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Abstract

Modeling of Fourier amplitude spectra (FAS) of seismic motions has

gained much attention in engineering seismology. In the past few years,

several ground motion prediction equations (GMPEs) and inter-frequency

correlation structure of FAS have been established. Due to many preferable

characteristics of FAS, probabilistic seismic hazard/risk analysis is rapidly

changing from ergodic, spectrum acceleration Sa(T0)-based approach to non-

ergodic, site-specific, FAS-based approach. This paper presents time do-

main intrusive framework for probabilistic seismic risk analysis using GMPE

of FAS. Methodology for time domain stochastic ground motion modeling

based on GMPEs of FAS is presented in some detail. The simulated un-

certain motions are modeled as a random process and represented by poly-

nomial chaos Karhunen-Loève expansion. The random process excitations

are further propagated into the uncertain structural system using Galerkin
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stochastic finite element method (SFEM). Probabilistic evolution of struc-

tural response is solved, and such solution is used to develop seismic risk for

any damage state. The presented framework is illustrated through seismic

risk analysis of a four-story building subjected to possible earthquakes from

two strike slip faults. The influences of the epistemic uncertainties in source

stress drop ∆σ and site attenuation κ0 on seismic risk are investigated. The

need for non-ergodic seismic risk analysis with source-specific and site specific

characterizations is emphasized.

Modeling of Fourier amplitude spectra (FAS) of seismic motions has

gained much attention in engineering seismology. In the past few years,

several ground motion prediction equations (GMPEs) and inter-frequency

correlation structure of FAS have been established. Due to many preferable

characteristics of FAS, probabilistic seismic hazard/risk analysis is rapidly

changing from ergodic, spectrum acceleration Sa(T0)-based approach to non-

ergodic, site-specific, FAS-based approach. This paper presents time do-

main intrusive framework for probabilistic seismic risk analysis using GMPE

of FAS. Methodology for time domain stochastic ground motion modeling

based on GMPEs of FAS is presented in some detail. The simulated un-

certain motions are modeled as a random process and represented by poly-

nomial chaos Karhunen-Loève expansion. The random process excitations

are further propagated into the uncertain structural system using Galerkin

stochastic finite element method (SFEM). Probabilistic evolution of struc-

tural response is solved, and such solution is used to develop seismic risk for

any damage state. The presented framework is illustrated through seismic

risk analysis of a four-story building subjected to possible earthquakes from

two strike slip faults. The influences of the epistemic uncertainties in source

stress drop ∆σ and site attenuation κ0 on seismic risk are investigated. The
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need for non-ergodic seismic risk analysis with source-specific and site specific

characterizations is emphasized.

Keywords: Seismic risk, Time domain approach, Intrusive stochastic

framework, Stochastic Finite Element Method (SFEM), Ground motion

prediction equation (GMPE), Fourier Amplitude Spectra (FAS)

1. Introduction1

Numerous research efforts in past several decades have established a2

framework for Performance-based Earthquake Engineering (PBEE) [1–5].3

Seismic design has gradually changed from deterministic strength-based de-4

sign to probabilistic deformation/performance-based design that accounts for5

all sources of uncertainties in the system [3, 5]. In the probabilistic PBEE6

framework developed within the Pacific Earthquake Engineering Research7

Center (PEER), there are four main components [4, 5]:8

• Hazard analysis for intensity measure (IM) of ground motions,9

• Structural analysis for engineering demand parameter (EDP),10

• Damage analysis characterized by damage measure (DM),11

• Loss analysis for decision variable (DV).12

Traditionally, EDP hazard is computed as the convolution of seismic haz-13

ard and structural fragility with respect to intensity measure (IM) of ground14

motions. Uncertainties in ground motions are represented with the vari-15

ability of IM through probabilistic seismic hazard analysis (PSHA), while16

uncertainties in structural systems can be taken into account using fragility17

analysis. This state of the art approach for seismic risk analysis has been18

popular in academia and is being adopted in engineering practices [5–7].19
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Although great progress has been made, there are problems in seismic risk20

analysis that remain to be solved/improved: First, IM needs to be selected21

as a proxy of damaging ground shaking on structure systems. Theoretically,22

the variability of the chosen IM is supposed to represent all the uncertainties23

in ground motions [8]. However, several researchers [9, 10] pointed out that24

typical scalar IM, such as spectral acceleration Sa(T0), could not capture25

all the uncertainties in seismic motions and could potentially underestimate26

seismic risk. Luco and Bazzurro [9] and Huang et al. [11], and others[12, 13],27

have shown that time domain nonlinear analysis with spectrum matched28

ground motions gives un-conservatively biased risk estimate. It is noted that29

excellent research advances have been made regarding appropriate IM(s) and30

ground motion records selection, e.g., averaged spectral acceleration [14, 15],31

vector IMs [16–20], and hazard-consistent ground motion records selection32

[21–26], etc.33

In conventional seismic risk analysis, Monte Carlo (MC) simulations of34

structural dynamic responses are required to develop fragility curves using35

incremental dynamic analysis (IDA) [27]. Monte Carlo (MC) method is a36

non-intrusive approach that relies on sampling techniques. The underlying37

deterministic models are iteratively solved with various sampling points of38

uncertainty [28]. To enhance the computational efficiency of non-intrusive39

approaches, several advanced Monte Carlo schemes have been developed and40

used for probabilistic structural analysis, e.g., Latin hypercube sampling41

[29, 30], quasi-Monte Carlo method [31], and machine learning enhanced42

approach [32]. In general, MC methods require more samples for reliable tail43

response estimation [32]. However, this issue is resolved when MC methods44

are used in conjunction with IM conditioning as in the case IDA. The condi-45

tioning IM essentially creates an importance sampling scheme such that only46
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limited number of seismic records and nonlinear time history analyses would47

be required to accurately capture the conditional variability in the structural48

response [33].49

On the other hand, the authors [34] have established a time domain in-50

trusive approach for probabilistic seismic risk analysis. Compared to the51

non-intrusive MC method, the intrusive approach directly propagates uncer-52

tainties through the engineering system by solving the underlying stochastic53

models, e.g., stochastic equations of motions in seismic structural analysis54

[35]. Using the stochastic method [36–39], seismic motions are simulated55

from stochastic Fourier amplitude spectra (FAS) that is computed with the56

well-known program SMSIM [40]. Uncertain seismic motions are modeled as57

a random process in time domain and are applied as stochastic excitations58

to the uncertain structural system. The probabilistic dynamic structural re-59

sponse is solved for using intrusive Galerkin stochastic finite element method60

(SFEM) [41, 42]. According to Bazzurro et al. [33], the time domain in-61

trusive approach [34] is a non-conditional approach in the sense that the62

uncertainties from ground motions are directly propagated into structural63

systems without IM conditioning. For any non-conditional approach, it is64

crucial to establish a realistic population of ground motions. The established65

ground motions set should cover all the important characteristics of seis-66

mic motions and their uncertainties that are critical to structural damages.67

Also, without the IM conditioning and importance sampling scheme from68

the conditional approach, the non-conditional approach needs to propagate69

more uncertainties in a holistic way. Therefore, it relies much on efficient70

uncertainty propagation methods.71

Recently, researchers in engineering seismology began to develop and pro-72

mote GMPEs of Fourier amplitude spectra (FAS) as a substitute for the73
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conventional proxy of seismic motions, spectra acceleration (Sa). FAS is74

a more direct representation of ground motions than Sa. The scaling of75

FAS is easier to be related with underlying physics and is better under-76

stood from the fundamental seismological theory [43–47]. The relationship77

between FAS and Sa is systematically studied by Bora et al. [43]. Bora78

et al. [44, 45] derived GMPEs for FAS using RESOURCE database and79

NGA-West2 database, respectively. Based on NGA-West2 database, a more80

sophisticated FAS GMPE, considering rupture depth, hanging wall effects81

and nonlinear site amplification, was developed by Bayless and Abrahamson82

[47]. The inter-frequency correlation structure of FAS is also investigated83

and used for validation of physics-based earthquake modeling [48]. A well-84

recognized advantage of these empirical FAS models is that, when combined85

with duration model, adjustment to GMPE of Sa can be easily made for86

regional/site-specific applications. As envisioned by Abrahamson [49], one of87

the major changes for seismic hazard/risk analyses in the near future will be88

the shift from ergodic Sa ground motion models to non-ergodic, site specific89

FAS models. It is also noted that by combining FAS GMPE with probabilis-90

tic model of phase derivative, also known as group delay time [50–54], time91

domain seismic risk analysis can be performed practically with remarkable92

simplicity. However, to the best knowledge of the authors’, there has not93

been any seismic risk analysis based on GMPE of FAS. To this end, this pa-94

per incorporates several emerging GMPEs [44, 45, 47] of FAS into the time95

domain intrusive seismic risk analysis framework developed by Wang et al.96

[34]. The stochastic modeling of uncertain motions are largely simplified97

with FAS GMPE, making the time domain framework readily applicable for98

practical seismic risk analysis.99

The organization of the paper is as follows: Section 2 summarizes the time100
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domain intrusive seismic risk analysis framework using empirical FAS model.101

Methodology for time domain uncertain seismic motions modeling based on102

GMPE of FAS is presented and verified in section 3. Section 4 formulates the103

general polynomial chaos Karhunen-Loève (PC-KL) expansion uncertainty104

quantification technique and Galerkin SFEM. The salient features of the105

proposed framework are illustrated through seismic risk analysis of a four-106

story shear frame building under potential earthquakes from two strike slip107

faults in section 5, while conclusions are drawn in section 6.108

2. Time Domain Intrusive Seismic Risk Analysis using GMPE of109

FAS110

As illustrated in Figure 1, the proposed framework contains four steps:111

1. Seismic source characterization (SSC),112

2. Stochastic ground motion modeling,113

3. Stochastic finite element analysis and114

4. Seismic risk computation.115

Seismic source characterization (SSC) part follows the current paradigm116

in PSHA [55]. Many hazard programs, for example OpenSHA [56] and117

HAZ45 [57], can perform SSC for a specific site considering epistemic un-118

certainty/aleatory variability of rupture segmentation, fault slip rate, earth-119

quake recurrence model and magnitude distribution, etc. Regional autho-120

rized earthquake rupture forecast (ERF) models can be utilized during SSC,121

e.g., the model of Third Uniform California Earthquake Rupture Forecast122

(UCERF3) [58] for California region. A list of seismic scenarios, i.e., dif-123

ferent combinations of magnitude Mi and distance Ri and corresponding124

occurrence rates λi(Mi, Ri) can be obtained through SSC.125
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Figure 1: Illustration of the time domain intrusive framework for seismic risk analysis

using GMPE of FAS.

8



For each earthquake scenario, time domain uncertain seismic motions are126

synthesized from stochastic FAS and Fourier phase spectrum (FPS). FAS127

is modeled as a Lognormal distributed random field [44, 59] with frequency128

as the spatial coordinate, whose marginal median and variation behavior129

are given by emerging GMPEs of FAS [44, 45, 47]. The inter-frequency130

correlation structure of FAS identified by Bayless and Abrahamson [46] is131

also adopted. Stochastic FPS is calculated as the integral of probabilistic132

phase derivative model derived by Baglio [54].133

In the third step, synthesized time series realizations of uncertain seismic134

motions are modeled as a random process and characterized with polyno-135

mial chaos Karhunen-Loève (PC-KL) expansion. PC-represented random136

process seismic motions are intrusively propagated into the uncertain struc-137

tural system using Galerkin SFEM, that provides complete probabilistic time138

evolution of the structural response. Probability of undesirable performance139

P (EDP > z|Mi, Ri) of the selected performance indicator EDP is deter-140

mined from the probabilistic dynamic structural response.141

Finally, if the damage measure (DM) is assumed to be a step function of142

EDP, seismic risk can be directly calculated by multiplying scenario rate with143

conditional failure probability and summarizing over all possible scenarios144

as described by equation 1. For other sophisticated conditional probability145

relationship P (DM |EDP ) between damage measure (DM) and EDP, seismic146

risk could also be calculated from EDP hazard λ(EDP > z) with little effort.147

λ(EDP > z) =
∑
i

λi(Mi, Ri)P (EDP > z|Mi, Ri) (1)

The above methodology differentiates from the current PBEE approach148

in terms of the ground motion interfaces. The current PBEE framework is149

a conditional approach based on the IM(s) of ground motions. The condi-150
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tional approach requires proper selection of IM(s) that are well-correlated to151

structural damages. With the proper IM conditioning in the PBEE frame-152

work, smaller conditional variability of structure responses can be quantified153

with fewer MC time history analysis. On the other hand, for the proposed154

non-conditional approach, all the uncertainties in the seismic motions are155

supposed to be well-sampled by a time domain, synthesized population of156

motions. The selection of structure-specific IM(s) is avoided. However, the157

non-conditional approach requires reliable time domain ground motion sim-158

ulation methods such that the generated population could represent all the159

important characteristics of seismic motions. Furthermore, due to the lack160

of IM conditioning, the total variability of structural responses quantified by161

the non-conditional approach is much larger. Propagating such uncertain-162

ties using plain Monte Carlo method could be computationally expensive.163

Therefore, the non-conditional approach has to be used together with effi-164

cient uncertainty propagation methods. Specifically in this study, we used165

GMPE of FAS and FPS to simulate time domain uncertain motions and166

intrusive Galerkin SFEM for efficient uncertainty propagation.167

3. Time Domain Stochastic Ground Motion Modeling using GMPE168

of FAS169

Time domain uncertain motions are inversely Fourier synthesized from170

stochastic FAS and FPS. The FAS GMPE derived by Bora et al. [44] (re-171

ferred as Bora15 model hereafter) is adopted for marginal median and stan-172

dard deviation of Log-normal distributed FAS random field. The proposed173

framework is general enough to use other FAS GMPEs as well [45, 47]. Mul-174

tiple FAS GMPEs can be considered with the logic tree approach [60]. In175

Bora15 model, the input parameters are: Moment magnitude Mw, stress176
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drop ∆σ, Joyner-Boore distance RJB, time-averaged shear-wave velocity in177

upper 30m of site VS30 and site attenuation parameter κ0. The uncertain178

FAS at frequency f follows equation 2,179

lnFAS(f) = c0 + c1Mw + c2M
2
w + c3ln(∆σ) + (c4 + c5Mw)ln(

√
R2
JB + c26)

−c7
√
R2
JB + c26 + c8ln(VS30)− c9κ0 + δtotal(f)

(2)

where c0 ∼ c9 are frequency dependent coefficients from regression analysis,180

and δtotal(f) is the total residual between ln[FAS(f)] and median prediction181

ln[FAS(f)]. The total residual δtotal(f) is well-represented as Gaussian dis-182

tributed random field with zero-mean, marginal standard deviation σ(f) and183

can be decomposed into between event δB , between station δS2S and single-184

station within-event δWS residuals respectively. The ε(f) is the normaliza-185

tion of δtotal(f) by σ(f), whose correlation structure ρε(fi),ε(fj) is found to be186

important for seismic risk analysis. Neglecting inter-frequency correlation187

ρε(fi),ε(fj) would underestimate seismic risk, as noted by Bayless and Abra-188

hamson [46]. Therefore, inter-frequency correlation of ε(f) observed from189

NGA-West2 records [46, 47] is considered in the FAS modeling as shown in190

Figure 2.191

Stochastic modeling of FPS is another important component. To capture192

the non-stationarity of seismic motions, phase difference modeling approach193

was first introduced by Ohsaki [61]. Thráinsson and Kiremidjian [50] modeled194

phase difference (∆Φ) as Beta distribution from 300 California earthquake195

records. The drawback of using phase difference lies in the instability affected196

by the seismic signal length. For example, the same record with different197

signal length (e.g., padding with zeros) would present different distributions198

of phase difference. Therefore, phase derivative Φ̇ has been adopted as a199
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Figure 2: Methodology for time domain stochastic ground motion modeling based on FAS

GMPE.

more stable measure for FPS modeling [52–54]:200

Φ̇ =
∆Φ

∆f
(3)

Baglio [54] observed leptokurtic distribution of phase derivative and mod-201

eled Φ̇ with Logistic distribution using records in NGA-West database. The202

dispersion of Logistic distribution is characterized by the scale parameter,203

which is correlated to the significant duration of ground motions. The GMPE204

of the scale parameter of phase derivative distribution is established with205

maximum likelihood estimation [54]. Based on that, Wang et al. [34] sim-206

ulated time domain stochastic motions using marginal Logistic distributed207

random phase derivative Φ̇(f) with exponential inter-frequency correlation208

structure. Here the same stochastic FPS modeling procedure as Wang et al.209

[34] is followed. Figure 2 summarizes the proposed methodology for time210

domain uncertain motion modeling.211
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Following the methodology, time series realizations of uncertain motions212

for earthquake scenario Mw = 7, Rjb = 12km from a reverse fault on engi-213

neering site with Vs30=620m/s are simulated. The stress drop ∆σ is taken214

as 85 MPa and site attenuation parameter κ0 is 0.02s [44]. The generated215

realizations of FAS are shown in Figure 3. From simulated stochastic FAS

Figure 3: Simulated realizations of log-normal distributed FAS random field with median

(red solid line) and ±1σ (red dashed line) FAS given by GMPE of Bora et al. [44].

216

and FPS, time series accelerations can be synthesized as shown in Figure 4.
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Figure 4: Three realizations of uncertain acceleration time series.

217

Large variability and non-stationarity are observed. The PGA of simu-218

lated time series realizations could vary from 1.3 m/s2 to 5.8 m/s2. As shown219
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in Wang et al. [34] and Wang and Sett [62], these uncertain seismic motions220

can be modeled as a Gaussian distributed random process in time domain.221

All the desired uncertain seismic characteristics, e.g., Sa, PGA , CAV, etc.,222

are contained in the random process. The use of phase derivative model223

could capture realistic temporal characteristics of uncertain motions. This224

is more convenient and accurate than the conventional approach of white225

noise synthesis where Fourier phase information is forcibly imposed by some226

envelop modulation functions.227

To verify the above methodology for ground motion modeling, spectrum228

acceleration Sa of the simulated time series are computed and compared with229

four NGA-West2 GMPEs. From Figure 5(a), it can be seen that the median230

Sa of simulated time series motions is in good agreement with predictions231

from GMPEs. In addition, Figure 5(b) shows almost no bias of the simulated232

median Sa with respect to the weighted average GMPE prediction.
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233

14



Figure 6 verifies that the standard deviation (σ) of simulated Sa is also234

consistent with the variability given by four NGA-West2 GMPEs. Therefore,
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Figure 6: Comparison of aleatory variability of simulated spectrum acceleration (Sa) with

NGA-West2 GMPEs.

235

the presented methodology can synthesize uncertain seismic motions that236

not only have well-behaved median Sa, but also carry reasonable amount of237

variability. As mentioned before, it is important for the non-conditional ap-238

proach to have a realistic non-biased, hazard consistent population of seismic239

motions. Although the marginal behavior of spectral accelerations are ex-240

amined, it is still necessary to validate other important aspects of simulated241

ground motions, e.g., significant duration, Arias intensity and correlation242

among IMs.243

4. Uncertainty Quantification & Galerkin Stochastic FEM244

Simulated time histories of seismic motions are regarded as realizations of245

underlying Gaussian random process. The random process seismic motions,246
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and uncertain structural material parameters are represented by general poly-247

nomial chaos Karhunen-Loève (PC-KL) expansion.248

Any random process/field S(x, θ) with general coordinate x can be de-249

composed with multidimensional Hermite Polynomial Chaos (PCs) given by250

equation 4,251

S(x, θ) =
P∑
i=0

Si(x)Γi(γ(x, θ)) (4)

where θ denotes the uncertainty and P is the order of PC [62, 63]. Determin-

istic PC coefficients is denoted as Si(x) and {Γi} = {1, γ, γ2− 1, γ3− 3γ, ...}
is zero mean (i > 1), orthogonal Hermite PC basis constructed from kernel

zero mean, unit variance Gaussian random field γ(x, θ). The kernel Gaus-

sian random field γ(x, θ) characterizes the correlation structure of the orig-

inal random process/field S(x, θ), that is determined from Karhunen-Loève

expansion [41, 64] as:

γ(x, θ) =
M∑
i=1

√
λifi(x)ξi(θ) (5)

In equation 5, M is the dimension of Hermite PC basis. Multidimensional,

independent, zero mean, unit variance Gaussian random variables are de-

noted as {ξi(θ)}, while λi and fi(x) are the eigen-values and eigen-vectors of

covariance kernel Covγ(x1, x2) that meet Fredholm’s integral equation of the

second kind [64, 65]:∫
V

Covγ(x1, x2)fi(x1) dx1 = λifi(x2) (6)

By combining equations 4 and 5, complete PC-KL representation of gen-252

eral random field S(x, θ) is obtained, as shown in equation 7.253
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S(x, θ) =
K∑
i=0

si(x)Ψi({ξj(θ)}) (7)

Here {Ψi} are orthogonal Hermite PC bases in probabilistic space of dimen-

sion M , order P . The number of complete Hermite PC bases, according to

Ghanem and Spanos [41], is:

K = 1 +
P∑
d=1

1

d!

d−1∏
j=0

(M + j) (8)

Sakamoto and Ghanem [63] derived the coefficients of multi-dimensional Her-254

mite PC as:255

si(x) =
p!

〈Ψ2
i 〉
Sp(x)

p∏
j=1

√
λk(j)fk(j)(x)√∑M

m=1(
√
λmfm(x))2

(9)

where p is the order of the polynomial chaos basis Ψi. From equation 7,256

PC synthesized marginal mean, marginal standard deviation and correla-257

tion structure of the original heterogeneous random field could be easily cal-258

culated [34]. The marginal/joint probabilistic distribution function (PDF)259

could also be reconstructed with kernel density estimation or Edgeworth’s260

series [41]. By comparing PC-synthesized statistics and PDF with those of261

the original random field S(x, θ), the goodness of PC-KL expansion can be262

verified.263

Following spatial discretization of deterministic FEM, the weak form of264

equation of motions for general uncertain dynamic structure systems can be265

written as [66]:266
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∑
e

[ ∫
De

Nm(x)ρ(x)Nn(x)d V ün(t, θ) +

+

∫
De

Bm(x)E(x, θ)Bn(x)d V un(t, θ)− fm(t, θ)

]
= 0 (10)

Here Nm(x) is the shape function, while ρ(x) is the density field, and ün(t, θ)

and un(t, θ) denote the uncertain nodal acceleration and displacement, Bm(x)

is the gradient of the shape function, E(x, θ) is the uncertain stiffness field,

and fm(t, θ) is the uncertain nodal force vector. We apply PC-KL expansion

to uncertain stiffness field E(x, θ), uncertain nodal force vector fm(t, θ) and

uncertain nodal responses un(t, θ):

E(x, θ) =
KE∑
k=0

Ek(x)Ψk({ξr(θ)}) (11)

fm(t, θ) =
Kf∑
l=0

fml(t)ψl({ξr(θ)}) (12)

un(t, θ) =
Ku∑
l=0

unj(t)φj({ξr(θ)}) (13)

By substituting equations 11, 12 and 13 into equation 10 and applying267

Galerkin projection [42, 62, 67], spatial-probabilistic discretized weak form268

equivalent to the original stochastic PDE can be derived:269

Mminjünj +Kminjunj = Fmi (14)

where mass tensor/matrix Mminj, stochastic stiffness tensor/matrix Kminj

and stochastic force tensor/vector Fmi are given as:

Mminj =
∑
e

∫
De

Nm(x)ρ(x)Nn(x)d V 〈φiφj〉 (15)
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Kminj =
KE∑
k=0

∑
e

∫
De

Bm(x)Ek(x)Bn(x)d V 〈Ψkφiφj〉 (16)

Fmi =
Kf∑
l=0

fml 〈ψlφi〉 (17)

In equations 15, 16 and 17, symbol 〈·〉 represents the expectation operator,270

Ψk({ξr(θ)}), ψl({ξr(θ)}) and φj({ξr(θ)}) are the PC bases of uncertain stiff-271

ness, uncertain forces and uncertain structural response, respectively, 〈φkφm〉,272

〈ψjφm〉 and 〈Ψiφkφm〉 are the ensemble average tensors of double-product and273

tri-product of Hermite PC bases.274

Equation 14 becomes a deterministic ODE system of unknown PC coeffi-275

cients unj. This equation could be solved using any temporal, time marching276

integration scheme, for example, Newmark method [68]. For more detailed277

formulations and verification of stochastic FEM, please refer to Wang et al.278

[34], Ghanem and Spanos [41], Sett et al. [42], Wang and Sett [62], Deb et al.279

[67], Matthies and Keese [69].280

Probabilistic evolution of the displacement response can then be con-281

structed through the solved PC coefficients unj. From the probabilistic dis-282

placement response, failure probability P (EDP > z|Mi, Ri) can be calcu-283

lated and used further for risk computation.284

5. Illustrative Example285

To illustrate the presented time domain intrusive framework using GMPE286

of FAS, seismic risk of a four-story building subjected to potential earth-287

quakes from two strike slip faults is analyzed. The configuration of two faults288

and the target engineering site is shown in Figure 7(a). Fault 1 is param-289

eterized based on San Gregorio fault [58] in California. San Gregorio fault290

is comprised of northern section (129km) and southern section (89km). The291
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Figure 7: Configuration of faults, site and engineering structures: (a) Engineering site

(black triangle) at (114km, 174km) with V s30 = 620m/s and two nearby strike slip faults

(b) Four-story building structure with uncertain stiffness field located at the engineering

site (black triangle).

parameters of Fault 2 are determined with reference to Calaveras fault [58] in292

California. Calaveras fault is comprised of northern section (48km), central293

section (52km) and southern section (26km). The target engineering site is294

located at coordinates x =114km, y =174km, closer to Fault 2, with the site295

condition represented through shear wave velocity of Vs30 = 620m/s. A four-296

story building is located at the site, as shown in Figure 7(b). Building has a297

deterministic floor mass m = 100 kips/g and uncertain elastic story stiffness298

field k. The uncertain story stiffness k is modeled as Lognormal distributed299

random field with marginal median k = 168 kip/in and marginal standard300

deviation 0.1ln units. The correlation structure of the story stiffness random301

field k is assumed to be exponential with correlation length lc = 3 floors.302

It is noted that only a linear elastic structure was used in this study for303

illustrative purposes. For realistic structures with nonlinear behavior, the304

presented intrusive SFEM can be extended to stochastic elastoplastic FEM305
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(SEPFEM) [42] with additional formulations of probabilistic elastoplasticity306

[35, 70]. Using the intrusive SEPFEM, the development of the probabilis-307

tic elastic-plastic stiffness at the constitutive level could be challenging for308

some complex nonlinear behavior. Some least square optimization and lin-309

earization techniques [35, 42] could be used. Meanwhile, it requires further310

developments of SEPFEM to model structural collapse. On the other hand,311

there are also some non-intrusive uncertainty propagation techniques, e.g.,312

regression-based polynomial chaos expansion [71] and stochastic collocation313

[72]. These methods could handle complex nonlinear structural behavior and314

collapse response with superior computational performance compared to the315

standard MC method.316

5.1. Seismic Source Characterization317

Following the methodology presented in Section 2, in Figure 1, seismic318

source characterization (SSC) is the first step to quantify all the possible319

earthquake scenarios, including magnitudes, distances, and corresponding320

occurrence rates. Only earthquakes with magnitude greater than 5.0 are con-321

sidered here. The extensively verified hazard program HAZ45 [57] is used for322

SSC. The rupture segmentation model, geometry, characteristic magnitude323

and annual slip rate of these two faults are determined from the investigation324

of San Gregorio and Calaveras fault by Field et al. [58] and Thomas et al.325

[73]. Table 1 summarizes these input parameters for HAZ45. The epistemic326

uncertainty for alternative segmentation models, rupture widths, characteris-327

tic magnitudes and slip rates are considered with the logic tree approach [60].328

The weights for logic tree branches are given inside the brackets in Table 1.329

In addition, two alternative probabilistic magnitude distribution models330

are adopted in SSC: (a) Youngs and Coppersmith model [74] and (b) trun-331
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Table 1: Source characterization with epistemic uncertainty: Parameters for Fault 1 and

Fault 2 are based on San Gregorio and Calaveras fault in California according to Field

et al. [58] and Thomas et al. [73].

Fault

Name

Rupture

Scenario
Segment

Rupture

Length [km]

Rupture

Width [km]

Characteristic

Magnitude

Slip Rate

[mm/yr]

Fault 1

Unsegmented

(0.35)

Northern & Southern

Section
218

11 (0.3)

13 (0.4)

15 (0.3)

7.2 (0.2)

7.5 (0.6)

7.8 (0.2)

1 (0.1)

3 (0.4)

5 (0.4)

7 (0.1)

Segmented

(0.35)

Northern

Section
129

11 (0.3)

13 (0.4)

15 (0.3)

6.9 (0.2)

7.2 (0.6)

7.5 (0.2)

2 (0.2)

5 (0.6)

7 (0.2)

Southern

Section
89

10 (0.3)

12 (0.4)

14 (0.3)

6.7 (0.2)

7.0 (0.6)

7.3 (0.2)

1 (0.2)

2 (0.6)

3 (0.6)

Floating Earthquake

(0.3)

Northern & Southern

Section
218

11 (0.3)

13 (0.4)

15 (0.3)

6.6 (0.2)

6.9 (0.6)

7.2 (0.2)

1 (0.1)

3 (0.4)

5 (0.4)

7 (0.1)

Fault 2

Unsegmented

(0.1)
Whole Fault 126

9 (0.3)

11 (0.4)

13 (0.3)

6.9 (0.2)

7.2 (0.6)

7.5 (0.2)

4 (0.1)

6 (0.4)

10 (0.4)

14 (0.1)

Two Segments

(0.5)

Northern Section 48

11 (0.3)

13 (0.4)

15 (0.3)

6.6 (0.2)

6.9 (0.6)

7.2 (0.2)

4 (0.2)

5 (0.6)

6 (0.2)

Central & Southern

Section
78

9 (0.3)

11 (0.4)

13 (0.3)

6.7 (0.2)

7.0 (0.6)

7.3 (0.2)

6 (0.1)

10 (0.4)

12 (0.4)

14 (0.1)

Three Segments

(0.3)

Northern Section 48

11 (0.3)

13 (0.4)

15 (0.3)

6.6 (0.2)

6.9 (0.6)

7.2 (0.2)

4 (0.2)

5 (0.6)

6 (0.2)

Central Section 52

9 (0.3)

11 (0.4)

13 (0.3)

6.5 (0.2)

6.8 (0.6)

7.1 (0.2)

6 (0.2)

10 (0.6)

14 (0.3)

Southern Section 26

9 (0.3)

10 (0.4)

11 (0.3)

6.2 (0.2)

6.5 (0.6)

6.8 (0.2)

9 (0.2)

12 (0.6)

15 (0.2)

Floating Earthquake

(0.1)
Whole Fault 126

9 (0.3)

11 (0.4)

13 (0.3)

6.5 (0.2)

6.8 (0.6)

7.1 (0.2)

4 (0.1)

6 (0.4)

10 (0.4)

14 (0.1)
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cated normal distribution with weights 0.7 and 0.3, respectively. For the332

numerical integration in HAZ45, the discretization step is 0.2 for magnitude333

and 2km for distance. A list of 371 different earthquake scenarios are gen-334

erated for San Gregorio fault with magnitude Mw = 5.1 ∼ 8.3 and distance335

Rjb = 38km ∼ 120km. For Calaveras fault, there are 182 different seismic336

scenarios with magnitude Mw = 5.1 ∼ 7.9 and distance Rjb = 19km ∼ 63km.337

By combining scenarios from San Gregorio and Calaveras fault, the dis-338

tribution of all possible scenarios for the engineering site is shown in Fig-339

ure 8. It can be seen that the dominant scenarios for the site are magnitude
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Figure 8: Distribution of all the possible earthquake scenarios for the engineering site.

340

Mw = 5 ∼ 5.5 and Mw = 6.5 ∼ 7.0, and distance Rjb = 20km ∼ 40km.341
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5.2. Stochastic Ground Motion Modeling & PC-KL Representation342

For each scenario, the marginal median and standard deviation of the Log-343

normal distributed FAS random field are determined using Bora15 GMPE of344

FAS [44]. Time series realizations of uncertain motions are synthesized from345

stochastic FAS and FPS following the verified methodology in section 3. The346

uncertain motions are modeled as Gaussian random process in time domain.347

With simulated realizations of the underlying Gaussian random process, the348

random process can be represented with multidimensional Hermite PCs us-349

ing PC-KL expansion technique derived in section 4. Here the lognormal350

distributed stiffness random field is characterized with PCs of dimension 4,351

order 2, while the Gaussian random process motions are characterized with352

PCs of dimension 150, order 1. Choosing appropriate order of PCs is impor-353

tant to quantify the non-Gaussianity of the stiffness field. The appropriate354

number of PC dimensions is also crucial to capture the correlation structure355

of the random process motions, as shown in Figure 9. For detailed discussion

(a) Acceleration (b) Displacement

Figure 9: Correlation structure of random process seismic motions: (a) Acceleration (b)

Displacement.

356

about PC-KL representation with different order and dimension of PCs for357
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the uncertain motion and the uncertain stiffness field, please refer to Wang358

et al. [34] and Wang and Sett [62].359

5.3. Dynamic probabilistic structural response with Galerkin SFEM360

The uncertain structural system excited by uncertain motions would pro-361

duce probabilistic dynamic displacement responses. Probabilistic dynamic362

displacement response is also PC-KL expanded in probabilistic space. The363

deterministic unknown PC coefficients, which contain all the information364

about the probabilistic evolution of displacement responses, are solved for365

using Galerkin SFEM formulated in Section 4. Using resulting PC coeffi-366

cients, probabilistic evolution of any engineering demand parameters (EDP),367

for example, relative floor deformation and inter-story drift ratio, can be con-368

structed. Figure 10 shows the time evolving mean and standard deviation of369

relative deformation of different floors to the ground under uncertain seismic370

excitations from the earthquake scenario Mw = 7.5 and Rjb = 38km. The
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Figure 10: Time evolving mean and standard deviation (S.D.) of relative deformation

of floors under uncertain seismic excitations from earthquake scenario Mw = 7.5, Rjb =

38km.
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371

mean relative deformation is generally very small. From Figure 10(b), it can372

be observed that the standard deviation of relative deformation between dif-373

ferent floors increases with the height and reaches the maximum at the top374

floor.375

The deformation of the building at four different times, t = 5s, 10s, 15s376

and 20s is shown in Figure 11, where solid lines with diamond marker depict377

the mean deformation while dashed lines with circle marker give the ±1σ378

deformation limit. As time proceeds, the structural deformation generally
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Figure 11: Dynamic probabilistic deformation of the four-story building: Solid line with

diamond markers represents the mean relative displacement; Dashed line with circle mark-

ers represents ±1σ deformation limit.

379

becomes more uncertain and wider, as ±1σ of deformation shows.380

The maximum inter-story drift ratio (MIDR) is chosen as EDP for risk381

analysis. The evolution of PDF for MIDR among four floors is shown in382
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Figure 12. The dispersion and shift of median response of MIDR along the

Figure 12: Time-evolving probabilistic distribution of MIDR among four floors.

383

time can be observed.384

The PDF of overall MIDR among four floors and throughout the time is385

plotted as the black, full line, curve in Figure 13. The PDFs for MIDR of386

individual floor throughout the time are also shown in Figure 13 for compar-387

ison. The distribution of MIDR for the top floor (i.e., the 4th floor) shows388

the minimum median behavior and the narrowest dispersion. In contrast, the389

distribution of MIDR for the first floor overlaps with the PDF of the overall390

MIDR, showing the largest median and the widest dispersion.391

Since the PDF of overall MIDR is crucial to compute the failure proba-392

bility P (EDP > z), comparative studies have been conducted to investigate393

how different scenarios would influence the distribution of MIDR. Five spe-394

cific earthquake scenarios are picked out from the total number of 553 possible395

scenarios and listed in Table 2.396
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Figure 13: PDF of MIDR throughout the time for the whole structure and individual

floor under earthquake scenario Mw = 7.5, Rjb = 38km.

Table 2: Scenarios for comparative studies of different magnitudes and distances: Fault 1

and Fault 2 are based on San Gregorio and Calaveras faults in California.

Scenario ID Magnitude Distance [km] Rupturing Fault Annual Rate [/yr]

1 6 50 Fault 1 5.09×10−5

2 6.5 50 Fault 1 5.09×10−5

3 7 50 Fault 1 1.01×10−4

4 6.5 20 Fault 2 9.75×10−4

5 6.5 100 Fault 1 8.51×10−6
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Scenarios No. 1, 2 and 3 in Table 2 have the same distance Rjb = 50km397

but different magnitudes Mw = 6, 6.5 and 7. Scenarios No. 2, 4 and 5 in398

Table 2 have the same magnitude Mw = 6.5 but different distances Rjb =399

20km, 50km and 100km. Figure 14 shows the resultant PDFs of overall400

MIDR for these scenarios. From Figure 14(a), it can be observed that as the
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Figure 14: PDF of MIDR with varying magnitudes and distances.

401

magnitude increases, the median of MIDR distribution shifts to the right and402

demonstrates larger dispersion. Figure 14(b) shows the same trend when the403

scenario distance decreases.404

The exceedance probability of MIDR P (MIDR > z) is calculated as the405

complementary cumulative distribution function (CCDF) of MIDR distribu-406

tion. Multiplying the exceedance probability with the corresponding scenario407

rate given in Table 2, EDP hazard λ(MIDR > z) caused by the individual408

earthquake scenario is obtained. Figure 15 shows the EDP hazard curves409

for the five earthquake scenarios in Table 2. In Figure 15, different levels410

of plateau in EDP hazard curves are observed because of the differences in411

scenario rates. The shift of bending point in EDP hazard curves with varying412
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Figure 15: Annual exceedance rate of MIDR with varying magnitudes and distances.

magnitude and varying distance is consistent with the shift of median MIDR413

shown in Figure 14.414

5.4. Seismic risk and risk de-aggregation415

Adding up EDP hazard from the individual seismic scenario, the total416

EDP hazard for the engineering site and hazard contribution from Fault 1 and417

Fault 2 are calculated and shown in Figure 16. Then damage measure (DM)418

is used to quantify the physical damage condition of the engineering system.419

Theoretically, DM could be defined as very complicated criteria of single or420

multiple EDPs. However, there is still a knowledge gap to characterize all the421

necessary DMs and corresponding DM-EDP(s) relations [4]. In engineering422

practices, simplified criteria of DM is commonly used. For example, FEMA-423

365 [75] defines collapse damage state for code-conforming reinforced concrete424

buildings as inter-story drift ratio greater than 4%. Similarly, in this paper,425

we consider three different damage states by assuming DM as a step function426

of the selected EDP, i.e., maximum inter-story drift ratio (MIDR) greater427
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Figure 16: Annual exceedance rate of MIDR: Fault 1 and Fault 2 are based on San

Gregorio and Calaveras faults in California.

than 1%, 2% and 4%. By assuming DM as a step function of EDP, seismic428

risk values for damage states with MIDR exceedance of 1%, 2% and 4% can429

be easily found from Figure 16 as 9.7 × 10−3, 1.7 × 10−3 and 5.9 × 10−5,430

respectively. It is noted that the simplified definition of damage measure431

will lead to some inaccuracy for seismic risk analysis. The risk values for432

damage states defined by different damage measures could be very different.433

There are many ongoing research on the accurate DM-EDP(s) relationships434

for seismic risk analysis [76–78]. However, this issue is beyond the scope of435

this paper.436

The contribution from individual scenarios to the total seismic risk can437

also be de-aggregated. Figure 17 presents the de-aggregation of seismic risk438

for MIDR exceeding 1%. From Figure 17, it is clear that the seismic risk is439

controlled by earthquakes from Fault 2 with magnitude Mw = 6.5 ∼ 7.0 and440

distance Rjb = 20km.441

31



M

5.05.56.06.57.07.58.08.5

R
jb [km]

20
40

60
80

100
120

R
isk P

ro
p
o
rtio

n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fault 1

Fault 2

Figure 17: De-aggregation of seismic risk for MIDR exceeding 1%.

These derived risk curves can be used further for loss analysis and provide442

insights for performance-based seismic design of new buildings and retrofit of443

existing buildings. The controlling seismic scenarios from the de-aggregation444

of risk curves could also be used to guide earthquake emergence preparedness445

and response.446

5.5. Sensitivity study on earthquake stress drop ∆σ and site attenuation κ0447

For the stochastic ground motion modeling in this study, stochastic FAS448

are governed by Bora15 GMPE of FAS [44]. Besides some common input449

parameters (e.g., Mw, Rjb, Vs30), Bora15 GMPE of FAS also takes inputs for450

source stress drop ∆σ and near site anelastic attenuation κ0. Since source451

specific ∆σ and site specific κ0 are generally not available in engineering452

practices, ergodic assumption is typically made: Regional, ergodic estimates453

of stress drop ∆σ and anelastic attenuation κ0 are used and it is assumed454

that these estimates are uniformly applicable to all sources and sites within455
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the region. For example, in California, regionally ergodic estimates could be456

5MPa for stress drop ∆σ and 0.025s for anelastic attenuation κ0 [79].457

The sacrifice for the ergodic assumption is to use relatively large total458

standard deviation for variability, which incorporates source to source vari-459

ability (τ), site to site variability (φs2s) and within site variability (φss).460

Furthermore, it is still not quite clear how the epistemic uncertainty of these461

ergodic estimates, i.e., different inputs of ∆σ and κ0, could influence the462

seismic risk.463

To answer this question, sensitivity study on different GMPE inputs of464

stress drop ∆σ and anelastic attenuation κ0 is presented. Seismic risks for465

the controlling scenario Mw = 7.0, Rjb = 20km from risk de-aggregation466

are computed with different ∆σ and κ0 estimates. Figure 18(a) shows three467

EDP hazard curves with different stress drop values ∆σ =1MPa, 5MPa and468

15MPa, while anelastic attenuation is kept at the same value of κ0 = 0.02s.
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Figure 18: Sensitivity analysis of annual exceedance rate of MIDR with varying source

parameter ∆σ and site parameter κ0 for seismic scenario Mw = 7, Rjb = 20km.

469

With the increase of stress drop, significant shift of EDP hazard curve470
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to the right can be seen. Because of the shift, seismic risk for damage state471

with MIDR exceedance of 1% is 3 × 10−3 for ∆σ = 15MPa, which is larger472

than the risk value 2.3 × 10−3 for ∆σ = 5MPa and 1.2 × 10−3 for ∆σ =473

1MPa. For seismic risk of 2% MIDR exceedance, the difference is even more474

significant: Seismic risk for ∆σ = 15MPa is 7.97 × 10−4 and is around 10475

times the risk value 7.71 × 10−5 for ∆σ = 1MPa. Therefore, it is crucial to476

conduct source specific characterization of stress drop ∆σ for more accurate477

risk quantification. Great needs for non-ergodic ground motion modeling and478

seismic hazard/risk analysis are emphasized [80].479

Compared with the stress drop ∆σ, in this case the seismic risk is not480

very sensitive to the variation of the site attenuation parameter κ0. In Fig-481

ure 18(b), sensitivity of EDP hazard with respect to the variation of κ0 is482

shown. Stress drop ∆σ is kept as 5MPa, while three different values of site483

attenuation parameter κ0 are adopted as κ0 = 0.002s, 0.02s and 0.08s. It484

can be seen that three EDP hazard curves for κ0 = 0.002s, 0.02s and 0.08s485

almost overlap with each other. The epistemic uncertainty of κ0 in this case486

would not have notable influence on the final seismic risk. This suggests that487

for this specific case, more resources (time, money, etc.) could be spent on488

seismic source characterization instead of investigating near site attenuation.489

The fundamental causes for different sensitivity response of stress drop490

∆σ and site attenuation κ0 are revealed in Figure 19. Median FAS given by491

Bora15 GMPE of FAS [44] with varying stress drop ∆σ and site attenuation492

κ0 are presented. From the FAS, the dominant frequencies for seismic mo-493

tions are between 0.1Hz ∼ 4Hz. As shown in Figure 19(a), difference in stress494

drop could produce significantly different Fourier amplitude ordinates for fre-495

quencies greater than 0.1Hz, which would generate time domain uncertain496

motions with distinct amplitudes.497
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Figure 19: Sensitivity analysis of median FAS with varying source parameter ∆σ and site

parameter κ0 for seismic scenario Mw = 7, Rjb = 20km.

In contrast, Figure 19(b) shows that variation of near site attenuation κ0498

would only influence high frequency portion (f > 3Hz) of the motions. The499

dominant parts of FAS for this case are not much influenced by the differ-500

ences in site attenuation κ0. Furthermore, it is noted that the fundamental501

frequency of the four-story building is 1.6Hz calculated with the median story502

stiffness. Fourier amplitude ordinates around 1.6Hz vary notably with differ-503

ent stress drops ∆σ, while the ordinates stay almost unchanged with varying504

site attenuation κ0. Therefore, in this case Fourier synthesized motions using505

different site attenuation κ0 would not lead to much difference in the final506

seismic risk.507

It is important to note, based on the above analysis, that in some other508

cases, site attenuation κ0 could be important for seismic risk. For example,509

in central and eastern USA, seismic motions are rich in high frequency (HF)510

contents, site attenuation introduced by different κ0 values could significantly511

influence the amplitude of motions propagating into structural systems. For512
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some critical structures sensitive to high frequency excitations, e.g., nuclear513

power plants, accurate characterization of κ0 could also be of great impor-514

tance. To confirm this, the median story stiffness of the original building is515

increased from 168kip/in to 840kip/in and the floor mass is reduced from516

100kips/g to 20kips/g. The fundamental frequency of the building changes517

from 1.6Hz to 8Hz. The EDP hazard curves for the new building structure518

with varying site attenuation (κ0) values are given in Figure 20.
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Figure 20: Annual exceedance rate of MIDR with varying attenuation parameter κ0 for a

stiffer structure (fundamental frequency 8Hz) under seismic scenarioMw = 7, Rjb = 20km.

519

In contrast to Figure 19(b), for such a stiffer structure with much higher520

fundamental frequency, strikingly different seismic risks are obtained for dif-521

ferent values of site attenuation κ0. This urges the use of refined, site-specific522

site attenuation κ0 for seismic risk analysis of structures susceptible to high523

frequency shaking, especially for those structures in central and eastern USA.524
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6. Conclusions525

Presented is a time domain intrusive framework for probabilistic seismic526

risk analysis using GMPE of FAS. FAS, as the fundamental characteristic of527

seismic motions, has become popular in engineering seismology. Compared528

with traditional intensity measures, e.g., spectral acceleration Sa, FAS pro-529

vides a more direct representation of ground motions and has clear scaling530

behavior related to the underlying earthquake physics. Using FAS, it is more531

convenient to develop time domain, non-ergodic region/site-specific seismic532

motions. Compared with stochastic modeling of FAS using SMSIM [34, 40],533

GMPE FAS is better calibrated and more consistent with observed seismic534

records. The time domain uncertain ground motions modeling is greatly sim-535

plified with FAS GMPE, which makes the whole risk analysis methodology536

applicable for engineering practices.537

Seismic risk of a four-story building under potential earthquakes from two538

faults is analyzed with the presented framework. The presented method is a539

non-conditional approach for risk analysis. A population of simulated time540

domain seismic motions is used to capture the uncertainties in ground mo-541

tions. The method does not require the selection of IM. However, the method542

requires reliable time domain ground motion simulation approaches such that543

the generated population could represent all the important characteristics of544

seismic motions. In this paper, stochastic time domain ground motions are545

simulated from the GAMPEs of FAS and FPS. The uncertain seismic motions546

are directly propagated into the uncertain structure system in a holistic way547

without IM conditioning. Compared to the importance sampling scheme in548

the conditional approach, larger variability in the structural response needs549

to be quantified in the proposed non-conditional approach. Using standard550

Monte Carlo method for uncertainty propagation in this case would be com-551
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putationally expensive. Therefore, intrusive stochastic FEM is formulated552

for efficient uncertainties propagation. The complete probabilistic dynamic553

structural response is solved through stochastic FEM. The probability dis-554

tribution, hazard/risk of any chosen EDP(s) is computed by post-processing555

the probabilistic structural response. Sensitivity studies show that EDP haz-556

ard could significantly change with different estimates of source stress drop.557

For structures with relatively low fundamental frequency, the influence of site558

attenuation κ0 on seismic risk is not as significant as is the influence of stress559

drop ∆σ. This is particularly true when seismic motions are dominated with560

low and medium frequency contents. However, for structures sensitive to561

high frequency motions, great emphasis should be put on accurate charac-562

terization of site attenuation κ0. Need for non-ergodic seismic hazard/risk563

analysis with source-specific, site-specific characterization is demonstrated564

for reliable risk estimates.565

Some aspects in the presented framework still need improvement. Future566

work includes further validation of the presented time domain ground motion567

simulation method for other seismic characteristics, developing better Fourier568

phase derivative models with near field motion characteristics and applying569

the method to more realistic structures with complex nonlinear behavior.570

Presented methodology is implemented and available within the Real-ESSI571

Simulator [81].572
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