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Abstract

Integers that can be written as the sum of two rational cubes
by
Eugenia Cristina Rosu
Doctor of Philosophy in Mathematics
University of California, Berkeley

Assistant Professor Xinyi Yuan, Chair

We are interested in finding for which positive integers D we have rational solutions for
the equation 23 + y3 = D. The aim of this thesis is to compute the value of the L-function
L(Ep,1), for Ep : 23 +y® = D. For the case of p prime p = 1 mod 9, two formulas have
been computed by Rodriguez-Villegas and Zagier in [17]. We have computed several formulas
that relate L(FEp, 1) to the trace of a modular function at a CM point. This offers a criterion
for when the integer D is the sum of two rational cubes. Furthermore, when L(Ep,1) is
nonzero we get a formula for the number of elements in the Tate-Shafarevich group of Ep.
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Chapter 1

Introduction

In this thesis we are interested in finding which positive integers D can be written as the
sum of two rational cubes:

2+’ =D, z,yc€Q (1.1)

Despite the simplicity of the problem, an elementary approach to solving the Diophantine
equation fails. However, we can restate the problem in the language of elliptic curves. After

making the equation homogeneous, we get the equation 23 + y*> = D2z? that has a rational
z
point at oo = [l : —1 : 0]. Moreover, after a change of coordinates X = 12D ,

r+vy

r—=y
r+y

Y =36D

the equation becomes:

Ep:Y?=X3—-432D?

which defines an elliptic curve over Q written in its Weierstrass affine form.
Thus the problem reduces to finding if Ep(Q), the set of rational points of the elliptic
curve Fp, is non-trivial:

D = z* + y* has solutions in Q <= Ep(Q) # {0}

By the Mordell-Weil Theorem, the set of rational points Ep(Q) is a finitely generated
abelian group. For simplicity, we will assume that D is cube free and D # 1,2 (trivial cases)
throughout the paper. It is known that Ep(Q) has trivial torsion for D # 1,2 (see [20]).
Thus, (1.1) has a solution iff Ep(Q) has positive rank. From the Birch and Swynnerton-
Dyer(BSD) conjecture, this is equivalent conjecturally to the vanishing of L(Ep,1).

Without assuming BSD, from the work of Coates-Wiles [2|, or more generally Gross-
Zagier [7| and Kolyvagin [12], when L(Ep, 1) # 0, we have rank Ep(Q) = 0, thus no rational
solutions in (1.1).

For the case of prime numbers, Sylvester conjectured that the answer is affirmative in
the case of D a prime number =4,7,8 mod 9. In the cases of D prime =2,3,5 mod 9 we
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have L(Ep,1) # 0 and D is not the sum of two cubes. This follows either from a 3-descent
argument (given in the 19th century by Sylvester, Lucas and Pepin) or from the theorem of
Coates-Wiles [2].

We define an invariant Sp of Ep as follows:

L(Ep,1)
Sp=G5—FpH
QD,OORED

where the denominator contains easily computable arithmetic invariants:

V3 r
187/ D

e Rp, is the regulator of the elliptic curve Ep.

1\3
o (po = <§> is the real period,

The definition is made such that in the case of L(Ep,1) # 0 we expect to get from the
full BSD conjecture:

Sp = #IL(Ep) [] e (1.2)

pl6D

where #I1I is the order of the Tate-Shafarevich group and ¢, are the the Tamagawa numbers
corresponding to the elliptic curve Ep.

Note that from the work of Rubin [18], when L(FEp,1) # 0 we have #II(Ep) is finite.
Furthermore, using the Cassels-Tate pairing, Cassels proved in [1| that when III is finite,
then its order #I1I is a square. Thus we expect Sp to be an integer square. Current work
in Iwasawa theory shows that for semistable elliptic curves at the good primes p we have
ord, (#HI[p>®]) = ord,(Sp), where II[p>] is the p>-torsion part of III (see [5]). However,
this cannot be applied at the place 3 in our case.

The goal of the current thesis is to compute several formulas for Sp. By computing the
value of Sp, we can determine when we have solutions in (1.1) and, assuming the full BSD
conjecture, we can find in certain cases the order of III:

(i) Sp # 0 = no solutions in (1.1)

(i) Sp #0228 5, = 4111

(iii) Sp =10 258 e have solutions in (1.1)

In [17], Rodriguez-Villegas and Zagier computed formulas for L(E,, 1) in the case of
primes p = 1 mod 9. In this case it is predicted by BSD that the rank of E,(Q) is either
0 or 2. They compute two formulas for S,. In the current paper, we are extending their
results to all integers D.
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Before stating the results, we will make a few remarks on the nature of the problem.
First, note that each of the elliptic curves Ep is a cubic twist of F;. This means that over
Q the two elliptic curves are not isomorphic; however, they are isomorphic over Q[v/D] as

. .. X ’ ) ’
can be easily shown by rewriting Ep : 1 = (\3/5) + (\?75) :

In the case of quadratic twists of elliptic curves, an important tool in computing the
values of the L-functions is the work of Waldspurger [23|. For example, this is used to obtain
Tunnell’s Theorem for congruent numbers in [22]. However, the cubic twist case proves to
be significantly more difficult.

Another important observation is that Ep is an elliptic curve with complex multiplication
by Ok = Z|w], the ring of integers of the number field K = Q[v/—3] and w = #_—3 Then
from CM theory there is a Hecke character g, : K* \ A — C* such that:

L(Ep,s) = L(s,xg,)-

In order to compute the value of Sp and thus the value of the L-function we resort to
automorphic methods to compute the value of L(s, xg,) and get the following result:

Theorem 1.1. For all integers D, Sp is an integer and we have the formula:

Ok (Dw)
— Trpr pLYBZET)
s = Ton (055

where:

e Hsp is the ring class field associated to the order O3p = 7Z + 3D Ok,

o w= %?3 s a third root of unity, and
e Ok(2) = Z 2miz(@* 0P =ab) o ype theta function of weight one associated to the number
a,beZ
field K = Q[v/—3].

Note that using the formula (1.3) we can show that an integer D cannot be written as
the sum of two cubes by computationally checking whether L(Ep, 1) # 0.

Furthermore, assuming BSD, we have Sp = #III, thus we can compute the expected
order of III explicitly. The formula (1.3) above proves that the term Sp is, as expected, an
integer.

To compute the value of L(s, xg, ), we look at the Hecke character adelically and using
Tate’s thesis, we integrate Tate’s zeta function Z(s, xg,, Pk), for Pk a Schwartz-Bruhat
function for S(Ak). The proof is based on the following surprising fact: after integrating
the Schwartz-Bruhat functions @, we recover a Siegel-Eisenstein series for ®p:

k o
Z %CDK(]‘?%“) = F(ga, 25 — 2, (I)Q)
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Furthermore, for s = 1 the Eisenstein series F(g,, 0, @f@) is equal to the value of the theta
function ©k(g,) by the Siegel-Weil theorem [15] (up to a constant). Finally, the L-function
at 1 is expressed as a linear combination of theta functions at CM-points. We further show
using Shimura’s reciprocity law that they are all Galois conjugates over K.

A different result is obtained by making a different choice for the Schwartz-Bruhat func-
tions @ above. This is presented in the following theorem in Section 8:

Theorem 1.2. For all integers D, Sp is an integer and we have the formula:

6? ,(3Dw)
Sp=cpTr p-Ye 2T T
D D 1 H,[vD]/K[VD] ( @K<W)

where:

o 01)2(2) = Z e2ﬂi"2z(—1)” is a theta function of weight 1/2
nez

e H, is the ray class field for the modulus 12D

o cp= DV T](1— (~1)0/2p)
p|D

The hope is to extend this result to show that Sp is an integer square up to Tamagawa
numbers. In the following theorem we compute Sp as the absolute value of an element of
K:

Theorem 1.3. In the case of D= [[  pi, Sp is an integer and we have:
p;=1 mod 3
9 2
Sp = | Truom, 1(20) py-vs (1.5)

90(20)

where:

o 01(z) = 3 (—=1)"em(t1/D=1/6% 4 1 /9 weight modular form
nez

o 2y = =3 4 OM-point, with b* = —3 mod 4D?,

e Hy is the ray class field of modulus 3D and Hy is an intermediate field K C Hy C Hp
that is the fixed field of a certain Galois group Gj.

The idea of the proof of Theorem 1.3 is based on factoring each weight one theta function
Ok(z) into a product of theta functions of weight 1/2. The method we are using is a
factorization lemma of Rodriguez-Villegas and Zagier from [16]| applied to the formula in
Theorem 1.1 . This gives us the absolute value of a linear combination of theta functions
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evaluated at CM points. Finally, using Shimura reciprocity law,, we show that all the factors
are Galois conjugates to each other.

Using similar methods, we obtain a more general formula for all integers D prime to 6.

Theorem 1.4. Using the same notation as in Theorem 1.3, we have for all integers D prime
to 6:

\/— D—-1
# CI(OSD

(D2 -~ 2
TI”HO/H1 (Zo()))D s (1.6)

Sp =

r=0
where:

o 0,(2) = 3 (—=1)eriltntr/D=1/67= 1 /2 weight modular form
nez

® 2y = % a CM-point

e Hpy the ray class field of modulus 3D and H; is a subfield of Hp

Note that most of the proofs are presented for D a product of primes. However, the
proofs easily go through for general D, for (D,6) = 1.

Also note that in Appendix A we present some properties of the theta function © x and in
Appendix B we work with Shimura reciprocity in the setting of Shimura curves to provide a
different proof for finding the Galois conjugates of the ratio of theta functions from Theorem
1.1.

Further results. The following result is announced without being included in the thesis.

The current approach inspired the answer to a different related problem. More precisely,
for a family of cubic twists of characters ¢’ = pe* by yp, we became interested in computing
the special value of the L-function L(1, xpy'). Here ¢* is a certain Hecke character of Aj.
This family of characters does not correspond to a family of characters of elliptic curves.
However, the special values of the L-functions suggest arithmetic properties. We showed the
following theorem:

Theorem 1.5. )
0.(Dw)
L(1,xp¢") = cp |Tru,, /x b))

Y

where we take 0, to be a theta function of half-integral weight and cp is a constant
depending on D.

The idea is based on a double integration of the Eisenstein series E(s, g, $1 ® ¢2) over Ay
viewed as a subset of GLy(Ag). The computation is inspired by the Rallis inner product.
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Background.

Let K = Q[v/—3]. Note that K is a PID and has the ring of integers Ok = Z[w], where
W= %?3 is a fixed root of unity. We will denote K, the localization of K at the place v.

We will denote by K, := Hvlp K, = Q,[v-3].

The L-function

Our goal is to compute several formulas for the special value of the L-function L(Ep,1) of
the elliptic curve Ep : 2°+13® = D23, The elliptic curve Ep has complex multiplication (CM)
by Ok. Then L(Ep,s) is the L-function of a Hecke character that is computed explicitly in
Ireland and Rosen [10]. We have:

L(ED7 S) = L(S7 XDSD)7

where xp and ¢ are classical Hecke characters such that ¢xp is the Hecke character corre-
sponding to the elliptic curve Ep. The Hecke character ¢ is the Hecke character correspond-
ing to E; and yp is the Hecke character corresponding to the cubic twist. More precisely,
the Hecke characters are defined to be:

e ©:1(3) - K* is defined on the ideals prime to 3 by ¢(A) = «, where « is the unique
generator of the ideal A such that « =1 mod 3.

e xp:I(3D) — {1,w,w?} is the cubic character defined below in Section 2; it is defined
on the space I(3D) of all fractional ideals of Ok prime to 3D. Moreover, it is well-
defined over C1(O3p) the ring class group corresponding to the order Osp = Z+3DOk.

The L-function can be expanded:

p(A)p(A plo)a
- ¥ WA el

Nas
A€I(3D) a€0k,a=1(mod 3)
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Ring class fields.

Recall that an order O of K is a subring of Ok that is a finitely generated Z-module and such
that O®;Q = K. As K is a quadratic number field, each order is of the form O = Z + fOg
and we call f = [Of : O] the conductor of O. We can also write O using a Z-basis in the
form O = [1, fw]z.

We define the class group CI(O) of the order O of conductor f is defined to be:

ClO) = Io(f)/Po(f),

where Io(f) is the set of fractional O-ideals prime to the conductor f, and Pp(f) the
subgroup of In(f) of principal fractional O-ideals.

We define the ring class field to be the abelian extension Hp of K corresponding to the
Galois group Cl(O) from class field theory, meaning:

Gal(Ho/K) = Cl(O).

We denote by I(N) the group of fractional ideals in K prime to N. We denote the
subgroup Pzy = {(a): a € K such that &« = a mod N for some integer a such that
gced(a, N) = 1}. Furthermore, let Oy := Z + NOk be the order of K of conductor N. Then
we can define the ring class field of the order Oy to be

Cl(On) :=I(N)/ Py

Note that K has class number one and thus by the Strong Approximation theorem we
have:

Ax =K*C ][] ox.
vfoo

We would like to describe Cl(Oy) adelically. We do this below:

Lemma 2.1. For N a positive integer, we can think of the ring class group adelically as:

CUON) = U(N) \ Afe K™
where U(N) = [[(Z + NZ,w])*.

p

Proof. From the Strong approximation theorem, as K is a PID, we have:
Ax = K*C*[] 0%,
vfoo
Taking the quotient by K*C*, we get:

Ay /K =]Jox%/ (K* n]] OK> ~[[ox%./ (—w),

vfoo vfoo
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where (—w) is the group of sixth roots of unity.

Furthermore, note that U(N) = [[ Og. [[(Z + NZy[w])*. Moreover note that
vtN pIN

(—w)U(N)=U(N).
Thus we have:

Afp/KUWN) = [[OF / (~w ~ T 0%/ 1@+ Nz, w])* =

vfoo v|N p|N

~T[1]9x%./(Z+ Nz, [w)*

p|N v|p

Finally, we need to show an isomorphism between

Cl(On) = I(N)/P4(N)

and

[Tox/ 11+ Nz, W)~

v|N p|N

We construct the map:

N) = [Jox, —>HO J @+ NZ,Jw])*

v|N pIN

Let (ko) € I(IV) be an ideal. Then we can map ko — (ko)yn. After taking the projection
map, we want to look at the kernel of the composition I(N) — ][, , Ok, / [1(Z+ NZ,[w])*.
pIN

This consists of ideals (ky) € I(N) such that kg = a, mod NZ,[w|, where a, € Z and

(ap,p) =1.

By the Chinese remainder theorem, we can find a € Z such that a = a, mod N for all
p|N. Then we have ky = a mod NZy|w] for all a € Z. Thus (k) € Pz(N) and Pz(N) is the
kernel of the above map. Thus we get:

N)/Py(N HO J 1@+ Nz, ),

pIN
which proves our claim.

]

Another easy result that we will use is the following straight forward application of the
Chinese remainder theorem. This map will be important in our proof:
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Lemma 2.2. For any (ly)yn € [] Ok,, we can find ki € O such that for all v|N we
v|N
have:

liw=k mod NOkg,,

Proof. For any v|N we can find a;, € Ok such that |, , = a1, mod NOg,. We will pick
for N = Hv‘ ~ DY, where p, is the prime corresponding to the place v:

N
kl = § a1 My e
v

v|N v

where m, € Ok, mvp% =1 mod pS*. We can find such an inverse since Ok is a PID,
thus OK/NOK = HU\N OK/]J:;“OK.
O

Characterization of ideals in ring class fields

Recall that a primitive ideal is an ideal not divisible by any integral ideal. It is easy to prove:

Lemma 2.3. Any primitive ideal of Ok can be be written in the form A = |[a, %] as
a Z-module, where b is an integer (determined modulo 2a) such that b* = —3 mod 4a and
Nm A = a. This implies that for A = (a), we have ||a = a.

Conversely, given an integer satisfying the above congruence and A defined as above, we
get that A is an ideal in Ok of norm a.

The cubic character

In the following we will define the cubic character xp and check that it is well defined on
the class group Cl(Osp). Let w = %j’ be a fixed cube root of unity. Then we can define
the cubic residue character following Ireland and Rosen [10].

Definition 2.1. For o € Z|w] such that « is prime to 3, we define a cubic residue character
Xo : 1(3a) — {1,w,w?} on the fractional ideals of K prime to 3a. For every prime ideal p
of Z|w], the character is defined to be:

for 7 €{0,1,2} such that w’ is the unique third root of unity for which:

aNmP=D/3 = ;7 mod p, for Nmp # 3.
It is further defined multiplicatively on the fractional ideals of I(3a).
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Notation: We will also denote xp(-) =: (2)3.

First let us check that this definition makes sense. Since K is a PID, any prime ideal p
has a generator of the form 7 = a + bw € Z,[w|. Then the norm Np = a® — ab + b* which is
congruent to 0,1 mod 3. Then, if p is prime to 3, we must have Np =1 mod 3, implying
that 3 divides Np — 1.

Furthermore, the group (Z|w]/pZ[w])* has Nmp — 1 elements, thus we have oN™P~1 =1
mod p. Then since Nmp — 1 is divisible by 3, we can factor out:

p|(a®mp=/3 _ 1) (oMNmp=D/3 _ ) (oNmp=/3 _ ;2
Finally since K = Q[v/—3] is an UFD, p divides exactly one of these terms, say
(QMmp=1/3 _ i),
Thus we can take xo(p) = w’ and it is well-defined.

Following Ireland and Rosen, it is natural to look at the primary elements of K:

Definition 2.2. For a prime ideal p of K we call m primary if m generates p a prime ideal
and m =2 mod 3.

Lemma 2.4. For any ideal A prime to 3, we can find a generator o € Z|w] such that o = 2
mod 3.

Proof. Since K is a PID, we can find a generator oy = a+bw be a generator of A. Then note
that oy, Lagw, agw? also generate the ideal A and exactly one of them is = 2 mod 3.

[
Remark 2.1. Note that from the definition of x,, we have x, (m2) = x_r, (m2), as
7T§Nm7r2—1)/3 _ (_m)(Nmm—n/g
when Nm 7y is odd and 7{"™2™ /% = (7 )0Nm2-1/3 = 1 104 2 when 7, = 2. Moreover

X (T2) = X, (—72), @s xx, (—1) = 1. Then we actually have for any choices of =+:

X (£72) = X, (£71)

Theorem 2.1. (Cubic reciprocity law). For m,my = 2 mod 3 primary generators of
primes P,,p,, Nmy # Ny and Nmy, Nmy # 3, then:

().~ (%)
o 3 T 3
Corollary 2.1. For m;,n, =2 mod 3, we have

X:I:rl...wn<:|:71—/1 .. W;L) - Xiﬂ'ﬂ‘..ﬂ';.b(j:ﬂ-l v Wn)
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Proof. We will first show that X, . (7)) = Xr, (71 ...7,). By definition, we have:

X (1) = (. o7) N7/ mod o]
Thus, we have:
XTr1,..7rn(H 7Tz/) = HXTI’I-uﬂ'n (T(;) = H HXﬂ’j (77-7{)
i=1 i=1 i=1 j=1

Using the cubic reciprocity, we have xn,(7;) = xn (7;), thus we get [T, H?Il X, (7)) =
[T:2 IT5=; X (7;), which furthermore implies:

m n

X717 (H W;) = Xn}..ml, (H 7Tz>

i=1 j=1

]

Note that we can always write the elements of Z|w| that are congruent to 1 mod 3 as
a product of primary elements up to sign. Using the above corollary for a and D, we get:

Corollary 2.2. If a = +1 mod 3 and D an integer prime to 3, then we have:

xp(a) = Xa(D)

Proof. Since a, D = +1 mod 3, we can write each of them in the form o = £}, m; and
D==+[[, 7
Then using the previous Corollary and Remark 2.1, we have

m

ECD | CARR |

j=1 j=1

X

O

Lemma 2.5. Let o be prime to 3 and p a prime ideal prime to 3. Then the cubic residue

can also be rewritten as:
a (Nm7—1)/3
Xa(p) = <—) mod 7

(07

Proof. We have by definition xq(p) = oM™ D/3 = (' mod p. Taking the complex conju-
gate we have aN™™=1/3 = )2 mod p. Then by taking the ratio we get:

—\ (Nmm—1)/3 2
<2> =Y mod p

« w*
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—\ (Nm~m—1)/3
Thus we have yo(p) = o7 D/8 = ) = (g) mod p which finishes the proof
of the lemma.
]
Corollary 2.3. Let D = [ p;. For o € Pysp, we have xp(o) = 1. Thus xp is well defined
i=1
on Cl(Osp).

Proof. Recall from the previous Lemma that if « = +£1 mod 3, then we have:

a (Nmp_l)/3
Yalp) = (—) mod p

«

Let p|D. Since a € Pz3p, we have o = a mod 3D for some a € Z and (a,3D) = 1.
Thus o = a mod p, which also @ =@ mod p, which implies:

—\ (Nmp-1)/3 —\ (Nmp—-1)/3
a a
Xa(p) = (—) = (—) =1 modp

a

Thus we get xo(p) = 1 for all p|D. Thus we have x,(D) = 1. Moreover, using Corollary
2.2, we have xp(a) = [ xp, (@) = [] xa(p;) = 1.
i=1 i=1

O

Remark 2.2. For any fractional ideal A of K, when we write xp(A) we will mean:

xp(A) = xp(a),

where « is the unique generator of A such that « =1 mod 3.

Relating yp to the Galois conjugates of D'/3.

There is another way to look at the cubic character using the Galois conjugates of D'/3. We
have the following lemma:

Lemma 2.6. Let D be an integer prime to 3. Then for a prime ideal p of K prime to 3D,
we have:
DY*xp(p) = (D'*),

where o, € Gal(C/K) is the Galois action corresponding to the ideal p in the Artin corre-
spondence.

Proof. It is enough to prove the claim for o; € Gal(F/K), where L = K[D'3, D'/3w, D'/3,2].
Let 0, = (L/TK> the Frobenius element corresponds to p the prime ideal of Og. Then using

the definition of the Frobenius element for D3 € L, we get:
(D1/3)"p = (Dl/?’)Nm’g mod pOyp,
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Furthermore, note that (D/3)Nm# = DI/ DENme=1/3 = D/3y 1 (p) mod pOy.Since the
Galois conjugates of D'/3 are the roots of 2° — D, the Galois conjugates of D'/3 must be:
(Dl/S)Up c {D1/3,D1/3w,D1/3w2}
and from the congruences above we get:
(DY?)%r = DY3xp(p)
O

Corollary 2.4. Let D be an integer prime to 8 and A an ideal of K prime to 3D. Moreover,
let o4 € Gal(K®/K) be the Galois action corresponding to the ideal A through the Artin
map. Then for the cubic character xp, we have:

(DY3)74 = D3y p(A). (2.1)

Proof. Let A = prj the prime decomposition of A in K. Note that xp(p;) € K, thus it is

J
preserved by the Galois action. Applying the above Lemma we get:

((DY3)70)7 = (DY3xp(p;))7 = D*xp(p;)xp ()

Using this step repeatedly, we get (D'/3)74 = D3y (A) = DY3yp(A).
[

Remark 2.3. Note that for the complex conjugate character Y we have a similar result:

(D¥3)74 = D*3\ p(A). (2.2)

Hecke characters

There are two equivalent ways of defining a Hecke character: classically and adelically. We
define the classical Hecke character over K to be X : I(f) — C* a character from the
set of fractional ideals prime to f, where f is a nonzero ideal of Ox. We further say that x
has infinity type X« if it is characterized by the condition that on the set of principal ideals
P(f) prime to f it satisfies the condition:

X((a)) = &)X (),
where:

o £ : (Ok/fOk)* — T is called the (Ok/fOk)*-type character i.e. £ is a character
taking values in a finite group T.

® Y is an infinity type continuous character i.e. Yo : C* — C* is a continuous
character.
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We define the idelic Hecke character to be a continuous character x : A*/K* — C*.
There is a unique correspondence between the idelic and the classical Hecke characters.
The correspondence can be explicitly constructed in the following way:

o X(Ofw,) =x(ps), vt f
® Y is determined by yo

e Y, with v|f is determined by Weak Approximation Theorem.

Converting the characters.

We want to compute a formula for L(s, x), where x : Ax/K* — C* is the Hecke character
defined by x = x3pp. Here x3pyp are the adelic correspondent Hecke characters of the
classical Hecke characters:

1. x3p : [(3D) — {1,w,w?} is the cubic character.
2. ¢ : I1(3) — C* is the Hecke character defined by x((«)) = a for « =1 mod 3.

By abuse of notation, I will use ¢, x3p both for the classical and the adelic Hecke char-
acters. This should be clear from the context. We can rewrite the two characters adelically:

1. ¢ : A} — C* such that:

u(p) = =0, 0u(Og, ) =1, forv=p,p=2 mod 3,
u(@y) = @y, 0u(Of,) =1, forvlp,p=1 mod 3,
Voo(Too) = T3, v = 00

For places v|p with p =1 mod 3, w, is a uniformizer of Ok, such that @, =1 mod 3.
Also, at the place v = v/—3, ¢, is determined from the Weak approximation theorem.

2. Note that xsp is trivial on Py 3p, thus xsp is a character on Cl(O3zp). We will define
the character by making it trivial on C*, U(3D) and K*. Then we can define using
Lemma 2.2:

x3p(l) = xsp(l1) = x3p((k1)).

More precisely, this will be:

XSD,v(wv> = X3D((wv))7 X3D,’U(O[X(U) = 17 if v T 3D
X3D,oo(xoo) - 17 V= 00

X3pw(wy) can be determined from the Weak approximation theorem, if v|3D
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We can generally compute x¢({¢) in the following way:

Lemma 2.7. If x = xapwp, let Iy = ki1, k € K*,I; € [, O . Note that this decomposition
is unique up to a unit of O and pick k such that ly3 =1 mod 3. Moreover take ky € K*
such that ly = k; mod 3DQgk,. Then:

Xf(lf) = kxsp((k1))

Proof. We start by writing:

Xr(lg) = xr(k)xr(11) = Xoo (k) Xuisp(l1,0)

Moreover, from the Chinese remainder theorem, we can find k; € K* such that ky = [;,
mod 3DOk,. As we have k;'l; € 1 mod 3DOg, and Y is trivial on (Z+3DOk,)* for v|3D,
we get X, (k1) = x(l1,,). This implies:

Xr(ly) = kxusp (k1) = kxuap (k)™ Xeo (k1) ™"

Note that if we write k1 = u]], wg, where u € O , we get:

H Xv(kl) = H Xv(wv)ev = H X(pv)ev = )Z((kl))

v13D v13D v13D

This moreover implies:

Xr(ly) = kX (k1)) k1 = kky ki Xsp (k1)) = kXsp((k1))
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Chapter 3

L(Ep,1) and Tate’s zeta function

In this section we will compute the value of L(Ep,1) = L(1, xpp), working with yp, ¢ as
automorphic Hecke characters. We will show the following result:

Theorem 3.1. For Hsp the ring class field for the order Osp = 7Z + 3DOk and Sp =

187 D~1/3
7r—L(ED, 1), we have Sp € Z and

v (3)°

Sp =Try,, /K (D1/3%€:;)) (3.1)

zeta functions.

We will compute the formula (3.1) using Tate’s zeta function. We start by recalling some
background and notation.

Schwartz-Bruhat functions.

We take V' = K a quadratic vector space over Q and V,, = Ag ®g K. Then we can define
the Schwartz-Bruhat functions ® = [[ ®,, ®, € S(V,,) to be:

( (I)v = char@Kv, if v J( 3D
@I) et Z Char(a+D(’)Kp), lf U|3D7 (Y T 37 OKp — HU‘I) OKU
(a,D)=1
\q)oo<z) = Ze—ﬂq(det2)7 where z € C

Here g(z) = |2|* the usual absolute value on C.

Remark 3.1. Note that char(y0,,)(m) = ]T[Char(CH_D@Kv)(m) = ]T[char(lﬂom)(a_lm)
v|p vip
and each char( 0, ) is a locally constant function with compact support. We are taking
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a linear combination of these Schwartz-Bruhat functions, thus we do get a Schwartz-Bruhat
function.

Haar measure.

We will pick the self-dual additive Haar measure dz, for all places v of K. We also take the
usual multiplicative Haar measure:

|xv|'u7

{alqjX z, = £ normalized such thatvol(Ox ) =1, ifv{oo

d*z = gﬁ, dz usual Lebesgue measure, 2€C,|zlc =22+ for z =x +yi

Tate’s zeta function.

We recall Tate’s zeta function. For a Hecke character x, : K, — C* and a Schwartz-Bruhat
function ®, € S(K,), it is defined locally to be:

Zv(SaXva(I)v): /Xv(av)lavﬁq)v(av)dxav’
K

where d*«, is the multiplicative Haar measure defined above.
We define globally Z(s, x, ®) = [[ Z,($, v, ®,). As a global integral, this is:

Z(s,x, ) = / x(@)a*®(a)d*a.

Tate’s zeta function Z(s,x, ®) has meromorphic continuation to all s € C and in our
case 1s entire.

Lemma 3.1. For all s and ® Schwartz-Bruhat functions chosen as above, we have:

Lf(‘S? XDSO) = Zf(S, XD, @)%D7

1 1
where Vsp = vol(1 + 3Zs[w]) vol(Z + D [ [ Z,[w])* = G I—
p|D p|D (p_ (5))
‘H Ly(s, XD.pp)
3D
Proof. From Tate’s thesis, we have L(s, xpp) = Z¢(s, Xpp)—~— . Since
! ! ‘1_[ Zy(8, XDpps Pp)
p|3D

Xp¢ is ramified at 3D, we have L,(s, xpp¥p) = 1. We need to compute the integral:

Z,(5, xoigs ) = / x0p(0p) () [apls By () A,
QP[W]X
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From the choice of the Schwartz-Bruhat function ®, = charzspz,))x for p|D, the

integral reduces to Z,(s, xpy, ®,) = / XD.p(p)pp(ap)|ay|,d* g, Note that for
(Z+3DZp[w])
p # 3, all the characters xp,y and | - |, are unramified, thus we just get the volume

vol ((Z + 3DZ,[w])™).
For p = 3, we have ®, = char(i;3z,[)). Similarly, we get vol ((1 + 323[W])X).
We compute the volumes. For D a product of primes, we have

vol ((Z + 3DZ,[w])*) = vol ((Z + pZ,w])™) = (p — 1) vol (1 + pZ,[w]) =

Note that vol (1 + pZ,[w]) = pQLfl vol(Zy|w]*) when p is nonsplit and vol (1 + pZ,|w]) =
ﬁ VOl(Z;)Q when p is split. This is computed by writing:

e p nonsplit: vol(Z,[w]*) = > vol(a + bw + pZ,|w]), where the sum is taken over all
a + bw prime to p and 0 < a,b < p— 1. We count p?> — 1 of them and we get
vol(Zy[w]*) = (p* — 1) vol(1 + pZ,[w]).

e p split: vol(Z,w]*) = > vol(a + bw + pZy[w]). We count similarly p* — 2p + 1 such
terms, as p splits and we have to discard the divisors of p.

For p = 3, we have vol (1 + 3Z3[w]) =
We compute:

1
5

o Zslw| = Zs[v/=3] = {ap + a1v/=3 + ax(=3) +...,0 < a; < 2}
e vol(Zs[w])* =1

o (Zsw])* = Ulap + a1v/—3)(1 + 3Zs|w]), where ag + a;1/—3 is prime to 3. Then we

have 6 possibilities and thus vol(1 + 3Zz[w]) = ¢.

]

By plugging in s = 1 in the above Lemma, we get:

Corollary 3.1. The finite part of the L-function at s = 1 equals:

Ly(1,xpp) = ! 11 ;))Zf(l, Xpy, P),
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Computing the finite part of Tate’s zeta function Z;(s, xpp, ®).

In this section we will compute the value of Z;(s, xpp, ®). We begin by rewriting Tate’s
zeta function Z;(s, xpp, P) as a linear combination of Hecke characters:

Lemma 3.2. For all s € C and the Schwartz-Bruhat functions ®¢ € S(Ak f), we have:

Zy(s,xpp, ®r) = Vap Z I(s, ap, ®p)xpla)p(a),

ayEUBDN\AY /K>

where I(s,ap, ®p) = > #@ﬂka]v).
kekx ©

Proof. By definition, we have Z(s, xpp, ®f) = / xp(ayp)plag)|opl;®s(ap)d ay.  We

Ak ;
rewrite the integral by taking a quotient by K*:
Zitsxwet) =[S xouslhal)es(hal) kgl (ko) e

ax Kx KEK

Note that from the definition of Hecke characters, we have

Xp,5 (ko) = XDl (K)Xp,s()) = X.s(0f),

or(ka’y) = ol (k)es(aly) = kos(a)
and
kol = kI Sl = kI3,

where | - |¢ is the usual absolute value over C. Then the integral reduces to:

Zi(s,xpp, @) = / (

Z B IQSXDf af)(l)f(kaf)) pr(ay)|a}]s d*a
A /K>

ke KX

Furthermore, note that our choice of Schwartz-Bruhat functions ®(ka’;) are invariant
over U(3D). Similarly:

e |- |; is trivial on units, thus on U(3D)
e \p is invariant on U(3D) by definition

e ¢ is trivial on all the units at all the unramified places. At 3 it is invariant under
1 + 3Zs[w], thus it is trivial on all of U(3D)
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Thus we can take the quotient by U(3D) as well. Note that the integral is now a finite sum:

k s
> |k|25XD,f(a})¢f(ka§?)> wprlap)lafly
C

ke KX

Z¢(s,xpp, ®r) = vol(U(3D)) Z (

o/f€UBD\AL ; /K>

Moreover, note that vol(U(3D)) = vol(1 + 3Zsw) [] vol(Z + DZ,[w]) = V3p.
p|D

k
By denoting I(s, o, @f) = E Wq)f(k:af), we get the conclusion of the Lemma.
kerx 1€

O
Combining the Corollary 3.1 and Lemma 3.2, we get:

Corollary 3.2. For all s € C and the Schwartz-Bruhat functions ®y € S(Ag ) chosen
above, we have:

Ly(s,Xpyp) = Z I(s,ap, @p)xp(a)p(a),
agCUBDNAL /K

Adelic representatives for Cl(O;p).

From the Strong approximation theorem, we can write ay € Ag = C*K* [] O in the

vfoo
form ay = Yookafy, Where ky, € K*, 7o € C* and By € [] Ok . Then we can take
vfoo
representatives in ay € U(3D) \ Ag /K> such that ay € [ O . Moreover, since we are
vfoo

taking the quotient by the cube roots of six {£1, +w, +w?}, we can pick a; such that a3 =1
mod 3. This can be done by replacing oy by +a;w’ for some 4, 0 < i < 2.

Furthermore, note that representatives ay, oy are in the same class in U(3D) iff o fozfl =a
mod DZ,[w], for some integer a such that (a, D) = 1.

Moreover, we can define an ideal A, that is generated by k., € Ok such that

a, =k, mod 3DZ,[w].

Note that this ideal is unique only as a class in Cl(Osp).

Connection to the Eisenstein series.

Using the above representatives, note that ¢, and | - |; are trivial for the representatives {;
and the Corollary 3.2 becomes:

Ly(s,xpp) = > I(s,op, @r)xp(0ry)
aeUBDN\AL /K>
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We will now connect (s, ay, ®s) to an Eisenstein series. We define the following classical
Eisenstein series of weight 1:

E.(s,z) = Z ( e(n)

~ (3mz +n)|3mz + n|*’

where the sum is taken over all m,n € Z except for the pair (0,0), and ¢ = (5) is the
quadratic character associated to the field extension K/Q.

Note that the Eisenstein series does not converge absolutely. However, we can still
compute its value at 0 using the Hecke trick in order for it to converge. We will compute its

Fourier expansion in the following section.

Recall that for ay € J] Of. , we have the corresponding ideal class [A,] in C1(O3p). Such
a representative is Ay, i (ko), where k, € Ok is chosen such that k, = o, mod 3DZ,[w]
for p|3D. Note that we can pick A, to be a primitive ideal.

We can further write A, as a Z-lattice A, = [a, _b+2\/?3 |z, where a = Nm A, and b is
chosen (not uniquely) such that b> = —3 mod 4a. Then we can take the corresponding CM
point z4, = _bJ”ﬁ

Using thls notatlon we have the following equality:

Lemma 3.3. For ay € [[ O and any choice of z4, as above, we have:
vfoo

I(s, 07, ) = 1 (NmAq)™

2 ko

Remark 3.2. Note that the variable 27— on the left hand side is not uniquely defined.
However, the function is going to be invariant on the class [A4,] in Cl(Osp).

E.(s, ZE)

Proof. Recall that I(s,af, @f) = Z B ‘ ®(kay). We need to compute @f(kay). Note

keK *
that for all finite places v we have ®,(ka,) # 0 only for ka, € Of,, and since o, € OF. , we

must have k € Ok, for all v { co. This implies & € Ok and for all v { 3D we get ®,(ka,) =1
for k € Og. Thus we can rewrite:

I(s,ap,®f) = Z q)?,D (kasp),
keOk

where ®3p = HU|3D P, and asp = (aw)y[3p-

We can further compute ®,(ka,) for v|3D. Recall that for p|D we defined @, =
char(zy3pz, )« and @3 = char(43z,))«. Then we have ®3p(kasp) # 0iff kay, € a+3DZy[w]
for some integer (a,p) = 1 and for p = 3 we need kaz € 1+ 30k,

Recall that we can define k, such that k, = o, mod 3DZ,[w| for all p|3D. Then the
we have kk, € a + 3DZ,[w] for (a,p) = 1 and kk, € 1+ 3Z3|w] as well. Furthermore, for
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k € O we actually have ®3p(kasp) = P3p(kky). Then we can rewrite I(s, ayp, @) using
ko in the form:

ISOéf,(I)f Z|| (I)ng{?l{?)
keOk

We can rewrite this further:

\k &
I(s,ap, @) = > !kk ’ Dy (kky),

ka keOk

Finally, we will make this explicit. Note that we must have kk, € A,, where A, = (k,),
we well as kk, € a, + DZ,|w] for some integer a,, (a,,p) = 1 as well as kk, € 1 + 3Z3[w].
By the Chinese remainder theorem, we can find an integer a such that a = a, mod D and

a =1 mod 3. Then we have kk, € a+ D [] Zy[w] N Ok, thus kk, € Pz3p N P 3. Here
p|3D

Pysp ={k € K : k = a mod 3DOy for some integer a,(a,3D) = 1} and P13 = {k € K :
k=1 mod 3}. We rewrite:

I(s,ap, ®f) = [l Z i ;
ka k€AaNPy pNPy 3 |k|28

Finally, we want to write the elements of A, N Pz p N P, 3 explicitly.
Recall that we can write A, as a Z-lattice A, = [a, %‘73] Then all of the elements

of A are of the form ma + n%jg for some integers m,n € Z. Moreover, note that the
intersection of A and Pzsp = {k € Ok : k = n mod 3D, for some integer n, (n,3D) = 1}

is {ma + 3Dn%j3 :m,n € Z}. Further taking the intersection with P; 3, we must have
ma = 1, thus we must have m =1 mod 3. Thus we can rewrite (s, oy, @) in the form:

—b+v/=3

a’ ma +n
I(S,Oéf,(bf):— Z 2 ,
b/
ka m,n€Z,m=1(mod 3) ’m& + nﬂps

Here we have also used the fact that |k,|c = a. Note that we can further rewrite this as:

— 1
I(S,Oéf,(l)f) :as_lk:a Z )
—b—r/— b/ — _
m,n€Z,m=1(mod 3) (ma + TLT\/*S) |ma + n#'%s ?

Furthermore, by changing n — —n and taking out a factor of a!=2, we have:

1

lm +n

I(s,ap, @) = a "k,

b+\/7) b+\/7’23 2’

m,n€Z,m=1(mod 3) (m +n

Note that for Re(s) > 1 the integral converges absolutely, thus we can rewrite it in the
form:
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1 _— 1
I(s,ap, @) ==a"*k, Z —
2 m,neZ,m=1(mod 3) (m + anﬁ/ﬁ)‘m + nb+5(/173’%5 2
1 _ — 1
e Y
2 m,n€Z,m=2(mod 3) ( m+ nb+\/7)| —m+ nb+\/7|28 ?

Changing n — —n in the second sum, we get:

1 1
I(s, a7, ®5) =50 ka >

m,n€Z,m=1(mod 3) (m + nb+\/7) ’m + nb+\/7|28 2

1 _ — 1
— —a °k,
2 Z (m+nb+\/ )|m+nb+\/ |25 2

m,n€Z,m=2(mod 3)
Thus we can write for Re(s) > 1 we can rewrite:

| R— g(m)
I(s,ap, ) = ¢ ko b+\ﬁ)

b+F’2s 2

m+n m+n

m,n€Z,m=1(mod 3) (

On the right hand side we can recognize the Eisenstein series E.(2s — 2, 2-), thus we
get:

1 —s7. 1a1_5
I(s, 05, @) = 50~ kaFe(25 = 2,227) = 57—

By analytic continuation, we can extend the equality to all s € C.

E.(2s — 2, ZI)

Using this Lemma, we can rewrite the Corollary 3.2 in the form:

Corollary 3.3. For all s, we have:

1 Nm A
L) =3 3 B2 200 AT
AECI(O3p) A
Proof. Recall that in the Corollary 3.2 we got
Ly(s,Xpp) = Z I(s,ap, @f)xp(a)p(a),

apeUBD)\AY /K>

We can rewrite I(s,ayf, @f) = %%EE(QS —2,24,) and ¢(a) = 1, xp(a) = xp(ka) =
xp(Aqy. Then we get:
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lal=®
Lg(s,xpp) = Z 2k E.(25 = 2,24,)xp(Aa)
apUBD\AY /KX ¢

Finally, consider A as representatives of C1(Osp). Note that by changing A — A we just
invert the classes of Cl(O3p). Thus we get the result of the Corollary:

lal= -
Lf($> XDSO) = Z 5 — E&(2$ - 27 ZA)XD('A)
AeCI(O3p) A

Fourier expansion of the Eisenstein series E.(s,z) at s = 0.

We want to connect the Eisenstein series E.(s, z) to the theta function ©x(z). In order to
do this, we will compute the Fourier expansion of E.(s, z) at s = 0.
We will use the Hecke trick to compute the Fourier expansion of the Eisenstein series:

EE(S,Z):Z/( €(d>

3cz +d)|3cz + d|*

We will follow closely the proof of Pacetti [14]. This is also done by Hecke in [8]. We
rederive the formula:

o] 2
e(r)
E 2
1(275) Z d1+25 + szz% 3cz+ 3d+7“))|30z+ (3d—|—7‘)’25

c=1 r=0 de

We divide by 3%**1 and get:

[e'e) 2
e(r e(r)
Ei(z,8) =2L(e,1 4+ 2s) + 22 Z 3251 Z 3cz+r T d)|3(:z+7" NUPTER

c=1 r=0 dEZ

We define for z in the upper-half plane:

1
Hzs) =2 (z +m)|z + m|>

meZ

Following Shimura (Lemma 1, p. 84, [19]), for z = x + yi and s > 0 we have the Fourier
expansion:

oo

H(z,s) = Z (Y, s+ 1, 5)e?™",

n=—oo
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T(s + 1T(s) n*e ™™g (4ny, s + 1, s), ifn>0
where 7,(y, s + 1, s)% = ¢ [n|Be 2o (4n|nly, s, s + 1), ifn <0
['(2s)(4my) 2, iftn=0,

[e.e]

where v(Y, o, B) = /(t + 1) P e gt
0
For any s > 0, H(z, s) converges, thus we can compute the limits of each of its Fourier
coefficients:

(2m)25+1 1(2 s
e n=0: £1_>01F(+) ()(47Ty) 25 —

I'(2s)
s—0 ['(s)

o

e n <0: lim ﬂ|n|286_2”‘”|y /(t + 1) s Aminlvt gy —
s=0i'(s + 1)I'(s)

—38

= —2mie” + 1) s Aninlvt gy

s—0

[e=]

2 2s+1
e n>0:lim—"—*>—— (27)

28 —27rny t 4 1 55— 1 —47rnytdt
s—0 (s + 1)I( /
0

We get, following [14]:

lim H(s,z) = —mi — 27rz'Zq”

s—0

Finally, note that:

N d
Ei(s,z) =2L(e, s +222325+1 (3 2 s)

c=1 r=0

Using the Fourier expansion of H(z, s), we get:

oo 2
E1<87 ,2,’) — 2L(€7 S) + 22 Z ;2(87—’;-)1 ZTn(yna S+ 1, 8)627”'”3956%

c=1 r=0 neZ

Taking the limit as s — 0, and the Fourier expansion above, we get:

oo 2 o]
Ei(s,z) =2L(g,s) + 2 Z Z ? (—m’ — 2mi Z e%mzcw"’)
c=1 r=0 n=1

We compute separately the inner sum:
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2 o0
Z ? <—7TZ + Ze2winzcwnr) _
n=1

r=0
e 9 e
— 9 Z 27rznzc Zw 6 rn _ _ﬂG Z 627rznzc
n=1 n=1

where G(e) = 23:0 g(r)w” = v/—3 is the Gaussian quadratic sum corresponding to €.
Then we get:

E1(0,2) = 2L(s, 1) 47TN_ Zze%mzc = 2L(e, 1) + 47?5 ST elm) | e

c=1 n=1 N=1 \m|N

Since ¢ is a quadratic character, we can compute L(1,¢) = %g (see Kowalski [13]). This
gives us the Fourier expansion:

Ei(0,2) = 21v/3 1+ Gi Zs(m) Nz

9
N=1 \m|N

Connection to the theta function ©x(z).

Recall the theta function O associated to the number field K:

(a2 2
Z) — 2 e?m(a ab+b )z

a,beZ

Equivalently, we can rewrite the theta function in the form: O (z) =146 , e?mNmAz
where we sum over all ideals A. Thus we have the Fourier expansion for O:

_1+6Z

where ¢(n) is the number of ideals of norm n. We will show the following version of
Siegel-Weil theorem:

Theorem 3.2. For E.(s,z) defined in the previous section and e the quadratic character
corresponding to to the extension K/Q, we have:

E.(0,z) =2L(0,6)Ok(2)
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The proof consists of comparing the Fourier expansions of the two sides. This is mainly
going to be based on the lemma below:

Lemma 3.4. For n > 1 then for the ideals in Ok we have:

Z e(d) = #ideals of norm n

din

Proof. We first show the result for powers of primes p°. We consider three cases:

If p=1 mod 3, then there are two ideals of norm p: (a + bw) and (a — bw) such that
a® — ab + b* = p. Then we have k + 1 ideals of norm p*: (a + bw)i(a + bw)F~ for 0 < i < k.
Moreover, since (p) = 1, we have (1 +¢&(p) +...e(p")) =k + 1.

If p =2 mod 3, then there are no ideals of norm p. Thus, if k is even, we have exacly
one ideal of norm p*: A = (p*/?). In this case (1+¢e(p)+...e(p*) =1—-1+---+1=1. If k
is odd, we have no ideals of norm p?***. Moreover (1+¢e(p)+...e(p*)) =1—1+---—1=0.

If p = 3, then we have exactly one ideal of norm 3%, namely the ideal (\/—_Bk) Moreover
g(3) =0, thus (1+¢&(3) +...e(3%) = 1.

It is easy to extend the result to all integers. As ¢ is a character, we have:

Zg(d) = H(l +e(pi) + -+ +e(p)),

dn piln

where n = [[p{", e > 1 and p; are primes. If we have any ideal A of norm n, then

(2
A= Hpv pcr, and we must have n = [[Nmp¢*. Moreover, we have #ideals of norm n =

v

[ #ideals of norm (Nm p;)%, which finishes the proof.
piln

]

We are ready to state the proof of the theorem. Using the above Lemma we can rewrite
the Fourier expansion of O as:

Ok(2) =1+6> | e(m) | e

N=1 \m|N

Multiplying by a factor of 2”9‘5 , we recognize the Fisenstein series F.(0,z). Thus it

implies £.(0,z) = %g@fg(z). Note that this is the same as:

E.(0,2) = 2L(1,£)O(2)
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Final formula for L(1, xpyp).
Applying Corollary 3.3 for s = 1 we get:

Lilxop) =5 3 B0, DzaxolA

AECL(O3p) A

Furthermore, from Theorem 3.2 this is the same as:

3

> (Do) (32

AECH(Osp) A

Lf(17 XD()O) =

We need one more step before rewriting the formula as a trace. This is going to be the
following lemma:

—b+ /-3
2

A = (kn), where ky =1 mod 3, we have:

e (57) i (155

Lemma 3.5. For A= [a, } a primitive ideal of norm Nm A = a, with generator

Proof. Since A = [a, %} as a Z-lattice, we can write its generator k4 in the form
Z

—b++v-3 . . .
ki = ma + BnT for some integers m,n. Moreover, since k4 is the generator of a

primitive ideal, we have gcd(m, 3n) = 1. Then we can find through the Euclidean algorithm

integers A, B such that mA + 3nB = 1, which makes ( A

B o .
_an m) a matrix in I'g(3). Since

© is a modular form of weight 1 for I'y(3), we have:

AZV=3 g _ — _ —
@K< e . )Z(m_gnbz_a m)@K(”—a H)

Noting that —E’m%_ﬁ3 +m = ky/a = 1/k4, we can compute

AT B (ATMYZE 4 Bakg

This is (aB + A%)(ma + Bn%j?’)/a. After expanding, we get:

—3nA + abB +

4a 2 2

b + 3 b(—mA + 3nB) N V-3
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Note that mA+3nB = 1 implies that mA and 3nB have different parities. Also we chose
b odd, since b> + 3 = 0 mod 4a. Then we note that —3nAb24—Z3 + abB + w ez
and thus using the period 1 of Ok we get:

A=V=3 —1+ /=
@K< R ):@K( + 3)

This finishes the proof.

]
Since the Lemma above tells us that O (74) = k4O (w), where 74 = _bJ;;/j?’, we can
rewrite (3.2) as:
Proposition 3.1.
™3 @K(DTA)
L¢(1 =—0 — 3.3
sLoxn) = =5=0x (@) D —goxn(A) (3.3)

AeCl(O3p)
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Turning the formula into a trace.

Ok(D
We will rewrite (3.3) as a trace. First, let f(z) = M This is a modular function for

Ok(2)
['g(3D). We will prove in Chapter 4 the following proposition (see Proposition 4.1):

Proposition 3.2. Take A representative ideals for Cl(Ospy. We can take all A to be prim-

itive and we can write them in the form A = |a, %]Z. Then the Galois conjugates of

f(w) are:
o (b3

o (55)

We will also rewrite the character XD to include a trace. In the Chapter 2 we have also
showed in Corollary 2.4 that (D/?)74 = D3y p(A).
Then the formula (3.3) becomes:

O4—1
Lf(ED,l):%gD_l/S@K(w) > (DWM) (3.4)
AeCl(O3p)

Moreover, we also have D'/3 € Hsp. See Cohn [3] for a proof. Thus we can rewrite the

D1/3 Ok (Dw)

Or (@) > We can compute the extra terms as

sum on the left hand side as Try,, /k (

well.

e Rodriguez-Villegas and Zagier in [17] cite Ok (%) = —3I (%)3 /(2m)%. We will

use several properties of O proved in Appendix A. We can rewrite Ok <%j3> as
Ok (_3%/_—3 — %) and using Lemma 9.1 we get:
-3+v-3 1 —-3+v-3 —3+v-3
O (ﬁ—s - 5) = (1-4)0x (%) O (ﬁ—s)

Using O (%) =0, we get O (%‘73) = 2O, <—3ﬂié/f3>
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Furthermore, the functional equation ©(—1/3z) = —/—320(z) for z = %TS, we

get —\/—3%_73@ (w) = Ok (‘3%/?3). Note that —\/—3%_73 = 3w, thus we get
O (L) =30 (w)

This gives us the value © (w) =T (%)3 /(27)?

o Loo(8,XD¥) = Loo(8, o), Where oo (2) = 271, Then we can compute:

Lo (8, 9o0) = Loo(s = 1/2,] - [1£%000) = 2(27)°T(s).

This gives us Loo(1, xpy) = 2.

NN
e The real period €2p of the elliptic curve Ep. The real period of Fj is g?’) . Then to

e
1/3

compute the real period of Ep we twist by a factor of D™/° and get:

On = D—l/BF(%)3
b 187

Multiplying all the terms, we get:
3
3T ()

9 (2m)?
This gives us the first part of Theorem 3.1:
VAL (5)° O (D)

L(Ep. 1) = —— 3/ _p-1/37 D=2 3.5
( D, ) 187 I‘H3D/K< @K<W) ( )

L(Ep,1) =2

O (Dw)
Trsr pYBZET)
i (P55

Sp is an integer.

In the previous section we have showed that Sp € K. Moreover, it is easy to see that note
that Sp € Q. To show this, it is enough to check the invariance of DY/20(Dw)/O(w) under
complex conjugation:

DY30(Dw)/0(w) = DY20(=D + Dw)/6(—1+ w) = D20 (Dw)/O(w).

Now we would like to show that Sp € Z. First we look at the Fourier expansion of

f(z) = ©(Dz)/6(2):

O(z) =1+6 Z c(N)g™,

NGZZl
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where ¢(N) = # ideals with norm N in K and, ¢ = €*™*. Then we also have the Fourier
expansion of ©(Dz):

O(Dz) =1+6 Y c(N)g"",
O(Dz) 7
0(2)

straight computation. The minimal polynomial of D'/3 f(w) is:

By taking their ratio we get = Zanq”, a, € 7Z. This is easy to see just by
€z

[1 & -D"xp(A)(f(w)™) € Z[w, D'*)(X,q)
AeC1(O3p)

This implies that Trp,, /i DV f(w) € Z]w, D'/3]. We already know that Trp,, e D3 f(w) €
Q, thus Trp,, /x D3 f(w) € Z.
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Chapter 4

Shimura reciprocity law in the classical
setting.

Let F be the field of modular functions over Q. From CM theory (see [21], for example),
it is known that if 7 € K NH and f € F, then we have f(r) € K%, where K% is the
maximal abelian extension of K. Shimura reciprocity law gives us a way to compute the
Galois conjugates f(7)° of f(7) when acting with ¢ € Gal(K®/K). We will follow the
exposition of Stevenhagen [21]. For more details also see Gee [6].

We recall that F = |y, Fn, where Fy is the space of modular functions of level N.
Moreover, we can think of Fy as the function field of the modular curve X (N) = ['(N) \ H*
over Q(Cy), where (y = >/ and H* = H UPY(Q). We can compute explicitly Fy =
Q(j,jn), where j is the j-invariant and jy(z) = j(Nz). In particular, we have F; = Q(j).

When working over (Q, one has an isomorphism:

Gal(Fy /F1) = GLy(Z/NZ)/{£1}.

More precisely, if we denote by 7, the Galois action corresponding to the matrix v €
GL2(Z/NZ) under the isomorphism above, it is enough to define the Galois action for
SLy(Z/NZ) and for Gy = { <1 0) ,d € (Z/NZ)*}. We state explicitly the two actions

0 d
below.
e Action of a € SLy(Z/NZ) on Fy.
(f(r))7 = f(7) := flaT),

where « is acting on the upper half plane via fractional linear transformations.

. 1 0
e Action of (O d

expansion f(z) = Y a,q"/"N with coefficients a, € Q((x), ¢ = €*™*. If we denote
n>0

) € (Z/NZ)* on Fy. Note that for f € Fy we have a Fourier
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Ug = (é 2), then the action of o, is given by

(f(r)7ma = fu(r) =) agiq™™,

where o, is the Galois action in Gal(Q(¢y)/Q) that sends (y — (4.

As the restriction maps between the fields Fy are in correspondence with the natural
maps between the groups GLo(Z/NZ)/{£1} we can take the projective limit to get the
isomorphism:

Gal(F/F) = GLy(Z)/{£1}.

To further get all the automorphisms of F we need to consider the action of GLa(Ag f).
We get the exact sequence:

1 — {£1} = GLa(Ags) — Aut(F) — 1

For this to make sense, we need to extend the action from GLQ(Z) to GL2(Aq,f). We do
this by using the action of GLy(Q)*:

e Action of o € GLy(Q)" on F.

fe(r) = flar),
where « acts by fractional linear transformations.

We extend the action of GLy(Z) to GL3(Ag) by writing the elements v € GLa(Ag) in

the form vy = ua, where u € GLy(Z) and o € GLy(Q)*. Note that this decomposition is
not uniquely determined. However, by combining the two actions of v and «, a well defined
action is given by:

£ = (o
We want to look at the action of Gal(K%/K) inside Aut(F). From class field theory we
have the exact sequence:

1= K= A%, 2 Gal(K®/K) — 1

where [-, K] is the Artin map.

We are going to embed Ay ; into GLa(Ag ) such that the Galois action of A , through
the Artin map and the action of the matrices in GLQ(AQ ) are compatible. We do this by
constructing a matrix g, () for the idele x € A% ;



CHAPTER 4. SHIMURA RECIPROCITY LAW IN THE CLASSICAL SETTING. 35

Let O be the order of K generated by 7 i.e. O = Z[r|. We define the matrix g.(z) to be

I) = g, (x) (;) We can compute it explicitly.

To do that, consider the minimal polynomial of 7:

the unique matrix in GLy(Ag) such that « (

p(X)=X*+BX+C

Then if we write z, € Q) in the form z, = 5,7 +1, € Q) with s,,t, € Q,, we can compute:
t,—s,B —s,C
- (8 56)
Sp tp

Shimura reciprocity law is going to make the following diagram commute:

["K]

1 K~ A, —— s Gal(K®/K) — 1

FT

1 —— {£1} — GLy(Ag ) —— Aut(F) —— 1

We make the statement explicit below:

Theorem 4.1. (Shimura reciprocity law) For f € F and x € Af ;, we have:

(F()T = (),
where [z, K] is the Galois action corresponding to the idele x via the Artin map, g, is
defined above and the action of g-(x) is the action in GLa(Aq ).

Remark 4.1. Note that the elements of K have trivial action. This can be easily seen by
embedding K™ — GLy(Q)" given by k < ¢, (k). Noting that 7 is fixed by the action of the
torus K*, we have:

frE0(r) = flg-(k)7) = f(7)

Remark 4.2. We can also rewrite the theorem for ideals in K. Let f € Fy and O = Z|[7]
of conductor M. Going through the Artin map, we can restate Shimura reciprocity in this
case in the form:

1

flr)7a = for(n), (4.1)

where o 4 is the Galois action corresponding to the ideal A through the Artin map and

9-(A) = g-((a)p| Nm())-
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Note that g,(.A) is unique up to multiplication by roots of unity in K. However, these have
trivial action on f. This can be easily seen by multiplying by an element of (+w?), € K*
and noticing that we get trivial action at the unramified places p{ M N.

Remark 4.3. Note that the action of g,(A) is the same as the action of g.((@)pan) "
Remark 4.4. Note that the maps above are based on the map between the ideals A prime
to M'N and the ideles:

I(MN) — AIXW/KX

A=T]re = (@5

where w, is the uniformizer of the ideal p, at the place v { co.

Applying Shimura reciprocity law to K = Q[v/—3].
Lemma 4.1. The function f(z) = @@LZ? is a modular function of level 3D with integer
K

Fourier coefficients at the cusp oo.

Proof. Since O (z) is a modular form of weight 1 for I'y(3), it can be easily seen that ©(Dz)
is a modular form of weight 1 for I'(3D). Furthermore, their ratio is modular function for

['g(3D). We check this below. For v = (Z Z) € I'(3D), we have:

f(re) = @((10)(((1)) S) %) ) _ @<(/(lz bcllb))) 3”)) _ <fz+d§>@(§f§) — 1(2)
© Z d)” © Z d)” R

To find the Fourier expansion of f(z) at oo, it is enough to write the Fourier expansions

of ©(Dz) and O(z):

L+ 37 e(N)g™P

O(Dz) N>1 B M
o ~ 1T > (T - 2
31 M>0

We can compute the Fourier coefficients explicitly from the equality:

LD e(N)g™ = (14 e(N)g™) (D ang™)

N>1 N>1 M>0
Note that we have ap = 1 and apy = —ap—1¢(1) —apr—2¢(2) — - -+ —aye(M — 1) — age(M)
if Dt M and ay = c¢(M/D) — ap—1¢(1) — apr—2¢(2) — - -+ — aye(M — 1) — age(M) if D|M.

By induction, since ¢(N) € Z, we get all the coefficients ay € Z. ]
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f(w) is in the ring class field H;p.

From CM-theory, we have that if f € F3p and 7 generating Ok, we have f(7) € Hsp o
the ray class field of conductor 3D. We claim that f(w) € Hsp. Recall that we have
Gal(K®/Hsp) = U(3D) \ Ak ;/K*. Thus in order to show that f(w) € Hsp, we need to
check that f(w) is invariant under the action of U(3D).

Lemma 4.2. Forw = 1+2F and f(z) = ®®KK(€5) we have f(w) € Hsp.

Proof. In order for f(w) € Hsp, we need to show that it is invariant under Gal(K®/Hsp).
Using Shimura reciprocity law, we need to show:

flw) = O (w),

forall s € K*U(3D). From Remark 4.1, the action of K is trivial. Thus it is enough to show
the result for all elements | = (A,+ Byw), € U(3D). By the definition of U(3D), this implies
that A,+B,w € (Z,[w])* forallpand A3 =1 mod 3, Bs; =1 mod 3, B, =0 mod D for all
p|D. Since the action for p { 3D is trivial, s has the same action Ip = (A,+Byw)ysp € U(3D).
Moreover, this has the same action as ly = (A 4+ Bw)p3p, where A + Bw € Ok and A = A,
mod 3DZ, and B = B, mod 3DZ, for all p|3D.

Note further that we can pick A, B such that (A 4+ Bw) generates a primitive ideal A in
Ok. Moreover, from above we have 3D|B and A = 1 mod 3. Recall that we can rewrite

any primitive ideal in the form A = [a, _b+r] z, where a = Nm A and b? = —3 mod 4a.
Then the generator is A+ Bw = ta + s b+2‘ﬁ for t,s € Z, 3D|s.

Now observe that f(w) = f(7), where 7 = bJ”ﬁ , thus from Shimura reciprocity law,
we have:

(f(m)7t = D (w).
Here r,(I) = <A”§ZB” _fjc>p and 7,(l) has the same action as r,(ly), where [p = (A +

Bw)pisp and A + Bw = ta + s%j?’. Then we need to compute the action of:

(f(r))r = frtol(r).

b2+3

Note that r.(ly) = (7% 3¢ 2

PR )p|3D, . Then we can rewrite the action of
7’7—([0)2

where ¢ =

f?"-r(lo)(,]_) _ f(tagsb fStC/a)p‘SD((l) 2)p|3D (7_) — f((l) 2)p‘3D((t(I—Sb —sc/a) ,7_)

s t

Since alc, the matrix (" ** ~*¢/*) € SLy(Z) and we can rewrite:

O (B () z) O (50" ") (02)
Ox ( ta—sb 7sc/a) z) : Ox ((tafsb fsc/a) z) :

s t s t

f( ( ta;sb —stc/a ) Z)



CHAPTER 4. SHIMURA RECIPROCITY LAW IN THE CLASSICAL SETTING. 38

Note that since 3D|s, we actually have (tj/_gb _SctD/a) , (T 7ee/a) € I'p(3) and we can

apply the properties of the modular form O:

Ox ((tg/_gb _SCtD/a> (Dz)> _ (sz+t)'Ok (D2)
@K((m”b ’SC/“)Z) o (sz+t)710k (2)

s t

= f(z)

Finally, note that since (a,3D) = 1 and f has rational coefficients, the action of (§¢),3p
is trivial. This finishes the proof that f(w) is invariant under the Galois action coming from
U(?)D), thus f(w) S H3D-

[

Remark 4.5. A different proof is shown in the in Appendix B, where we reinterpret the
classical Shimura reciprocity law in the setting of Shimura curves following Hida [9].

Galois conjugates of f(w).
Let A = [a, %] be a primitive ideal prime to 3D. For m = %, let Op = Z+ D717.
Z

Lemma 4.3. Let f € Fy be a modular function of level N with rational Fourier coefficients

in its Fourier expansion. Let 1y = #?3 be a CM point and let A = [a, ——b+2\/—73} be a

primitive ideal prime to N. Then we have the Galois action:

f(r)7a’ = f(r/a)

Proof. From Shimura reciprocity (4.1), we have:

) = ).
Note that the minimum polynomial of 7 is p;(x) = X 2 1 bX + l’%g. Now let a =
ta 4+ g=btv=3 b+F = ta + s7 be a generator of A. Then we have g,(A) = <m—5b —5:2#) " We
—s a pla

can rewrite the matrix in the form:

g = () (e

—s t

As <m sb —* 3) | € SLy(Z,) for p{ ND, it has a trivial action. Then:
pla

oA (7) = f(é Q)W(T)

(
We rewrite the matrix (§9),, = (50 )y (00 )g: Where (o 1/a) € GLy(Z) and (60)g €
GL2(Q)*.
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Note that the action of (é 1(/)a)p is only given by ((1) 1%) However, since f has

p|[NM"*
rational Fourier coefficients in its Fourier expansion, this action is trivial. Thus we are left

with:

ng(A)(T) — f((l) 2)@(7-)

This is just f9-A(7) = f(7/a).
]

Proposition 4.1. Take the primitive ideals A = [a, %}

to be the representatives of
z

the ring class field Hyp such that all norms Nm A are relatively prime to each other and
b*> = —3 mod 4a for all the a = Nm A chosen.
@K(Dw)

Then the only Galois conjugates of f(w) = or()
KW

are the following:

7 O (D
(52 -

—b+v/=3
p)_ox(2)
Proof. Note that Ox(Dw) _ ’ and apply lemma 4.3 to 7 = —b+2\/j3 and
Ok (w) Ox <—b+2\/53)

D
f(z) = @@L(j) These are the only Galois conjugates we showed that f(7) € Hsp. O
K\Z
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Chapter 5

Writing Sp as a square.

In this section we will show the following result:

Theorem 5.1. For D = [T »¢, let 7 = =252 such that b¥* = —3 mod 12D
p;=1 mod 3

Moreover, let b* =b~! mod D.
Let Ho be the ray class field of conductor 3D and let Hy C Ho be the subfield of Ho

that is the fized field of Gy = {r € (Z/DZ)*,r =1 mod 6 : A> = (1 +b*(1 — r)%)}

Then we have

Sp = |TrHo/H0(f1(T>D2/3>’2
and Sp € 7.

The main tool in proving Theorem 5.1 is a Factorization Formula of Rodriguez-Villegas
and Zagier [16]. We will apply the Factorization Formula (5.1) to the formula for the L-
function L(Ep, 1) in Theorem 1.1.

Factorization Formula

We recall the version of Factorization Formula ([16], Theorem, page 7) simplified to the case
ofa=p=0:

Theorem 5.2. (Factorization formula.) For a € Z~y, p,v € Q, z =z + yi € C, we

have: ,
Z p2milmunp) gr(imn—"50) ja \ 2ay6 {ayﬂ] (a™'2) -6 [ ZV} (—az), (5.1)

m,neL

where 0 {’ﬂ (2)= 3 emn=2mivn gs g theta function of half integral weight.
neZ+p

Using the formula above, we will prove the following Proposition:
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Proposition 5.1. Fora = a; =1 mod 6, D = 1 mod 6 and b*> = —3 mod 4D%a%a,,
b=1 mod 16, we have:

3q (D—b+\/—_3) g (D—b+\/—_3> _
2 2a 2 6a
Z emila=D/6g _b—l—— V3 0, b+— V3 , (5.2)
2a2a, 2a,
rGZ/DZ

where 0,(z) = Y e™ ”+S/D_1/6)QZ(—1)” is a theta function of weight 1/2 for s non-negative
nez
mnteger.

Remark 5.1. Throughout the paper we will use the notation r € Z/DZ to mean any
representatives r for the residues mod D.

Remark 5.2. Also note that 6y(z) = n(z/3), where 7 is the Dedekind eta function, while

> 0n(2) = (552)-

reZ/DZ

We start the proof of Proposition 5.1 by applying the Factorization Formula (5.1) several
times for p = ”gr, where r € Z/DZ, and for z := z/D. Summing up the formulas, we are
going to get the result of the next lemma.

Lemma 5.1. We have the following factorization formula:

Te%:m% { a(p +Vr)/D] (Da>6 {(u +;Z/D] (—aD3) =

Z €2m(mu+n,u (mm_ln mz‘ )%

m,ne”

Proof. Plugging in pu:= *5° 2 := z/D in (5.1), we get:

(M+T) z (/J-H“) ) . . \n—mz|2 1
2a10 D (_) 9| D = 2mi(my+n(p+r)/D) m(mni— =) -
vV 2ay { } - [ ] (—az) = E e e v

—av
m,ne’l

We sum for r in Z/DZ:

>, V2ay 9{ (H;T)] () [(My) } = 3T emilmnun/D)rlomni= )
a —av

reZ/DZ r€Z/DZ mnel

We change the two sums on the RHS:
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Z Z 627Ti(m1/+n(u+r)/D)e7r(mni—%)é — Z Z e27ri(mu+n(u+r)/D)e7r(mni—%)%

r€Z/DZ m,nel mn€ZLre’l/DZ

. . |n77nz|2 1 .
Note that the LHS can be rewritten as Z e2mi(my-+n(u) /D) g (mni—E=i=o) g Z g2minr/D

m,nez r€Z/DZ
and note further that:

D-1
| | 0, forD
E eZﬂmr/D _ 2 e27rzm“/D _ { or Tn
r=0

reZibz D, for Din

Thus we are only summing over the n’s that are multiples of D, and the RHS of the
formula becomes:

. . n—mz|?\1 ) , r;_In'=m(z/D)|2\ D
2 : § : e2m(mu+n(p+r)/D)eﬂ(mm—T)E - D § : €2m(mu+n (,u—i—r))ew(mn Z—W);
r€Z/DZ m,nel m,n'E€Z

Going back to our initial equality, we can change the variable z to 2z’ := z/D and get:

(ptr)
D
v

a AVIC D
s 5 o) (0o ] o

/ l‘2

=D Y il e romn i R

m,n'€Z

Corollary 5.1. Another version of the factorization lemma above is:

Z V 2ay6 [au + CM“/D:| (Dz> 0 [M + T/D:| (—CLD?) _ Z €2wi(mu+nDp)€ﬂ(mni—%)g

r€Z/DZ \/E v a - m,nez
(5.3)

Proof. We apply the previous factorization lemma for p := Dp.
]
We will apply Corollary 5.1 for p = —1/6 and v = 1/2, D odd, z = _;;;/1?3, where

b* = —3 mod 4a%a;D and b =1 mod 16. This gives us:

3> o [ F] (075057 o [28] (05 ) -

T 2a2a, D —a/2 2Da,
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—b++v/-=3
|[nDaaq —m% \2 D

— E eeri(m/anD/G)eﬂ'(WNi— Daal\/g ) a

m,ne’

We will analyze first the LHS of the equation. Note that from the definition of 8 [’5 } we
have:

1 T
0 [_6 725] (2) = 3 il b8) semomilnt 5-5) — gomin/Donifo (1),
—a

nel
1 ar
6 + D

.. —4 4 ar
= 6 " D —
Similarly, as @ = 1 mod 6, we have ¢ [ 1/2 } (z2) =146 { 1/2 } (z). Then from the

definition of 6, we get:

0 {_61725} (2) = Zeﬂi(”+%_%)zzeﬂi(”+%_é) — eriar/De=mif6g ()

neL

Also, since D = 1 mod 6 we also have: e 2™P/6 — ¢=27in/6 e can also compute:

V2ay 26‘2@\({1313 B V3
vD VD D\/ay’
V3 Z erila=1)/6g <—b+ \/—_3) 0, (b+ \/—_3) _

Thus we can rewrite the formula:

D Ja. 2a2a 2a
L rez/pz. ! '
—b++v/=3 2
. |nDaa;—-m——"—|“| p
. _ m(mni— o
_ Z 2mi(m/2-n/6) ;7( Daar V3 )G (5.4)
m,neL

Now we are going to analyze below the RHS of the equation (5.4):

—b+v/—3,2
|nDaa17'm+\ )2

g 627ri(m/2_n/6) eﬂ-(mnii Daa1\/§ a
m,ne”z

First note that we have the following lemma:

Lemma 5.2. Forb=1 mod 16,0 =0 mod 3,b> = —3 mod 4a%a, D, we have:

—b++v/—32 —b++/—3 2
) . |naay D—m —T5—=|%' . |naay D—m —"5—=| —b+/—3
2m(m/2+n/2)€”(m”17 aay DV3 ); — 627”‘ aa1 D D 6a

(&

Proof. We only need to show that:

(m n  Dmn |naa; D —m b ,
2 — 4+ = = -2 D— d 2mwiZ.
m ( 2 - 2 N 2a ) i aa; D 6a O

7b+\/?3|2
2
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After dividing by 27i, we compute the RHS of the identity:

b=
|naa; D — m#PDGi _ (Dme(b2 +3) Dmen N Dbaan)
a

aa; D 24a2a, 6a 6

Thus our claim turns into:

D 2 2 D 2

m n mn\ _ Dmgb(b +3) —Db mn bain mod Z
2 2 2a 24a2a, 6a 6

Equivalently:
m n m? b (b + 3) (V> +3)mn  n*b
—+—-=(D— - D —-D dZ
SR ( 2 3 da2a, 6a | 23”m) mo

We have b> = —3 mod 4aa?, b =1 mod 16, b =0 mod 3. Note that this implies that

b is odd and that > +3 =4 mod 8, as well as b> +3 = 0 mod 3. Then, since a,a;, D are
odd, we get:

m? b (b* + 3)

2=m? 2_D——
o m/ m/ 2 3 4a2ay

mod Z

o, n*b
[} n/2:n/2:7§Da1 mod Z

(b + 3)mn
6a

o —D cZ

This finishes the proof.

Lemma 5.3. Under the same conditions as above we have:

) “m,m#»naa ‘2 3 1
Z 627”71/3627”*1% = 5@(3z) — 5@(2),

m,neL
where z € H, AA; = [aay, %?3] and b=0 mod 3, b> = —3 mod 4aaq,.

Proof. Note first that by changing m — —m and —m - _b+‘/?3 + naay to its conjugate, we

e —b+\/*+ma1‘2 b+F+naa1‘2
have Z 627rin/3627” Z 627rm/3 o2 tnea D
m,ne” m,ne”L
We can split the sum in three terms, depending on n mod 3:
2ri\m-b+\2/j3+naa1|2 9 .|m-b+\2/j3+naa1\2
e aal -z +w Z e T -z+

m,3|n€Z m,n€Zn=1 mod 3
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2ﬂ.ilm‘b+\2/_3+naal‘2 "
+(JJ2 Z e aaq
m,n€Z,n=2 mod 3
) \mb_‘—T “_3+n3aa1|2
mi =g ——— 3z
Note that the first term equals »_ e aal = Ok (32).

mne”L
Also note that the two terms

|m- 2+ =3 §*3+mm1|2 .

2 : 21
6 (llll

m,n€Zn=1 mod 3

and

m,n€Z,n=2 mod 3

equal each other, by changing in the latter n — —n and m — —m. Thus we got so far:

Jbtyv=3 \é*3+naa1|2
g Tnest

. |m
0(32) + (w +w?) Z e aay

m,neZ,n=1 mod 3
Furthermore, we have:

‘mL \é_3+naa1|2.z |mb+7 \é_3+naa1‘2‘z

Z 2 ——2—————— 1 Z 2
e aaq — e aaj
2
m,n€Z,(n,3)=1

m,n€Z,mn=1 mod 3

Finally, this is just:

1 7_ri\m-l"Jr‘/773-4-77uc1,611|2.Z 1 7rZ,|m.b*"/7;3+3naal|2. » 1
DI D (CIORLICR)

m,ne” m,nel

|m.b%7 HJ’"‘MHQ.

Finally, we get 5 e2min/3¢>™ aay ©=0(32) — 2(O(2) — O(32)) = 30(3z) —

mneZ
30(2).

From the previous two lemmas, we get the following corollary:

Corollary 5.2. Under the above conditions, we have:

naa —m —b+v=32
S Emtmn o L B (D—b+—\/—_3> -0 <D_b+—\/__3)

2 2a

m,ne’l

Proof. Note that we can rewrite the LHS in the form:
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. \naalDfm_b% V_3\2 D . \naalDfm_b% ‘_3|2 D
Z 2mi(m/2-n/6) 7 (mni= 2a,DV3 e _ Z (2mi(m/2-n/2+n/3) T(mni= e DV )2
m,ne” m,ne”
Then, from Lemma 5.2, we have:
. |naa1D7m7b+7 '73\2 D |naa D—m=btVv=3 V_3|2 b —
Z p2mi(m/2-n/6) 7 (mni= DV e _ } : G2min/3 e )D =Y =3
m,neL m,n€Z
_ =b+v=3 .
Now apply Lemma 5.3 for z = D=—2—=, we get:

naa —mib+\/773 2 - _ — _ .
5 o S (p /) L (/)
a a

mne”

Finally, from (5.4) and Corollary 5.2 we get the result of Proposition 5.1:

B (55) o (0255)

6a
— % Z eﬂi(a_l)/Ge _b_'_ V _3 0 b_'_ V _3 .
D./a; o 2a2a, " 2a,

rez/DZ

A particular case of Proposition 5.1 is going to be the following result:

Corollary 5.3. For b = —3 mod 12a%a;, b=1 mod 16, we have:
3 _b+ \/__3 \73 ﬂi(afl)l _b+ \/__3 b+ \/__3
O —— | = —e 60g | ——— || —— | ,
2 2a Var 2a2a, 2a,
where Oy(z) = 3 emin=1/6°=(_1)n

neE”Z

Proof. Applying the Proposition 5.1 for D = 1 we get:

3 (~b+v=3\ 1 _[-b++/-3 V3 itanyia [(—b+V-3 b++/-3
O —— | — =06 = e 60| ————— )0y | ————— | .
2 2a 2 6a Vay 2a2a, 2a,

Furthermore, using the result from Appendix A, Lemma 9.3 that © <

—b+v/=3\ _
6—a> =0, we get

the result of the Corollary.
O
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We further take the ratios of the theta functions in Proposition 5.1 and Corollary 5.3 to
get the following corollary.

Corollary 5.4. Under the same conditions as above, we have:

o(p57) 0 (0) a0 (55)

2a2a1 2a1

S5 T e (B)n(50

2a2a1 2a1

Proof. We begin by writing the ratio of the formulas in Proposition 5.1 and Corollary 5.3:

4 . _ - _
o(p255) e(p2g) B N )N (55

1 6a B rez/DZ.
o 4 . _ — =
(s} <*b45;/j3> 3 e (sz;/j?)> (\l/_lgeﬂz(afl)/ﬁeo ( 322\2173> 90 (b+2\5173>
Simplifying, we get the result of the Corollary. O]

Ratios of 6, and 6,

Now we will apply the Factorization Lemma once more to connect the theta functions 6,
to the theta function 6,. We do this by applying the Factorization Formula (5.1) twice and
comparing the results.

Note first that any primitive ideal A in Ok prime to 6 has a generator (n,a +ma%)
such that a = Nm(A), ¥* = —3 mod 12a and n, = 1 mod 3. Moreover, note that a =
n2a +m2%# — m,n,ab, thus men,b =1 mod a, as a|(b® + 3) /4.

Using this notation, we have:

Lemma 5.4. For b=0 mod 3, b> = —3 mod 4D%ad’, ny =1 mod 3, we have:

() e (5 (5

2aa’ 2D2%ad’ ) Jd 2a 2D2q
Proof. We write the generator of A’ in the form (nga + my _b+2‘/?3 ), where v* = —3
mod 4aa’D?. Moreover, we can pick ny, = 1 mod 3. Then, using the Factorization For-
mula (5.1) for p = —2 + 4 v =1 a:= D and z = 23 e have:
4 1 r D
V3 g[8t 5] (p=bt V=3 o[ 8] (b V=3
wWaa | D/2 2aa’' D —1/2| \ 2D2aa’
’fTL7b<i>7\/773 naa/ 2 —
e

Note that on the LHS we have
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and
_D /6
6 _om
7 [_1/2} =¢e"%0,(z).

Furthermore, using Lemma 5.2, the RHS equals:
mM+naa/D|2 —b+v=3
6D |

. . | )
E 627”%627”%627” —D

m,n

Thus we got:

—b+v/=3
|m + +naa/D|2 —b+y/—3
6D

V3 —b++v-3 b+ v— S —

\/_ emrer D + 90 + Z 6271-1 2miy 2mi —5
2/ ad' 2aa’ D 2D2aa

(5.5)

Note that if we write any element of AA’D, we can write it as an element of AD multiplied

by the generator of A’. Thus if we write an element of AA’D, in the form m_I)J“T\ﬁ +naa'D,
_b+2\/j3 +noaD € AD times the generator m,, _b+2‘/_73+na/ a

it is going to equal an element my

of A’

aa’'D = (m
2

my +n oy + noaD)(ma/ﬁ + nga’)

This gives us:

b243

m = MoMy + NNy — MoMgb
n = nNoNg — MMy 4aa’ D

Since b +3 =0 mod 4D?, it implies that n = ngny mod D. Then we have:

—b++/—3 2 —b++v—-3 2
|m +2 +naa/D\ —b+v/—3 o non /T o non 1 omi \m0++nOaD\ —b++/—3
E e D e 3 e aD 6D

nr n .
§ 627rz yo) e27rz3 627” oD D —
m,n mo,no

Since we picked n, =1 mod 3, this is the same as

9mi 0"/ o im0 o ,\mo_b% v_:z'-i—noaD\Q —btv=3
E €7m D @7r2367” aD 6D .

mo,no

Then applying the Factorization Formula (5.1) again for pu := —

. —b+V=3 .
z 1= —55—, we get:
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Z 627ri"°';a’""627ri%0627ri‘m0 _b+2¢j+noam2 S
mo,no
4 n,r o — D B —
_ VB[ ] (p V)[BT (v
2va | D/2 2aD 1/2 5D%a

_1y mer e
Moreover, on the RHS we have the theta functions 6 { 6D7 2D 1 (2) = e ™/6emmarg, (2)

D

and ¢ L/Q] (2) = €™/%0y(2). Thus we can rewrite the equality as:

ngn v n L|m —btV=3 ngaD|? _ =
$ Rt e ami MR e S (5.6)

mg,no
—b+ V- —b++v-3

(i il o, (V2 (5.7)

~ 2aD 2D%q

Comparing the two relatlons (5.5) and (5.7), we get:

L gring, (_”—*/__3) o (@) = "0 (M> % (M>

Va' 2aa’ 2D2qa’ 2a 2D2%q
m

Lemma 5.5. Under the same conditions as above, we have:

mir —b+v—=3 TN T —b+v/=3

€ er < 2aa’ ) - e ena”" ( 2a )
0 (—b-‘r\/j?)) - 0 (—b+\/—73>
0\ 2aa'D? 0 \ 2aa'D2

Proof. Note that from Corollary 5.3, we have %@ (4’*2*/?3) = D%GO <;l:;)é§> 0o <g:;,/£>

Moreover, we also have from the same corollary that

©(F57) - pe (Can ) » ()

thus:

L, ~b++/-3 6, b++v-3 4 —b++/-3 ; b++v=3
Va' 0 2aa’ D? 2aa'D? ) " 2aD? 0 2aD?

Recall from the previous Lemma that we also have:

Uiy (VY (VY iy (ZhEVEBY, (b V3
Va " 2aa’ 2aa'D? ) TalT 2a O\ 2u4D2
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Dividing the two relations, we get exactly:

eﬂ'irer (—b+\/—3) emn“/rena/r (—b-;a\/ —3)

2aa’
o (3557 0o (552

Applying the factorization lemma to get a square.

We would like to apply the factorization lemma for the formula in Theorem 1.1 for certain
ideals that are representatives of the ring class field C1(O3p). We will pick these ideals below.

Representatives of Cl(Osp).
Recall that, using Cox [4], for the ideal class group of conductor 3D, we have:

Cl(Osp) = (O3p/3DOk)" /(Z/3DZ)* (O [{+£1})

Moreover,we can compute explicitly that for D = IT  pi we have Cl(Osp) =
p;=1 mod 3

(Z)DZ)* which also gives us # Cl(Osp) = ¢(D), where ¢ is Euler’s totient function.
Furthermore, we are claiming that we can take as representatives of Cl(Osp) ideals with
norm NmA, = k mod D for k € (Z/DZ)*. We construct these ideals in the following

lemma:

Lemma 5.6. We can take as representatives of Cl(Osp) the ideals:

—b++v-3
A = (nkak + ka) ;
where Nm Ay = ap, = k mod D for k € (Z/DZ)*, ay, =1 mod 6 and n, =1 mod D.
We can pick such an ideal if we take my = b~ (k + 1) mod D. We can further put the
conditions ni, my =1 mod 3 to determine the ideal uniquely modulo 3D.

Proof. Note first that two ideals A, B are in the same class in Cl(Osp) if we can find gener-
ators a, 3 for A and B, respectively, such that «3~! = m mod 3D, where m is an integer
prime to 3D. Note that this implies o3~ = &1 mod 3.

Let us assume that A, and A; are in the same class in Cl(O3p). Then we must have

+o* (nkak + mk%) = +wR (nlal + ml%_ﬁ?v mod 3D for some %, j and some in-

teger R. Since we chose ny, mg,n;,m; = 1 mod 3 and b is odd, we actually have niay +
mk%_ﬁ?’ = na; + ml%j3 = w mod 3, which determines the choice of +w’ = +w’ on

both sides. We further need the condition:

—b++/-3
2

—b++v-3
NEQE + Mg = R(nlal + ml+T) mod D
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Note that this is equivalent to:

kb (k + 1)_”T VS R+ b+ 1)‘”*T V=3 mod D
Furthermore, this can be rewritten as:
kb+ (k+1)v/—3 _ Rlb+ (l+1)v/-3 mod D

2 2
This implies k =R mod D and k+1=I[(R+ R mod D, thus R=1 mod D and k =1
mod D.
Finally, we have #(Z/DZ)* such ideals, all in different classes of C1(Osp), thus we have
representatives in every class of Cl(O;p).
[l

Using the factorization formula

We will pick representatives as in the above Lemma to rewrite the Proposition 5.1 and apply
Corollary 5.4. We will denote by {s € (Z/DZ)*,s = 1 mod 6} the norms of the ideals
chosen in Lemma 5.6. Furthermore, we are going to choose in Proposition 5.1 all r to be
even. We will use the notation {r € Z/DZ,r even} to express this.

Lemma 5.7. Picking representatives of s € (Z/DZ)* such that s =1 mod 6 andr € Z/DZ
also such that r =0 mod 2, we have

0 (P257) 00 () ()
SG(Z/ZDZ)X NE=) x(A,) = (% % ey PR EE ROk, (b%?)xur)
s=1 mod 6 s=1 modﬁ r even

Proof. We fix ¢(D) ideals Ay as in Lemma 5.6. Recall that we pick A such that Nm A =
ar = k mod D for k € (Z/DZ)*, a, =1 mod 6 and ny = 1 mod D. We can pick such

an ideal if we take Ay = (ngay + my b+r) with my =07 1(k + 1) mod D. We will try to

compute:
s} <D —b+\/—73>
2ap
5= Sy XA
ke(z/DZ)* o (T)

k=1 mod 6

Recall that from Corollary 5.4, we have:
o) (D—b;g?g> X (D —b+\/?3> O <—b;\§?3> 0, <b+\2/?3>

2ag o
o) Te(RD) i w(H)(F)

2as 2D2q2 2D?
r even
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. TN _oTs i .
Moreover since r, a,s are both even, we have " '¢¢'” = ¢™"% = 1 and thus in Lemma 5.5

0. (—b+¢f3) 0. (—b+2¢f3>

we have:

2a2 -
o(E) w5
Then our sum can be written in the form:

o452 10(pE) o ()0 (457)

S([55) Vo) e w () ()

2a 2a
s s r even

(5.8)

Now summing up for all s € (Z/DZ)*, we get the result of the lemma:

e <Dﬂ)ﬁ

2ag 1 @ < 6as
X —_ E —
@ (—b+\/—3) 3 @ ( b++/ 3)
s€(Z/D7Z)* 2a5 s€(Z/D7Z)* 2as
s=1 mod 6 s=1 mod 6
( b+\/73> 0 <b+\/—3)
r 2

e@z/pz)* rez/nz, Bo
551 mod 6 T even

= Z Z - X(ATAS)'TX(AJ
(=5) o (455")

From Lemma 9.7 in Appendix A, we have Z 5 (7“\/?3)
s€(Z/DZ)* %a.

s=1 mod 6

us the result of the Lemma.

Proposition 5.2. Under the conditions above, we have:

—b++/—3 —b+v—3

@<D ;ar)T_ 95( +2\ﬁ) A

2 oty A= D e A
se(@/D2)* %, se(2/D2)% 0| —5pz

Proof. Only for the purpose of this proposition we will use the following notation for 6., to
emphasize how it depends on D:

bryp(2) = il E) 5 (1)

nez

Using the new notation, in the previous Lemma we have proved:
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s} <D fb;rg/j?)) esr/D < b+2\/j3> QT/D <b+\2/73>
Z /o) (—b—f—\/ﬁ) X(AS) = Z Z 9 (_b+\/j3> ’ P (b+\/_—3) X(As>
s€(Z/DZ)* 2as s€(z/DzZ)* r€Z/DZ, 0 2D2 0 D2
s=1 mod 6 s=1 mod 6 T even

Note that using Corollary 5.3 for a = D? can rewrite:
0 —b+ /=3 p b+v-3\ D b++v-3
0 2D? ‘\ 2D ) 3 2

Thus the equation becomes:

—b
o(052)
@<_b+¢f3> XiAs) =
s€(Z/DZ)* 2a5
s=1 mod 6

;F Sy HST/D( b+r) /D (%)W (5.9)

o <b+ —3) 2
G s€(Z/DZ)* r€Z/DZ,

s=1 mod 6 T even

Let R=R mod D, R even and S =1 mod 6. Then we have by definition:

eRS(zl)QR(ZQ) _ Z 67ri(n—&-R5'/D—1/6)2,21 emin Z 6Tri(m—f—R/D—1/6)2,22€7rim
nes mez

By changing n — n+ .S and m — m + 1, we change R —+ D + R and R+ D = R’ mod 2D.
We get

Ors(21)0r(22) =
_ Zem(nJrR/S/D 1/6)2 zlemn S Z em (m+R'/D—1/6)z mm( ) = 93/5(21)956’(25)
ne’ meZ

Thus we can choose in the formulas above all r to be actually odd. Furthermore, by
making a change of r + 2D we can also choose » = 1 mod 3. Then we can rewrite the
equation as:

—b+v/=3
© <D 2as ) (A ) _
@<7b+\/j3> XAs) =
se(Z/DZ)* 2a.
s=1 mod 6

_ ;ﬁ S e (_b+—\/__3> 0/ (%) YA (5.10)

D g (btv=3 2
» 2 €(z/Dz)* reL/DZ,
sEl mod 6 =1 mod 6
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Denote 7p = %. Note that we are summing over all residues r mod D. We can
separate the terms, depending on whether a prime divisor p; divides both D and r. We do
this by using the Inclusion-Exclusion principle and note that the sum gets rewritten as:

S S Ounm)bn(—T)X(A) =

€(z/Dz)* r€el/DZ,
sEl mod 6 7=1 mod 6

= Z Z QST/D(TD)GT/D(_%>X(AS

s€ Z/DZ re(Z/DZ)*
s=1 mod 6 =1 mod 6

2. D Y O ()0 (—TD)X(A)-

pi|D s€(Z/DZ)* reZ/(D/p;)/Z
s=1 mod 6 =1 mod 6

a Z Z Z Q(D/sz;pj) <TD)9(D/;in) (=TD)x(As)+

pip;|D se(Z/DZ)* r€Z/(D/pip;)Z

s=1 mod 6 r=1 mod 6

Z Z Z e(D/pSlen) (TD)Q(D/,,;_,M) (_E)X(As)

p1---pn|D s€(Z/DZ)* T€L/(D/p1...pn)Z
s=1 mod 6 _
r=1 mod 6

~—

Using Lemma 5.8 proved below, all of the terms except for the first one equal 0. Thus
getting back to the equation (5.10), we get:

o (0=37)
' (As) =
=iy, 0C8F)
_ b (£37) s B0 ()
- s,rE(ZZ/DZ)X se(Z/ZDZ)X ‘90<7be+DZF> v % (bzﬁ) o

s=r=1 mod 6 s=1 mod 6

er/D (%)_ HT/D <_b+2\/j3>
SG%DZ) o (—b;ﬁ) X(A-As) 6 (_b;ﬁ) X (A)
"s=1 mod 6
2
_ Os/p <b+F )
= SE(Z/ZDZ)X 0o <%53> X (As)

s=1 mod 6
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Below we prove Lemma 5.8 used in the proof of Proposition 6.1:

Lemma 5.8. If D=p,...p, and D' = D/(p;, ...p;,), then:

Z Z Osr/Dr <_Z)+T\/__3> Y (%) x(As) =0

s€(z/DZ)* r€L/D'Z
s=1 mod 6r=1 mod 6

Proof. Note that first that we can rewrite the sum in the form:

S Y o (5o (-

€(z/Dz)* reZ/D'Z
sEl modﬁr_1 mod 6

= o ( o \/_) ; (M) DS Ors/ <_b+2‘/jg> ey <b+¢?3

2D7 2D7 0 (—b—&-%:?) 0 <b+\/?3) X(A,)
€(z/Dz)* reZ/D'Z 0 5D"2 0 2D’2

szl rnodﬁr_1 mod 6

Using (5.8) for D := D', we recognize the sum on the LHS to be:

D/ =btv=3 —b+v=3

5 O (0=527)

e O (F5)

s=1 mod 6

Denote m = D/D’ = p;, ...p;,. Moreover, recall that from the definition of the cubic
character we have:

D1/3XD(A5) — <D1/3>0A5 — (D/1/3)<7AS <m1/3>UAS _ D/1/3XD’<As)m1/3Xm(As)

Then we can rewrite the sum as:

2as

sprmy, © (%55
@(D' b/ )_ -
> XD’<~AS) Z Xm(AS>

@(D’ b+r)

XD(AS) =

s'€e(Z/D'Z)%,s'=1 mod 6 o (= — 7./ DZ)*
o = 2(15 SE( / ) )
s=s'=1 mod 6

s=s’ mod D’

Note that as D = py---p,, we have {s € (Z/DZ)*,s = s mod D'} = (Z/mZ)*.
Moreover, note that x,,(As) depends only on s mod m. Thus we are summing the character
X (As) = X (Agr) over s € (Z/mZ)*.

Moreover, x,,(As) is a nontrivial character as a function of s, as
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MY (A) = (m3)7a — /3

for all A, iff m'/? € Q[v/=3]. As we are summing a non-trivial character over a group,

the sum is just 0:
S ) =0,

s"e(Z/mZ)>

thus the whole sum is zero.

We left out the case » =0 mod D. In this case we have:

—b+\/f3> 9, <b+\/?3

> o ( >W= > XA =0

D g (b-i—\/—S)
s€(Z/DZ)* _4\/_5 2 s€(Z/DZ)*
s=1 mod 6 s=1 mod 6
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Chapter 6
Shimura reciprocity applied to 6,

We will first rewrite below the formula of Proposition 5.2. We define the function f,(z)
0,(2) _
where 6,.(z) =

0o(2)’ S emi(nt5=5) 2emin and Oo(z) = > e™(n=%) 2emin . Then we can
o\# nez nez
rewrite Proposition 5.2 as:
o <D—b;\/TS> 2 0, (—b+2\/T3) 2
—b+\/;3 X(As) = Z fs(T)x ( s)
se@/pz)* O (z—)

s€(Z) DZL)x to <_b+\/_73>
Note that from the Corollary 5.3, we can compute

26(—b+2\/—_3):€/T§00( b+\/_) <b+\/_3)

as well as

D 2D? 2D2

2

(25 S () (55).
)

< b+\/73
Taking the ratio of the two relations, gives us

= D. Thus we get:
—b+v/=3 )

T 2D?
6 (D=£2) ’
= Sx(A) =D fo(1)x(As)
segz;zv © (%) Z%Z

By further multiplying by D'/3, we have:

6 (p=tp

2as

2 @(m))D”‘”’W > RONAID ()
s€(Z/DZ)x —

2as €(z/DZ)*
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Our goal in this section is to show that all the terms f,(7)x(As)D?/? are Galois conjugates
of each other.
0, as an automorphic form

We will first look closer at the function #,. We will rewrite 6, as an automorphic theta
function O : SLy(Ag) — C:

meQ

where ® € S(Ag) is a Schwartz-Bruhat function and r is the Weil representation defined

o ((8 01> cp) () = xola)|a /2 (az)

a

. <((1] 11’) @) () = V(ba?)D(x)

(2 5)2) @ =ad

where 9, (z) = e 2™ %@ and ¢ (r) = ¥, 7 is an 8th root of unity, and yq is a
quadratic character. For precise definitions see Chapter 8.
We define the following Schwartz-Bruhat functions for §. Let ®" = [ @], where:

o) = charz,, if pt D
CID;T = charz, =, if p|D,pt2,3

ég“ (n) — 67riFraC2(ﬂ) CharZ2+%(n>7
(r _ —2mq(x
| P (z) = e~2ma(@),
We define the theta function:

O (9) = Z T(Q)‘I’m (n)

neQ

Note that @;T) (n) # 0 for n € Q implies n — 5 + % € Z, for all p. This implies
yl/2 41724
0 y71/2

7(9:)Pos(n) =7 (<y10/2 yjm) (Lav ) <I>> (n) = y'/2e>™@+¥)"*  Then we can compute:

T 1 T 1 _
n—4+g € Z, thusn € Z+ 5 — ¢ Also note that for g, —( ),Wehave
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@q)(r) (gz7 1f) _ Z 627rizn2€7ri Fraca(n) _ y1/20r(2z)

nel+f—5

D
Note that 6,(22) = y~/20 4 (g2, 15) and 0y(22) = y~/204) (g, 1), which implies:

QT(Z) _ 6¢(T) (gz/27 1f)
0o(2)  Og© (9272, 1f)

Galois conjugates of f,(7p).

We will compute below the Galois conjugates of f, (%) using the Shimura reciprocity

0.(2)
90(2)

law. We first recall the function f,.(z) =
Op and Ogo):

. Note that we can rewrite the function using

O (272, 1¢)
fu(z) = otz )
=) Op© (9272, 17)

We will first check that f,.(z) is a modular function. We begin by checking that 6,.(z) is
a modular form of weight 1/2 in the Lemma below.

Lemma 6.1. Forr € Z, the transformation of the function 0,(z) under (CCL

) 1 az+0b
—2isgn(d)v1/ poo—y dﬁr <cz n d) =0,(2)

Proof. Recall that 0,(2) = Ogw(g:/2). We will compute 6, ((z 2) z), for (z 2) €
['(72D?). Note first that:

(6 9o (057 B )=o) 057 )

As O is invariant under SLy(Q), we can rewrite O4¢ as:

oue (3 ) (5 o) =0 (57 ) 22 )

We will compute separately the two terms, using the Weil representations. For the RHS,

-1
note that we have to compute r (a b/2) @Sf) =r ( d _b/2> (IDSCT). We will show:

Z) € I(72D?)

18:

2¢ d —2c a
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o ( (7 Ja)oe (8 7)) - Wotow (7 Jp)o-)

We rewrite the matrix as:

(405 ) ()

At p 16D, the action of (_Céc _1;/2) is trivial, as it belongs to SLs(Z,) and @ér) is the
characteristic function of Z,. For p|6D, we compute:
. 1 0\ () (r) . :
First we compute r (—26/d 1) @, (x) = 2@, (z). We rewrite the matrix as

oo )= (0 200D 6 )G )

and compute the Weil representation action:

*r <(1) _01) o) (z) = %,CI)](DT) (x). Note that we can compute:

q)g) (l’) — /6 2mi Fracy (2zy) ChaI'Z i (y)dy
Qv

= / e 2miFracy Relytr/D)) gy — e=2miFracyCre/D char, (1)

Zyp

0

have e~27iFracp(2c/dr® — 1 thys the action is trivial on CI>(T)( )

o <1 201/d> (I/)(T\)p(x) _ 6—27riFracp(QC/dgcQ6_27riFracp(2ra:/D Chaer($). As Up<0/d> > 0’ we

—
—

o (? _01) o (z) = 7,@(z). By the choice of the self-dual Haar measure, this

equals 7, @ (—z).
O _1 r T
er() )0 =

Now we also want to compute the action of r (1éa _Z/ 2) <I>;(f)(x). We rewrite the

(1éa _z;/z) _ (1éa 2) <é _b?/z)

matrix as:
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and compute the action:

0 1 p

As D?|ba/2, we have 2™ Fracp(ba/22%) thus we have trivial action.

o r (1 —bCL/Q) (I)(T)(l') — eQﬂ'iF‘ran(ba/ZxQ) Charzp-‘,-r/D(x)'

o <1/a 0> 7 (2) = xola)|aly*®(z/a). As a = 1 mod D, we get ®)(2x/a) =

0 a
@;T)(x), as well as xo(a) = |a|119/2 1

For p = 3 the computation is similar. For p = 2, we compute first the action of

1 0
(—20/d 1) to get:
1 0
(r) — ~2p™)
r (—26/d 1> o) (x) = 7,9, (2).

The computation is done below:

o <(1) —01) (I)g“) (z) = 72(1)5,” (x). Note that we can compute:

(Dér) ({L‘) _ / e—27ri Fraca(2zy) ChaI‘ZQ_,'_% <y>€7ri Fraco (y)dy
Q2
— em’/2 / 67271*1' F‘racz(2x(y+1/2))€7ri F‘raCQ(y)dy
Zo
_ eﬂi/2€—27ri Fraca(x) / e—27ri Fracz((Zx—1/2)y)dy
Z2

Char%(ZQ+1/2) (x)

. <1 20/d) S0y (x) =

— eﬂi/2€727riF‘ra02(x)
0 1
= QoA g0, (1), As uy(2e/d) > 4, we have e (e = 1 thus the

—_

action is trivial on @ (z)

o7 <(1) _01) <I>1(32)(9c) = ’ygfbg)(x). By the choice of the self-dual Haar measure, this

equals 1@ (—z).

o <§’ ‘Ol) &) (—z) = o) (x)
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We compute similarly the action of r (1(/)@ _Z/ 2) ) (2):

o <(1) _biL/Q) Oy () = erifracy(ba/2e®) griFracs(®) char, o (x). As 4[ba/2, we have

273 Fraca (ba/2x2)

e = 1, thus we have trivial action.

o <1(/)a 2) (I)é?“)(x) = Xo(a)|a|§/2q>gr)(x/a). As a = 1 mod 8, we get q)g)(x/a) _
fbg‘)(x), as well as XO(G) — |a|;/2 —1

This finishes the computation of the finite part. We got:

1/v2 0 b2\ _ - pime( 1y _ o
@@”((/Sf \/i)gz, (2“6 é) >=21/4y1/2 S e =27y 20, (2)

m€Z+%*%
(6.2)
We will compute now the infinite part. Note first that 7(g,)®u(m) = y"/4e2 =M We
rewrite the matrix:

a by (-1 0 1 b/d\ (1/d 0\ (0 —1\ (1 —c/d\ (0 —1
c d) \0 —-1/J\0 1 0 d)\1 0 0 1 1 0
We compute the Weil representation action:

N 0 -1 2mizm? __ 1 —2mil
o Fi(m):=r <1 0 ) e = %o\/iﬁe E

]_ —C d _ ﬂ.ing _ ﬂ_icz+d
o Futm)i=r (o 757 Film) = e ) = VB e

0 —1 = i -9 - dz
o [3(m):=r (1 0 ) F3(m) = yoo F3(m) = 2720\/%62 cxtd Zczd—i-d

_ 2mi_Eom
= 2 cz + de "
o Fifm)i=r (Y1) Falm) = (@ FiGm
1/2 2 —d 27t ——2—~m?
=2 Sgn(d)d Fg(m/d)’}/oo n de d(cz+d)
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o Fifm) = 1 (5 *)7) Film) = i Fym) = 2sn(d e ()

27”.( (be+1)z+bd

e )™ 2sgn(d)v2 ﬁe

QSgn(d)’}/go %le 27T’L'(az+b)m2

°7 (_01 —01) Fy(m) = —F5(=m) = =2sgn(d)y2 /e’ (55

0N

We still have to compute the action of r < 0 /2
_2y1/2 sgn(dh? __162m'(%jg)m2
“Ver+d ‘

_93/4jy1/2 sgn(d)r2 1 o g )m?

This gives us just:

Thus we have:

1/\/§ 0 a b . o3/4. 1/2 2 1 wi(“z+g)m2 _1\m
S) (( 0 \/5) (C d) z, 1) = —2°%y /< sgn(d) v / o d e™\ezta)™ (1)
me

Note that this is exactly:

1 az+b
_23/4~ 1/2 d 2 97" ]
i sa(@y | o (0 (63)

From (6.2) and (6.3) we get that:

. 1 az+b
—2zsgn(d)7§o\/cz+d9r (Cz+d) = 0,(2)

Lemma 6.2. f € F is a modular function for T'(72D?).

Proof. We need to check that for (CCL b> € I'(72D?) we have:

d

L (0 )2) =t



CHAPTER 6. SHIMURA RECIPROCITY APPLIED TO 6, 64

: . a b .
Using the previous lemma, for (c d) € T(72D?) we have —2isgn(d)vi, 1/ ==50r (v2) =

0,(z). Applying the same computation for r = 0, we get —2isgn(d)va,\/ =00 (72) = 0o(2).
Thus we have:

er(’YZ) o 721sgn v CZ+ 0 <Z> 8,,,(2)

90(7Z) 7215gn(d V €z 00(2) 60(’2)

]

Lemma 6.3. The modular function f,. has rational Fourier coefficients in its Fourier expan-
siton at the cusp oco.

Proof. Note that 6,(z) = ¢*="/™(1+ 3 ang™/™P9), where a,, € Z and fp(=) = ¢"/™(1+

M>1
Z quM/72)
M>1

Then we can compute f,(z) = ¢/@=*D/2(1 + 3 a,,¢™/™P*) with a,, € Z. O

From CM-theory we have f(7) € Hp, where Hp is the ray class field of modulus 72D?.
In order to compute its Galois conjugates over K we can use Shimura reciprocity law. In its
generality:

Shimura reciprocity law. For 7 € K NH with minimal polynomial X?+BX +C = 0,
we have its Galois conjugates:

-1
Fo(m)7 = [ 9(),
t—sB —sC
X —
fora:EAKf,gT(a:)—( . ; )
In our case, we want to compute the Galois conjugates of f,.(7), where 7 = #‘73. Note
that it has the minimum polynomial X? 4 bX + ”%3. Thus we have to compute the action

t — b — b2+3
of all g, ((xp),) = H ( P . °p Spt ) :
P P p

P

We will compute all these actions. However, we claim that it is enough to compute the
action of the ideals A through the correspondence:

I(3) — Af(’f/KX
A= (A + Bw) — (A + Bw)p|6D7
where A+ Bw =1 mod 3 is the generator of the ideal A.
More precisely, in order to find the Galois conjugates over K, we will compute the action

of all Galois actions corresponding to (A, + B,w), € A and we will prove that the Galois
action from Shimura reciprocity law is:
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Proposition 6.1. For A = (n,a +m,~Y=3), where b* = —3 mod 4Db? is an ideal prime
to 6D, we have:

fl(T)UA = fTLa (T)

and f.(T) are all the Galois conjugates of f(7), where r € (Z/DZ)*. Moreover, this
implies that fi(1) € Hgp.

Proof. First we note that we do not have to consider the action of all (z,), € Ajx. By
applying the Strong Approximation Theorem for GL; and the number field K that is a PID,
we have:

AF = K™ x HOIX(U x C*
vfoo
This implies:
Ak, = K" X H O,
vfoo

Then any = = (r,) € Ay ; can be written as x = k(l,), where k € K*, (I,), € [] Ok, .
vfoo

Since Nm k£ > 0, we have the embedding:

ke K* — GLy(Q)"
We also have the embedding:

(lv>v € H OIX{U — HGL2<ZP)

vfoo p

Thus if we know the Galois action of K* and of (/9\1X<7 we will know the Galois action of
Ay ..
7f

We recall the way the action of g,(z) is defined for. For a € GLo(Q)™, f* is defined by
f%(r) = f(ar). In our case we only need to look at the action of K*. Recall that k € K*
embeds into GLy(Q)™ under the map:

—b 4 — _ _
k:t+s+3<—>97(kz):(t SSb :c)

Then the Galois action from Shimura reciprocity is:

F)F " = for®(r) = f(g, (k)7)
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Note that ¢ + s7 — (1** =5¢) is the torus that preserves 7, thus we have:

F) = Fg-(k)7) = f(7)

Now all we have left is to compute the action of [[ Oy . Note that for all v { 6D the
action is trivial. For v|6D we project the action of (g.(z,)), — g-(z') € GLo(Z/6D?*Z).

Remark 6.1. Note that we have for (+w'), — A[X(f acting trivially. Thus we have for
x € A[X(f:

(fr(m))7ts = ((fo(m)75e)7 = (f (7)) = fo(r)
Lemma 6.4. For z € [[, Og. we can find w', i = 0, %1 such that:

(.1'2 + wi)g = (tg + SQU))
with vy(ta) =0, va(se) > 1 and

(ZL’3 + wi)3 = (t3 + Sg&))
with t3 + s3 =1 mod 3.

Proof. Note first that if vy(s) > 1, then we must have vy(t2) = 0, as we need zow' € (Zy[w])*.
Thus we must find xw’ such that vy(s) > 1. We write x5 = ) + shw. Then:

Tow = thw + shw? = (ty — sh)w + s
waw? = tyw? + sy = (—ty)w + (s — 1)

One of t}, s),t, — s, must have positive valuation. Assume this is not true: vq(t,) =
v9(sh) = 0. Then sh,t, = 1 mod 2, thus s, —t, = 0 mod 2 and has positive valuation.
Thus we can always pick zw’ as claimed above at the place 2.

Now since take r3w’ = shw +t5 = s} _3+2\/j3 + (t5 + s%). Then, since x5 is a unit in Zs[w],
we must have vg(sh + t4) = 0, thus s5 +t5 = £1 mod 3. We pick z3w or —z3w to get the

condition s4 4+t =1 mod 3.

Since from the remark above x and +w'x act the same, we can consider the Galois action
of 0., as in the lemma above. We compute it below.

Let z, € [], Ok, chosen as above. Then:

S _ _ _
+ /=3 < go(z,) = (tp spb spc)

Ty =1, + 5, 5 5 )
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Elements of [[ GLa(Z,) project to GLa(Z/6D?Z), which is the action we care about.
P

From Chinese remainder theorem, we can find ky € K such that ky = z, mod 6D?Z, for all
p|6D. Note that kq is independent of the choice of 7.
Then we only need to compute the action of:

JA(7) = () = 0 (r) = forthnon (7)

We will now compute ffr(ﬂﬁ)mﬁ’? (7). Note that, for ¢ = biTJf?’, we have the map :

ko= sT+t — g, (ko) = (t _SSb _:C)

Let Nm(kg) = a. We write the action:

(t—sb —sc/a) (1 O)
f(r)y==f 5 t/a pl6D 0 a pl6D

+

1
6

Note that ((1) O) acts trivially on f, as both functions 6 [ 5] e~ mir/D=1/6) and
p|6D

1
2

_1 )
0 [ 6] ¢™/6) have rational Fourier coefficients.

1
2
Thus we need to compute the action:
t—sb —sc/a
; s t/a o0 (1)
r T

Note that (t _SSb _ifz/a) <t _SSb _:jf ) € SLy(Z/6D?*Z) and we can lift it to an
element of SLy(Z).

Lift from SLy(Z/6D?) to SLy(Z).

Lemma 6.5. We can always lift a matriz in <A

b ) € SLy(Z/NZ) to SLa(Z).

C D
A B
Proof. Take c p)€ SLo(Z/NZ), A, B,C, D € Z. We can further assue (C, D) = 1. Let
AD — BC =k € Z. Then we can take:
Ag=A+ NA,;
By =B+ NB;

00:C+N01
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Dy=D+ ND;

We want to have the condition:

1= AyDy — ByCy = AB — CD + N(AD; + A, D — BC, — B,C) + N*(A; D, — B,Cy) =
1+ Nk+ N(AD, + A.D — BC, — B,C) + N*(A,D, — B,C})

For example, pick D; = C; = 0. Then we only need:

(A,D — B,C) = —k

Note that since (C, D) = 1, we can find mC + nD = 1. Then (—kn)D — kmC = —Fk,
thus pick A1 = —kn and B; = km.

We look at such a matrix (Z d

b) € SLy(Z) such that:

_ _ b3
(CCLO 20> = (S Stb St4 a> mod 6D?
0 Qo

Conditions obtained:

e vy(s) > 0 and vy(t) = 0 imply by, co =0 mod 2, ag,dy =1 mod 2.

e From the choice 3|b we also have ay = dy mod 3 and by = 0 mod 3. Since we picked
ko = to+ sow = s_bJ’T‘m +t with sg+1ty =1 mod 3, we must have t = {5+ sg mod 3,
thus dg =tx =1 mod 3.

e From the choice of ¢ + s%_ﬁ unit in [ ], sp O, , we have (¢, D) = 1. Otherwise note

that the norm is t? — tsb + SQI’aT*?’ is divisible by p|D, a contradiction.

We will find the action using the following lemma:

Lemma 6.6. For (CCL b) € SLy(Z) such that v,(d) =0 and d =1 mod 6, we have:

d

o (3 9) (% 1)) - 0uer 2

Here by d=! we mean d~* mod D.

Proof. We compute:

our (6 5) (2 2)2) =00 (2 "0) 6 )

Moreover, it equals:
d —b/2
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Note that for p 16D we have (_‘éc _2/2) in SLy(Z,), thus acts trivially.
P
For p|3D, we have ®, = chaer_%Jr%. For now, we will call u, := —% + 5

If v,(d) = 0, we rewrite:
d —b/2\ 1 0\ (d —b/2
—2c a ) \-2¢/d 1)\0 d!
We can further write it in the form:
d —b/2\ (-1 0N[0 1N/ 1 0\/0 1\/d 0)/[1 —b/(2d)
—2c a S\ 0 -1 -1 0/ \2¢/d 1 -1 0)\0 a! 0 1

1 —b/(2d —2mi Fracy (— z?
oy TUEY) (o) = e, 1) — 0

r (E)Z d()l) P, (2) = |d[pxp(d)Py(dz) = q)éd_lr)(x)

Note that ®,(dz) # 0 iff dx € Z, + p, iff © € d"*Z,, + d" 'y = Z + d" .. Note that
d™ 'y, =d 'r/D — d~1/6. Since we picked d =1 mod 6, this is the same as fi4-1,.

0 1 iy i Frac —lar
() ) ) = )

. ((1) ch/d) (eQmFran(Qxd—lr/D) Charzp+1/2(x))

_ e27ri Fracp(2c/dz?) (627ri Fracp(22d~'r/D) Chal"zp (l‘) _ (627ri Fracp (2zd~1r/D) Chaer (CC))

' <_01 3) (rimmaesCed™1r/D) chary, (1)) = f(—2)

—1 0 d-1r d=1r
(o 58 = el )

In here we have used the Fourier transform:

q):()’r) (I) — / (I);(;T) (y)€—27riFracp(2my)dy _ /

CI);T) (y)€27ri2mydy _ / 6—2m’ Fracp(Zm(y-i—r/D))dy
Zp+5

Zp

_ /e—27rz'Fracp(me))6—27riFracp(mr/D)dy _ e—27riFracp(2a:T/D) /6—27riFracp(2my)dy

Zp Zyp
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_ —2miFracy(2zr/D

—¢ )Charzpfl/g({lf) — G—QWZFracp(er/D

) charg, ()

Similarly we get ®”(z) = e~27Facs(@/3) chary (x)

Note that the only difference for p = 3 in the action of (_Céc _Z/ 2) is that it does not

modify r/D. Instead, it leaves ®) unchanged.

At the place p = 2, we have &, = ™22 chary _, /2(x). We can compute:

. ((1) _b/fzd)) D, (1) =

= o 2miFracy(~b/(2d)2%) gmiz charz, 1/2(x)

Note that we picked 2|b. Then we have x € Zy — 1/2 iff 2 =n —1/2 for n € Z,. Then
—b/2d(n —1/2)* = —b/(2d)n* + b/(2d)n — b/(8d) € Zy — b/8d.

d 0 i T
o (0 d_l) e?mib/8d Char2271/2('r) =
— eQﬂib/Sdeﬂidm CharZ2_1/2<dl’) — eQﬂ'ib/Bdeﬂ'iz CharZQ—l/Q (.I')

Note that we have used above vy(d) = 0.
0 1 r g X i i Fraca(z
o7 (_1 0) B () = e2mib/sde charz, s(x) = e?mib/8de2mitraca(et1/4) char%22_1/4(x)

Below we compute the Fourier transform:

/ €7ri Fraca(y) charZ 1/2(y)6—27ri FraCQ(QJ:y)dy — 627ri Fraca (y/2+2zy)
o—

Q2 Zo—1/2

— / 627ri Fraca(y/2+1/44+2zy+x) dy

Za

— e27ri Fraca(z+1/4) /627ri Fracg(y(l/Z—i—Za:))dy
ZLa

2mi Frace (z+1/4)

=e Char%ZQ,1/4(96)

1 0 2mib/8d ,27i Fraco (z+1/4
) T(zc/d 1)6 [Mlemimmacaletti charyz, 1),

) . 2 i
_ e27rzb/8d627r7, Fraca(2¢/dx )627r1 Frace (xz+1/4) CharlZ2_1/4
2
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Note that we have the assumptions 2|c and 2 1 d. We have x+1/4 = 1/2n,n € Z,. Note
T2 = (n_ 1/2)/4 — (n2_n+ 1/4)/4 and then 627riFra02(20/d12) — e27riFraC2(c/2d(n27n+1/4)) —
e?ritraca(e/8d)  Here we have used the fact that c¢/2d(n? —n) € Z,. Thus we get:

274 Fraca ((c+b)/8d) 2mi Fraca (z+1/4)
e e char%22_1/4(3:)

P (_01 (1)) €2m'Fracz((c+b)/8d)627riFrac2(x+1/4) Char%Z2_1/4(ZL‘) —

_ e27ri Fraca((c+b)/8d) 627Ti Fraco(—x) Chal”z271/2 (—33)

o <—01 01) e2miFraca((c+b)/8d) p2mi Frace (—x) charz2_1/2(—x) =

— 627r2' Fraca((c+b)/8d) 6271'1' Fraca(x) charz2_1/2 ((L’) — 627ri Fraca((c+b)/8d) P, (ZE)

Finally we are ready to prove Proposition 6.1. We have showed so far that:

(t—sb —sc) (ao bo)
fT(T)U;1 _ fff(z)(T) _ f(gf(ko))mGD(T) _ f S t PI6D(7') _ f Co do bl6D (7’)

T

From the above lemma we get immediately:

(T S e L (L 3 B

(G e

For A € Cl(Osp), A= (ka) = (nea+ ma%), where a = Nm A, we take the map:

xTr = (k.A)p|6D = A

This gives us:

r e Al

Then we have:

f'r‘(T)UA_l _ fr(7->a“”_l _ ffT(xp)mGD(T) _ ffT(kA)mGD(T) _ fnz‘lr(T)

This implies for r = ny mod D that we have f, ,(7)74~" = fi(7), or equivalently:

fi (T)UA = an (T)
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Remark 6.2. This implies that for A, = (1 -7+ b*(r — 1) *HQ\/TS) we have:

fi(r)74 = fi(T)
Also it implies that a, = (r™!) = (r-r=2 + O%) we have:

fi(r)7er = fi(7)

The square is invariant under the Galois action.

We are finally ready to prove Theorem 5.1.

We define A2 = (1 +b*(1 — r)%) Note n, = r~'. Note that A% = A,(r7!), thus
A, and A? are in the same class in Cl1(O3p). This implies:

xp(Ar) = xp(A)

Moreover, from the definition of yp we have: (D?3)742 = D?/3yp(A°)
Moreover, from Proposition 6.1:

Fi(T)4° = fuge (T) = £(7)

Then we can rewrite the term in Proposition 6.1:

= 3 RODINAY = 3 SODINA = 3 A (0

re(Z/DZ)* €(z/DZ)* €(z/DZ)*

= 3 (D

r€(Z/DZ)x

We want to write x as a Galois trace of a modular function at a CM-point. Note that
the ideals {Ai’(TEZ/DZ)X} for a group, as we have A%A° = A°. Then take Gy = {r €
(Z)DZ)* : A2} = (Z/DZ)* that is a subgroup of Gal(Hp/K), where Hp is the ray class
field of conductor 3D.

We define fixed field of G in H:

Hy={h€ Ho:0(h)=h,Vo € Gy}
From abelian Galois theory this implies Gal(Ho/Hy) = Go. Then we got:

K= TrHo/Ho(fl(T)DQ/S) (64)

Thus we have proved so far that:
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SD - |K'|27

where k € Hy. We claim that actually |x|? € Q. To prove this, it is enough to show that
k| € K%, as

Lemma 6.7. We have k® € K.

Proof. We will show that the Galois conjugates of x over K are xw and kw?.

Take A € Cl(O). Then we have:

RA= Y (R()DY e

re(Z/DL)>

We can write A = AZ(m). Then we have:
A= S (R(r) D)o

re(z/ D)

Note that (m) acts trivially on D?3 but acts as A%, on fi(7). Then we have:

A= S () e DA

r&(Z/DZ)*
=X(A%) YT (fulr) A DY (AL,
re(Z/DZ)*
= x(A))k

O

Remark 6.3. Recall that |k|* € Q. Let x* = a +bv/—3 € K. Then |s[° = a® 4+ 3b? and we
must have a? +3b* = m? for some m € Q. With this notation we have |k|> = m = v/a2 + 302.
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Chapter 7

A general formula for Sp.

In this section, we will show the following result:

Theorem 7.1. For primitive ideals A that are representatives of Cl(Osp) such that their
norms are prime to each other, letb such thatb =1 mod 16, b*> = —3 mod 12a%, a = Nm A.
Then we can rewrite:

2
—b+v/=3
VD Or (D 2 >D1/3

" Fa©) 2 (Mo o (22552 | "

Sp

r€Z/DZ

where Hy is a subfield of Ho the ray class field of modulus 3D defined below.

The proof is similar to the proof of Theorem 1.3. The proof is based on the Factorization

formula proved in Corollary 5.1 and using the Shimura reciprocity law to compute the Galois
) ; ¢ 6, (D—b% V—3>

conjugates of ———=<*.
Jug 90(—b+2\/j3>

Sp as a sum of squares.

Recall the Factorization formula that we have proved in Corollary 5.1:

Z —\f%ye |:a,u +VCLT/D:| (Dz) 0 |:lu +;4£D:| (—CLDE) _ Z 627ri(mv+nDp)e7T(mni—%)%
a _

reZ/DZ m,neZ
(7.2)
Let A, A; be primitive ideals prime to 3D, let a; = Nm .A; and as = Nm A, and choose
b such that b* = —3 mod 12a%a?. By applying the result above for z = %j’, p=1/2

and v = —1/6, we get:

V3 emila=1)/6g (D—b+\/—3) 0. (Db+ V —3> _

V/ 2a2a? 2a?
rez/ Dz, M D 1 1
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—b++/-—3 |2

. |naay;—m 5

Z (2i(m/2=nD/6+mnD/(2a)) e?szgD

m,neL

Note that since (a;, D) = 1, we can rewrite the formula as:

VB it S G (D—b+— \/—3) 0, . (DH_ \/_3) _

avD r€Z/DL 2a*ay 2a
naai—m —b+V=32 —
_ Z o2mi(m/2-nD J6-+mnD) (2a)) 2rit 2L YT D (73)
m,ne”
b tV=32
If D=1 mod 3, we can show as before that m/2 + n/2 + 2 = Inaas 7Za1 2| =

mod Z.
Then on the RHS of (7.3) we obtain:

naa 7m_b+7\/_73 2 — o — B —
5 = 3 () (p204 )

2a 6a

m,nEL

If D=2 mod 3, we will change n — —n and m — —m. Then we have:

naa 7m‘277b+‘/773 2 =
Z 627ri(fm/2fn/6+mnD/(2a))627”'%gD —
m,nel
3 b -3 1 b -3
3o (phVT) g (pht VB
2 2a 2 6a

Recall that we have from Corollary 5.3:
3 (—b++v=3 V3 et [ —b+ /=3 b+ =3
SO ——— ) = =emleeg ( ——5 ) 0y | ——— |,
2 2a a 2a%a? 2a}

Taking the ratio, we get the following lemma:

Lemma 7.1. For b* = —3 mod 12a%a? and b=1 mod 16, we have:
—b+V=3 —b+V3 —b+V3 b+v=3
O(D257) 10(DPRT) 1 o e (DHRE) b (D5

© <—_ba/j3> 39 (_—b—;ﬁ) vD rez/pz to (";}?) to (“‘2{?’)

0, (D=52)

2a

(55

Denote by f.(z4) = . Then the result above becomes:
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e D%j’ S D#jg —
@((%739 _% @&%ﬁ?’)) = \/15 Z faarr(Za2.42) farr(2.42)

reZ)DZ

Now we will take the ideals A as representatives of Cl(Os;p) and sum over all possible
classes Aj:

0 (p255) 16 (n2)

o(+57) Pe(*7)

2a

o D S DI SN e

[A1]€CHO3p) reZ/ DL

# Cl(Osp)

Furthermore twisting by the character xp(A) = xp(A?) and summing up over all repre-
sentatives A of Cl(Osp), we get:

o (055)

AeCl(Osp) © (%)

% Z Z Z faalr(ZAQAf)fa1r(zA§)XD(.A2)

[A]eCl(O3p [A1]€C(O3p) r€Z/DZ

#Cl(Ogp) [ > il Gl

xXp(A) | =
AeCl(O3p) @<%>

oA - 3

e(pi—”gﬁ)

From Appendix A, Lemma 9.7, we have >  ——7=%xp(A) = 0, thus we can
AeCl(O3p) G(T)
rewrite the LHS as:
—b+v/-3
#Cl(Osp) Y °(0=57) (4)
3D o <7b+\/j3> XD
AECI((’)gD) 2(1

For the RHS, note that we can distribute the character xp(A?) as xp(A%2A%)xp(A?) and
we can exchange the sums and rewrite:

1
v D OIED DEND DI SECRIE ) Remr e
€2,/ DZ [A]€CLO3p) [A1]€CHO5p)
2

1
=5 2| X Sl )
r€Z/DZ |[A]€Cl(O3p)

This gives us the result of the following proposition:



CHAPTER 7. A GENERAL FORMULA FOR Sp. 7

Proposition 7.1. For A primitive ideals that are representatives of Cl(Oszp) such that their
norms are prime to each other, letb such thatb =1 mod 16, b* = —3 mod 12a%, a = Nm A.
Then we can rewrite:

VD
Sp = #C1(Osp) > 2

re€Z/DZ |[A|eC(O3p) 90( 5o )

Galois conjugates of f,,(z4).

We let f,(z) = GQ(EZ;). We note that f(7b+2*/jg) € Hp, the ray class field of modulus 3D.

Then we compute two actions:

2, #‘73} in the ring class field H3p is going to be

e The action of the element A2 = [a
f(z/a?). This follows from Lemma 4.3:

fr(T)742 = fr(z/CL?)

e The action of the ideal A5 € Pzsp such that A} ~ (k + 3DZ[w]) as ideal classes in
Gal(Hp/K). Then the action is going to be:

fr(T)UAz = fak‘<7—>77— = - +2\/__3

The proof follows closely the proof of Proposition 6.1

Then we can rewrite the formula (7.4) as:

Sp L Z Z (fT(DT)D*I/?))UA?aAg*l

+# Cl(O?)D) reZ/DZ |[AleCl(O3p)
We denote:

Gy = {A2A°, [A] € CL(Osp)}

Note that this is a group and Gy is a subgroup of Gal(Hp/K). Thus from Galois theory
we can find H; to be the fixed field of G; in Hp and thus Gal(Hp/H;) = G;. Then our
formula becomes the result of Theorem 7.1:

VD

Sp = #C1(O3p)

Z |T1"Ho/H1 (f?"(Z)T)l)il/S)‘2 (75)

reZ/DZ
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Chapter 8

Another formula for L(Ep,1).

In this chapter we will show:

01/2 (3Dw)2 _
LiEp. 1) = eo Ty, pyxvm =g, oy P "

where 0;5(2) = > e2min*z(_1)n [, is the ray class field for the modulus 12D and the
nez

constant is cp = ZDVS (1 — (=1)*~D2p ™0k (w) Lo (1, X D).
p|D

Relation to the first formula proved.
In Section 3 we have computed a formula for L(Ep, 1) by looking at Tate’s zeta function
Zi(s,xpp, Pr) = / Dre(ag)|ag|ixp(ay)p(ay)day. We showed that this integral is a

Ag,s
linear combination of Eisenstein series, based on the observation:

k
Z —‘kPS@K(kaf) = E(ga,2s — 2, DY),

where @ is a different Schwartz-Bruhat function also for S(Ag). In this section we
will make a different choice of the Schwartz-Bruhat function @5, € S(Ak) in order to get a
similar identity:

k o)
Z |k|23q)K(kO‘f) = F(ga,25 — 2,01 ® ¢2),
C

ke K>

where ¢y, ¢o are Schwartz-Bruhat functions in S(Ag).
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Computing the L-function.
We take the Schwartz-Bruhat function ®° € S(Ag) defined by ®° = &7 [] ®;, where at the
p

infinite place we define ®2_ = e~™#” and at the finite places we define:

charz, [, for pt 6D

@; = Char(z+3DZP [w])* for p|3D

char(iy4z,(w)) +chargyouyaz,w) at p=2

Proposition 8.1. For ®} defined above and primitive ideals A that are taken to be repre-
sentatives of the ideal class group Cl(Osp), we have:

o 1
Zi(s,Xp,pp5, ®}) = E#(OK/DOK)X Z E(2s —2,3Dza,¢1 ® ¢2)xp(A) 251
ek <\A% /U

Proof. We start by recalling the definition of Tate’s zeta function:

Zs(s, xpp, ®°) = / % (ap)|asixp.plar)pr(ay)day.
Ak ;
We will first take a quotient by K™ in the integral. This gives us:

Zi(s, xpp, ®°) = / > 5 (kag) kaglixp s(kagp)ps(kag)d oy

X
KX\A;{ ; keK

Using the properties of Hecke characters, we can rewrite

k15X, (k) s (k) = [kl X oo (K) o0 () = [KI 0k = [[Kllc™k,

where || - ||c is the usual absolute value over C. Thus we get:

Zs (s, xpp, P°) = / (Z ‘I’?(/faf)kaH_%) lar|ixp, s ()0 (ap)d™ ay

X
Kay, kK

Moreover, we want to take the quotient by U = [] (1 + 12DZ,[w])* [] (Z,[w])*. For

p|6D pl6D
this we need invariance under U:

° (ID‘} is invariant under U

e Xp is invariant under U



CHAPTER 8. ANOTHER FORMULA FOR L(Ep,1). 80

e ¢ is invariant under U

e |- | is invariant under U

We take the quotient by U:

Zs(s,xp, @°) = vol(U) )~ (Z ‘I’j’v(ka})kllkll_%) | [7xp.s (@) ()

KX\A;(J/U keK ™
Note that K\ A% (/U is a finite set. Furthermore, recall that from the Strong Approxi-
mation theorem, we have Ay = K*C* H Ok, Then we can rewrite the quotient A /K> =
H Og,/ {(w) and we can pick representatlves for U\ A ;/K* elements o, € [[ O, . Also

note that ¢ and |.| are trivial when evaluated at the elements oy in [[ Of . Then we get:

Zs (s, Xpp, ®°) = vol(U) / ( > <I>}(ka})k||k|\—23> Xp,f(@})
oy o PR

Furthermore, note that ®¢(ka) # 0 implies ko, € Ok, , thus k € Ok, for all finite places
v. Thus we get k € Ok. Moreover, for k € Ok we have ®,(ka,) =1 for all v 1 6D. Thus we
can compute:

Zs(s,xpp, ®°) = vol(U) > > O (ka)k|E 7> | xp.s(af)
KX\A% /U \k€OK™

Moreover, we can pick k; = o, mod 24DOk, for v|6D. The condition is lax enough that
we can take k; such that (kp) is a primitive ideal. Then, for & € Og we have ®¢, (kk;) =
®&p(ka’). Moreover, xp(ay) = xp((k1)). Then we compute:

Zs(s,xpp, @°) = vol(U) ) (Z O Kk K| K] 25) X7 (1))

KX\AK /U \k€OK

Furthermore, we can rewrite it:

o kk k1%
Z(s, xpp, ®°) = vol(U) Z (Z ®sp(kki) |kk1h25> H Z,J' Xp,f((k1))

KX\Ag /U \k€KX

We can compute the volume of U. From the choice of the normalized multiplicative Haar
measure, we have vol((Z,[w])*) =1 for all p. Then we can compute:
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o vol(1 +4Zs[w]) = 55

o vol(1 + 3Zs[w ]):%

o vol(1 + pZ,[w]) = 4(Ox /pOsx ), if p nonsplit,
o vol(1 + pZ,[u]) = s = #(Ok /pOx)", if p split.

This gives us vol(U) = &#(Ok/DOk)* and the formula becomes:

1 kk Eqp||?
Zy(s, XDy, ®°) = i#(oK/DOK)X > (Z D5 (kK1) H/f]ﬁh%) H ;H xp,7((k1))

KX\Ag (/U \k€KX
]
For k; € K*, s € C, we denote the term:
kkq
I(k O (kky) 8.1
b= 2 iR &

keOk

We will show that this gives us the value of an Eisenstein series in Lemma 8.1 below.

Lemma 8.1. For ky € O such that A = (ky) is a primitive ideal depending on k, we write
A = |a, %] as a Z-module. Then we have:

1 A
I(k1,s) = Lo(2s — 1,x0)5 [ J(1 = (=)~ 072p!=2%) (1) AV E (25 — 2,3Dzy),
211 4]
where 24 = B+2Va and E. (s,2) = > % is an Eisenstein series.

(m,n)=1,2tm
Proof. Note first that we can rewrite:
. k
I(ky,s) = ) CIDGD(/@)W
ke A=(k1)

Note that for ®g,, (k) # 0 we must have k € Pzep := (Z + 6DOk)*. Then we have:

sy = 30 @;Dw#

kJEA:(kl )mPZ,GD

Let (k1) = A = [A, %]Z with B =1 mod 4, A = Nm A and B?> = —3 mod 4A.
Then all £ € A can be written in the form & = mA + n#j?’ for m,n € Z. Moreover,
since k € Pz 6p, we have:
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—B++-3
2 )
Moreover, since ®5(k) # 0 for k € (Z + 2Zs|w])*, we have:

k=mA+n-6D (m,6D) =1

By (k) = 1, formA=1 mod4
S 0, otherwise

Then we have:

] —B+v/=3
Ik s) = Z mA+2n - 3D=>5
’ HmA—i—2n-3D—’B+2\/j3|]2S

m,n,
(m,6D)=1
mA=1 mod 4

Note that we can rewrite this as:

. —B+V-3 ) —B+v-3
(k. s) = & Z mA +2n - 3D=5 1 Z mA + 2n - 3D=>5
2 |mA +2n - 3D=BL/=3)2s 2 |mA + 2n - 3D=BEY/3j2s

m’n? m7n7
(m,6D)=1 (m,6D)=1
mA=1 mod 4 mA=3 mod 4

Note that this is precisely:

= — +9n.3D=BL/=3
I(k1, s) L § (—1)mA-D/2 mA + 2n - 3D =5
2 m,n, ||mA+2n.3D—— 34-2\/73||25
(m,6D)=1

We can split the product (—1)mA=1/2 = (—1)m=1/2(_1)(4=1/2 and we get:

) -B+v—-3
k) = ()AL 57 (o AT O
2 m,n HmA—i—n . 3D_B—;\/j3||2s
(m,6D)=1

We rewrite further:

mA—l—n-3D’B%m

(_1)(m71)/2m
_ 3125 Z T 28
|mA +n-3D=BL/=3)2 (m.6Dy=1 m

(k) = (=142 Sl

Note that the far right term is an L-function:

1) m=D/2,,
S O T (o apt=)=t = L(2s =1, x0) [T (1))

(m,6D)=1 pI6D p|D
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Thus we need to compute:

_{)m-1)/2
Z (%T = Lo(2s — 1, x0)

(m,2)=1

Here xo(m) = (%) and we can compute the value of the L-function L(yy, 1) of a Dirichlet
character (see for example [13]). We get:

27

LQ<17X0> = ? =

N

Then we have:

I(ky1,s) = Lg(2s — 1, x0) H(l — (_1)(p—1)/2p1—25)(_1)(,4_1)/2X
p|D

(_1)(m—1)/2(mA +n- 3D*B+T\/j3)
|mA +n - 3D=BLY/3)j2s

1
x5 >
(m,n)=1,2tm

We can rewrite this as:

_ o _ A
I<k17 S) = LQ(QS -1, XO) H(l - (_1)(p 1)/2]?1 2 )(_1>(A D/ ||A||25 X
p|D
x5 Z (—1)(m=1)/2 2a

|m+n- 3D%H23

Note that this is:

1 A
I(k1,s) = Lo(2s — 1,x0)5 [ J(1 = (=)= 07/2p!=20) (1) AV E (25 — 2,3D2y),
20D 1A
where 24 = £ +2F.

]

In the next section we will show that actually F. (2s — 2,z) is a particular case of a
Siegel-Eisenstein series.

A particular Eisenstein series.

In this section we will connect the automorphic Eisenstein series with a classical Eisenstein
series. Our goal is to prove Lemma 8.2. We start by recalling some details about the Weil
representation.
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Weil representation for éig((@) x 01(Q).

In order to define half-integral weight theta functions, we will define the Weil representation
for the symplectic space W = Q @ Q and the quadratic space V = Q, ¢(x) = 2. We follow
Gelbart [Ge] to define the Weil representation for SLy(Q) as a cross section of SLy(Q).

We define locally at the place v:

. (é ?) o(z) = P(22)()

2

. (3 91) 8(x) = (a,0), 2% §(az) = (a, a)e,(a) als/*$(az)

where:

_ Q,D(l‘) — E2miToo Hp 6727riF‘racp(xp)

- (g, ) = lim w ayQ dy — lim e—27riFracp(ay2)dy _ al/ZE a), where
P m—00 p p ~P
p_mZp p_mZp
ep 1 QF — {£1,4i} and £p(a)® = (a, —1),
_ fYoo(qy wa) — 6271'z'sgn(a)/4

For now we are not interested in extending the Weil representation to all of GLs. Instead,
we will extend the Weil representation to:

(GL2(Ag))” = {g € GLy(Aq) : det g € A3’}
This is done by defining;:

o (o o) o) = kel o)

Note that this implies:

o (0] o) = (e0e(ote)

This is done by checking:

7‘(8 2) ¢<~T>=T(§ 196)7“(3 0) ¢<w>=r(§ 13) e 2p(c 1 a) = (e, )e(c)plx).
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Defining the Eisenstein series.
Recall first the general definition of the Eisenstein series:

E(s, g1 @)= Y. fv9),

v€P1(Q)\SL2(Q)

for g € GLo(A), where P(Q) is the subset of upper triangular matrices in SLy(Q) and
fs(g) =7(9)p1 @ $2(0)6(g)°, where § is the modulus character for GLy(A) and 7 is the Weil
representation.

Remark 8.1. Note that the definition above makes sense: we can take as representatives of
P;(Q) \ SLy(Q) the matrices (5, 1) and ( ° §). Then we have:

S (5 =

(4 b)eP@\GL2(Q)

= Z Xl(c/a)XQ(a)fs((—l}/a(l))g)+f8((91(1))g)

(J4/a 9)( 5 §)eP@\SL2(@)

= E(8797 ¢1 ® ¢2)7

as x1, X2 are trivial on Q*. Then we can rewrite:
E(s,9,01 @ ¢2) = Z £((%2) 9),
(4, 5)erP@\GL:(@

yl/2 y=1/2g

Note that for g, = << T )Oo , 1f)7 we have:
fs(g) = r(goo)gbl,oo & ¢2,oo(0)r(gf)¢1,f & ¢2,f(0>6oo(goo)85f(gf)s
We will fix the Schwartz-Bruhat functions ¢; ® ¢9, such that ¢1,¢2 € S(Ag). More

precisely, we take ¢, = ¢ = Hp ®1.p, where p goes over all archimedean and non-archimedean
places of QQ, and locally we define:

charz,, p#2
¢Lp = ¢2,p = { chary, (x)e”i Fracg(z) p=2
6—27r3027 P =00

Below we specialize the Siegel-Eisenstein in order to obtain the value of the classical
Eisenstein series E. (s, z). We have:
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1/2 4=1/24
0 y71/2

Lemma 8.2. For g, = <<y ) ,1f>, where y > 0, we have:

E(57 9z, d)l & ¢2) = y(s+1)/2E50(37 2)7

a—bz a—1
where E. (s,z2) = > m(_l) 2.
(a,b)=1,2fa

Proof. We denote ¢ := a?+b* and a’ = a/+/c,V = b/+/c. We compute the Weil representation
action at all the places.
Place 0o. At 0o, we compute:

o 7 ((%0) ) ro0 @ 62,00(0) = 7 (% 1) 9) B100 ® B2,00(0)
a b 1/2 pq—1/2
:’r((_b’ Z’) (yo yy—1/2 )) ¢1,oo®¢2,oo(0)
a'yl/2 o'z )y—1/2
=r (_l;/yl/2 ((_b/z—:_baz?;y—l/Q) ¢1,oo X ¢2,oo(0)
o y1/2/|a’ —b' 2| * (=b'z+a’)/|a’=b'z| by/|la'—b'z|
=T (( 0 \a/fb’z\/yl/Q) ( —by/|a—bz| (—=bz+a)/la—bz| )) ¢1’°O ® ¢2:00(0)

—Vx+d)+ 0yl [,02)0 v .
- Yo ) VYL, (g ) 6110 © 6200 0)

la’ — b'z| 0 la/—b'z|/y*/?
a — bz . y1/2
- - /2 r b/ 1 0
|a/—b’z|(y /’CL Z|7 )|a,_b,z|¢1,oo®¢2,oo( )
(a —b'2)y'/?
a = W22
—_b 1/2
= a1

o e ((52)0) o (5 0) (7 200)

- 6 a/y1/2 (a’x+b')y71/2
- Yoo _b/y1/2 (—b/z+a/)y_l/2

o (W) (e e )
o0 0 la—¥al/y? Wyl =¥z (—bata)/la'~b2]

y1/2 B yl/z | 2_|_b2|1/2

la/ =0z |a— bz ¢

Places p # 2. At p # 2, we compute:

e If v,(c) =0, then (% %) € GLa(Z,), thus it acts trivially on ¢ @ ¢
Also 6 (%4 2) =1for (4?%) € GLy(Z,).



CHAPTER 8. ANOTHER FORMULA FOR L(Ep,1). 87

e a’+? = p, then vy(a) = v,(b) = 0 and (p, —1) = 1. Then we have:
r(50)61s © das(e,y) = 1ol (4 o )o1s ® Gap((ax = by) Jp, (b + ay)/p) =

= Il 2 (7 28) (o )61 @ 6as((ax — by) [, (b2 + ay) /D)) =00 =

- Ti—b/a(x2+y?
= |pl, Y2(p/a, —1),lp/al, / e2mi=b/a(z+y”) charz, (
Qp@@p

1/2 2 | 12|12
ply/? = |a® + 07|}/
Note that ”p%by, b:”jfay € Z, implies z,y € Z,, hence the statement above

For §,, we compute:
0p((70"2) (o 1)) = Iply> = p72 = |a® + 5|,/

a

~

Place p = 2. At p = 2, we have ¢; = ¢ = charg,(z)e™. Then we have 51(33) = ¢o(x) =

The self- dual Haar measure gives us:

vol(Zy) = 1/v/2,vol(Zs[i]) = 1/2

Note that if vy(a® + b?) = 0, then we have vy(a) > 1 and vy(b) = 0, or vy(b) > 1 and
vg(a) = 0. In this case note:

o If a(2z) + b(2y) € Zy + 1/2,—b(22) + a(2y) € Zs + 1/2 implies 2x,2y € Zy + 1/2,
thus z,y € 1(Zy + 1/2). Moreover, if 2,y € 1(Zy + 1/2), we have a(2z) + b(2y) €
Zo+1/2,—b(2x) + a(2y) € Zy + 1/2. Thus ¢1(ax + by)pa(ay — bx) = ¢1(x)P2(y).

o If ax + by € Zy,—bx + ay € Z, implies (a® + b*)x € aZy + bZy = Z,, thus x € Zo.
Moreover, this implies y € Zy. Moreover, em(@xtby)emilay=br) — pmizmiy

We compute:
e vy(a) =0,uvy(b) > 1:
( )¢12®¢22( Y)l (0.0 7“(_abzﬁ)¢1,2®¢2,2(a:€—by,—bx+ay)\(0,0) =

7“(%“2?2) bc/a1)¢12®¢22(a$—by,—bx+ay)]( 0)

, (céa Zéi) / —2mi b (22 +y?) ¢1 o(ax — by)¢22( br + ay)dx dy
Q20Q2

= (c/a, —1)s|c/al, / 2 @y’ ¢12( )52,2(3/)611’6@

Q20Q2

<
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1
= Z(a; _1)2 / 6_27”4 ((z+1/2)%+ y+1/2)2)dx dy

ZLo®Z2

— i(a’ _1)2 / e 27rz—(z +a+y? +y+1/2)dx dy

Lo®Z2
Lo®Zo
— i(a,—1)2/6—27ribc/é2a)(m2+x)dx/6—27ribc/éw(y2+y)dxi(_1)(a—l)/2
Zo i
Note that:
/6—27rib§£2(z2+a:)dl, _ %/6_2 Zbc/Q((2x+1)2+(2m+1))d$ I %/ _27”170/2 (422 42z) dl: _1
Zo Zs 7,

o U3(b) =0,v9(a) > 1:
(a b)¢12®¢22($ Y)|0,0) = 7"( )¢12®¢22($ Y)l(0.0)
r (Z ;C;éc> P12 @ (bg 2(ax + by, —bx + ay)| 0,0

(C/b 71,%) an 1) G120z = by) o o(—ba + ay)da dy =

, (c/b —;%c) / e2wi%(x2+y2)¢1’2(ax — by)¢2,2(—b$ —+ ay)dl’ dy

<

Il
<

Q280Q2
= (¢/b, —=1)3|c/bl, / 2T G o (az — by)poo(—ba + ay)dz dy
Q20Q2
— (b,—1), / @) gy (1) by o () dy
Q20Q2
1 e o
= (b, —1)271 / 2mi % (@2 y?) iz Ty g o)
Lo®Z>
1 o
= (b, —1)27 / e™ ™ dx dy = 0
Zo®Zo

e vy(a) =0, vy(b) = 0, then we have vy(a?+ %) = 1. Note that if ax +by € Zy+1/2 and
ay — bx € Zoy+1/2, then we have = € %Zg,y € % (Zg—l—%), orr € % (Zg—i-%) Y € %ZQ.
Thus we have:
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al(ax + by)g%(ay —bx) = char%(zﬁé) (x) chary, (y) + char%(Zﬁ%)(y) char, (x)

We compute:

r (—ab Z) P12 ® ¢2,2(33a y)’(o, 0 =T ( ) ¢1 2 ® ¢2 o(z, y)!(o,o)

= (Z _b%c> 51,2 ® 5272((11‘ + by, ay — bx)|(0,0)

=r (Z —b%c) (cha,r%(Zﬁ%) (x) charézg(y) + char%(Zﬁ%) (v) char%ZQ(:L’)) (0,0
Note that:

]:'T(Chalrl(Z L1 )(x) chariz, (y)) = charz, (z)e™™ charz, (y)

Then we can compute:

/ 2" @) chary, (2)e™ charg, (y)da dy =
Q29Q2

= (¢/a,~1)sc/als / T ey dy = 0
Zo®Zo2

We compute similarly for fT(Char1(Z 41 )(y) chari, (z)) = charg,(y)e™ charg,(z)
3 2
and get 0 in the integral.

e a =0. We can pick b = 1. Then we compute:

7 (%10) o12® d22(x,y)](0,0) = 912 ® 22(2,Y)|(0,0) = chary (g, /2)(0) chary z, /5(0) =
0

We compute now the Eisenstein series F(s, g,, ¢1 ® ¢2):

E(Sa Gz, qbl ® ¢2) =

_ 1/2) .2 211/2/ (a 1/2 21/2 S 25/2 25/2
_(b)z_;mby |a®+0%/%(—1) bPH\a + | ‘la +b H\a +0°|

a— bz -
— Z y(s+1)/2(_1)(a 1)/2

(e mi2lb la — bz|*la — bz|?
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From Proposition 8.1 and Lemma 8.2, we get the natural Corollary:

Corollary 8.1. Using the notation established, we have:

Zs(s, XD,sp5, ) =

1 1
= E#(OK/DOK)XﬁL@(QS —Lxo) [ (1 = (=1)®D72p!=2)

p|D

p(A

a2571

~—

x Y E(25—2,3Dg.,, 1 ® ¢o)xp(A) it (—1) 0Dy

[AJeK*\A% /U

?

Here we let y4 = %3.

From Z;(s, xpy, @) to L(Ep,s)
We are interested in the value of the L-function at 1. We compute in the following Lemma:

Lemma 8.3. For all s and for the choice of Schwartz-Bruhat function ®% as above, we

have: (11 210y
Ly(Ep,1) = %#(OK/DOK)XZf(S’XD@’ %)
p\I;[D Ly(s, XDpep)
Proof. From Tate’s thesis, we have L;(s, xpp) = Z¢(s, xpp) ‘H 705 X0 o ) Since
pl3D

Xpy is ramified at 3D, we have L,(s,xpppp) = 1. At 2 we have L,(s,xp2p2) = (1 —
Xp(2)p(2)27°) 7 = (1+2'7)7".
We need to compute the integral:

Z,(s, xoig, ) = / X)) [ap 2By () A,
Qplw]*

From the choice of the Schwartz-Bruhat function ®, = chargspz,pyx for p|D, the

integral reduces to Z,(s, xpp, ®,) = / XD.p(p)pp(ay)|ay|yd*ay,.  Note that for
(Z+3DZy[w])*
p # 3, all the characters xp,¢ and | - |, are unramified, thus we just get the volume

vol ((Z + 3DZ,[w))™).
For p = 3, we have ®, = char(4145z,[)). Similarly, we get vol ((£1 + 3Zz[w])™).
For p = 2, we get Zs(s, xp2p) = 2vol(1 + 4Z;[w]).
We already computed the volumes.
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e p nonsplit, p|D: vol(Z,[w]*) = (p* — 1) vol(1 + pZ,|w]).
e p split, p|D: vol(Z,[w]*) = (p — 1)* vol(1 + pZ,|w))..
e p =3, we have vol (£1 + 3Z3[w]) = 3.

e p =2, we have 2vol (£1 + 2Zs[w]) = & =

Taking s = 1 in the Corollary 8.1 above, we get:

Corollary 8.2. Using the notation established, we have:

o 1 x T — _
21 xp.sp1 7) = 5 #(Ox/DOk) T =~y

x Z E(0,3Dg.,,$1 ® ¢2)xp(A)

[AJeKX\AE /U
Furthermore, from the Lemma above we have:

Corollary 8.3.
Ly(1, xp,rps, ®F) =

™

ST[a-ED®D2py Y7 E(0,3Dg.,, 61 © ¢2)xn(A)

©(A) 1/ a—
=% / (—1)(@/2
p|D [AleKX\AK /U

ClyA

Siegel-Weil for E(s, g, d1 @ ¢9).

The Siegel-Weil theorem connects the value of a Siegel-Eisenstein series at s = 0 with the
value of a theta lift (see [15] for an exposition). In our case, we have:

E(07 9, le ® ¢2) = 2@¢1®¢2 (9)7 (82)
where we define theta lift for g € SLo(Ag):
@¢1®¢2 (g> = / 9(97 hla ¢1 X ¢2)dh1
O(Vg)\O (V)

Note that r(h1)g1, @ ¢aop, = ¢1p @ ¢o, for all places p # 2. At 2, we are sending
(r,y) — (az + by, —bx + ay), where a? + b*> = 1. Thus exact one of a,b is divisible by 2.
Either way, we get (Za+1/2)® (Z2+1/2) gets sent isomorphically to (Ze+1/2)® (Zy+1/2).
Thus we get:
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Op100(9) = vol(O(Vo) \ O(Vay;))0(g, 1, 61 © ¢2)
We can easily compute vol(O(Vg) \ O(Vag)) = vol(Q* \ A ; = vol(I], Z) = 1 from the

choice of the self-dual Haar measure.

Remark 8.2. We can further compute 6(g., 1, ¢ ® ¢2) explicitly. We get immediately:

091,00 @ go) =y~ /2 ) FOmEzemImETIn = 712G, ()2,

mne”

where 0)/5(2) := 3 €>™*#(—1)" is a theta function of weight 1/2. As an automorphic
nez

fOI'IIl, this is 91/2(2) = y_l/zem (gz)

—b+v=3 . _ 3DV3
2a ?

Applying Siegel-Weil and the remark above in our case, we get for z4 = y = "5

Y 2E(0, g3psn, 01 @ ¢2) = 29?04 04, (g3D2,) = 201 /2(2)?
This gives us in Corollary 8.2:

Corollary 8.4. Using the same notation as above, we have:

Li(txog) = = [[A - (D" 2 3" 615(3D24)*x0(A)

48 a
p|D [AJeKX\AJ /U
()
We showed in section 3 in Lemma 3.5 that for a primitive ideal A, we have #(A) =5 ((w)) )
a ZA
This gives us:
Lf(17 XDSO) =
_ _ _ 6 2(3D2A)2 — _
— DB TT(1 — (1) D/2),-1 2\OTEA) B3y (1) (a2
@ g [T - (0™ 30 S DU A1)
p|D [AJeK*\Af /U

From class field theory, we can find H, a finite abelian extension of K such that
Gal(H,/K) 2 K* \Afw/U.

This is going to be the ray class field for the modulus 12D.
Finally, we get the following theorem:

Theorem 8.1.
J2, 1\ T 91/2(3DW>2D—1/6

Li(1,xpp) = D00 w) [ [ = (=1 2p™) 2 Ty 1ypy wvm COk(w)
p|D
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The only step needed is to apply the Shimura reciprocity law in order to show that all
z 2 . . z 2 . .
elements %DI/?’XD(A)D_U2 are Galois conjugate. Take f(z) = %. This is a

modular function of level 12D with rational coefficients at the cusp co. Thus f(w) € H,.
The proof that all terms are conjugate is a straightforward application of Lemma 4.3.
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Chapter 9

Appendix A: Properties of Oy

In this appendix we would like to present a few properties of O . First, we have a functional
equation for the theta function (see [11]):

Ok(—1/32) = 20K (2). (9.1)

3
V=3
Furthermore, we can compute the transformation of O (z 4+ 1/3) in the lemma below:

Lemma 9.1. We have the following relations:

(i) © <z + é) — (1 - w)O(32) + wO ()

1

(ii) © <z — 5) = (1 —w?O(32) + w?O(2)

Proof. We will rewrite the Fourier expansion of ©(z) for z := z 4+ 1/3:

1 27Ti(m2+n2fmn) 241
@(Z—Fg):Ze ( 3>‘

m,nel

We split the sum in two parts, depending on whether or not the ideal (m + nw) is prime
to (v/—3). Then we have:

1 2mi(m24n?—mn)(z+1 2mi(m24n? —mn)(z+1
@(z+§>: Y N (++5).

m,neZ,(v/=3)|(m+nw) m,neZ,(v/=3){(m+nw))

Note that on the RHS we can rewrite the first term as:

) L3 e _ s 1)~ 65
m,neZ,(v/=3)|(m+nw) m,nez
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Also note that when 3 1 m? + n* — mn, then we have m? + n> — mn =1 mod 3. Then
the second term on the RHS can be rewritten as:

Z eQﬂi(m2+n2 —mn)(z—‘r%) _ Z eQﬂ'i(m2+n27mn)zw.
m,n€Z,(v/—=3){(m+nw)) m,neZ,(v/—=3){(m+nw))

We rewrite this:

Z 627ri(m2+n2—mn)(z+%) _
m,neZ,(v/=3){(m+nw))
—w Z 627ri(m2+n2—mn)z —w Z 627ri(m2+n2—mn)z
m,neZ m,n€Z,(v/=3)|(m+nw))

Finally we recognize the two terms as theta functions Og:

Z p2mi(m?4n?—mn)(z+3) _ wO(z) — wO(3z)
m,ne€Z,(v/—3)(m+nw))

Now going back to our initial computation, we get:

© (z + %) =0(32) +wO(z) —wO(3z) = (1 —w)O(32) +wO(2)

This finishes the proof of the first formula. We get the second formula by applying the
first formula for z := 2 —1/3. We get O (2) = (1 —w)O(32 — 1) + wO(z — 1/3) and this is
easily rewritten to give us the second formula.

]
Properties of Oy ((—b+ /3)/6).
Lemma 9.2. O (%) =0
Proof. We apply the functional equation 9.1 for z = #’T}’:
o —3+V=3) _ - __3)—3+\/—_3@ 3+v-3 .
6 6 6
Since © (%) =0 (%), we get the result of the lemma. n

Lemma 9.3. For the primitive ideal A = |[a, %]Z prime to 3, where a = NmA, b =0
mod 3 and b*> = —3 mod 4a, we have:
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Proof. The proof is similar to that of Lemma 3.5. We can write the generator of primitive
ideal A = [a, %‘7‘9’] in the form k4 = ma + n_l)+—\/__3
that (m,3) = 1, thus we can find through the Euclidean algorithm integers A, B such that
mA + 3nB = 1, which makes ( A

for some integers m,n. Note

B) a matrix in I'¢(3). Since © is a modular form of
—3n m

weight 1 for I'g(3), we have:

@K( AT >: (m_n—b+\/—_3)@K(—b+¢—_3>'

Noting that —Bn%jg +m = ky/a = 1/k4, we can compute

AT B (ATMYE3 4 3Ba)ka

This is (3aB + A%)(ma + n%j?’)/(i%a). After expanding, we get:

b2+ 3 b(—mA+ 3nB V=3
3 ppyy HEmATINB)
4a 6 6
Note that mA + 3nB = 1 implies that mA and 3nB have different parities. Also we
chose b odd, since b> +3 =0 mod 4a. Finally, recall 3|b and thus using the period 1 of O
we get:

—nA

Afb+\/j3 B _ /_
®K ( 6a + ) — @K (M)

From the previous Lemma, we have O (%), thus Ok (717;;/?3) = 0 which finishes

the proof.
O

About O (D(—3 ++/-3)/6).

In this section we will show that for D a product of split primes p = 1 mod 3 and for the
representative ideals A = [a, %] of C1(O3p)with b =0 mod 3, we have:

o (27

6a

ACI(0yp) ©

D" =0

. . Ox (Di_b%‘/j) .
We will first show that the LHS is equal to the trace of TD1/3 with b = 0

mod 3. We will show this by using Shimura reciprocity law. Note first that:
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D
% is a modular function for I'(3D) and

fo(2) has rational Fourier coefficients at the cusp oo.

Lemma 9.4. The modular function fy(z) =

Proof. The proof that fy is invariant under I'(3D) is straightforward. The proof that the
Fourier coefficients are rational is also similar to the proof of Lemma 4.1. O

Lemma 9.5. For fy as above and 7 = %, we have fo(T) € H3p.

Proof. To show that f(7) € Hzp, we need to look at action of U(3D). We follow closely the
proof of Lemma 4.2. We rewrite the primitive ideal A = (A+ Bw) as A = [a, 7b+2‘/jg]z with
b=by mod 3. The only difference is computing:

s t

@K( ta sb sc/a) ) - @K ((tafsb fsc/a) Z)

s t

(b i) 2 — O (B 0) (ot —sc/a) ) O (('ﬁi}ﬁ’ —sth/(sa>> (Dz))

Note that we still have <2178Db _50[1/(3‘1) , (a7t =5/} € Ty(3), thus we simply get fo(z)

and all the arguments from Lemma 4.2 follow.
O

Lemma 9.6. for A = [a, %} a primitive ideal ideal with a = Nm A and b*> = —3
mod 4a, we have:

o (D=)  (o(p2E)\ ™

o(=522) O(w)

Proof. Note that fy(z) satisfies the properties of Lemma 4.3, thus applying its result for
fo ( bJ”ﬁ) gives us the result. O

From the previous two lemmas, we immediately get the following Corollary:

Corollary 9.1. For A = [ ’bJ”ﬁ] primitive ideals that are representatives of C1(Osp) as
above, we have:

O(D=btY=3) o6

AeCI(O3p)
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Traces of theta functions
We will show the following lemma:

Lemma 9.7. For D=1 mod 3, by =0 mod 3 as before, we have:

Ox (D 7b0+\/j3)

TI"H /K D1/3 =
3D O(w) AeCzl((:QgD) O (D%)

Proof. The method will be to apply Lemma 9.1 two times. We first apply Lemma 9.1 (i) for
_ 1-2D .
z = =55 to get:

o(Mep) --we (H5) e ()

This can be rewritten as:

o <1+6\g?3) o <1+2\//j?3> o) <1_22g\/?3)
— 2 =(1-w) +w
O(w) O(w) O(w)
By taking the inverses and denoting By := —1 + 2D, a; := (B? + 3)/4, we have:
@(D—1+2\/—73> @<1+2\g?3> @(DBI—;F>
3D =(1-w)———* +3Dw
O(w/3) O(w) o <Bl+\/?3>
6a

Note that B =1 —2D =1 mod 3. Furthermore, noting that ©(w/3) = (1 — w)O(w)
and © <%ﬁ3> =(1-w?®O (%), we get:

3p © (D%ﬂ

l—w O(w)
© <1+2\1/3?3> 3Dw © (D%TS>

_|_

ST e g (5)

Multiplying by D'/3 and rewriting the first term on the RHS, we have:

—1+v/=3
3D © (D 2 )D1/3 _
1—-w O(w)
o 1+/=3 &) DB1+\/?3
_ (1 w)(l w2) < 2D > D1/3 + 3Dw XD(Al)il ( 2a1 >D1/3XD(A1)

(T A R o (255
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By taking the trace from Hsp to K and denoting by A; := (%), we have:

3D O (Dw)
Try, D'? =
1—w THsp/K O(w)
Bi1+v—-3
O (—Dw?) 3Dw -1 O (D=5 ) —_—
= 3Tk gy P+ Tl Tk DV (A

o (27)

Note that by definition we have xp(A;) = xp <%j3w>. We can compute the value of

the character using Lemma 2.5. For each p|D, we have:

(B () ()

1
Thus we get xp(A;1) = 1, and we can rewrite the equation above as:

3D O (Dw) 13
1—wTrH3D/K O(w) b=
Bi+v-3
— 3T @(—Dw2)D1/3+ 3Dw T ©(D ;a1 ) 1/3m
= THyp /K O(—w?/3) 1 — w2 THyp/K o <Bl+\/TB) XD\A1).
2a
Furthermore, using Lemma 9.6, we have
o (p2p) oD 73
a1 Y3, (A — (Dw) 13 7T A
o <Bl+¢f3> D xolA) ( o) XD(Al)) ’
2a
thus:
6 (DB o (D
@ V3, (A — (Dw) 1/3
oo/~ <Bl+¢f3> Dxo () = T i~ 77 P
2a
Denoting S := Try,,/x @éﬁf;)Dl/:s, we get the relation:
1+v/-3
3D O (=0 ) 3Dw
—S5=3T — /. piB S.
l—w Hap/K O(—w?/3) 1 —w?

This implies:
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This is equivalent to:

1+¢T3>
D S = Try. /x 6—2Dpl/3
1—w? wKg(—w2/3)

Note that if we apply the transformation z — —1/3z given by the functional equation
(9.1) to both theta functions on the RHS we get:

1 1 6 (p=152)
- g 1/3
1_w2S 3TrH3D/K @(w) D .
This is equivalent to:
o) D—1+¢T3>
6
(1 —w)S = Tru,,/x DY3. (9.2)

O(w)

We will apply now Lemma 9.1 (ii) for z = D%_ﬁs, where by =1 mod 3. We denote
by by an integer by = 0 mod 3 such that by = b; mod 4a. Then we have:

_ — B R _ A
o(p=htv=s = (1-w?)O p=EEVESY) | g (pZht VIS
6a 2a 6a
This can be rewritten as:

bot/=3
6 (D=

=

o (=)
*b0+\/j3>

6<D 2a 1/3

o (F5)

By taking the sums, we get:

>D1/3XD(A) -

= (1 —w?)

M=(1-w)S+w(l-w)S=0

Remark 9.1. The above lemma is also true for D = 2 mod 3 with very small adjustments
in the proof.

[]
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Chapter 10

Appendix B: Shimura reciprocity law
over Shimura curves

We can look at the modular curve X(3D) as a Shimura curve:
Xo(3D)(C) = GL2(Q)" \ H* x GL2(Aq,s)/Vo(3D),

where V4(3D) = {7 € GLy(Aqy) 1 v = (3 :) mod 3D@}

Defining the modular function f(z).
Ok as an automorphic form.

We will reinterpret the theta function O as a theta lift. Recall the Weil representation for
SLy(Ag) acting on S(Af) the Schwartz-Bruhat space for Ax. For ® € (Ag), we have:

)
<( ) ) (z) = (a, =3)|a|®(az), a € K~
(( ) ) ) = P(bg(2)®(2),b € k
<( ) ) z) =5V, q)®(x)

Here v(V, q) is the Weil factor that is a 4th root of unity and (-, —3-) is the Hilbert
symbol. Furthermore, we denote by ® the Fourier transform of ® with respect to v, defined
to be:

B(z) = / B(y) (. y))dy,

Ak
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where (z,y) = q(z+y)—q(z) —q(y). In our case, for x = a1 +b;v/—3 and y = as+ba/—3
we get (x,y) = 2ajas + 6b1by. In the integral above we choose the self-dual Haar measure

i.e. the measure for which ®(z) = ®(—z).
Using the Weil representation, we can relate the theta function ©f to the automorphic

O:

Ou(g) = > _r(g)®(k), g € SLa(Ag)

keK

We choose the Schwartz-Bruhat functions:

ol 2
e 2"y =00

B, — {char@KU,v {00

Note that O is that it an automorphic form and it is invariant under SLy(Q).

yl/2  gy=1/2
( 0y ) and z = x + yi we can easily compute:

Then for g, =
Os(g:: 15) = y'*Ok (2) (10.1)

The classical definition of f(z).

Lemma 10.1. Define the modular function:

Then f is a modular function for To(3D) = {7 € Sle(Z) : ~
f € Fosp-

(* *) mod SD} i.e.
0 =%

“ b) € I'0(3D). We have:

Proof. We will show that f is invariant under I'o(3D). Let (c d
D 0\ (a b a bD\ (D O
iy 26 )0 ol W) (6 1))
() ==y o
(¢ a)) o 4))

a Db
c¢/D d

d
a modular form of weight 1 for I's(3), we have:

Since (Z b) € I'0(3D), we have ¢/D =0 mod 3 and ( ) € I'o(3). Since O is
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; (<a b> Z) _ © (<c/aD bf) (Dz)> _(¢/D-Dz+d)'O (Dz) _ £2)

@((Z Z) Z) T (cztd) 0z

Note also that both ©(Dz) and ©(z) have Fourier expansions in ¢'/? with rational Fourier
coefficients.

]

Rewriting f(z) to be defined on the Shimura curve.

We rewrite f(z) to be defined on the Shimura curve X,(3D). We take for [z, 1]:

°|(6 1)1

O]z, 1]

flz, 1] ==

We want to extend the definition for [z, g] € H* x GLa(Ag,;). We claim there is 2z € H*
such that:

[207 1] ~ [279]
in X,(3D). This is equivalent to having some v € GLy(Q)* and g5 € Vp(3D) such that
2z =729, g = 7gs. This will follow from the following theorem (see Bump):

Strong approximation theorem. Let M be a number field and Ko open compact
subgroup of GL, (A, f) such that the image of Ko under the determinant map is va or.
Then:

We apply strong approximation for Q for n = 2 and V(3D). Note that V4(3D) — [],Z)
is an open compact subgroup of GLy(Ag) Since Q has class number one, we have:

GLy(Ag) = GLo(R) GL2(Q) V4 (3D),
we can write g = gy for v € GL2(Q) and gy € V4(3D). Moreover, we can change g so
that we have v € GLy(Q)" (note that ~_ <_O ?) € Vo(3D) and GL2(Q) = GLx(Q)* U
7- GL2(Q)7).
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Definition 10.1. For [z, g] ~ [20, 1] on Xo(3D) (i.e. for z = vz, g = vgs), we can define:

o[(3 )

@[Zo, 1]

flz, g = flzo 1] =

Checking that the function is well-defined.

We will check that the above definition makes sense. In order for this definition to be well
defined, we need to have f[zy,1] = f[z1,1] for all [zg,1] ~ [z1,1] in Xo(3D). For this to
happen we need to have:

20 = V%1,
1=9gu,
where 7 € GLy(Q)™ and g, € V5(3D). This implies v € GLy(Q)" NV4(3D) = Ty(3D). Thus

we need:

f(z0) = f(720)

This is true due to the Lemma above, thus the function is well defined on X, (3D).

Rewriting the definition to include [z, g].

If we want to further rewrite the definition, for z = yzg, g = gy, where v € GLo(Q) ™, g5 €
Vo(3D), note that in Xo(3D):

(0 9~ )06 5)
o6 9L 1))

-1 __ . ;o a Db
Here g~ = (c d) € Vo(3D). Then we can write gy = (C/D J )

We define R(V5(3D)) := Vo(3D) N R(Ay).
Lemma 10.2. R(A;) = R(Q)R(V4(3D))

Proof. Let g € R(Ay). By strong approximation, we can write g = ~g, for v € GLy(Q)*

and g, € V5(3D). First we will show that we can write det g = det vy det g,,, for 7o € R(Q)
and g,, € R(Vo(3D)). Since g € R(Ay), we have det g = q(z) for x € A} ;. We can apply
strong approximation to K:
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A};f = K*Uy(3D),
thus we can write x = kug. Then ¢(z) = q(k)q(up). Then we can pick:

(tl) <deig>> - (tl) q(om) (3 q<20>)’

Note that <(1) q(Ok)> € R(Q) and ((1) q(?m)) € R(Vp(3D)). Then we can write:

10 1 0 \(1 0
9=79 =7\ dety™!1) \0 detg) \0 detg;! 9o

(5 ) () (6 a) (6 )
Yo =7 <(1) detofy_1> ((1) CJ(Ok)) RO

Guo = (é q<20)> <(1) detog;1> g € R(Vo(3D)).

We take
and

]

Lemma 10.3. For [z,g9] € Xo(3D), we can find v € GLy(Q)*, 9., € Vo(3D) such that
V99u € R(Ay).

Proof. We can write g = Yogu,o for 7o € GLa(Q)* and g, 0 € Vo(3D). We can rewrite:

/10 10

(10 . (1 0
for v = <O det701> € GLy(Q)", g, = (0 detg;é) € Vo(3D). Then we get vgg, €

R(Ay), since it has determinant 1.
[

In the following we use the notation:

- ()



CHAPTER 10. APPENDIX B: SHIMURA RECIPROCITY LAW OVER SHIMURA
CURVES 106

Lemma 10.4. For g € R(Ay), we have:

flz.g] = —@@[)I[Zﬁ]

Proof: From Lemma 10.2, we can write ¢ = vg, for v € R(Q) and g, € R(V4(3D)).
Then [z,9] ~ [y 12,77 g] ~ [20, 1], where 25 := 7~ '2. Then we can apply the definition:

O [Dz,1]  ©[yDz,9] ©[Dz,v

flz,g] :== flz0,1] = Olz,1]  Opz,n]  O[z1]

We need to show that ©[Dz,+’] is invariant under ¢/, and ©lz,~] invariant under g,.
From Lemma 10.3, we have that g, € V((3D) acts trivially on ®(z), thus:

O [z,79.) = O]z, 9]

We need to show: © [Dz,7'g.,| = ©[Dz,~].
We rewrite

; a a Db
9= \¢/D d 0 ad —bc) \¢/(D(ad — be)) d/(ad—bc))
Note that we have ¢!, € GLQ(Z) thus v,(ad — be) = 0 for all p. Then

ro_ a Db
Ju =\ ¢/(D(ad — bc)) d/(ad — be)
is an element of SLy(Z). Using Lemma 10.12, we have r(g,)®; = Py, thus:
©[Dz,v]=0[Dz{]
This gives us the conclusion.

Lemma 10.5. If we pick different [z1, ¢1], [22, go] that are equivalent to [z, g] in Xo(3D) and
such that g1, 92 € R(Ay), we still have:

[l g1] = flz2, 9o
Proof: By above Lemma we have:

©[Dz, g,
f[ziagi] = ﬁ

Since g; € R(Ay) by Lemma 10.2 we can find v; € R(Q) and g,; € R(V,(3D)) such that

9i = ViGui- We denote z; = 7{122-.
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Then 7, € R(Q) as well and:

fk,l__@h”U%hM”%L_@[DﬁwnJ
ir»gi| = @[7;12i77;192] - @[Z;‘k,g;,i}

Note that g, g,; € R(Vo(3D)) act trivially on ®;(x), thus we actually have:

ODzF 1
f[zi,gi]:ﬁ:f[zj,l]

Since we have [z;, g;| ~ [z, 1] ~ [z, g], we have [z}, 1] ~ [25, 1] and we have f(z]) = f(23).

Conclusion about well-definedness.The last few lemmas imply that it is well-defined
if we take:

flz.9l = fla 9] = %,

for any representative [z, g1] ~ [z, g] such that g; € R(Ay).

Shimura reciprocity law.

We will consider the CM point w = %53 for K and the value of f(z) at z = w. Since w
is a CM point and f € F, from CM theory we have that f(w) € K% is an algebraic integer.
Moreover, we can apply Shimura reciprocity law to f(w).

In the following we follow the notation of Hida [9].

We have the torus embedding:

Tw :Tw — GL2

A B
A+ Bw — (—B A—B)

Note that w is the unique element of the upper-half plane H that is fixed by the action
of r,(7,Q). We check this action below:

A B B
B A-B)* ™%

iff Az+ B = —Bz2*>+ (A — B)z, or equivalently B(2? + 2+ 1) = 0 for all B € Q i.e.
z=w,—1—w, of which w € H.

Using the Artin map A} — Gal(K%/K),s — o,, we apply Shimura reciprocity law to
f(w):

f[w? 1]05_1 = f[Z, rw(S)L
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f(w) is in the ring class field H;p.

We claim that f(w) € Hsp. For this to be true, we need to check that f(w) is invariant
under the action of U(3D).

Lemma 10.6. f(w) € H3p

Proof: In order for f(w) € Hsp, we need to show that it is invariant under
Gal(K“b/ng).

Using Shimura reciprocity law, we need to show:

f[w7 1] = f[wv TW(S)],

for all s € U(3D). Take as representatives: s = (A, + Byw), € U(3D). This implies that
A, + Byw € (Z,w])*, 3D|B, for p|3D and A3 =1 mod 3.
Using the definition of f(z) above, invariance under U(3D) is equivalent to:

<% 425),00 5)] ol 5)

A B O w, 1]
““\_B A—-B ,

©

S)

It is enough to show:

(% a%5), 6 )] =0l b))

©

Note that the statement © |w, ( 4 B ) = O [w, 1] is a particular case.
P

B A-B
We rewrite:
o A B 10| _g 1 0 A BD
“\-B a-B) \o p)| =" |*\o D)\-B/D A-B) |
Note that showing that (5 PP ) has trivial action in the Weil tati
ote at snowing a —B/D A—B , as trivial action in € €1l representation

is enough to give us our result.

A BD
—B/D A-B
A BD
~B/D A-B

We analyze this action. For p{ D, we trivially have < ) € GLy(Z,). For
p

p|D, since 3D|B, we have B/D € Z,, thus < ) € GLy(Z,) as well.
P
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Denote m, = A2 4+ B2 — A, B, € Z. Note that A+ Bw?® € (Z,[w])*. We have:

. (_5‘ 5 AB_DB) hy <I>p(x):r<_é4 5 AB_DL/;mm) &,((A+ Bw?)z)
/ ) /D (A-B)jm)

(—g/D <AB_Dé§7m)p ()

= ®p(z)

A BD/m

Since (A + Bw) is a unit in Z,[w], we have <_B/D (A—B)/m

) € SLy(Z,), thus acts
p

trivially on ®,. This finishes the proof.
One more case: p—3 Here we have to be careful about the Fourier action. Should still
work since 3|B:

g ((—;/D AB—DB)3 ’ hp) plw) = <—é4/D (AB_Dlé?}m)g ®,((A+ Bw?)z)

(D6 (L))o

Works because 3| B (needs a careful calculation of ®5(x)).
Recall that ®3(x) = charg,. We compute:

r <é BD/l(Am)) @3(1.) — eQm’Fra03(BD/(Am)x2)<D3(x)dx — @3(.17)

r (61 Ao_l) @3() = (4, =3)s| Als®a(Az) = @s(2)

. ( 0 ) / 2200 6) har, (@' +b'V/—3)dd/db = charg, ) (a+3bv/—3)

-1 0
Qs[w]

r <(1) B/(f)A)) charz,y(a + b/v=3) = s (THIDD) chary, (a + 3bv/=3) =

e2miFracs (B0 6O BX) chary 1 (a + 3bv/—3) = charg, . (a + 3bv/—3)

r <_01 (1)) charz, . (a + 3bv/—3) = charz,(—a — bv/=3)

. (‘01 _01) By(—1) = ()
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Galois conjugates of f(w).

We will look now at the Galois action of Gal(Hsp/K) and compute the Galois conjugates of
f(w). This is done in the following Lemma:

Proposition 10.1. For A = [a, %‘7‘3] a primitive ideal in 1(3D), we have:
) (Db-&—\/—i?))
2a
f)™ = —r—=x"
o (*47)

Proof: Under the isomorphism Cl(O3p) = K*\Ag ;/U(3D), we take as a representative
for A the idele s = (A + Bw),sp, where A+ Bw € O is a generator of A with A, B € Z.

Using Shimura reciprocity law, we have:
@w(A B>_1 <1 0)]
"\-B A-B 0 D
flw, 17 = flora(s™)] = e
o A B
“ (—B A- B)

By multiplying by <_AB A 1_3 B) on both sides, we get:

@w(A B) <10) w<10)(A BD)
'\-B A-B 8D 0 D "\0 D)\-B/D A-B o180

flw 17 = =
olw (A B > y <A B )
'\-B A-B) ., '\-B A-B) .,

We will compute the numerator. The denominator can be computed similarly for D = 1.
We compute using the Weil representation for p 1 3D:

p|3D

©

S)

e p{3Da:

' <(_;/D ) h) 0 =r (42l 0) B4 BT
~ 0,0

e pla:
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_ A BD/a 2\—1 -1
= (—B/D (A B)/a>p<1>p((A+Bw )" x)al,
: A BD
We rewrite (—B/D A B) as a product:
(6722 (75 e (5B (3 P/P0) (24)
We denote o = A + Bw? compute:
-1 0 1 —1 -1
- Bi) =lalir{ ) PelaTz) = Bplaz)laal,
- hla) = (o PP Ri) = et o), o) -

\a’loz\p@p(ax).

- R = () o) Ao =l gy la)

. a/(A— B) 0
— F4(I') :T( /( 0 (A—B)/(l) F3<l’)
= lal, (a/(A = B), =3),la/(A = B)|,®,(ac”"z) = &p(az)
— Fs(x):=r (é BD/(114 B B)) D, (ax).

Note that ®,(ax) = |al,r ((1) ) ®,(z). Then we can write:

0
1/a
0 [, (2 4% 0 (3] = © [ (58) (37742) . (3.0),..]

Lemma 10.7. For pla, we have:

, (1 BD/(A~ B)) B,(az) = r <1 —Db+ 1)/2> @, (ax)

0 1 0 1
Proof: For this to be true it is enough to show that Dﬁ = —DHTI mod a. Since
(a, D) = 1, this is equivalent to: % = —% mod a. Moreover, since (a,2) = 1, it is
equivalent to:
A+ B

=—-b moda

A-B
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Recall that we have b> = —3 mod 4a. Moreover, A2+ B? — AB = qa, thus A2+ B? = AB
mod a. This is equivalent to 4A? +4B* = 4AB mod a, or (A+ B)?> = —3(A— B)? mod a,

A-B
A+ B
Thus we must have A+B = +b mod a. Write (X + YvV—-3) = [a, %’73] Then

A+ B\?
or ( i ) = —3 mod a. Note that we have used v,(A — B) = 0.

we must have: X 4+ Y+/—-3 = ma + n%j?’, thus X = ma + nb/2 = nb/2 mod a and
Y = n/2.Moreover, we must have (n,a) = 1, since A is a primitive ideal. Thus X/Y = b
mod a. Also note that X = A+ B/2,Y = B/2 and:

A+B_X+3Y  X/Y+3 _b+3_
= = = = — m a.
A-B X-Y X/Y -1 b-1

Thus we got in our proposition:

(G aZs),,, 6 )]G ) 6 )60,

We multiply both the infinite and the finite part by (1 2) (1 D+ 1)/2) (D 0) €

0 0 1 0 1
GL2(Q). The action on w is:

(6 et

() =0

_ _ b+ -3
© |:Cd, (—AB A§B)p|i1’>D (1 B)] = |a|f1@ [DT’ ((1) a91 )p)(a ((1) D(b-iil)/2)pfa:|

Note that for p t a, we have: (é a(_)l) , (é D(b—; 1)/2) € SLy(Z,) and act trivially
p p

on ®,(z). Thus we get:

A B\ (1 o\| | g b+V=3
“”(—B A—B) (0 D)]"CL'J“@{D 2a ’1]

p[3D

S)

Applying this also to D = 1, we get:

A B\
““\_B A-B

p|3D

) H— V_3’ 1}

1,1
_|a|f@{ 2a

Taking the ratio of the two theta functions gives us the result.
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Some lemmas needed.

We have used above several facts:

Lemma 10.8. Let F(z) = ®,(ax). Then
F(z) = |a],'®,(a"x)
Proof: We have by definition:

F(x) = ({z, ) ®p(ay)dy
Qp[w]

We make the change of variable y' := ay and get:

Fla)=lof' [ o({e.a ),y = o], / b((a e,y ))dy
] Zp|w]

Qplw

Note that the integral is 0 iff ¢¥((a'x,y’)) is non-trivial on Z,[w]. Thus it is nonzero
exactly for a™'x € Z,[w|, in which case the integral equals al; L

Lemma 10.9. If g,(o) = a and vy(a) < v,(m), then:
e 2 Frac”(mQ(‘”))CI)p(ozx) = d,(ax)
Proof: We have ®,(ax) # 0 iff v,(ax) > 0. Thus when ®,(ax) # 0, we have v,(ax) > 0,
then v,(g,(ax)) > 0. Then we have:
Frac,(mgq(z)) = Frac, <%qp(a:v)> =0

Thus we have either both sides equal to 0, or e 2™ Fracs(ma(z)) — 1 and both sides are

equal to ®,(ax).

Lemma 10.10. For A= (X +Y+v/-3) = [a, %j’] a primitive ideal, we have X/Y = b

mod a.

Proof: We must have: X +Y+/—-3 = ma—i—n%j’, thus X = ma+nb/2 =nb/2 mod a
and Y = n/2. Moreover, we have (n,a) = 1, since A is a primitive ideal. Thus X/Y =1b
mod a.

Lemma 10.11. For g, € [[SL2(Z,), we have:
r(gp) ®p(2) = ()
Lemma 10.12. For g; € R(Vy(3D)), we have:

r(gp)@y(z) = Py(x)
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