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Abstract Scientific applications at exascale generate and analyze massive amounts of data. A critical requirement of 
these applications is the capability to access and manage this data efficiently on exascale systems. Parallel I/O, the key 
technology enables moving data between compute nodes and storage, faces monumental challenges from new applications, 
memory, and storage architectures considered in the designs of exascale systems. As the storage hierarchy is expanding to 
include node-local persistent memory, burst buffers, etc., as well as disk-based storage, data movement among these layers 
must be efficient. Parallel I/O libraries of the future should be capable of handling file sizes of many terabytes and beyond. In 
this paper, we describe new capabilities we have developed in Hierarchical Data Format version 5 (HDF5), the most popular 
parallel I/O library for scientific applications. HDF5 is one of the most used libraries at the leadership computing facilities 
for performing parallel I/O on existing HPC systems. The state-of-the-art features we describe include: Virtual Object 
Layer (VOL), Data Elevator, asynchronous I/O, full-featured single-writer and multiple-reader (Full SWMR), and parallel 
querying. In this paper, we introduce these features, their implementations, and the performance and feature benefits to 
applications and other libraries.

 1 Introduction

In pursuit of more accurate modeling of real-world 
systems, scientific applications at exascale will gene-rate 
and analyze massive amounts of data. A critical 
requirement of these applications is the capability to 
access and manage this data efficiently on exascale sys-

tems. Parallel I/O, the key technology behind moving

data between compute nodes and storage, faces monu-

mental challenges from the new application workflows

as well as the memory, interconnect, and storage ar-

chitectures considered in the designs of exascale sys-

tems. The storage hierarchy in existing pre-exascale

computing systems includes node-local persistent mem-
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ory, burst buffers, etc., as well as disk and tape-based

storage 1○ 2○. Data movement among these layers must

be efficient, with parallel I/O libraries of the future ca-

pable of handling file sizes of many terabytes and be-

yond. Easy-to-use interfaces to access and move data

are required for alleviating the burden on scientific ap-

plication developers and in improving productivity. Ex-

ascale I/O systems must also be fault-tolerant to handle

the failure of compute, network, memory, and storage,

given the number of hardware components at these

scales.

Intending to address efficiency, fault-tolerance, and

other challenges posed by data management and para-

llel I/O on exascale architectures, we are developing

new capabilities in HDF5 (Hierarchical Data Format

version 5) [1], the most popular parallel I/O library

for scientific applications. As shown in Fig.1, HDF5

is the most used library for performing parallel I/O

on existing HPC systems at the National Energy Re-

search Scientific Computing Center (NERSC). (HDF5

and hdf5 are used interchangeably) HDF5 is among the

top libraries used at several US Department of Energy

(DOE) supercomputing facilities, including the Lead-

ership Computing Facilities (LCFs). Many of the ex-

ascale applications and co-design centers require HDF5

for their I/O, and enhancing the HDF5 software to han-

dle the unique challenges of exascale architectures will

play an instrumental role in the success of the Exascale

Computing Project (ECP) 4○.

ExaHDF5 is a project funded by ECP in enhancing

the HDF5 library. In this paper, we describe new ca-

pabilities we have developed in the ExaHDF5 project,

including Virtual Object Layer (VOL), Data Eleva-

tor, asynchronous I/O, full single-writer and multiple-

reader (SWMR), and parallel querying. We describe

each of these features and present an evaluation of the

benefits of the features.

There are multiple I/O libraries, such as

PnetCDF [2] and ADIOS [3], which provide parallel I/O

functionality. However, this paper is focusing on im-

plementations in the HDF5 library. The remainder of

the paper is organized as follows. We provide a brief

background to HDF5 in Section 2 and describe the

features enhancing HDF5 in Section 3. In Section 4,

we describe our experimental setup used for evaluating

various developed features using different benchmarks

(presented in Section 5) and conclude our discussion in

Section 6.

We have presented the benefits of the developed

features individually as these have been developed for

different use cases. For instance, Data Elevator is for

using burst buffers on systems that have the hardware.

Full SWMR is for applications that require multiple

readers analyzing data while a writer is adding data to

an HDF5 file. Integrating all these features into the sin-

gle HDF5 product requires a greater engineering effort,

which will occur in the next phase of the project.
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Fig.1. Library usage at NERSC on Cori and Edison in 2017 using the statistics collected by Automatic Library Tracking Database
(ALTD) 3○.

1○OLCF Summit: https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/, Nov. 2019.
2○Cori at NERSC: https://www.nersc.gov/users/computational-systems/cori/, Nov. 2019.
3○https://www.nersc.gov/assets/altdatNERSC.pdf, Dec. 2019.
4○ECP homepage: https://www.exascaleproject.org/, Nov. 2019.



2 Background to HDF5

HDF5 provides a data model, library, and file format

for storing and managing data. Due to the versatility

of its data model, and its portability, longevity, and

efficiency, numerous scientific applications use HDF5

as part of their data management solution. The HDF

Group (THG) 5○ has been designing, developing, and

supporting the HDF5 software for more than 20 years.

HDF5 is an open-source project with a BSD-style

license and comes with C, Fortran, C++, and Java

APIs, and third-party developers offer API wrappers in

Python, Perl, and many other languages. The HDF5

library has been ported to virtually all existing ope-

rating systems and compilers, and the HDF5 file format

is portable and machine-independent. The HDF5 com-

munity contributes patches for bugs and new features,

and actively participates in testing new public releases

and feature prototypes.

HDF5 is designed to store and manage high-volume

and complex scientific data, including experimental and

observational data (EOD). HDF5 allows storing generic

data objects within files in a self-describing way, and

much of the power of HDF5 stems from the flexibility

of the objects that make up an HDF5 file: datasets for

storing multi-dimensional arrays of homogeneous ele-

ments and groups for organizing related objects. HDF5

attributes are used to store user-defined metadata on

objects in files.

The HDF5 library offers several powerful features

for managing data. The features include random access

to individual objects, partial access to selected dataset

values, and internal data compression. HDF5 allows the

modification of datasets values, including compressed

data, without rewriting the whole dataset. Users can

use custom compression methods and other data filter-

ing techniques that are most appropriate for their data,

for example, ZFP compression developed at LLNL 6○

along with the compression methods available in HDF5.

Data extensibility is another powerful feature of the

HDF library. Data can be added to an array stored in

an HDF5 dataset without rewriting the whole dataset.

Modifications of data and metadata stored in HDF5

can be done in both sequential mode and parallel mode

using MPI I/O.

HDF5 supports a rich set of pre-defined datatypes as

well as the creation of an unlimited variety of complex

user-defined datatypes. User-defined datatypes provide

a powerful and efficient mechanism for describing users’

data. Datatype definition includes information about

byte order, size, and floating point representation; it

fully describes how the data is stored in the file, insur-

ing portability between the different operating system

and compilers.

Due to the simplicity of the HDF5 data model, and

flexibility and efficient I/O of the HDF5 library, HDF5

supports all types of digitally stored data, regardless

of origin or size. Petabytes of remote sensing data col-

lected by satellites, terabytes of computational results

from nuclear testing models, and megabytes of high-

resolution MRI brain scans are stored in HDF5 files, to-

gether with metadata necessary for efficient data shar-

ing, processing, visualization, and archiving.

3 Features

Towards handling challenges posted by massive con-

currency of exascale computing systems, deeper storage

hierarchies of these systems, and large amounts of sci-

entific data produced and analyzed, several new fea-

tures are needed in enhancing HDF5. In the ExaHDF5

project, we have been working on opening the HDF5

API to allow various data storage options, on provid-

ing transparent utilization of deep storage hierarchy,

on optimizing data movement, on providing coherent

and concurrent access to HDF5 data by multiple pro-

cesses, and on accessing desired data efficiently. In the

remainder of this section, we will describe the features

addressing these aspects of improving HDF5.

3.1 Virtual Object Layer (VOL)

The HDF5 data model is composed of two funda-

mental objects: groups and datasets, composed as a

directed graph within a file (sometimes also called a

“container”). This data model is powerful and widely

applicable to many applications, including HPC appli-

cations. However, the classic HDF5 mechanism of stor-

ing data model objects in a single, shared file can be a

limitation as HPC systems evolve toward a massively

concurrent future. Completely re-designing the HDF5

file format would be a possible way to address this lim-

itation, but the software engineering challenges of sup-

porting two (or more, in the future) file formats directly

in the HDF5 library are daunting. Ideally, applications

would continue to use the HDF5 programming API and

5○The HDF Group homepage: https://www.hdfgroup.org/, Nov. 2019.
6○LZF Website at LLNL: https://computation.llnl.gov/projects/floating-point-compression, Nov. 2019.



data model, but have those objects stored with the sto-

rage mechanism of their choice.

As shown in Fig.2, the Virtual Object Layer (VOL)

adds a new abstraction layer internally to the HDF5

library and is implemented just below the public API.

The VOL intercepts all HDF5 API calls that access

objects in a file and forwards those calls to an “ob-

ject driver” connector. A VOL connector can store the

HDF5 data model objects in a variety of ways. For

example, a connector could distribute objects remotely

over different platforms, provide a direct mapping of

the model to the file system, or even store the data in

another file format (like the native netCDF or HDF4

format). The user still interacts with the same HDF5

data model and API, where access is done to a single

HDF5 “container”; however, the VOL connector trans-

lates those operations appropriately to access the data,

regardless of how it is actually stored.

While HDF5 function calls can be intercepted by

binary instrumentation libraries such as gotcha 7○, the

VOL feature in HDF5 is designed to work with multiple

VOL connectors based on the user requirement. This

VOL connector stackability allows users to register and

unregister multiple connectors. For example, Data Ele-

vator can be stacked with the asynchronous I/O connec-

tor and a provenance collection VOL connector. Since

each VOL connector serves a different purpose, they

can be developed as different modules by different deve-

lopers and can be stacked to work together. This type

of stackability is not feasible with other binary instru-

mentation libraries. Having the VOL implementation

within HDF5 reduces the dependency on external li-

braries not maintained by the HDF5 developers.

In our recent work, we have integrated the

VOL feature implementation into the mainstream

HDF5 library and released it in HDF5 version

1.12.0. The VOL feature implementation included new

HDF5 API to register (H5VLregister*), to unregis-

ter (H5VLunregister*), and to obtain the VOL infor-

mation (H5VLget*). We have also developed a “pass

through” VOL connector as an example implementa-

tion that forwards each VOL callback to an underlying

connector.

Our implementation of VOL allows VOL connec-

tors widely accessible to the HDF5 community and

will encourage more developers to use or create new

connectors for the HDF5 library. The VOL implemen-

tation is currently available in the “develop” branch

as we write this paper 8○, which is available for public

access. The HDF Group is working on releasing the

feature as the next major public release. Several VOL

connectors have been or are under development but

VOL Plugins

Application A Application B

Application D

netCDF-4

HDF5 Programming API

Non-Persistent HDF5 Operations Persistent HDF5 Operations

Virtual Object Layer

Application C

Classic HDF5 File
Format

Direct File System
Remote Storage 

Access
Other File Format

HDF5
Legacy or Future

File Formats

Network or
Cloud Storage

POSIX or Object
Storage

?

Transient Data Structures

Fig.2. Overview of the Virtual Object Layer (VOL) architecture within HDF5.

7○https://github.com/llnl/gotcha, Nov. 2019.
8○HDF5 develop branch: https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5, Nov. 2019.



cannot be officially released until the VOL architec-

ture is finalized and integrated with the main HDF5

library. These VOL connectors in development include

those aiming to map HDF5 natively on top of object

storage, to support remote HDF5 object storage, and

to track statistics of HDF5 usage, to name a few. We

present two VOL connectors in this paper, i.e., the Data

Elevator connector (Subsection 3.2) for transparently

moving data between multiple layers of storage and the

asynchronous I/O VOL connector (Subsection 3.3) for

moving data asynchronously by letting the computa-

tion process continue while a thread moves the data.

The VOL interface will also enable developers to cre-

ate connectors for representing HDF5 objects in mul-

tiple types of non-persistent and persistent memories,

to support workflows that take advantage of in-memory

data movement between different codes.

3.2 Data Elevator

Key synergistic criterion to achieve scalable data

movement in scientific workflows is the effective place-

ment of data. The data generation (e.g. by simulations)

and consumption (such as for analysis) can span vari-

ous storage and memory tiers, including near-memory

NVRAM, SSD-based burst buffers, fast disk, campaign

storage, and archival storage. Effective support for

caching and prefetching data based on the needs of the

application is critical for scalable performance.

Solutions such as Cray DataWarp 9○, DDN Inte-

grated Memory Engine (IME), and parallel file systems

such as Lustre and GPFS provide solutions for a spe-

cific storage layer, but it is currently left to the users

to move data between different layers. It is imperative

that we design parallel I/O and data movement sys-

tems that can hide the complexity of caching and data

movement between tiers from users, to improve their

productivity without penalizing performance.

Towards achieving the goal of an integrated para-

llel I/O system for multi-level storage, as part of the

ExaHDF5 research project, we have recently developed

the Data Elevator library [4]. Data Elevator intercepts

HDF5 write calls, caches data in the fastest persistent

storage layer, and then moves it to the final destination

specified by an application in the background. We have

used the HDF5 Virtual Object Layer (VOL) (described

in Subsection 3.1) to intercept HDF5 file open, dataset

open and close, dataset write and read, and file close

calls. In addition to HDF5, we have extended the Data

Elevator library to intercept MPI-IO data write calls.

This extension will cover a large number of applications

to use the library. For supporting data reads, we deve-

loped prefetching and caching data in a faster storage

layer. To support data reads, data is prefetched and

cached in a faster storage layer. We describe the write

and read caching methods in this subsection.

3.2.1 Write Caching in Data Elevator

In Fig.3, we show a high-level overview of the write

and read caching implementations of Data Elevator.

The main issues we target to address with DE are 1)

to provide a transparent mechanism for using a burst

buffer (BB) as a part of a hierarchical storage system,

and 2) to move data between different layers of a hi-

erarchical storage system efficiently with low resource

contention on BB nodes. The data stored temporar-

ily in the burst buffer can be reused for any analysis.

Hence, we call this feature caching instead of simply

buffering the data.

Buffer

Burst

Simulatioin Processes

API

f⊲h⊲temp

f⊲h5

Computing Node

DEMT

f⊲h֒  f⊲h⊲temp֒ ⊲⊲⊲

Append

Redirected I/O 
Async. Data
Movement

PFS

IOCI

TEDM Processes

HDF5/Other APIs MPI-IO

Fig. 3. Overview of Data Elevator write caching functionality.
The arrows from IOCI to DEMT are control requests and the
the remaining arrows are requests for data. IOCI: I/O Call In-
terceptor. DEMT: Data Elevator Metadata Table.

The first issue arises because burst buffers are intro-

duced in HPC systems as independent storage spaces.

Burst buffers that are being considered in exascale sys-

tems are of two types: those provide a single names-

pace and are shared by all the compute nodes, and

those installed on each node and do not provide a single

namespace. In the Data Elevator, our implementations

are on burst buffers that are shared by all compute

nodes. Due to limited storage capacity, i.e., 2x to 4x the

main memory size, burst buffers are typically available

to users only during the execution of their programs.

Consequently, if users choose to write data to BB, they

9○Cray DataWarp: http://docs.cray.com/books/S-2558-5204/S-2558-5204.pdf, Nov. 2019.



are also responsible for moving the data to PFS for re-

taining the data. The second issue is caused by Cray

DataWarp, the state-of-the-art middleware for manag-

ing burst buffers on Cray systems. DataWarp uses a

fixed and small number of BB nodes to serve both reg-

ular I/O and data movement requests. This typically

results in performance degradation caused by interfer-

ence between the two types of requests.

To address above issues, Data Elevator performs

asynchronous data movement to enable transparent use

of hierarchical data storage, and also to use a low-

contention data flow path by using compute nodes for

transferring data between different storage layers. Data

Elevator allows one to use as many data transfer nodes

as necessary, which reduces the chance of contention.

As shown in Fig.3, Data Elevator has three main com-

ponents: I/O Call Interceptor (IOCI), Data Elevator

Metadata Table (DEMT), and Transparent and Effi-

cient Data Mover (TEDM or Data Mover in short).

The IOCI component intercepts I/O calls from ap-

plications and redirects I/O to fast storage, such as

burst buffer. We implement IOCI mechanism using

the HDF5 VOL feature, by developing an HDF5 VOL

plug-in. While the current implementation supports

HDF5-based I/O, the implementation can be extended

to other I/O interfaces, such as MPI-IO. DEMT con-

tains a list of metadata records, e.g., file name, for the

files to be redirected to BB. The Data Mover (TEDM)

component is responsible for moving the data from a

burst buffer to a PFS. TEDM component can share

the nodes with the application job or run using a sepa-

rate set of compute nodes. In Fig.3, TEDM shares two

of the eight CPU cores with a simulation job (that uses

the remaining six cores) on a computing node.

To reduce resource contention on BB during data

movement, Data Elevator is instantiated either on sep-

arate compute nodes or on the same compute nodes as

an application. While this design of Data Elevator in-

creases the number of CPU cores needed for running

an application, extensive test results show that using a

small portion of computing power to optimize I/O per-

formance reduces the end-to-end time of the whole I/O

intensive simulation. When the data is in BB, Data El-

evator also allows to perform transit analysis tasks on

the data, before it is moved to the final destination of

the file specified by the application.

Data Elevator applies various optimizations to im-

prove I/O performance in writing data to BB. After

the application finishes writing a data file, it can con-

tinue computations without waiting for the data to be

moved to a PFS. Meanwhile, the Data Mover moni-

tors the metadata periodically and once it finds that

the writing process is complete, it starts to move the

data from the BB to the PFS. Data Elevator reads the

data from the BB to the memory on computing nodes,

where Data Elevator is running, and writes the data

to PFS without interfering with other I/O requests on

the BB. Data Elevator provides optimizations, such as

overlapping of reading data from BB to memory and

writing to the PFS, and aligning Lustre PFS stripe size

with the data request size (assuming PFS is Lustre) to

reduce the overhead of data movement. While the data

is in the burst buffer, Data Elevator allows data ana-

lysis codes to access the data, which is called in situ or

in transit analysis, by redirecting data read accesses to

the data stored in the burst buffer.

3.2.2 Read Caching in Data Elevator

In read caching, we have implemented caching and

prefetching chunks of data based on the history of

HDF5 chunk accesses [5]. The cached chunks are stored

as binary files in a faster persistent storage device, such

as an SSD-based burst buffer. When the requests to the

prefetched data come, DE redirects the read requests

to the cached data and thus improving performance

significantly.

The data flow path for read caching in Data Elevator

is shown in Fig.4. We highlight the prefetching func-

tion of Data Elevator that improves the performance of

array-based analysis programs by reading ahead data

from the disk-based file system to the SSD-based burst

buffer. An array is prefetched as data chunks. In the

figure, we show an array with 12 (i.e., a 3 × 4 array)

chunks. Let us assume that an analysis task is access-

ing the first two chunks (marked in green) that are read

from the disk-based file system.

Data Elevator’s Array Caching and Prefetching

method (ARCHIE) prefetches the following four chunks

(shown in blue) into the SSDs for future reads. Data

Elevator manages the metadata table to contain data

access information extracted from applications. Entries

of the metadata table contain the name of the file being

accessed by a data analysis application. This filename

information is inserted into the table by the read func-

tion linked with analysis applications. The metadata

table also contains “chunk size”, “ghost zone size”, and

“status of the cached file”. A Chunk access predictor

component uses the information of the cached chunks

to predict the future read accesses of analysis applica-

tions and to prefetch the predicted data chunks into
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Fig.4. High level description of Data Elevator read caching and prefetching functions. All the arrows to and from the ARCHIE
component are control signals, and those between the storage (i.e., Disk File System and SSD file system) are the data movement.

the faster SSD storage. We used a simple predictor

based on recent history, but any prediction algorithm

can be used. A parallel reader/writer brings data from

the disk file system into the SSD file system or vice

versa. Because the data to be analyzed may be large,

Data Elevator uses parallel reader/writer to prefetch

data. Specifically, the reader/writer uses multiple MPI

processes that span across all computing nodes that

are running the analysis application. These processes

concurrently prefetch different chunks from the disks

into the SSD to increase the prefetch efficiency. When

an application modifies a cached chunk, Data Elevator

synchronizes updated cached chunks in the storage lay-

ers and writes the chunks back to the disk-based file

systems.

Meanwhile, Data Elevator augments each

prefetched chunk with a ghost zone layer (shown with

a red halo around a blue chunk) to match the access

pattern on the array. A user may specify the width

of the ghost zone, which can be zero. The first two

chunks (colored in white) read into the SSDs are ac-

tually empty chunks only containing metadata (e.g.,

starting and ending offsets). These metadata entries

are written by the “read” function and they provide

information for the prefetching algorithm in Data Ele-

vator to predict future chunks. We have implemented

parallel prefetching to accelerate parallel I/O of ana-

lysis applications.

We have also added fault tolerance features to Data

Elevator, where either the application or the Data El-

evator programs can fail gracefully. If an application

running with the Data Elevator fails, and some data

files are in the temporary staging area, the Data Ele-

vator moves the files to the destination and then exits.

In the case of Data Elevator failure while a co-locating

application is running, the Data Elevator task restarts

and resumes moving the data. A limitation of the Data

Elevator restarting is the dependency on the SLURM

scheduler that is popular in HPC center.

3.3 Asynchronous I/O

Asynchronous I/O allows an application to over-

lap I/O with other operations. When an application

properly combines asynchronous I/O with non-blocking

communication to overlap those operations with its cal-

culation, it can fully utilize an entire HPC system, leav-

ing few or no system components idle. Adding asyn-

chronous I/O to an application’s existing ability to per-

form non-blocking communication is a necessary aspect

of maximizing the utilization of valuable exascale com-

puting resources.

We have designed asynchronous operation support

in HDF5 to extend to all aspects of interacting with

HDF5 containers, not just the typical “bulk data” ope-

rations (i.e., raw data read/write). Asynchronous ver-

sions of “metadata” operations like file open, close,

stat, etc. are not typically supported in I/O interfaces,

but based on our previous experience, synchronization

around these operations can be a significant barrier to

application concurrency and performance. Supporting

asynchronous file open and close operations as well as



other metadata operations such as object creation and

attribute updates in the HDF5 container will allow an

application to be decoupled entirely from I/O depen-

dencies.

We have implemented the asynchronous I/O fea-

ture as a VOL connector for HDF5. The VOL interface

in HDF5 allows developers to create a VOL connector

that intercepts all HDF5 API calls that interact with

a file. As a result, it requires no change to the current

HDF5 API or the HDF5 library source code. We imple-

mented asynchronous task execution by running those

tasks in separate background threads. We are currently

using Argobots [6], a lightweight runtime system that

supports integrated computation and data movement

with massive concurrency to spawn and execute asyn-

chronous tasks in threads. The thread execution inter-

face has been abstracted to allow us to replace Argobots

with any other threading model, as desired.

3.4 Towards Full SWMR

The Single-writer and Multiple readers (SWMR)

functionality allow multiple processes to read an HDF5

file while a single process is writing concurrently. A

capability that enables a single writing process to up-

date an HDF5 file, while multiple reading processes

access the file in a concurrent, lock-free manner was

introduced in the 1.10 release of HDF5. However,

the SWMR feature is currently limited to the nar-

row use-case. The current implementation of “partial”

SWMR (single-writer/multiple-reader) in the HDF5 li-

brary only allows appending to datasets with unlim-

ited dimensions, but “full” SWMR functionality allows

any modification to the file. Applications use a much

broader set of operations on HDF5 files during work-

flow processing, making this limitation an impediment

to their efficient operation.

We have designed and implemented to extend the

SWMR feature in HDF5 to support all metadata ope-

rations for HDF5 files (e.g., object creation and dele-

tion, attribute updates). In addition to removing the

limitation in the types of operations that the SWMR

feature supports, the limitation of only operating on

files with serial applications must also be lifted, to fully

support exascale application workflows. Therefore, we

designed the extension of the SWMR capability to sup-

port parallel MPI applications for both the writing and

reading aspects of the SWMR feature. This enables

a single MPI application to function as the writing

“process” and any number of MPI applications to be

the reading “processes”. The method of updating the

HDF5 file will be identical for serial and parallel appli-

cations, so they can interoperate with each other, en-

abling serial readers to concurrently access a file being

modified by a parallel writer, etc.

The implementation of full SWMR requires manag-

ing file space in the file, handle “meta” flush dependen-

cies, and handle state for a closed object.

Managing File Space. A SWMR writer should not

free the space when there is a possibility that read-

ers continue accessing the space for a period of time

and must not be overwritten with new information un-

til all of the reader cached metadata entries that refe-

rence them are evicted or updated. To achieve this, the

SWMR writer and readers have to agree when there

are no references to agree on a “recycle time” (△t) for

space freed by the writer. Allowing for some margin

of errors, freed space could be recycled on the writer

after 2△t and a reader would be required to refresh

any metadata that remained in its metadata cache for

longer than △t.

Handling “Meta” Flush Dependencies. Objects that

an SWMR writer is modifying in an HDF5 file that has

metadata data structures with flush dependencies be-

tween those data structures must determine and main-

tain the correct set of “meta” flush dependencies be-

tween those data structures, over all possible operations

to the object. The core capability used to implement

updates to an HDF5 file by an SWMR writer is the

“flush dependency” feature in the HDF5 library meta-

data cache. A flush dependency between a “parent”

cache entry and its “child” entries indicates that all

dirty child entries must be marked clean (either by be-

ing written to the file or through some other metadata

cache mechanism) before a dirty parent entry can be

flushed to the file. For example, when the dimension

size of a dataset is extended, both the extensible ar-

ray that references chunks of dataset elements and the

dataspace message in the dataset object header must be

updated with the new size, and the dataspace message

must not be seen by an SWMR reader until the ex-

tensible array is available for the reader to access. For

this situation, and others like it, proxy entries in the

metadata cache are used to guarantee that all the dirty

extensible array entries are flushed to the file before

the object header entry with the dataspace message is

written to the file.

In Fig.5, we show a typical situation in the meta-

data cache for a chunked dataset. All the entries for

the chunk index (an extensible array, in this case) have



a “top” proxy entry that reflects the dirty state of all

the entries in the index (i.e., if any index entry is dirty,

the index’s top proxy will be dirty also). Similarly, all

the entries in the object header depend on a “bottom”

proxy, which will keep any of them from being flushed

(i.e., if the bottom proxy is dirty, no dirty object header

entries can be flushed). Therefore, making the bottom

proxy of the object header the flush dependency par-

ent of the top proxy for the extensible array will force

all extensible array entries to be written to the file and

marked clean in the metadata cache before any dirty

object header entries can be written to the file.
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Fig.5. Typical situation of the HDF5 metadata cache for a chun-
ked dataset.

Handle Metadata Cache State for a Closed Object.

Objects that are opened by an SWMR writer must con-

tinue to maintain the necessary state required to update

the object’s metadata in the file while any of the meta-

data entries for the object are cached, even after the

object is closed.

In future, we will be enhancing this feature with

a mechanism for SWMR writer to notify the SWMR

readers when a piece of metadata has changed, instead

of current polling method where readers poll for such

metadata updates. This will further improve the per-

formance of SWMR readers.

3.5 Parallel Querying

Methods to store, move, and access data across com-

plex Exascale architectures are essential to improve the

productivity of scientists. To assist with accessing data

efficiently, the HDF Group has been developing func-

tionality for querying HDF5 raw data and releases this

feature in HDF5. The interface relies on three main

components that allow application developers to create

complex and high-performance queries on both meta-

data and data elements within a file: queries, views,

and indices.

Query objects are the foundation of the data ana-

lysis operations and can be built up from simple com-

ponents in a programmatic way to create complex ope-

rations using Boolean operations. View objects allow

the user to retrieve an organized set of query results.

The core query API is composed of two routines:

H5Qcreate and H5Qcombine. H5Qcreate creates new

queries, by specifying an aspect of an HDF5 container,

in particular:

• H5Q TYPE DATA ELEM (data element)

as well as a match operator, such as:

• H5Q MATCH EQUAL (=)

• H5Q MATCH NOT EQUAL (6=)

• H5Q MATCH LESS THAN (6)

• H5Q MATCH GREATER THAN (>)

and a value for the match operator. Created query

objects can be serialized and deserialized using the

H5Qencode and H5Qdecode routines 10○, and their con-

tent can be retrieved using the corresponding accessor

routines. H5Qcombine combines two query objects into

a new query object, using Boolean operators such as:

• H5Q COMBINE AND (∧)

• H5Q COMBINE OR (∨).

Queries created with H5Qcombine can be used as input

to further calls to H5Qcombine, creating more complex

queries. For example, a single call to H5Qcreate could

create a query object that would match data elements

in any dataset within the container that is equal to the

value “17”. Another call to H5Qcreate could create

a query object that would match link names equal to

“Pressure”. Calling H5Qcombine with the ∧ operator

and those two query objects would create a new query

object that matched elements equal to “17” in HDF5

datasets with link names equal to “Pressure”. Creating

10○Serialization/deserialization of queries was introduced so that queries can be sent through the network.



the data analysis extensions to HDF5 using a program-

matic interface for defining queries avoids defining a

text-based query language as a core component of the

data analysis interface, and is more in keeping with the

design and level of abstraction of the HDF5 API. Ta-

ble 1 describes the result types for atomic queries and

combining queries of different types.

Table 1. Query Combinations

Query Result Type

H5Q TYPE DATA ELEM Dataset region

Dataset element ∧ dataset element Dataset region

Dataset element ∨ dataset element Dataset region

Index objects are the core means of accelerating the

HDF5 query interface and enable queries to be per-

formed efficiently. The indexing interface uses a plu-

gin mechanism that enables flexible and transparent

index selection and allows new indexing packages to be

quickly incorporated into HDF5 as they appear, with-

out waiting for a new HDF5 release.

The indexing API includes registration of an

indexing plugin (H5Xregister), unregistering it

(H5Xunregister), creating and removing indexes

(H5Xcreate and H5Xremove, respectively), and gets

information about the indexes, such as H5Xget info

and H5Xget size. The current implementation of in-

dexing in HDF5 supports FastBit bitmap indexing [7],

which uses Word-Aligned Hybrid (WAH) compression

for bitmaps generated. The bitmap indexes are gene-

rated offline using a utility, and they are stored within

the same HDF5 file. These index files are used for accel-

erating the execution of queries. Without the indexes,

query execution scans the entire datasets defined in a

query condition.

4 Experimental Setup

We have conducted our evaluation on Cori, a Cray

XC40 supercomputer at NERSC. Cori data partition

(phase 1) consists of 1 630 compute nodes, and each

node has 32 Intelr Haswell CPU cores and 128 GB

memory. The Lustre file system of Cori has 248 ob-

ject storage targets (OSTs) providing 30 PB of disk

space. Cori is also equipped with an SSD based “Burst

Buffer”. The Burst Buffer is managed by DataWarp

from Cray and has 144 DataWarp server nodes.

We describe the benchmarks and the results in the

following section, as each feature used a different set of

benchmarks and their evaluation metrics varied. For

the VOL feature, evaluation of performance is unavail-

able as the feature as it is an implementation that en-

ables other features, such as Data Elevator and asyn-

chronous I/O. All the other features have been evalu-

ated using various benchmarks and I/O kernels from

real applications.

5 Evaluation

5.1 Data Elevator

We have implemented Data Elevator in C and com-

piled with Intel compilers. Our tests for disk-based per-

formance used all 248 OSTs of the Lustre. In tests for

the BB, we used all 144 DataWarp server nodes. The

striping size for multiple DataWarp servers is fixed at

8 MB, which cannot be modified by normal users. As

such, we set the striping size of Lustre file system also

to be 8 MB.

We evaluated various configurations of Data Eleva-

tor using two parallel I/O benchmarks: VPIC-IO and

Chombo-IO. Both benchmarks have a single time step

and generate a single HDF5 file. VPIC-IO is a parallel

I/O kernel of a plasma physics simulation code, called

VPIC. In our tests, VPIC-IO writes 2 million particles

and 8 properties per particle, resulting in a file of 64 GB

in size. The I/O pattern of VPIC-IO is similar to par-

ticle simulation codes in the ECP, where each particle

has a set of properties, and a large number of particles

are studied. As shown in Fig.6, using Data Elevator for

moving the data related to a single time step achieves

5.6x speedup on average over Cray DataWarp and 5x

speedup on average over writing data directly to Lustre.
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Fig.6. Evaluation of Data Elevator write caching functionality —
I/O time of a plasma physics simulation’s (VPIC-IO) data write
pattern.

Chombo-IO is derived from Chombo, a popular

block-structured adaptive mesh refinement (AMR) li-

brary. The generated file has a problem domain of



256 × 256 × 256 and is of 146 GB in size. The I/O

pattern of this benchmark is representative of the sub-

surface flow simulation application in the ECP. In Fig.7,

we show the performance benefit of the Data Elevator

library. Chombo-IO benchmark achieves 2x benefit (on

average) over Lustre and 5x benefit (on average) over

Cray DataWarp.
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Fig.7. Evaluation of Data Elevator write caching functionality —
I/O time of a Chombo adaptive mesh refinement (AMR) code’s
I/O kernel.

In both benchmarks, the benefit over Lustre is com-

ing from writing data to faster SSD-based burst buffer

compared with the disk-based Lustre. With regards to

Cray DataWarp, the advantage is coming from two fac-

tors: the selection of MPI-IO mode for writing data to

the SSD-based burst buffer and dynamic configuration

of Lustre striping parameters based on the data size.

The Data Elevator changes the MPI-IO mode from col-

lective (two-phase) I/O to independent I/O because we

observed that the BB on Cori is performing much better

with the independent mode. For the selection of Lustre

striping, while we chose all the Lustre OSTs for both

Cray DataWarp and Data Elevator, the stripe size is

dynamically set based on the file size in Data Elevator.

We evaluate DE read caching by comparing it with

Lustre to show the benefits of the prefetching func-

tion on accelerating I/O operations by converting non-

contiguous I/O to contiguous ones. Cray’s DataWarp

provides tools, e.g., “stage-in”, to manually move a data

file from disk space into SSD space. In contrast, DE

automatically prefetches the array data from Lustre to

the burst buffer in chunks. Our method avoids appli-

cation’s wait time for the entire file data movement at

the start of job execution enforced by DataWarp.

We compare DE reading (labeled ARCHIE in the

plots representing Array Caching in hierarchical sto-

rage) using three scientific analysis kernels: convolu-

tional neural network (CNN)-based analysis on CAM5

data used to detect extreme weather events [8], gradient

computation of plasma physics dataset using a 3D mag-

netic field data generated by a VPIC simulation [9], and

vorticity computation on combustion data produced

by an S3D simulation that captures key turbulence-

chemistry interactions in a combustion engine [10].

In our evaluation of DE reading with CNN of a cli-

mate dataset, we focus on the most time-consuming

step, i.e., convolution computing, in CNNs. The CAM5

dataset used in this test is a 3D array with size

[31, 768, 1 152], where 768 and 1 182 are the latitude

and the longitude dimensions, respectively, and 31 is

the number of height levels from the earth into the at-

mosphere. The filter size for the convolution is [4, 4].

The chunk size is [31, 768, 32], resulting in a total of 36

chunks. The analysis application runs with 9 MPI pro-

cesses. We run DE with another 9 processes. In this

configuration, there are 4 batches of reads, and each

batch accesses 9 chunks. We present the read time

of the analysis application in Fig.8. Reading all the

data from the disks, i.e., Lustre, gives the worst per-

formance, as expected. Using DataWarp to move the

data from Lustre to the burst buffer reduces the time

by 1.7x for reading data, but it contains initial over-

head in staging the data in the burst buffer. Using the

DE cache on both the disks and on the SSDs reduces

the time for reading data. The advantage of DE comes

from converting non-contiguous reads into contiguous

reads. Data Elevator can also prefetch data to be ac-

cessed in the future into the burst buffer as chunks and

achieves the best performance. Overall, for the CNN

use case, DE is 3.1x faster than Lustre and 1.8x faster

than DataWarp.
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The VPIC dataset is a 3D array with size as

[2 000, 2 000, 800]. On a meshed 3D field, the gradient

can be computed with a Laplacian, as shown in (1).

gradf(x, y, z) = ∇f(x, y, z), (1)

where f represents magnetic value and ∇ denotes the

Laplace operator.

The chunk size for parallel array processing is

[250, 250, 100], giving a total of 512 chunks. Our tests

use 128 processes to run the analysis program and use

only 64 processes to run DE. In this test, we have a

ghost zone with a size of [1, 1, 1]. We present the read

time of this analysis in Fig.9. The performance compa-

rison has the same pattern as that of convolution on

CAM5 data. Overall, DE is 2.7x faster than Lustre

and 2.4x faster than DataWarp.
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S3D simulation code captures key turbulence-

chemistry interactions in a combustion engine. An at-

tribute to study the turbulent motion is vorticity, which

defines the local spinning motion for a specific location.

Given the z component of the vorticity at a point (x, y),

the vorticity analysis accesses four neighbors for each

point at (x + 1, y), (x − 1, y), (x, y − 1) and (x, y + 1),

as defined in [11]. Our tests use a 3D array with size

[1 100, 1 080, 1 408]. The chunk size is [110, 108, 176] and

the ghost zone size is [1, 1, 1], giving 800 chunks. We use

100 processes to run analysis programs and 50 processes

to run DE. The read performance comparison is shown

in Fig.10. The analysis program reads all 800 chunks

in 8 batches. DE outperforms Lustre by 5.8x and is

7x better than DataWarp. In this case, DataWarp per-

forms 1.2x slower than Lustre.
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Fig.10. Data read time profiles for vorticity computation of a
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5.2 Asynchronous I/O

We ran experiments with asynchronous I/O enabled

in HDF5 on the Cori system. The tests used an I/O

kernel from a plasma physics simulation (VPIC) that

writes 8 variables per particle at 5 timesteps. The num-

ber of MPI processes is varied from 2 to 4k cores, in

multiples of 2. During the computation time between

subsequent time steps, which is emulated with a 20-

second sleep time, Argobot tasks started on threads

perform I/O by overlapping I/O time fully with the

computation time.

In Fig.11 and Fig.12, we show a comparison of write

time and read time, respectively, with and without the

asynchronous I/O. In Fig.11, we show the I/O time for

writing data produced by a simulation kernel and for

reading data to be analyzed, where using asynchronous

I/O obtains 4x improvement. In these cases, I/O re-

lated to 4 of the 5 timesteps is overlapped with com-

putation. The last timestep’s I/O has to be completed

before the program exits, which is not overlapped. The

overall performance benefit is hence dependent on the

number of time steps used.

5.3 Full SWMR

To evaluate the performance of full SWMR, we have

implemented a version of SWMR-like functionality with

locks using MPI (labeled non-SWMR in Fig.13 and

Fig.14). We compare the performance of this non-

SWMR with the full SWMR implementation in HDF5

for a single writer to write 1D data to an HDF5 dataset,

where the write size is varied between 1 KB and 512 MB

for 100 times. While the single writer process is writ-



ing data, three readers open the dataset and read the

newly written data concurrently.
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In Fig.13, we show the raw comparison, and in

Fig.14, we show the speedup numbers for performing

this SWMR functionality. As can be seen, our im-

proved SWMR implementation HDF5 outperforms the

non-SWMR approach by up to 8x at smaller write sizes

between 2 KB and 32 KB. Beyond 32 KB, our imple-

mentation still performs well, by 20% at 512 MB writes.

5.4 Parallel Querying

Initial benchmarking of the parallel querying imple-

mentation prototype on Cori resulted in the following

scalability plots (Fig.15 and Fig.16) which show the

time taken to 1) construct the FastBit index; and 2)

evaluate a query of the form: finding all elements in

the “Energy” dataset whose value is greater than 1.9

(i.e., “Energy > 1.9”). The data used for this query
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was obtained from a plasma physics simulation (VPIC)

ran for understanding the magnetic field interactions in

a magnetic reconnection phenomenon of space weather

scenario. The HDF5 file contained particle properties,

such as the spatial locations in 3D, corresponding veloc-

ities, and energy of particles. Each property was stored

as an HDF5 dataset that contains 623 520 550 elements

represented as 32-bit floating point values.
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Fig. 15. Parallel index generation time, where the indexes are
based bitmap indexes generated by the FastBit indexing library.
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As shown in Fig.15 and Fig.16, both index gene-

ration and query evaluation scale well for this dataset

up to 8 cores. The advantage of adding more cores di-

minishes because the amount of data processed by each

MPI process becomes smaller. With larger datasets,

both these functions will scale further.

6 Conclusions

HDF5 is a critical parallel I/O library that is used

heavily by a large number of applications on supercom-

puting systems. Due to the increasing data sizes, ex-

treme level of concurrency, and deepening storage hier-

archy of upcoming exascale systems, the HDF5 library

has to be enhanced to handle several challenges. In the

ExaHDF5 project funded by the Exascale Computing

Project (ECP), we are developing various features to

improve the performance and productivity of HDF5. In

this paper, we presented a few of those feature enhance-

ments, including integration of Virtual Object Layer

(VOL) that opens up the HDF5 API for alternate ways

of storing data, Data Elevator for storing and retriev-

ing data by using faster storage devices, asynchronous

I/O for overlapping I/O time with application compu-

tation time, full SWMR for allowing concurrent read-

ing of data while a process is writing an HDF5 file,

and querying to access data that matches a given con-

dition. We have presented an evaluation of these fea-

tures, which demonstrates significant performance ben-

efits (up to 6x with Data Elevator that uses SSD-based

burst buffer compared with using disk-based Lustre sys-

tem, and 1.2x to 8x benefit with SWMR compared with

non-SWMR implementation). We have compared these

features separately as the use cases are distinct. For in-

stance, the Data Elevator and the async I/O features

use the VOL infrastructure. Full SWMR and querying

serve different use cases from masking the I/O latency.

With the ongoing ExaHDF5 effort, these features will

be integrated into HDF5 public release to have a broad

performance advantage impact for a large number of

HDF5 applications.
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