are the
algorithms used in the definition of Aye as a PRF-based scheme.

147

Theorem 19 Let Aye be a PRF-based AYE scheme. Then, given adversaryA, leakage algorithm

L and simulator S, one can construct Af,Ast such that

AdvFtok-ss
Aye,L,S(A)≤ Advprf

F (Af)+Advss
Aye,L,S(Ass).

Proof. We define adversaries Ast,Af as in Fig. 3.6. By the definition of Ftok we can express

f0 as ftok (with oracle access to the PRF) and assume the query phase functions are constant.

Additionally, let Enc,Tok be the algorithms used in the definition of Aye as a PRF-based scheme.

Both adversaries run A, with Ast simulating the PRF using a random mapping φ and Af

simulating the whole Ftok-security game but using its FN oracle whenever the PRF is required.

Notice that Ast constructs Aye without using the key and therefore can play the Gss
Aye,L,S game.

Now we can conclude via a standard hybrid argument using games G0,G1,G2 depicted in

Fig. 3.6. From the definition of Ftok-security, we have AdvFtok-ss
Aye,L,S(A) = Pr[G0]−Pr[G2]. From

the definitions of PRF-security and Af we have Advprf
F (Af) = Pr[G0]−Pr[G1]. Finally, from

the definitions of semantic security for Aye and Ast we have Advss
Aye,L,S(Ast) = Pr[G1]−Pr[G2].

Combining these equations gives the desired result. □

RfT preserves F-security.

The leakage profile of Ayef = RfT[Ayer,SE,F] can be constructed from that of Ayer as

depicted in Fig. 3.4. Intuitively, this profile is identical to Ayer’s but its query leakage includes

the response type, query pattern, number of blocks returned.

RfT preserves semantic security under any function class. This means that if Ayer is a

PRF-based AYE the resultant Ayef is sufficiently secure to be used in our monolithic solution.

Theorem 20 Given adversary A, leakage algorithm L and function class F , let Ayer be a RR

AYE scheme and Ayef = RfT[Ayer,SE,F],Lf be as defined in Fig. 3.4. Then, given simulator S,

148

Alg Sf
(
s, lk

)
(lk,St ′)←$S(s, lk)
Return

(
lk,(St ′,V)

)
Alg Sf

(
q,(X ,b∥lk),(St ′,V)

)
If b = 1 then (tk,St ′)←$S(q,(X , lk),St ′)
Else
(i,s)← X
If V[i] =⊥ then V[i]←${0,1}s·bLen

(tk,St ′)←$S(q,(V[i], lk),St ′)
Return

(
tk,(St ′,V)

)

Adversary Ass(s)

(f0,Sta)←$A(s) ; Kf←$F.KS

Return (f ∗0 ,Sta)

Function f ∗0 (K
r)

A← f0(Kr)

For ℓ ∈ A.Lbls where ℓ= 0∥ℓ′ do
A[ℓ]←$SE.Enc(F.Ev(Kf, ℓ),A[ℓ])

Return A
Adversary Ass(q,Sta)

Return A(q,Sta)

Adversary AFN
f

(f0,Sta)←$A(s)
Kr←$Ayer.KS

A← f0(Kr)

For ℓ ∈ A.Lbls do
If ℓ= 0∥ℓ′ then

K←$ FN(ℓ)

A[ℓ]←$SE.Enc(K,A[ℓ])

(lk,St)←$L(s,A)

(ED,St ′)←$S(s, lk)
Return ATOK(q,ED,Sta)

Oracle TOK(f)

(lk,St)←$L(q, f (Kr),St)
(tk,St ′)←$S(s, lk,St ′)
Return tk

Adversary AENC
se

(f0,Sta)←$A(s) ; Kr←$Ayer.KS

A← f0(Kr) ; m←$ [M]

For ℓ ∈ A.Lbls where ℓ= 0∥ℓ′ do
K←$SE.KS ; A[ℓ]←$SE.Enc(K,A[ℓ])

(lk,St)←$L(s,A) ; (ED,St ′)←$S(s, lk)
Return ATOK(q,ED,Sta)

Oracle TOK(f)

n← n+1 ; qn← f (Kr)

x← min
qi=qn

i ; ((X , lk),St)←$L(q,qn,St)

If qn = 0∥ℓ then
If V[x] =⊥ then

If m < n then V[x]← X
If m = n then V[x]← ENC(A[ℓ])

If m > n then V[x]←${0,1}|X |

(tk,St ′)←$S(s,(V[x], lk),St ′) ; Return tk

Figure 3.7. Simulator (top left) and adversaries used in proof of Theorem 20. In Ase, M is the
maximum number of queries response-hiding queries A makes to TOK.

149

Game G0

(f0,Sta)←$A(s) ; Kr←$Ayer.KS

Kf←$F.KS ; A← f0(Kr)

For ℓ ∈ A.Lbls where ℓ= 0∥ℓ′ do
K← F.Ev(Kf, ℓ)

A[ℓ]←$SE.Enc(K,A[ℓ])

ED←$Ayer.Enc(Kr,A)

b′←$ATOK(q,ED,Sta)
Return b′ = 1

Oracle TOK(f)

Return Ayer.Tok(Kr, f (Kr))

Games G1 , G2

(f0,Sta)←$A(s) ; Kr←$Ayer.KS

Kf←$F.KS ; A← f0(Kr)

For ℓ ∈ A.Lbls where ℓ= 0∥ℓ′ do

K← F.Ev(Kf, ℓ) ; K←$SE.KS

A[ℓ]←$SE.Enc(K,A[ℓ])

(lk,St)←$L(s,A) ; (ED,St ′)←$S(s, lk)
b′←$ATOK(q,ED,Sta) ; Return b′ = 1

Oracle TOK(f)

(lk,St)←$L(q, f (Kr),St)
(tk,St ′)←$S(s, lk,St ′) ; Return tk

Game Gm
3

(f0,Sta)←$A(s)
Kr←$Ayer.KS ; A← f0(Kr)

For ℓ ∈ A.Lbls where ℓ= 0∥ℓ′ do
K←$SE.KS

A[ℓ]←$SE.Enc(K,A[ℓ])

(lk,St)←$L(s,A)

(ED,St ′)←$S(s, lk)
b′←$ATOK(q,ED,Sta) ; Return b′ = 1

Oracle TOK(f)

n← n+1 ; qn← f (Kr) ; x← min
qi=qn

i(
(X , lk),St

)
←$L(q,qn,St)

If qn = 0∥ℓ then
If V[x] =⊥ then

If m < n then V[x]← X
else V[x]←${0,1}|X |

(tk,St ′)←$S(s,(V[x], lk),St ′)
Return tk

Figure 3.8. Games used in proof of Theorem 20.

150

one can construct Af,Ase,Ast,Sf such that:

AdvF-ss
Ayef,Lf,Sf

(A)≤ AdvF-ss
Ayer,L,S(Ass)+Advprf

F (Af)+M ·Advind$
SE (Ase),

where M is the maximum number of response-hiding TOK queries made by A.

Proof. We define the adversariesAss,Ase,Af and simulator Sf in Fig. 3.7. Note that the simulator

selects the V[x] values to be random strings of the appropriate length.

Ass modifies the function f0 returned by A to also encrypt the response-hiding entries

with SE. Note that the random coins for SE.Enc is selected by Ass and “hard-coded” into f ∗0

since we expect functions to be deterministic.

Af simulates the entirety of the “ideal” game for A except that the generation of SE’s

keys using F is replaced with calls to its FN oracle.

Ase performs the same simulation, but it generates the query response given to S(q, ·) in

a few ways. For one randomly selected query, the ENC oracle is used. Encryptions (using SE)

of A’s values are used in the queries before this while random strings are used for those after.

During this, we ensure that the query equality pattern is respected.

Now consider the hybrids in Fig. 3.8. Game G0 captures what happens in the “real world”

in both GF-ss
Ayef,Lf,Sf

(A) and GF-ss
Ayer,L,S(Ass). G1 uses the leakage algorithm and simulator for Ayer

in place of Ayer’s algorithms. G2 differs from G1 in how it selects the keys for SE, with the

latter computing them with F.Ev and the former selecting them at random. Gm
3 is defined for

m = 0,1, ... ,M. For TOK queries before the mth one, the query output is taken from L, meaning

it is the relevant value symmetrically encrypted under a random key. From the mth one onward

they are random strings. Notice that GM
3 is equivalent to G2 since all the V[x] are generated using

L, and that G0
3 captures what happens in the “ideal world” in GF-ss

Ayef,Lf,Sf
(A) where all the query

outputs are random strings. From here, we can derive the bound by combining the following

151

equations (here, b is the challenge bit of the respective game):

AdvF-ss
Ayef,Lf,Sf

(A) = Pr[GF-ss
Ayef,Lf,Sf

(A) = 1|b = 1]−Pr[GF-ss
Ayef,Lf,Sf

(A) = 1|b = 0]

= Pr[G0]−Pr[G0
3]

Pr[G0]−Pr[G1] = Pr[GF-ss
Ayer,L,S(Ass) = 1|b = 1]−Pr[GF-ss

Ayer,L,S(Ass) = 1|b = 0]

= AdvF-ss
Ayer,L,S(Ass)

Pr[G1]−Pr[G2] = Pr[Gprf
F (Af) = 1|b = 1]−Pr[Gprf

F (Af) = 1|b = 0]

= Advprf
F (Af)

Pr[G2]−Pr[G0
3] = Pr[GM

3]−Pr[G0
3] = ∑

i∈[M]

(Pr[Gi
3]−Pr[Gi−1

3])

= ∑
i∈[M]

(
Pr[Gind$

SE (Ase) = 1|b = 1,m = i]−Pr[Gind$
SE (Ase) = 1|b = 0,m = i]

)
= M ·Advind$

SE (Ase)

□

RfT preserves content obliviousness.

Let A1,A2 be homomorphic arrays, Lr,Lf be the leakage algorithms of Ayer and

RfT[Ayer,SE,F] respectively. Then, define:

(lki
0,Sti)←$Lf

(
s,Ai

)
; (lki

1,Sti)←$Lf
(
q, ℓ1,Sti

)
; ... ; (lki

n,Sti)←$Lf
(
q, ℓn,Sti

)
.

Notice that the F constructed in the Lf
(
s,A1

)
,Lf

(
s,A2

)
are homomorphic. This means that

lk1
0 = lk2

0 since Lr is content oblivious.

Suppose that ℓ j = 1∥ℓ and let lki
j = (Xi,b∥xi). Then, x1 = x2 because Lr is content

oblivious. Now suppose that ℓ j = 0∥ℓ and let lki
j = (ni,b∥xi) for i = 1,2. Since n1,n2 is derived

from the query equality pattern (and has nothing to do with the input arrays) we have n1 = n2.

At the same time, because |A1[ℓ j]|= |A2[ℓ j]| then SE.cl(A1[ℓ j]) = SE.cl(A2[ℓ j]) which means

152

Adversary Af(s)(
(P,I),Sta

)
←$A(s)

Define f0: f0(Kf) = fAyef.Tok(Kf,·)
tok

Return (f0,Sta)

Adversary ATOK
f (q,ED,Sta)

Return ATOK∗(q,ED,Sta)

Function f TK
tok

For ℓ ∈ P.Lbls do F[0∥ℓ]← P[ℓ]
For all ℓ ∈ I.Lbls and ℓ′ ∈ I[ℓ] do

F[1∥ℓ]← F[1∥ℓ]∥TK(0∥ℓ′)
Return F
Oracle TOK∗(ℓ)

Define f : f (Kf) = 1∥ℓ
Return TOK(f)

Figure 3.9. Adversary used in proof of Theorem 21.

that |F[ℓ j]| is the same no matter which Ai was used and x1 = x2. Therefore, in either case, the

lki
j satisfy the condition for Lf to be content oblivious.

Mon’s security.

Similar to our composite solution, Mon achieves security under leakage algorithm Lm if

its primitive has content oblivious leakage. We first need to define what content obliviousness

means for RF schemes. Intuitively, we require the same RR condition on queries ℓ= 1∥ℓ′ and

on queries ℓ= 0∥ℓ′ the entirety of the leakage must match. More specifically, suppose RF AYE

scheme Ayef is content oblivious. Then, given any pair of homomorphic arrays A1,A2, labels

ℓ1, ... , ℓn ∈ A1.Lbls, for i = 1,2 let

(lki
0,Sti)←$L(s,Ai) ; (lki

1,Sti)←$L(q, ℓ1,Sti) ; ... ; (lki
n,Sti)←$L(q, ℓn,Sti).

Then, we require that:

When ℓ j = 0∥ℓ′j, lk1
j = lk2

j ,

And when ℓ j = 1∥ℓ′j, lk1
j = (A1[ℓ

′], lk j) and lk2
j = (A2[ℓ

′], lk j)

Then, if Ayef is a Ftok-secure RF AYE with content oblivious leakage then Mon =

MonT[Ayef] is a FkInd-secure StE (i.e. secure in the standard model) for DLdt with respect to

153

Lm,Sm (as depicted in Fig. 3.5). We prove this below.

Theorem 21 Let Ayef be a RF AYE scheme and Mon= MonT[Ayef]. Then, given adversary A,

query-oblivious leakage algorithm Lf and simulator Sf, one can construct Af such that

Advss
Mon,Lm,Sm

(A)≤ AdvFtok-ss
Ayef,Lf,Sf

(Af).

where Lm,Sm are as defined in Fig. 3.5.

Proof. The adversaryAf is given in Fig. 3.9. It runsA converting its setup and query outputs into

functions to play the GFtok-ss
Ayef,Lf,Sf

game. The f ∗0 it returns during the setup phase converts elements

from DLdt.Dom into F in Mon, using the key only to construct tokens for the RR values, while

the f returned during the query are constant functions. Note that this function tuple is in Ftok, as

desired. By the definition of Af and Mon, we have that

Pr[GFtok-ss
Ayef,Lf,Sf

(Af) = 1|b = 1] = Pr[Gss
Mon,Lm,Sm

(A) = 1|b = 1]

where b is the challenge bit in the respective games.

As with Com, we use the content oblivious leakage assumption to ensure that the tokens

returned by Sm (which are RR queries to the F) will return a set of tokens consistent with Sf’s

output. This ensures that

Pr[GFtok-ss
Ayef,Lf,Sf

(Af) = 1|b = 0] = Pr[Gss
Mon,Lm,Sm

(A) = 1|b = 0]

combining this with the above result we get the desired bound. □

Discussion.

We now elucidate the advantages of applications adopting our monolithic approach over

the composite one.

154

First off, Mon leaks strictly less than Com using standard primitives. In particular, using

standard schemes such as those in Fig. 3.2, Com will leak the number of blocks in each encrypted

array while Mon will leak their sum. All other forms of leakage (i.e. query & access patterns) are

comparable. In this way, Mon’s leakage can be derived from Com (but not vice versa) indicating

that it leaks strictly less. The reduction in leakage that comes with merging two data structures

in StE for DLdt may seem insignificant, but if our technique is used in more complex systems

the savings may be more substantial.

For example, if OPX adopts the monolithic approach it would merge c2 + c+ 3 data

structures into a single array where c is the number of columns in a SQL database [92]. The

individual setup leakage for each of these arrays can leak important information to an adversary.

As an illustrative example, if standard AYE schemes are used, OPX will leak the distribution

of join 5 sizes in the database because one array is created for each pair of columns (c,c′) to

index their join. To see how this leakage could be abused, consider a database made up of two

tables with one joinable pair of columns. If these columns contain boolean values (i.e. have

a small domain), and we know from some meta information that the true and false values are

distributed evenly, we can expect that the indexed join has a number of blocks proportional

to n1 ·n2/4, where n1 and n2 are the number of rows in the two tables respectively. If instead

the columns contain street addressses (i.e. large domain with sparse distribution), we would

expect the indexed join’s volume to instead be less than min(n1,n2). The adversary can therefore

differentiate between the two databases using just the setup leakage, thereby learning something

about what data the client is storing.

Aside from minimizing leakage, the monolithic setup (i.e. a single Ftok-secure encrypted

array) has more robust applications including a general multi-leveled indexed array which can

store tokens referring back to itself in a response revealing way, until finally returning one or

more response hidden entries to the client. The Ftok-secure encrypted array already can provide

security for this structure if one is willing to leak the access pattern or fix a constant access

5A join on columns c,c′ returns pairs of rows from their respective table where the column values in c,c′ match.

155

pattern for every query. In SPX, joins are handled in a way similar to a “three-level” indexed data

structure [89]. It uses an encrypted dictionary to store encrypted multimaps, which store tokens

to separate row multimaps. To handle this case, one could create one monolithic Ftok-secure

encrypted array that combines the dictionary and multimaps and into entries to the array. This

would also simplify the construction to only require two queries into the array (since all top

level multimaps would be combined removing the need for a dictionary query). Also, under the

Ftok-security notion, our scheme can already handle more complicated self-referencing than

layered referencing with less leakage than a the composite solution.

3.6 KD-Secure StE for Broader Function Classes

In Section 3.5 we studied key-dependent (KD) StE with respect to the token generating

function class Ftok in detail. We believe our KD StE notion is of independent interest and extend

it in this section via broader function classes; namely the set of all functions Fall and the more

restrictive class of “fixed-format” functions Fff.

While our discussion focuses on KD-security for AYE schemes, we also encounter

subtle issues when bringing together notions of KD and semantic security which apply to StE

schemes in general. More specifically, we address KD-security for RR and RH AYE schemes

separately, bringing up a new game in each modeling non-standard behavior. We show that with

the exception of these boundary cases, out of the four possible types of KD-secure AYE, only

Fff-secure RH AYE can be efficiently achieved. We then give (generic and dedicated) transforms

to construct this from KDM-secure symmetric encryption (SE). We conclude by extending all of

these results to RF AYE.

Fixed-format functions.

Recall that in Section 3.5 we defined Fall as the set of all (f0, ... , fn) which the adversary

in the KD-security game can provide. Applied to AYE, this is the universal function class

allowing the adversary to provide any (key-dependent) array and sequence of labels that it

156

Alg Ar(s)

Define f0 : f0(K) = A where
A[0]← ε ; A[1]← ⟨K⟩bLen

Return (f0,Sta)

Alg ATOK
r (q,ED,Sta)

tk1←$ TOK(1)
K← Ayer.Eval(tk1,ED)

tk0←$Ayer.Tok(K,0)
Return tk0

Game Gtok
StE,L,S(A)

(DS,Sta)←$A(s) ; Require DS ∈ DT.Dom

(lk,St)←L(s,DS) ; (ED,St ′)←S(s, lk)
tk←$ATOK(q,ED,Sta) ; Require tk /∈ T
Return StE.Eval(tk,ED) ̸=⊥
Oracle TOK(q)

Require q ∈ DT.QS

(lk,St)←$L(q,q,St) ; (tk,St ′)←$S(q, lk,St ′)
T ∪←− tk ; Return tk

Figure 3.10. Key-storing adversary used in Theorem 22 (left) and token forgery game (right)
where StE is an StE scheme for DT with leakage algorithm L and simulator S.

chooses. We define the set of fixed-format functions Fff to be a subclass of this.

Intuitively, fixed-format functions provide arrays that are homomorphic (as defined in

Section 3.3) and queries that are key-independent. Specifically, if f = (f0, f1, ... , fn) ∈ Fff,

then f ∈ Fall and for all K1,K2 in Aye.KS, we have that f0(K1), f0(K2) are homomorphic and

fi(K1) = fi(K2) for all i ∈ [n].

An equivalent definition involves capturing f0 in terms of fixed-length per-label functions.

In other words, if (f0, f1, ... , fn) ∈ Fff then there exists a fixed (key-independent) label set

L⊆ {0,1}∗ where L = f0(K).Lbls and there exists functions {gℓ}ℓ∈L such that:

f0(K) = A where A[ℓ] =

gℓ(K) if ℓ ∈ L

⊥ otherwise.

Additionally, for all K1,K2 ∈ Aye.KS, we require that |gℓ(K1)| = |gℓ(K2)| for all ℓ ∈ L and

fi(K1) = fi(K2) for all i ∈ [n]. This “broken down” version of the f0 is particularly useful in our

reductions.

157

3.6.1 KD-security of Response-Revealing AYE

Key-storing adversary.

Intuitively, Fff-secure RR AYE should be impossible because the adversary can use f0 to

store the encryption key as a value in the array. During the query phase, the adversary requests a

token for this array value and can retrieve this key from the encrypted data structure because

the scheme is response-revealing. This should void any meaningful notion of KD-security for

AYE. This adversary is formalized as Ar in on the left side of Fig. 3.10. Note that the tuple of

functions provided by Ar is in Fff.

However, pinning down Ayer’s advantage is not straightforward and highlights a subtle

issue of boundary cases in notions of semantic security which applies to StE in general. As an

illustrative example, consider the “trivial” scheme, leakage algorithm and simulator for DT that

we define as follows:

StEt.Enc(K,DS) = DS, StEt.Tok(K,q) = q, StEt.Eval(q,DS) = DT.Spec(DS,q),

Lt
(
s,DS

)
= St

(
s,DS

)
= (DS,ε), Lt

(
q,q,ε

)
= St

(
s,1,ε

)
= (q,ε).

Then, notice that Fff-security is possible for StEt with respect to Lt,St because the leakage

algorithm reveals everything to the simulator. In order to demonstrate the devastating effect of

the key-storing adversary we need a formal notion which allows us to rule out excessively leaky

algorithms like these. We do this with the token forgery game below.

Token forgery game.

The token forgery game Gtok
StE,L,S is depicted in Fig. 3.10. The game is similar to Gss

StE,L,S

when the challenge bit is 0 meaning that ED and the tk returned by the token oracle are simulated.

The adversary’s goal is to forge a usable token meaning it wins by returning a token (different

from any output of the token oracle) which does not return ⊥ when evaluated with StE.Eval and

158

Alg At(s)

A[0]← ε ; A[1]←$Ayer.KS

Return (A,Sta)

Alg ATOK
t (q,ED,Sta)

tk1←$ TOK(1) ; K← Ayer.Eval(tk1,ED)

tk0←$Ayer.Tok(K,0) ; Return tk0

Games G0 , G1

A[0]← ε ; A[1]←$Ayer.KS

ED←$Ayer.Enc(A[1],A) ; (lk,St)←$L(s,A) ; (ED,St ′)←$S(s, lk)

tk1←$Ayer.Tok(A[1],1) ; (lk,St)←$L(q,1,St) ; (tk1,St ′)←$S(s, lk,St ′)
K← Ayer.Eval(tk1,ED) ; tk0←$Ayer.Tok(K,0) ; c← Ayer.Eval(tk0,ED)
If c ̸=⊥ then return true else return false

Figure 3.11. Adversaries and games used in proof of Theorem 22. Ayer is a RR AYE scheme, L
is a leakage algorithm and S is a simulator.

ED. We define the token forgery advantage of A as Advtok
StE,L,S(A) = Pr[Gtok

StE,L,S(A)]. Notice

that with the trivial scheme, tokens are easily forged since queries are passed to the server in the

clear.

Fff-secure RR AYE is (essentially) impossible.

With the above formalism, we show that any RH AYE scheme either permits a token-

forging adversary with high advantage or is such that the key-storing adversary Ar has a high

advantage in the Fff-security game. This is captured in the theorem below.

Theorem 22 Let Ayer be a RR AYE scheme with leakage algorithm L and simulator S. Let Ar

be as described in Fig. 3.10. Then, one can construct adversary At such that:

AdvFff-ss
Ayer,L,S(Ar)+Advtok

Ayer,L,S(At)≥ 1

Proof. We give hybrid games G0,G1 in Fig. 3.11. They differ in whether Ayer’s algorithms or

L,S are used to generate ED and token tk1. Let b be the challenge bit in GFff-ss
Ayer,L,S . Then, by our

159

Game Gex
StE(A)

K←$StE.KS ; f0←$A(s)
DS← f0(K)

Require DS ∈ DT.Dom

ED←$StE.Enc(K,DS)
K′←$ATOK

e (q,ED)

Return K = K′

Oracle TOK(f)

q← f (K) ; Require q ∈ DT.QS

Return StE.Tok(K,q)

Alg Ah(s)

(f0,Sta)←$Ae(s)

Select ℓ such that ℓ /∈ f0(K).Lbls for all K
Define f ∗0 : f ∗0 (K) = A where

A← f0(K) ; A[ℓ]← ε

Return
(

f ∗0 ,(Sta, ℓ)
)

Alg ATOK
h (q,ED,(Sta, ℓ)

)
K←$ATOK

e (q,ED)

tk←$Ayeh.Tok(K, ℓ) ; c← Ayeh.Eval(tk,ED)

If c ̸=⊥ then return 1 else return 0

Figure 3.12. Key-exfiltration game (left) where StE is an StE scheme for DT and key-retrieving
adversary Ah (right) which runs key-exfiltration adversary Ae.

definition of Ar,

AdvFff-ss
Ayer,L,S(Ar) = Pr[GFff-ss

Ayer,L,S(Ar) = 1|b = 1]−Pr[GFff-ss
Ayer,L,S(Ar) = 1|b = 0]

= Pr[G0]−Pr[G1].

At is also given in Fig. 3.11. In the setup phase, At(s) constructs an array similar to the one

in Ar(s) Notice also that because Ar is a response-revealing scheme, by the correctness con-

dition Pr[G0] = 1. Additionally, Gtok
Ayer,L,S(At) is equivalent to G1 so Pr[G1] = Advtok

Ayer,L,S(At).

Combining this with the above we get the bound in the theorem. □

We note that practical RR AYE schemes would not allow token forgery (else it achieves

no meaningful security). This means that Fff-secure RR AYE is impossible. Note that this

implies Fall-secure RR AYE is also (essentially) impossible.

3.6.2 KD-security of Response-Hiding AYE

Handling RH AYE is substantially different from RR AYE because the server never has

the chance to see “unencrypted” data. This means that RH AYE bears many more parallels to

BRS’ notion of KDM-secure symmetric encryption (SE): just as KDM SE is only possible when

160

functions are fixed length, RR AYE can only efficiently achieve Fff-security and not Fall-security.

We discuss these positive and negative results in this subsection, along with the nuances therein.

Key-retrieval in RH AYE.

As an illustrative example, let Ayeh be a scheme which leaks whether a query returns ⊥

in the following way:

A[ℓ] =⊥ ⇐⇒ Ayeh.Eval
(
Ayeh.Tok(K, ℓ),Ayeh.Enc(K,A)

)
=⊥.

Then, an adversary playing the GFall-ss
Ayeh,L,S game can retrieve a secret key of length λ by picking

distinct labels ℓ1, ... , ℓλ and value v ̸= ⊥ then defining (f0, f1, ... , fλ) ∈ Fall such that f0 sets

A[ℓi]← v if the kth bit of K is 1 and A[ℓi]←⊥ otherwise. During the query phase, it requests

tokens for ℓ1, ... , ℓλ and evaluates each with ED to retrieve, bit-by-bit, the key K. We note

that RH AYE schemes with “standard” leakage (including Ayeπ
h in Fig. 3.2) satisfy the above

condition and are susceptible to this attack.

Once again, formalizing this intuition into an adversary and advantage is not straight-

forward for two reasons. First, notice that key retrieval does not help the adversary attacking

trivial AYE primitives (i.e. the RH AYE variant of StEt,Lt,St above, where StEt.Dec(K,c) = c)

because the schemes do not use the key at all. Therefore, more generally, we once again need to

rule out excessively leaky Ayeh.

The second issue has to do with generalizing the key-retrieval mechanism in the attack.

Note that even if Ayeh were to avoid leaking whether a query returns⊥ (e.g. by padding the array

with dummy values), a similar attack could still be launched using other forms of leakage such

as query equality pattern or response lengths. We want our key-retrieval adversary to capture the

whole spectrum of such attacks and do so by defining a key-exfiltration game.

Key exfiltration game.

The key-exfiltration game Gex
StE is defined in Fig. 3.12. It is very similar to the Fall-

161

Alg At(s)

(f0,Sta)←$Ae(s)

Select ℓ such that ℓ /∈ f0(K).Lbls for all K
A← f0(K) ; A[ℓ]← ε ; Return (A, ℓ)

Alg ATOK
t (q,ED, ℓ)

K←$ATOK(q,ED)

tk←$Ayeh.Tok(K′, ℓ)
Return tk

Games G0 , G1

K←$Ayeh.KS ; (f0,Sta)←$Ae(s) ; Select ℓ such that ℓ /∈ f0(K).Lbls for all K
A← f0(K) ; A[ℓ]← ε

ED←$Ayeh.Enc(K,A) ; (lk,St)←$L(s,A) ; (ED,St ′)←$S(s, lk)
K′←$ATOK

e (q,ED) ; tk←$Ayeh.Tok(K′, ℓ) ; c← Ayeh.Eval(tk,ED)
If c ̸=⊥ then return true else return false

Oracle TOK(f)

tk←$Ayeh.Tok(K, f (K)) ; (lk,St)←$L(q, f (K),St) ; (tk,St ′)←$S(q, lk,St ′)
Return tk

Figure 3.13. Adversaries and games used in in the proof of Theorem 23 where Ae is a key-
exfiltration adversary for RH AYE scheme Ayeh, L is a leakage algorithm and S is a simulator.

security StE game when the challenge bit is 1 except that the adversary’s goal is to retrieve the

secret key. We define the key-exfiltration advantage of A as Advex
StE(A) = Pr[Gex

StE(A)]. Note

that due to the “Require” statements in the game, the adversary must provide a tuple of functions

in Fall.

Note that the adversary sketched above (which abuses queries returning ⊥) can be

captured as a key-retrieval adversary for Ayeh. Its advantage is 1 by Ayeh’s correctness condition.

Key-retrieving adversary.

Given any key-exfiltration adversary Ae (which plays Gex
StE), we can construct a key-

retrieval adversary Ah (which plays GFall-ss
StE,L,S) as shown in Fig. 3.12. Intuitively, Ah runs Ae and

then “tests” the exfiltrated key by generating a token and evaluating it. We evaluate the advantage

of Ah in the following result:

Theorem 23 Let Ayeh be a RH AYE scheme with leakage algorithm L and simulator S . Let Ah

be as described in Fig. 3.13 for some key-exfiltration adversary Ae. Then, one can construct At

162

such that:

AdvFall-ss
Ayeh,L,S(Ah)+Advtok

Ayeh,L,S(At)≥ Advex
Ayeh

(Ae)

Proof. We give hybrid games G0,G1 in Fig. 3.13. In the former, encryption and token generation

are done with Ayeh’s algorithms while in the latter it is done with L,S (with the exception of

the last tk). Both run Ae and win when Ayeh.Eval(tk,ED) does not return ⊥. Then, let b be the

challenge bit in GFall-ss
Ayeh,L,S and notice that:

AdvFall-ss
Ayeh,L,S(Ah) = Pr[GFall-ss

Ayeh,L,S(Ah) = 1|b = 1]−Pr[GFall-ss
Ayeh,L,S(Ah) = 1|b = 0]

= Pr[G0]−Pr[G1]

= Pr[G0]−Advtok
Ayeh,L,S(At).

The last line comes from noticing that G1 also depicts what happens in Gtok
StE,L,S(At).

Now let K,K′ be the random variables in the pseudocode of G0. Notice that when K = K′,

the adversary should always win because of Ayeh’s correctness condition. Notice also that the

probability that K = K′ in G0 is exactly the key-exfiltration advantage of Ae. Therefore,

Pr[G0] = Pr[G0|K = K′]Pr[K = K′]+Pr[G0∧ (K ̸= K′)]

≥ Pr[K = K′] = Advex
Ayeh

(Ae).

Combining this with the above equation gives us the desired bound. □

Fall-secure RH AYE is expensive.

The above theorem shows that if there exists an adversary with high exfiltration advantage,

then Ayeh is insecure (for at least one of two reasons). This is particularly problematic because

the leakage profiles of “standard” schemes elicit such exfiltration attacks. We sketch how two

forms of leakage in such schemes allow for key exfiltration.

The first example of abusable leakage is query equality pattern. Any scheme which

163

reveals equivalent pairs of queries has an adversary with high key-exfiltration advantage. The

adversary submits an array with at least two unique labels, call two of them ℓ0 and ℓ1, in its

submitted array. Then, for each query fi, the adversary submits a function which requests the

token for ℓki where ki is the ith bit of the key. Finally, the adversary queries ℓ0. If the RH AYE

scheme reveals query equality, then the adversary can determine which bits of the key are 0 by

looking at the equality to the final query. In order to avoid this leakage, PPY show 6 that one

must incur at least a logarithmic bandwidth overhead [113], at which point one could use ORAM

to hide any access pattern from the adversary. This result shows that any constant overhead RH

AYE schemes are vulnerable to high key-exfiltration advantage.

Our second example extends the illustrative one given earlier which abuses volume

leakage (i.e. the number of blocks returned by a query). We can design an adversary, similar

to the last one, which submits an array with at least two labels, ℓ0 and ℓ1, which map to values

of different lengths (e.g. |A[ℓ0]| = bLen and |A[ℓ1]| = 2 ·bLen). Again, for each query fi, the

adversary submits a function which requests the token for ℓki where ki is the ith bit of the key.

Finally, the adversary queries ℓ0. Then, we can compare the lengths of each of these queries to

the final query to determine the bits of the key. Alternatively, we could avoid key-dependent

queries by choosing a label for each i and picking its length as long or short based on the value of

ki, then recovering this later. One can avoid this leakage using volume-hiding primitives, which

may incur significant bandwidth overhead if the maximum value length in the array greatly

exceeds that of most other values. Volume-hiding primitives in the literature also incur significant

storage overhead [90, 114].

More generally, the necessary conditions under for key exfiltration not to occur is

comparable KMO’s notion of “zero-leakage” (ZL) primitives [91], which limits leakage to

the security parameter and public information. Confirming this intuition is the fact that ZL

schemes also incur the logarithmic bandwidth overhead of ORAM and worst-case storage of

6They prove a lower bound for the slightly weaker notion of decoupled query equality, which is enough to run
the adversary described.

164

Alg Ayeff.Enc
(
(Ka,Ks),A

)
For ℓ ∈ A.Lbls do A[ℓ]←$SE.Enc(Ks,A[ℓ])

Return Aye.Enc(Ka,A)

Alg Ayeff.Tok
(
(Ka,Ks), ℓ

)
Return Aye.Tok(Ka, ℓ)

Alg Ayeff.Eval(tk,ED)

Return Aye.Eval(tk,ED)

Alg Ayeff.Dec
(
(Ka,Ks),c

)
Return Aye.Dec(Ka,SE.Dec(Ks,c))

Alg Lff
(
s,A

)
For ℓ ∈ A.Lbls do

n← SE.cl(|A[ℓ]|)
A[ℓ]←${0,1}n

Return L(s,A)

Alg Lff
(
q, ℓ,St

)
Return L(q, ℓ,St)

Figure 3.14. Algorithms (left) and leakage algorithm (right) for Fff-secure RH AYE scheme
Ayeff = FfT[Aye,SE] constructed using AYE scheme Aye (with leakage algorithm L) and KDM-
secure SE scheme SE.

volume-hiding primitives. But the notions are not exactly the same since an adversary could

exfiltrate key bits using the ZL scheme’s “public” information such as the maximum value length

and total number of blocks in the array. At the same time, given a sufficiently long key (where

2λ is greater than the number of distinguishable leakage profiles) a scheme may not be ZL but

still won’t permit key-exfiltration of the whole key.

In conclusion, Fall-secure RH AYE is impossible for “standard” schemes and requires

significant bandwidth, storage and key-management overhead to achieve.

Generic RH transform for Fff-secure AYE.

On the other hand, with RH AYE Fff-security is achievable. We give a transform FfT

which takes a AYE scheme Aye and SE scheme SE and returns an RH AYE scheme. The goal

here is to “wrap” the A values with a layer of KDM SE, thereby elevating the standard security

(i.e. FkInd-security) of Aye to Fff-security. The detailed algorithms for Ayeff = FfT[Aye,SE] are

given in Fig. 3.14. Note that Ayeff.KS= Aye.KS×SE.KS. We state and prove its security below.

Theorem 24 Let A be an adversary, L be a leakage algorithm and S be a simulator. Let

Ayeff = FfT[Aye,SE] be the RH AYE scheme and Lff be the leakage algorithm in Fig. 3.14. Then,

165

Adversary AENC
se

Ka←$Aye.KS ; (f0,Sta)←$A(s)
Define L,{gℓ}ℓ∈L : as in Sect. 3.6 for f0

For ℓ ∈ L do
Define g′ : g′(Ks) = gℓ(Ka)

A[ℓ]←$ ENC(g′)
ED←$Aye.Enc(Ka,A)

Return ATOK∗(q,ED,Sta)

Oracle TOK∗(f)

Return Aye.Tok
(
Ka, f (Ka)

)

Adversary Ast(s)

(f0,Sta)←$A(s)
Define L,{gℓ}ℓ∈L : as in Sect. 3.6 for f0

For ℓ ∈ L do A[ℓ]←${0,1}SE.cl(|gℓ(Ka)|)

Return (A,Sta)

Adversary ATOK
st (q,ED,Sta)

Return ATOK∗(q,ED,Sta)

Oracle TOK∗(f)

Define x : x = f (Ka)

Return TOK(x)

Games G0 , G1

Ka←$Aye.KS ; (f0,Sta)←$A(s)
Define L,{gℓ}ℓ∈L : as in Sect. 3.6 for f0

For ℓ ∈ L do
A[ℓ]←$SE.Enc(gℓ(Ka))

A[ℓ]←${0,1}SE.cl(|gℓ(Ka)|)

ED←$Aye.Enc(Ka,A)

b′←$ATOK(q,ED,Sta) ; Return b′ = 1

Oracle TOK(f)

Return Aye.Tok(f (Ka))

Game G2

Ka←$Aye.KS ; (f0,Sta)←$A(s)
Define L,{gℓ}ℓ∈L : as in Sect. 3.6 for f0

For ℓ ∈ L do A[ℓ]←${0,1}SE.cl(|gℓ(Ka)|)

(lk,St)←$L(s,A)

(ED,St ′)←$S(s, lk)
b′←$ATOK(q,ED,Sta) ; Return b′ = 1

Oracle TOK(f)

(lk,St)←$L(q, f (Ka),St)
(tk,St ′)←$S(q, lk,St ′) ; Return tk

Figure 3.15. Adversaries and games used in proof of Theorem 24.

166

there exists Ast,Ase such that:

AdvFff-ss
Ayeff,Lff,S(A)≤ Advss

Aye,L,S(Ast)+Advkdm
SE (Ase).

Proof. The adversaries Ast,Ase are given in Fig. 3.15. Notice that both adversaries run A and

can interpret the f0 provided by it during the setup phase as L,{gℓ}ℓ∈L because we A produced

Fff functions (as described in Section 3.6). They then construct array A, with Ase following

Ayeff.Enc but using its ENC oracle to perform encryption. Ast does the same but selects random

strings of the appropriate lengths in place of encryption. Notice thatAst can play Gss
Aye,L,S games

because the array A and its queries x are not key-dependent. This follows from the definition of

Fff functions.

Now consider the hybrid games G0,G1,G2. G0 is exactly what happens in the “real

world” in GFff-ss
Ayeff,La,S(A) while G2 is exactly what happens in the “ideal world”. This gives us

AdvFff-ss
Ayeff,La,S(A) = Pr[G0]−Pr[G2].

G1 is the same as G0 except that the entries in A are randomly selected strings of the appropriate

length instead of encryptions of the gℓ(Ka). This gives us the following (where b is the challenge

bit in the respective games), which together with the above equation completes the proof:

Pr[G0]−Pr[G1] = Pr[Gkdm
SE (Ase)|b = 1]−Pr[Gkdm

SE (Ase)|b = 0] = Advkdm
SE (Ase)

Pr[G1]−Pr[G2] = Pr[Gss
Aye,L,S(Ast)|b = 1]−Pr[Gss

Aye,L,S(Ast)|b = 0] = Advss
Aye,L,S(Ast)

□

Note that Ayeff is a correct and Fff-secure RH AYE no matter Aye’s response type. Also,

when Aye is instantiated using standard techniques from the literature (including the scheme in

Fig. 3.2) each Aye[ℓ] will be symmetrically encrypted twice. Therefore, we recommend that FfT

167

be used with a RR variant of Aye so that the outer layer of (non-KDM) symmetric encryption will

be removed by the server thereby reducing the client’s computational overhead from adopting

Ayeff.

It is worth noting here what makes Fff-security efficiently possible for RH AYE. If we

consider the adversaries above which break Fall-security, it is the abuse of key-dependent queries

and length information, both of which are disallowed in the definition of Fff. Based on previous

results, it makes sense this is the barrier for efficient key-dependent RH AYE schemes. Since

KDM security can be secure for fixed length functions, and query equality pattern seems to be an

efficiency barrier for StE [113]. There could be more restricted function classes which capture

different efficiency barriers for RH AYE. Capturing other natural barriers aside from fixed format

functions remains an open question.

Dedicated RH transform for Fff-secure AYE.

A natural follow-up question to the above point is: Can we completely avoid encrypting

the A’s values twice? Intuitively, this should be possible since the layer of KDM-secure SE

should be sufficient for data-privacy so any IND$-secure SE used in Aye is not needed. This

would further reduce computational overhead during setup and evaluation compared to the

generic solution.

We concretize this intuition by stating and proving that the RH AYE variant of CJJ+’s

SSE scheme (recalled in Fig. 3.2 as Ayeπ
h) is Fff-secure, without modification, so long as the

symmetric encryption primitive used within is KDM-secure. The proof of this result is very

similar to that of Ayeπ
h ’s security in the standard model (which has been studied and detailed by

CJJ+ and JT [48, 85]) so we omit it for brevity.

Theorem 25 Let A be an adversary and Ayeπ
h be the RH AYE scheme defined in Fig. 3.2 with

primitives SE,F leakage algorithm Lπ
h and simulator Sπ

h . Then there exists Ase,Af such that:

AdvFff-ss
Ayeπ

h ,Lπ
h ,S

π
h
(A)≤ Advkdm

SE (Ase)+N ·Advprf
F (Af)

168

where N is the maximum number of labels in the array provided by A.

3.6.3 KD-security of Response-Flexible AYE

We now have results on Fff-security for RH and RR, so a natural follow-up is how this

applies to RF AYE. Intuitively, much like with RR AYE we cannot allow the adversary to store

key dependent values in any A[1∥ℓ] but should allow arbitrary key-dependent strings in the

A[0∥ℓ] entries.

Response-flexible function class.

We formalize this by defining Frf for Ayef which is a subclass of Fff.

We say that f = (f0, f1, ... , fn) is in Frf if, when f0 is expressed using per-label functions

{gℓ}ℓ∈L, all ℓ ∈ L where ℓ= 1∥ℓ′ are such that gℓ(K1) = gℓ(K2) for all K1,K2 ∈ Ayef.KS.

Frf-secure RF AYE.

We can realize such a scheme via the RfT transform from Section 3.5 in Fig. 3.4, assum-

ing that SE is KDM-secure. We omit a proof of this result due to its similarity to Theorem 20

and Theorem 24.

Theorem 26 Let A be an adversary, L a leakage algorithm and S a simulator. Let Ayef =

RfT[Ayer,SE,F],Lf be as defined in Section 3.5. Then there exists Ass,Ase,Af,Sf such that:

AdvFrf-ss
Ayef,Lf,Sf

(A)≤ Advss
Ayer,L,S(Ass)+Advkdm

SE (Ase)+M ·Advprf
F (Af),

where M is the maximum number of response-hiding TOK queries made by A.

3.7 Acknowledgements

We thank Mihir Bellare, Wei Dai and Keegan Ryan for discussions and insights.

This chapter, in full, is currently being prepared for publication of the material. Cash,

David; Hoover, Alexander; Ng, Ruth. The dissertation author was the primary investigator and

author of this paper.

169

Bibliography

[1] CakePHP: Using the IV as the key. http://www.cryptofails.com/post/70059594911/
cakephp-using-the-iv-as-the-key. Accessed: 2019-02-12.

[2] encrypted-bigquery-client. https://github.com/google/encrypted-bigquery-client, 2015.

[3] City of chicago data portal. https://data.cityofchicago.org/, 2021.

[4] Sakila sample database. https://dev.mysql.com/doc/sakila/en/, 2021.

[5] Farzaneh Abed, Scott R. Fluhrer, Christian Forler, Eik List, Stefan Lucks, David A.
McGrew, and Jakob Wenzel. Pipelineable on-line encryption. In Carlos Cid and Chris-
tian Rechberger, editors, FSE 2014, volume 8540 of LNCS, pages 205–223. Springer,
Heidelberg, March 2015.

[6] Tolga Acar, Mira Belenkiy, Mihir Bellare, and David Cash. Cryptographic agility and its
relation to circular encryption. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110
of LNCS, pages 403–422. Springer, Heidelberg, May / June 2010.

[7] Ghous Amjad, Seny Kamara, and Tarik Moataz. Breach-resistant structured encryption.
Cryptology ePrint Archive, Report 2018/195, 2018. https://eprint.iacr.org/2018/195.

[8] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan
Yasuda. How to securely release unverified plaintext in authenticated encryption. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS,
pages 105–125. Springer, Heidelberg, December 2014.

[9] Panagiotis Antonopoulos, Arvind Arasu, Kunal D Singh, Ken Eguro, Nitish Gupta, Rajat
Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann, Nikolas Ogg, et al. Azure
sql database always encrypted. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1511–1525, 2020.

[10] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 595–618. Springer, Heidelberg,
August 2009.

170

http://www.cryptofails.com/post/70059594911/cakephp-using-the-iv-as-the-key
http://www.cryptofails.com/post/70059594911/cakephp-using-the-iv-as-the-key
https://github.com/google/encrypted-bigquery-client
https://data.cityofchicago.org/
https://dev.mysql.com/doc/sakila/en/
https://eprint.iacr.org/2018/195

[11] Gilad Asharov, Moni Naor, Gil Segev, and Ido Shahaf. Searchable symmetric encryption:
optimal locality in linear space via two-dimensional balanced allocations. In Daniel Wichs
and Yishay Mansour, editors, 48th ACM STOC, pages 1101–1114. ACM Press, June 2016.

[12] Gilad Asharov, Gil Segev, and Ido Shahaf. Tight tradeoffs in searchable symmetric
encryption. Cryptology ePrint Archive, Report 2018/507, 2018. https://eprint.iacr.org/
2018/507.

[13] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting authenticated encryption
robustness with minimal modifications. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 3–33. Springer, Heidelberg,
August 2017.

[14] J. Aumasson, S. Babbage, D.J. Bernstein, C. Cid, J. Daemen, O. Dunkelman, K. Gaj,
S. Gueron, P. Junod, A. Langley, D. McGrew, K. Paterson, B. Preneel, C. Rechberger,
V. Rijmen, M. Robshaw, P. Sarkar, P. Schaumont, A. Shamir, and I. Verbauwhede. CHAE:
Challenges in authenticated encryption. ECRYPT-CSA D1.1, Revision 1.05, March 2017.
https://chae.cr.yp.to/whitepaper.html.

[15] Michael Backes, Markus Dürmuth, and Dominique Unruh. OAEP is secure under key-
dependent messages. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS,
pages 506–523. Springer, Heidelberg, December 2008.

[16] Sumeet Bajaj and Radu Sion. Trusteddb: A trusted hardware-based database with
privacy and data confidentiality. IEEE Transactions on Knowledge and Data Engineering,
26(3):752–765, 2013.

[17] Manuel Barbosa and Pooya Farshim. Indifferentiable authenticated encryption. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 187–220. Springer, Heidelberg, August 2018.

[18] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Authenticated
encryption in the face of protocol and side channel leakage. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 693–723.
Springer, Heidelberg, December 2017.

[19] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Reconciling
AE robustness notions. In Jens Groth, editor, 15th IMA International Conference on
Cryptography and Coding, volume 9496 of LNCS, pages 94–111. Springer, Heidelberg,
December 2015.

[20] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie Rogers.
Smcql: secure querying for federated databases. Proceedings of the VLDB Endowment,
10(6):673–684, 2017.

[21] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a
multi-user setting: Security proofs and improvements. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer, Heidelberg, May 2000.

171

https://eprint.iacr.org/2018/507
https://eprint.iacr.org/2018/507
https://chae.cr.yp.to/whitepaper.html

[22] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently
searchable encryption. Cryptology ePrint Archive, Report 2006/186, 2006. http://eprint.
iacr.org/2006/186.

[23] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited:
The cascade construction and its concrete security. In 37th FOCS, pages 514–523. IEEE
Computer Society Press, October 1996.

[24] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer
Society Press, October 1997.

[25] Mihir Bellare and Sriram Keelveedhi. Authenticated and misuse-resistant encryption of
key-dependent data. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 610–629. Springer, Heidelberg, August 2011.

[26] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In Tatsuaki Okamoto, ed-
itor, ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer, Heidelberg,
December 2000.

[27] Mihir Bellare, Ruth Ng, and Björn Tackmann. Nonces are noticed: AEAD revisited. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume
11692 of LNCS, pages 235–265. Springer, Heidelberg, August 2019.

[28] Mihir Bellare and Phillip Rogaway. On the construction of variable-input-length ciphers.
In Lars R. Knudsen, editor, FSE’99, volume 1636 of LNCS, pages 231–244. Springer,
Heidelberg, March 1999.

[29] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient cryptography. In Tatsuaki Okamoto,
editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 317–330. Springer, Heidelberg,
December 2000.

[30] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

[31] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 247–276. Springer, Heidelberg, August 2016.

[32] Daniel J. Bernstein. Re: secret message numbers. Message in Google group
on cryptographic competitions, October 2013. https://groups.google.com/d/msg/
crypto-competitions/n5ECGwYr6Vk/bsEfPWqSAU4J.

[33] D.J. Bernstein. CAESAR call for submissions, final (2014.01.27), 2014.

172

http://eprint.iacr.org/2006/186
http://eprint.iacr.org/2006/186
https://groups.google.com/d/msg/crypto-competitions/n5ECGwYr6Vk/bsEfPWqSAU4J
https://groups.google.com/d/msg/crypto-competitions/n5ECGwYr6Vk/bsEfPWqSAU4J

[34] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Stan-
daert. Tedt, a leakage-resilient aead mode for high (physical) security applications.
Cryptology ePrint Archive, Report 2019/137, 2019. https://eprint.iacr.org/2019/137.

[35] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly
Shmatikov. The tao of inference in privacy-protected databases. Proceedings of the
VLDB Endowment, 11(11):1715–1728, 2018.

[36] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence
of key-dependent messages. Cryptology ePrint Archive, Report 2002/100, 2002. http:
//eprint.iacr.org/2002/100.

[37] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse attacks.
Cryptology ePrint Archive, Report 2019/1175, 2019. https://eprint.iacr.org/2019/1175.

[38] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision Diffie-Hellman. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 108–125. Springer, Heidelberg, August 2008.

[39] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-GCM-SIV: Multi-
user security, faster key derivation, and better bounds. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 468–499.
Springer, Heidelberg, April / May 2018.

[40] Raphael Bost. Sophos - forward secure searchable encryption. Cryptology ePrint Archive,
Report 2016/728, 2016. http://eprint.iacr.org/2016/728.

[41] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private search-
able encryption from constrained cryptographic primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1465–1482.
ACM Press, October / November 2017.

[42] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 505–524. Springer, Heidelberg, August 2011.

[43] Nicolas Bruno and Luis Gravano. Statistics on query expressions in relational database
management systems. PhD thesis, Columbia University, 2003.

[44] CAESAR Committee. Cryptographic competitions: Caesar call for submissions, final
(2014.01.27). https://competitions.cr.yp.to/caesar-call.html. Accessed: 2018-07-23.

[45] Yang Cao, Wenfei Fan, Yanghao Wang, and Ke Yi. Querying shared data with security
heterogeneity. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 575–585, 2020.

173

https://eprint.iacr.org/2019/137
http://eprint.iacr.org/2002/100
http://eprint.iacr.org/2002/100
https://eprint.iacr.org/2019/1175
http://eprint.iacr.org/2016/728
https://competitions.cr.yp.to/caesar-call.html

[46] David Cash, Matthew Green, and Susan Hohenberger. New definitions and separations
for circular security. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,
PKC 2012, volume 7293 of LNCS, pages 540–557. Springer, Heidelberg, May 2012.

[47] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks
against searchable encryption. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 668–679. ACM Press, October 2015.

[48] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-large databases:
Data structures and implementation. In NDSS 2014. The Internet Society, February 2014.

[49] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu,
and Michael Steiner. Highly-scalable searchable symmetric encryption with support for
Boolean queries. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 353–373. Springer, Heidelberg, August 2013.

[50] David Cash and Stefano Tessaro. The locality of searchable symmetric encryption. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of
LNCS, pages 351–368. Springer, Heidelberg, May 2014.

[51] Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proceedings of the ninth annual ACM symposium on Theory of
computing, pages 77–90, 1977.

[52] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 577–594. Springer,
Heidelberg, December 2010.

[53] Sherman SM Chow, Jie-Han Lee, and Lakshminarayanan Subramanian. Two-party
computation model for privacy-preserving queries over distributed databases. In NDSS.
Citeseer, 2009.

[54] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia, Stefano
Paraboschi, and Pierangela Samarati. Keep a few: Outsourcing data while maintaining
confidentiality. In European Symposium on Research in Computer Security, pages 440–
455. Springer, 2009.

[55] Aisling Connolly, Pooya Farshim, and Georg Fuchsbauer. Security of symmetric primitives
against key-correlated attacks. IACR Transactions on Symmetric Cryptology, pages 193–
230, 2019.

[56] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 79–88.
ACM Press, October / November 2006.

174

[57] Ernesto Damiani, S De Capitani Vimercati, Sushil Jajodia, Stefano Paraboschi, and
Pierangela Samarati. Balancing confidentiality and efficiency in untrusted relational
dbmss. In Proceedings of the 10th ACM conference on Computer and communications
security, pages 93–102, 2003.

[58] Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos Papamanthou. Searchable
encryption with optimal locality: Achieving sublogarithmic read efficiency. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 371–406. Springer, Heidelberg, August 2018.

[59] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and Saurabh
Shintre. Seal: Attack mitigation for encrypted databases via adjustable leakage. In 29th
USENIX Security Symposium (USENIX Security 20), 2020.

[60] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message
franking: From invisible salamanders to encryptment. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 155–186.
Springer, Heidelberg, August 2018.

[61] Morris Dworkin. Recommendation for block cipher modes of operation: Galois/Counter
Mode (GCM) and GMAC. NIST Special Publication 800-38D, November 2007.

[62] Sergei Evdokimov and Oliver Günther. Encryption techniques for secure database out-
sourcing. In European Symposium on Research in Computer Security, pages 327–342.
Springer, 2007.

[63] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and Michael
Steiner. Rich queries on encrypted data: Beyond exact matches. In European symposium
on research in computer security, pages 123–145. Springer, 2015.

[64] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. Security of symmetric primitives
under incorrect usage of keys. IACR Trans. Symm. Cryptol., 2017(1):449–473, 2017.

[65] Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A family of almost
foolproof on-line authenticated encryption schemes. In Anne Canteaut, editor, FSE 2012,
volume 7549 of LNCS, pages 196–215. Springer, Heidelberg, March 2012.

[66] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. Tworam: efficient
oblivious ram in two rounds with applications to searchable encryption. In Annual
International Cryptology Conference, pages 563–592. Springer, 2016.

[67] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http:
//eprint.iacr.org/2003/216.

[68] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating IND-CPA and circular
security for unbounded length key cycles. In Serge Fehr, editor, PKC 2017, Part I, volume
10174 of LNCS, pages 232–246. Springer, Heidelberg, March 2017.

175

http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2003/216

[69] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating semantic and circular
security for symmetric-key bit encryption from the learning with errors assumption. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II,
volume 10211 of LNCS, pages 528–557. Springer, Heidelberg, April / May 2017.

[70] Patrick Grofig, Isabelle Hang, Martin Härterich, Florian Kerschbaum, Mathias Kohler,
Andreas Schaad, Axel Schröpfer, and Walter Tighzert. Privacy by encrypted databases.
In Privacy Technologies and Policy - Second Annual Privacy Forum, APF 2014, Athens,
Greece, May 20-21, 2014. Proceedings, pages 56–69, 2014.

[71] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Pump up
the volume: Practical database reconstruction from volume leakage on range queries. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 315–331, 2018.

[72] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing
authenticated encryption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 66–97. Springer, Heidelberg, August 2017.

[73] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas
Ristenpart. Leakage-abuse attacks against order-revealing encryption. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 655–672. IEEE, 2017.

[74] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: Specification and
analysis. Cryptology ePrint Archive, Report 2017/168, 2017. http://eprint.iacr.org/2017/
168.

[75] Shay Gueron and Yehuda Lindell. GCM-SIV: Full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015, pages 109–119. ACM Press, October 2015.

[76] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. Encrypted databases: New volume
attacks against range queries. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 361–378, 2019.

[77] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql over encrypted
data in the database-service-provider model. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 216–227, 2002.

[78] Timon Hackenjos, Florian Hahn, and Florian Kerschbaum. Sagma: Secure aggregation
grouped by multiple attributes. ACM SIGMOD Record, 2020.

[79] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halderman. Mining your
ps and qs: Detection of widespread weak keys in network devices. In USENIX Security
Symposium, volume 8, page 1, 2012.

176

http://eprint.iacr.org/2017/168
http://eprint.iacr.org/2017/168

[80] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-encryption
AEZ and the problem that it solves. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 15–44. Springer, Heidelberg,
April 2015.

[81] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár. Online
authenticated-encryption and its nonce-reuse misuse-resistance. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
493–517. Springer, Heidelberg, August 2015.

[82] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. The multi-user
security of GCM, revisited: Tight bounds for nonce randomization. In David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
1429–1440. ACM Press, October 2018.

[83] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclo-
sure on searchable encryption: Ramification, attack and mitigation. In NDSS 2012. The
Internet Society, February 2012.

[84] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and repairing GCM
security proofs. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 31–49. Springer, Heidelberg, August 2012.

[85] Joseph Jaeger and Nirvan Tyagi. Handling adaptive compromise for practical encryption
schemes. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I,
volume 12170 of LNCS, pages 3–32. Springer, Heidelberg, August 2020.

[86] Antoine Joux. Authentication failures in NIST version of GCM, 2006. Comments
submitted to NIST modes of operation process, https://csrc.nist.gov/csrc/media/
projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/
joux comments.pdf.

[87] Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption with worst-
case sub-linear complexity. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 94–124. Springer, Heidelberg,
April / May 2017.

[88] Seny Kamara and Tarik Moataz. Encrypted multi-maps with computationally-secure
leakage. IACR Cryptol. ePrint Arch., 2018:978, 2018.

[89] Seny Kamara and Tarik Moataz. SQL on structurally-encrypted databases. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume 11272 of LNCS,
pages 149–180. Springer, Heidelberg, December 2018.

[90] Seny Kamara and Tarik Moataz. Computationally volume-hiding structured encryption.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of
LNCS, pages 183–213. Springer, Heidelberg, May 2019.

177

https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf

[91] Seny Kamara, Tarik Moataz, and Olga Ohrimenko. Structured encryption and leakage
suppression. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 339–370. Springer, Heidelberg, August 2018.

[92] Seny Kamara, Tarik Moataz, Stan Zdonik, and Zheguang Zhao. An optimal relational
database encryption scheme. Cryptology ePrint Archive, Report 2020/274, 2020. https:
//eprint.iacr.org/2020/274 Accessed: 2020-02-29.

[93] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable symmetric
encryption. In International conference on financial cryptography and data security, pages
258–274. Springer, 2013.

[94] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable sym-
metric encryption. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
2012, pages 965–976. ACM Press, October 2012.

[95] Murat Kantarcıoglu and Chris Clifton. Security issues in querying encrypted data. In
IFIP Annual Conference on Data and Applications Security and Privacy, pages 325–337.
Springer, 2005.

[96] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure
modes of operation. In Bruce Schneier, editor, FSE 2000, volume 1978 of LNCS, pages
284–299. Springer, Heidelberg, April 2001.

[97] Venkata Koppula and Brent Waters. Circular security separations for arbitrary length
cycles from LWE. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part II, volume 9815 of LNCS, pages 681–700. Springer, Heidelberg, August 2016.

[98] Hugo Krawczyk. LFSR-based hashing and authentication. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 129–139. Springer, Heidelberg, August 1994.

[99] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption
modes. In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages 306–327.
Springer, Heidelberg, February 2011.

[100] Kaoru Kurosawa and Tetsu Iwata. TMAC: Two-key CBC MAC. In Marc Joye, editor,
CT-RSA 2003, volume 2612 of LNCS, pages 33–49. Springer, Heidelberg, April 2003.

[101] Encrypted Systems Lab. The clusion library. https://github.com/encryptedsystems/Clusion,
2020.

[102] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. Journal of
Cryptology, 24(3):588–613, July 2011.

[103] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-key security
degradation. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II,
volume 10625 of LNCS, pages 575–605. Springer, Heidelberg, December 2017.

178

https://eprint.iacr.org/2020/274
https://eprint.iacr.org/2020/274
https://github.com/encryptedsystems/Clusion

[104] David McGrew. An interface and algorithms for authenticated encryption. IETF Network
Working Group, RFC 5116, January 2008.

[105] David A. McGrew and John Viega. The security and performance of the Galois/counter
mode (GCM) of operation. In Anne Canteaut and Kapalee Viswanathan, editors, IN-
DOCRYPT 2004, volume 3348 of LNCS, pages 343–355. Springer, Heidelberg, December
2004.

[106] Carl H Meyer and Stephen M Matyas. CRYPTOGRAPHY: A new dimension in computer
data security: A guide for the design and implementation of secure systems. Wiley, 1982.

[107] Kazuhiko Minematsu. Authenticated encryption with small stretch (or, how to accelerate
AERO). In Joseph K. Liu and Ron Steinfeld, editors, ACISP 16, Part II, volume 9723 of
LNCS, pages 347–362. Springer, Heidelberg, July 2016.

[108] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering generic
composition. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 257–274. Springer, Heidelberg, May 2014.

[109] Chanathip Namprempre, Phillip Rogaway, and Tom Shrimpton. AE5 security notions:
Definitions implicit in the CAESAR call. Cryptology ePrint Archive, Report 2013/242,
2013. http://eprint.iacr.org/2013/242.

[110] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on property-
preserving encrypted databases. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 644–655. ACM Press, October 2015.

[111] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. Dynamic searchable
encryption via blind storage. In 2014 IEEE Symposium on Security and Privacy, pages
639–654. IEEE Computer Society Press, May 2014.

[112] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private stateful information retrieval.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 1002–1019. ACM Press, October 2018.

[113] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Lower bounds for encrypted multi-
maps and searchable encryption in the leakage cell probe model. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages
433–463. Springer, Heidelberg, August 2020.

[114] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mitigating leakage in secure
cloud-hosted data structures: Volume-hiding for multi-maps via hashing. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 79–93. ACM Press, November 2019.

[115] Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authenticated encryption
modes for tweakable block ciphers. In Matthew Robshaw and Jonathan Katz, editors,

179

http://eprint.iacr.org/2013/242

CRYPTO 2016, Part I, volume 9814 of LNCS, pages 33–63. Springer, Heidelberg, August
2016.

[116] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: protecting confidentiality with encrypted query processing. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles, pages 85–100, 2011.

[117] David Pouliot and Charles V. Wright. The shadow nemesis: Inference attacks on efficiently
deployable, efficiently searchable encryption. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages
1341–1352. ACM Press, October 2016.

[118] Reddit. Hash of message as nonce?, 2015. https://redd.it/3c504m.

[119] Adam Rivkin. Hybrid indexing simulations. https://github.com/AdamRivkin/
Hybrid-Indexing-Simulations, 2021.

[120] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri,
editor, ACM CCS 2002, pages 98–107. ACM Press, November 2002.

[121] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of
LNCS, pages 16–31. Springer, Heidelberg, December 2004.

[122] Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and Willi Meier,
editors, FSE 2004, volume 3017 of LNCS, pages 348–359. Springer, Heidelberg, February
2004.

[123] Phillip Rogaway. The evolution of authenticated encryption. Real World Cryptography
Workshop, Stanford, January 2013. https://crypto.stanford.edu/RealWorldCrypto/slides/
phil.pdf.

[124] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher mode
of operation for efficient authenticated encryption. In Michael K. Reiter and Pierangela
Samarati, editors, ACM CCS 2001, pages 196–205. ACM Press, November 2001.

[125] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap
problem. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
373–390. Springer, Heidelberg, May / June 2006.

[126] Phillip Rogaway, Mark Wooding, and Haibin Zhang. The security of ciphertext stealing.
In Anne Canteaut, editor, FSE 2012, volume 7549 of LNCS, pages 180–195. Springer,
Heidelberg, March 2012.

[127] Joseph Sack. Optimizing your query plans with the sql server 2014 cardinality estimator,
2014.

180

https://redd.it/3c504m
https://github.com/AdamRivkin/Hybrid-Indexing-Simulations
https://github.com/AdamRivkin/Hybrid-Indexing-Simulations
https://crypto.stanford.edu/RealWorldCrypto/slides/phil.pdf
https://crypto.stanford.edu/RealWorldCrypto/slides/phil.pdf

[128] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches
on encrypted data. In 2000 IEEE Symposium on Security and Privacy, pages 44–55. IEEE
Computer Society Press, May 2000.

[129] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic searchable
encryption with small leakage. In NDSS 2014. The Internet Society, February 2014.

[130] Stephen Lyle Tu, M Frans Kaashoek, Samuel R Madden, and Nickolai Zeldovich. Pro-
cessing analytical queries over encrypted data. 2013.

[131] Serge Vaudenay and Damian Vizár. Under pressure: Security of caesar candidates
beyond their guarantees. Cryptology ePrint Archive, Report 2017/1147, 2017. https:
//eprint.iacr.org/2017/1147.

[132] Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. Secure ranked keyword search
over encrypted cloud data. In 2010 IEEE 30th international conference on distributed
computing systems, pages 253–262. IEEE, 2010.

[133] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption algorithm. In
Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 185–201. Springer, Heidelberg, August 2014.

[134] Zhiqiang Yang, Sheng Zhong, and Rebecca N Wright. Privacy-preserving queries on
encrypted data. In European Symposium on Research in Computer Security, pages
479–495. Springer, 2006.

[135] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are
belong to us: The power of file-injection attacks on searchable encryption. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016, pages 707–720. USENIX
Association, August 2016.

181

https://eprint.iacr.org/2017/1147
https://eprint.iacr.org/2017/1147

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Nonces are Noticed: AEAD Revisited
	Introduction
	Preliminaries
	Two frameworks for nonce-based encryption
	Some general results
	Usage of NBE1: The Transmit-Nonce transform
	Basic transforms
	Preliminaries
	The HN1 transform
	The HN2 transform
	The HN3 transform

	Advanced transforms
	Advanced security of HN1
	Advanced security of HN2
	The HN4 transform
	The HN5 transform

	Dedicated transform for GCM
	A real-world perspective
	Acknowledgements

	Improved Structured Encryption for SQL Databases via Hybrid Indexing
	Introduction
	Preliminaries
	Structured Indexing for SQL data types
	SQL Data Types
	Constructing StE for SQL Data Types Using Encrypted Indexes

	Partially Precomputed Joins
	Indexing of Non-Recursive Joins
	PP indexing for recursive queries

	Hybrid indexing
	Simulations on Real-World Datasets
	Conclusion
	Acknowledgements

	Composition of Structured Encryption and its Relation to Key-Dependent Security
	Introduction
	Preliminaries
	StE for Double-Level Indexing
	``Composite'' Double-Level Indexing
	Inconsistent simulators in prior work.

	``Monolithic'' Double-Level Indexing via Key-Dependent AYE
	KD-Secure StE for Broader Function Classes
	KD-security of Response-Revealing AYE
	KD-security of Response-Hiding AYE
	KD-security of Response-Flexible AYE

	Acknowledgements

	Bibliography

