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Abstract

Integers that can be written as the sum of two rational cubes

by

Eugenia Cristina Rosu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Assistant Professor Xinyi Yuan, Chair

We are interested in finding for which positive integers D we have rational solutions for
the equation x3 + y3 = D. The aim of this thesis is to compute the value of the L-function
L(ED, 1), for ED : x3 + y3 = D. For the case of p prime p ≡ 1 mod 9, two formulas have
been computed by Rodriguez-Villegas and Zagier in [17]. We have computed several formulas
that relate L(ED, 1) to the trace of a modular function at a CM point. This offers a criterion
for when the integer D is the sum of two rational cubes. Furthermore, when L(ED, 1) is
nonzero we get a formula for the number of elements in the Tate-Shafarevich group of ED.
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Chapter 1

Introduction

In this thesis we are interested in finding which positive integers D can be written as the
sum of two rational cubes:

x3 + y3 = D, x, y ∈ Q (1.1)

Despite the simplicity of the problem, an elementary approach to solving the Diophantine
equation fails. However, we can restate the problem in the language of elliptic curves. After
making the equation homogeneous, we get the equation x3 + y3 = Dz3 that has a rational
point at ∞ = [1 : −1 : 0]. Moreover, after a change of coordinates X = 12D

z

x+ y
,

Y = 36D
x− y
x+ y

the equation becomes:

ED : Y 2 = X3 − 432D2,

which defines an elliptic curve over Q written in its Weierstrass affine form.
Thus the problem reduces to finding if ED(Q), the set of rational points of the elliptic

curve ED, is non-trivial:

D = x3 + y3 has solutions in Q⇐⇒ ED(Q) 6= {O}

By the Mordell-Weil Theorem, the set of rational points ED(Q) is a finitely generated
abelian group. For simplicity, we will assume that D is cube free and D 6= 1, 2 (trivial cases)
throughout the paper. It is known that ED(Q) has trivial torsion for D 6= 1, 2 (see [20]).
Thus, (1.1) has a solution iff ED(Q) has positive rank. From the Birch and Swynnerton-
Dyer(BSD) conjecture, this is equivalent conjecturally to the vanishing of L(ED, 1).

Without assuming BSD, from the work of Coates-Wiles [2], or more generally Gross-
Zagier [7] and Kolyvagin [12], when L(ED, 1) 6= 0, we have rankED(Q) = 0, thus no rational
solutions in (1.1).

For the case of prime numbers, Sylvester conjectured that the answer is affirmative in
the case of D a prime number ≡ 4, 7, 8 mod 9. In the cases of D prime ≡ 2, 3, 5 mod 9 we
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have L(ED, 1) 6= 0 and D is not the sum of two cubes. This follows either from a 3-descent
argument (given in the 19th century by Sylvester, Lucas and Pepin) or from the theorem of
Coates-Wiles [2].

We define an invariant SD of ED as follows:

SD =
L(ED, 1)

ΩD,∞RED

,

where the denominator contains easily computable arithmetic invariants:

• ΩD,∞ =

√
3

18π 3
√
D

Γ

(
1

3

)3

is the real period,

• RED is the regulator of the elliptic curve ED.

The definition is made such that in the case of L(ED, 1) 6= 0 we expect to get from the
full BSD conjecture:

SD = #X(ED)
∏
p|6D

cp, (1.2)

where #X is the order of the Tate-Shafarevich group and cp are the the Tamagawa numbers
corresponding to the elliptic curve ED.

Note that from the work of Rubin [18], when L(ED, 1) 6= 0 we have #X(ED) is finite.
Furthermore, using the Cassels-Tate pairing, Cassels proved in [1] that when X is finite,
then its order #X is a square. Thus we expect SD to be an integer square. Current work
in Iwasawa theory shows that for semistable elliptic curves at the good primes p we have
ordp(#X[p∞]) = ordp(SD), where X[p∞] is the p∞-torsion part of X (see [5]). However,
this cannot be applied at the place 3 in our case.

The goal of the current thesis is to compute several formulas for SD. By computing the
value of SD, we can determine when we have solutions in (1.1) and, assuming the full BSD
conjecture, we can find in certain cases the order of X:

(i) SD 6= 0 =⇒ no solutions in (1.1)

(ii) SD 6= 0
BSD
==⇒ SD = #X

(iii) SD = 0
BSD⇐=⇒ we have solutions in (1.1)

In [17], Rodriguez-Villegas and Zagier computed formulas for L(Ep, 1) in the case of
primes p ≡ 1 mod 9. In this case it is predicted by BSD that the rank of Ep(Q) is either
0 or 2. They compute two formulas for Sp. In the current paper, we are extending their
results to all integers D.
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Before stating the results, we will make a few remarks on the nature of the problem.
First, note that each of the elliptic curves ED is a cubic twist of E1. This means that over
Q the two elliptic curves are not isomorphic; however, they are isomorphic over Q[ 3

√
D] as

can be easily shown by rewriting ED : 1 =

(
x

3
√
D

)3

+

(
y

3
√
D

)3

.

In the case of quadratic twists of elliptic curves, an important tool in computing the
values of the L-functions is the work of Waldspurger [23]. For example, this is used to obtain
Tunnell’s Theorem for congruent numbers in [22]. However, the cubic twist case proves to
be significantly more difficult.

Another important observation is that ED is an elliptic curve with complex multiplication
by OK = Z[ω], the ring of integers of the number field K = Q[

√
−3] and ω = −1+

√
−3

2
. Then

from CM theory there is a Hecke character χED : K× \ A×K → C× such that:

L(ED, s) = L(s, χED).

In order to compute the value of SD and thus the value of the L-function we resort to
automorphic methods to compute the value of L(s, χED) and get the following result:

Theorem 1.1. For all integers D, SD is an integer and we have the formula:

SD = TrH3D/K

(
D1/3 ΘK(Dω)

ΘK(ω)

)
, (1.3)

where:

• H3D is the ring class field associated to the order O3D = Z + 3DOK,

• ω = −1+
√
−3

2
is a third root of unity, and

• ΘK(z) =
∑
a,b∈Z

e2πiz(a2+b2−ab) is the theta function of weight one associated to the number

field K = Q[
√
−3].

Note that using the formula (1.3) we can show that an integer D cannot be written as
the sum of two cubes by computationally checking whether L(ED, 1) 6= 0.

Furthermore, assuming BSD, we have SD = #X, thus we can compute the expected
order of X explicitly. The formula (1.3) above proves that the term SD is, as expected, an
integer.

To compute the value of L(s, χED), we look at the Hecke character adelically and using
Tate’s thesis, we integrate Tate’s zeta function Z(s, χED ,ΦK), for ΦK a Schwartz-Bruhat
function for S(AK). The proof is based on the following surprising fact: after integrating
the Schwartz-Bruhat functions ΦK , we recover a Siegel-Eisenstein series for Φ◦Q:∑

k∈K×

k

|k|2sC
ΦK(kαf ) = E(gα, 2s− 2,Φ◦Q)
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Furthermore, for s = 1 the Eisenstein series E(gα, 0,Φ
◦
Q) is equal to the value of the theta

function ΘK(gα) by the Siegel-Weil theorem [15] (up to a constant). Finally, the L-function
at 1 is expressed as a linear combination of theta functions at CM-points. We further show
using Shimura’s reciprocity law that they are all Galois conjugates over K.

A different result is obtained by making a different choice for the Schwartz-Bruhat func-
tions ΦK above. This is presented in the following theorem in Section 8:

Theorem 1.2. For all integers D, SD is an integer and we have the formula:

SD = cD TrH◦[
√
D]/K[

√
D]

(
D−1/6

θ2
1/2(3Dω)

ΘK(ω)

)
, (1.4)

where:

• θ1/2(z) =
∑
n∈Z

e2πin2z(−1)n is a theta function of weight 1/2

• H◦ is the ray class field for the modulus 12D

• cD = D1/2
∏
p|D

(1− (−1)(p−1)/2p−1)

The hope is to extend this result to show that SD is an integer square up to Tamagawa
numbers. In the following theorem we compute SD as the absolute value of an element of
K:

Theorem 1.3. In the case of D =
∏

pi≡1 mod 3

peii , SD is an integer and we have:

SD =

∣∣∣∣TrHO/H0

θ1(z0)

θ0(z0)
D−1/3

∣∣∣∣2 (1.5)

where:

• θ1(z) =
∑
n∈Z

(−1)neπi(n+1/D−1/6)2z a 1/2-weight modular form

• z0 = −b+
√
−3

2
a CM-point, with b2 ≡ −3 mod 4D2,

• HO is the ray class field of modulus 3D and H0 is an intermediate field K ⊂ H0 ⊂ HO
that is the fixed field of a certain Galois group G0.

The idea of the proof of Theorem 1.3 is based on factoring each weight one theta function
ΘK(z) into a product of theta functions of weight 1/2. The method we are using is a
factorization lemma of Rodriguez-Villegas and Zagier from [16] applied to the formula in
Theorem 1.1 . This gives us the absolute value of a linear combination of theta functions
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evaluated at CM points. Finally, using Shimura reciprocity law„ we show that all the factors
are Galois conjugates to each other.

Using similar methods, we obtain a more general formula for all integers D prime to 6.

Theorem 1.4. Using the same notation as in Theorem 1.3, we have for all integers D prime
to 6:

SD =

√
D

# Cl(O3D)

D−1∑
r=0

∣∣∣∣TrHO/H1

θr(Dz0)

θ0(z0)
D−1/3

∣∣∣∣2 , (1.6)

where:

• θr(z) =
∑
n∈Z

(−1)neπi(n+r/D−1/6)2z a 1/2-weight modular form

• z0 = −b+
√
−3

2
a CM-point

• HO the ray class field of modulus 3D and H1 is a subfield of HO

Note that most of the proofs are presented for D a product of primes. However, the
proofs easily go through for general D, for (D, 6) = 1.

Also note that in Appendix A we present some properties of the theta function ΘK and in
Appendix B we work with Shimura reciprocity in the setting of Shimura curves to provide a
different proof for finding the Galois conjugates of the ratio of theta functions from Theorem
1.1.

Further results. The following result is announced without being included in the thesis.
The current approach inspired the answer to a different related problem. More precisely,

for a family of cubic twists of characters ϕ′ = ϕε∗ by χD, we became interested in computing
the special value of the L-function L(1, χDϕ

′). Here ε∗ is a certain Hecke character of A×K .
This family of characters does not correspond to a family of characters of elliptic curves.
However, the special values of the L-functions suggest arithmetic properties. We showed the
following theorem:

Theorem 1.5.

L(1, χDϕ
′) = cD

∣∣∣∣TrH3D/K
θ∗(Dω)

θ∗(ω)

∣∣∣∣2 ,
where we take θ∗ to be a theta function of half-integral weight and cD is a constant

depending on D.

The idea is based on a double integration of the Eisenstein series E(s, g, φ1⊗φ2) over A×K
viewed as a subset of GL2(AQ). The computation is inspired by the Rallis inner product.
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Chapter 2

Background.

Let K = Q[
√
−3]. Note that K is a PID and has the ring of integers OK = Z[ω], where

ω = −1+
√
−3

2
is a fixed root of unity. We will denote Kv the localization of K at the place v.

We will denote by Kp :=
∏

v|pKv
∼= Qp[

√
−3].

The L-function

Our goal is to compute several formulas for the special value of the L-function L(ED, 1) of
the elliptic curve ED : x3+y3 = Dz3. The elliptic curve ED has complex multiplication (CM)
by OK . Then L(ED, s) is the L-function of a Hecke character that is computed explicitly in
Ireland and Rosen [10]. We have:

L(ED, s) = L(s, χDϕ),

where χD and ϕ are classical Hecke characters such that ϕχD is the Hecke character corre-
sponding to the elliptic curve ED. The Hecke character ϕ is the Hecke character correspond-
ing to E1 and χD is the Hecke character corresponding to the cubic twist. More precisely,
the Hecke characters are defined to be:

• ϕ : I(3)→ K× is defined on the ideals prime to 3 by ϕ(A) = α, where α is the unique
generator of the ideal A such that α ≡ 1 mod 3.

• χD : I(3D)→ {1, ω, ω2} is the cubic character defined below in Section 2; it is defined
on the space I(3D) of all fractional ideals of OK prime to 3D. Moreover, it is well-
defined over Cl(O3D) the ring class group corresponding to the order O3D = Z+3DOK .

The L-function can be expanded:

L(ED, s) =
∑

A∈I(3D)

χD(A)ϕ(A)

(NmA)s
=

∑
α∈OK ,α≡1(mod 3)

χD(α)α

Nαs
.
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Ring class fields.

Recall that an order O of K is a subring of OK that is a finitely generated Z-module and such
that O⊗ZQ = K. As K is a quadratic number field, each order is of the form O = Z+fOK
and we call f = [OK : O] the conductor of O. We can also write O using a Z-basis in the
form O = [1, fω]Z.

We define the class group Cl(O) of the order O of conductor f is defined to be:

Cl(O) := IO(f)/PO(f),

where IO(f) is the set of fractional O-ideals prime to the conductor f , and PO(f) the
subgroup of IO(f) of principal fractional O-ideals.

We define the ring class field to be the abelian extension HO of K corresponding to the
Galois group Cl(O) from class field theory, meaning:

Gal(HO/K) ∼= Cl(O).

We denote by I(N) the group of fractional ideals in K prime to N . We denote the
subgroup PZ,N = {(α): α ∈ K such that α ≡ a mod N for some integer a such that
gcd(a,N) = 1}. Furthermore, let ON := Z+NOK be the order of K of conductor N . Then
we can define the ring class field of the order ON to be

Cl(ON) := I(N)/PZ,N

Note that K has class number one and thus by the Strong Approximation theorem we
have:

A×K = K×C×
∏
v-∞

O×Kv .

We would like to describe Cl(ON) adelically. We do this below:

Lemma 2.1. For N a positive integer, we can think of the ring class group adelically as:

Cl(ON) ∼= U(N) \ A×K,f/K
×,

where U(N) =
∏
p

(Z +NZp[ω])×.

Proof. From the Strong approximation theorem, as K is a PID, we have:

A×K ∼= K×C×
∏
v-∞

O×Kv .

Taking the quotient by K×C×, we get:

A×K,f/K
× ∼=

∏
v-∞

O×Kv/

(
K× ∩

∏
v

O×Kv

)
∼=
∏
v-∞

O×Kv/ 〈−ω〉 ,
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where 〈−ω〉 is the group of sixth roots of unity.
Furthermore, note that U(N) ∼=

∏
v-N
O×Kv

∏
p|N

(Z +NZp[ω])×. Moreover note that

〈−ω〉U(N) = U(N).

Thus we have:

A×K,f/K
×U(N) ∼=

∏
v-∞

O×Kv/ 〈−ω〉U(N) ∼=
∏
v|N

O×Kv/
∏
p|N

(Z +NZp[ω])× ∼=

∼=
∏
p|N

∏
v|p

O×Kv/(Z +NZp[ω])×

Finally, we need to show an isomorphism between

Cl(ON) = I(N)/PZ(N)

and ∏
v|N

O×Kv/
∏
p|N

(Z +NZp[ω])×.

We construct the map:

I(N)→
∏
v|N

O×Kv →
∏
v|p

O×Kv/
∏
p|N

(Z +NZp[ω])×

Let (k0) ∈ I(N) be an ideal. Then we can map k0 → (k0)v|N . After taking the projection
map, we want to look at the kernel of the composition I(N)→

∏
v|pO

×
Kv
/
∏
p|N

(Z+NZp[ω])×.

This consists of ideals (k0) ∈ I(N) such that k0 ≡ ap mod NZp[ω], where ap ∈ Z and
(ap, p) = 1.

By the Chinese remainder theorem, we can find a ∈ Z such that a ≡ ap mod N for all
p|N . Then we have k0 ≡ a mod NZp[ω] for all a ∈ Z. Thus (k0) ∈ PZ(N) and PZ(N) is the
kernel of the above map. Thus we get:

I(N)/PZ(N) ∼=
∏
v|p

O×Kv/
∏
p|N

(Z +NZp[ω])×,

which proves our claim.

Another easy result that we will use is the following straight forward application of the
Chinese remainder theorem. This map will be important in our proof:
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Lemma 2.2. For any (l1,v)v|N ∈
∏
v|N
O×Kv , we can find k1 ∈ OK such that for all v|N we

have:

l1,v ≡ k1 mod NOKv ,

Proof. For any v|N we can find a1,v ∈ OK such that l1,v ≡ a1,v mod NOKv . We will pick
for N =

∏
v|N pevv , where pv is the prime corresponding to the place v:

k1 =
∑
v|N

a1,vmv
N

pevv
,

where mv ∈ OK , mv
N
pevv
≡ 1 mod pevv . We can find such an inverse since OK is a PID,

thus OK/NOK ∼=
∏

v|N OK/pevv OK .

Characterization of ideals in ring class fields

Recall that a primitive ideal is an ideal not divisible by any integral ideal. It is easy to prove:

Lemma 2.3. Any primitive ideal of OK can be be written in the form A = [a, −b+
√
−3

2
] as

a Z-module, where b is an integer (determined modulo 2a) such that b2 ≡ −3 mod 4a and
NmA = a. This implies that for A = (α), we have ‖α‖ = a.

Conversely, given an integer satisfying the above congruence and A defined as above, we
get that A is an ideal in OK of norm a.

The cubic character

In the following we will define the cubic character χD and check that it is well defined on
the class group Cl(O3D). Let ω = −1+

√
−3

2
be a fixed cube root of unity. Then we can define

the cubic residue character following Ireland and Rosen [10].

Definition 2.1. For α ∈ Z[ω] such that α is prime to 3, we define a cubic residue character
χα : I(3α) → {1, ω, ω2} on the fractional ideals of K prime to 3α. For every prime ideal p
of Z[ω], the character is defined to be:

χα(p) = ωj,

for j ∈ {0, 1, 2} such that ωj is the unique third root of unity for which:

α(Nm p−1)/3 ≡ ωj mod p, for Nm p 6= 3.

It is further defined multiplicatively on the fractional ideals of I(3α).
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Notation: We will also denote χD(·) =:
(
D
·

)
3
.

First let us check that this definition makes sense. Since K is a PID, any prime ideal p
has a generator of the form π = a+ bω ∈ Zp[ω]. Then the norm Np = a2 − ab+ b2 which is
congruent to 0, 1 mod 3. Then, if p is prime to 3, we must have Np ≡ 1 mod 3, implying
that 3 divides Np− 1.

Furthermore, the group (Z[ω]/pZ[ω])× has Nm p− 1 elements, thus we have αNm p−1 ≡ 1
mod p. Then since Nm p− 1 is divisible by 3, we can factor out:

p|(α(Nm p−1)/3 − 1)(α(Nm p−1)/3 − ω)(α(Nm p−1)/3 − ω2)

Finally since K = Q[
√
−3] is an UFD, p divides exactly one of these terms, say

(α(Nm p−1)/3 − ωi).
Thus we can take χα(p) = ωi and it is well-defined.

Following Ireland and Rosen, it is natural to look at the primary elements of K:

Definition 2.2. For a prime ideal p of K we call π primary if π generates p a prime ideal
and π ≡ 2 mod 3.

Lemma 2.4. For any ideal A prime to 3, we can find a generator α ∈ Z[ω] such that α ≡ 2
mod 3.

Proof. Since K is a PID, we can find a generator α0 = a+bω be a generator of A. Then note
that ±α0,±α0ω,±α0ω

2 also generate the ideal A and exactly one of them is ≡ 2 mod 3.

Remark 2.1. Note that from the definition of χπ1 we have χπ1(π2) = χ−π1(π2), as

π
(Nmπ2−1)/3
1 = (−π1)(Nmπ2−1)/3

when Nm π2 is odd and π
(Nm 2−1)/3
1 ≡ (−π1)(Nm 2−1)/3 ≡ 1 mod 2 when π2 = 2. Moreover

χπ1(π2) = χπ1(−π2), as χπ1(−1) = 1. Then we actually have for any choices of ±:

χ±π1(±π2) = χ±π2(±π1)

Theorem 2.1. (Cubic reciprocity law). For π1, π2 ≡ 2 mod 3 primary generators of
primes p1, p2, Nπ1 6= Nπ2 and Nπ1, Nπ2 6= 3, then:(

π1

π2

)
3

=

(
π2

π1

)
3

Corollary 2.1. For πi, π′i ≡ 2 mod 3, we have

χ±π1...πn(±π′1 . . . π′n) = χ±π′1...π′n(±π1 . . . πn)
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Proof. We will first show that χπ1...πn(π′i) = χπi(π1 . . . πn). By definition, we have:

χπ1...πn(π′i) ≡ (π1 . . . πn)(Nmπ′i−1)/3 mod π′i

Thus, we have:

χπ1...πn(
m∏
i=1

π′i) =
m∏
i=1

χπ1...πn(π′i) =
m∏
i=1

n∏
j=1

χπj(π
′
i)

Using the cubic reciprocity, we have χπj(π′i) = χπ′i(πj), thus we get
∏m

i=1

∏n
j=1 χπj(π

′
i) =∏m

i=1

∏n
j=1 χπ′i(πj), which furthermore implies:

χπ1...πn(
m∏
i=1

π′i) = χπ′1...π′m(
n∏
j=1

πi).

Note that we can always write the elements of Z[ω] that are congruent to ±1 mod 3 as
a product of primary elements up to sign. Using the above corollary for α and D, we get:

Corollary 2.2. If α ≡ ±1 mod 3 and D an integer prime to 3, then we have:

χD(α) = χα(D)

Proof. Since α,D ≡ ±1 mod 3, we can write each of them in the form α = ±
∏n

i=1 πi and
D = ±

∏m
j=1 π

′
j.

Then using the previous Corollary and Remark 2.1, we have

χ
±

n∏
i=1

πi
(±

m∏
j=1

πj) = χ
±

m∏
j=1

πj
(±

n∏
i=1

πi).

Lemma 2.5. Let α be prime to 3 and p a prime ideal prime to 3. Then the cubic residue
can also be rewritten as:

χα(p) ≡
(
α

α

)(Nmπ−1)/3

mod π

Proof. We have by definition χα(p) ≡ α(Nmπ−1)/3 ≡ ωi mod p. Taking the complex conju-
gate we have α(Nmπ−1)/3 ≡ ω2i mod p. Then by taking the ratio we get:(

α

α

)(Nmπ−1)/3

≡ ω2i

ωi
mod p
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Thus we have χα(p) ≡ α(Nmπ−1)/3 ≡ ωi ≡
(
α

α

)(Nmπ−1)/3

mod p which finishes the proof

of the lemma.

Corollary 2.3. Let D =
m∏
i=1

pi. For α ∈ PZ,3D, we have χD(α) = 1. Thus χD is well defined

on Cl(O3D).

Proof. Recall from the previous Lemma that if α ≡ ±1 mod 3, then we have:

χα(p) ≡
(
α

α

)(Nm p−1)/3

mod p

Let p|D. Since α ∈ PZ,3D, we have α ≡ a mod 3D for some a ∈ Z and (a, 3D) = 1.
Thus α ≡ a mod p, which also α ≡ a mod p, which implies:

χα(p) ≡
(
α

α

)(Nm p−1)/3

≡
(
a

a

)(Nm p−1)/3

≡ 1 mod p

Thus we get χα(p) = 1 for all p|D. Thus we have χα(D) = 1. Moreover, using Corollary

2.2, we have χD(α) =
m∏
i=1

χpi(α) =
m∏
i=1

χα(pi) = 1.

Remark 2.2. For any fractional ideal A of K, when we write χD(A) we will mean:

χD(A) := χD(α),

where α is the unique generator of A such that α ≡ 1 mod 3.

Relating χD to the Galois conjugates of D1/3.

There is another way to look at the cubic character using the Galois conjugates of D1/3. We
have the following lemma:

Lemma 2.6. Let D be an integer prime to 3. Then for a prime ideal p of K prime to 3D,
we have:

D1/3χD(p) = (D1/3)σp ,

where σp ∈ Gal(C/K) is the Galois action corresponding to the ideal p in the Artin corre-
spondence.

Proof. It is enough to prove the claim for σi ∈ Gal(F/K), where L = K[D1/3, D1/3ω,D1/3ω2].
Let σp =

(
L/K
p

)
the Frobenius element corresponds to p the prime ideal of OK . Then using

the definition of the Frobenius element for D1/3 ∈ L, we get:

(D1/3)σp ≡ (D1/3)Nm p mod pOL



CHAPTER 2. BACKGROUND. 13

Furthermore, note that (D1/3)Nm p = D1/3D(Nm p−1)/3 ≡ D1/3χD(p) mod pOL.Since the
Galois conjugates of D1/3 are the roots of x3 −D, the Galois conjugates of D1/3 must be:

(D1/3)σp ∈ {D1/3, D1/3ω,D1/3ω2}
and from the congruences above we get:

(D1/3)σp = D1/3χD(p)

Corollary 2.4. Let D be an integer prime to 3 and A an ideal of K prime to 3D. Moreover,
let σA ∈ Gal(Kab/K) be the Galois action corresponding to the ideal A through the Artin
map. Then for the cubic character χD, we have:

(D1/3)σA = D1/3χD(A). (2.1)

Proof. Let A =
∏
j

p
fj
j the prime decomposition of A in K. Note that χD(pi) ∈ K, thus it is

preserved by the Galois action. Applying the above Lemma we get:

((D1/3)σpi )σpj = (D1/3χD(pi))
σpi = D1/3χD(pj)χD(pj)

Using this step repeatedly, we get (D1/3)σA = D1/3χD(A) = D1/3χD(A).

Remark 2.3. Note that for the complex conjugate character χD we have a similar result:

(D2/3)σA = D2/3χD(A). (2.2)

Hecke characters

There are two equivalent ways of defining a Hecke character: classically and adelically. We
define the classical Hecke character over K to be χ̃ : I(f) → C× a character from the
set of fractional ideals prime to f , where f is a nonzero ideal of OK . We further say that χ̃
has infinity type χ̃∞ if it is characterized by the condition that on the set of principal ideals
P (f) prime to f it satisfies the condition:

χ̃((α)) = ε̃(α)χ̃−1
∞ (α),

where:

• ε̃ : (OK/fOK)× → T is called the (OK/fOK)×-type character i.e. ε̃ is a character
taking values in a finite group T.

• χ̃∞ is an infinity type continuous character i.e. χ̃∞ : C× → C× is a continuous
character.
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We define the idelic Hecke character to be a continuous character χ : A×/K× → C×.
There is a unique correspondence between the idelic and the classical Hecke characters.

The correspondence can be explicitly constructed in the following way:

• χ̃(O×v $v) := χ(pv), v - f

• χ̃∞ is determined by χ∞

• χ̃v with v|f is determined by Weak Approximation Theorem.

Converting the characters.

We want to compute a formula for L(s, χ), where χ : A×K/K× → C× is the Hecke character
defined by χ = χ3Dϕ. Here χ3Dϕ are the adelic correspondent Hecke characters of the
classical Hecke characters:

1. χ3D : I(3D)→ {1, ω, ω2} is the cubic character.

2. ϕ : I(3)→ C× is the Hecke character defined by χ((α)) = α for α ≡ 1 mod 3.

By abuse of notation, I will use ϕ, χ3D both for the classical and the adelic Hecke char-
acters. This should be clear from the context. We can rewrite the two characters adelically:

1. ϕ : A×K → C× such that:
ϕv(p) = −p, ϕv(O×Kv) = 1, for v = p, p ≡ 2 mod 3,

ϕv($v) = $v, ϕv(O×Kv) = 1, for v|p, p ≡ 1 mod 3,

ϕ∞(x∞) = x−1
∞ , v =∞

For places v|p with p ≡ 1 mod 3, $v is a uniformizer of OKv such that $v ≡ 1 mod 3.
Also, at the place v =

√
−3, ϕv is determined from the Weak approximation theorem.

2. Note that χ3D is trivial on PZ,3D, thus χ3D is a character on Cl(O3D). We will define
the character by making it trivial on C×, U(3D) and K×. Then we can define using
Lemma 2.2:

χ3D(l) = χ3D(l1) = χ3D((k1)).

More precisely, this will be:


χ3D,v($v) = χ3D((ωv)), χ3D,v(O×Kv) = 1, if v - 3D

χ3D,∞(x∞) = 1, v =∞
χ3D,v($v) can be determined from the Weak approximation theorem, if v|3D
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We can generally compute χf (lf ) in the following way:

Lemma 2.7. If χ = χ3Dϕ, let lf = kl1, k ∈ K×, l1 ∈
∏

vO
×
Kv

. Note that this decomposition
is unique up to a unit of O×K and pick k such that l1,3 ≡ 1 mod 3. Moreover take k1 ∈ K×
such that l1 ≡ k1 mod 3DOKv . Then:

χf (lf ) = kχ̃3D((k1))

Proof. We start by writing:

χf (lf ) = χf (k)χf (l1) = χ∞(k)−1χv|3D(l1,v)

Moreover, from the Chinese remainder theorem, we can find k1 ∈ K× such that k1 ≡ l1,v
mod 3DOKv . As we have k−1

1 l1 ∈ 1 mod 3DOKv and χ is trivial on (Z+3DOKv)× for v|3D,
we get χv(k1) = χ(l1,v). This implies:

χf (lf ) = kχv|3D(k1) = kχv-3D(k1)−1χ∞(k1)−1

Note that if we write k1 = u
∏

v ω
ev
v , where u ∈ O×Kv , we get:

∏
v-3D

χv(k1) =
∏
v-3D

χv(ωv)
ev =

∏
v-3D

χ̃(pv)
ev = χ̃((k1))

This moreover implies:

χf (lf ) = kχ̃((k1))−1k1 = kk−1
1 k1χ̃3D((k1)) = kχ̃3D((k1))
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Chapter 3

L(ED, 1) and Tate’s zeta function

In this section we will compute the value of L(ED, 1) = L(1, χDϕ), working with χD, ϕ as
automorphic Hecke characters. We will show the following result:

Theorem 3.1. For H3D the ring class field for the order O3D = Z + 3DOK and SD :=
18πD−1/3

√
3Γ
(

1
3

)3L(ED, 1), we have SD ∈ Z and

SD = TrH3D/K

(
D1/3 ΘK(Dω)

ΘK(ω)

)
(3.1)

zeta functions.

We will compute the formula (3.1) using Tate’s zeta function. We start by recalling some
background and notation.

Schwartz-Bruhat functions.

We take V = K a quadratic vector space over Q and VAK = AQ ⊗Q K. Then we can define
the Schwartz-Bruhat functions Φ =

∏
v

Φv, Φv ∈ S(VAK ) to be:
Φv = charOKv , if v - 3D

Φp =
∑

(a,D)=1

char(a+DOKp ), if v|3D, v - 3,OKp =
∏

v|pOKv

Φp = char(1+3OKv ), if v =
√
−3

Φ∞(z) = ze−πq(det z), where z ∈ C

Here q(z) = |z|2 the usual absolute value on C.

Remark 3.1. Note that char(a+pOKp )(m) =
∏
v|p

char(a+DOKv )(m) =
∏
v|p

char(1+pOKv )(a
−1m)

and each char(1+pOKv ) is a locally constant function with compact support. We are taking
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a linear combination of these Schwartz-Bruhat functions, thus we do get a Schwartz-Bruhat
function.

Haar measure.

We will pick the self-dual additive Haar measure dxv for all places v of K. We also take the
usual multiplicative Haar measure:{

d×v xv = dxv
|xv |v , normalized such that vol(O×Kv) = 1, if v -∞

d×z = dz
|z|C
, dz usual Lebesgue measure, z ∈ C, |z|C = x2 + y2, for z = x+ yi

Tate’s zeta function.

We recall Tate’s zeta function. For a Hecke character χv : K×v → C× and a Schwartz-Bruhat
function Φv ∈ S(Kv), it is defined locally to be:

Zv(s, χv,Φv) =

∫
K×v

χv(αv)|αv|svΦv(αv)d
×αv,

where d×αv is the multiplicative Haar measure defined above.
We define globally Z(s, χ,Φ) =

∏
v

Zv(s, χv,Φv). As a global integral, this is:

Z(s, χ,Φ) =

∫
A×K

χ(α)|α|sΦ(α)d×α,

Tate’s zeta function Z(s, χ,Φ) has meromorphic continuation to all s ∈ C and in our
case is entire.

Lemma 3.1. For all s and Φ Schwartz-Bruhat functions chosen as above, we have:

Lf (s, χDϕ) = Zf (s, χDϕ,Φ)V3D,

where V3D = vol(1 + 3Z3[ω]) vol(Z +D
∏
p|D

Zp[ω])× =
1

6

∏
p|D

1

(p−
(
p
3

)
)

Proof. From Tate’s thesis, we have Lf (s, χDϕ) = Zf (s, χDϕ)

∏
p|3D

Lp(s, χD,pϕp)∏
p|3D

Zf (s, χD,pϕp,Φp)
. Since

χDϕ is ramified at 3D, we have Lp(s, χD,pϕp) = 1. We need to compute the integral:

Zp(s, χDϕ,Φp) =

∫
Qp[ω]×

χD,p(αp)ϕp(αp)|αp|spΦp(αp)d
×αp
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From the choice of the Schwartz-Bruhat function Φp = char(Z+3DZp[ω])× for p|D, the

integral reduces to Zp(s, χDϕ,Φp) =

∫
(Z+3DZp[ω])×

χD,p(αp)ϕp(αp)|αp|spd×αp. Note that for

p 6= 3, all the characters χD, ϕ and | · |p are unramified, thus we just get the volume
vol
(
(Z + 3DZp[ω])×

)
.

For p = 3, we have Φp = char(1+3Z3[ω]). Similarly, we get vol
(
(1 + 3Z3[ω])×

)
.

We compute the volumes. For D a product of primes, we have

vol
(
(Z + 3DZp[ω])×

)
= vol

(
(Z + pZp[ω])×

)
= (p− 1) vol (1 + pZp[ω]) =

1

(p−
(
p
3

)
)

Note that vol (1 + pZp[ω]) = 1
p2−1

vol(Zp[ω]×) when p is nonsplit and vol (1 + pZp[ω]) =
1

(p−1)2
vol(Z×p )2 when p is split. This is computed by writing:

• p nonsplit: vol(Zp[ω]×) =
∑

vol(a + bω + pZp[ω]), where the sum is taken over all
a + bω prime to p and 0 ≤ a, b ≤ p − 1. We count p2 − 1 of them and we get
vol(Zp[ω]×) = (p2 − 1) vol(1 + pZp[ω]).

• p split: vol(Zp[ω]×) =
∑

vol(a + bω + pZp[ω]). We count similarly p2 − 2p + 1 such
terms, as p splits and we have to discard the divisors of p.

For p = 3, we have vol (1 + 3Z3[ω]) = 1
6
.

We compute:

• Z3[ω] = Z3[
√
−3] = {a0 + a1

√
−3 + a2(−3) + . . . , 0 ≤ ai ≤ 2}

• vol(Z3[ω])× = 1

• (Z3[ω])× =
⋃

(a0 + a1

√
−3)(1 + 3Z3[ω]), where a0 + a1

√
−3 is prime to 3. Then we

have 6 possibilities and thus vol(1 + 3Z3[ω]) = 1
6
.

By plugging in s = 1 in the above Lemma, we get:

Corollary 3.1. The finite part of the L-function at s = 1 equals:

Lf (1, χDϕ) =
1

6

∏
p|D

1

(p−
(
p
3

)
)
Zf (1, χDϕ,Φ),
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Computing the finite part of Tate’s zeta function Zf (s, χDϕ,Φ).

In this section we will compute the value of Zf (s, χDϕ,Φ). We begin by rewriting Tate’s
zeta function Zf (s, χDϕ,Φ) as a linear combination of Hecke characters:

Lemma 3.2. For all s ∈ C and the Schwartz-Bruhat functions Φf ∈ S(AK,f ), we have:

Zf (s, χDϕ,Φf ) = V3D

∑
αf∈U(3D)\A×K,f/K×

I(s, αf ,Φf )χD(α)ϕ(α),

where I(s, αf ,Φf ) =
∑

k∈K×
k
|k|2sC

Φf (kαf ).

Proof. By definition, we have Zf (s, χDϕ,Φf ) =

∫
A×K,f

χD(αf )ϕ(αf )|αf |sfΦf (αf )d
×αf . We

rewrite the integral by taking a quotient by K×:

Zf (s, χDϕ,Φf ) =

∫
A×K,f/K×

∑
k∈K×

χD,f (kα
′
f )ϕf (kα

′
f )|kαf |sfΦf (kα

′
f )d
×α′f

Note that from the definition of Hecke characters, we have

χD,f (kα
′
f ) = χ−1

D,∞(k)χD,f (α
′
f ) = χD,f (α

′
f ),

ϕf (kα
′
f ) = ϕ−1

∞ (k)ϕf (α
′
f ) = kϕf (α

′
f )

and

|kα′f |sf = |k|−s∞ |αf |sf = |k|−2s
C |α

′
f |sf ,

where | · |C is the usual absolute value over C. Then the integral reduces to:

Zf (s, χDϕ,Φf ) =

∫
A×K,f/K×

(∑
k∈K×

k

|k|2sC
χD,f (α

′
f )Φf (kα

′
f )

)
ϕf (α

′
f )|α′f |sf d×α′f

Furthermore, note that our choice of Schwartz-Bruhat functions Φf (kα
′
f ) are invariant

over U(3D). Similarly:

• | · |f is trivial on units, thus on U(3D)

• χD is invariant on U(3D) by definition

• ϕ is trivial on all the units at all the unramified places. At 3 it is invariant under
1 + 3Z3[ω], thus it is trivial on all of U(3D)
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Thus we can take the quotient by U(3D) as well. Note that the integral is now a finite sum:

Zf (s, χDϕ,Φf ) = vol(U(3D))
∑

α′′f∈U(3D)\A×K,f/K×

(∑
k∈K×

k

|k|2sC
χD,f (α

′′
f )Φf (kα

′′
f )

)
ϕf (α

′′
f )|α′′f |sf

Moreover, note that vol(U(3D)) = vol(1 + 3Z3ω)
∏
p|D

vol(Z +DZp[ω]) = V3D.

By denoting I(s, αf ,Φf ) =
∑
k∈K×

k

|k|sC
Φf (kαf ), we get the conclusion of the Lemma.

Combining the Corollary 3.1 and Lemma 3.2, we get:

Corollary 3.2. For all s ∈ C and the Schwartz-Bruhat functions Φf ∈ S(AK,f ) chosen
above, we have:

Lf (s, χDϕ) =
∑

αf∈U(3D)\A×K,f/K×

I(s, αf ,Φf )χD(α)ϕ(α),

Adelic representatives for Cl(O3D).

From the Strong approximation theorem, we can write αf ∈ A×K = C×K×
∏
v-∞
O×Kv in the

form αf = γ∞kαβf , where kα ∈ K×, γ∞ ∈ C× and βf ∈
∏
v-∞
O×Kv . Then we can take

representatives in αf ∈ U(3D) \ A×K,f/K× such that αf ∈
∏
v-∞
O×K,v. Moreover, since we are

taking the quotient by the cube roots of six {±1,±ω,±ω2}, we can pick αf such that α3 ≡ 1
mod 3. This can be done by replacing αf by ±αfωi for some i, 0 ≤ i ≤ 2.

Furthermore, note that representatives αf , α′f are in the same class in U(3D) iff αfα−1
f ≡ a

mod DZp[ω], for some integer a such that (a,D) = 1.
Moreover, we can define an ideal Aα that is generated by kα ∈ OK such that

αp ≡ kα mod 3DZp[ω].

Note that this ideal is unique only as a class in Cl(O3D).

Connection to the Eisenstein series.

Using the above representatives, note that ϕf and | · |f are trivial for the representatives lf
and the Corollary 3.2 becomes:

Lf (s, χDϕ) =
∑

αf∈U(3D)\A×K,f/K×

I(s, αf ,Φf )χD(αf )
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We will now connect I(s, αf ,Φf ) to an Eisenstein series. We define the following classical
Eisenstein series of weight 1:

Eε(s, z) =
∑
m,n

ε(n)

(3mz + n)|3mz + n|s
,

where the sum is taken over all m,n ∈ Z except for the pair (0, 0), and ε =
( ·

3

)
is the

quadratic character associated to the field extension K/Q.
Note that the Eisenstein series does not converge absolutely. However, we can still

compute its value at 0 using the Hecke trick in order for it to converge. We will compute its
Fourier expansion in the following section.

Recall that for αf ∈
∏
v-∞
O×Kv , we have the corresponding ideal class [Aα] in Cl(O3D). Such

a representative is Aαf = (kα), where kα ∈ OK is chosen such that kα ≡ αp mod 3DZp[ω]
for p|3D. Note that we can pick Aα to be a primitive ideal.

We can further write Aα as a Z-lattice Aα = [a, −b+
√
−3

2
]Z, where a = NmAα and b is

chosen (not uniquely) such that b2 ≡ −3 mod 4a. Then we can take the corresponding CM
point zAα := −b+

√
−3

2a

Using this notation, we have the following equality:

Lemma 3.3. For αf ∈
∏
v-∞
O×Kv and any choice of zAα as above, we have:

I(s, αf ,Φf ) =
1

2

(NmAα)1−s

kα
Eε(s, zAα)

Remark 3.2. Note that the variable zAα on the left hand side is not uniquely defined.
However, the function is going to be invariant on the class [Aα] in Cl(O3D).

Proof. Recall that I(s, αf ,Φf ) =
∑
k∈K×

k

|k|2sC
Φf (kαf ). We need to compute Φf (kαf ). Note

that for all finite places v we have Φv(kαv) 6= 0 only for kαv ∈ OKv , and since αv ∈ O×Kv , we
must have k ∈ OKv for all v -∞. This implies k ∈ OK and for all v - 3D we get Φv(kαv) = 1
for k ∈ OK . Thus we can rewrite:

I(s, αf ,Φf ) =
∑
k∈OK

k

|k|2sC
Φ3D(kα3D),

where Φ3D =
∏

v|3D Φv and α3D = (αv)v|3D.
We can further compute Φv(kαv) for v|3D. Recall that for p|D we defined Φp =

char(Z+3DZp[ω])× and Φ3 = char(1+3Z3[ω])× . Then we have Φ3D(kα3D) 6= 0 iff kαp ∈ a+3DZp[ω]
for some integer (a, p) = 1 and for p = 3 we need kα3 ∈ 1 + 3OK3 .

Recall that we can define kα such that kα ≡ αp mod 3DZp[ω] for all p|3D. Then the
we have kkα ∈ a + 3DZp[ω] for (a, p) = 1 and kkα ∈ 1 + 3Z3[ω] as well. Furthermore, for
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k ∈ OK we actually have Φ3D(kα3D) = Φ3D(kkα). Then we can rewrite I(s, αf ,Φf ) using
kα in the form:

I(s, αf ,Φf ) =
∑
k∈OK

k

|k|2sC
Φ3D(kkα),

We can rewrite this further:

I(s, αf ,Φf ) =
|kα|2sC
kα

∑
k∈OK

kkα
|kkα|2sC

Φ3D(kkα),

Finally, we will make this explicit. Note that we must have kkα ∈ Aα, where Aα = (kα),
we well as kkα ∈ ap + DZp[ω] for some integer ap, (ap, p) = 1 as well as kkα ∈ 1 + 3Z3[ω].
By the Chinese remainder theorem, we can find an integer a such that a ≡ ap mod D and
a ≡ 1 mod 3. Then we have kkα ∈ a + D

∏
p|3D

Zp[ω] ∩ OK , thus kkα ∈ PZ,3D ∩ P1,3. Here

PZ,3D = {k ∈ K : k ≡ a mod 3DOK for some integer a, (a, 3D) = 1} and P1,3 = {k ∈ K :
k ≡ 1 mod 3}. We rewrite:

I(s, αf ,Φf ) =
|kα|2sC
kα

∑
k∈Aα∩PZ,D∩P1,3

k

|k|2sC
,

Finally, we want to write the elements of Aα ∩ PZ,D ∩ P1,3 explicitly.
Recall that we can write Aα as a Z-lattice Aα = [a, b+

√
−3

2
]. Then all of the elements

of A are of the form ma + n b+
√
−3

2
for some integers m,n ∈ Z. Moreover, note that the

intersection of A and PZ,3D = {k ∈ OK : k ≡ n mod 3D, for some integer n, (n, 3D) = 1}
is {ma + 3Dn b+

√
−3

2
: m,n ∈ Z}. Further taking the intersection with P1,3, we must have

ma ≡ 1, thus we must have m ≡ 1 mod 3. Thus we can rewrite I(s, αf ,Φf ) in the form:

I(s, αf ,Φf ) =
as

kα

∑
m,n∈Z,m≡1(mod 3)

ma+ n−b+
√
−3

2

|ma+ n−b+
√
−3

2
|2sC
,

Here we have also used the fact that |kα|C = a. Note that we can further rewrite this as:

I(s, αf ,Φf ) = as−1kα
∑

m,n∈Z,m≡1(mod 3)

1

(ma+ n−b−
√
−3

2
)|ma+ n−b+

√
−3

2
|2s−2
C

,

Furthermore, by changing n→ −n and taking out a factor of a1−2s, we have:

I(s, αf ,Φf ) = a−skα
∑

m,n∈Z,m≡1(mod 3)

1

(m+ n b+
√
−3

2a
)|m+ n b+

√
−3

2a
|2s−2
C

,

Note that for Re(s) > 1 the integral converges absolutely, thus we can rewrite it in the
form:
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I(s, αf ,Φf ) =
1

2
a−skα

∑
m,n∈Z,m≡1(mod 3)

1

(m+ n b+
√
−3

2a
)|m+ n b+

√
−3

2a
|2s−2
C

+
1

2
a−skα

∑
m,n∈Z,m≡2(mod 3)

1

(−m+ n b+
√
−3

2a
)| −m+ n b+

√
−3

2a
|2s−2
C

Changing n→ −n in the second sum, we get:

I(s, αf ,Φf ) =
1

2
a−skα

∑
m,n∈Z,m≡1(mod 3)

1

(m+ n b+
√
−3

2a
)|m+ n b+

√
−3

2a
|2s−2
C

−

− 1

2
a−skα

∑
m,n∈Z,m≡2(mod 3)

1

(m+ n b+
√
−3

2a
)|m+ n b+

√
−3

2a
|2s−2
C

Thus we can write for Re(s) > 1 we can rewrite:

I(s, αf ,Φf ) =
1

2
a−skα

∑
m,n∈Z,m≡1(mod 3)

ε(m)

(m+ n b+
√
−3

2a
)|m+ n b+

√
−3

2a
|2s−2
C

On the right hand side we can recognize the Eisenstein series Eε(2s − 2, zAα), thus we
get:

I(s, αf ,Φf ) =
1

2
a−skαEε(2s− 2, zAα) =

1

2

a1−s

kα
Eε(2s− 2, zAα)

By analytic continuation, we can extend the equality to all s ∈ C.

Using this Lemma, we can rewrite the Corollary 3.2 in the form:

Corollary 3.3. For all s, we have:

Lf (s, χDϕ) =
1

2

∑
A∈Cl(O3D)

Eε(2s− 2, zA)χD(A)
(NmA)1−s

kA
,

Proof. Recall that in the Corollary 3.2 we got

Lf (s, χDϕ) =
∑

αf∈U(3D)\A×K,f/K×

I(s, αf ,Φf )χD(α)ϕ(α),

We can rewrite I(s, αf ,Φf ) = 1
2
a1−s

kα
Eε(2s − 2, zAα) and ϕ(α) = 1, χD(α) = χD(kα) =

χD(Aα). Then we get:
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Lf (s, χDϕ) =
∑

αf∈U(3D)\A×K,f/K×

1

2

a1−s

kα
Eε(2s− 2, zAα)χD(Aα)

Finally, consider A as representatives of Cl(O3D). Note that by changing A → A we just
invert the classes of Cl(O3D). Thus we get the result of the Corollary:

Lf (s, χDϕ) =
∑

A∈Cl(O3D)

1

2

a1−s

kA
Eε(2s− 2, zA)χD(A).

Fourier expansion of the Eisenstein series Eε(s, z) at s = 0.

We want to connect the Eisenstein series Eε(s, z) to the theta function ΘK(z). In order to
do this, we will compute the Fourier expansion of Eε(s, z) at s = 0.

We will use the Hecke trick to compute the Fourier expansion of the Eisenstein series:

Eε(s, z) =
∑
c,d

′ ε(d)

(3cz + d)|3cz + d|2s

We will follow closely the proof of Pacetti [14]. This is also done by Hecke in [8]. We
rederive the formula:

E1(z, s) =
∑
d

′ ε(d)

d1+2s
+ 2

∞∑
c=1

2∑
r=0

∑
d∈Z

ε(r)

(3cz + (3d+ r))|3cz + (3d+ r)|2s

We divide by 32s+1 and get:

E1(z, s) = 2L(ε, 1 + 2s) + 2
∞∑
c=1

2∑
r=0

ε(r)

32s+1

∑
d∈Z

ε(r)

(3cz+r
3

+ d)|3cz+r
3

+ d|2s

We define for z in the upper-half plane:

H(z, s) =
∑
m∈Z

1

(z +m)|z +m|2s

Following Shimura (Lemma 1, p. 84, [19]), for z = x+ yi and s > 0 we have the Fourier
expansion:

H(z, s) =
∞∑

n=−∞

τn(y, s+ 1, s)e2πinx,
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where τn(y, s+ 1, s)
iΓ(s+ 1)Γ(s)

(2π)2s+1
=


n2se−2πnyσ(4πny, s+ 1, s), if n > 0

|n|2se−2π|n|yσ(4π|n|y, s, s+ 1), if n < 0

Γ(2s)(4πy)−2s, if n = 0,

where γ(Y, α, β) =

∞∫
0

(t+ 1)α−1tβ−1e−Y tdt

For any s > 0, H(z, s) converges, thus we can compute the limits of each of its Fourier
coefficients:

• n = 0: lim
s→0

(2π)2s+1

iΓ(s+1)
Γ(2s)
Γ(s)

(4πy)−2s = −2πi lim
s→0

Γ(2s)
Γ(s)

• n < 0: lim
s→0

(2π)2s+1

iΓ(s+ 1)Γ(s)
|n|2se−2π|n|y

∞∫
0

(t+ 1)s−1tse−4π|n|ytdt =

= −2πie−2π|n|y lim
s→0

1
Γ(s)

∞∫
0

(t+ 1)s−1tse−4π|n|ytdt

• n > 0: lim
s→0

(2π)2s+1

iΓ(s+ 1)Γ(s)
n2se−2πny

∞∫
0

(t+ 1)sts−1e−4πnytdt

We get, following [14]:

lim
s→0

H(s, z) = −πi− 2πi
∞∑
n=1

qn

Finally, note that:

E1(s, z) = 2L(ε, s) + 2
∞∑
c=1

2∑
r=0

ε(r)

32s+1
H

(
3dz + r

3
, s

)
Using the Fourier expansion of H(z, s), we get:

E1(s, z) = 2L(ε, s) + 2
∞∑
c=1

2∑
r=0

ε(r)

32s+1

∑
n∈Z

τn(yn, s+ 1, s)e2πin 3xc+r
3

Taking the limit as s→ 0, and the Fourier expansion above, we get:

E1(s, z) = 2L(ε, s) + 2
∞∑
c=1

2∑
r=0

ε(r)

3

(
−πi− 2πi

∞∑
n=1

e2πinzcωnr

)
We compute separately the inner sum:
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2∑
r=0

ε(r)

3

(
−πi+

∞∑
n=1

e2πinzcωnr

)
=

= −2πi
∞∑
n=1

e2πinzcε(n)
2∑
r=0

ωnrε(rn) = −2πi

3
G(ε)

∞∑
n=1

e2πinzcε(n),

where G(ε) =
∑2

r=0 ε(r)ω
r =
√
−3 is the Gaussian quadratic sum corresponding to ε.

Then we get:

E1(0, z) = 2L(ε, 1)− 4πi
√
−3

3

∞∑
c=1

∞∑
n=1

e2πinzcε(n) = 2L(ε, 1) +
4π
√

3

3

∞∑
N=1

∑
m|N

ε(m)

 e2πiNz

Since ε is a quadratic character, we can compute L(1, ε) = π
√

3
9

(see Kowalski [13]). This
gives us the Fourier expansion:

E1(0, z) =
2π
√

3

9

1 + 6
∞∑
N=1

∑
m|N

ε(m)

 e2πiNz


Connection to the theta function ΘK(z).

Recall the theta function ΘK associated to the number field K:

ΘK(z) =
∑
a,b∈Z

e2πi(a2−ab+b2)z.

Equivalently, we can rewrite the theta function in the form: ΘK(z) = 1+6
∑
A e

2πiNmAz,
where we sum over all ideals A. Thus we have the Fourier expansion for ΘK :

ΘK(z) = 1 + 6
∑
n≥1

c(n)qn,

where c(n) is the number of ideals of norm n. We will show the following version of
Siegel-Weil theorem:

Theorem 3.2. For Eε(s, z) defined in the previous section and ε the quadratic character
corresponding to to the extension K/Q, we have:

Eε(0, z) = 2L(0, ε)ΘK(z)
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The proof consists of comparing the Fourier expansions of the two sides. This is mainly
going to be based on the lemma below:

Lemma 3.4. For n ≥ 1 then for the ideals in OK we have:∑
d|n

ε(d) = #ideals of norm n

Proof. We first show the result for powers of primes pe. We consider three cases:
If p ≡ 1 mod 3, then there are two ideals of norm p: (a + bω) and (a − bω) such that

a2 − ab+ b2 = p. Then we have k + 1 ideals of norm pk: (a+ bω)i(a+ bω)k−i for 0 ≤ i ≤ k.
Moreover, since ε(p) = 1, we have (1 + ε(p) + . . . ε(pk)) = k + 1.

If p ≡ 2 mod 3, then there are no ideals of norm p. Thus, if k is even, we have exacly
one ideal of norm pk: A = (pk/2). In this case (1 + ε(p) + . . . ε(pk)) = 1−1 + · · ·+ 1 = 1. If k
is odd, we have no ideals of norm p2k+1. Moreover (1 + ε(p) + . . . ε(pk)) = 1−1 + · · ·−1 = 0.

If p = 3, then we have exactly one ideal of norm 3k, namely the ideal (
√
−3

k
). Moreover

ε(3) = 0, thus (1 + ε(3) + . . . ε(3k)) = 1.
It is easy to extend the result to all integers. As ε is a character, we have:∑

d|n

ε(d) =
∏
pi|n

(1 + ε(pi) + · · ·+ ε(pi)
ci),

where n =
∏
i

pcii , ei ≥ 1 and pi are primes. If we have any ideal A of norm n, then

A =
∏

pv
pevv , and we must have n =

∏
v

Nm pevv . Moreover, we have #ideals of norm n =∏
pi|n

#ideals of norm (Nm pi)
ci , which finishes the proof.

We are ready to state the proof of the theorem. Using the above Lemma we can rewrite
the Fourier expansion of ΘK as:

ΘK(z) = 1 + 6
∞∑
N=1

∑
m|N

ε(m)

 e2πiNz

Multiplying by a factor of 2π
√

3
9

, we recognize the Eisenstein series Eε(0, z). Thus it
implies Eε(0, z) = 2π

√
3

9
ΘK(z). Note that this is the same as:

Eε(0, z) = 2L(1, ε)ΘK(z)
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Final formula for L(1, χDϕ).

Applying Corollary 3.3 for s = 1 we get:

Lf (1, χDϕ) =
1

2

∑
A∈Cl(O3D)

1

k̄A
Eε(0, DzA)χD(A)

Furthermore, from Theorem 3.2 this is the same as:

Lf (1, χDϕ) =
π
√

3

9

∑
A∈Cl(O3D)

1

k̄A
ΘK(DzA)χD(A) (3.2)

We need one more step before rewriting the formula as a trace. This is going to be the
following lemma:

Lemma 3.5. For A =

[
a,
−b+

√
−3

2

]
a primitive ideal of norm NmA = a, with generator

A = (kA), where kA ≡ 1 mod 3, we have:

ΘK

(
−b+

√
−3

2a

)
= kAΘK

(
−1 +

√
−3

2

)
Proof. Since A =

[
a, −b+

√
−3

2

]
Z
as a Z-lattice, we can write its generator kA in the form

kA = ma + 3n
−b+

√
−3

2
for some integers m,n. Moreover, since kA is the generator of a

primitive ideal, we have gcd(m, 3n) = 1. Then we can find through the Euclidean algorithm

integers A,B such that mA + 3nB = 1, which makes
(

A B
−3n m

)
a matrix in Γ0(3). Since

Θ is a modular form of weight 1 for Γ0(3), we have:

ΘK

(
A−b+

√
−3

2a
+B

−3n−b+
√
−3

2a
+m

)
=

(
m− 3n

−b+
√
−3

2a

)
ΘK

(
−b+

√
−3

2a

)
Noting that −3n−b+

√
−3

2a
+m = kA/a = 1/kA, we can compute

A−b+
√
−3

2a
+B

−3n−b+
√
−3

2a
+m

=
(A−b+

√
−3

2
+Ba)kA

a
.

This is (aB + A−b+
√
−3

2
)(ma+ 3n b+

√
−3

2
)/a. After expanding, we get:

−3nA
b2 + 3

4a
+ abB +

b(−mA+ 3nB)

2
+

√
−3

2
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Note that mA+3nB = 1 implies that mA and 3nB have different parities. Also we chose
b odd, since b2 + 3 ≡ 0 mod 4a. Then we note that −3nA b2+3

4a
+ abB + b(−mA+3nB)+1

2
∈ Z

and thus using the period 1 of ΘK we get:

ΘK

(
A−b+

√
−3

2a
+B

−3n−b+
√
−3

2a
+m

)
= ΘK

(
−1 +

√
−3

2

)
This finishes the proof.

Since the Lemma above tells us that ΘK(τA) = kAΘK(ω), where τA = −b+
√
−3

2a
, we can

rewrite (3.2) as:

Proposition 3.1.

Lf (1, ϕχD) =
π
√

3

9
ΘK (ω)

∑
A∈Cl(O3D)

ΘK(DτA)

ΘK(τA)
χD(A) (3.3)
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Turning the formula into a trace.

We will rewrite (3.3) as a trace. First, let f(z) =
ΘK(Dz)

ΘK(z)
. This is a modular function for

Γ0(3D). We will prove in Chapter 4 the following proposition (see Proposition 4.1):

Proposition 3.2. Take A representative ideals for Cl(O3D). We can take all A to be prim-
itive and we can write them in the form A = [a, −b+

√
−3

2
]Z. Then the Galois conjugates of

f(ω) are:

f(ω)σ
−1
A =

Θ
(
D−b+

√
−3

2a

)
Θ
(
−b+
√
−3

2a

)
We will also rewrite the character χD to include a trace. In the Chapter 2 we have also

showed in Corollary 2.4 that (D1/3)σ
−1
A = D1/3χD(A).

Then the formula (3.3) becomes:

Lf (ED, 1) =
π
√

3

9
D−1/3ΘK(ω)

∑
A∈Cl(O3D)

(
D1/3 ΘK(Dω)

ΘK(ω)

)σA−1

(3.4)

Moreover, we also have D1/3 ∈ H3D. See Cohn [3] for a proof. Thus we can rewrite the
sum on the left hand side as TrH3D/K

(
D1/3 ΘK(Dω)

ΘK(ω)

)
. We can compute the extra terms as

well.

• Rodriguez-Villegas and Zagier in [17] cite ΘK

(
−9+

√
−3

18

)
= −3Γ

(
1
3

)3
/(2π)2. We will

use several properties of ΘK proved in Appendix A. We can rewrite ΘK

(
−9+

√
−3

18

)
as

ΘK

(
−3+

√
−3

18
− 1

3

)
and using Lemma 9.1 we get:

ΘK

(
−3 +

√
−3

18
− 1

3

)
= (1− ω2)ΘK

(
−3 +

√
−3

6

)
+ ω2ΘK

(
−3 +

√
−3

18

)
Using ΘK

(
−3+

√
−3

6

)
= 0, we get ΘK

(
−9+

√
−3

18

)
= ω2ΘK

(
−3+

√
−3

18

)
.
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Furthermore, the functional equation Θ(−1/3z) = −
√
−3zΘ(z) for z = 3+

√
−3

2
, we

get −
√
−33+

√
−3

2
Θ (ω) = ΘK

(
−3+

√
−3

18

)
. Note that −

√
−33+

√
−3

2
= 3ω, thus we get

ΘK

(
−9+

√
−3

18

)
= 3Θ (ω).

This gives us the value Θ (ω) = Γ
(

1
3

)3
/(2π)2

• L∞(s, χDϕ) = L∞(s, ϕ∞), where ϕ∞(z) = z−1. Then we can compute:

L∞(s, ϕ∞) = L∞(s− 1/2, | · |1/2∞ ϕ∞) = 2(2π)sΓ(s).

This gives us L∞(1, χDϕ) = 2.

• The real period ΩD of the elliptic curve ED. The real period of E1 is
Γ
(

1
3

)3

9π
. Then to

compute the real period of ED we twist by a factor of D−1/3 and get:

ΩD = D−1/3 Γ
(

1
3

)3

18π

Multiplying all the terms, we get:

L(ED, 1) = 2
π
√

3

9
D−1/3 Γ

(
1
3

)3

(2π)2
TrH3D/K

(
D1/3 ΘK(Dω)

ΘK(ω)

)
This gives us the first part of Theorem 3.1:

L(ED, 1) =

√
3Γ
(

1
3

)3

18π
D−1/3 TrH3D/K

(
D1/3 ΘK(Dω)

ΘK(ω)

)
(3.5)

SD is an integer.

In the previous section we have showed that SD ∈ K. Moreover, it is easy to see that note
that SD ∈ Q. To show this, it is enough to check the invariance of D1/3Θ(Dω)/Θ(ω) under
complex conjugation:

D1/3Θ(Dω)/Θ(ω) = D1/3Θ(−D +Dω)/Θ(−1 + ω) = D1/3Θ(Dω)/Θ(ω).

Now we would like to show that SD ∈ Z. First we look at the Fourier expansion of
f(z) = Θ(Dz)/Θ(z):

Θ(z) = 1 + 6
∑

N∈Z≥1

c(N)qN ,
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where c(N) = # ideals with norm N in K and, q = e2πiz. Then we also have the Fourier
expansion of Θ(Dz):

Θ(Dz) = 1 + 6
∑

N∈Z≥1

c(N)qDN ,

By taking their ratio we get
Θ(Dz)

Θ(z)
=
∑
n∈Z

anq
n, an ∈ Z. This is easy to see just by

straight computation. The minimal polynomial of D1/3f(ω) is:∏
A∈Cl(O3D)

(X −D1/3χD(A)(f(ω))σA) ∈ Z[ω,D1/3](X, q)

This implies that TrH3D/K D
1/3f(ω) ∈ Z[ω,D1/3]. We already know that TrH3D/K D

1/3f(ω) ∈
Q, thus TrH3D/K D

1/3f(ω) ∈ Z.
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Chapter 4

Shimura reciprocity law in the classical
setting.

Let F be the field of modular functions over Q. From CM theory (see [21], for example),
it is known that if τ ∈ K ∩ H and f ∈ F , then we have f(τ) ∈ Kab, where Kab is the
maximal abelian extension of K. Shimura reciprocity law gives us a way to compute the
Galois conjugates f(τ)σ of f(τ) when acting with σ ∈ Gal(Kab/K). We will follow the
exposition of Stevenhagen [21]. For more details also see Gee [6].

We recall that F =
⋃
N≥1FN , where FN is the space of modular functions of level N .

Moreover, we can think of FN as the function field of the modular curve X(N) = Γ(N) \H∗
over Q(ζN), where ζN = e2πi/N and H∗ = H ∪ P1(Q). We can compute explicitly FN =
Q(j, jN), where j is the j-invariant and jN(z) = j(Nz). In particular, we have F1 = Q(j).

When working over Q, one has an isomorphism:

Gal(FN/F1) ∼= GL2(Z/NZ)/{±1}.

More precisely, if we denote by γσ the Galois action corresponding to the matrix γ ∈
GL2(Z/NZ) under the isomorphism above, it is enough to define the Galois action for

SL2(Z/NZ) and for GN =
{(1 0

0 d

)
, d ∈ (Z/NZ)×}. We state explicitly the two actions

below.

• Action of α ∈ SL2(Z/NZ) on FN .

(f(τ))σα = fα(τ) := f(ατ),

where α is acting on the upper half plane via fractional linear transformations.

• Action of
(

1 0
0 d

)
∈ (Z/NZ)× on FN . Note that for f ∈ FN we have a Fourier

expansion f(z) =
∑
n≥0

anq
n/N with coefficients an ∈ Q(ζN), q = e2πiz. If we denote
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ud :=

(
1 0
0 d

)
, then the action of σud is given by

(f(τ))σud = fud(τ) :=
∑
n≥0

aσdn q
n/N ,

where σd is the Galois action in Gal(Q(ζN)/Q) that sends ζN → ζdN .

As the restriction maps between the fields FN are in correspondence with the natural
maps between the groups GL2(Z/NZ)/{±1} we can take the projective limit to get the
isomorphism:

Gal(F/F1) ∼= GL2(Ẑ)/{±1}.

To further get all the automorphisms of F we need to consider the action of GL2(AQ,f ).
We get the exact sequence:

1→ {±1} → GL2(AQ,f )→ Aut(F)→ 1

For this to make sense, we need to extend the action from GL2(Ẑ) to GL2(AQ,f ). We do
this by using the action of GL2(Q)+:

• Action of α ∈ GL2(Q)+ on F .

fα(τ) = f(ατ),

where α acts by fractional linear transformations.

We extend the action of GL2(Ẑ) to GL2(AQ) by writing the elements γ ∈ GL2(AQ) in
the form γ = uα, where u ∈ GL2(Ẑ) and α ∈ GL2(Q)+. Note that this decomposition is
not uniquely determined. However, by combining the two actions of u and α, a well defined
action is given by:

fuα = (fu)α.

We want to look at the action of Gal(Kab/K) inside Aut(F). From class field theory we
have the exact sequence:

1→ K× → A×K,f
[·,K]−−→ Gal(Kab/K)→ 1,

where [·, K] is the Artin map.
We are going to embed A×K,f into GL2(AQ,f ) such that the Galois action of A×K,f through

the Artin map and the action of the matrices in GL2(AQ,f ) are compatible. We do this by
constructing a matrix gτ (x) for the idele x ∈ A×K,f .
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Let O be the order of K generated by τ i.e. O = Z[τ ]. We define the matrix gτ (x) to be

the unique matrix in GL2(AQ) such that x
(
τ
1

)
= gτ (x)

(
τ
1

)
. We can compute it explicitly.

To do that, consider the minimal polynomial of τ :

p(X) = X2 +BX + C

Then if we write xp ∈ Q×p in the form xp = spτ + tp ∈ Q×p with sp, tp ∈ Qp, we can compute:

gτ (xp) =

(
tp − spB −spC

sp tp

)
Shimura reciprocity law is going to make the following diagram commute:

1 K× A×K,f Gal(Kab/K) 1

1 {±1} GL2(AQ,f ) Aut(F) 1

gτ

[·, K]

We make the statement explicit below:

Theorem 4.1. (Shimura reciprocity law) For f ∈ F and x ∈ A×K,f , we have:

(f(τ))[x,K] = f gτ (x−1)(τ),

where [x,K] is the Galois action corresponding to the idele x via the Artin map, gτ is
defined above and the action of gτ (x) is the action in GL2(AQ,f ).

Remark 4.1. Note that the elements of K× have trivial action. This can be easily seen by
embedding K× ↪→ GL2(Q)+ given by k ↪→ gτ (k). Noting that τ is fixed by the action of the
torus K×, we have:

f gτ (k−1)(τ) = f(gτ (k
−1)τ) = f(τ)

Remark 4.2. We can also rewrite the theorem for ideals in K. Let f ∈ FN and O = Z[τ ]
of conductor M . Going through the Artin map, we can restate Shimura reciprocity in this
case in the form:

f(τ)σA = f gτ (A)−1

(τ), (4.1)

where σA is the Galois action corresponding to the ideal A through the Artin map and

gτ (A) := gτ ((α)p|Nm(A)).
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Note that gτ (A) is unique up to multiplication by roots of unity in K. However, these have
trivial action on f . This can be easily seen by multiplying by an element of (±ωj)v ∈ K×
and noticing that we get trivial action at the unramified places p -MN .

Remark 4.3. Note that the action of gτ (A) is the same as the action of gτ ((α)p|MN)−1.

Remark 4.4. Note that the maps above are based on the map between the ideals A prime
to MN and the ideles:

I(MN)→ A×K,f/K
×

A =
∏
v

pevv → ($v)
ev
v ,

where $v is the uniformizer of the ideal pv at the place v -∞.

Applying Shimura reciprocity law to K = Q[
√
−3].

Lemma 4.1. The function f(z) =
ΘK(Dz)

ΘK(z)
is a modular function of level 3D with integer

Fourier coefficients at the cusp ∞.

Proof. Since ΘK(z) is a modular form of weight 1 for Γ0(3), it can be easily seen that Θ(Dz)
is a modular form of weight 1 for Γ(3D). Furthermore, their ratio is modular function for

Γ0(3D). We check this below. For γ =

(
a b
c d

)
∈ Γ(3D), we have:

f(γz) =

Θ

((
D 0
0 1

)(
a b
c d

)
z

)
Θ

((
a b
c d

)
z

) =

Θ

((
a bD
c/D d

)
(Dz)

)
Θ

((
a b
c d

)
z

) =
(cz + d)Θ(Dz)

(cz + d)Θ(z)
= f(z)

To find the Fourier expansion of f(z) at ∞, it is enough to write the Fourier expansions
of Θ(Dz) and Θ(z):

Θ(Dz)

Θ(z)
=

1 +
∑
N≥1

c(N)qND

1 +
∑
N≥1

c(N)qN
=
∑
M≥0

aMq
M

We can compute the Fourier coefficients explicitly from the equality:

1 +
∑
N≥1

c(N)qND = (1 +
∑
N≥1

c(N)qN)(
∑
M≥0

aMq
M)

Note that we have a0 = 1 and aM = −aM−1c(1)− aM−2c(2)− · · · − a1c(M − 1)− a0c(M)
if D - M and aM = c(M/D) − aM−1c(1) − aM−2c(2) − · · · − a1c(M − 1) − a0c(M) if D|M .
By induction, since c(N) ∈ Z, we get all the coefficients aM ∈ Z.
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f(ω) is in the ring class field H3D.

From CM-theory, we have that if f ∈ F3D and τ generating OK , we have f(τ) ∈ H3D,OK
the ray class field of conductor 3D. We claim that f(ω) ∈ H3D. Recall that we have
Gal(Kab/H3D) ∼= U(3D) \ A×K,f/K×. Thus in order to show that f(ω) ∈ H3D, we need to
check that f(ω) is invariant under the action of U(3D).

Lemma 4.2. For ω = −1+
√
−3

2
and f(z) = ΘK(Dz)

ΘK(z)
we have f(ω) ∈ H3D.

Proof. In order for f(ω) ∈ H3D, we need to show that it is invariant under Gal(Kab/H3D).
Using Shimura reciprocity law, we need to show:

f(ω) = f rω(s)(ω),

for all s ∈ K×U(3D). From Remark 4.1, the action ofK× is trivial. Thus it is enough to show
the result for all elements l = (Ap+Bpω)p ∈ U(3D). By the definition of U(3D), this implies
that Ap+Bpω ∈ (Zp[ω])× for all p and A3 ≡ 1 mod 3, B3 ≡ 1 mod 3, Bp ≡ 0 mod D for all
p|D. Since the action for p - 3D is trivial, s has the same action lD = (Ap+Bpω)p|3D ∈ U(3D).
Moreover, this has the same action as l0 = (A+Bω)p|3D, where A+Bω ∈ OK and A ≡ Ap
mod 3DZp and B ≡ Bp mod 3DZp for all p|3D.

Note further that we can pick A,B such that (A+Bω) generates a primitive ideal A in
OK . Moreover, from above we have 3D|B and A ≡ 1 mod 3. Recall that we can rewrite
any primitive ideal in the form A = [a, −b+

√
−3

2
]Z, where a = NmA and b2 ≡ −3 mod 4a.

Then the generator is A+Bω = ta+ s−b+
√
−3

2
for t, s ∈ Z, 3D|s.

Now observe that f(ω) = f(τ), where τ = −b+
√
−3

2
, thus from Shimura reciprocity law,

we have:

(f(τ))σl−1 = f rτ (l)(ω).

Here rτ (l) =
(
Ap−bBp −Bpc
Bp Ap

)
p
and rτ (l) has the same action as rτ (l0), where l0 = (A +

Bω)p|3D and A+Bω = ta+ s−b+
√
−3

2
. Then we need to compute the action of:

(f(τ))σl−1 = f rτ (l0)(τ).

Note that rτ (l0) = ( ta−sb −scs ta )p|3D, where c = b2+3
4

. Then we can rewrite the action of
rτ (l0):

f rτ (l0)(τ) = f

(
ta−sb −sc/a
s t

)
p|3D

( 1 0
0 a )

p|3D(τ) = f
( 1 0

0 a )
p|3D(

(
ta−sb −sc/a
s t

)
τ)

Since a|c, the matrix
(
ta−sb −sc/a
s t

)
∈ SL2(Z) and we can rewrite:

f(
(
ta−sb −sc/a
s t

)
z) =

ΘK

(
(D 0

0 1 )
(
ta−sb −sc/a
s t

)
z
)

ΘK

((
ta−sb −sc/a
s t

)
z
) . =

ΘK

((
ta−sb −scD/a
s/D t

)
(Dz)

)
ΘK

((
ta−sb −sc/a
s t

)
z
) .
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Note that since 3D|s, we actually have
(
ta−sb −scD/a
s/D t

)
,
(
ta−sb −sc/a
s t

)
∈ Γ0(3) and we can

apply the properties of the modular form ΘK :

ΘK

((
ta−sb −scD/a
s/D t

)
(Dz)

)
ΘK

((
ta−sb −sc/a
s t

)
z
) . =

(sz + t)−1ΘK (Dz)

(sz + t)−1ΘK (z)
. = f(z)

Finally, note that since (a, 3D) = 1 and f has rational coefficients, the action of ( 1 0
0 a )p|3D

is trivial. This finishes the proof that f(ω) is invariant under the Galois action coming from
U(3D), thus f(ω) ∈ H3D.

Remark 4.5. A different proof is shown in the in Appendix B, where we reinterpret the
classical Shimura reciprocity law in the setting of Shimura curves following Hida [9].

Galois conjugates of f(ω).

Let A =
[
a, −b+

√
−3

2

]
Z
be a primitive ideal prime to 3D. For τ1 = −b+

√
−3

2
, let OD = Z+DτZ.

Lemma 4.3. Let f ∈ FN be a modular function of level N with rational Fourier coefficients
in its Fourier expansion. Let τ1 = −b+

√
−3

2
be a CM point and let A =

[
a, −b+

√
−3

2

]
be a

primitive ideal prime to N . Then we have the Galois action:

f(τ)σ
−1
A = f(τ/a)

Proof. From Shimura reciprocity (4.1), we have:

f(τ)σ
−1
A = f gτ (A)(τ).

Note that the minimum polynomial of τ is pτ(X) = X2 + bX + b2+3
4

. Now let α =

ta + s−b+
√
−3

2
= ta + sτ be a generator of A. Then we have gτ (A) =

(
ta−sb −s b

2+3
4

−s ta

)
p|a
. We

can rewrite the matrix in the form:

gτ (A) =
(
ta−sb b2+3

4a
−s t

)
p|a

( 1 0
0 a )p|a

As
(
ta−sb − b

2+3
4a

−s t

)
p|a
∈ SL2(Zp) for p - ND, it has a trivial action. Then:

f gτ (A)(τ) = f
( 1 0

0 a )
p|a(τ)

We rewrite the matrix ( 1 0
0 a )p|a = ( 1 0

0 a )p-a ( 1 0
0 a )Q, where

(
1 0
0 1/a

)
p
∈ GL2(Ẑ) and ( 1 0

0 a )Q ∈
GL2(Q)+.
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Note that the action of
(

1 0
0 1/a

)
p
is only given by

(
1 0
0 1/a

)
p|NM . However, since f has

rational Fourier coefficients in its Fourier expansion, this action is trivial. Thus we are left
with:

f gτ (A)(τ) = f( 1 0
0 a )Q(τ)

This is just f gτ (A)(τ) = f(τ/a).

Proposition 4.1. Take the primitive ideals A =
[
a, −b+

√
−3

2

]
Z
to be the representatives of

the ring class field H3D such that all norms NmA are relatively prime to each other and
b2 ≡ −3 mod 4a for all the a = NmA chosen.

Then the only Galois conjugates of f(ω) =
ΘK(Dω)

ΘK(ω)
are the following:

(
ΘK(Dω)

ΘK(ω)

)σ−1
A

=
ΘK

(
D−b+

√
−3

2a

)
ΘK

(
−b+
√
−3

2a

)

Proof. Note that
ΘK(Dω)

ΘK(ω)
=

ΘK

(
D−b+

√
−3

2

)
ΘK

(
−b+
√
−3

2

) and apply lemma 4.3 to τ = −b+
√
−3

2
and

f(z) =
ΘK(Dz)

ΘK(z)
. These are the only Galois conjugates we showed that f(τ) ∈ H3D.
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Chapter 5

Writing SD as a square.

In this section we will show the following result:

Theorem 5.1. For D =
∏

pi≡1 mod 3

peii , let τ = −b+
√
−3

2
such that b2 ≡ −3 mod 12D2.

Moreover, let b∗ ≡ b−1 mod D.
Let HO be the ray class field of conductor 3D and let H0 ⊂ HO be the subfield of HO

that is the fixed field of G0 = {r ∈ (Z/DZ)×, r ≡ 1 mod 6 : A◦r =
(

1 + b∗(1− r)−b+
√
−3

2

)
}.

Then we have

SD = |TrHO/H0(f1(τ)D2/3)|2

and SD ∈ Z.

The main tool in proving Theorem 5.1 is a Factorization Formula of Rodriguez-Villegas
and Zagier [16]. We will apply the Factorization Formula (5.1) to the formula for the L-
function L(ED, 1) in Theorem 1.1.

Factorization Formula

We recall the version of Factorization Formula ([16], Theorem, page 7) simplified to the case
of α = p = 0:

Theorem 5.2. (Factorization formula.) For a ∈ Z>0, µ, ν ∈ Q, z = x + yi ∈ C, we
have: ∑

m,n∈Z

e2πi(mν+nµ)eπ(imn− |mz−n|
2

2y
)/a =

√
2ayθ

[
aµ
ν

]
(a−1z) · θ

[
µ
−aν

]
(−az̄), (5.1)

where θ
[
µ
ν

]
(z) =

∑
n∈Z+µ

eπin
2z+2πiνn is a theta function of half integral weight.

Using the formula above, we will prove the following Proposition:
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Proposition 5.1. For a ≡ a1 ≡ 1 mod 6, D ≡ 1 mod 6 and b2 ≡ −3 mod 4D2a2a1,
b ≡ 1 mod 16, we have:

3

2
Θ

(
D
−b+

√
−3

2a

)
− 1

2
Θ

(
D
−b+

√
−3

6a

)
=

=
∑

r∈Z/DZ

4
√

3

D
√
a1

eπi(a−1)/6θar

(
−b+

√
−3

2a2a1

)
θr

(
b+
√
−3

2a1

)
, (5.2)

where θs(z) =
∑
n∈Z

eπi(n+s/D−1/6)2z(−1)n is a theta function of weight 1/2 for s non-negative

integer.

Remark 5.1. Throughout the paper we will use the notation r ∈ Z/DZ to mean any
representatives r for the residues mod D.

Remark 5.2. Also note that θ0(z) = η(z/3), where η is the Dedekind eta function, while∑
r∈Z/DZ

θr(z) = η
(

z
3D2

)
.

We start the proof of Proposition 5.1 by applying the Factorization Formula (5.1) several
times for µ := µ+r

D
, where r ∈ Z/DZ, and for z := z/D. Summing up the formulas, we are

going to get the result of the next lemma.

Lemma 5.1. We have the following factorization formula:∑
r∈Z/DZ

√
2ay√
D

θ

[
a(µ+ r)/D

ν

](
D
z

a

)
θ

[
(µ+ r)/D
−aν

]
(−aDz) =

=
∑
m,n∈Z

e2πi(mν+nµ)eπ(mni− |n−mz|
2

2y
)D
a

Proof. Plugging in µ := µ+r
D
, z := z/D in (5.1), we get:

√
2ayθ

[
a (µ+r)

D

ν

](z
a

)
θ

[
(µ+r)
D

)
−aν

]
(−az) =

∑
m,n∈Z

e2πi(mν+n(µ+r)/D)eπ(mni− |n−mz|
2

2y
) 1
a

We sum for r in Z/DZ:

∑
r∈Z/DZ

√
2ayθ

[
a (µ+r)

D

ν

](z
a

)
θ

[
(µ+r)
D

)
−aν

]
(−az) =

∑
r∈Z/DZ

∑
m,n∈Z

e2πi(mν+n(µ+r)/D)eπ(mni− |n−mz|
2

2y
) 1
a

We change the two sums on the RHS:
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∑
r∈Z/DZ

∑
m,n∈Z

e2πi(mν+n(µ+r)/D)eπ(mni− |n−mz|
2

2y
) 1
a =

∑
m,n∈Z

∑
r∈Z/DZ

e2πi(mν+n(µ+r)/D)eπ(mni− |n−mz|
2

2y
) 1
a

Note that the LHS can be rewritten as
∑
m,n∈Z

e2πi(mν+n(µ)/D)eπ(mni− |n−mz|
2

2y
) 1
a

∑
r∈Z/DZ

e2πinr/D

and note further that:

∑
r∈Z/DZ

e2πinr/D =
D−1∑
r=0

e2πinr/D =

{
0, for D - n
D, for D|n

Thus we are only summing over the n’s that are multiples of D, and the RHS of the
formula becomes:∑
r∈Z/DZ

∑
m,n∈Z

e2πi(mν+n(µ+r)/D)eπ(mni− |n−mz|
2

2y
) 1
a = D

∑
m,n′∈Z

e2πi(mν+n′(µ+r))eπ(mn′i− |n
′−m(z/D)|2
2(y/D)

)D
a

Going back to our initial equality, we can change the variable z to z′ := z/D and get:

√
2aDy′

∑
r∈Z/DZ

θ

[
a (µ+r)

D

ν

](
D
z′

a

)
θ

[
(µ+r)
D

)
−aν

] (
−aDz′

)
=

= D
∑

m,n′∈Z

e2πi(mν+n′(µ+r))e
π(mn′i− |n

′−mz′|2
2y′ )D

a

Corollary 5.1. Another version of the factorization lemma above is:

∑
r∈Z/DZ

√
2ay√
D

θ

[
aµ+ ar/D

ν

](
D
z

a

)
θ

[
µ+ r/D
−aν

]
(−aDz) =

∑
m,n∈Z

e2πi(mν+nDµ)eπ(mni− |n−mz|
2

2y
)D
a

(5.3)

Proof. We apply the previous factorization lemma for µ := Dµ.

We will apply Corollary 5.1 for µ = −1/6 and ν = 1/2, D odd, z = −b+
√
−3

2aa1
, where

b2 ≡ −3 mod 4a2a1D and b ≡ 1 mod 16. This gives us:

∑
r∈Z/DZ

√
2ay/Dθ

[
−a

6
+ ar

D

1/2

](
D
−b+

√
−3

2a2a1D

)
θ

[
−1

6
+ r

D

−a/2

](
D
b+
√
−3

2Da1

)
=
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=
∑
m,n∈Z

e2πi(m/2−nD/6)e
π(mni− |nDaa1−m

−b+
√
−3

2 |2

Daa1
√
3

)D
a

We will analyze first the LHS of the equation. Note that from the definition of θ
[
µ
ν

]
we

have:

θ

[
−1

6
+ r

D

−a/2

]
(z) =

∑
n∈Z

eπi(n+ r
D
− 1

6)
2
ze−aπi(n+ r

D
− 1

6) = e−aπir/Deaπi/6θr(z).

Similarly, as a ≡ 1 mod 6, we have θ
[
−a

6
+ ar

D

1/2

]
(z) = θ

[
−1

6
+ ar

D

1/2

]
(z). Then from the

definition of θr we get:

θ

[
−a

6
+ ar

D

1/2

]
(z) =

∑
n∈Z

eπi(n+ar
D
− 1

6)
2
zeπi(n+ar

D
− 1

6) = eπiar/De−πi/6θar(z)

Also, since D ≡ 1 mod 6 we also have: e−2πinD/6 = e−2πin/6. We can also compute:
√

2ay√
D

=

√
2a

√
3

2aa1D√
D

=
4
√

3

D
√
a1

. Thus we can rewrite the formula:

4
√

3

D
√
a1

∑
r∈Z/DZ

eπi(a−1)/6θar

(
−b+

√
−3

2a2a1

)
θr

(
b+
√
−3

2a1

)
=

=
∑
m,n∈Z

e2πi(m/2−n/6)e
π(mni− |nDaa1−m

−b+
√
−3

2 |2

Daa1
√
3

)D
a (5.4)

Now we are going to analyze below the RHS of the equation (5.4):

∑
m,n∈Z

e2πi(m/2−n/6)e
π(mni− |nDaa1−m

−b+
√
−3

2 |2

Daa1
√
3

)D
a

First note that we have the following lemma:

Lemma 5.2. For b ≡ 1 mod 16, b ≡ 0 mod 3, b2 ≡ −3 mod 4a2a1D, we have:

e2πi(m/2+n/2)e
π(mni− |naa1D−m

−b+
√
−3

2 |2

aa1D
√
3

)D
a = e

2πi
|naa1D−m

−b+
√
−3

2 |2

aa1D
D−b+

√
−3

6a

Proof. We only need to show that:

2πi

(
m

2
+
n

2
+
Dmn

2a

)
≡ −2πi

|naa1D −m−b+
√
−3

2
|2

aa1D
D
b

6a
mod 2πiZ.
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After dividing by 2πi, we compute the RHS of the identity:

|naa1D −m−b+
√
−3

2
|2

aa1D
D
b

6a
=

(
Dm2 b(b

2 + 3)

24a2a1

−Db
2mn

6a
+
Dba1n

2

6

)
Thus our claim turns into:(

m

2
+
n

2
+
Dmn

2a

)
≡
(
Dm2 b(b

2 + 3)

24a2a1

−Db
2mn

6a
+
Dba1n

2

6

)
mod Z

Equivalently:

m

2
+
n

2
≡
(
D
m2

2

b

3

(b2 + 3)

4a2a1

−D (b2 + 3)mn

6a
+
n2

2

b

3
Da1

)
mod Z

We have b2 ≡ −3 mod 4aa2
1, b ≡ 1 mod 16, b ≡ 0 mod 3. Note that this implies that

b is odd and that b2 + 3 ≡ 4 mod 8, as well as b2 + 3 ≡ 0 mod 3. Then, since a, a1, D are
odd, we get:

• m/2 ≡ m2/2 ≡ D
m2

2

b

3

(b2 + 3)

4a2a1

mod Z

• n/2 ≡ n2/2 ≡ n2

2

b

3
Da1 mod Z

• −D (b2 + 3)mn

6a
∈ Z

This finishes the proof.

Lemma 5.3. Under the same conditions as above we have:∑
m,n∈Z

e2πin/3e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z

=
3

2
Θ(3z)− 1

2
Θ(z),

where z ∈ H, AA1 = [aa1,
−b+
√
−3

2
] and b ≡ 0 mod 3, b2 ≡ −3 mod 4aa1.

Proof. Note first that by changing m → −m and −m · −b+
√
−3

2
+ naa1 to its conjugate, we

have
∑
m,n∈Z

e2πin/3e
2πi
|−m·−b+

√
−3

2 +naa1|
2

aa1
z

=
∑
m,n∈Z

e2πin/3e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
z
.

We can split the sum in three terms, depending on n mod 3:∑
m,3|n∈Z

e
2πi|m· b+

√
−3

2 +naa1|
2

aa1
·z

+ ω
∑

m,n∈Z,n≡1 mod 3

e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z

+
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+ω2
∑

m,n∈Z,n≡2 mod 3

e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z

Note that the first term equals
∑

m,n∈Z
e

2πi
|m· b+

√
−3

2 +n3aa1|
2

3aa1
·3z

= ΘK(3z).

Also note that the two terms ∑
m,n∈Z,n≡1 mod 3

e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z

and ∑
m,n∈Z,n≡2 mod 3

e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z

equal each other, by changing in the latter n→ −n and m→ −m. Thus we got so far:

Θ(3z) + (ω + ω2)
∑

m,n∈Z,n≡1 mod 3

e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z

Furthermore, we have:

∑
m,n∈Z,n≡1 mod 3

e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z

=
1

2

∑
m,n∈Z,(n,3)=1

e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z

Finally, this is just:

1

2

∑
m,n∈Z

e
2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z − 1

2

∑
m,n∈Z

e
2πi
|m· b+

√
−3

2 +3naa1|
2

3aa1
·3z

=
1

2
(Θ(z)−Θ(3z))

Finally, we get
∑

m,n∈Z
e2πin/3e

2πi
|m· b+

√
−3

2 +naa1|
2

aa1
·z

= Θ(3z) − 1
2
(Θ(z) − Θ(3z)) = 3

2
Θ(3z) −

1
2
Θ(z).

From the previous two lemmas, we get the following corollary:

Corollary 5.2. Under the above conditions, we have:

∑
m,n∈Z

e2πi(m/2−n/6)e
π(mni− |naa1D−m

−b+
√
−3

2 |2

aa1D
√

3
)D
a =

3

2
Θ

(
D
−b+

√
−3

2a

)
− 1

2
Θ

(
D
−b+

√
−3

6a

)
Proof. Note that we can rewrite the LHS in the form:
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∑
m,n∈Z

e2πi(m/2−n/6)e
π(mni− |naa1D−m

−b+
√
−3

2 |2

aa1D
√

3
)D
a =

∑
m,n∈Z

e2πi(m/2−n/2+n/3)e
π(mni− |naa1D−m

−b+
√
−3

2 |2

aa1D
√
3

)D
a

Then, from Lemma 5.2, we have:

∑
m,n∈Z

e2πi(m/2−n/6)e
π(mni− |naa1D−m

−b+
√
−3

2 |2

aa1D
√
3

)D
a =

∑
m,n∈Z

e2πin/3e
|naa1D−m

−b+
√
−3

2 |2

aa1D
)D−b+

√
−3

6a

Now apply Lemma 5.3 for z = D−b+
√
−3

6a
, we get:

∑
m,n∈Z

e2πin/3e
|naa1D−m

−b+
√
−3

2 |2

aa1D
D−b+

√
−3

6a =
3

2
Θ

(
D
−b+

√
−3

2a

)
− 1

2
Θ

(
D
−b+

√
−3

6a

)
Finally, from (5.4) and Corollary 5.2 we get the result of Proposition 5.1:

3

2
Θ

(
D
−b+

√
−3

2a

)
− 1

2
Θ

(
D
−b+

√
−3

6a

)
=

=
4
√

3

D
√
a1

∑
r∈Z/DZ

eπi(a−1)/6θar

(
−b+

√
−3

2a2a1

)
θr

(
b+
√
−3

2a1

)
.

A particular case of Proposition 5.1 is going to be the following result:

Corollary 5.3. For b2 ≡ −3 mod 12a2a1, b ≡ 1 mod 16, we have:

3

2
Θ

(
−b+

√
−3

2a

)
=

4
√

3
√
a1

eπi(a−1) 1
6 θ0

(
−b+

√
−3

2a2a1

)
θ0

(
b+
√
−3

2a1

)
,

where θ0(z) =
∑
n∈Z

eπi(n−1/6)2z(−1)n.

Proof. Applying the Proposition 5.1 for D = 1 we get:

3

2
Θ

(
−b+

√
−3

2a

)
− 1

2
Θ

(
−b+

√
−3

6a

)
=

4
√

3
√
a1

eπi(a−1) 1
6 θ0

(
−b+

√
−3

2a2a1

)
θ0

(
b+
√
−3

2a1

)
.

Furthermore, using the result from Appendix A, Lemma 9.3 that Θ
(
−b+
√
−3

6a

)
= 0, we get

the result of the Corollary.
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We further take the ratios of the theta functions in Proposition 5.1 and Corollary 5.3 to
get the following corollary.

Corollary 5.4. Under the same conditions as above, we have:

Θ
(
D−b+

√
−3

2a

)
Θ
(
−b+
√
−3

2a

) − 1

3

Θ
(
D−b+

√
−3

6a

)
Θ
(
−b+
√
−3

2a

) =
∑

r∈Z/DZ

θar

(
−b+
√
−3

2a2a1

)
θr

(
b+
√
−3

2a1

)
θ0

(
−b+
√
−3

2a2a1

)
θ0

(
b+
√
−3

2a1

)
Proof. We begin by writing the ratio of the formulas in Proposition 5.1 and Corollary 5.3:

Θ
(
D−b+

√
−3

2a

)
Θ
(
−b+
√
−3

2a

) − 1

3

Θ
(
D−b+

√
−3

6a

)
Θ
(
−b+
√
−3

2a

) =

4√3
a1
eπi(a−1)/6

∑
r∈Z/DZ

θar

(
−b+
√
−3

2a2a1

)
θr

(
b+
√
−3

2a1

)
4√3
a1
eπi(a−1)/6θ0

(
−b+
√
−3

2a2a1

)
θ0

(
b+
√
−3

2a1

)
Simplifying, we get the result of the Corollary.

Ratios of θr and θ0

Now we will apply the Factorization Lemma once more to connect the theta functions θr
to the theta function θ0. We do this by applying the Factorization Formula (5.1) twice and
comparing the results.

Note first that any primitive ideal A in OK prime to 6 has a generator (naa+ma
−b+
√
−3

2
)

such that a = Nm(A), b2 ≡ −3 mod 12a and na ≡ 1 mod 3. Moreover, note that a =
n′2a a

2 +m2
a
b2+3

4
−manaab, thus manab ≡ 1 mod a, as a|(b2 + 3)/4.

Using this notation, we have:

Lemma 5.4. For b ≡ 0 mod 3, b2 ≡ −3 mod 4D2aa′, na′ ≡ 1 mod 3, we have:

θr

(
−b+

√
−3

2aa′

)
θ0

(
b+
√
−3

2D2aa′

)
=

1√
a′
θna′r

(
−b+

√
−3

2a

)
θ0

(
b+
√
−3

2D2a

)
Proof. We write the generator of A′ in the form (na′a

′ + ma′
−b+
√
−3

2
), where b2 ≡ −3

mod 4aa′D2. Moreover, we can pick na′ ≡ 1 mod 3. Then, using the Factorization For-
mula (5.1) for µ = −1

6
+ r

D
, ν = 1

2
, a := D and z = −b+

√
−3

2aa′D
, we have:

4
√

3

2
√
aa′

θ

[
−1

6
+ r

D

D/2

](
D
−b+

√
−3

2aa′D

)
θ

[
−D

6

−1/2

](
b+
√
−3

2D2aa′

)
=

=
∑
m,n

e2πinr
D e2πin

3 e2πi(mn
2D

+m
2

+n
2

)e2πi
|m−b+

√
−3

2 +naa′D|2

aa′D

√
−3

6D

Note that on the LHS we have
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θ

[
−1

6
+ r

D

D/2

]
(z) = e−πi/6eπirθr(z)

and

θ

[
−D

6

−1/2

]
= eπi/6θr(z).

Furthermore, using Lemma 5.2, the RHS equals:∑
m,n

e2πinr
D e2πin

3 e2πi
|m−b+

√
−3

2 +naa′D|2

aa′D
−b+

√
−3

6D .

Thus we got:

4
√

3

2
√
aa′

eπirθr

(
D
−b+

√
−3

2aa′D

)
θ0

(
b+
√
−3

2D2aa′

)
=
∑
m,n

e2πinr
D e2πin

3 e2πi
|m−b+

√
−3

2 +naa′D|2

aa′D
−b+

√
−3

6D .

(5.5)
Note that if we write any element ofAA′D, we can write it as an element ofAD multiplied

by the generator of A′. Thus if we write an element of AA′D, in the form m−b+
√
−3

2
+naa′D,

it is going to equal an elementm0
−b+
√
−3

2
+n0aD ∈ AD times the generatorma′

−b+
√
−3

2
+na′a

′

of A′:

m
−b+

√
−3

2
+ naa′D = (m0

−b+
√
−3

2
+ n0aD)(ma′

−b+
√
−3

2
+ na′a

′)

This gives us: {
m = m0ma′ + n0na′ −m0ma′b

n = n0na′ −m0ma′
b2+3
4aa′D

Since b2 + 3 ≡ 0 mod 4D2, it implies that n ≡ n0na′ mod D. Then we have:

∑
m,n

e2πinr
D e2πin

3 e2πi
|m−b+

√
−3

2 +naa′D|2

aa′D
−b+

√
−3

6D =
∑
m0,n0

e2πi
n0na′r
D e2πi

n0na′
3 e2πi

|m0
−b+

√
−3

2 +n0aD|
2

aD
−b+

√
−3

6D

Since we picked na′ ≡ 1 mod 3, this is the same as∑
m0,n0

e2πi
n0na′r
D e2πi

n0
3 e2πi

|m0
−b+

√
−3

2 +n0aD|
2

aD
−b+

√
−3

6D .

Then applying the Factorization Formula (5.1) again for µ := −1
6

+ n′ar
D
, ν := 1

2
, a := D and

z := −b+
√
−3

2aD
, we get:



CHAPTER 5. WRITING SD AS A SQUARE. 49

∑
m0,n0

e2πi
n0na′r
D e2πi

n0
3 e2πi

|m0
−b+

√
−3

2 +n0aD|
2

aD
−b+

√
−3

6D =

=
4
√

3

2
√
a
θ

[
−1

6
+ n′ar

D

D/2

](
D
−b+

√
−3

2aD

)
θ

[
−D

6

1/2

](
−b+

√
−3

2D2a
.

)
Moreover, on the RHS we have the theta functions θ

[
−1

6
+ n′ar

D

D/2

]
(z) = e−πi/6eπin

′
arθr(z)

and θ
[
−D

6

1/2

]
(z) = eπi/6θ0(z). Thus we can rewrite the equality as:

∑
m0,n0

e2πi
n0na′r
D e2πi

n0
3 e2πi

|m0
−b+

√
−3

2 +n0aD|
2

aD
−b+

√
−3

6D = (5.6)

4
√

3

2
√
a
eπin

′
arθn′ar

(
D
−b+

√
−3

2aD

)
θr

(
−b+

√
−3

2D2a
.

)
(5.7)

Comparing the two relations (5.5) and (5.7), we get:

1√
a′
eπirθr

(
−b+

√
−3

2aa′

)
θ0

(
b+
√
−3

2D2aa′

)
= eπin

′
arθna′r

(
−b+

√
−3

2a

)
θ0

(
b+
√
−3

2D2a

)

Lemma 5.5. Under the same conditions as above, we have:

eπirθr

(
−b+
√
−3

2aa′

)
θ0

(
−b+
√
−3

2aa′D2

) =
eπina′rθna′r

(
−b+
√
−3

2a

)
θ0

(
−b+
√
−3

2aa′D2

)
Proof. Note that from Corollary 5.3, we have 3

2
Θ
(
−b+
√
−3

2

)
=

4√3

D
√
aa′
θ0

(
−b+
√
−3

2aa′D2

)
θ0

(
b+
√
−3

2aa′D2

)
.

Moreover, we also have from the same corollary that

3

2
Θ

(
−b+

√
−3

2

)
=

4
√

3

D
√
a
θ0

(
−b+

√
−3

2aD2

)
θ0

(
b+
√
−3

2aD2

)
,

thus:

1√
a′
θ0

(
−b+

√
−3

2aa′D2

)
θ0

(
b+
√
−3

2aa′D2

)
= θ0

(
−b+

√
−3

2aD2

)
θ0

(
b+
√
−3

2aD2

)
Recall from the previous Lemma that we also have:

1√
a′
eπirθr

(
−b+

√
−3

2aa′

)
θ0

(
b+
√
−3

2aa′D2

)
= eπina′rθna′r

(
−b+

√
−3

2a

)
θ0

(
b+
√
−3

2aD2

)
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Dividing the two relations, we get exactly:

eπirθr

(
−b+
√
−3

2aa′

)
θ0

(
−b+
√
−3

2aa′D2

) =
eπina′rθna′r

(
−b+
√
−3

2a

)
θ0

(
−b+
√
−3

2aD2

)

Applying the factorization lemma to get a square.

We would like to apply the factorization lemma for the formula in Theorem 1.1 for certain
ideals that are representatives of the ring class field Cl(O3D). We will pick these ideals below.

Representatives of Cl(O3D).

Recall that, using Cox [4], for the ideal class group of conductor 3D, we have:

Cl(O3D) = (O3D/3DOK)×/(Z/3DZ)×(O×K/{±1})
Moreover,we can compute explicitly that for D =

∏
pi≡1 mod 3

pi we have Cl(O3D) ∼=

(Z/DZ)× which also gives us # Cl(O3D) = φ(D), where φ is Euler’s totient function.
Furthermore, we are claiming that we can take as representatives of Cl(O3D) ideals with

norm NmAk ≡ k mod D for k ∈ (Z/DZ)×. We construct these ideals in the following
lemma:

Lemma 5.6. We can take as representatives of Cl(O3D) the ideals:

Ak =

(
nkak +mk

−b+
√
−3

2

)
,

where NmAk = ak ≡ k mod D for k ∈ (Z/DZ)×, ak ≡ 1 mod 6 and nk ≡ 1 mod D.
We can pick such an ideal if we take mk ≡ b−1(k + 1) mod D. We can further put the
conditions nk,mk ≡ 1 mod 3 to determine the ideal uniquely modulo 3D.

Proof. Note first that two ideals A,B are in the same class in Cl(O3D) if we can find gener-
ators α, β for A and B, respectively, such that αβ−1 ≡ m mod 3D, where m is an integer
prime to 3D. Note that this implies αβ−1 ≡ ±1 mod 3.

Let us assume that Ak and Al are in the same class in Cl(O3D). Then we must have
±ωi

(
nkak +mk

−b+
√
−3

2

)
≡ ±ωjR

(
nlal +ml

−b+
√
−3

2

)
mod 3D for some i, j and some in-

teger R. Since we chose nk,mk, nl,ml ≡ 1 mod 3 and b is odd, we actually have nkak +
mk
−b+
√
−3

2
≡ nlal + ml

−b+
√
−3

2
≡ ω mod 3, which determines the choice of ±ωi = ±ωj on

both sides. We further need the condition:

nkak +mk
−b+

√
−3

2
≡ R(nlal +ml

−b+
√
−3

2
) mod D
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Note that this is equivalent to:

k + b−1(k + 1)
−b+

√
−3

2
≡ R(l + b−1(l + 1)

−b+
√
−3

2
) mod D

Furthermore, this can be rewritten as:

kb+ (k + 1)
√
−3

2
≡ R

lb+ (l + 1)
√
−3

2
mod D

This implies k ≡ lR mod D and k+ 1 ≡ lR+R mod D, thus R ≡ 1 mod D and k ≡ l
mod D.

Finally, we have #(Z/DZ)× such ideals, all in different classes of Cl(O3D), thus we have
representatives in every class of Cl(O3D).

Using the factorization formula

We will pick representatives as in the above Lemma to rewrite the Proposition 5.1 and apply
Corollary 5.4. We will denote by {s ∈ (Z/DZ)×, s ≡ 1 mod 6} the norms of the ideals
chosen in Lemma 5.6. Furthermore, we are going to choose in Proposition 5.1 all r to be
even. We will use the notation {r ∈ Z/DZ, r even} to express this.

Lemma 5.7. Picking representatives of s ∈ (Z/DZ)× such that s ≡ 1 mod 6 and r ∈ Z/DZ
also such that r ≡ 0 mod 2, we have

∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As) =
∑

s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/DZ,
r even

θsr

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

) χ(ArAs) ·
θr

(
b+
√
−3

2

)
θ0

(
b+
√
−3

2D2

)χ(Ar)

Proof. We fix φ(D) ideals Ak as in Lemma 5.6. Recall that we pick Ak such that NmAk =
ak ≡ k mod D for k ∈ (Z/DZ)×, ak ≡ 1 mod 6 and nk ≡ 1 mod D. We can pick such
an ideal if we take Ak = (nkak + mk

−b+
√
−3

2
) with mk ≡ b−1(k + 1) mod D. We will try to

compute:

S =
∑

k∈(Z/DZ)×

k≡1 mod 6

Θ
(
D−b+

√
−3

2ak

)
Θ
(
−b+
√
−3

2ak

) χ(Ak)

Recall that from Corollary 5.4, we have:

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) − 1

3

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

6as

) =
∑

r∈Z/DZ,
r even

θasr

(
−b+
√
−3

2a2s

)
θr

(
b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2a2s

)
θ0

(
b+
√
−3

2D2

)
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Moreover since r, ars are both even, we have eπina2s rs = eπirs = 1 and thus in Lemma 5.5
we have:

θrs

(
−b+
√
−3

2a2s

)
θ0

(
−b+
√
−3

2a2sD
2

) =
θrs

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

)
Then our sum can be written in the form:

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) − 1

3

Θ
(
D−b+

√
−3

6as

)
Θ
(
−b+
√
−3

2as

) =
∑

r∈Z/DZ,
r even

θsr

(
−b+
√
−3

2

)
θr

(
b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

)
θ0

(
b+
√
−3

2D2

) (5.8)

Now summing up for all s ∈ (Z/DZ)×, we get the result of the lemma:

∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As)−
1

3

∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D−b+

√
−3

6as

)
Θ
(
−b+
√
−3

2as

) χ(As) =

=
∑

s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/DZ,
r even

θrs

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

) χ(ArAs) ·
θr

(
b+
√
−3

2

)
θ0

(
b+
√
−3

2D2

)χ(Ar)

From Lemma 9.7 in Appendix A, we have
∑

s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D−b+

√
−3

6as

)
Θ
(
−b+
√
−3

2as

) χ(As) = 0. This gives

us the result of the Lemma.

Proposition 5.2. Under the conditions above, we have:

∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As) =

∣∣∣∣∣∣∣∣
∑

s∈(Z/DZ)×

s≡1 mod 6

θs

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

)χ(As)

∣∣∣∣∣∣∣∣
2

Proof. Only for the purpose of this proposition we will use the following notation for θr, to
emphasize how it depends on D:

θr/D(z) =
∑
n∈Z

eπi(n+ r
D
− 1

6)
2
z(−1)n

Using the new notation, in the previous Lemma we have proved:
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∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As) =
∑

s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/DZ,
r even

θsr/D

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

) ·
θr/D

(
b+
√
−3

2

)
θ0

(
b+
√
−3

2D2

) χ(As).

Note that using Corollary 5.3 for a = D2 can rewrite:

θ0

(
−b+

√
−3

2D2

)
θ0

(
b+
√
−3

2D2

)
=

D
4
√

3
Θ

(
b+
√
−3

2

)
Thus the equation becomes:

∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As) =

1

D
4√3

Θ
(
b+
√
−3

2

) ∑
s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/DZ,
r even

θsr/D

(
−b+

√
−3

2

)
θr/D

(
b+
√
−3

2

)
χ(As) (5.9)

Let R ≡ R′ mod D, R even and S ≡ 1 mod 6. Then we have by definition:

θRS(z1)θR(z2) =
∑
n∈Z

eπi(n+RS/D−1/6)2z1eπin
∑
m∈Z

eπi(m+R/D−1/6)2z2eπim

By changing n→ n+ S and m→ m+ 1, we change R→ D+R and R+D ≡ R′ mod 2D.
We get

θRS(z1)θR(z2) =

=
∑
n∈Z

eπi(n+R′S/D−1/6)2z1eπin(−1)S
∑
m∈Z

eπi(m+R′/D−1/6)2z2eπim(−1) = θR′S(z1)ΘR′(z
′
2)

Thus we can choose in the formulas above all r to be actually odd. Furthermore, by
making a change of r ± 2D we can also choose r ≡ 1 mod 3. Then we can rewrite the
equation as:

∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As) =

=
1

D
4√3

Θ
(
b+
√
−3

2

) ∑
s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/DZ,

r≡1 mod 6

θsr/D

(
−b+

√
−3

2

)
θr/D

(
b+
√
−3

2

)
χ(As) (5.10)
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Denote τD = −b+
√
−3

2
. Note that we are summing over all residues r mod D. We can

separate the terms, depending on whether a prime divisor pi divides both D and r. We do
this by using the Inclusion-Exclusion principle and note that the sum gets rewritten as:∑

s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/DZ,

r≡1 mod 6

θsr/D(τD)θr/D(−τD)χ(As) =

=
∑

s∈(Z/DZ)×

s≡1 mod 6

∑
r∈(Z/DZ)×

r≡1 mod 6

θsr/D(τD)θr/D(−τD)χ(As)

+
∑
pi|D

∑
s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/(D/pi)/Z
r≡1 mod 6

θ sr
(D/pi)

(τD)θ r
(D/pi)

(−τD)χ(As)−

−
∑
pipj |D

∑
s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/(D/pipj)Z
r≡1 mod 6

θ sr
(D/pipj)

(τD)θ r
(D/pipj)

(−τD)χ(As)+

. . .

+(−1)n−1
∑

p1...pn|D

∑
s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/(D/p1...pn)Z

r≡1 mod 6

θ sr
(D/p1...pn)

(τD)θ r
(D/p1...pn)

(−τD)χ(As)

Using Lemma 5.8 proved below, all of the terms except for the first one equal 0. Thus
getting back to the equation (5.10), we get:

∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As) =

=
∑

s,r∈(Z/DZ)×

s≡r≡1 mod 6

∑
s∈(Z/DZ)×

s≡1 mod 6

θsr/D

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

6D2

) χ(ArAs) ·
θr/D

(
b+
√
−3

2

)
θ0

(
b+
√
−3

6D2

) χ(Ar)

=
∑

s,r s∈(Z/DZ)×

s≡1 mod 6

θsr/D

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

) χ(ArAs) ·
θr/D

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

) χ(Ar)

=

∣∣∣∣∣∣∣∣
∑

s∈(Z/DZ)×

s≡1 mod 6

θs/D

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

) χ(As)

∣∣∣∣∣∣∣∣
2
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Below we prove Lemma 5.8 used in the proof of Proposition 6.1:

Lemma 5.8. If D = p1 . . . pn and D′ = D/(pi1 . . . pik), then:∑
s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/D′Z

r≡1 mod 6

θsr/D′

(
−b+

√
−3

2

)
θr/D′

(
b+
√
−3

2

)
χ(As) = 0

Proof. Note that first that we can rewrite the sum in the form:

∑
s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/D′Z

r≡1 mod 6

θsr/D′

(
−b+

√
−3

2

)
θr/D′

(
b+
√
−3

2

)
χ(As) =

= θ0

(
−b+

√
−3

2D′2

)
θ0

(
b+
√
−3

2D′2

) ∑
s∈(Z/DZ)×

s≡1 mod 6

∑
r∈Z/D′Z

r≡1 mod 6

θrs/D′
(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D′2

) ·
θr/D′

(
b+
√
−3

2

)
θ0

(
b+
√
−3

2D′2

) χ(As)

Using (5.8) for D := D′, we recognize the sum on the LHS to be:

∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D′ −b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As)

Denote m = D/D′ = pi1 . . . pik . Moreover, recall that from the definition of the cubic
character we have:

D1/3χD(As) = (D1/3)σAs = (D′1/3)σAs (m1/3)σAs = D′1/3χD′(As)m1/3χm(As)

Then we can rewrite the sum as:

∑
s∈(Z/DZ)×

s≡1 mod 6

Θ
(
D′ −b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χD(As) =

∑
s′∈(Z/D′Z)×,s′≡1 mod 6

Θ
(
D′ −b+

√
−3

2a′s

)
Θ
(
−b+
√
−3

2a′s

) χD′(As)
∑

s∈(Z/DZ)×,
s≡s′≡1 mod 6
s≡s′ mod D′

χm(As)

Note that as D = p1 · · · pn, we have {s ∈ (Z/DZ)×, s ≡ s′ mod D′} ∼= (Z/mZ)×.
Moreover, note that χm(As) depends only on s mod m. Thus we are summing the character
χm(As) = χm(As′′) over s′′ ∈ (Z/mZ)×.

Moreover, χm(As) is a nontrivial character as a function of s, as
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m1/3χm(As) = (m1/3)σAs = m1/3

for all As iff m1/3 ∈ Q[
√
−3]. As we are summing a non-trivial character over a group,

the sum is just 0: ∑
s′′∈(Z/mZ)×

χm(As′′) = 0,

thus the whole sum is zero.

We left out the case r ≡ 0 mod D. In this case we have:

∑
s∈(Z/DZ)×

s≡1 mod 6

θ0

(
−b+
√
−3

2

)
θ0

(
b+
√
−3

2

)
D
4√3

Θ
(
b+
√
−3

2

) χ(As) =
∑

s∈(Z/DZ)×

s≡1 mod 6

1

D
χ(As) = 0
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Chapter 6

Shimura reciprocity applied to θr

We will first rewrite below the formula of Proposition 5.2. We define the function fr(z) =
θr(z)

θ0(z)
, where θr(z) =

∑
n∈Z

eπi(n+ r
D
− 1

6)
2
zeπin and θ0(z) =

∑
n∈Z

eπi(n−
1
6)

2
zeπin. Then we can

rewrite Proposition 5.2 as:

∑
s∈(Z/DZ)×

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As) =

∣∣∣∣∣∣
∑

s∈(Z/DZ)×

fs(τ)χ(As)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
θ0

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

)
∣∣∣∣∣∣
2

Note that from the Corollary 5.3, we can compute

3

2
Θ

(
−b+

√
−3

2

)
=

4
√

3

1
θ0

(
−b+

√
−3

2

)
θ0

(
b+
√
−3

2

)
as well as

3

2
Θ

(
−b+

√
−3

2

)
=

4
√

3

D
θ0

(
−b+

√
−3

2D2

)
θ0

(
b+
√
−3

2D2

)
.

Taking the ratio of the two relations, gives us

∣∣∣∣∣∣
θ0

(
−b+
√
−3

2

)
θ0

(
−b+
√
−3

2D2

)
∣∣∣∣∣∣
2

= D. Thus we get:

∑
s∈(Z/DZ)×

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) χ(As) = D

∣∣∣∣∣∣
∑

s∈(Z/DZ)×

fs(τ)χ(As)

∣∣∣∣∣∣
2

.

By further multiplying by D1/3, we have:

∑
s∈(Z/DZ)×

Θ
(
D−b+

√
−3

2as

)
Θ
(
−b+
√
−3

2as

) D1/3χ(As) =

∣∣∣∣∣∣
∑

s∈(Z/DZ)×

fs(τ)χ(As)D2/3

∣∣∣∣∣∣
2

. (6.1)



CHAPTER 6. SHIMURA RECIPROCITY APPLIED TO θr 58

Our goal in this section is to show that all the terms fs(τ)χ(As)D2/3 are Galois conjugates
of each other.

θr as an automorphic form

We will first look closer at the function θr. We will rewrite θr as an automorphic theta
function Θ : SL2(AQ)→ C:

Θ(g) =
∑
m∈Q

r(g)Φ(m),

where Φ ∈ S(AQ) is a Schwartz-Bruhat function and r is the Weil representation defined
by:

• r
((

a 0
0 a−1

)
Φ

)
(x) = χ0(a)|a|1/2Φ(ax)

• r
((

1 b
0 1

)
Φ

)
(x) = ψ(bx2)Φ(x)

• r
((

0 1
−1 0

)
Φ

)
(x) = γΦ̂(x),

where ψp(x) = e−2πiFracp(x) and ψ∞(x) = e2πix, γ is an 8th root of unity, and χ0 is a
quadratic character. For precise definitions see Chapter 8.

We define the following Schwartz-Bruhat functions for θ. Let Φr =
∏
v

Φr
v, where:

Φ
(r)
p = charZp , if p - D

Φ
(r)
p = charZp− r

D
, if p|D, p - 2, 3

Φ
(r)
3 = charZ3+ 1

3
,

Φ
(r)
2 (n) = eπiFrac2(n) charZ2+ 1

2
(n),

Φ
(r)
∞ (x) = e−2πq(x).

We define the theta function:

ΘΦ(r)(g) =
∑
n∈Q

r(g)Φ(r)(n)

Note that Φ
(r)
f (n) 6= 0 for n ∈ Q implies n − r

D
+ 1

6
∈ Zp for all p. This implies

n − r
D

+ 1
6
∈ Z, thus n ∈ Z + r

D
− 1

6
Also note that for gz =

(
y1/2 y−1/2x

0 y−1/2

)
, we have

r(gz)Φ∞(n) = r
((

y1/2 0

0 y−1/2

) (
1 xy−1

0 1

)
Φ
)

(n) = y1/2e2πi(x+yi)n2

. Then we can compute:
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ΘΦ(r)(gz, 1f ) =
∑

n∈Z+ r
D
− 1

6

e2πizn2

eπiFrac2(n) = y1/2θr(2z)

Note that θr(2z) = y−1/2ΘΦ(r)(gz, 1f ) and θ0(2z) = y−1/2ΘΦ(0)(gz, 1f ), which implies:

θr(z)

θ0(z)
=

ΘΦ(r)(gz/2, 1f )

ΘΦ(0)(gz/2, 1f )

Galois conjugates of fr(τD).

We will compute below the Galois conjugates of fr
(
−b+
√
−3

2

)
using the Shimura reciprocity

law. We first recall the function fr(z) =
θr(z)

θ0(z)
. Note that we can rewrite the function using

ΘΦ(r) and ΘΦ(0) :

fr(z) =
ΘΦ(r)(gz/2, 1f )

ΘΦ(0)(gz/2, 1f )

We will first check that fr(z) is a modular function. We begin by checking that θr(z) is
a modular form of weight 1/2 in the Lemma below.

Lemma 6.1. For r ∈ Z, the transformation of the function θr(z) under
(
a b
c d

)
∈ Γ(72D2)

is:

−2i sgn(d)γ4
∞

√
1

cz + d
θr

(
az + b

cz + d

)
= θr(z)

Proof. Recall that θr(z) = ΘΦ(r)(gz/2). We will compute θr
((

a b
c d

)
z

)
, for

(
a b
c d

)
∈

Γ(72D2). Note first that:

θr

((
a b
c d

)
z

)
= ΘΦ(r)

((
1/
√

2 0

0
√

2

)(
a b
c d

)
gz

)
= ΘΦ(r)

((
a b/2
2c d

)(
1/
√

2 0

0
√

2

)
gz

)
As ΘΦ(r) is invariant under SL2(Q), we can rewrite ΘΦ(r) as:

ΘΦ(r)

((
a b/2
2c d

)(
1/
√

2 0

0
√

2

)
gz, 1

)
= ΘΦ(r)

((
1/
√

2 0

0
√

2

)
gz,

(
a b/2
2c d

)−1
)

We will compute separately the two terms, using the Weil representations. For the RHS,

note that we have to compute r
(
a b/2
2c d

)−1

Φ
(r)
f = r

(
d −b/2
−2c a

)
Φ

(r)
f . We will show:
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ΘΦ(r)

((
1/
√

2 0

0
√

2

)
gz,

(
a b/2
2c d

)−1
)

=
∏
p|6D

γ2
pΘΦ(r)

((
1/
√

2 0

0
√

2

)
gz,

)
We rewrite the matrix as:(

d −b/2
−2c a

)
=

(
1/a −b/2
0 a

)(
1 0

−2c/a 1

)
At p - 6D, the action of

(
d −b/2
−2c a

)
is trivial, as it belongs to SL2(Zp) and Φ

(r)
p is the

characteristic function of Zp. For p|6D, we compute:

First we compute r
(

1 0
−2c/d 1

)
Φ

(r)
p (x) = γ2

pΦ
(r)
p (x). We rewrite the matrix as(

1 0
−2c/d 1

)
=

(
−1 0
0 −1

)(
0 −1
1 0

)(
1 2c/d
0 1

)(
0 −1
1 0

)
and compute the Weil representation action:

• r
(

0 −1
1 0

)
Φ

(r)
p (x) = γpΦ̂

(r)
p (x). Note that we can compute:

Φ̂
(r)
p (x) =

∫
Qp

e−2πiFracp(2xy) charZp+ r
D

(y)dy

=

∫
Zp

e−2πiFracp(2x(y+r/D))dy = e−2πiFracp(2rx/D charZp(x)

• r
(

1 2c/d
0 1

)
Φ̂(r)

p(x) = e−2πiFracp(2c/dx2e−2πiFracp(2rx/D charZp(x). As vp(c/d) ≥ 0, we

have e−2πiFracp(2c/dx2 = 1, thus the action is trivial on Φ̂
(r)
p (x)

• r
(

0 −1
1 0

)
Φ̂

(r)
p (x) = γp

̂̂
Φ

(r)
p (x). By the choice of the self-dual Haar measure, this

equals γpΦ
(r)
p (−x).

• r
(

0 −1
1 0

)
Φ

(r)
p (−x) = Φ

(r)
p (x)

Now we also want to compute the action of r
(

1/a −b/2
0 a

)
Φ

(r)
p (x). We rewrite the

matrix as: (
1/a −b/2
0 a

)
=

(
1/a 0
0 a

)(
1 −ba/2
0 1

)
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and compute the action:

• r
(

1 −ba/2
0 1

)
Φ(r)
p (x) = e2πiFracp(ba/2x2) charZp+r/D(x).

As D2|ba/2, we have e2πiFracp(ba/2x2), thus we have trivial action.

• r
(

1/a 0
0 a

)
Φ

(r)
p (x) = χ0(a)|a|1/2p Φ

(r)
p (x/a). As a ≡ 1 mod D, we get Φ

(r)
p (x/a) =

Φ
(r)
p (x), as well as χ0(a) = |a|1/2p = 1.

For p = 3 the computation is similar. For p = 2, we compute first the action of(
1 0

−2c/d 1

)
to get:

r

(
1 0

−2c/d 1

)
Φ(r)
p (x) = γ2

pΦ
(r)
p (x).

The computation is done below:

• r
(

0 −1
1 0

)
Φ

(r)
2 (x) = γ2Φ̂

(r)
p (x). Note that we can compute:

Φ̂
(r)
2 (x) =

∫
Q2

e−2πiFrac2(2xy) charZ2+ 1
2
(y)eπiFrac2(y)dy

= eπi/2
∫
Z2

e−2πiFrac2(2x(y+1/2))eπiFrac2(y)dy

= eπi/2e−2πiFrac2(x)

∫
Z2

e−2πiFrac2((2x−1/2)y)dy

= eπi/2e−2πiFrac2(x) char 1
2

(Z2+1/2)(x)

• r
(

1 2c/d
0 1

)
Φ̂(r)

2(x) =

= e−2πiFrac2(2c/dx2Φ̂(r)
2(x). As vp(2c/d) ≥ 4, we have e−2πiFracp(2c/dx2 = 1, thus the

action is trivial on Φ̂
(r)
p (x)

• r
(

0 −1
1 0

)
Φ̂

(2)
p (x) = γ2

̂̂
Φ

(r)
2 (x). By the choice of the self-dual Haar measure, this

equals γ2Φ
(r)
2 (−x).

• r
(

0 −1
1 0

)
Φ

(r)
2 (−x) = Φ

(r)
2 (x)
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We compute similarly the action of r
(

1/a −b/2
0 a

)
Φ

(r)
2 (x):

• r
(

1 −ba/2
0 1

)
Φ

(r)
2 (x) = e2πiFracp(ba/2x2)eπiFrac2(x) charZ2+1/2(x). As 4|ba/2, we have

e2πiFrac2(ba/2x2) = 1, thus we have trivial action.

• r
(

1/a 0
0 a

)
Φ

(r)
2 (x) = χ0(a)|a|1/22 Φ

(r)
2 (x/a). As a ≡ 1 mod 8, we get Φ

(r)
2 (x/a) =

Φ
(r)
2 (x), as well as χ0(a) = |a|1/22 = 1.

This finishes the computation of the finite part. We got:

ΘΦ(r)

((
1/
√

2 0

0
√

2

)
gz,

(
a b/2
2c d

)−1
)

= 2−1/4y1/2
∑

m∈Z+ r
D
− 1

6

eπim
2z(−1)m = 2−1/4y1/2θr(z)

(6.2)
We will compute now the infinite part. Note first that r(gz)Φ∞(m) = y1/4e2πiz|m|2 We

rewrite the matrix:(
a b
c d

)
=

(
−1 0
0 −1

)(
1 b/d
0 1

)(
1/d 0
0 d

)(
0 −1
1 0

)(
1 −c/d
0 1

)(
0 −1
1 0

)
We compute the Weil representation action:

• F1(m) := r

(
0 −1
1 0

)
e2πizm2

= γ∞
√

2 1√
−ize

−2πi 1
z

• F2(m) := r

(
1 −c/d
0 1

)
F1(m) = e−2πi c

d
m2
F1(m) =

√
2γ∞

1√
−ize

−2πi cz+d
dz

• F3(m) := r

(
0 −1
1 0

)
F3(m) = γ∞F̂3(m) = 2γ2

∞
1√
−ize

2πi dz
cz+d

√
i dz
cz+d

= 2γ2
∞

√
−d

cz + d
e−2πi dz

cz+d
m2

• F4(m) := r

(
1/d 0
0 d

)
F3(m) = sgn(d)d−1/2F3(m/d)

= 2 sgn(d)d−1/2F3(m/d)γ2
∞

√
−d

cz + d
e2πi z

d(cz+d)
m2

= 2 sgn(d)F3(m/d)γ2
∞

√
−1

cz + d
e2πi z

d(cz+d)
m2
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• F5(m) := r

(
1 b/d
0 1

)
F4(m) = e2πi b

d
m2
F4(m) = 2 sgn(d)γ2

∞

√
−1
cz+d

e2πi( bd+ z
d(cz+d))m2

=

2 sgn(d)γ2
∞

√
−1
cz+d

e2πi( (bc+1)z+bd
d(cz+d) )m2

= 2 sgn(d)γ2
∞

√
−1
cz+d

e2πi(az+bcz+d)m2

• r
(
−1 0
0 −1

)
F5(m) = −F5(−m) = −2 sgn(d)γ2

∞

√
−1
cz+d

e2πi(az+bcz+d)m2

We still have to compute the action of r
(

1/
√

2 0

0
√

2

)
on

−2y1/2 sgn(d)γ2
∞

√
−1

cz + d
e2πi(az+bcz+d)m2

.

This gives us just:

−23/4iy1/2 sgn(d)γ2
∞

√
1

cz + d
eπi(

az+b
cz+d)m2

Thus we have:

Θ

((
1/
√

2 0

0
√

2

)(
a b
c d

)
z, 1

)
= −23/4iy1/2 sgn(d)γ2

∞

√
1

cz + d

∑
m∈Z+ r

D
− 1

6

eπi(
az+b
cz+d)m2

(−1)m

Note that this is exactly:

−23/4iy1/2 sgn(d)γ2
∞

√
1

cz + d
θr

(
az + b

cz + d

)
(6.3)

From (6.2) and (6.3) we get that:

−2i sgn(d)γ4
∞

√
1

cz + d
θr

(
az + b

cz + d

)
= θr(z)

Lemma 6.2. f ∈ F is a modular function for Γ(72D2).

Proof. We need to check that for
(
a b
c d

)
∈ Γ(72D2) we have:

fr

((
a b
c d

)
z

)
= fr(z).
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Using the previous lemma, for
(
a b
c d

)
∈ Γ(72D2) we have −2i sgn(d)γ4

∞

√
1

cz+d
θr (γz) =

θr(z). Applying the same computation for r = 0, we get −2i sgn(d)γ4
∞

√
1

cz+d
θ0 (γz) = θ0(z).

Thus we have:

θr(γz)

θ0(γz)
=

1
−2i sgn(d)γ4∞

√
cz + dθr(z)

1
−2i sgn(d)γ4∞

√
cz + dθ0(z)

=
θr(z)

θ0(z)

Lemma 6.3. The modular function fr has rational Fourier coefficients in its Fourier expan-
sion at the cusp ∞.

Proof. Note that θr(z) = q(D−r)2/72(1+
∑
M≥1

aMq
M/(72D2)), where am ∈ Z and θ0(z) = q1/72(1+∑

M≥1

bMq
M/72)

Then we can compute fr(z) = q((D−r)2−1)/72(1 +
∑
m

amq
m/72D2

) with am ∈ Z.

From CM-theory we have f(τ) ∈ HO, where HO is the ray class field of modulus 72D2.
In order to compute its Galois conjugates over K we can use Shimura reciprocity law. In its
generality:

Shimura reciprocity law. For τ ∈ K ∩H with minimal polynomial X2 +BX+C = 0,
we have its Galois conjugates:

fr(τ)σ
−1
x = f gτ (x)

r (τ),

for x ∈ A×Kf , gτ (x) =

(
t− sB −sC
s t

)
.

In our case, we want to compute the Galois conjugates of fr(τ), where τ = −b+
√
−3

2
. Note

that it has the minimum polynomial X2 + bX + b2+3
4

. Thus we have to compute the action

of all gτ ((xp)p) =
∏
p

(
tp − spb −sp b

2+3
4

sp tp

)
p

.

We will compute all these actions. However, we claim that it is enough to compute the
action of the ideals A through the correspondence:

I(3)→ A×K,f/K
×

A = (A+Bω) −→ (A+Bω)p|6D,

where A+Bω ≡ 1 mod 3 is the generator of the ideal A.
More precisely, in order to find the Galois conjugates over K, we will compute the action

of all Galois actions corresponding to (Ap + Bpω)p ∈ A×K and we will prove that the Galois
action from Shimura reciprocity law is:
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Proposition 6.1. For A = (naa+ma
−b+
√
−3

2
), where b2 ≡ −3 mod 4Db2 is an ideal prime

to 6D, we have:

f1(τ)σA = fna(τ)

and fr(τ) are all the Galois conjugates of f(τ), where r ∈ (Z/DZ)×. Moreover, this
implies that f1(τ) ∈ H6D.

Proof. First we note that we do not have to consider the action of all (xp)p ∈ A×K . By
applying the Strong Approximation Theorem for GL1 and the number field K that is a PID,
we have:

A×K = K× ×
∏
v-∞

O×Kv × C×

This implies:

A×Kf = K× ×
∏
v-∞

O×Kv

Then any x = (xv) ∈ A×K,f can be written as x = k(lv), where k ∈ K×, (lv)v ∈
∏
v-∞
O×Kv .

Since Nm k > 0, we have the embedding:

k ∈ K× ↪→ GL2(Q)+

We also have the embedding:

(lv)v ∈
∏
v-∞

O×Kv ↪→
∏
p

GL2(Zp)

Thus if we know the Galois action of K× and of Ô×K , we will know the Galois action of
A×K,f .

We recall the way the action of gτ (x) is defined for. For α ∈ GL2(Q)+, fα is defined by
fα(τ) = f(ατ). In our case we only need to look at the action of K×. Recall that k ∈ K×
embeds into GL2(Q)+ under the map:

k = t+ s
−b+

√
−3

2
↪→ gτ (k) =

(
t− sb −sc
s t

)
Then the Galois action from Shimura reciprocity is:

f(τ)k
−1

= f gτ (k)(τ) = f(gτ (k)τ)
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Note that t+ sτ → ( t−sb −scs t ) is the torus that preserves τ , thus we have:

f(τ)k
−1

= f(gτ (k)τ) = f(τ)

Now all we have left is to compute the action of
∏
O×Kv . Note that for all v - 6D the

action is trivial. For v|6D we project the action of (gτ (xv))v � gτ (x
′) ∈ GL2(Z/6D2Z).

Remark 6.1. Note that we have for (±ωi)p ↪→ A×Kf acting trivially. Thus we have for
x ∈ A×Kf :

(fr(τ))σ±ωix = ((fr(τ))σ±ωi )σx = (f gτ (±ωi)
r (τ))σx = fr(τ)σx

Lemma 6.4. For x ∈
∏

vO
×
Kv

we can find ωi, i = 0,±1 such that:

(x2 ± ωi)2 = (t2 + s2ω)

with v2(t2) = 0, v2(s2) ≥ 1 and

(x3 ± ωi)3 = (t3 + s3ω)

with t3 + s3 ≡ 1 mod 3.

Proof. Note first that if v2(s) ≥ 1, then we must have v2(t2) = 0, as we need x2ω
i ∈ (Z2[ω])×.

Thus we must find xωi such that v2(s) ≥ 1. We write x2 = t′2 + s′2ω. Then:

x2ω = t′2ω + s′2ω
2 = (t′2 − s′2)ω + s′2

x2ω
2 = t′2ω

2 + s′2 = (−t′2)ω + (s′2 − t′2)

One of t′2, s′2, t′2 − s′2 must have positive valuation. Assume this is not true: v2(t′2) =
v2(s′2) = 0. Then s′2, t

′
2 ≡ 1 mod 2, thus s′2 − t′2 ≡ 0 mod 2 and has positive valuation.

Thus we can always pick xωi as claimed above at the place 2.
Now since take x3ω

i = s′3ω+ t′3 = s′3
−3+

√
−3

2
+ (t′3 + s′3). Then, since x3 is a unit in Z3[ω],

we must have v3(s′3 + t′3) = 0, thus s′3 + t′3 ≡ ±1 mod 3. We pick x3ω or −x3ω to get the
condition s′3 + t′3 ≡ 1 mod 3.

Since from the remark above x and ±ωix act the same, we can consider the Galois action
of σxωi as in the lemma above. We compute it below.

Let xp ∈
∏

vO
×
Kv

chosen as above. Then:

xp = tp + sp
−b+

√
−3

2
↪→ gτ (xp) =

(
tp − spb −spc
sp tp

)
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Elements of
∏
p

GL2(Zp) project to GL2(Z/6D2Z), which is the action we care about.

From Chinese remainder theorem, we can find k0 ∈ K such that k0 ≡ xp mod 6D2Zp for all
p|6D. Note that k0 is independent of the choice of τ .

Then we only need to compute the action of:

fr(τ)σ
−1
x = f gτ (x)(τ) = f

gτ (xv)v|6D
r (τ) = f gτ (t+sτ)v|6D(τ)

We will now compute f gτ (x)p|6D
r (τ). Note that, for c′ = b2+3

4
, we have the map :

k0 = sτ + t→ gτ (k0) =

(
t− sb′ −sc
s t

)
Let Nm(k0) = a. We write the action:

f(τ)σx = f

t− sb −sc/a
s t/a


p|6D

1 0
0 a


p|6D

Note that
(

1 0
0 a

)
p|6D

acts trivially on fr as both functions θ
[
−1

6
+ r

D
1
2

]
e−πi(r/D−1/6) and

θ

[
−1

6
1
2

]
eπi/6) have rational Fourier coefficients.

Thus we need to compute the action:

f

t− sb −sc/a
s t/a


p|6D

r (τ)

Note that
(
t− sb −sc/a
s ta

)(
t− sb −sca∗
s ta∗

)
∈ SL2(Z/6D2Z) and we can lift it to an

element of SL2(Z).

Lift from SL2(Z/6D2) to SL2(Z).

Lemma 6.5. We can always lift a matrix in
(
A B
C D

)
∈ SL2(Z/NZ) to SL2(Z).

Proof. Take
(
A B
C D

)
∈ SL2(Z/NZ), A,B,C,D ∈ Z. We can further assue (C,D) = 1. Let

AD −BC = k ∈ Z. Then we can take:
A0 = A+NA1

B0 = B +NB1

C0 = C +NC1
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D0 = D +ND1

We want to have the condition:
1 = A0D0 − B0C0 = AB − CD +N(AD1 + A1D − BC1 − B1C) +N2(A1D1 − B1C1) =

1 +Nk +N(AD1 + A1D −BC1 −B1C) +N2(A1D1 −B1C1)
For example, pick D1 = C1 = 0. Then we only need:

(A1D −B1C) = −k

Note that since (C,D) = 1, we can find mC + nD = 1. Then (−kn)D − kmC = −k,
thus pick A1 = −kn and B1 = km.

We look at such a matrix
(
a b
c d

)
∈ SL2(Z) such that:(

a0 b0

c0 d0

)
≡
(
s− tb −s b2+3

4
a∗

s t

)
mod 6D2

Conditions obtained:

• v2(s) ≥ 0 and v2(t) = 0 imply b0, c0 ≡ 0 mod 2, a0, d0 ≡ 1 mod 2.

• From the choice 3|b we also have a0 ≡ d0 mod 3 and b0 ≡ 0 mod 3. Since we picked
k0 = t0 + s0ω ≡ s−b+

√
−3

2
+ t with s0 + t0 ≡ 1 mod 3, we must have t ≡ t0 + s0 mod 3,

thus d0 ≡ t0 ≡ 1 mod 3.

• From the choice of t+ s−b+
√
−3

2
unit in

∏
v|6DO

×
Kv

, we have (t,D) = 1. Otherwise note
that the norm is t2 − tsb+ s2 b2+3

4
is divisible by p|D, a contradiction.

We will find the action using the following lemma:

Lemma 6.6. For
(
a b
c d

)
∈ SL2(Z) such that vp(d) = 0 and d ≡ 1 mod 6, we have:

ΘΦ(r)

((
1 0
0 2

)(
a b
c d

)
z

)
= ΘΦ(d−1r) (z/2)

Here by d−1 we mean d−1 mod D.

Proof. We compute:

ΘΦ(r)

((
1 0
0 2

)(
a b
c d

)
z

)
= ΘΦ(r)

((
a b/2
2c d

)(
1 0
0 2

)
z

)
Moreover, it equals:

ΘΦ(r)

[
z/2,

(
d −b/2
−2c a

)]



CHAPTER 6. SHIMURA RECIPROCITY APPLIED TO θr 69

Note that for p - 6D we have
(

d −b/2
−2c a

)
p

in SL2(Zp), thus acts trivially.

For p|3D, we have Φr = charZp− 1
6

+ r
D
. For now, we will call µr := −1

6
+ r

D
.

If vp(d) = 0, we rewrite:(
d −b/2
−2c a

)
=

(
1 0

−2c/d 1

)(
d −b/2
0 d−1

)
We can further write it in the form:

(
d −b/2
−2c a

)
=

(
−1 0
0 −1

)(
0 1
−1 0

)(
1 0

2c/d 1

)(
0 1
−1 0

)(
d 0
0 d−1

)(
1 −b/(2d)
0 1

)

• r
(

1 −b/(2d)
0 1

)
Φp(x) = e−2πiFracp(−b/(2d)x2)Φp(x) = Φp(x)

• r
(
d 0
0 d−1

)
Φp(x) = |d|pχp(d)Φp(dx) = Φ(d−1r)

p (x)

Note that Φp(dx) 6= 0 iff dx ∈ Zp + µr iff x ∈ d−1Zp + d−1µr = Zp + d−1µr. Note that
d−1µr = d−1r/D − d−1/6. Since we picked d ≡ 1 mod 6, this is the same as µd−1r.

• r
(

0 1
−1 0

)
Φ

(d−1r)
p (x) = e2πiFracp(2d−1xr/D) charZp+1/2(x)

• r
(

1 2c/d
0 1

)
(e2πiFracp(2xd−1r/D) charZp+1/2(x))

= e2πiFracp(2c/dx2)(e2πiFracp(2xd−1r/D) charZp(x) = (e2πiFracp(2xd−1r/D) charZp(x))

• r
(

0 1
−1 0

)
(e2πiFracp(2xd−1r/D) charZp(x)) = Φ

(d−1r)
p (−x)

• r
(
−1 0
0 −1

)
Φ

(d−1r)
p (−x) = Φ

(d−1r)
p (x)

In here we have used the Fourier transform:

Φ̂
(r)
3 (x) =

∫
Qp

Φ(r)
p (y)e−2πiFracp(2xy)dy =

∫
Zp+ r

D

Φ(r)
p (y)e2πi2xydy =

∫
Zp
e−2πiFracp(2x(y+r/D))dy

=

∫
Zp

e−2πiFracp(2xy))e−2πiFracp(xr/D)dy = e−2πiFracp(2xr/D)

∫
Zp

e−2πiFracp(2xy)dy
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= e−2πiFracp(2xr/D) charZp−1/2(x) = e−2πiFracp(2xr/D) charZp(x)

Similarly we get Φ̂
(r)
3 (x) = e−2πiFrac3(x/3) charZp(x)

Note that the only difference for p = 3 in the action of
(

d −b/2
−2c a

)
is that it does not

modify r/D. Instead, it leaves Φ(r) unchanged.

At the place p = 2, we have Φ2 = eπiFrac2(x) charZ2−1/2(x). We can compute:

• r
(

1 −b/(2d)
0 1

)
Φp(x) =

= e−2πiFrac2(−b/(2d)x2)eπix charZ2−1/2(x)

= e2πib/8deπix charZ2−1/2(x)Φp(x)

Note that we picked 2|b. Then we have x ∈ Z2 − 1/2 iff x = n− 1/2 for n ∈ Z2. Then
−b/2d(n− 1/2)2 = −b/(2d)n2 + b/(2d)n− b/(8d) ∈ Z2 − b/8d.

• r
(
d 0
0 d−1

)
e2πib/8deπix charZ2−1/2(x) =

= e2πib/8deπidx charZ2−1/2(dx) = e2πib/8deπix charZ2−1/2(x)

Note that we have used above v2(d) = 0.

• r
(

0 1
−1 0

)
Φ

(r)
2 (x) = e2πib/8deπix charZ2−1/2(x) = e2πib/8de2πiFrac2(x+1/4) char 1

2
Z2−1/4(x)

Below we compute the Fourier transform:∫
Q2

eπiFrac2(y) charZ2−1/2(y)e−2πiFrac2(2xy)dy =

∫
Z2−1/2

e2πiFrac2(y/2+2xy)

=

∫
Z2

e2πiFrac2(y/2+1/4+2xy+x)dy

= e2πiFrac2(x+1/4)

∫
Z2

e2πiFrac2(y(1/2+2x))dy

= e2πiFrac2(x+1/4) char 1
2
Z2−1/4(x)

• r
(

1 0
2c/d 1

)
e2πib/8de2πiFrac2(x+1/4) char 1

2
Z2−1/4

= e2πib/8de2πiFrac2(2c/dx2)e2πiFrac2(x+1/4) char 1
2
Z2−1/4
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Note that we have the assumptions 2|c and 2 - d. We have x+1/4 = 1/2n, n ∈ Z2. Note
x2 = (n−1/2)/4 = (n2−n+1/4)/4 and then e2πiFrac2(2c/dx2) = e2πiFrac2(c/2d(n2−n+1/4)) =
e2πiFrac2(c/8d). Here we have used the fact that c/2d(n2 − n) ∈ Z2. Thus we get:

e2πiFrac2((c+b)/8d)e2πiFrac2(x+1/4) char 1
2
Z2−1/4(x)

• r
(

0 1
−1 0

)
e2πiFrac2((c+b)/8d)e2πiFrac2(x+1/4) char 1

2
Z2−1/4(x) =

= e2πiFrac2((c+b)/8d)e2πiFrac2(−x) charZ2−1/2(−x)

• r
(
−1 0
0 −1

)
e2πiFrac2((c+b)/8d)e2πiFrac2(−x) charZ2−1/2(−x) =

= e2πiFrac2((c+b)/8d)e2πiFrac2(x) charZ2−1/2(x) = e2πiFrac2((c+b)/8d)Φ2(x)

Finally we are ready to prove Proposition 6.1. We have showed so far that:

fr(τ)σ
−1
x = f gτ (x)

r (τ) = f
(gτ (k0))p|6D
r (τ) = f

t− sb −sc
s t


p|6D(τ) = f

a0 b0

c0 d0


p|6D(τ)

From the above lemma we get immediately:

(
Θ(r)(τ/2)

Θ(0)(τ/2)

)σx
= f

a0 b0

c0 d0


r (τ) =

ΘΦ(r)

((
1 0
0 2

)(
a0 b0

c0 d0

)
τ

)
ΘΦ(0)

((
1 0
0 2

)(
a0 b0

c0 d0

)
τ

) =
ΘΦ(d−1r) (τ/2)

ΘΦ(0) (τ/2)
= fd−1r(τ)

For A ∈ Cl(O3D), A = (kA) = (naa+ma
−b+
√
−3

2
), where a = NmA, we take the map:

x = (kA)p|6D ↔ A
This gives us:

x−1 ↔ A−1

Then we have:

fr(τ)σA−1 = fr(τ)σx−1 = f
gτ (xp)p|6D
r (τ) = f

gτ (kA)p|6D
r (τ) = fn−1

A r(τ)

This implies for r ≡ nA mod D that we have fnA(τ)σA−1 = f1(τ), or equivalently:

f1(τ)σA = fnA(τ)



CHAPTER 6. SHIMURA RECIPROCITY APPLIED TO θr 72

Remark 6.2. This implies that for Ar = (1 · r + b∗(r − 1)−b+
√
−3

2
) we have:

f1(τ)σAr = f1(τ)

Also it implies that ar = (r−1) = (r · r−2 + 0−b+
√
−3

2
) we have:

f1(τ)σar = fr(τ)

The square is invariant under the Galois action.

We are finally ready to prove Theorem 5.1.

We define A◦r =
(

1 + b∗(1− r)−b+
√
−3

2

)
. Note nr = r−1. Note that A◦r = Ar(r−1), thus

Ar and A◦r are in the same class in Cl(O3D). This implies:

χD(Ar) = χD(A◦r)

Moreover, from the definition of χD we have: (D2/3)σA◦r = D2/3χD(A◦r)
Moreover, from Proposition 6.1:

f1(τ)σAr◦ = fnA◦r (τ) = fr(τ)

Then we can rewrite the term in Proposition 6.1:

κ :=
∑

r∈(Z/DZ)×

fr(τ)D2/3χ(Ar) =
∑

r∈(Z/DZ)×

fr(τ)D2/3χ(A◦r) =
∑

r∈(Z/DZ)×

f1(τ)σAr◦ (D2/3)σA◦r

=
∑

r∈(Z/DZ)×

(f1(τ)D2/3)σAr◦

We want to write κ as a Galois trace of a modular function at a CM-point. Note that
the ideals {A◦,(r∈Z/DZ)×

r } for a group, as we have A◦rA◦s = A◦rs. Then take G0 = {r ∈
(Z/DZ)× : A◦r} ∼= (Z/DZ)× that is a subgroup of Gal(HO/K), where HO is the ray class
field of conductor 3D.

We define fixed field of G0 in H:

H0 = {h ∈ HO : σ(h) = h,∀σ ∈ G0}

From abelian Galois theory this implies Gal(HO/H0) ∼= G0. Then we got:

κ = TrHO/H0(f1(τ)D2/3) (6.4)

Thus we have proved so far that:
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SD = |κ|2,

where κ ∈ H0. We claim that actually |κ|2 ∈ Q. To prove this, it is enough to show that
|κ|2 ∈ K×, as

Lemma 6.7. We have κ3 ∈ K.

Proof. We will show that the Galois conjugates of κ over K are κω and κω2.
Take A ∈ Cl(O). Then we have:

κσA =
∑

r∈(Z/DZ)×

(f1(τ)D2/3)σAr◦A

We can write A = A◦s(m). Then we have:

κσA =
∑

r∈(Z/DZ)×

(f1(τ)D2/3)σArs◦(m)

Note that (m) acts trivially on D2/3, but acts as A◦m on f1(τ). Then we have:

κσA =
∑

r∈(Z/DZ)×

(f1(τ))σArsm◦D2/3χ(A◦rs)

= χ(A◦m)
∑

r∈(Z/DZ)×

(f1(τ))σArsm◦D2/3χ(A◦rsm)

= χ(A◦m)κ

Remark 6.3. Recall that |κ|2 ∈ Q. Let κ3 = a+ b
√
−3 ∈ K. Then |κ|6 = a2 + 3b2 and we

must have a2 +3b2 = m3 for some m ∈ Q. With this notation we have |κ|2 = m = 3
√
a2 + 3b2.
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Chapter 7

A general formula for SD.

In this section, we will show the following result:

Theorem 7.1. For primitive ideals A that are representatives of Cl(O3D) such that their
norms are prime to each other, let b such that b ≡ 1 mod 16, b2 ≡ −3 mod 12a2, a = NmA.
Then we can rewrite:

SD =

√
D

# Cl(O3D)

∑
r∈Z/DZ

∣∣∣∣∣∣TrHO/H1

θr
(
D−b+

√
−3

2

)
θ0

(
−b+
√
−3

2

) D−1/3

∣∣∣∣∣∣
2

, (7.1)

where H1 is a subfield of HO the ray class field of modulus 3D defined below.

The proof is similar to the proof of Theorem 1.3. The proof is based on the Factorization
formula proved in Corollary 5.1 and using the Shimura reciprocity law to compute the Galois

conjugates of
θr
(
D−b+

√
−3

2

)
θ0
(
−b+

√
−3

2

) .

SD as a sum of squares.

Recall the Factorization formula that we have proved in Corollary 5.1:

∑
r∈Z/DZ

√
2ay√
D

θ

[
aµ+ ar/D

ν

](
D
z

a

)
θ

[
µ+ r/D
−aν

]
(−aDz) =

∑
m,n∈Z

e2πi(mν+nDµ)eπ(mni− |n−mz|
2

2y
)D
a

(7.2)
Let A,A1 be primitive ideals prime to 3D, let a1 = NmA1 and a2 = NmA2 and choose

b such that b2 ≡ −3 mod 12a2a2
1. By applying the result above for z = −b+

√
−3

2aa21
, µ = 1/2

and ν = −1/6, we get:

∑
r∈Z/DZ

4
√

3

a1

√
D
eπi(a−1)/6θar

(
D
−b+

√
−3

2a2a2
1

)
θr

(
D
b+
√
−3

2a2
1

)
=
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∑
m,n∈Z

e2πi(m/2−nD/6+mnD/(2a))e
2πi
|naa1−m

−b+
√
−3

2 |2

aa1

√
−3
6a

D

Note that since (a1, D) = 1, we can rewrite the formula as:

4
√

3

a1

√
D
eπi(a−1)/6

∑
r∈Z/DZ

θaa1r

(
D
−b+

√
−3

2a2a2
1

)
θa1r

(
D
b+
√
−3

2a2
1

)
=

=
∑
m,n∈Z

e2πi(m/2−nD/6+mnD/(2a))e
2πi
|naa1−m

−b+
√
−3

2 |2

aa1

√
−3
6a

D (7.3)

If D ≡ 1 mod 3, we can show as before that m/2 + n/2 + mnD
2a
≡ |naa1−m−b+

√
−3

2
|2

aa1
−b
6a
D

mod Z.
Then on the RHS of (7.3) we obtain:

∑
m,n∈Z

e2πi(±n/3)e
2πi
|naa1−m

−b+
√
−3

2 |2

aa1

−b+
√
−3

6a
D

=
3

2
Θ

(
D
−b+

√
−3

2a

)
− 1

2
Θ

(
D
−b+

√
−3

6a

)
.

If D ≡ 2 mod 3, we will change n→ −n and m→ −m. Then we have:

∑
m,n∈Z

e2πi(−m/2−n/6+mnD/(2a))e
2πi
|naa1−m

−b+
√
−3

2 |2

aa1

√
−3
6a

D
=

=
3

2
Θ

(
D
b+
√
−3

2a

)
− 1

2
Θ

(
D
b+
√
−3

6a

)
.

Recall that we have from Corollary 5.3:

3

2
Θ

(
−b+

√
−3

2a

)
=

4
√

3

a1

eπi(a−1) 1
6 θ0

(
−b+

√
−3

2a2a2
1

)
θ0

(
b+
√
−3

2a2
1

)
,

Taking the ratio, we get the following lemma:

Lemma 7.1. For b2 ≡ −3 mod 12a2a2
1 and b ≡ 1 mod 16, we have:

Θ
(
D−b+

√
−3

2a

)
Θ
(
−b+
√
−3

2a

) − 1

3

Θ
(
D−b+

√
−3

6a

)
Θ
(
−b+
√
−3

2a

) =
1√
D

∑
r∈Z/DZ

θaa1r

(
D−b+

√
−3

2a2a21

)
θ0

(
−b+
√
−3

2a2a21

) θa1r

(
D b+

√
−3

2a21

)
θ0

(
b+
√
−3

2a21

)

Denote by fr(zA) =
θr

(
D−b+

√
−3

2a

)
θ0

(
−b+
√
−3

2a

) . Then the result above becomes:
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Θ
(
D−b+

√
−3

2a

)
Θ
(
−b+
√
−3

2a

) − 1

3

Θ
(
D−b+

√
−3

6a

)
Θ
(
−b+
√
−3

2a

) =
1√
D

∑
r∈Z/DZ

faa1r(zA2A2
1
)fa1r(zA2

1
)

Now we will take the ideals A as representatives of Cl(O3D) and sum over all possible
classes A1:

# Cl(O3D)

Θ
(
D−b+

√
−3

2a

)
Θ
(
−b+
√
−3

2a

) − 1

3

Θ
(
D−b+

√
−3

6a

)
Θ
(
−b+
√
−3

2a

)
 =

1√
D

∑
[A1]∈Cl(O3D)

∑
r∈Z/DZ

faa1r(zA2A2
1
)fa1r(zA2

1
)

Furthermore twisting by the character χD(A) = χD(A2) and summing up over all repre-
sentatives A of Cl(O3D), we get:

# Cl(O3D)

 ∑
A∈Cl(O3D)

Θ
(
D−b+

√
−3

2a

)
Θ
(
−b+
√
−3

2a

) χD(A)− 1

3

∑
A∈Cl(O3D)

Θ
(
D−b+

√
−3

6a

)
Θ
(
−b+
√
−3

2a

) χD(A)

 =

1√
D

∑
[A]∈Cl(O3D

∑
[A1]∈Cl(O3D)

∑
r∈Z/DZ

faa1r(zA2A2
1
)fa1r(zA2

1
)χD(A2)

From Appendix A, Lemma 9.7, we have
∑

A∈Cl(O3D)

Θ
(
D−b+

√
−3

6a

)
Θ
(
−b+

√
−3

2a

) χD(A) = 0, thus we can

rewrite the LHS as:

# Cl(O3D)
∑

A∈Cl(O3D)

Θ
(
D−b+

√
−3

2a

)
Θ
(
−b+
√
−3

2a

) χD(A)

For the RHS, note that we can distribute the character χD(A2) as χD(A2A2
1)χD(A2

1) and
we can exchange the sums and rewrite:

1√
D

∑
r∈Z/DZ

∑
[A]∈Cl(O3D)

∑
[A1]∈Cl(O3D)

faa1r(zA2A2
1
)χD(A2A2

1)far(zA2
1
)χD(A2

1) =

=
1√
D

∑
r∈Z/DZ

∣∣∣∣∣∣
∑

[A]∈Cl(O3D)

fa1r(zA2)χD(A2)

∣∣∣∣∣∣
2

.

This gives us the result of the following proposition:
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Proposition 7.1. For A primitive ideals that are representatives of Cl(O3D) such that their
norms are prime to each other, let b such that b ≡ 1 mod 16, b2 ≡ −3 mod 12a2, a = NmA.
Then we can rewrite:

SD =

√
D

# Cl(O3D)

∑
r∈Z/DZ

∣∣∣∣∣∣
∑

[A]∈Cl(O3D)

θar

(
D−b+

√
−3

2a2

)
θ0

(
−b+
√
−3

2a2

) χD(A2)D−1/3

∣∣∣∣∣∣
2

(7.4)

Galois conjugates of far(zA).

We let fr(z) = θr(Dz)
θ0(z)

. We note that f(−b+
√
−3

2
) ∈ HO, the ray class field of modulus 3D.

Then we compute two actions:

• The action of the element A2 =
[
a2, −b+

√
−3

2

]
in the ring class field H3D is going to be

f(z/a2). This follows from Lemma 4.3:

fr(τ)σA2 = fr(z/a
2)

• The action of the ideal A◦k ∈ PZ,3D such that A◦k ∼ (k + 3DZ[ω]) as ideal classes in
Gal(HO/K). Then the action is going to be:

fr(τ)
σA◦

k = fak(τ), τ =
−b+

√
−3

2

The proof follows closely the proof of Proposition 6.1

Then we can rewrite the formula (7.4) as:

SD =

√
D

# Cl(O3D)

∑
r∈Z/DZ

∣∣∣∣∣∣
∑

[A]∈Cl(O3D)

(
fr(Dτ)D−1/3

)σA2σA◦a
−1

∣∣∣∣∣∣
2

We denote:

G1 = {A2A◦a, [A] ∈ Cl(O3D)}.

Note that this is a group and G0 is a subgroup of Gal(HO/K). Thus from Galois theory
we can find H1 to be the fixed field of G1 in HO and thus Gal(HO/H1) ∼= G1. Then our
formula becomes the result of Theorem 7.1:

SD =

√
D

# Cl(O3D)

∑
r∈Z/DZ

∣∣TrHO/H1

(
fr(Dτ)D−1/3

)∣∣2 (7.5)
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Chapter 8

Another formula for L(ED, 1).

In this chapter we will show:

L(ED, 1) = cD TrH◦[
√
D]/K[

√
D]

θ1/2 (3Dω)2

ΘK (ω)
D−1/6,

where θ1/2(z) =
∑
n∈Z

e2πin2z(−1)n, H◦ is the ray class field for the modulus 12D and the

constant is cD = π
48
D1/6

∏
p|D

(1− (−1)(p−1)/2p−1)ΘK(ω)L∞(1, χDϕ).

Relation to the first formula proved.

In Section 3 we have computed a formula for L(ED, 1) by looking at Tate’s zeta function

Zf (s, χDϕ,ΦK) =

∫
A×K,f

ΦK(αf )|αf |sfχD(αf )ϕ(αf )d
×αf . We showed that this integral is a

linear combination of Eisenstein series, based on the observation:∑
k∈K×

k

|k|2sC
ΦK(kαf ) = E(gα, 2s− 2,Φ′K),

where Φ′K is a different Schwartz-Bruhat function also for S(AK). In this section we
will make a different choice of the Schwartz-Bruhat function Φ◦K ∈ S(AK) in order to get a
similar identity: ∑

k∈K×

k

|k|2sC
Φ◦K(kαf ) = E(gα, 2s− 2, φ1 ⊗ φ2),

where φ1, φ2 are Schwartz-Bruhat functions in S(AQ).
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Computing the L-function.

We take the Schwartz-Bruhat function Φ◦ ∈ S(AK) defined by Φ◦ = Φ◦∞
∏
p

Φ◦p, where at the

infinite place we define Φ◦∞ = e−π|z|
2 and at the finite places we define:

Φ◦p =


charZp[ω] for p - 6D

char(Z+3DZp[ω])× for p|3D
char(1+4Z2[ω]) + char(1+2ω+4Z2[ω]) at p = 2

Proposition 8.1. For Φ◦f defined above and primitive ideals A that are taken to be repre-
sentatives of the ideal class group Cl(O3D), we have:

Zf (s, χD,fϕf ,Φ
◦
f ) =

1

72
#(OK/DOK)×

∑
[A]∈K×\A×K,f/U

E(2s− 2, 3DzA, φ1 ⊗ φ2)χD(A)
ϕ(A)

a2s−1

Proof. We start by recalling the definition of Tate’s zeta function:

Zf (s, χDϕ,Φ
◦) =

∫
A×K,f

Φ◦f (αf )|αf |sfχD,f (αf )ϕf (αf )d×αf .

We will first take a quotient by K× in the integral. This gives us:

Zf (s, χDϕ,Φ
◦) =

∫
K×\A×K,f

∑
k∈K×

Φ◦f (kαf )|kαf |sfχD,f (kαf )ϕf (kαf )d×αf

Using the properties of Hecke characters, we can rewrite

|k|sfχD,f (k)ϕf (k) = |k|−s∞ χ−1
D,∞(k)ϕ−1

∞ (k) = |k|−s∞ k = ‖k‖−2s
C k,

where ‖ · ‖C is the usual absolute value over C. Thus we get:

Zf (s, χDϕ,Φ
◦) =

∫
K×\A×K,f

(∑
k∈K×

Φ◦f (kαf )k‖k‖−2s

)
|αf |sfχD,f (αf )ϕf (αf )d×αf

Moreover, we want to take the quotient by U =
∏
p|6D

(1 + 12DZp[ω])×
∏
p-6D

(Zp[ω])×. For

this we need invariance under U :

• Φ◦f is invariant under U

• χD is invariant under U
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• ϕ is invariant under U

• | · | is invariant under U

We take the quotient by U :

Zf (s, χDϕ,Φ
◦) = vol(U)

∑
K×\A×K,f/U

(∑
k∈K×

Φ◦f (kα
′
f )k‖k‖−2s

)
|α′f |sfχD,f (α′f )ϕf (α′f )

Note that K× \A×K,f/U is a finite set. Furthermore, recall that from the Strong Approxi-
mation theorem, we have A×K = K×C×

∏
v

O×Kv . Then we can rewrite the quotient A×K,f/K× ∼=∏
v

O×Kv/ 〈±ω〉 and we can pick representatives for U \A×K,f/K× elements α′f ∈
∏
v

O×Kv . Also

note that ϕ and |.| are trivial when evaluated at the elements α′f in
∏
v

O×Kv . Then we get:

Zf (s, χDϕ,Φ
◦) = vol(U)

∫
K×\A×K,f/U

(∑
k∈K×

Φ◦f (kα
′
f )k‖k‖−2s

)
χD,f (α

′
f )

Furthermore, note that Φf (kα) 6= 0 implies kαv ∈ OKv , thus k ∈ OKv for all finite places
v. Thus we get k ∈ OK . Moreover, for k ∈ OK we have Φv(kαv) = 1 for all v - 6D. Thus we
can compute:

Zf (s, χDϕ,Φ
◦) = vol(U)

∑
K×\A×K,f/U

 ∑
k∈OK×

Φ◦6D(kα′f )k‖k‖−2s

χD,f (α
′
f )

Moreover, we can pick k1 ≡ α′v mod 24DOKv for v|6D. The condition is lax enough that
we can take k1 such that (k1) is a primitive ideal. Then, for k ∈ OK we have Φ◦6D(kk1) =
Φ◦6D(kα′f ). Moreover, χD(αf ) = χD((k1)). Then we compute:

Zf (s, χDϕ,Φ
◦) = vol(U)

∑
K×\A×K,f/U

(∑
k∈OK

Φ◦6D(kk1)k‖k‖−2s

)
χD,f ((k1))

Furthermore, we can rewrite it:

Zf (s, χDϕ,Φ
◦) = vol(U)

∑
K×\A×K,f/U

(∑
k∈K×

Φ◦6D(kk1)
kk1

‖kk1‖2s

)
‖k1‖2s

k1

χD,f ((k1))

We can compute the volume of U . From the choice of the normalized multiplicative Haar
measure, we have vol((Zp[ω])×) = 1 for all p. Then we can compute:
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• vol(1 + 4Z2[ω]) = 1
12
,

• vol(1 + 3Z3[ω]) = 1
6
,

• vol(1 + pZp[ω]) = 1
p2−1

= #(OK/pOK)×, if p nonsplit,

• vol(1 + pZp[ω]) = 1
(p−1)2

= #(OK/pOK)×, if p split.

This gives us vol(U) = 1
72

#(OK/DOK)× and the formula becomes:

Zf (s, χDϕ,Φ
◦) =

1

72
#(OK/DOK)×

∑
K×\A×K,f/U

(∑
k∈K×

Φ◦6D(kk1)
kk1

‖kk1‖2s

)
‖k1‖2s

k1

χD,f ((k1))

For k1 ∈ K×, s ∈ C, we denote the term:

I(k1, s) :=
∑
k∈OK

Φ◦6D(kk1)
kk1

‖kk1‖2s
(8.1)

We will show that this gives us the value of an Eisenstein series in Lemma 8.1 below.

Lemma 8.1. For k1 ∈ O×K such that A = (k1) is a primitive ideal depending on k, we write
A = [a, −B+

√
−3

2
] as a Z-module. Then we have:

I(k1, s) = LQ(2s− 1, χ0)
1

2

∏
p|D

(1− (−1)(p−1)/2p1−2s)(−1)(A−1)/2 A

‖A‖2s
Eε0(2s− 2, 3DzA),

where zA = B+
√
−3

2a
and Eε0(s, z) =

∑
(m,n)=1,2-m

(−1)(m−1)/2

‖m+nz‖s(m+nz)
is an Eisenstein series.

Proof. Note first that we can rewrite:

I(k1, s) =
∑

k∈A=(k1)

Φ◦6D(k)
k

‖k‖2s

Note that for Φ◦6D(k) 6= 0 we must have k ∈ PZ,6D := (Z + 6DOK)×. Then we have:

I(k1, s) =
∑

k∈A=(k1)∩PZ,6D

Φ◦6D(k)
k

‖k‖2s

Let (k1) = A = [A, −B+
√
−3

2
]Z with B ≡ 1 mod 4, A = NmA and B2 ≡ −3 mod 4A.

Then all k ∈ A can be written in the form k = mA + n−B+
√
−3

2
for m,n ∈ Z. Moreover,

since k ∈ PZ,6D, we have:
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k = mA+ n · 6D−B +
√
−3

2
, (m, 6D) = 1

Moreover, since Φ◦2(k) 6= 0 for k ∈ (Z + 2Z2[ω])×, we have:

Φ2(k) =

{
1, for mA ≡ 1 mod 4

0, otherwise

Then we have:

I(k1, s) =
∑
m,n,

(m,6D)=1
mA≡1 mod 4

mA+ 2n · 3D−B+
√
−3

2

‖mA+ 2n · 3D−B+
√
−3

2
‖2s

Note that we can rewrite this as:

I(k1, s) =
1

2

∑
m,n,

(m,6D)=1
mA≡1 mod 4

mA+ 2n · 3D−B+
√
−3

2

‖mA+ 2n · 3D−B+
√
−3

2
‖2s
−1

2

∑
m,n,

(m,6D)=1
mA≡3 mod 4

mA+ 2n · 3D−B+
√
−3

2

‖mA+ 2n · 3D−B+
√
−3

2
‖2s

Note that this is precisely:

I(k1, s) =
1

2

∑
m,n,

(m,6D)=1

(−1)(mA−1)/2 mA+ 2n · 3D−B+
√
−3

2

‖mA+ 2n · 3D−B+
√
−3

2
‖2s

We can split the product (−1)(mA−1)/2 = (−1)(m−1)/2(−1)(A−1)/2 and we get:

I(k1, s) = (−1)(A−1)/2 1

2

∑
m,n

(m,6D)=1

(−1)(m−1)/2 mA+ n · 3D−B+
√
−3

2

‖mA+ n · 3D−B+
√
−3

2
‖2s

We rewrite further:

I(k1, s) = (−1)(A−1)/2 1

2

∑
(m,n)=1,
(m,6D)=1

(−1)(m−1)/2 mA+ n · 3D−B+
√
−3

2

‖mA+ n · 3D−B+
√
−3

2
‖2s

∑
(m,6D)=1

(−1)(m−1)/2m

m2s

Note that the far right term is an L-function:∑
(m,6D)=1

(−1)(m−1)/2m

m2s
=
∏
p-6D

(1− (−1)(p−1)/2p1−2s)−1 = L(2s−1, χ0)
∏
p|D

(1− (−1)(p−1)/2p1−2s)
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Thus we need to compute:

∑
(m,2)=1

(−1)(m−1)/2

m2s−1
= LQ(2s− 1, χ0)

Here χ0(m) =
(
m
4

)
and we can compute the value of the L-function L(χ0, 1) of a Dirichlet

character (see for example [13]). We get:

LQ(1, χ0) =
2π

8
=
π

4

Then we have:

I(k1, s) = LQ(2s− 1, χ0)
∏
p|D

(1− (−1)(p−1)/2p1−2s)(−1)(A−1)/2×

×1

2

∑
(m,n)=1,2-m

(−1)(m−1)/2(mA+ n · 3D−B+
√
−3)

2

‖mA+ n · 3D−B+
√
−3

2
‖2s

We can rewrite this as:

I(k1, s) = LQ(2s− 1, χ0)
∏
p|D

(1− (−1)(p−1)/2p1−2s)(−1)(A−1)/2 A

‖A‖2s
×

×1

2

 ∑
(m,n)=1,2-m

(−1)(m−1)/2 m+ n · 3D−B+
√
−3

2a

‖m+ n · 3D−B+
√
−3

2a
‖2s


Note that this is:

I(k1, s) = LQ(2s− 1, χ0)
1

2

∏
p|D

(1− (−1)(p−1)/2p1−2s)(−1)(A−1)/2 A

‖A‖2s
Eε0(2s− 2, 3DzA),

where zA = B+
√
−3

2a
.

In the next section we will show that actually Eε0(2s − 2, z) is a particular case of a
Siegel-Eisenstein series.

A particular Eisenstein series.

In this section we will connect the automorphic Eisenstein series with a classical Eisenstein
series. Our goal is to prove Lemma 8.2. We start by recalling some details about the Weil
representation.
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Weil representation for S̃L2(Q)×O1(Q).

In order to define half-integral weight theta functions, we will define the Weil representation
for the symplectic space W = Q⊕Q and the quadratic space V = Q, q(x) = x2. We follow
Gelbart [Ge] to define the Weil representation for SL2(Q) as a cross section of S̃L2(Q).

We define locally at the place v:

• r
(

1 b
0 1

)
φ(x) = ψ(bx2)φ(x)

• r
(
a 0
0 a−1

)
φ(x) = (a, a)v

γ(q,ψa)
γ(q,ψ)

φ(ax) = (a, a)εv(a)|a|1/2v φ(ax)

• r
(

0 1
−1 0

)
φ(x) = γ(q, ψ)φ̂(x),

where:

- ψ(x) = e2πix∞
∏

p e
−2πiFracp(xp)

- γp(q, ψa) = lim
m→∞

∫
p−mZp

ψp(ay
2)dy = lim

m→∞

∫
p−mZp

e−2πiFracp(ay2)dy = |a|1/2p εp(a), where

εp : Q×p → {±1,±i} and εp(a)2 = (a,−1)p

- γ∞(q, ψa) = e2πi sgn(a)/4

For now we are not interested in extending the Weil representation to all of GL2. Instead,
we will extend the Weil representation to:

(GL2(AQ))2 = {g ∈ GL2(AQ) : det g ∈ A×2
Q }

This is done by defining:

• r
(

1 0
0 c2

)
φ(x) = |c|−1/2φ(c−1x)

Note that this implies:

• r
(
c 0
0 c

)
φ(x) = (c, c)ε(c)φ(x)

This is done by checking:

r

(
c 0
0 c

)
φ(x) = r

(
c 0
0 1/c

)
r

(
1 0
0 c2

)
φ(x) = r

(
c 0
0 1/c

)
|c|−1/2φ(c−1x) = (c, c)ε(c)φ(x).
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Defining the Eisenstein series.

Recall first the general definition of the Eisenstein series:

E(s, g, φ1 ⊗ φ2) =
∑

γ∈P1(Q)\SL2(Q)

fs(γg),

for g ∈ GL2(A), where P1(Q) is the subset of upper triangular matrices in SL2(Q) and
fs(g) = r(g)φ1 ⊗ φ2(0)δ(g)s, where δ is the modulus character for GL2(A) and r is the Weil
representation.

Remark 8.1. Note that the definition above makes sense: we can take as representatives of
P1(Q) \ SL2(Q) the matrices

(
1 0
−b/a 1

)
and ( 0 1

−1 0 ). Then we have:∑
(
a b
−b a

)
∈P (Q)\GL2(Q)

fs(
(
a b
−b a

)
g) =

=
∑

(
1 0
−b/a 1

)
,( 0 1
−1 0 )∈P1(Q)\SL2(Q)

χ1(c/a)χ2(a)fs(
(

1 0
−b/a 1

)
g) + fs((

0 1
−1 0 ) g)

= E(s, g, φ1 ⊗ φ2),

as χ1, χ2 are trivial on Q×. Then we can rewrite:

E(s, g, φ1 ⊗ φ2) =
∑

(
a b
−b a

)
∈P (Q)\GL2(Q)

fs(
(
a b
−b a

)
g),

Note that for gz =
((

y1/2 y−1/2x

0 y−1/2

)
∞
, 1f

)
, we have:

fs(g) = r(g∞)φ1,∞ ⊗ φ2,∞(0)r(gf )φ1,f ⊗ φ2,f (0)δ∞(g∞)sδf (gf )
s

We will fix the Schwartz-Bruhat functions φ1 ⊗ φ2, such that φ1, φ2 ∈ S(AQ). More
precisely, we take φ1 = φ2 =

∏
p φ1,p, where p goes over all archimedean and non-archimedean

places of Q, and locally we define:

φ1,p = φ2,p =


charZp , p 6= 2

charZ2(x)eπiFrac2(x) p = 2

e−2πx2 , p =∞

Below we specialize the Siegel-Eisenstein in order to obtain the value of the classical
Eisenstein series Eε0(s, z). We have:
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Lemma 8.2. For gz =
((

y1/2 y−1/2x

0 y−1/2

)
∞
, 1f

)
, where y > 0, we have:

E(s, gz, φ1 ⊗ φ2) = y(s+1)/2Eε0(s, z),

where Eε0(s, z) =
∑

(a,b)=1,2-a

a−bz
|a−bz|s|a−bz|2 (−1)

a−1
2 .

Proof. We denote c := a2+b2 and a′ = a/
√
c, b′ = b/

√
c. We compute the Weil representation

action at all the places.
Place ∞. At ∞, we compute:

• r
((

a b
−b a

)
gz
)
φ1,∞ ⊗ φ2,∞(0) = r

((
a′ b′

−b′ a′
)
gz
)
φ1,∞ ⊗ φ2,∞(0)

= r
((

a′ b′

−b′ a′
) (

y1/2 xy−1/2

0 y−1/2

))
φ1,∞ ⊗ φ2,∞(0)

= r
(

a′y1/2 (a′x+b′)y−1/2

−b′y1/2 (−b′x+a′)y−1/2

)
φ1,∞ ⊗ φ2,∞(0)

= r
((

y1/2/|a′−b′z| ∗
0 |a′−b′z|/y1/2

)(
(−b′x+a′)/|a′−b′z| b′y/|a′−b′z|
−by/|a−bz| (−bx+a)/|a−bz|

))
φ1,∞ ⊗ φ2,∞(0)

=
(−b′x+ a′) + b′yi

|a′ − b′z|
r
(
y1/2/|a′−b′z| ∗

0 |a′−b′z|/y1/2

)
φ1,∞ ⊗ φ2,∞(0)

=
a′ − b′z
|a′ − b′z|

(y1/2/|a′ − b′z|,−1)
y1/2

|a′ − b′z|
φ1,∞ ⊗ φ2,∞(0)

=
(a′ − b′z)y1/2

|a′ − b′z|2

=
(a− bz)y1/2

|a− bz|2
|a2 + b2|1/2

• δ∞
((

a b
−b a

)
gz
)

= δ∞

((
a′ b′

−b′ a′
) (

y1/2 xy−1/2

0 y−1/2

))
= δ∞

(
a′y1/2 (a′x+b′)y−1/2

−b′y1/2 (−b′x+a′)y−1/2

)
= δ∞

((
y1/2/|a′−b′z| ∗

0 |a′−b′z|/y1/2

)(
(−b′x+a′)/|a′−b′z| b′y/|a′−b′z|
−b′y/|a′−b′z| (−b′x+a′)/|a′−b′z|

))
=

y1/2

|a′ − b′z|
=

y1/2

|a− bz|
|a2 + b2|1/2

Places p 6= 2. At p 6= 2, we compute:

• If vp(c) = 0, then
(
a b
−b a

)
∈ GL2(Zp), thus it acts trivially on φ1 ⊗ φ2

Also δ
(
a b
−b a

)
= 1 for

(
a b
−b a

)
∈ GL2(Zp).
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• a2 + b2 = p, then vp(a) = vp(b) = 0 and (p,−1) = 1. Then we have:

r(
(
a b
−b a

)
)φ1,f ⊗ φ2,f (x, y) = |p|−1/2

p r(
(

a b/p
−b a/p

)
)φ1,f ⊗ φ2,f ((ax− by)/p, (bx+ ay)/p) =

= |p|−1/2
p r(

(
p/a b/p
0 a/p

) (
1 0
−b/a 1

)
)φ1,f ⊗ φ2,f ((ax− by)/p, (bx+ ay)/p)|(x,y)=(0,0) =

= |p|−1/2
p (p/a,−1)p|p/a|p

∫
Qp⊕Qp

e2πi−b/a(x2+y2) charZp(
ax− by

p
) charZp(

bx+ ay

p
)dx dy =

|p|1/2p = |a2 + b2|1/2p

Note that ax−by
p

, bx+ay
p
∈ Zp implies x, y ∈ Zp, hence the statement above

For δp, we compute:

δp(
(
p/a b
0 a

) (
1 0
−b/a 1

)
) = |p|1/2p = p−1/2 = |a2 + b2|1/2p

Place p = 2. At p = 2, we have φ1 = φ2 = charZ2(x)eπix. Then we have φ̂1(x) = φ̂2(x) =
char 1

2
(Z2+1/2)(x).

The self-dual Haar measure gives us:

vol(Z2) = 1/
√

2, vol(Z2[i]) = 1/2

Note that if v2(a2 + b2) = 0, then we have v2(a) ≥ 1 and v2(b) = 0, or v2(b) ≥ 1 and
v2(a) = 0. In this case note:

• If a(2x) + b(2y) ∈ Z2 + 1/2,−b(2x) + a(2y) ∈ Z2 + 1/2 implies 2x, 2y ∈ Z2 + 1/2,
thus x, y ∈ 1

2
(Z2 + 1/2). Moreover, if x, y ∈ 1

2
(Z2 + 1/2), we have a(2x) + b(2y) ∈

Z2 + 1/2,−b(2x) + a(2y) ∈ Z2 + 1/2. Thus φ̂1(ax+ by)φ̂2(ay − bx) = φ̂1(x)φ̂2(y).

• If ax + by ∈ Z2,−bx + ay ∈ Z2 implies (a2 + b2)x ∈ aZ2 + bZ2 = Z2, thus x ∈ Z2.
Moreover, this implies y ∈ Z2. Moreover, eπi(ax+by)eπi(ay−bx) = eπixeπiy.

We compute:

• v2(a) = 0, v2(b) ≥ 1:

r
(
a b
−b a

)
φ1,2 ⊗ φ2,2(x, y)|(0,0) = r

(
a b/c
−b a/c

)
φ1,2 ⊗ φ2,2(ax− by,−bx+ ay)|(0,0) =

= r
(
c/a b/c
0 a/c

)
r
(

1 0
−bc/a 1

)
φ1,2 ⊗ φ2,2(ax− by,−bx+ ay)|(0,0)

= r
(
c/a b/c
0 a/c

) ∫
Q2⊕Q2

e−2πi bc
a

(x2+y2)φ̂1,2(ax− by)φ̂2,2(−bx+ ay)dx dy

= (c/a,−1)2|c/a|2
∫

Q2⊕Q2

e−2πi bc
a

(x2+y2)φ̂1,2(x)φ̂2,2(y)dx dy
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=
1

4
(a,−1)2

∫
Z2⊕Z2

e−2πi bc
4a

((x+1/2)2+(y+1/2)2)dx dy

=
1

4
(a,−1)2

∫
Z2⊕Z2

e−2πi bc
4a

(x2+x+y2+y+1/2)dx dy

=
1

4
(a,−1)2e

−2πi bc
2a

∫
Z2⊕Z2

e−2πi bc
4a

(x2+x+y2+y)dx dy

=
1

4
(a,−1)2

∫
Z2

e−2πi
bc/(2a)

2
(x2+x)dx

∫
Z2

e−2πi
bc/(2a)

2
(y2+y)dx

1

4
(−1)(a−1)/2

Note that:∫
Z2

e−2πi
bc/2
2a

(x2+x)dx =
1

2

∫
Z2

e−2πi
bc/2
2a

((2x+1)2+(2x+1))dx+
1

2

∫
Z2

e−2πi
bc/2
2a

(4x2+2x)dx = 1

• v2(b) = 0, v2(a) ≥ 1:

r
(
a b
−b a

)
φ1,2 ⊗ φ2,2(x, y)|(0,0) = r

(
b −a
a b

)
φ̂1,2 ⊗ φ̂2,2(x, y)|(0,0)

= r
(
b −a/c
a b/c

)
φ̂1,2 ⊗ φ̂2,2(ax+ by,−bx+ ay)|(0,0)

= r
(
c/b −a/c
0 b/c

)
r
(

1 0
ac/b 1

)
φ̂1,2(ax− by)φ̂2,2(−bx+ ay)dx dy =

= r
(
c/b −a/c
0 b/c

) ∫
Q2⊕Q2

e2πiac
b

(x2+y2)φ1,2(ax− by)φ2,2(−bx+ ay)dx dy

= (c/b,−1)2|c/b|2
∫

Q2⊕Q2

e2πiac
b

(x2+y2)φ1,2(ax− by)φ2,2(−bx+ ay)dx dy

= (b,−1)2

∫
Q2⊕Q2

e2πiac
b

(x2+y2)φ1,2(x)φ2,2(y)dx dy

= (b,−1)2
1

4

∫
Z2⊕Z2

e2πiac
b

(x2+y2)eπixeπiydx dy

= (b,−1)2
1

4

∫
Z2⊕Z2

eπixeπiydx dy = 0

• v2(a) = 0, v2(b) = 0, then we have v2(a2 + b2) = 1. Note that if ax+ by ∈ Z2 + 1/2 and
ay− bx ∈ Z2 + 1/2, then we have x ∈ 1

2
Z2, y ∈ 1

2

(
Z2 + 1

2

)
, or x ∈ 1

2

(
Z2 + 1

2

)
, y ∈ 1

2
Z2.

Thus we have:
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φ̂1(ax+ by)φ̂2(ay − bx) = char 1
2(Z2+ 1

2)(x) char 1
2
Z2

(y) + char 1
2(Z2+ 1

2)(y) char 1
2
Z2

(x)

We compute:

r
(
a b
−b a

)
φ1,2 ⊗ φ2,2(x, y)|(0,0) = r

(
b −a
a b

)
φ̂1,2 ⊗ φ̂2,2(x, y)|(0,0)

= r
(
b −a/c
a b/c

)
φ̂1,2 ⊗ φ̂2,2(ax+ by, ay − bx)|(0,0)

= r
(
b −a/c
a b/c

)(
char 1

2(Z2+ 1
2)(x) char 1

2
Z2

(y) + char 1
2(Z2+ 1

2)(y) char 1
2
Z2

(x)
)
|(0,0)

Note that:

FT (char 1
2(Z2+ 1

2)(x) char 1
2
Z2

(y)) = charZ2(x)eπix charZ2(y)

Then we can compute:∫
Q2⊕Q2

e2πi−ac
b

(x2+y2) charZ2(x)eπix charZ2(y)dx dy =

= (c/a,−1)2|c/a|2
∫

Z2⊕Z2

e2πi−ac
b

(x2+y2)eπixdx dy = 0

We compute similarly for FT (char 1
2(Z2+ 1

2)(y) char 1
2
Z2

(x)) = charZ2(y)eπiy charZ2(x)

and get 0 in the integral.

• a = 0. We can pick b = 1. Then we compute:

r ( 0 1
−1 0 )φ1,2⊗φ2,2(x, y)|(0,0) = φ̂1,2⊗ φ̂2,2(x, y)|(0,0) = char 1

2
(Z2+1/2)(0) char 1

2
(Z2+1/2)(0) =

0

We compute now the Eisenstein series E(s, gz, φ1 ⊗ φ2):

E(s, gz, φ1 ⊗ φ2) =

=
∑

(a,b)=1,2|b

y1/2|a2 + b2|1/2∞ (−1)(a−1)/2 a− bz
|a− bz|2

∏
p

|a2 + b2|1/2p

ys/2

|a− bz|s
|a2 + b2|s/2∞

∏
p

|a2 + b2|s/2p

=
∑

(a,b)=1,2|b

a− bz
|a− bz|s|a− bz|2

y(s+1)/2(−1)(a−1)/2
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From Proposition 8.1 and Lemma 8.2, we get the natural Corollary:

Corollary 8.1. Using the notation established, we have:

Zf (s, χD,fϕf ,Φ
◦
f ) =

=
1

72
#(OK/DOK)×

1

2
LQ(2s− 1, χ0)

∏
p|D

(1− (−1)(p−1)/2p1−2s)

×
∑

[A]∈K×\A×K,f/U

E(2s− 2, 3DgzA , φ1 ⊗ φ2)χD(A)
ϕ(A)

a2s−1
(−1)(a−1)/2y

−s+1/2
A ,

Here we let yA := 3D
√

3
2a

.

From Zf(s, χDϕ,Φ
◦
K) to L(ED, s)

We are interested in the value of the L-function at 1. We compute in the following Lemma:

Lemma 8.3. For all s and for the choice of Schwartz-Bruhat function Φ◦K as above, we
have:

Lf (ED, 1) =
(1 + 21−s)−1

1
12

#(OK/DOK)×
Zf (s, χDϕ,Φ

◦
K)

Proof. From Tate’s thesis, we have Lf (s, χDϕ) = Zf (s, χDϕ)

∏
p|6D

Lp(s, χD,pϕp)∏
p|3D

Zf (s, χD,pϕp,Φp)
. Since

χDϕ is ramified at 3D, we have Lp(s, χD,pϕp) = 1. At 2 we have Lp(s, χD,2ϕ2) = (1 −
χD(2)ϕ(2)2−s)−1 = (1 + 21−s)−1.

We need to compute the integral:

Zp(s, χDϕ,Φp) =

∫
Qp[ω]×

χD,p(αp)ϕp(αp)|αp|spΦp(αp)d
×αp

From the choice of the Schwartz-Bruhat function Φp = char(Z+3DZp[ω])× for p|D, the

integral reduces to Zp(s, χDϕ,Φp) =

∫
(Z+3DZp[ω])×

χD,p(αp)ϕp(αp)|αp|spd×αp. Note that for

p 6= 3, all the characters χD, ϕ and | · |p are unramified, thus we just get the volume
vol
(
(Z + 3DZp[ω])×

)
.

For p = 3, we have Φp = char(±1+3Z3[ω]). Similarly, we get vol
(
(±1 + 3Z3[ω])×

)
.

For p = 2, we get Z2(s, χD,2ϕ) = 2 vol(1 + 4Z2[ω]).
We already computed the volumes.
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• p nonsplit, p|D: vol(Zp[ω]×) = (p2 − 1) vol(1 + pZp[ω]).

• p split, p|D: vol(Zp[ω]×) = (p− 1)2 vol(1 + pZp[ω])..

• p = 3, we have vol (±1 + 3Z3[ω]) = 1
3
.

• p = 2, we have 2 vol (±1 + 2Z2[ω]) = 2
12

= 1
6
.

Taking s = 1 in the Corollary 8.1 above, we get:

Corollary 8.2. Using the notation established, we have:

Zf (1, χD,fϕf ,Φ
◦
f ) =

1

72
#(OK/DOK)×

π

8

∏
p|D

(1− (−1)(p−1)/2p−1)

×
∑

[A]∈K×\A×K,f/U

E(0, 3DgzA , φ1 ⊗ φ2)χD(A)
ϕ(A)

a
y
−1/2
A (−1)(a−1)/2

Furthermore, from the Lemma above we have:

Corollary 8.3.
Lf (1, χD,fϕf ,Φ

◦
f ) =

=
π

92

∏
p|D

(1− (−1)(p−1)/2p−1)
∑

[A]∈K×\A×K,f/U

E(0, 3DgzA , φ1 ⊗ φ2)χD(A)
ϕ(A)

a
y
−1/2
A (−1)(a−1)/2

Siegel-Weil for E(s, g, φ1 ⊗ φ2).
The Siegel-Weil theorem connects the value of a Siegel-Eisenstein series at s = 0 with the
value of a theta lift (see [15] for an exposition). In our case, we have:

E(0, g, φ1 ⊗ φ2) = 2Θφ1⊗φ2(g), (8.2)

where we define theta lift for g ∈ SL2(AQ):

Θφ1⊗φ2(g) :=

∫
O(VQ)\O(VAQ )

θ(g, h1, φ1 ⊗ φ2)dh1

Note that r(h1)φ1,p ⊗ φ2,p = φ1,p ⊗ φ2,p for all places p 6= 2. At 2, we are sending
(x, y) → (ax + by,−bx + ay), where a2 + b2 = 1. Thus exact one of a, b is divisible by 2.
Either way, we get (Z2 +1/2)⊕(Z2 +1/2) gets sent isomorphically to (Z2 +1/2)⊕(Z2 +1/2).
Thus we get:
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Θφ1⊗φ2(g) = vol(O(VQ) \O(VAQ,f ))θ(g, 1, φ1 ⊗ φ2)

We can easily compute vol(O(VQ) \O(VAQ)) = vol(Q× \A×Q,f = vol(
∏

p Z×p ) = 1 from the
choice of the self-dual Haar measure.

Remark 8.2. We can further compute θ(gz, 1, φ1 ⊗ φ2) explicitly. We get immediately:

θ (gz, 1, φ1 ⊗ φ2) = y−1/2
∑
m,n∈Z

e2πi(m2+n2)zeπimeπin = y−1/2θ1/2(z)2,

where θ1/2(z) :=
∑
n∈Z

e2πin2z(−1)n is a theta function of weight 1/2. As an automorphic

form, this is θ1/2(z) = y−1/2θφ1(gz).

Applying Siegel-Weil and the remark above in our case, we get for zA = −b+
√
−3

2a
, y = 3D

√
3

2a
:

y1/2E(0, g3DzA , φ1 ⊗ φ2) = 2y1/2Θφ1⊗φ2(g3DzA) = 2θ1/2(z)2

This gives us in Corollary 8.2:

Corollary 8.4. Using the same notation as above, we have:

Lf (1, χDϕ) =
π

48

∏
p|D

(1− (−1)(p−1)/2p−1)
∑

[A]∈K×\A×K,f/U

θ1/2(3DzA)2χD(A)
ϕ(A)

a
(−1)(a−1)/2

We showed in section 3 in Lemma 3.5 that for a primitive idealA, we have ϕ(A)

a
=

Θ(ω)

Θ(zA)
.

This gives us:

Lf (1, χDϕ) =

= D−1/3Θ(ω)
π

48

∏
p|D

(1− (−1)(p−1)/2p−1)
∑

[A]∈K×\A×K,f/U

θ1/2(3DzA)2

ΘK(zA)
D1/3χD(A)(−1)(a−1)/2

From class field theory, we can find H◦ a finite abelian extension of K such that

Gal(H◦/K) ∼= K× \ A×K,f/U.

This is going to be the ray class field for the modulus 12D.
Finally, we get the following theorem:

Theorem 8.1.

Lf (1, χDϕ) = D1/6Θ(ω)
∏
p|D

(1− (−1)(p−1)/2p−1)
π

48
TrH◦[

√
D]/K[

√
D]

θ1/2(3Dω)2

ΘK(ω)
D−1/6
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The only step needed is to apply the Shimura reciprocity law in order to show that all
elements θ1/2(3DzA)2

ΘK(zA)
D1/3χD(A)D−1/2 are Galois conjugate. Take f(z) =

θ1/2(3Dz)2

ΘK(z)
. This is a

modular function of level 12D with rational coefficients at the cusp ∞. Thus f(ω) ∈ H◦.
The proof that all terms are conjugate is a straightforward application of Lemma 4.3.
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Chapter 9

Appendix A: Properties of ΘK

In this appendix we would like to present a few properties of ΘK . First, we have a functional
equation for the theta function (see [11]):

ΘK(−1/3z) =
3√
−3

zΘK(z). (9.1)

Furthermore, we can compute the transformation of ΘK(z ± 1/3) in the lemma below:

Lemma 9.1. We have the following relations:

(i) Θ

(
z +

1

3

)
= (1− ω)Θ(3z) + ωΘ(z)

(ii) Θ

(
z − 1

3

)
= (1− ω2)Θ(3z) + ω2Θ(z)

Proof. We will rewrite the Fourier expansion of Θ(z) for z := z + 1/3:

Θ

(
z +

1

3

)
=
∑
m,n∈Z

e2πi(m2+n2−mn)(z+ 1
3).

We split the sum in two parts, depending on whether or not the ideal (m+ nω) is prime
to (
√
−3). Then we have:

Θ

(
z +

1

3

)
=

∑
m,n∈Z,(

√
−3)|(m+nω)

e2πi(m2+n2−mn)(z+ 1
3) +

∑
m,n∈Z,(

√
−3)-(m+nω))

e2πi(m2+n2−mn)(z+ 1
3).

Note that on the RHS we can rewrite the first term as:

∑
m,n∈Z,(

√
−3)|(m+nω)

e2πi(m2+n2−mn)(z+ 1
3) =

∑
m,n∈Z

e2πi(m2+n2−mn)(3z+1) = Θ(3z + 1) = Θ(3z)
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Also note that when 3 - m2 + n2 −mn, then we have m2 + n2 −mn ≡ 1 mod 3. Then
the second term on the RHS can be rewritten as:∑

m,n∈Z,(
√
−3)-(m+nω))

e2πi(m2+n2−mn)(z+ 1
3) =

∑
m,n∈Z,(

√
−3)-(m+nω))

e2πi(m2+n2−mn)zω.

We rewrite this: ∑
m,n∈Z,(

√
−3)-(m+nω))

e2πi(m2+n2−mn)(z+ 1
3) =

= ω
∑
m,n∈Z

e2πi(m2+n2−mn)z − ω
∑

m,n∈Z,(
√
−3)|(m+nω))

e2πi(m2+n2−mn)z

Finally we recognize the two terms as theta functions ΘK :∑
m,n∈Z,(

√
−3)-(m+nω))

e2πi(m2+n2−mn)(z+ 1
3) = ωΘ(z)− ωΘ(3z)

Now going back to our initial computation, we get:

Θ

(
z +

1

3

)
= Θ(3z) + ωΘ(z)− ωΘ(3z) = (1− ω)Θ(3z) + ωΘ(z)

This finishes the proof of the first formula. We get the second formula by applying the
first formula for z := z − 1/3. We get Θ (z) = (1 − ω)Θ(3z − 1) + ωΘ(z − 1/3) and this is
easily rewritten to give us the second formula.

Properties of ΘK((−b+
√

3)/6).

Lemma 9.2. ΘK

(
−3+

√
−3

6

)
= 0

Proof. We apply the functional equation 9.1 for z = −3+
√
−3

6
:

Θ

(
−3 +

√
−3

6

)
= (−

√
−3)
−3 +

√
−3

6
Θ

(
3 +
√
−3

6

)
.

Since Θ
(
−3+

√
−3

6

)
= Θ

(
3+
√
−3

6

)
, we get the result of the lemma.

Lemma 9.3. For the primitive ideal A = [a, −b+
√
−3

a
]Z prime to 3, where a = NmA, b ≡ 0

mod 3 and b2 ≡ −3 mod 4a, we have:

ΘK

(
−b+

√
−3

6a

)
= 0.
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Proof. The proof is similar to that of Lemma 3.5. We can write the generator of primitive

ideal A =
[
a, −b+

√
−3

2

]
in the form kA = ma + n

−b+
√
−3

2
for some integers m,n. Note

that (m, 3) = 1, thus we can find through the Euclidean algorithm integers A,B such that

mA + 3nB = 1, which makes
(

A B
−3n m

)
a matrix in Γ0(3). Since Θ is a modular form of

weight 1 for Γ0(3), we have:

ΘK

(
A−b+

√
−3

6a
+B

−3n−b+
√
−3

6a
+m

)
=

(
m− n−b+

√
−3

2a

)
ΘK

(
−b+

√
−3

6a

)
.

Noting that −3n−b+
√
−3

6a
+m = kA/a = 1/kA, we can compute

A−b+
√
−3

6a
+B

−n−b+
√
−3

2a
+m

=
(A−b+

√
−3

2
+ 3Ba)kA

3a
.

This is (3aB + A−b+
√
−3

2
)(ma+ n b+

√
−3

2
)/(3a). After expanding, we get:

−nAb
2 + 3

4a
+ abB/3 +

b(−mA+ 3nB)

6
+

√
−3

6

Note that mA + 3nB = 1 implies that mA and 3nB have different parities. Also we
chose b odd, since b2 + 3 ≡ 0 mod 4a. Finally, recall 3|b and thus using the period 1 of ΘK

we get:

ΘK

(
A−b+

√
−3

6a
+B

−3n−b+
√
−3

2a
+m

)
= ΘK

(
−3 +

√
−3

6

)
From the previous Lemma, we have ΘK

(
−3+

√
−3

6

)
, thus ΘK

(
−b+
√
−3

6a

)
= 0 which finishes

the proof.

About ΘK(D(−3 +
√
−3)/6).

In this section we will show that for D a product of split primes p ≡ 1 mod 3 and for the
representative ideals A = [a, −b+

√
−3

2
] of Cl(O3D)with b ≡ 0 mod 3, we have:

∑
A∈Cl(O3D)

Θ
(
−b+
√
−3

6a

)
Θ
(
−b+
√
−3

2a

)χD(A)D1/3 = 0

We will first show that the LHS is equal to the trace of
ΘK

(
D−b+

√
−3

6

)
Θ(ω)

D1/3 with b ≡ 0
mod 3. We will show this by using Shimura reciprocity law. Note first that:



CHAPTER 9. APPENDIX A: PROPERTIES OF ΘK 97

Lemma 9.4. The modular function f0(z) =
Θ(Dz/3)

Θ(z)
is a modular function for Γ(3D) and

f0(z) has rational Fourier coefficients at the cusp ∞.

Proof. The proof that f0 is invariant under Γ(3D) is straightforward. The proof that the
Fourier coefficients are rational is also similar to the proof of Lemma 4.1.

Lemma 9.5. For f0 as above and τ = −b0+
√
−3

2
, we have f0(τ) ∈ H3D.

Proof. To show that f(τ) ∈ H3D, we need to look at action of U(3D). We follow closely the
proof of Lemma 4.2. We rewrite the primitive ideal A = (A+Bω) as A = [a, −b+

√
−3

2
]Z with

b ≡ b0 mod 3. The only difference is computing:

f0(
(
ta−sb −sc/a
s t

)
z) =

ΘK

(
(D 0

0 3 )
(
ta−sb −sc/a
s t

)
z
)

ΘK

((
ta−sb −sc/a
s t

)
z
) =

ΘK

((
ta−sb −scD/(3a)
3s/D t

)
(Dz)

)
ΘK

((
ta−sb −sc/a
s t

)
z
) .

Note that we still have
(
ta−sb −scD/(3a)
3s/D t

)
,
(
ta−sb −sc/a
s t

)
∈ Γ0(3), thus we simply get f0(z)

and all the arguments from Lemma 4.2 follow.

Lemma 9.6. For A =
[
a, −b+

√
−3

2

]
a primitive ideal ideal with a = NmA and b2 ≡ −3

mod 4a, we have:

Θ
(
D−b+

√
−3

6a

)
Θ
(
−b+
√
−3

2a

) =

Θ
(
D−b+

√
−3

6

)
Θ(ω)

σ−1
A

Proof. Note that f0(z) satisfies the properties of Lemma 4.3, thus applying its result for
f0

(
−b+
√
−3

2

)
gives us the result.

From the previous two lemmas, we immediately get the following Corollary:

Corollary 9.1. For A =
[
a, −b+

√
−3

2

]
primitive ideals that are representatives of Cl(O3D) as

above, we have:

TrH3D/K

Θ(D−b+
√
−3

6
)

Θ
(
−b+
√
−3

2

)D1/3 =
∑

A∈Cl(O3D)

Θ
(
−b+
√
−3

6a

)
Θ
(
−b+
√
−3

2a

)χD(A)D1/3
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Traces of theta functions

We will show the following lemma:

Lemma 9.7. For D ≡ 1 mod 3, b0 ≡ 0 mod 3 as before, we have:

TrH3D/K

Θ
(
D−3+

√
−3

6

)
Θ(ω)

D1/3 =
∑

A∈Cl(O3D)

ΘK

(
D−b0+

√
−3

6a

)
ΘK

(
D−b0+

√
−3

6a

)χD(A)D1/3 = 0.

Proof. The method will be to apply Lemma 9.1 two times. We first apply Lemma 9.1 (i) for
z = 1−2D

6D
to get:

Θ

(
1 +
√
−3

6D

)
= (1− ω)Θ

(
1 +
√
−3

2D

)
+ ωΘ

(
1− 2D +

√
−3

6D

)
This can be rewritten as:

Θ
(

1+
√
−3

6D

)
Θ(ω)

= (1− ω)
Θ
(

1+
√
−3

2D

)
Θ(ω)

+ ω
Θ
(

1−2D+
√
−3

6D

)
Θ(ω)

By taking the inverses and denoting B1 := −1 + 2D, a1 := (B2
1 + 3)/4, we have:

3D
Θ
(
D−1+

√
−3

2

)
Θ(ω/3)

= (1− ω)
Θ
(

1+
√
−3

2D

)
Θ(ω)

+ 3Dω
Θ
(
DB1+

√
−3

2a

)
Θ
(
B1+

√
−3

6a

)
Note that B1 ≡ 1 − 2D ≡ 1 mod 3. Furthermore, noting that Θ(ω/3) = (1 − ω)Θ(ω)

and Θ
(
B1+

√
−3

6a

)
= (1− ω2)Θ

(
B1+

√
−3

2a

)
, we get:

3D

1− ω

Θ
(
D−1+

√
−3

2

)
Θ(ω)

=

= (1− ω)
Θ
(

1+
√
−3

2D

)
Θ(ω)

+
3Dω

1− ω2

Θ
(
DB1+

√
−3

2a1

)
Θ
(
B1+

√
−3

2a

)
Multiplying by D1/3 and rewriting the first term on the RHS, we have:

3D

1− ω

Θ
(
D−1+

√
−3

2

)
Θ(ω)

D1/3 =

= (1− ω)(1− ω2)
Θ
(

1+
√
−3

2D

)
(1− ω2)Θ(ω)

D1/3 +
3Dω

1− ω2
χD(A1)−1

Θ
(
DB1+

√
−3

2a1

)
Θ
(
B1+

√
−3

2a

) D1/3χD(A1)
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By taking the trace from H3D to K and denoting by A1 :=
(
B1+

√
−3

2

)
, we have:

3D

1− ω
TrH3D/K

Θ (Dω)

Θ(ω)
D1/3 =

= 3 TrH3D/K
Θ (−Dω2)

Θ(−ω2/3)
D1/3 +

3Dω

1− ω2
χD(A1)

−1
TrH3D/K

Θ
(
DB1+

√
−3

2a1

)
Θ
(
B1+

√
−3

2a

) D1/3χD(A1)

Note that by definition we have χD(A1) = χD

(
B1+

√
−3

2
ω
)
. We can compute the value of

the character using Lemma 2.5. For each p|D, we have:

χp

(
B1 +

√
−3

2
ω

)
=

(
(1− 2D −

√
−3)ω2

(1− 2D +
√
−3

)ω

)(Nm p−1)/3

=

(
−1

1

)(Nm p−1)/3

= 1.

Thus we get χD(A1) = 1, and we can rewrite the equation above as:

3D

1− ω
TrH3D/K

Θ (Dω)

Θ(ω)
D1/3 =

= 3 TrH3D/K
Θ (−Dω2)

Θ(−ω2/3)
D1/3 +

3Dω

1− ω2
TrH3D/K

Θ
(
DB1+

√
−3

2a1

)
Θ
(
B1+

√
−3

2a

) D1/3χD(A1).

Furthermore, using Lemma 9.6, we have

Θ
(
DB1+

√
−3

2a1

)
Θ
(
B1+

√
−3

2a

) D1/3χD(A1) =

(
Θ (Dω)

Θ (ω)
D1/3χD(A1)

)σ−1
A

,

thus:

TrH3D/K

Θ
(
DB1+

√
−3

2a1

)
Θ
(
B1+

√
−3

2a

) D1/3χD(A1) = TrH3D/K
Θ (Dω)

Θ (ω)
D1/3

Denoting S := TrH3D/K
Θ(Dω)
Θ(ω)

D1/3, we get the relation:

3D

1− ω
S = 3 TrH3D/K

Θ
(

1+
√
−3

2D

)
Θ(−ω2/3)

D1/3 +
3Dω

1− ω2
S.

This implies:
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3D

1− ω2
S = 3 TrH3D/K

Θ
(

1+
√
−3

2D

)
Θ(−ω2/3)

D1/3.

This is equivalent to:

D

1− ω2
S = TrH3D/K

Θ
(

1+
√
−3

2D

)
Θ(−ω2/3)

D1/3.

Note that if we apply the transformation z → −1/3z given by the functional equation
(9.1) to both theta functions on the RHS we get:

1

1− ω2
S =

1

3
TrH3D/K

Θ
(
D−1+

√
−3

6

)
Θ(ω)

D1/3.

This is equivalent to:

(1− ω)S = TrH3D/K

Θ
(
D−1+

√
−3

6

)
Θ(ω)

D1/3. (9.2)

We will apply now Lemma 9.1 (ii) for z = D−b1+
√
−3

2a
, where b1 ≡ 1 mod 3. We denote

by b0 an integer b0 ≡ 0 mod 3 such that b0 ≡ b1 mod 4a. Then we have:

Θ

(
D
−b0 +

√
−3

6a

)
= (1− ω2)Θ

(
D
−1 +

√
−3

2a

)
+ ω2Θ

(
D
−b1 +

√
−3

6a

)
.

This can be rewritten as:

Θ
(
D−b0+

√
−3

6a

)
Θ
(
−b0+

√
−3

2a

) D1/3χD(A) =

= (1− ω2)
Θ
(
D−b0+

√
−3

2a

)
Θ
(
−b0+

√
−3

2a

) D1/3χD(A) + ω2
Θ
(
D−b1+

√
−3

6a

)
Θ
(
−b0+

√
−3

2a

) D1/3χD(A).

By taking the sums, we get:

M = (1− ω2)S + ω2(1− ω)S = 0

Remark 9.1. The above lemma is also true for D ≡ 2 mod 3 with very small adjustments
in the proof.



101

Chapter 10

Appendix B: Shimura reciprocity law
over Shimura curves

We can look at the modular curve X0(3D) as a Shimura curve:

X0(3D)(C) = GL2(Q)+ \ H± ×GL2(AQ,f )/V0(3D),

where V0(3D) =
{
γ ∈ GL2(AQ,f ) : γ ≡

(
∗ ∗
0 ∗

)
mod 3DQ̂

}
Defining the modular function f(z).

ΘK as an automorphic form.

We will reinterpret the theta function ΘK as a theta lift. Recall the Weil representation for
SL2(AQ) acting on S(AK) the Schwartz-Bruhat space for AK . For Φ ∈ (AK), we have:

• r
((

a 0
0 a−1

)
Φ

)
(x) = (a,−3)|a|Φ(ax), a ∈ k×

• r
((

1 b
1

)
Φ

)
(x) = ψ(bq(x)Φ(x), b ∈ k

• r
((

0 1
−1 0

)
Φ

)
(x) = γ(V, q)Φ̂(x)

Here γ(V, q) is the Weil factor that is a 4th root of unity and (·,−3·) is the Hilbert
symbol. Furthermore, we denote by Φ̂ the Fourier transform of Φ with respect to ψ, defined
to be:

Φ̂(x) :=

∫
AK

Φ(y)ψ(〈x, y〉)dy,
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where 〈x, y〉 := q(x+y)−q(x)−q(y). In our case, for x = a1+b1

√
−3 and y = a2+b2

√
−3

we get 〈x, y〉 = 2a1a2 + 6b1b2. In the integral above we choose the self-dual Haar measure

i.e. the measure for which ̂̂Φ(x) = Φ(−x).
Using the Weil representation, we can relate the theta function ΘK to the automorphic

Θ:

ΘΦ(g) =
∑
k∈K

r(g)Φ(k), g ∈ SL2(AQ)

We choose the Schwartz-Bruhat functions:

Φv =

{
charOKv , v -∞
e−2π|·|2 , v =∞

Note that ΘΦ is that it an automorphic form and it is invariant under SL2(Q).

Then for gz =

(
y1/2 xy−1/2

0 y−1/2

)
and z = x+ yi we can easily compute:

ΘΦ(gz, 1f ) = y1/2ΘK(z) (10.1)

The classical definition of f(z).

Lemma 10.1. Define the modular function:

f(z) =
Θ(Dz)

Θ(z)
.

Then f is a modular function for Γ0(3D) =
{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
mod 3D

}
i.e.

f ∈ F0,3D.

Proof. We will show that f is invariant under Γ0(3D). Let
(
a b
c d

)
∈ Γ0(3D). We have:

f

((
a b
c d

)
z

)
=

Θ

((
D 0
0 1

)(
a b
c d

)
z

)
Θ

((
a b
c d

)
z

) =

Θ

((
a bD
c/D d

)(
D 0
0 1

)
z

)
Θ

((
a b
c d

)
z

)
Since

(
a b
c d

)
∈ Γ0(3D), we have c/D ≡ 0 mod 3 and

(
a Db
c/D d

)
∈ Γ0(3). Since Θ is

a modular form of weight 1 for Γ0(3), we have:
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f

((
a b
c d

)
z

)
=

Θ

((
a bD
c/D d

)
(Dz)

)
Θ

((
a b
c d

)
z

) =
(c/D ·Dz + d)−1Θ (Dz)

(cz + d)−1Θ (z)
= f(z)

Note also that both Θ(Dz) and Θ(z) have Fourier expansions in q1/D with rational Fourier
coefficients.

Rewriting f(z) to be defined on the Shimura curve.

We rewrite f(z) to be defined on the Shimura curve X0(3D). We take for [z, 1]:

f [z, 1] :=

Θ

[(
D 0
0 1

)
z, 1

]
Θ[z, 1]

.

We want to extend the definition for [z, g] ∈ H±×GL2(AQ,f ). We claim there is z0 ∈ H±
such that:

[z0, 1] ∼ [z, g]

in X0(3D). This is equivalent to having some γ ∈ GL2(Q)+ and gf ∈ V0(3D) such that
z = γz0, g = γgf . This will follow from the following theorem (see Bump):

Strong approximation theorem. Let M be a number field and K0 open compact
subgroup of GLn(AM , f) such that the image of K0 under the determinant map is

∏
v-∞O×v .

Then:
# GLn(M) GLn(M∞) \GLn(AM)/K0 = # Cl(OM)

We apply strong approximation for Q for n = 2 and V0(3D). Note that V0(3D) �
∏

p Z×p
is an open compact subgroup of GL2(AQ) Since Q has class number one, we have:

GL2(AQ) = GL2(R) GL2(Q)V0(3D),

we can write g = γgf for γ ∈ GL2(Q) and gf ∈ V0(3D). Moreover, we can change gf so

that we have γ ∈ GL2(Q)+ (note that γ−
(
−1 0
0 1

)
∈ V0(3D) and GL2(Q) = GL2(Q)+ ∪

γ−GL2(Q)+).
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Definition 10.1. For [z, g] ∼ [z0, 1] on X0(3D) (i.e. for z = γz0, g = γgf), we can define:

f [z, g] : = f [z0, 1] =

Θ

[(
D 0
0 1

)
z0, 1

]
Θ[z0, 1]

Checking that the function is well-defined.

We will check that the above definition makes sense. In order for this definition to be well
defined, we need to have f [z0, 1] = f [z1, 1] for all [z0, 1] ∼ [z1, 1] in X0(3D). For this to
happen we need to have:

z0 = γz1,

1 = γgu,

where γ ∈ GL2(Q)+ and gu ∈ V0(3D). This implies γ ∈ GL2(Q)+ ∩ V0(3D) = Γ0(3D). Thus
we need:

f(z0) = f(γz0)

This is true due to the Lemma above, thus the function is well defined on X0(3D).

Rewriting the definition to include [z, g].

If we want to further rewrite the definition, for z = γz0, g = γgf , where γ ∈ GL2(Q)+, gf ∈
V0(3D), note that in X0(3D):[(

D 0
0 1

)
z0, 1

]
∼
[
γ−1z,

(
1 0
0 D

)]
∼
[
z, γ

(
1 0
0 D

)]

∼
[
z, gg−1

f

(
1 0
0 D

)]
∼
[
z, g

(
1 0
0 D

)
g′f

]
,

Here g−1
f =

(
a b
c d

)
∈ V0(3D). Then we can write g′f =

(
a Db
c/D d

)
.

We define R(V0(3D)) := V0(3D) ∩R(Af ).

Lemma 10.2. R(Af ) = R(Q)R(V0(3D))

Proof. Let g ∈ R(Af ). By strong approximation, we can write g = γgv for γ ∈ GL2(Q)+

and gv ∈ V0(3D). First we will show that we can write det g = det γ0 det gv0 , for γ0 ∈ R(Q)
and gv0 ∈ R(V0(3D)). Since g ∈ R(Af ), we have det g = q(x) for x ∈ A×K,f . We can apply
strong approximation to K:
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A×K,f = K×U0(3D),

thus we can write x = ku0. Then q(x) = q(k)q(u0). Then we can pick:(
1 0
0 (det g)

)
=

(
1 0
0 q(k)

)(
1 0
0 q(u0)

)
,

Note that
(

1 0
0 q(k)

)
∈ R(Q) and

(
1 0
0 q(u0)

)
∈ R(V0(3D)). Then we can write:

g = γgv = γ

(
1 0
0 det γ−1

)(
1 0
0 det g

)(
1 0
0 det g−1

v

)
gv

= γ

(
1 0
0 det γ−1

)(
1 0
0 q(k)

)(
1 0
0 q(u0)

)(
1 0
0 det g−1

v

)
gv

We take

γ0 = γ

(
1 0
0 det γ−1

)(
1 0
0 q(k)

)
∈ R(Q)

and

gu0 =

(
1 0
0 q(u0)

)(
1 0
0 det g−1

v

)
gv ∈ R(V0(3D)).

Lemma 10.3. For [z, g] ∈ X0(3D), we can find γ ∈ GL2(Q)+, gu ∈ V0(3D) such that
γggu ∈ R(Af ).

Proof. We can write g = γ0gu,0 for γ0 ∈ GL2(Q)+ and gu,0 ∈ V0(3D). We can rewrite:

γggu =

(
1 0
0 det γ−1

0

)
γ0gu,0

(
1 0
0 det g−1

u,0

)
,

for γ =

(
1 0
0 det γ−1

0

)
∈ GL2(Q)+, gu =

(
1 0
0 det g−1

u,0

)
∈ V0(3D). Then we get γggu ∈

R(Af ), since it has determinant 1.

In the following we use the notation:

g′ :=

(
D 0
0 1

)
g

(
1/D 0

0 1

)
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Lemma 10.4. For g ∈ R(Af ), we have:

f [z, g] =
Θ [Dz, g′]

Θ[z, g]

Proof: From Lemma 10.2, we can write g = γgu for γ ∈ R(Q) and gu ∈ R(V0(3D)).
Then [z, g] ∼ [γ−1z, γ−1g] ∼ [z0, 1], where z0 := γ−1z. Then we can apply the definition:

f [z, g] := f [z0, 1] =
Θ [Dz0, 1]

Θ[z0, 1]
=

Θ [γ′Dz0, γ
′]

Θ[γz0, γ]
=

Θ [Dz, γ′]

Θ[z, γ]

We need to show that Θ [Dz, γ′] is invariant under g′u and Θ[z, γ] invariant under gu.
From Lemma 10.3, we have that gu ∈ V0(3D) acts trivially on Φf (x), thus:

Θ [z, γgu] = Θ[z, g]

We need to show: Θ [Dz, γ′g′u] = Θ [Dz, γ′].
We rewrite

g′u =

(
a Db
c/D d

)
=

(
1 0
0 ad− bc

)(
a Db

c/(D(ad− bc)) d/(ad− bc)

)
.

Note that we have g′u ∈ GL2(Ẑ), thus vp(ad− bc) = 0 for all p. Then

g′u :=

(
a Db

c/(D(ad− bc)) d/(ad− bc)

)
is an element of SL2(Ẑ). Using Lemma 10.12, we have r(g′u)Φf = Φf , thus:

Θ [Dz, γ′] = Θ [Dz, g′]

This gives us the conclusion.

Lemma 10.5. If we pick different [z1, g1], [z2, g2] that are equivalent to [z, g] in X0(3D) and
such that g1, g2 ∈ R(Af ), we still have:

f [z1, g1] = f [z2, g2]

Proof: By above Lemma we have:

f [zi, gi] =
Θ [Dzi, g

′
i]

Θ[zi, gi]

Since gi ∈ R(Af ) by Lemma 10.2 we can find γi ∈ R(Q) and gu,i ∈ R(V0(3D)) such that
gi = γigu,i. We denote z∗i = γ−1

i zi.
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Then γ′i ∈ R(Q) as well and:

f [zi, gi] =
Θ [γ′−1Dzi, γ

′−1g′i]

Θ
[
γ−1
i zi, γ

−1
i g′i

] =
Θ
[
Dz∗i , g

′
u,i

]
Θ
[
z∗i , g

′
u,i

]
Note that gu,i, g′u,i ∈ R(V0(3D)) act trivially on Φf (x), thus we actually have:

f [zi, gi] =
Θ [Dz∗i , 1]

Θ [z∗i , 1]
= f [z∗i , 1]

Since we have [zi, gi] ∼ [z∗i , 1] ∼ [z, g], we have [z∗1 , 1] ∼ [z∗2 , 1] and we have f(z∗1) = f(z∗2).

Conclusion about well-definedness.The last few lemmas imply that it is well-defined
if we take:

f [z, g] := f [z1, g1] =
Θ[Dz1, g

′
1]

Θ[z1, g1]
,

for any representative [z1, g1] ∼ [z, g] such that g1 ∈ R(Af ).

Shimura reciprocity law.

We will consider the CM point ω = −1+
√
−3

2
for K and the value of f(z) at z = ω. Since ω

is a CM point and f ∈ F , from CM theory we have that f(ω) ∈ Kab is an algebraic integer.
Moreover, we can apply Shimura reciprocity law to f(ω).

In the following we follow the notation of Hida [9].
We have the torus embedding:

rω :Tω → GL2

A+Bω →
(
A B
−B A−B

)
Note that ω is the unique element of the upper-half plane H that is fixed by the action

of rω(TωQ). We check this action below:(
A B
−B A−B

)
z = z,

iff Az + B = −Bz2 + (A − B)z, or equivalently B(z2 + z + 1) = 0 for all B ∈ Q i.e.
z = ω,−1− ω, of which ω ∈ H.

Using the Artin map A×K → Gal(Kab/K), s → σs, we apply Shimura reciprocity law to
f(ω):

f [ω, 1]σs−1 = f [z, rω(s)],
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f(ω) is in the ring class field H3D.

We claim that f(ω) ∈ H3D. For this to be true, we need to check that f(ω) is invariant
under the action of U(3D).

Lemma 10.6. f(ω) ∈ H3D

Proof: In order for f(ω) ∈ H3D, we need to show that it is invariant under

Gal(Kab/H3D).

Using Shimura reciprocity law, we need to show:

f [ω, 1] = f [ω, rω(s)],

for all s ∈ U(3D). Take as representatives: s = (Ap +Bpω)p ∈ U(3D). This implies that
Ap +Bpω ∈ (Zp[ω])×, 3D|Bp for p|3D and A3 ≡ 1 mod 3.

Using the definition of f(z) above, invariance under U(3D) is equivalent to:

Θ

[
ω,

(
A B
−B A−B

)
p

(
1 0
0 D

)]

Θ

[
ω,

(
A B
−B A−B

)
p

] =

Θ

[
ω,

(
1 0
0 D

)]
Θ [ω, 1]

It is enough to show:

Θ

[
ω,

(
A B
−B A−B

)
p

(
1 0
0 D

)]
= Θ

[
ω,

(
1 0
0 D

)]
.

Note that the statement Θ

[
ω,

(
A B
−B A−B

)
p

]
= Θ [ω, 1] is a particular case.

We rewrite:

Θ

[
ω,

(
A B
−B A−B

)
p

(
1 0
0 D

)]
= Θ

[
ω,

(
1 0
0 D

)(
A BD

−B/D A−B

)
p

]
.

Note that showing that
(

A BD
−B/D A−B

)
p

has trivial action in the Weil representation

is enough to give us our result.

We analyze this action. For p - D, we trivially have
(

A BD
−B/D A−B

)
p

∈ GL2(Zp). For

p|D, since 3D|Bp we have B/D ∈ Zp, thus
(

A BD
−B/D A−B

)
p

∈ GL2(Zp) as well.
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Denote mp = A2
p +B2

p − ApBp ∈ Z×p . Note that A+Bω2 ∈ (Zp[ω])×. We have:

r

((
A BD

−B/D A−B

)
p

, hp

)
Φp(x) = r

(
A BD/m

−B/D (A−B)/m

)
p

Φp((A+Bω2)x)

= r

(
A BD/m

−B/D (A−B)/m

)
p

Φp(x)

= Φp(x)

Since (A+Bω) is a unit in Zp[ω], we have
(

A BD/m
−B/D (A−B)/m

)
p

∈ SL2(Zp), thus acts

trivially on Φp. This finishes the proof.
One more case: p=3 Here we have to be careful about the Fourier action. Should still

work since 3|B:

r

((
A BD

−B/D A−B

)
3

, hp

)
Φp(x) = r

(
A BD/m

−B/D (A−B)/m

)
3

Φp((A+Bω2)x)

= r

(
−1 0
0 −1

)(
0 1
−1 0

)(
1 B/(DA)
0 1

)(
0 1
−1 0

)(
A 0
0 A−1

)(
1 BD/(Am)
0 1

)
Φ3(x)

Works because 3|B (needs a careful calculation of Φ̂3(x)).
Recall that Φ3(x) = charZ3[ω]. We compute:

• r
(

1 BD/(Am)
0 1

)
Φ3(x) = e2πiFrac3(BD/(Am)x2)Φ3(x)dx = Φ3(x)

• r
(
A 0
0 A−1

)
Φ3(x) = (A,−3)3|A|3Φ3(Ax) = Φ3(x)

• r
(

0 1
−1 0

)
Φ3(x) =

∫
Q3[ω]

e2πi(2aa′+6bb′) charZ3[ω](a
′+b′
√
−3)da′db′ = charZ3[ω](a+3b

√
−3)

• r
(

1 B/(DA)
0 1

)
charZ3[ω](a + b/

√
−3) = e2πiFrac3((a2+3b2) B

DA
) charZ3[ω](a + 3b

√
−3) =

e2πiFrac3((3a2+(3b)2)
B/3
DA

) charZ3[ω](a+ 3b
√
−3) = charZ3[ω](a+ 3b

√
−3)

• r
(

0 1
−1 0

)
charZ3[ω](a+ 3b

√
−3) = charZ3(−a− b

√
−3)

• r
(
−1 0
0 −1

)
Φ3(−x) = Φ3(x)
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Galois conjugates of f(ω).

We will look now at the Galois action of Gal(H3D/K) and compute the Galois conjugates of
f(ω). This is done in the following Lemma:

Proposition 10.1. For A = [a, b+
√
−3

2
] a primitive ideal in I(3D), we have:

f(ω)σA =
Θ
(
D b+

√
−3

2a

)
Θ
(
b+
√
−3

2a

)
Proof: Under the isomorphism Cl(O3D) ∼= K×\A×K,f/U(3D), we take as a representative

for A the idele s = (A+Bω)p|3D, where A+Bω ∈ OK is a generator of A with A,B ∈ Z.
Using Shimura reciprocity law, we have:

f [ω, 1]σs = f [ω, rω(s−1)] =

Θ

[
ω,

(
A B
−B A−B

)−1

p|3D

(
1 0
0 D

)]

Θ

[
ω,

(
A B
−B A−B

)−1

p|3D

]

By multiplying by
(
A B
−B A−B

)
on both sides, we get:

f [ω, 1]σs =

Θ

[
ω,

(
A B
−B A−B

)
p-3D

(
1 0
0 D

)]

Θ

[
ω,

(
A B
−B A−B

)
p-3D

] =

Θ

[
ω,

(
1 0
0 D

)(
A BD

−B/D A−B

)
p-3D

]

Θ

[
ω,

(
A B
−B A−B

)
p-3D

]
We will compute the numerator. The denominator can be computed similarly for D = 1.

We compute using the Weil representation for p - 3D:

• p - 3Da:

r

((
A BD

−B/D A−B

)
p

, hp

)
Φp(x) = r

(
A B/a
−B (A−B)/a

)
Φp((A+Bω2)−1x)|a|−1

p

= Φp(x)

• p|a:

F0(x) = r

((
A BD

−B/D A−B

)
p

, hp

)
Φp(x)
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= r

(
A BD/a

−B/D (A−B)/a

)
p

Φp((A+Bω2)−1x)|a|−1
p

We rewrite
(

A BD
−B/D A−B

)
as a product:

(
1 BD/(A−B)
0 1

) ( a/(A−B) 0
0 (A−B)/a

)
( 0 1
−1 0 )

(
1 Ba/D(A−B)
0 1

)
( 0 1
−1 0 )

We denote α = A+Bω2 compute:

– F1(x) = |a|−1
p r

(
0 1
−1 0

)
Φp(α

−1x) = Φp(αx)|a−1α|p

– F2(x) := r

(
1 Ba/D(A−B)
0 1

)
F1(x) = |a−1α|pe−2πiFracp( Ba

D(A−B)
qp(x))Φp(αx) =

|a−1α|pΦp(αx).

– F3(x) := r

(
0 1
−1 0

)
F2(x) = |a|−1

p Φp(α
−1x)

– F4(x) := r

(
a/(A−B) 0

0 (A−B)/a

)
F3(x)

= |a|−1
p (a/(A−B),−3)p|a/(A−B)|pΦp(aα

−1x) = Φp(αx)

– F5(x) := r

(
1 BD/(A−B)
0 1

)
Φp(αx).

Note that Φp(αx) = |a|pr
(

1 0
0 1/a

)
Φp(x). Then we can write:

Θ
[
ω,
(
A B
−B A−B

)−1

p|3D ( 1 0
0 D )

]
= Θ

[
ω, ( 1 0

0 D )
(

1 BD/(A−B)
0 1

)
p|a

(
1 0
0 a−1

)
p|a

]
Lemma 10.7. For p|a, we have:

r

(
1 BD/(A−B)
0 1

)
Φp(αx) = r

(
1 −D(b+ 1)/2
0 1

)
Φp(αx)

Proof: For this to be true it is enough to show that D B
(A−B)

≡ −D b+1
2

mod a. Since
(a,D) = 1, this is equivalent to: B

A−B ≡ −
b+1

2
mod a. Moreover, since (a, 2) = 1, it is

equivalent to:

A+B

A−B
≡ −b mod a
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Recall that we have b2 ≡ −3 mod 4a. Moreover, A2 +B2−AB = a, thus A2 +B2 ≡ AB
mod a. This is equivalent to 4A2 + 4B2 ≡ 4AB mod a, or (A+B)2 ≡ −3(A−B)2 mod a,

or
(
A+B

A−B

)2

≡ −3 mod a. Note that we have used vp(A−B) = 0.

Thus we must have
A+B

A−B
≡ ±b mod a. Write (X + Y

√
−3) = [a, b+

√
−3

2
]. Then

we must have: X + Y
√
−3 = ma + n b+

√
−3

2
, thus X = ma + nb/2 ≡ nb/2 mod a and

Y = n/2.Moreover, we must have (n, a) = 1, since A is a primitive ideal. Thus X/Y ≡ b
mod a. Also note that X = A+B/2, Y = B/2 and:

A+B

A−B
=
X + 3Y

X − Y
=
X/Y + 3

X/Y − 1
≡ b+ 3

b− 1
≡ −b mod a.

Thus we got in our proposition:

Θ

[
ω,

(
A B
−B A−B

)−1

p|3D

(
1 0
0 D

)]
= Θ

[
ω,

(
1 0
0 D

)(
1 −D(b+ 1)/2
0 1

)
p|a

(
1 0
0 a−1

)
p|a

]

We multiply both the infinite and the finite part by
(

1 0
0 a

)(
1 D(b+ 1)/2
0 1

)(
D 0
0 1

)
∈

GL2(Q). The action on ω is:(
1 0
0 a

)(
1 D(b+ 1)/2
0 1

)(
D 0
0 1

)
ω = D

b+
√
−3

2a

We get:

Θ
[
ω,
(
A B
−B A−B

)−1

p|3D ( 1 0
0 D )

]
= |a|−1

f Θ

[
D
b+
√
−3

2a
,
(

1 0
0 a−1

)
p-a

(
1 D(b+1)/2
0 1

)
p-a

]
Note that for p - a, we have:

(
1 0
0 a−1

)
p

,

(
1 D(b+ 1)/2
0 1

)
p

∈ SL2(Zp) and act trivially

on Φp(x). Thus we get:

Θ

[
ω,

(
A B
−B A−B

)−1

p|3D

(
1 0
0 D

)]
= |a|−1

f Θ

[
D
b+
√
−3

2a
, 1

]
Applying this also to D = 1, we get:

Θ

[
ω,

(
A B
−B A−B

)−1

p|3D

]
= |a|−1

f Θ

[
b+
√
−3

2a
, 1

]
Taking the ratio of the two theta functions gives us the result.
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Some lemmas needed.

We have used above several facts:

Lemma 10.8. Let F (x) = Φp(αx). Then

F̂ (x) = |α|−1
p Φp(α

−1x)

Proof: We have by definition:

F̂ (x) =

∫
Qp[ω]

ψ(〈x, y〉)Φp(αy)dy

We make the change of variable y′ := αy and get:

F̂ (x) = |α|−1
p

∫
Qp[ω]

ψ(
〈
x, α−1y′

〉
)Φp(y

′)dy′ = |α|−1
p

∫
Zp[ω]

ψ(
〈
α−1x, y′

〉
)dy′

Note that the integral is 0 iff ψ(〈α−1x, y′〉) is non-trivial on Zp[ω]. Thus it is nonzero
exactly for α−1x ∈ Zp[ω], in which case the integral equals |α|−1

p .

Lemma 10.9. If qp(α) = a and vp(a) ≤ vp(m), then:

e−2πiFracp(mq(x))Φp(αx) = Φp(αx)

Proof: We have Φp(αx) 6= 0 iff vp(αx) ≥ 0. Thus when Φp(αx) 6= 0, we have vp(αx) ≥ 0,
then vp(qp(αx)) ≥ 0. Then we have:

Fracp(mq(x)) = Fracp

(m
a
qp(αx)

)
= 0

Thus we have either both sides equal to 0, or e−2πiFracp(mq(x)) = 1 and both sides are
equal to Φp(αx).

Lemma 10.10. For A = (X + Y
√
−3) =

[
a, b+

√
−3

2

]
a primitive ideal, we have X/Y ≡ b

mod a.

Proof: We must have: X + Y
√
−3 = ma+ n b+

√
−3

2
, thus X = ma+ nb/2 ≡ nb/2 mod a

and Y = n/2. Moreover, we have (n, a) = 1, since A is a primitive ideal. Thus X/Y ≡ b
mod a.

Lemma 10.11. For gp ∈
∏

SL2(Zp), we have:

r(gp)Φp(x) = Φp(x)

Lemma 10.12. For gf ∈ R(V0(3D)), we have:

r(gf )Φf (x) = Φf (x)
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