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Abstract

Towards the twilight of file-centricity

by

Niklas Fabian Griessbaum

File-centricity is a paradigm in which files are the smallest unit of data. File-centricity has two

significant advantages: 1) Files package data and thus allow data to be stored and distributed

agnostic of their content. 2) Files provide a natural identity and even an identifier (the file-

name) to data, allowing us to reference and de-reference data. However, file-centricity leaves

it to the individual data user to interpret the structure of file contents and align diverse data

during extract, transform, and load (ETL) processes.

My thesis is that the content-structure agnostic nature of files causes unnecessary bottlenecks

in the flow from data to knowledge in environmental sciences. Unblocking those bottlenecks re-

quires moving data processing paradigms away from file-centricity and towards data-centricity.

In my dissertation, I address the ”twilight of file-centricity” and technologies required to tran-

sition from file-centricity to data-centricity.

Moving towards data-centricity requires replacing files with individual observations as the small-

est unit of data. In practical terms, this means storing data in a predefined schema in some

form of database. However, this requires 1) the ability to identify data (rather than files). 2)

data to be aligned, meaning attributes and dimensions have to be harmonized across datasets,

allowing data comparison and association.

This dissertation presents solutions to these two challenges: 1) With the web service Open-

source Project for a Network Data Access Protocol (OPeNDAP) Citation Creator (OCCUR),

I demonstrate how data queried through OPeNDAP servers can get assigned identities that

can be referenced and de-referenced. 2) The Spatio-Temporal Adaptive-Resolution Encoding

vii



(STARE) software collection enables data-centric science. The collection contains software to

spatiotemporally align data by using the universal spatiotemporal representation STARE. The

collection further contains software to perform geospatial analysis and various storage backends.

3) In a science use case, I explore how spatiotemporal alignment of data can help simplify and

improve environmental data science and demonstrate how analysis in a data-centric world can

be carried out.

Summarizing, this thesis provides solutions to central requirements to move towards data-

centricity and into the twilight of files.
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Introduction Chapter 1

1.1 Motivation

Environmental informatics is the application of information technology to environmental sci-

ences (J. E. Frew and Dozier, 2012). As such, it addresses the information infrastructure that

environmental scientists leverage to obtain knowledge from environmental data.

Environmental data is traditionally collected, archived, and distributed in computer files. Alike

their real-world counterpart, computer files are containers holding content (i.e., the data) and

have intelligible labels (i.e., filenames). Since files are mere containers, there is no prescribed

structure for their content. Reading files, therefore, requires contextual knowledge (aka meta-

data) to interpret what the content means.

Packaging data into files generalizes the tasks of archiving and distributing data. The discretized

nature of files makes it easy to reason about their identity: We may state where a file is located,

what its name is, evaluate its size, and even compute checksums. Further, files can be archived

and distributed without considering the structure of the content or how the content is to be

interpreted. While this simplifies the task for data repositories, it pushes the responsibility of

acknowledging the data’s structure to the users, who have to extract, transform, and load (ETL)

data prior to extracting knowledge (Michael Lee Rilee, K.-S. Kuo, et al., 2016; Alexander S.

Szalay and Blakeley, 2009).

My thesis is that the content-structure-agnostic nature of files causes

unnecessary bottlenecks in the flow from data to knowledge in environ-

mental sciences. Unblocking those bottlenecks requires moving data pro-

cessing paradigms away from file-centricity and towards data-centricity.

In my dissertation, I address the “twilight of file-centricity”1 and tech-

nologies required to transition from file-centricity to data-centricity.

1German: Dateidämmerung [d
˚
a’tai

ˆ
’dEm@ RUN]
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Introduction Chapter 1

1.2 File-Centricity

The issue with file centricity is that it incurs redundant work and prohibits data processing

at the point of storage: A system agnostic of the structure of the data it holds is incapable

of performing computations on the data. It can merely act as a point of preservation and

distribution. Data, therefore, has to be moved (more accurately: copied) to the point of

computation (Gray’s 3rd Law, (Alexander S. Szalay and Blakeley, 2009)). However, data

movement is undesired since it results in uncoordinated and unstructured data duplication and

storage waste2. But it is not merely the duplication of the data that is problematic. Moreover,

every user that copies data must redundantly acknowledge the data’s structure during ETL.

During ETL, users align data from various sources. Aligning data means harmonizing attributes

and dimensions across datasets, allowing us to associate and compare data. In other words,

alignment means that a common concept to address coincidence throughout all datasets exists.

In the environmental sciences, characterized by a prevalence of spatiotemporally resolved data

from observations and models, it is often of interest to associate spatiotemporally coincident

data and thus to spatiotemporally align data.

However, spatiotemporal alignment is cumbersome and challenging. There is a multitude of

concepts, file formats, and referencing scheme in which spatiotemporal data is stored and ex-

pressed: To name a few, locations may be conceptualized as continuous fields or as discrete

features, expressed through affine transformations or as lists of coordinates, stored as projected

image files or in relational databases. Time, and more so time duration, may be expressed

by many calendrical formats or as offsets of epochs with or without consideration of leap sec-

2Further, we face an increasing disparity between network speeds and compute power. User bandwidth speeds
have been following Nielsen’s Law (Nielsen, 1998) and grew annually by 50 % over the last 36 years, while compute
power has been following Moore’s Law (Moore, 2006) and grew annually by 60 % for the last 40 years, making it
less and less attractive and ultimately infeasible to move data to the point of computation as data volumes grow
(Hey, Tansley, and Tolle, 2009). While researchers may choose to copy gigabytes worth of data for their analysis,
copying petabytes will not be an option within the near future (A. Szalay and Gray, 2006). The predefined
package size of files makes matters worse: If the package size does not exactly equal the area of interest for an
analysis (A file might, for example, contain bands, areas, or periods not needed for a given analysis.), a transfer
overhead is incurred (Gray et al., 2002).

3
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Introduction Chapter 1

onds. Consequently, spatiotemporal alignment is typically an error-prone tailormade process

involving a multitude of compromises and much work.

1.3 Towards Data-Centricity

Contrary to file-centricity, data-centricity requires data to be co-aligned. Data alignment voids

the necessity of (or at least simplifies) ETL and makes computation at the point of storage

possible3. In practical terms, this means storing data in some kind of database4.

I am addressing three questions arising in the file-twilight of environmental sciences:

How do we handle data identity in a data-centric world? Citations help to make

data Findable, Accessible, Interoperable, and Reusable (FAIR) (Wilkinson et al., 2016). In

less abstract terms, data citations provide identity to data, which allows referencing and de-

referencing. Provision of identity is a critical challenge in the twilight of file-centric workflows

since a natural addressable identity of data is lost as soon as files as a package of data are

abandoned.

Technologies such as the Web Coverage Service (WCS) and the Open-source Project for a

Network Data Access Protocol (OPeNDAP) (Gallagher, Potter, et al., 2007) play a vital role in

the twilight of file-centricity. Their ability to seamlessly provide access to data rather than to

files provides an ideal starting point for theoretical and practical excursions on how to address

identity and citations in a data-centric workflow.

With the development of the web service OPeNDAP Citation Creator (OCCUR)5 (chapter 2), I

am exploring an approach for assigning identity and citations to dynamic data. OCCUR is a web

3The ultimate goal of data-centricity is voiding the need (or at least reducing) data movement. Data alignment
is hereby crucial: Having data aligned allows for improved data sharding/placement. I.e., spatiotemporally
coincidental data can be stored in physical proximity in, e.g., shared-nothing architectures.

4“A structured set of data held in computer storage and typically accessed or manipulated by means of
specialized software.” (Oxford English Dictionary, 2022).

5http://occur.duckdns.org. https://github.com/NiklasPhabian/occur
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service that allows users to assign and store identities for data retrieved from OPeNDAP queries.

OCCUR creates and stores identifiers for identities which can later be resolved through OCCUR,

whereby OCCUR will verify that the data has not changed since the identity assignment.

OCCUR further brokers identities by ensuring that identical data shares the same identity.

How do we spatiotemporally align data to enable data-centric environmental sci-

ence? Time and space are the most prevalent (and, simultaneously, most challenging) dimen-

sions that must be aligned in the environmental sciences. We, therefore, require a universal

method to express space and time.

I am addressing data alignment with the development of the Spatio-Temporal Adaptive-Resolution

Encoding (STARE) software collection (chapter 3). STARE is a spatiotemporal referencing and

indexing schema that is built upon a Hierarchical Triangular Mesh (HTM) quadtree (K.-S. Kuo

and Michael Lee Rilee, 2017) and provides a common concept to evaluate spatiotemporal co-

incidence for environmental data. The STARE software collection is a first step towards true

data-centricity since it allows all datasets required for a given spatiotemporal data analysis

to be stored in the same spatiotemporal (database) schema. The STARE software collection

contains software to convert conventional files containing spatiotemporal data into the STARE

schema and provides a variety of data-centric storage backends.

How do we perform environmental science in a data-centric world? Jim Gray’s

4th Law (Hey, Tansley, and Tolle, 2009; Alexander S. Szalay and Blakeley, 2009) postulates

that a data engineering challenge should be approached by determining the 20 most important

questions a researcher may want a given data system to answer. Following this spirit, I solved

a set of science use cases to drive the development of the STARE software collection. Chapter

3 contains two smaller undertakings: In section 3.5.1, I generate time series of night lights from

Visible Infrared Imaging Radiometer Suite (VIIRS) data for a set of administrative areas to

determine the characteristics of night light intensity drop and recovery during and after natural

5
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disasters. In section 3.5.2, I track precipitation events and extract spatiotemporal incident

data from various sensors. Finally, chapter 4 provides an approach to improve the accuracy

of fractional snow-covered area (fSCA) retrievals. I here exploit the relatively high spatial

accuracy of Moderate Resolution Imaging Spectroradiometer (MODIS) geolocations and use

STARE to align irregularly spaced observations.

All three use cases demonstrate how STARE allows for integrating inhomogeneous data from

various sensors at different spatial and temporal resolutions by providing a harmonized schema

for time and space and thus allowing for data-centric workflows.
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Abstract

The Open-source Project for a Network Data Access Protocol (OPeNDAP) Citation Creator

(OCCUR) is a web service that creates identifiers and citations for data served by OPeNDAP

servers. As a partial implementation of the Research Data Alliance (RDA) Working Group

on Data Citation (WGDC) guidelines, it addresses the need to identify arbitrary subsets of

revisable datasets. OCCUR creates identifiers from a combination of an OPeNDAP query and

timestamp and saves a hash of the query’s result set. OCCUR can then dereference these

identifiers to access the data via OPeNDAP and generate human-readable citation snippets.

When accessing data via an identifier, OCCUR compares the saved hash with the hash of

the retrieved data to determine whether the data has changed since it was cited. OCCUR

uses CiteProc to generate citation snippets from the identifier’s OPeNDAP query, timestamp,

dataset-level metadata provided by the OPeNDAP server, and optionally the query result set

hash.

8
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2.1 Introduction

2.1.1 Why Data citations

(Hey, Tansley, and Tolle, 2009) coin the term fourth paradigm as “using computers to gain

understanding from data created and stored in our electronic data stores.” The fourth paradigm

adds the exploration of data collected from instruments and simulations to the traditional

empirical, theoretical, and computational approaches to scientific research. In this context,

data collection and assembly are themselves significant research activities (J. E. Frew and

Dozier, 2012).

A crucial step into the fourth paradigm is acknowledging data as first-class research products.

As such, data must be persistently available, documented, citable, reusable, and possibly peer-

reviewed (Callaghan et al., 2012; Kratz and Strasser, 2014) - a process summarized as making

data “Findable, Accessible, Interoperable, and Reusable (FAIR)” (Wilkinson et al., 2016). Data

citation is one of the required building blocks to achieve this goal, and widespread adoption of

data citations is expected to benefit the progress of science (CODATA-ICSTI Task Group on

Data Citation Standards and Practices, 2013; Data Citation Synthesis Group, 2014).

However, there is no consensus on what data publication means (Kratz and Strasser, 2014) nor

on how data citation mechanisms are to be implemented (Costello, 2009). The lack of data

citation standards was criticized more than a decade ago by (Altman and G. King, 2007). Years

later, (Altman, Borgman, et al., 2015) and (Tenopir et al., 2011) find that even though required

by publishers, researchers still too often do not make data publicly available nor cite the data

consistently. There are both cultural and technical reasons for this.

(Lawrence et al., 2011) find that traditionally only conclusions are valued; little attention is

given to the fitness of the data for re- interpretation. This reduces the motivation for data

production and publishing. Even more so, (Tenopir et al., 2011) stresses that researchers may

be motivated to purposely withhold data to retain their own ability to publish findings.

9
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On the technical side, robustness, openness, and uniformity in data publication still need to

be improved (Starr et al., 2015; Koltay, 2016). Cost, not so much for the storage but for

curation efforts, is another reason preventing data publication (Gray et al., 2002). (Tenopir

et al., 2011) states that a significant reason for data withholding is the effort required to publish

data. Additionally, (Belter, 2014) finds that data citation practices are inconsistent even when

used. (Assante et al., 2016) illustrates citation practices ranging from exporting a formatted

citation snippet (or a generic format such as Research Information Systems (RIS) or BibTex1)

to embedding links to the data to sharing data on social media.

To address the need for more standards and uniformity, The Research Data Alliance (RDA)

Working Group on Data Citation (WGDC) released 14 recommendations to enable automized

and machine-actionable identification and citation of evolving and subsettable datasets (Rauber,

Asmi, Uytvanck, et al., 2015; Rauber, Asmi, Van Uytvanck, et al., 2015). (Rauber, Gößwein,

et al., 2021) describes several (partial) implementations of those recommendations.

(Silvello, 2017) provides an exhaustive review of data citations’ current state in terms of mo-

tivations and implementations. Based on a meta-study, the author identified six motivations

for data citations: Attribution, connection, discovery, sharing, impact, and reproducibility. We

simplify these to identity, attribution, and access:

Identity

Citations provide an identity to data, enabling referencing and reasoning about data (Bandrowski

et al., 2016) even in its absence (e.g., no longer extant or inaccessible behind a paywall). Iden-

tifying data also allows for evaluating its usage, relevance, and impact (Honor et al., 2016).

1http://www.bibtex.org/
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Attribution

Citations attribute data to authors, allowing them to take professional credit for it and providing

accountability to the sponsors of the data’s collection/creation and publication. This provides

an incentive for sharing (Niemeyer, Smith, and Katz, 2016; Callaghan et al., 2012; Kratz and

Strasser, 2014).

Access

A citation provides information on how to retrieve the cited material (e.g., the journal, year,

and pages). Persistent access to data is essential to enable reusability and reproducibility (Starr

et al., 2015).

2.1.2 What is data citation?

Citations provide identity, attribution, and access mechanisms to cited material. Data citations

differ from citations of printed material in that the cited content (i.e., the data) may evolve and

in that meta-information such as authorship or provenance may vary within a continuous dataset

(Buneman, Davidson, and J. Frew, 2016). Further, data citations cannot be statically generated

for subsettable data unless the number of possible subsets is trivially small. This is specifically

true when data, rather than files, are accessed through, e.g., Application programming interfaces

(APIs)2. Data citations, therefore, have to be machine-actionable, both in terms of dynamic

creation (as a function of time and subsetting parameters) and in terms of resolving citations

to the cited material (Assante et al., 2016; Altman, Borgman, et al., 2015; Buneman, Davidson,

and J. Frew, 2016).

Data citations often use actionable Persistent Identifiers (PIDs) such as Digital Object Iden-

tifiers (DOIs). However, actionable PIDs blur the distinction between identity and access

2E.g. Web Map Service (WMS), Web Coverage Service (WCS), or Open-source Project for a Network Data
Access Protocol (OPeNDAP) (Gallagher, Potter, et al., 2007)

11



OCCUR - An automated data citation system for OPeNDAP resources Chapter 2

(Federation of Earth Science Information Partners (ESIP), 2012). In this context, (Buneman

and Silvello, 2010) emphasizes that DOIs should be considered a part of, but not a substitute

for, data citations. Identity and access remain two distinct facets of a citation, and there is

utility in data identity regardless of whether or not the data can be accessed or even still exists.

(Parsons and Fox, 2013) criticize another aspect of DOI use in data citations: DOIs are misun-

derstood to provide imprimaturs and persistence. However, a DOI cannot provide persistence

and should solely be understood as a locator and identifier, which is required long before an

imprimatur can be issued.

In the following, we address questions related to data citation:

1. How are datasets and their subsets identified?

2. How is fixity assured?

3. How are revisable datasets handled?

4. How do citations facilitate access to data?

5. How are human-readable citation snippets/strings generated?

Answers to these questions vary widely depending on the scientific domain, as well as particular

dataset characteristics such as complexity (tables, arrays, graphs), volume, update frequency,

and the repository’s services, specifically regarding subsetting.

Identity

A unique identity can be represented by any arbitrary unique string (CODATA-ICSTI Task

Group on Data Citation Standards and Practices, 2013). In some contexts, already established

identifiers such as filenames (Buneman, Davidson, and J. Frew, 2016) or accession numbers

(Bandrowski et al., 2016) may serve this purpose. In practical terms, (Altman and G. King,

2007) suggests that the identity should double as a handle to the data by associating it with a

naming resolution service, e.g., through the use of, e.g., a DOI, Life-Science Identifier (LSID),

12
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Uniform Resource Names (URN), Handle.Net Registry (HNR)3, or Uniform Resource Locator

(URL).

Contrary to traditional publications, data may be queried to produce a potentially unlimited

number of subsets from a single source (Davidson et al., 2017; CODATA-ICSTI Task Group

on Data Citation Standards and Practices, 2013). It is, therefore, necessary to reference a

dataset and every possible subset of a dataset. (Altman and G. King, 2007) coin the term

“deep citation” to describe the ability to reference subsets of data. Further, data may evolve,

which opens the discussion of how to identify the varying states of a dataset (Huber et al.,

2015).

This further prompts the question of at which granularity a unique identity should be assigned.

(Buneman and Silvello, 2010), therefore, introduce the concept of a “citable unit”: An object

of interest such as a fact stated in a scientific paper or a subset within a dataset.

Fixity

Datasets may change unintentionally through malfunctions and malicious manipulation or in-

tentionally due to Create, Update, and Delete (CUD) operations. Data fixity is the property

of data to remain unchanged, and fixity checking verifies that data has not changed. If fixity

checking is included in a data citation system, it can verify if a data object is identical to the

referenced data.

(Altman and G. King, 2007; Rauber, Asmi, Van Uytvanck, et al., 2015; Crosas, 2011) suggest

including Universal Numerical Fingerprints (UNFs) into data citations to allow fixity checking.

3http://www.handle.net/
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Though mentioned in most theoretical discussions about data citations4, few data citation

system implementations have addressed fixity so far.

Revisability

Datasets may evolve through updating, appending, or deletion (Klump, Huber, and Diepen-

broek, 2016). We will refer to these datasets as revisable data to distinguish them from datasets

changing due to errors or malicious manipulation.

Literature frequently intermixes the term “fixity” and the ability to cite revisable datasets. A

revisable dataset is anticipated and intended to change its state over time. A citation system

consequently has to be able to distinguish between the states of a revisable dataset (Rauber,

Asmi, Van Uytvanck, et al., 2015; Klump, Huber, and Diepenbroek, 2016). However, to achieve

this, merely the abstract state a citation is referencing has to remain fixed (i.e., there cannot be

an ambiguity of the referenced state). This is true independently of the ability to dereference a

citation to the referenced state (i.e., the actual state being fixed). Identifying and referencing

a dataset’s ephemeral state is required for data citation. However, the ability to persistently

retrieve this state is a data publication, not a data citation challenge. It is up to the publisher

to choose an apt level of zeal:

• Pessimistic: data is assumed to be ephemeral; consequently, citations cannot ever be

dereferenced.

• Optimistic: data is assumed to be fixed. Citations always dereference to the current

state of the data.

4(Pasquetto, 2020; Schubert, Seyerl, and Sack, 2019; ESIP Data Preservation and Stewardship Committee,
2019; Davidson et al., 2017; Silvello, 2017; Alawini2017; Buneman, Davidson, and J. Frew, 2016; Prakash et al.,
2016; Altman, Borgman, et al., 2015; Starr et al., 2015; Rauber, Asmi, Uytvanck, et al., 2015; Ball and Duke,
2015; Huber et al., 2015; Rauber, Asmi, Van Uytvanck, et al., 2015; Kratz and Strasser, 2014; Pröll and Rauber,
2013; Bechhofer et al., 2013; Callaghan et al., 2012; CODATA-ICSTI Task Group on Data Citation Standards
and Practices, 2013; Federation of Earth Science Information Partners (ESIP), 2012; Lawrence et al., 2011;
Crosas, 2011; J. Frew, Janée, and Slaughter, 2011; Buneman and Silvello, 2010; Costello, 2009; J. Frew, Metzger,
and Slaughter, 2008; Altman and G. King, 2007)
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• Opportunistic: data is assumed to remain fixed for some time. Citations can be deref-

erenced only until the data changes.

• Pedantic: every data state is saved; consequently, citations can always be dereferenced

to the referenced state.

Versioning can be used to identify states of revisable data. We acknowledge that the term ver-

sion is often used synonymously with the term state (of a dataset or a single record). However,

in the following, we will use the term version as a policy-prescribed reference to a state.

A concern in data versioning is how to reach “[a] consensus about when changes to a dataset

should cause it to be considered a different dataset altogether rather than a new version.”5 This

question is futile from a pure identity perspective since every state needs to be identifiable. The

distinguishing between version versus state, therefore, is mainly connected to the nature of PIDs

(and the costs associated with minting them) (Klump, Huber, and Diepenbroek, 2016), as well

as the notion of hierarchical association and provenance.

As mentioned above, it is open to debate whether reproducibility is a hard requirement for

data citations of a revisable dataset. If not, resolving citations could be deprecated altogether

(pessimistic) or only allowed until the data has changed (opportunistic). The opportunistic

approach could, e.g., be implemented by timestamping modifications (e.g., by comparing the

file systems’ last modification date) or through fixity checking. The RDA WGDC (Rauber,

Asmi, Van Uytvanck, et al., 2015) elaborates on this approach: A dataset (or a subset) should

be given a new identity when the data has changed since the last time the dataset (or subset)

was requested. This is recommended to be implemented using a normalized query store and

checksums (Ball and Duke, 2015).

5https://www.w3.org/TR/dwbp/#dataVersioning
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Access

There is a common agreement that data citations should use actionable PIDs as an access

mechanism. E.g., (Altman and G. King, 2007) suggests a citation to contain an identifier that

can be resolved to a landing page (not to the data itself), a requirement also specified by the

Joint Declaration of Data Citation Principles (JDDCP) (Data Citation Synthesis Group, 2014;

Altman, Borgman, et al., 2015). The landing page, in turn, should contain a link to the data

resource. The advantage is that the identifier can be resolved regardless of whether the data is

behind a paywall or does not exist anymore (at all or in the referenced state).

The question of data access is connected to reproducibility and on what granularity level chang-

ing states of a revisable dataset should be stored.

Citation texts

Data citation systems should use metadata standards (CODATA-ICSTI Task Group on Data

Citation Standards and Practices, 2013) and be capable of generating human-readable citation

snippets to facilitate the use of data citations and lower the boundaries for data citation (Bune-

man, Davidson, and J. Frew, 2016; Rauber, Asmi, Van Uytvanck, et al., 2015). An advantage

of citation texts, including, e.g., title, author, and date, is that they allow the reader to quickly

assess the relevance, quality, and concurrency of the cited material (Buneman and Silvello,

2010). The ability to automatically create citation texts is also recommendation 11 for data

citations of the RDA WGDC.
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2.2 OCCUR Implementation

The OPeNDAP Citation Creator (OCCUR) enables automated citation creation and derefer-

encing for data served by OPeNDAP servers. It is implemented as a web service that allows

users to:

1. Assign and store identities to data

2. Create identifiers for identities

3. Resolve identifiers while verifying that the data has not changed since the creation of the

identifier.

4. Broker identities, i.e., ensuring that identical data shares the same identity.

5. Generate formatted citation snippets for OCCUR identifiers and any arbitrary OPeNDAP

query.

OCCUR is built as a third-party web service without needing to modify data repositories.

2.2.1 OPeNDAP Primer

The OPeNDAP6 simplifies access to remote data. It is widely used (but not limited to) to access

remote Hierarchical Data Format (HDF) and Network Common Data Form (NetCDF) files. An

OPeNDAP server allows an OPeNDAP client to request the structure and metadata of data

and query subsets of the data. The client retrieves those requests through Hypertext Transfer

Protocol (HTTP) GET requests to an OPeNDAP URL served by the OPeNDAP server. The

structure and metadata are retrieved by requesting the Dataset Descriptor Structure (DDS)

and the Dataset Attribute Structure (DAS) of the data. The former describes the shape of

the data (such as the dimensions), while the latter contains metadata populated by the data

provider. Queries for data subsetting are specified through constraint expressions in the URL

query strings.

6here, referring to the protocol, not to the company of the same name developing the protocol
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2.2.2 Retrieving identities

In OCCUR, data identity is described by:

a) the query (i.e., the full OPeNDAP URL) that produced the data, and

b) a UNF of the result set of the query (i.e., the data).

Though not strictly necessary, the time of the identity creation (which serves as a proxy for the

query execution time) is used as a third attribute to describe an identity to increase convenience

and human readability.

An identity’s identifier is the concatenation of the OPeNDAP URL and the identity creation

timestamp. (See class diagram in Figure 2.1). Identities and their corresponding identifiers are

permanently stored within OCCUR upon user request.

A user can retrieve a data identifier by submitting the OPeNDAP URL used to produce the

data to OCCUR with the following Representational State Transfer (REST) API call:

GET $OCCUR_HOST/store/?dap_url=$DAP_URL

When a user requests to retrieve the identity of data, OCCUR first fetches the queried data

from the OPeNDAP server and creates a UNF (by default, an MD57 hash) of the current state

of the data. OCCUR will then verify if an identity to the same query has already been stored.

If not, OCCUR creates and stores a new identity (consisting of the query, the UNF, and the

current timestamp). The user is then provided with the newly created identifier.

If one or more identifiers to the same OPeNDAP URL already have been stored, OCCUR

compares the UNF of the current data state to the UNFs of the stored identities. If an identity

with the identical query and UNF is found, it is assumed that the data is currently in the same

7MD5 is a cryptographically broken algorithm. However, we here utilize it merely to verify data integrity
(i.e., to identify unintentional corruption). The hash function may be replaced in the future, e.g., by SHA-256,
to verify against malicious data corruption.
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+identifier(): str
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Create identity

Provide user 
with new identity

Figure 2.1: Class diagram of the data identity and flow for retrieving an identity.

state as when this stored identity was created. Their identity is, therefore, identical, and the

user is provided with the identifier of this stored identity.

If the UNF of the current state differs from all stored UNFs to the same OPeNDAP URL, a

new identity is created, and the user is provided with the newly created identifier. Figure 2.1

schematically illustrates the flow for retrieving an identity.

2.2.3 Dereferencing identities

OCCUR follows an opportunistic approach for dereferencing identities: An identifier can only

be dereferenced during the time interval between identity creation and the time the state of

the referenced data changes. A user can dereference an identifier by submitting the following

REST API call:

GET $HOST/dereference/?identifier=$IDENTIFIER
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Figure 2.2: Flow for the dereferencing an identity.

OCCUR first verifies if an identity for the submitted identifier exists/is stored. If so, OCCUR

will look up the associated OPeNDAP query and UNF. OCCUR then executes the stored query

to retrieve the current state of the data. For this state, the UNF is calculated and compared

to the stored UNF. If the UNFs match, it can be assumed that the data is in the same state

as it was during the identity creation. The user thus can be redirected to the (landing page of

the) data.

If the UNFs don’t match, the current state can be assumed to differ from the state of the data at

the identity creation. The user, thus, will be redirected to a landing page containing a warning

indicating that the referenced state of the data is not accessible anymore. It then is up to the

user whether or not to retrieve the data in its current state. The flow of the dereferencing is

illustrated in figure 2.2.
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2.2.4 Formatting citations

OCCUR allows the creation of human-readable formatted citation snippets from both OCCUR

identifiers and plain OPeNDAP URLs. This service can be understood as the OPeNDAP

pendant to www.crosscite.org, which allows the creation of citation snippets from DOIs.

A user specifies the (e.g., journal) formatting style8 together with the identifier or the OPeNDAP

URL. Besides human-readable snippets, a user can choose to retrieve the raw bibliographic

information in BibTeX or Citation Style Language (CSL) - JavaScript Object Notation (JSON)

format. In its simplest form, a user can request a formatted citation snippet with the following

REST API calls:

To format an identifier:

GET $HOST/format/identifier=$IDENTIFIER&style=$STYLE

Or, for a plain OPeNDAP URL:

GET $HOST/format/dap_url=$DAP_URL&style=$STYLE

For the first case, OCCUR will first verify if an identity with the specified identifier exists.

If it exists, OCCUR will look up the according OPeNDAP query and derive the URL of the

according DAS. The DAS is then fetched, and OCCUR will extract metadata from its “global”

section9. OCCUR will hereby extract any legal citeproc-py keyword (see appendix 2.4.2). This

metadata is converted into the citeproc-csl JSON format. In case the DAS contains a DOI,

OCCUR will query https://www.doi.org for the CSL JSON representation of this DOI10 to

retrieve additional metadata.

8OCCUR supports any of the formats defined in the official repository for CSL citation styles https://
github.com/citation-style-language/styles.

9the part that satisfies: /(? <= global.* (?=)/*ims*
10OCCUR uses content negotiation to query doi.org with the header

Accept: application/vnd.citationstyles.csl+json to retrieve a CSL-JSON metadata response
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Figure 2.3: Formatting of citations.

The CSL JSON of the DAS and the CSL JSON of the DOI are then merged. Together with

the style definition, they are fed into citeproc11 to produce a formatted citation snippet, which

is then served to the user.

In case the DAS does not contain a DOI or the user wants to overwrite the DOI specified in the

DAS, the user can choose to add a DOI to the snippet request, i.e., with the following REST

API call:

GET $HOST/format/identifier=$IDENTIFIER&style=$STYLE&doi=$DOI

The flow for creating the citation snippet is illustrated in figure 2.3.

2.2.5 Web frontend and landing pages

OCCUR includes a web API: The web-service endpoints default to resolve to landing pages

rather than to the identifiers or data itself. The reference/identifier endpoint resolves to a

11OCCUR uses citeproc-py (https://github.com/brechtm/citeproc-py)
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landing page that allows the user to inspect the stored identity (specified by the URL, the

UNF, and identity creation timestamp), access the referenced data, as well as to format the

identity to a human-readable citation snippet.

Seminally, the dereference/data endpoint resolves to a landing page of the data rather than the

data itself. Those landing pages provide the user with links to the identifier landing page and

the referenced data. If the referenced state of the data is no longer available, the landing page

additionally contains a warning informing the user that the data has changed. The user may

now choose to access the newer state of the data or create a new identity.

2.2.6 Use Example

A schematic timeline for using OCCUR might look as follows: User A queried data from an

OPeNDAP server. The user now wants to create an identifier for this data to include in a

reference. They thus take the OPeNDAP URL used to query the data to OCCUR and request

an identifier. OCCUR resolves the OPeNDAP URL, fetches the data, computes the UNF,

and stores it together with the OPeNDAP URL and the current timestamp as a new identity.

The user then is provided with the identities’ identifier. They then may use this identifier to

create a human-readable citation snippet. Later, another user, B, may receive the reference

(e.g. from a publication), including the OCCUR identifier, and uses OCCUR to dereference it

to the referenced data. OCCUR will first verify if the referenced state is still available. If so,

the user is provided with the data. If not, the user is given a warning. They now have the

option to either access the newer state of the data or create a new identity.

Both the retrieval of an identity and the dereferencing of the identifier are illustrated in figure

2.4.
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Figure 2.4: Timeline of identity creation and retrieval.
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2.3 Related work

The following is a non-comprehensive summary of services for automized data citation creation

that have been presented in the past:

MatDB12 implements a data publication and citation service for engineering materials. Datasets

are made citable by enforcing minimal discipline-specific metadata and minting DataCite DOIs.

Fixity is assured by snapshotting the dataset at the time of DOI minting. Revisability of data

is made possible through policy-enforced versioning (Austin, 2016).

(Alawini et al., 2017) created a citation service for the Resource Description Framework (RDF)

eagle-i database. Since this database itself does not version its data (only the most recent

version is available), the authors implemented an external service that versions eagle-i data to

provide users access to revised data. The service tracks and stores every change in the original

dataset. The authors note that this approach is viable for eagle-i since the dataset changes very

slowly.

The dataverse networks software (Crosas, 2011) aggregates data in “studies.” Studies may

contain several datasets, and each study shares a common persistent identifier. A citation to

a dataset (and subsets) is implemented as the combination of the studies’ PID appended with

the UNF of the cited data.

(Cook et al., 2016) presents the data product citations at a Oak Ridge National Laboratory

(ORNL) Distributed Active Archive Center (DAAC). The DAAC assigns a DOI per dataset,

which may contain between one and tens of thousands of files. A single file within a dataset can

be identified by appending the file’s Universally Unique Identifier (UUID) to the DOI (using the

urlappend functionality of the DOI resolver). The DAAC also provides a Moderate Resolution

Imaging Spectroradiometer (MODIS) subsetting service. The user can request a citation to the

subset, comprised of the dataset’s citation appended with a textual description of the temporal

12http://doi.org/10.17616/R3J917
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and/or spatial subsetting. The citation can be requested as a formatted snippet and in BibTex

format.

A very similar approach is implemented for the Atmospheric Radiation Measurement (ARM)

Data Archive (Prakash et al., 2016). Upon data order fulfillment, the user is provided with

both the data and a citation that contains a citation, including a textual description of the

temporal and/or spatial subsetting. The ARM Data Archive also hosts a citation creator,

a Graphical User Interface (GUI), that allows the creation of a data citation subject to a

fully qualified dataset stream name and optionally manually specified subsetting parameters.

The user hereby can choose between the custom ARM citation style, American Psychological

Association (APA), Modern Language Association (MLA), and Chicago.

(Honor et al., 2016) describes a reference implementation for data citations of a database

holding neuroimaging (the specific use case is the Neuroimaging Informatics Tools and Resources

Clearinghouse (NITRC)). The citable units for their use-case are individual images aggregated

in studies/projects. Upon data upload, hierarchically, each image and each study is assigned

a DOI. The authors recognize that this implementation may result in the generation of many

DOIs; however, they evaluate the solution feasible for their use case.

(Pröll and Rauber, 2013) present a reference implementation for data citations to data managed

by a Relational Database Management System (RDBMS). The system is based on the premise

that a timestamped SELECT query can correctly identify data. To allow revisability, the

system timestamps every CUD operation and acknowledges the validity time ranges of records

rather than allowing modification of records. When a user wants to create a citable subset, the

system will store the according timestamped SELECT query, calculate a hash for the result set,

and assign a PID to the query.

(Buneman and Silvello, 2010) describes an approach for citing digital archives described by

the Envoced Archival Description (EAD) and for the International Union of Basic and Clinical

Pharmacology (IUPHAR) database. They hereby focus on the concept of citable units and
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their application on hierarchical/structured and revisable datasets.

(Rauber, Gößwein, et al., 2021) details the experiences of several adapters of the 14 RDA WGDC

recommendations. Among those are the Center for Biomedical Informatics (CBMI), Virtual

Atomic and Molecular Data Centre (VAMDC), Data Centre at the Climate Change Centre

Austria (CCCA), and the Earth Observation Data Centre (EODC). All adapters were able to

improve their data distribution infrastructure through the adaptations of the recommendations.

However, each adapter’s individual implementations and the required work vastly varied. A

common challenge can be identified as enabling data versioning and timestamping.

Apart from those fully integrated data citation systems, we want to mention the crosscite DOI

Citation formatter13. The crosscite DOI Citation formatter generates citation snippets from

metadata retrieved from DOI landing pages. The citation snippets are formatted through

citeproc subject to styles defined through the CSL14.

13https://citation.crosscite.org/
14https://citationstyles.org/
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2.4 Discussion and Outlook

We demonstrated how a third-party data citation system can be built for data accessible through

the RESTful data access protocol OPeNDAP. We define a citeable unit as any result set of

a SELECT/GET request. Identities and the corresponding identifiers to citable units can be

created and retrieved upon user request. The identities are defined and permanently stored as

a combination of the query, the result set’s hash, and the identity creation timestamp. Identifiers

can be opportunistically dereferenced as long as the referenced identity is still available. The

availability is verified by comparing the hash of the referenced identity and the hash of the query

result set at the time of dereferencing. It is hereby irrelevant if the data changed intentionally

subject to a revision or unintentionally due to rot or malicious manipulation. It shall be noted

that the used hashes stay opaque to the user as OCCUR handles the result set verification

internally.

OPeNDAP allows users to request data in a delivery container format that differs from the

storage container format. OCCUR calculates hashes in the delivery container rather than in

the storage format.

OCCUR requires fetching the complete result set to calculate the hashes, which may inflict high

transfers on both OCCUR and the OPeNDAP resource. To avoid these high transfers, hashes

of result sets should be calculated at the point of storage and exposed/queried through an API.

Data Access Protocol (DAP) - 4 already provides the option of including CRC32 checksums in

the Dataset Metadata Response (DMR)15, which could be used for this purpose.

Identities and identifiers are created, stored, and resolved within OCCUR. This comes with

the advantage of low cost. However, these identifiers cannot be considered persistent. It is

necessary to use an external service such as DOI, identifiers.org16, or name2thing17 to mint

persistent identifiers to OCCUR identities.

15https://docs.opendap.org/index.php/DAP4:_Specification_Volume_1#Checksums
16https://identifiers.org/
17https://n2t.net/
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OCCUR identifiers can be converted into human-readable citation snippets as well as machine-

readable bibliographic entries in BibTex, RIS, and CSL - JSON format. OCCUR hereby exploits

that OPeNDAP resources have a designated location for dataset-level metadata: the DAS. The

metadata extracted from the DAS is combined with the hash, the OPeNDAP query literal, and

the identity creation time to create snippets through citeproc. We recognize that the DAS might

be a duplicate metadata location since a dataset-level DOI may have already been registered

in many cases. In these cases, we encourage merely the inclusion of the dataset DOI into the

DAS. OCCUR will parse this DOI and resolve it for the corresponding metadata.

OCCUR is meant to be a demonstration that can be adapted to other RESTful data access

services such as WMS and WCS. It could be envisaged to remain a centralized third-party

system or be integrated into the data services.
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Appendix

2.4.1 RDA WGDC recommendation compliance

OCCUR implements several of the 14 RDA WGDC recommendations (Rauber, Asmi, Van

Uytvanck, et al., 2015). It stores queries with metadata, PID, and timestamps (R7, R8, R9). It

also uses UNFs to achieve result set verification (R6). Since OPeNDAP normalizes queries by

alphabetically sorting the constraint expressions, OCCUR can also fulfill the recommendation

to ensure query uniqueness and that a single subset is not referred to by more than one identifier

(R4). Further, when accessing files through OPeNDAP, a stable sorting of the result sets can

be guaranteed (R5). OCCUR is machine actionable through its REST API (R12) and resolves

to human-readable landing pages (R11), both of which allow the creation of formatted citation

snippets (R10). Since OCCUR is a third-party service, it does not address data versioning

(R1) and timestamping (R2), as we see those as the repositories’ responsibility. Additionally, a

technology migration (R13) and migration verification (R14) will only be possible to be carried

out in collaboration with the according repository.

Figure 2.5 evaluates the compliance of the current state of OCCUR with these recommendations.
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Figure 2.5: Evaluation of WGDC compliance.
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2.4.2 Legal citeproc keywords

NAMES = ['author', 'collection_editor', 'composer',

'container_author', 'editor', 'editorial_director',

'illustrator', 'interviewer', 'original_author',

'recipient', 'translator']

DATES = ['accessed', 'container', 'event_date', 'issued',

'original_date', 'submitted']

NUMBERS = ['chapter_number', 'collection_number',

'edition', 'issue', 'number', 'number_of_pages',

'number_of_volumes', 'volume']

VARIABLES = ['abstract', 'annote', 'archive',

'archive_location', 'archive_place',

'authority', 'call_number', 'citation_label',

'citation_number', 'collection_title',

'container_title', 'container_title_short',

'dimensions', 'DOI', 'event', 'event_place',

'first_reference_note_number', 'genre',

'ISBN', 'ISSN', 'jurisdiction', 'keyword',

'language', 'locator', 'medium', 'note',

'original_publisher', 'original_publisher_place',

'original_title', 'page', 'page_first', 'PMCID',

'PMID', 'publisher', 'publisher_place',

'references', 'section', 'source', 'status',

'title', 'title_short', 'URL', 'version',

'year_suffix']
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Abstract

Geospatial analysis is predicated on the ability to evaluate geospatial coincidence between geo-

referenced objects. The sheer volume of remotely sensed data and their irregular spacing are a

disabling roadblock for scientists, currently only circumventable by spatiotemporal discretiza-

tion and sampling of observations. While spatial discretization simplifies the evaluation of

geospatial coincidence, it decreases the data fidelity. The alternative geospatial referencing and

indexing schema, the Spatio-Temporal Adaptive-Resolution Encoding (STARE), built on top

of a Hierarchical Triangular Mesh (HTM), allows performant spatial coincidence evaluation of

undiscretized observation. We present the software collection built around STARE that en-

ables scientists to process remote sensing data at the actual sensor geolocation accuracy and

resolution. It contains methods to read conventional geospatial data and to convert legacy

representation into STARE representation. It further contains STARE based geoprocessing

methods and storage backends for STARE indexed data.
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3.1 Introduction

Geospatial data analysis extends conventional data analysis by introducing the special attribute

of geolocation. This allows us to associate geolocalized observations with other geospatial ob-

jects and data, providing insights into phenomena that would otherwise appear unrelated. In

the historic textbook example, Dr. John Snow graphically superimposed the locations of cholera

clusters with the locations of water wells to identify the source of an 1854 cholera outbreak in

London. In contemporary uses, we might associate whale injuries with shipping lanes, car

accidents with road conditions, blackout locations with local public policies, Normalized Differ-

ence Vegetation Index (NDVI) measurements with plots of land, or estimations of Snow Water

Equivalent (SWE) with watersheds. The ability to spatially associate datasets is predicated

on the ability to evaluate spatial relations. We want to associate data that fulfill some spatial

criteria, e.g., within a distance, intersecting, or containing. As humans, we use spatial intu-

ition to evaluate the relations of spatial objects: we may say: “Santa Barbara is in California,”

enabling us to associate data located in Santa Barbara with California. Computationally, we

represent locations as geometric objects in a coordinate system, allowing us to compute spatial

relations of arbitrary spatial objects.

At the beginning of any spatial analysis, we use the ability to evaluate coincidence to find

and extract relevant data: We define a spatiotemporal Region of Interest (ROI) and use this

definition in a search query to extract data that (for example) intersects our ROI. We then

convert the extracted data to spatial objects convenient for analysis and apply spatial (and

other) operators to these objects.

Unfortunately, these steps are seldom seamless in real-world analysis. In the 1992 sci-fi novel

Snow Crash (Stephenson, 1992), Neal Stephenson envisages an information system called CIC

Earth, a central user interface to access “every bit of [spatial] data”. There are some attempts to

mimic this concept in, e.g., multiple virtual globe or Digital Earth projects (e.g., Google Earth,

National Aeronautics and Space Administration (NASA) WorldWind, Microsoft TerraServer,
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Figure 3.1: Observations (circles) associated with political boundaries

VGIS (Faust et al., 2000)), as well as in data repository interfaces such as NASA’s Distributed

Active Archive Centers (DAACs). In reality, there is no single querying and access mecha-

nism for all spatial data. Instead, geospatial data is distributed by many actors across many

repositories. Since no universal method exists to represent locations (specifically for locations

having a spatial extent), repositories use idiosyncratic mechanisms for spatial data discovery

and extraction. Some repositories may allow querying canonical or standardized place names

(such as countries and states or survey site identifiers). Others may allow specifying the spatial

ROI as rings, bounding boxes, or even polygons. Things are more complicated if the spatial

ROI is dynamic, i.e., changing over time. Examples of evolving spatial ROIs are events such as

storms or wildfires.

Since there is no unified representation of data in general and geolocation in particular, reposi-

tories will deliver data in many possible container formats (files) and geospatial representations.

Locations may be expressed in spherical or ellipsoidal geographic coordinate systems or in two-
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dimensional projected (Cartesian) coordinate systems at varying resolutions.

Consequently, users must step through an iterative process called extract, transform, and load

(ETL) rather than simply searching for, retrieving, associating, and analyzing data. During

ETL, data first has to be discovered, then extracted, subsequently transformed into a unified

(“harmonized”) representation, and finally loaded into a system in which the analysis opera-

tions can be carried out (i.e., a desktop Geographical Information System (GIS), such as QGIS1,

ArcGIS2; a database, such as PostGIS3; or objects in a programming language, such as MAT-

LAB, Python, or R). The harmonization process is typically time-consuming, computationally

expensive4, and bespoke to a particular analysis environment. The analyst has to balance com-

putational performance and data fidelity: An appropriate geographic or projected coordinate

system, as well as a spatiotemporal resolution, has to be chosen, both of which have an impli-

cation on the preservation of spatial properties (areas, distances, shapes) and computational

performance. While any commonly used geospatial relation test can theoretically be computed

in both geographic and projected coordinate systems, operations are cheaper and thus more

performant in projected 2D coordinate systems. Further, none of the commonly used desk-

top GISs (ArcGIS, QGIS) or programming libraries (GeoPandas5 or r-spatial’s6 sf) supports

spherical or ellipsoidal computations. Only within recent years technologies that gracefully

allow performing geospatial analysis in geographic coordinate systems (S2geometries7, PostGIS

geographies8, SphereGIS9) have become available. Thus, geographic information systems and

their users will typically harmonize data by projecting all relevant data into a single (locally)

appropriate coordinate system. Note that there may not actually be a single locally appropriate

1https://www.qgis.org/
2https://www.arcgis.com/
3https://postgis.net/
4Anecdotally, consuming the majority of the time of geospatial analysis.
5https://geopandas.org/en/stable/
6r-spatial (https://r-spatial.org/) is not to be confused with rspatial (https://rspatial.org/)
7https://s2geometry.io/
8http://postgis.net/workshops/postgis-intro/geography.html
9https://github.com/NiklasPhabian/SphereGIS
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Figure 3.2: Flow data to information during geospatial analysis

projected 2D coordinate system if the ROI has a sufficiently large spatial extent, requiring yet

even more adurous efforts and compromises.

In the analysis of remote sensing data, two factors complicate the ETL process and the asso-

ciation (map) operations. Firstly, remote sensing observations are overwhelming in volume: A

single remote sensing instrument will register thousands of individual observations (Instanta-

neous Field of Views (IFOVs)) per second. Since mission durations often span multiple years, a

single space-born sensor may accumulate trillions of observations during its lifetime. (Even at its

coarsest spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) aboard

Terra has made over 6 trillion individual observations (observation is here to be understood as

the registration of a spectrum) within its 22 years of operation. The Visible Infrared Imaging

Radiometer Suite (VIIRS) aboard the Joint Polar Satellite System (JPSS) satellites Suomii Na-

tional Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP),

National Oceanic and Atmospheric Administration (NOAA) -20, and JPSS -2 each register

about 1 trillion observations per year).

Secondly, remote sensing data is inherently irregular: Subject to the nonlinearity in the dy-

namics of the space- or aircraft trajectory, the optical properties of the atmosphere, and the

topography of the Earth’s surface, remote sensing observations are irregularly spaced. Thus
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Figure 3.3: The MODIS integerized sinusoidal (ISIN) tile grid divides the Earth into 460
nonoverlapping “tiles” of 10°x10°. MODIS observations are spatially binned into those tiles.
This makes accessing data for a given region simple: A user only once has to evaluate which
tiles cover the ROI and then request data for those tiles. Each tile contains 2400x2400 cells
(at 500 m resolution), into which individual observations are further binned.

every single observation has to be considered to have a unique location. The irregular spacing

is only exacerbated for sensors with wide scan angles in which successive observations are reg-

istered under constantly changing viewing angles leading to intravariablity within a single set

of observations.

The combination of irregularity and volume makes it impossible for data repositories to allow

users to query and extract individual observations subject to arbitrarily defined regions of

interest10; it is infeasible to perform trillions of spatial relation tests ad-hoc using conventional

technologies. Therefore, repositories bin observations into spatial grid tiles (c.f. figure 3.3)

and/or temporal chunks (aka granules). The choice of the size of grid tiles and temporal chunks

is relatively arbitrary and may differ vastly for individual products. Rather than actually

querying observations, users thus query bins that intersect their region of interest. For the

10Exceptions may be technologies like Open-source Project for a Network Data Access Protocol (OPeNDAP)
or Web Coverage Service (WCS), which are mainly used as middleware and not (yet) designed for end-users.
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Figure 3.4: Footprints of granules (red) and a region of interest (green). Note that the granule
footprints are orders of magnitude larger than the ROI.

repositories, this has the advantage of performing far fewer spatial relation tests. However, it

coarsens the level of spatial queryability. Rather than extracting the intersection of the data of

interest and the ROI, users extract bins that intersect the ROI. This, in turn, means that users

extract far more data than they need (leading to a transfer overhead) and requires the users to

extract the intersecting data from the bins.

Though the user will have extracted only a small subset of the entire data by extracting only

the intersecting bins, they are still faced with having to execute potentially trillions of spatial

relation tests both to spatially subset and extract the data and to map the data to other geospa-

tial objects (c.f. figure 3.4). In most cases, this remains impossible. Even seemingly simple

tasks such as clipping or cropping quickly become challenging in conventional geographic infor-

mation systems and libraries such as QGIS, ArcGIS, PostGIS, r-spatial, or GeoPandas. Since

repositories are aware of these limitations, they offer datasets in which the irregularly spaced

locations of the observations are discretized and sampled/aggregated into a (two-dimensional)
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grid and. In NASA terminology, those datasets are referred to as Level 3 products. The grid

dimensions now function as an index and proxy to the geolocation of the observations. While it

is often the only possible way for users to process remote sensing data that have been spatially

discretized, this approach comes at a cost:

1. The precision of the geolocation of remotely sensed observations may be orders of mag-

nitude higher than the selected discretized grid resolution (e.g., the MODIS geolocation

accuracy is approximately 50 m at nadir (R. E. Wolfe et al., 2002), whereas data is grid-

ded into 500 m cells). Thus, discretization introduces a significant loss of precision in

geolocation.

2. Since the repository performs discretization, the sampling function may be obscure, if

not opaque to the users. This voids transparency and complicates the provenance trace.

In some cases, users may favor a sampling function that differs from the one used to

generate the gridded data. (A classic example may be that the MOD09GA sampling

algorithm favors snow-free observation, being counterproductive if, e.g., snow-covered

areas are investigated).

3. Not all remote sensing observations are available as gridded datasets (e.g., MODIS ther-

mal anomalies MO/YD14*, VIIRS Day/Night band VNP02DNB), leaving those datasets

inaccessible to users solely able to process gridded datasets.

4. The gridded data is a redundant representation of the observations, meaning that infor-

mation is duplicated and, thus, storage space wasted.

In summary: The goal of geospatial data analysis is to extract information about spatial ob-

jects, which is achieved by evaluating spatial relations, requiring spatial representations to be

harmonized. However, data harmonization is tedious and non-trivial because of the multitude

of container formats and data representations. Finally, evaluating spatial relation tests on large

volumes of irregularly spaced data is a disabling bottleneck, currently only circumventable by

discretizing locations, resulting in decreased observation fidelity.
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Figure 3.5: Geolocations of observations (red dots) vs. the discretized location (red parallelogram)
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3.2 Towards a solution

The conflict between processibility and fidelity can only be resolved through technologies

that can performantly determine geospatial coincidence of extensive collections of irregu-

larly spaced locations without needing data discretization. In this paper, I present a collection

of software built around the Spatio-Temporal Adaptive-Resolution Encoding (STARE) (K.-S.

Kuo and Michael Lee Rilee, 2017; Michael Lee Rilee, K.-s. Kuo, et al., 2018; M. Rilee, K.-S.

Kuo, Gallagher, et al., 2019; Michael L Rilee, K.-S. Kuo, J. Frew, et al., 2020; Michael L. Rilee

et al., 2021), which drastically simplifies remote sensing data processing and empowers scientists

to utilize the full fidelity of the data. STARE serves as a harmonizing location representation

allowing for cheap spatial relation tests between arbitrarily shaped geospatial objects.

STARE is a universal geolocation encoding that obviates the need for gridding and sampling

data. It is a geospatiotemporal indexing and representation scheme based on a Hierarchi-

cal Triangular Mesh (HTM) (Kunszt, Alexander S Szalay, and A. R. Thakar, 2001; Dutton,

1996; Goodchild and Shiren, 1992; Fekete and Treinish, 1990), which recursively subdivides

the Earth’s surface into nested quadtrees, allowing triangular regions (“trixels”) as small as

0.01 m2 to be identified with a single integer value. The nesting properties of STARE trixels

are an elegant solution for aligning multi-resolution Earth science data. The geospatial co-

incidence between two trixels can be evaluated by comparing their paths in the STARE tree

structure. STARE allows not only to express the location of a point/location (including its spa-

tial uncertainty or resolution) but also of arbitrarily shaped areas (polygons) through a trixel

tessellation.

The resolution is encoded into the STARE index, making it possible to evaluate spatial coinci-

dences of data of differing and/or varying resolutions. This is a required feature to express the

locations of, e.g., IFOVs of wide-scan swath data, which are characterized by considerable vari-

ations of the footprints of pixels at nadir vs. the footprint of pixels at the end of a scan. Data

represented with STARE thus becomes interoperable without sampling and gridding. (Michael
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Figure 3.6: Evaluating the spatial coincidence of two HTM trixels is achieved by comparing
their paths in the tree structure.

L. Rilee et al., 2021) describes the underlying principles of STARE and the reference imple-

mentation of the STARE Application programming interface (API), which is exposed through

Python bindings in the PySTARE library.

STARE has the potential to be used as a unifying representation for any geospatial data.

However, more than STARE as a concept is needed to enable a researcher to work with diverse

data seamlessly. Instead, a collection of software and abstractions are required to make STARE

an opaque technology hidden in the backend of software and services. Thus, we created a

collection of software that enables STARE - based geospatial analysis, allowing users to scale

analyses in variety and volume. To enable a complete STARE - based geospatial workbench,

we identified the need for the following capabilities:

• Represent features, such as points, lines, (convex and nonconvex) rings, polygons, and

collections thereof, with STARE.

• Determine spatial relations between spatial objects in STARE representation to perform
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spatial subsetting and spatial associations.

• Associate locations and attributes in a unified data model.

• Use an API with functions and idioms similar to familiar geoprocessing software.

• Visualize.

• File I/O methods to read and convert commonly used feature- and raster data packages

(shapefiles, geopackages, GeoTIFF, PostGIS) to STARE representations.

• Persist datasets in STARE representations.

Specifically for working with remote sensing data where data volumes and data variety makes

ETL a significant burden, we additionally identified the following needs:

• Create STARE representations from conventional geolocations of remote sensing products

and store them. I.e., making data STARE-ready.

• File I/O methods to read remote sensing data files (granules).

• Subset extensive local collections of remote sensing granules.

With the increased importance of cloud computing, we further addressed the need to store and

access remote sensing data in cloud buckets and designed a parallel optimized data storage that

allows aligning geospatial data in storage.

The remainder of the paper will discuss the following topics:

1. A brief summary of STARE and its capabilities for evaluating spatial coincidence.

2. The STARE base library and its Python bindings PySTARE, which stand at the bottom

of our software stack.

3. Software to convert collections of remote sensing data from legacy/conventional represen-

tations to STARE representations (STAREMaster).

4. A high-level data abstraction and processing API (STAREPandas).

5. Storage mechanisms and backends for geospatial data in STARE representation (STARE-

Lite, PostSTARE, STAREPods).
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6. A set of use cases that demonstrate the opportunities in STARE-based geospatial analysis.

7. An outlook on future developments of STARE software collection and services.

8. Conclusion.
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3.3 STARE

Using hierarchical data structures to represent or index geospatial data has been explored for

decades (Dutton, 1996; Samet, 1988). Hierarchical data structures are based on the recursive

decomposition of an initial planar or solid and can, for example, be implemented as quadtrees

(Samet, 1988).

The initial applications of quadtrees in the geospatial domain have mainly focused on the

representation of two-dimensional data in terms of visualization and image processing and were

typically based on the tessellation of squares (Lugo and Clarke, 1995).

An early example of the use of quadtrees to represent the globe three-dimensionally is (Dutton,

1984), who proposed the establishment of a Geodesic Elevation Model in which locations of

elevation measurements are encoded or indexed in a quadtree. (Dutton, 1989) suggests using

this quadtree for general indexing of planetary data and envisages a replacement of coordinates

in geospatial data with quadtree-based “geocodes”, given that the community could agree on a

standard method to generate “geocodes”.

In parallel efforts (Fekete, 1990; Fekete and Treinish, 1990), and (Goodchild and Shiren, 1992)

(and later also (Lugo and Clarke, 1995)) implemented the Quaternary Triangular Mesh (QTM)

initially suggested by (Dutton, 1984). While (Goodchild and Shiren, 1992) used an octahedron

as the initial regular solid, (Fekete, 1990; Fekete and Treinish, 1990) used an icosahedron. The

resulting structures allow us to geospatially index every feature object on the planet. (Fekete,

1990; Fekete and Treinish, 1990; Goodchild and Shiren, 1992; Lugo and Clarke, 1995) tessellate

each triangle into four triangles, allowing them to store each tessellated triangle with two bits.

(Goodchild and Shiren, 1992) point out that the length of a trixel address (i.e., the index), which

corresponds to the level/depth in the hierarchy, indicates the size (or spatial uncertainty) of

the indexed object.

(Dutton, 1996) explored the tradeoffs of the choices of the initial solid (Tetrahedron, Octahe-

dron, icosahedron) and, with this, empathizes the advantages of an octahedron for practical
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reasons: It is straightforward to orient an octahedron so that cardinal points (the poles) occupy

vertices and cardinal lines (equator, prime meridian) align with edges; and when so oriented,

most vertices lie in oceans or sparsely populated land areas.

The idea of indexing spherical data with a quadtree was picked up again by (Barret, 1995) and

further adapted by (Kunszt, Alexander S Szalay, Csabai, et al., 2000; Kunszt, Alexander S

Szalay, and A. R. Thakar, 2001; Alexander S Szalay et al., 2005), who developed an indexing

schema for the Sloan Digital Sky Survey (SDSS), which would later be implemented into the

SkyServer11 (Alexander S. Szalay, Gray, et al., 2002; A. Thakar et al., 2003). The authors

coined the term HTM.

All nodes of the HTM quadtree are spherical triangles. The quadtree is created by recursively

dividing the triangles into four new ones (quadfurcation) by using the parent-triangle corners

and the midpoints of the parent triangle sides as corners for the new ones. The name of a new

node (triangle) is the concatenation of the name of the parent triangle and an index 1 through

4. Thus, node names increase in length by two bits for every level. The authors distinguish

between HTM names and the HTM Spatial Identifiers (HIDs), which is the 64-bit-encoded

integer of the HTM name. (Kondor et al., 2014) use and extend the HTM implementation to

tessellate complex regions on the Earth’s surface.

(Doan et al., 2016) emphasize the importance of indexes on geospatial database performance

as they govern data placement alignment and suggests HTM as a promising approach.

(Michael Lee Rilee, K.-S. Kuo, et al., 2016) advanced the HTM implementation from right-

justified mapping to left-justified mapping:

In a right-justified mapping, trixels in proximity but at different quadfurcation levels are mapped

to separate locations on the number line. For example, the trixel S0123 has a binary HID

of 1 00 01 10 11 and thus an HID of 283, while the trixel S01230 has a binary HID of

11The SkyServer was built by Tom Barclay, Jim Gray, and Alex Szaley from the TerraServer (Barclay, Eberl,
et al., 1998; Barclay, Gray, and Slutz, 1999) source code. The latter was a project demonstrating the real-world
scalability of Microsoft SQL Server and Windows NT Server.
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1 00 01 10 11 00 and thus an HID 1132. The IDs are far from each other on the number

line, while both trixels share the same first 5 digits in their name prefix (and thus are contained

in each other).

Left-justified mapping respects geometric containment by right-padding binary HIDs with ze-

ros. The quadfurcation level (in right-justified mapping implicitly given by the length) is

specified by the last digits of the name. In left-justified mapping, the two trixels above

would be named S0123004 and S01230005 (the last digits of the names (4 and 5) indi-

cate level 4/5), which would translate to the binary HIDs of 1 00 01 10 11 00 00 100 and

1 00 01 10 11 00 00 101 and thus HIDs 36 228 and 36 229.

Therefore, co-located indexes are in similar index ranges regardless of the level. (K.-S. Kuo and

Michael Lee Rilee, 2017) extend the implementation with a temporal component and name the

resulting universal geoscience data representation the STARE. In the following, we will refer to

left-justified IDs as STARE Spatial Identifiers (SIDs).

HTM Name Binary HID HID STARE Name Binary SID SID

S0123 1 00 01 10 11 283 S0123004 1 00 01 10 11 00 00 100 36 228

S01230 1 00 01 10 11 00 1132 S0123005 1 00 01 10 11 00 00 101 36 229
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3.4 STARE Software collection

3.4.1 STARE library API and PySTARE

We implemented the left-justified HTM encoding, extensively described in (Michael L. Rilee

et al., 2021; Michael L Rilee, K.-S. Kuo, J. Frew, et al., 2020; M. Rilee, K.-S. Kuo, Gallagher,

et al., 2019; Michael Lee Rilee, K.-S. Kuo, et al., 2016; K.-S. Kuo and Michael Lee Rilee, 2017)

in the STARE C++12 base library, which stands at the base of the STARE software stack. Its

functionality encompasses the following:

1. Lookup of SIDs for points and regions.

2. Methods for interrogating and manipulating SIDs.

3. Conversion of SIDs to trixel node locations (edges and center points).

4. Perform intersection tests between SIDs and sets of SIDs.

The STARE library has no file I/O capabilities, nor does it directly support geographic objects

or collection of geographic objects. It is thus agnostic to data formats. Geographic locations

are passed as arrays of pairs of floating point World Geodetic System (WGS) 84 longitudes and

latitudes, while STARE index values are passed as arrays of 64-bit integers.

In STARE, two notions of location exist: points and contiguous regions. A point is represented

as a single SID, while a contiguous region is represented as a set of SIDs. A single SID simulta-

neously encodes a location and a level of uncertainty or resolution. A SID directly corresponds

to a trixel, having three vertices, a center point, and a calculable area. The conversion of a point

described as a single (latitude, longitude) pair is achieved by finding the trixel (at the specified

quadfurcation level) that intersects the point. The lookup of the set of SIDs corresponding to

a contiguous region is achieved by finding all trixels (of a specified quadfurcation level) with at

least one vertex within the contiguous area.

12https://github.com/SpatioTemporal/STARE
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Figure 3.7: A polygon (blue) and its representation as a set of trixels that cover it (yellow).
A point (red star) is represented by a single trixel (red triangle) at a chosen STARE level.

STARE can look up SIDs for two types of contiguous regions: convex hulls and nonconvex rings.

For convex hulls, each edge of the hull is treated as a great circle (represented as its normal

vector) that constrains the hull. A (trixel-) vertex (represented as an Earth-centered, Earth-

fixed coordinate system (ECEF) vector) is found to be inside a hull if it is inside all constraints.

For a hull with n edges, n dot products are thus required to determine if a vertex is inside the

hull. In a recent addition, STARE can now also look up the SIDs of (nonconvex) rings. The

algorithm is based on SphereGIS’13 spherical ray-casting point-in-polygon (more accurately:

point-in-ring) tests which are adapted from (Bevis and Chatelain, 1989; Chamberlain and

Duquette, 2007): Each of the ring’s edges is a great circle segment, which is represented as

triplets of great circles: One being the circle-edge norm vector representing the edge’s line and

direction, one for the ‘left’ terminator and one for the ‘right’ terminator. To test if a point is

inside the ring, we cast a ray from the point to another random point of the sphere.

The ray itself, thereby, is a great circle. Since the great circle ray wraps around the sphere, it

will intersect the ring’s edges either not at all or an even number of times. We, therefore, cannot

merely count the number of intersections but instead have to distinguish how many times a ray

13https://github.com/NiklasPhabian/SphereGIS
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Figure 3.8: Spherical ray-casting point-in-ring tests: We compare the number of times a ray
enters the ring vs. how many times it exits it. If the ray exits the ring more often than it
enters it, the point is inside it.

enters (or, alternatively exists) the ring. We know a ray intersects an edge if the intersection

of the ray with the edge’s great circle is between the edge’s terminators. The terminators are

great circles perpendicular to the edge and the nodes of the edge. Since the ray does not have

a direction, we determine if a ray enters (rather than exits) the ring by first determining on

which side of the edge the point in question is (i.e., calculating the dot product of the edge’s

great circle norm vector and the point). If the point is on the side of the edge’s hemisphere

(i.e. their dot-product is positive), the ray exits the ring when it crosses the edge. If a point is

inside the ring, the ray will exit it more often than it enters it. For a ring with n edges, 3 n

cross products (one to produce the norm vector of the edge’s great circle, one to produce each

terminator great circle) and 3 n dot products must be performed to determine if a given vertex

is within a ring.

For convenience, STARE can further look up the sets of SIDs that cover a circular region around

a given latitude and longitude, subject to a radius. STARE also allows for interrogation and

manipulation of the STARE level of individual SIDs and calculating the area that the trixel
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Figure 3.9: Spherical visualization of the point-in-ring test: The green great circle is the edge
of a ring, with its two terminators (thin green vectors) and thick green normal vector. The
point in question is the magenta vector. The ray is the red great circle which intersects the
edge’s great circle at the red vector. The intersection appears between the two terminators.
Therefore we declare the ray to intersect the edge. Since the point is on the edge’s hemisphere
(positive dot product between magenta and thick green vector), we declare the ray to exit the
ring at the intersection.
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Figure 3.10: A circular cover around a center point created with STARE.

denoted by a SID covers. The library further provides methods to look up the latitudes and

longitudes of the vertices and center points of a trixel denoted by a SID. Those methods have

proven helpful in creating visualizations of STARE-based geospatial analysis. Finally, STARE

can evaluate spatial coincidence/overlap of two individual SIDs and between two sets of SIDs.

3.4.2 PySTARE

While the C++ base library’s API contains a minimum set of methods to perform STARE based

geospatial analysis, we recognize that geospatial analysis is often performed in an exploratory

and ad-hoc manner in higher-level programming languages. Using Simplified Wrapper and

Interface Generator (SWIG)14, we, therefore, created Python bindings to a subset of the base

14https://swig.org/
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libraries’ API and exposed them in a Pythonic API in the PySTARE project15

Python became a convenient choice since it is commonly used and popular in geospatial analy-

sis. Various Python libraries exist to read data formats commonly used in geospatial analyses

(e.g., Hierarchical Data Format (HDF)4/5, Network Common Data Form (NetCDF), Struc-

tured Query Language (SQL), comma-separated values (CSV), shapefiles, geopackages) and to

visualize geospatial data (Matplotlib, GeoPandas). PySTARE is intended to be the primary

user interface to STARE. The development, therefore, focuses on complete documentation (pub-

lished on Read the Docs (RTD)16), tight adherence to Python Enhancement Proposals (PEPs)17

style guides, test-driven continuous integration, and a simple path for installation: We provide

pre-compiled wheels distributed through Python Package Index (PyPI)18, allowing PySTARE

and all its dependencies to be installed with a single command.

The following code snippet demonstrates how points and rings are converted to SIDs and how

the spatial relations between sets of SIDs can be evaluated with PySTARE.

15Github: https://github.com/SpatioTemporal/pystare;
Readthedocs: https://pystare.readthedocs.io.

16https://pystare.readthedocs.io/en/latest/
17https://peps.python.org/
18https://pypi.org/
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import numpy

import pystare

points_lats = [52.52063377345684, 48.86507804019062]

points_lons = [13.40137845762151, 2.3357209301448676]

points_sids = from_lonlat(lons, lats, level)

ring_lats = [53.75702912049104, 54.98310415304803, 53.69393219666267,

50.128051662794235, 49.01778351500333, 47.62058197691181,

47.467645575544, 50.266337795607285, 53.75702912049104]

ring_lons = [14.119686313542559, 9.921906365609118, 7.100424838905269,

6.043073357781111, 8.099278598674744, 7.466759067422231,

12.932626987365948, 12.240111118222558, 14.119686313542559]

sids_ring = pystare.cover_from_ring(lat, lon, 5)

pystare.intersects(cover, sids, method='binsearch')

array[True, False]

3.4.3 STAREMaster and STARE sidecar files

Conventionally, the locations of remote sensing observations are represented either as geolocated

IFOV features, where each observation is associated with an Earth location (usually WGS 84

longitude and latitude) or as gridded and projected fields of observations, in which the grid

indices can be converted to geolocations. In order to perform STARE-based geospatial analysis
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on these data, the SID for each observation or grid cell has to be calculated. Since these

calculations involve expensive transcendental functions, the index values are calculated once

and then stored.

STAREMaster py19 is a library and set of command line tools that allow looking up the STARE

representation of commonly used remote sensing products and storing those STARE represen-

tations into companion (“sidecar”) files (Gallagher, Hartnett, et al., 2021), which are intended

to be read together with the data files during the analysis. STAREMaster py is written to be

easily extendable to allow ingestion of other products. It handles a subset of MODIS, VIIRS,

and various microwave products. STAREMaster py further includes convenience utilities to

verify the integrity of local granule+sidecar collections (e.g., to detect missing sidecars.)

During the SID lookup for each observation, the STARE quadfurcation level of each SID is

adapted so that the corresponding trixel area matches the extent of the observation’s IFOV as

closely as possible.

STAREMaster py can also create sidecar files for gridded products, such as the MODIS level-

3 surface reflectance product MOD09GA20. MOD09GA uses a sinusoidal projection, and the

MODIS sinusoidal grid divides the Earth into 460 nonoverlapping “tiles” of approximate 10◦x10◦.

MODIS observations are spatially binned into those tiles. This makes accessing data for a given

region simple: A user only once has to evaluate which tiles cover the ROI and then request

data for those tiles. Each tile contains 2400x2400 cells (at 500 m resolution), into which indi-

vidual observations are further binned. Even though the individual observations are irregularly

spaced, the cells remain fixed. This means that all granules of the same tile can share a single

sidecar file. In other words: Only one sidecar for each of the 460 tiles has to be created once.

Besides looking up the SIDs for each observation of a granule, STAREMaster py also computes

the set of SIDs that cover the footprint of the granule (the “STARE cover”) from the granule’s

extent information. For granules that do not contain extent information, the STARE cover is

19Github: https://github.com/SpatioTemporal/STAREmaster_py
20(Eric Vermote and Robert Wolfe, 2021). [DOI 10.5067/MODIS/MOD09GA.006
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Figure 3.11: The geolocations of a MOD05 granule in blue and their corresponding resolution
adapted trixel representations. Note the resolution change towards the center of the swath in
the northeast direction.

computed by dissolving the set of the SIDs of the observations. “Dissolving” means that if a set

contains four child nodes of the same parent, the four child nodes get replaced by the parent

node.

The following code snippet shows the command line interface of STAREMasters py’s

create_sidecar_files.py program. A user will specify individual granules or a folder con-

taining a collection of granules for which sidecars should be created. Alternatively, the user

can specify a grid, such as a MODIS tile, for which a sidecar should be created. The user can

further optionally specify where the sidecars should be created, provide a hint for what product

the granules are, how many workers should be used in parallel, and if a sidecar archive should

be created. The sidecar archive registers all granules for which a sidecar has successfully been

created. This can be helpful to avoid (accidental) redundant creation of sidecar files, e.g., when

dealing with growing collections or when the sidecar creation of an extensive collection gets

interrupted.
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usage: create_sidecar_files.py [-h] [--folder folder]

[--files file1 [file2 ...]] [--grid files] [--out_path OUT_PATH]

[--product product] [--cover_res cover_res]

[--workers n_workers] [--archive archive] [--parallel_files]

Creates Sidecar Files

options:

-h, --help show this help message and exit

--folder folder the folder to create sidecars for

--files file1 [file2 ...] the files to create a sidecar for

--grid files the grid to create a sidecar for (e.g. IMERG)

--out_path OUT_PATH the folder to create sidecars in;

default: next to granule

--product product product (e.g. cldmsk_l2_viirs, hdfeos,

l2_viirs, mod05, mod09, vj102dnb,

vj103dnb, vnp02dnb, vnp03dnb, ssmi)

--cover_res cover_res max STARE level of the cover.

Default: min resolution of IFOVs

--workers n_workers use n_workers (local) dask workers

--archive archive Create sidecars only for granules

not listed in the archive file.

Record all created sidecars and their

corresponding granules in it.

--parallel_files Process files in parallel rather than

looking up SIDs in parallel
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STARE sidecar files are written out in NetCDF format, containing the following variables:

• The SID for each observation or grid cell. If a granule contains more than one resolution

(such as the MODIS surface reflectance product MOD0921, containing 250 m, 500 m, and

1000 m resolution), one SID variable is created for each resolution.

• The set of spatial index values that cover the footprint of the granule (STARE Cover).

• Optionally, the latitudes and longitudes of each IFOV; one variable for each resolution.

Ultimately, we expect that STARE sidecar files will be distributed, along with the corresponding

data, by the data producers. Until then, the generation of sidecar files will remain the first step

a user must perform in the STARE-based data harmonization process. Since we recognize that

the generation of sidecar files is a compute-intensive but parallelizable process, we implemented

STAREMaster py to natively support multiprocessing, either for calculating multiple SIDs in

parallel observations in a single granule or for processing multiple granules in parallel. The

multiprocessing is handled by the dask22 library. A local dask cluster is started by default, but

STAREMaster py can be adapted to use any (remote) dask cluster.

3.4.4 STAREPandas

STAREPandas23 is a Python library that provides a high-level interface to STARE and a unified

data representation. It allows users to perform STARE-based spatial operations and related

tests on sets of features that would otherwise require more extensive tooling, e.g., by using a

STARE-extended spatial database or GIS.

21(M. L. S. Team, 2017) DOI: 10.5067/MODIS/MOD09.006
22https://www.dask.org/
23https://github.com/SpatioTemporal/STAREPandas; https://starepandas.readthedocs.io
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Introduction

The GIS literature (Bolstad, 2002; Worboys and Duckham, 2004; Mitchell and Environmental

Systems Research Institute (Redlands, 1999; Green and Tukman, 2017; Wise, 2003; Law and

Collins, 2015; Rigaux, Scholl, and Voisard, 2002) conventionally distinguishes between two

types of spatial data: raster and vector. Vector data describes locations and shapes using

coordinates to represent points or the vertices of lines, rings, and polygons. On the other hand,

raster data represent locations as cells of a rectangular array (“grid”). The geolocation of a

grid cell is implicitly given by the array indices (the row and column coordinates) of the cell

and a transformation (matrix) that may be used to translate the array indices into a geospatial

(geographic or projected) coordinate system. Vector datasets are often conceptually represented

as tables where each row corresponds to a feature and each column to an attribute. For raster

datasets, identically shaped arrays are stacked as bands to associate multiple attributes with a

single cell. Both vector and raster data may be used to describe discrete features, such as roads,

houses, or the outline of countries, and to represent spatially continuous phenomena such as

land use, elevation, or surface temperature. However, vector data are typically used to represent

feature data, while raster data is used to represent continuous phenomena. Since raster data

discretizes locations, the determination of spatial coincidence between two raster datasets is

trivial: two cells are coincident if they share the same indices. On the other hand, determining

spatial coincidence between two vector datasets requires potentially expensive point-in-ring

calculations.

Geolocated swath data24 fall in neither the feature data category nor the raster data category.

Even though swath data is typically stored in arrays, which may make them seem raster-like.

However, rather than using a transformation matrix, swath data use maps: two ancillary arrays

of the same shape as the data (one containing latitudes, the other containing longitudes) to

24NASA Earth-observing System Data and Information System EOSDIS distinguishes between 5 processing
levels (0 through 5). Levels 1 and 2 are data “at full resolution, time-referenced, and annotated with[..] georef-
erencing parameters”, which is what we reference with swath data. https://www.earthdata.nasa.gov/engage/
open-data-services-and-software/data-information-policy/data-levels
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provide individual (center) coordinates for each IFOV. There are arguments to be made for

interpreting swath data as raster data; after all, swath observations are usually continuously

recorded, and neighboring array cells represent neighboring observations. The EarthDB project

(Planthaber, Stonebraker, and J. Frew, 2012; Planthaber, 2012), as well as (Tan, Yue, and

Gong, 2017) and (Krčál and Ho, 2015), demonstrate the challenges with processing geolocated

remote sensing swath data as rasters. In their approaches, data is indexed through integerized

latitude-longitudes grids, requiring re-indexing and compromises between array sparseness and

data fidelity. On the other hand, one may argue that it is merely an artifact that swath data is

represented in 2-D arrays. Since the geolocation of a cell cannot be implicitly calculated from

the indices (row and column numbers) but must be retrieved from the map, geolocated swath

data may just as well be represented in flattened 1-D arrays or tables, making them appear

much more feature-like.

STARE removes the need for distinguishing between vector and raster datasets. Since a single

SID encodes both location and extent, STARE can express grid cells, IFOVs, points, and

arbitrarily shaped areas. The dilemma of conceptualizing swath data as raster or vector is thus

resolved.

Data Structure

STAREPandas provides a uniform data structure to hold any geospatial data type. It represents

any location (point, polygon, grid cell, IFOV) as a single feature, making geospatial data

genuinely interoperable. STAREPandas extends GeoPandas25 with a STARE spatial type.

It inherits GeoPandas’ relational model to tie together locations and attributes of collections

of features. STAREPandas exposes STARE functionality using extensions to the GeoPandas

API, lowering technical hurdles for Python programmers to perform STARE - based geospatial

analysis.

25geopandas.org; https://github.com/geopandas/geopandas
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In contrast to GeoPandas’ GeoDataFrames, where geometries are represented as simple fea-

tures (ISO 19125-1:2004), STAREPandas’ STAREDataFrames represent geometries as SIDs, cor-

responding to trixels of variable sizes and resolutions. Polygons are represented as sets of SIDs

whose corresponding trixels cover the polygon, while points are represented as individual trixels

at the HTM tree’s leaf resolution. Single SIDs at varying quadfurcation levels represent grid

cells and features such as sensor IFOVs at a quadfurcation level corresponding to the s/IFOV’s

spatial extent/area.

A STAREDataFrame has one row per feature and one column per attribute. The STAREDataFrame

has the particular SID column, which holds the STARE representation of the location and on

which all STARE - based geospatial operations are executed.

Conversions and I/O

Read feature data Using GeoPandas’ I/O capabilities, STAREPandas can read most vector-

based data formats. STAREPandas can then convert GeoPandas’ internal simple feature rep-

resentation of geometries such as points, polygons, and multipolygons to STARE’s spatial

SID representations using make_sids()26. While PySTARE has methods to convert points,

convex hulls, and rings to SIDs, it cannot handle more complex geometries such as “swiss

cheese” polygons (polygons with holes) or multipart geometries (which may be discontiguous).

STAREPandas adds those capabilities.

Since GeoPandas can read and write most geospatial feature data formats, STAREPandas is a

convenient way of converting conventional geospatial feature data (e.g., shapefiles) to STARE

representations.

26make_sids() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.read_geotiff.html#starepandas.make_sids
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Figure 3.12: STAREPandas handles polygons with inner rings: The figure displays outline of
the Republic of South Africa (RSA) with Lesotho as a hole in blue and the trixel representation
of RSA in yellow.

Figure 3.13: STAREPandas can handle discontinuous (“multi”) polygons. The figure displays
the outlines of north and central American countries and Greenland in black and their trixel
representations in colors. Note how e.g., discontinuous USA is represented.
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Figure 3.14: Conversion of a multi-band GeoTIFF to a STAREDataframe. The different bands
get converted into columns of the STAREDataFrame

Read Raster Data STAREPandas extends GeoPandas’ capabilities to load raster data from

GeoTIFFs using read_geotiff()27. STAREPandas will extract the transformation matrix

from the GeoTIFF’s metadata and compute the WGS 84 coordinates of each grid cell center.

It then computes the SID for each grid cell center and adapts the STARE quadfurcation level

so that the trixel area will match the cell area as closely as possible. Each cell is represented

as a feature with all band values as attributes. A user may additionally choose to add the

latitudes and longitudes, the array coordinates, or the projected coordinates as attributes.

STAREPandas’ ability to read raster data may be compared to a vectorization operation of a

conventional GIS. However, while vectorization of a grid is expensive and results in increased

storage requirement, STARE naturally collapses the two spatial dimensions into one.

Read Granules

While fundamentally, the same data structures are used in disseminating remotely sensed data

(points, arrays), data products often idiosyncratically represent differences in orbits, viewing

strategies, spatial and temporal resolutions, etc. (K.-S. Kuo and Michael Lee Rilee, 2017). As

27read_geotiff() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.read_geotiff.html#starepandas.read_geotiff
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a result, each sensor’s product requires specific domain knowledge and tailor-made tools to load

and interpret the data, especially the location information. STAREPandas adds methods to

load selected gridded remote sensing data and geolocated swath data into a STAREDataFrame

to facilitate working with remote sensing data. The STARE representations can either be

generated on-the-fly during loading or read from a pre-generated STARE “sidecar” file. The

read_granules()28 facilities are designed to be easily extensible to support additional products.

A user can choose to add the WGS 84 latitudes and longitudes, as well as the array coordi-

nates, as attributes. Keeping the array indices as attributes can be of interest to maintain

the neighborhood of each observation or (for scanning sensors) to calculate viewing geometries.

Finally, the array indices can be used to reconstruct the original array from the dataframe using

to_array()29.

Similarly to reading raster data, all variables (in HDF 4 terms: scientific datasets) of the

granule will be read and added as attributes for each feature. For granules containing multiple

resolutions, a user chooses a single resolution to be read at a time. This means that each

resolution is read separately into a separate STAREDataFrame, which subsequently may or may

not be concatenated.

Read Folders / Create Catalogs Maintaining, searching, and subsetting extensive local

collections of granules can become challenging. We thus implemented a method

folder2catalog()30 to catalog local collections to perform spatial searches and subsetting

using STAREPandas and STARE sidecar files. The catalogs contain one row per granule. Each

row contains the path of the granule and the sidecar, the granule acquisition timestamp, and

the STARE representation of the granule’s cover (as read from the sidecar file). Creating such

28read_granule() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.read_granule.html

29to_array() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/reference/
api/starepandas.STAREDataFrame.to_array.html.

30folder2catalog() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.read_granule.html.
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a catalog dataframe for extensive local collections of granules is helpful in quickly identifying

granules that intersect a potentially complex ROI or finding multiple granules that intersect

each other.

Persisting STAREDataFrames Like any other Python object, STAREDataFrames can be

serialized and stored as pickles or HDF 5 files using the inherited Pandas methods. STAREPan-

das extends Pandas’ database functionality to read and write to/from SQLite, Postgresql,

and SciDB. The STARE software collection includes STARE extensions to all three databases

(STARELite31, PostSTARE32, SciDB-STARE33). STAREPandas can function as a convenient

pivot format for loading data into STARE-enabled databases.

STAREPandas additionally implements its own storage mechanism based on STARE - Parallel

Optimized Data Stores (PODS). A dataframe is written into a PODS using the write_pods()34

method. A PODS spatially shards data at a user-defined HTM quadfurcation level. Each shard

is a trixel at this user-defined quadfurcation level and only contains data within this trixel. To

write a STAREDataFrame into a PODS, it is first split into chunks. Each row of a single chunk

shares the same SID prefix. E.g., if a PODS is created at quadfurcation level 4, all data in a

single chunk are contained with the same level 4 trixel. Thus all SIDs within the same chunk

share the same first 9 bits (8 bits plus the initial south/north bit). The individual chunks

are then written into the according PODS shards. A PODS can, in turn, be read back into a

STAREDataFrame using STAREPandas’ read_pods()35 method. STARE - PODS are further

described in section 3.4.6

31https://github.com/SpatioTemporal/STARELite
32https://github.com/SpatioTemporal/StarePostgresql
33https://github.com/NiklasPhabian/SciDB-STARE
34write_pods() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/

reference/api/starepandas.STAREDataFrame.write_pods.html.
35read_pods() om STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/

reference/api/starepandas.STAREDataFrame.read_pods.html
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Figure 3.15: Illustration of how STAREDataframes are split geospatial bins, simply by group-
ing by the SID prefix.

STARE-based spatial operations

STAREPandas allows us to perform the STARE-based geospatial relation tests

stare_intersects()36 and stare_disjoint()37. Those functionalities enable STARE-based

spatial subsetting and spatial joins, which are common bottlenecks when working with large col-

lections of irregularly spaced data. They function analogously to GeoPandas intersects()38

and disjoint()39 methods. The relation tests are wrapped in the STARE-based join method

stare_join()40, which can spatially join two dataframes.

The following code snippets demonstrate how a STAREDataFrame can be bootstrapped from a

GeoDataFrame and how STARE-based intersects tests can be performed. The data is visualized

in figure 15.

36stare_intersects() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.STAREDataFrame.stare_intersects.html

37stare_disjoint() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.STAREDataFrame.stare_disjoint.html

38intersects() on GeoPandas’ RTD: https://geopandas.org/en/stable/docs/reference/api/geopandas.
GeoSeries.intersects.html

39disjoint() on GeoPandas’ RTD: https://geopandas.org/en/stable/docs/reference/api/geopandas.
GeoSeries.disjoint.html

40stare_join() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.stare_join.html?highlight=join#starepandas.stare_join
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import geopandas

import starepandas

import pystare

path = geopandas.datasets.get_path("naturalearth_lowres")

world = geopandas.read_file(path)

n_america = world[world.continent=='North America']

n_america.reset_index(inplace=True)

n_america = starepandas.STAREDataFrame(n_america)

n_america = n_america.set_sids(n_america.make_sids(level=9))

santa_barbara_sid = pystare.from_lonlat([-119.81100397568609],

[34.44687326105255],

level=5)

n_america[n_america.stare_intersects(santa_barbara_sid)].name

United States of America
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Figure 3.16: North and Central America (colored) and Santa Barbara (red trixel) their trixel
representation.

The indexed data structure of STAREPandas and STARE’s nesting properties offers a con-

venient speedup for intersection tests, implemented in STAREPandas’ speedy_subset()41

method: Consider an extensive collection of IFOVs, each represented by a single SID at varying

levels (i.e., resolutions) and a complex geographic region represented by a set of SID, and the ob-

jective to find all IFOVs that intersect the ROI. To speed up the intersect test, we implemented

the following algorithm:

1. All IFOVs with a SID smaller than the smallest SID of the ROI and all IFOVs with a SID

larger than the largest SID of the ROI are not intersecting the ROI. This can significantly

reduce our search space.

2. We determine the highest STARE level of all the SIDs representing the ROI and the

highest STARE level of all the SIDs representing the IFOVs. The lower one of the two is

41https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.tools.spatial_
conversions.speedy_subset.html#starepandas.tools.spatial_conversions.speedy_subset
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the intersects level. I.e., the STARE level at which we perform the intersects tests. We

can ignore all location bits beyond the intersects level.

3. Since we can ignore the location bits beyond the intersects level, we can take the set of

all IFOV SIDs at this level. This set will likely be orders of magnitude smaller than all

SIDs representing the IFOVs.

4. We now need to perform the STARE spatial intersect tests on this (potentially much)

smaller set of (ˆSID).

STAREPandas also provides APIs to query and manipulate the SID level:

• hex()42 returns the SIDs in hexadecimal representation for each feature.

• spatial_resolution()43 returns the STARE level of each feature.

• trixel_area()44 returns the approximate area of the trixel represented by the SID for

each feature.

• to_stare_resolution()45 lets the user set the STARE resolution. The user can choose

whether the location bits beyond the resolution should be cleared (set to 0).

• clear_to_resolution()46 clears the location bits higher than the selected resolution.

In Pandas dataframes, map-reduce operations are carried out by using the grouby()47 method

to group (“map”) rows and then applying an aggregate (“reduce”) function to the groups. Since

conventional aggregate functions (mean, max, sum) cannot be applied to simple feature geome-

42hex() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/reference/api/
starepandas.STAREDataFrame.hex.html.

43spatial_resolution() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.STAREDataFrame.spatial_resolution.html

44trixel_area() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.STAREDataFrame.trixel_area.html

45to_stare_resolution() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/
docs/reference/api/starepandas.STAREDataFrame.to_stare_resolution.html

46clear_to_resolution() on STAREPandas’ RTDhttps://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.STAREDataFrame.clear_to_resolution.html

47groupby() on Pandas’ RTD: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
DataFrame.groupby.html

71

https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.hex.html
https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.hex.html
https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.spatial_resolution.html
https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.spatial_resolution.html
https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.trixel_area.html
https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.trixel_area.html
https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.to_stare_resolution.html
https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.to_stare_resolution.html
https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.clear_to_resolution.html
https://starepandas.readthedocs.io/en/latest/docs/reference/api/starepandas.STAREDataFrame.clear_to_resolution.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html


A Software Collection to enable STARE-based geospatial analysis of remote sensing data Chapter 3

Figure 3.17: Visualization of a STAREDataFrame with one feature per country (colored) and
the dissolved representation (black).

tries, GeoPandas implements the abstracted map-reduce function dissolve()48, which will

yield a GeoDataframe in which geometries are aggregated using a spatial unary_union49. Simi-

larly, STAREPandas implements the STARE-based map-reduce function stare_dissolve()50

that will aggregate SIDs using a stare_union51. The stare_union on a collection of SIDs is

created by taking the set of those SIDs and then recursively replacing any four SIDs in that set

that share the same parent node with the parent node. Note: Both GeoPandas’ dissolve()

and STAREPandas’ stare_dissolve() can dissolve by None, yielding a dataframe dissolved

into a single feature, unionizing all geometries/SIDs.

48dissolve() on GeoPandas’ RTD: https://geopandas.org/en/stable/docs/reference/api/geopandas.
GeoDataFrame.dissolve.html

49unary_union on GeoPandas’ RTD: https://geopandas.org/en/stable/docs/reference/api/geopandas.
GeoSeries.unary_union.html

50stare_dissolve() on GeoPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.STAREDataFrame.stare_dissolve.html

51stare_union on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.tools.spatial_conversions.compress_sids.html#starepandas.tools.
spatial_conversions.compress_sids
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Figure 3.18: Results of an intersection of South American countries with the Amazon region

Finally, STAREPandas implements a stare intersection() method, which yields the spatial in-

tersection of two STAREDataFrames.

Plotting

Using STARE ‘s ability to look up the trixel vertices for SIDs, STAREPandas can convert

SIDs and collections of SIDs to simple feature geometries. A feature with a single SID, e.g.,

representing an IFOV or a point, will be converted into a single triangular simple feature

polygon. Features with a set of SIDs, e.g., representing a cover, are converted into a simple

feature multipolygon of trixels. The STAREDataFrame method make_trixels()52 generates a

GeoPandas GeoSeries with each row containing the simple feature geometry of the trixels. This

GeoSeries may be attached back to the DataFrame. STAREPandas can then use GeoPandas’

rich plotting library to plot the trixels.

52make_trixels() on STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.STAREDataFrame.make_trixels.html
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The ability to plot features in trixel representation has proven immensely helpful in exploring

and communicating STARE-based geospatial analysis.

Parallelized /dask

Akin to dask-geopandas53, STAREPandas uses Dask54 to parallelize performance bottleneck

functions. We implemented parallelized methods for spatial coincidence tests (intersects, dis-

joint), for the lookup of SIDs from latitudes and longitudes and shapely objects, and for the

generation of trixels from SIDs.

3.4.5 STARELite and PostSTARE

The SDSS SkyServer (Alexander S. Szalay, Gray, et al., 2002; A. R. Thakar et al., 2004; A.

Thakar et al., 2003; Budavári, Alexander S. Szalay, and Fekete, 2010) is based on a Microsoft

SQL Server extended to use HTM - based spatial indices. (Kondor et al., 2014) adapt the

concept to perform the indexing of geospatial (rather than celestial) objects. Similarly, we

created extensions for PostgreSQL and SQLite to utilize STARE.

STARELite55 and PostSTARE56 are SQLite and PostgreSQL STARE extensions allowing us to

perform a subset of STARE-based geospatial operations within the relational databases SQLite

and PostgreSQL. STARELite/PostSTARE allow converting conventional representations of lo-

cations specified as latitude and longitude table columns or as Well-known binary (WKB)

blobs (Ryden and Specification, 2005) (used by SpatiaLite57, GeoPackages58, and PostGIS59)

of points or polygons to their STARE representation. They can further perform spatial relation

tests, allowing STARE-based spatial joins of tables.

53https://github.com/geopandas/dask-geopandas
54https://www.dask.org/
55https://github.com/SpatioTemporal/STARELite
56https://github.com/SpatioTemporal/StarePostgresql
57https://www.gaia-gis.it/fossil/libspatialite/index
58http://www.geopackage.org
59https://postgis.net/
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A useful application of STARELite is cataloging volumes of remote sensing granules that re-

searchers often accumulate locally. This application uses STARELite to determine subsets of

granules intersecting arbitrary ROIs. Further, STARELite catalogs can be used for the in-

verse search problem: Determining all spatially coincident granules of an individual granule. A

STARELite catalog may leverage other components of the STARE ecosystem, namely STARE

sidecars, which hold the trixel index values of each IFOV and a set of trixels representing

the cover of each granule; STAREMaster, which is used to generate STARE sidecar files; and

STAREPandas, used to load data into the databases.

3.4.6 STARE-Pods (yet another Discrete Global Grid (DGG))

STARE - PODS (Griessbaum, K.-S. Kuo, et al., 2021; M. Rilee, K.-S. Kuo, Griessbaum, et al.,

2022) is an approach for geospatial sharding, i.e., partitioning/chunking geospatial data into

geospatial bins. For STARE - PODS, each bin is a geographical region defined by a trixel at

a relatively low level. On traditional filesystems, a bin (a shard) may be a filesystem directory

named after the SID it represents and contains all data chunks that are within the trixel. For

cloud object stores, which lack a hierarchical directory structure, each chunk will be stored in

an object whose name or key is prepended with the SID of the bin it falls into.

To implement STARE - PODS, we first generate STARE indices for all observations of all

granules (using STAREMaster). If we decide, e.g., to use quadfurcation level 4 for partitioning

the data, we then repackage data elements within each quadfurcation 4 trixel into a file as a

STARE chunk. If we use a directory structure to implement the STARE hierarchy, all spatially

close chunks and, thus, observations will be in the same respective level 4 directory. In cloud

object stores, all chunks would share the same shard-name prefix. Finding the overlaps between

two or more datasets thus becomes trivial and scalable. Since our STARE API can convert

arbitrary (spherical) polygons into STARE covers at any given quadfurcation level, finding

overlaps between an ROI and any STARE chunk is also trivial.
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Figure 3.19: Schematic concept of STAREPods. Each observation gets binned into a shard.
A shard is a trixel of a predefined STARE level, which may be resembled, e.g., a folder.

Figure 3.20: At level 4, there are 2048 shards, each with a size of about 640 km
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Figure 3.21: The advantage of storing data in PODS: The trixels in green and blue correspond
to the IFOV of two swaths stored in two granules. In STAREPods, data from each granule
get chunked into the bins/shards corresponding to the red trixels, resulting in geospatially
coincident data being stored in the same location.
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Figure 3.22: A STARELite Databases used as a catalog for chunks within a PODS .

We have prototyped STARE-PODS with STARE-based data partitioning and organization

on a traditional file system using cross-calibrated microwave radiometer/imager datasets pro-

duced by the NASA Precipitation Processing System (PPS), which include (cross-)calibrated

brightness temperatures from 18 satellite-borne microwave radiometer/imager instruments of

NASA ’s Global Precipitation Measurement (GPM), such as Advanced Microwave Scanning

Radiometer (AMSR) - 2, Advanced Technology Microwave Sounder (ATMS), Global Precipita-

tion Measurement (GMI), Microwave Humidity Sounder (MHS), or Special Sensor Microwave

Imager/Sounder (SSMIS). This set of data products exhibits not only data varieties across the

products of different instruments but, due to different IFOV resolutions for different microwave

frequencies, also within the same product of the same instrument.

For convenience, we built a catalog on top of the PODS (c.f. figure 3.22). The catalog is

a STARELite database containing one row per chunk. This makes it trivial to, e.g., find all

chunks that spatiotemporally intersect a ROI.

In a testing environment, we used one month’s worth of XCAL SSMIS data from F16, F17, and

F18 for 2021-01-10 to 2021-02-09, a total of 1314 granules. We created STARE sidecar files for
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Figure 3.23: The spatial extent of a precipitation event lasting from 2021-01-24 to 2021-01-27.
Note the complexity of the shape around its southern edges.

each of those granules. Each sidecar contains the SID of each observation/IFOV/pixel of the

granule and a set of SIDs representing the spatial coverage of the entire granule.

We then loaded the collection of granule/sidecar pairs into a level 4 PODS using STAREPods_py60.

A level 4 PODS shards data at the 4th STARE quadfurcation level. Considering the initial

solid with 8 faces, a level 4 PODS has 2048 shards. The 1314 original granules are split into

3 675 403 chunks distributed over the 2048 shards. On average, each shard contains about 1800

chunks, though their distribution varies. The size of the chunks varies between 10 kB to 100 kB.

Each chunk is a pickled STAREDataFrame containing the latitude, longitude, timestamp, SID,

and the measurements for each observation.

As a benchmarking test, we evaluated the performance of loading all SSMIS data that intersects

a complex spatiotemporal bounding box. As the complex spatiotemporal bounding box, we used

the extent of a precipitation event over the southwestern US lasting from 2021-01-24 until 2021-

01-27. Our testing environment was a m5.x4large Amazon Web Services (AWS) instance with

both the granules and sidecars as well as the PODS residing on a flexFS61 volume.

In a conventional approach, we utilize the granule naming convention (c.f. figure 3.24) to

temporarily subset the granules to the temporal bounding box. This reduces the number of

60https://github.com/SpatioTemporal/STAREPods_py
61https://www.paradigm4.com/technology/flexfs/
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Figure 3.24: The filename of an SSMIS XCAL granule. Highlighted is the portion of the
filename indicating the timestamp of the granule.

granules from 1314 to 170 candidate granules. We then iteratively read the STARE cover from

each sidecar of the candidate granules and verify if the granule spatially intersects our ROI. If

not, we discard the candidate. If yes, we load the entire granule into a STAREDataFrame and

spatially subset it to the ROI (using STARE). Out of the 170 candidate granules, 70 granules

spatially intersect the ROI. Finally, we concatenate all subsetted granule STAREDataFrames.

The whole process took a total time of 46.2 s ± 102 ms (mean ± std. dev. of 10 runs) on our

testing server.

We extended the conventional approach by making use of a granule catalog. A granule catalog

is a database containing the paths of granules and their sidecars, the start and beginning times

of the granules as well as the spatial coverages of the granules. Using the catalog, we can

immediately query for the granules that intersect the spatiotemporal ROI. We can then only

load those granules and spatially subset them to our ROI. Using the catalog, we slightly improve

the runtime to 44.1 s ± 103 ms (mean ± std. dev. of 10 runs)

In the STAREPods approach, we first find all the shards that may contain chunks intersecting

the ROI. We can simply achieve this by converting the SIDs of STARE cover of our ROI to

level 4 (the level of our PODS) and then taking the set of those SIDs. Only 29 of the 2048

shards do intersect our ROI. We then utilize STAREPandas’ read_pods()62 function to load

the chunks into a single STAREDataFrame. The function read_pods() iterates through the

candidate shards and loads all chunks whose name contains a specified pattern. Again, we

utilize the granule naming convention and specify a pattern corresponding to our temporal

bounding box. We finally subset the loaded STAREDataFrame to our ROI since it contains

62read_pods() om STAREPandas’ RTD: https://starepandas.readthedocs.io/en/latest/docs/
reference/api/starepandas.STAREDataFrame.read_pods.html
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Figure 3.25: The spatial extent of the precipitation event at STARE quadfuraction level 4.
There are 29 trixels (and thus shards) covering the event.

observations that coincide with the ROI at level 4, but not at the ROI at its original resolution

(level 9). The whole process takes a total time of 2 s ± 15.8 ms (mean ± std. dev. of 10

runs) on our testing server, bringing us a speedup of over 20x compared to the conventional

approach.

Each of the three approaches resulted in loading 225,539 individual SSMIS observations.
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3.5 Application examples

3.5.1 Night lights

“For more than an hour, Leigh-Cheri stared into the mandala of the sky. ‘Does

the moon have a purpose?’ she inquired of Prince Charming. Prince Charming

pretended that she had asked a silly question. Perhaps she had.”

From Still Life with Woodpecker (1980), Tom Robbins

(Kondor et al., 2014) demonstrated how an HTM - enabled relational database made it possible

spatially to classify billions of geolocated tweets into complex political boundaries. The problem

can be generalized as a challenge to associate extensive collections of irregularly spaced observa-

tions/events (the tweets) with complex (i.e., discontinuous and/or containing holes) geographic

regions.

Similarly, we demonstrate STARE‘s capabilities by spatially associating an even more exten-

sive collection of geolocated observations to a set of even more complex geographic regions.

The challenge was to determine the characteristics of night light intensity drop and recov-

ery during and after natural disasters in the Caribbean. The hypothesis is that communities’

disaster resilience can be measured by how quickly their night lights recover (Links et al.,

2018). By comparing the measured resilience of a set of administrative areas (e.g., coun-

ties), we intended to get insight into the effectiveness of different resilience-improving policies.
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A similar undertaking was performed by (Wang et al., 2018), using the gridded global Bidirec-

tional Reflectance Distribution Function (BRDF) adjusted nighttime lights data VNP46A263

from the VIIRS, which only became publicly available at the end of 2021. However, at the time

of our undertaking, VIIRS nightlight data were only available as stray light corrected monthly

composites on Google Earth Engine64, produced according to (Mills, Weiss, and Liang, 2013)65,

and as the VNP02DNB66 geolocated (L1B) top-of-the atmosphere (at-sensor) night light prod-

uct. The temporally aggregated data was too coarse in the temporal dimension for the intended

study. We reckoned that with a relatively crude correction for clouds and moonlight and making

use of STARE ’s ability to handle swath data gracefully, we would be able to create nightlight

time series by spatially joining the VNP02DNB product with local political boundaries (in other

words: classify each VNP02DNB observation into an administrative area).

We had previously demonstrated the ability to use VNP02DNB night light intensity data to

63(System, 2019). DOI: 10.5067/VIIRS/VNP46A2.001
64Google Earth Engine: VIIRS Stray Light Corrected Nighttime Day/Night Band Composites Version 1;

VIIRS Nighttime Day/Night Band Composites Version 1
65https://eogdata.mines.edu/products/vnl/
66((VCST), 2021a). DOI: 10.5067/VIIRS/VNP02DNB.002
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Figure 3.26: Subsetting IFOVs by thresholding latitudes and longitudes using a rectangular
bounding box approximating our ROI of Puerto Rico

produce nightlight intensity time series for a relatively small region of interest (Puerto Rico)

using conventional methods. By approximating the ROI with a rectangular bounding box,

we were able to quickly subset each VNP02DNB67 granule simply by thresholding latitudes

and longitudes. We loaded the remaining data into a PostGIS database, where we geospatially

mapped each observation to an administrative area (barrio). We then temporally aggregated the

observations (per day) and averaged the individual observations to create timelines of nightlight

intensities per administrative area. This approach was possible since we had a small enough

ROI and one whose shape could be closely approximated by a rectangular bounding box, vastly

reducing the search space and resulting in a data volume manageable in PostGIS. However, it

was obvious that this could not be repeated for larger, discontinuous, more complex ROIs such

as the entire Caribbean region.

67And the VJ102DNB. We additionally needed to retrieve the geolocation products
VNP03DNB/VJ103DNB products to extract the moon illumination intensity and the cloud mask prod-
ucts CLDMSK L2 VIIRS SNPP/CLDMSK L2 VIIRS NOAA20.
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Figure 3.27: The rectangular ROI in red used to query granules from LADSWEB and the
STARE representation of all Caribbean coastal second-level administrative subdivisions.

In order to produce night light intensity timelines for each administrative area of all coastal

communities of the Caribbean, we utilized STAREPandas to spatially subset and join close to a

trillion IFOVs of VIIRS Day Night Band (DNB) with second-level administrative subdivisions.

The undertaking was a success: With the help of STARE and STAREPandas, we were able to

classify the irregularly spaced observations of the VNP02DNB (and VJ102DNB from NOAA20)

as well the VIIRS cloud masks to the complex geographic regions (administrative boundaries

at level 2) and were able to derive nightlight intensity time series with a temporal resolution of

two observations per night (one from Suomi, one from NOAA20).

We were able to generate the STARE spatial indices of the 628 076 309 504 IFOVs from a total
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Figure 3.28: Average Night Light intensity time-series for St Vincente, clearly displaying the
drop and recovery in night light intensity during and after Hurricane Maria

of 31 905 VIIRS/Suomii and 15 677 granules (each of which containing 13 199 872 observations)

within approximately 42 hours (parallelized on 64 processes). Depending on the extent and the

degree of the complexity of the geographic regions, the spatial joins of the indexed nightlight

data with the geographic regions terminate within multiple seconds to multiple minutes.

We demonstrated the capability of STAREPandas to convert conventionally represented (i.e.,

ESRI shapefiles) complex feature data (the political boundaries) to their STARE representation.

We further demonstrated the usability of STARECatalogs to subset the complete collection of

granules that intersect the entire ROI (a rectangular bounding box in the Caribbean) to granules

that intersect the political boundaries of an individual country. We finally used STAREPan-

das’ STARE-based intersect tests to classify each observation of each granule with a political

boundary at the county level.
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However, we experienced issues with the final time series: Since we did not correct for moonlight

but filtered observations exceeding a moonlight intensity threshold, we lost a large portion of

the observations (approximately a week per month). Further, we were particularly interested

in nightlight intensity during Hurricane season, a time of the year that naturally coincides with

a frequent cloud presence. We had to filter out a large portion of observations due to cloud

presence which reduced our temporal resolution further. In a use-case investigating the impacts

of natural disasters such as blizzards or earthquakes, the cloud present may have added less

interference.

At the end of 2021, the VNP46A1/2 product (Román et al., 2018) became available. A major

feature of this product is that it corrects, rather than filters for moonlight, allowing for fewer

data to be filtered out. In its production, it takes the following parameters into account:

• Daytime VIIRS DNB surface reflectance

• BRDF,

• Surface Albedo,

• Nadir BRDF adjusted Reflectance (NBAR),

• Lunar irradiance values

With the presence of this product, extracting nightlight dynamics as we did has become sig-

nificantly simpler: Given its gridded nature and daily temporal resolution, VNP46A2 is much

easier to handle for any user since it does not require processing irregularly spaced observa-

tions. It is only a matter of time until it will be available on the google earth engine for users

to achieve far more sophisticated analysis. However, it remains to be stated that VNP46A2 is

a model output rather than sensor observation, and further use of the product is tied to the

grid in which the product is distributed. For the development of new or alternative products,

working with ungridded sensor values, and thus VNP02, will continue to be necessary.
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Figure 3.29: Cloud presence visible in the VNP02DNB product during Hur-
ricane Maria approaching Puerto Rico on 2017-09-10. Image retrieved from
https://worldview.earthdata.nasa.gov/ on 2022-08-29
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3.5.2 Moving objects

Researchers are often interested in analyzing data that spatiotemporally intersects phenomena

that evolve over time. Examples of such phenomena may be tropical cyclones, atmospheric

rivers, or precipitation events. Rather than fixed locations, ROIs follow events and thus are

dynamic. These regions of interest are three-dimensional spatiotemporal volumes, not just

spatial extents.

Extracting spatiotemporal events from data and representing spatiotemporal ROIs are chal-

lenging. For gridded data, time slices can be stacked into a cube. By postulating that the

spatiotemporal extents of moving events are contiguous volumes (i.e., an ordered set of spatial

covers that are connected in time, having a spatial overlap between each subsequent time step),

discrete events can then be identified and labeled by 3D Connected-component labeling (CCL).

The resulting data structure is a three-dimensional cube of labels. Neither the extraction of

statistical information from this data structure nor spatiotemporally joining this structure with

other data is trivial.

We implemented a STARE-based moving object database approach to this issue, as described

by (K.-s. Kuo et al., 2021; M. Rilee, K.-S. Kuo, Griessbaum, et al., 2022). The moving object

database represents each time step of each event as an individual feature of a STAREDataFrame.

Extracting event statistics thus becomes a mere matter of querying the STAREDataFrame. The

spatial extent of each feature is represented as a STARE cover (i.e., a set of SIDs). This allows us

to easily associate events with other spatial data, such as observations from other instruments,

or static spatial objects, such as political boundaries or watersheds.

In our demonstration, we identified discrete (i.e., spatiotemporally contiguous) precipitation

events from Integrated Multi-satellitE Retrievals for GPM (IMGERG)68 data. IMGERG is

a half-hourly global precipitation-rate product with 0.1° grid resolution. We then stored the

68https://doi.org/10.5067/GPM/IMERG/3B-HH-L/06 ; https://disc.gsfc.nasa.gov/datasets/GPM_
3IMERGHHL_06/summary?keywords=%22IMERG%20late%22

89

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHHL_06/summary?keywords=%22IMERG%20late%22
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHHL_06/summary?keywords=%22IMERG%20late%22


A Software Collection to enable STARE-based geospatial analysis of remote sensing data Chapter 3

events in our moving object database and spatially joined the database with political boundaries

to calculate statistical information about the precipitation.

To extract the discrete events, we temporally stacked one month of IMGERG calibrated precip-

itation data. Considering the spatial resolution of 0.1◦ and temporal resolution of 30 minutes,

this yielded us an array with dimensions 1800x3600x1440. We then applied a threshold of

1 mm h−1, producing a 3D binary mask of the data69. We then used an adaptation of the

Python package, cc3d70 (Silversmith, 2021), to check for space and time connection (subject to

adjacency). Since cc3d natively only handles basic boundary conditions associated with raster

arrays, our adaptation handles Earth’s idiosyncratic boundary conditions: an event covering a

Pole or straddling +/-180◦ longitude is recognized as a single event. Connected array elements

are said to belong to the same episode (or event) and are assigned a unique label (e.g., an inte-

ger). The resulting array of labels is called a labeled mask, which contains the spatiotemporal

coordinate information (as its array indices) for each event (c.f. figure 3.30).

The array indices can trivially be converted back into geographic and temporal coordinates.

We then converted each discretized location to its STARE representation. (One also could have

imagined polygonizing the set of discrete locations of every time slice of every event to produce,

e.g., a vector feature for each timeslice).

Having the events represented in our STAREPandas moving object databases, we can easily

overlay events with other spatial objects and calculate statistical information. For example,

we may obtain attributes such as the total precipitation volume, the timings of the maximum

spatial coverage, and the maximum precipitation intensity of each episode. We may, in turn,

obtain distributions, and hence statistics derived from them, of these attributes for a collection

of episodes satisfying some condition(s), e.g., those in a given season or those with a duration

exceeding a criterion.

69Various other methods for identifying the presence of an event could have been applied (e.g., a compound
criterion composed of multiple simple criteria or a criterion based on the threshold of a new variable derived
from existing variables).

70https://github.com/seung-lab/connected-components-3d/
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Figure 3.30: Left: Cells with binary data. This could, e.g., be cells of a lat/lon grid in which
a threshold of a physical quantity has been exceeded or not. Right: The labeled mask. Cells
have been spatially connected and assigned a common label; here represented as different
colors.

A simple example: A particular large precipitation event over the pacific lasting from UTC

2022-05-30 15:30:00 to UTC 2022-06-08 18:30:00 had total precipitation of about 130 billion

cubic meters. It intersected the San Joaquin watershed in California from UTC 2022-06-04

05:30:00 to UTC 2022-06-04 13:00:00. The total precipitation of this event over Alabama was

14 million cubic meters, about 0.0104 % of the total event’s precipitation. The event is visualized

in figure 3.32.

Using the STARE cover of a single event, we can also load observations from data stored,

e.g., in STAREPods that are spatiotemporally coincident with an event. For example, we

may subset and compare quantitative precipitation estimates derived from in-situ rain gauge

networks and/or {+NOAA) NEXRAD radars. In addition, one may use wildfire episodes to

select/filter data related to water management or air quality, and vice versa, to solicit relation,

correlation, or even causation between phenomena. In conclusion, identifying and tracking

episodes opens the door to a vast range of event-based statistics for deeper analyses that are

impossible with conventional non-event-based analysis.
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Figure 3.31: The daily-accumulated spatial extents of a four-day (23-26 January 2021) pre-
cipitation episode (as defined by a 1-mm/hour threshold of IMERG precipitation rate) are
depicted with purple trixel meshes of STARE covers, which overlay the background composed
of the daily VIIRS RGB composite image and IMERG precipitation rate (in mostly green and
yellow shades) obtained from NASA EarthData Global Imagery Browse Services. The par-
tial daily evolution of a precipitation episode (event) over four days in purple STARE covers
based on IMERG data with a 1 mm/hour threshold demonstrating merging and splitting of
the event.
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Figure 3.32: An example of using STARE covers for a precipitation event extracted from
the IMGERG data. California watersheds are depicted using STARE covers (green), with
San Joaquin watershed highlighted in in turquoise. The blue mesh overlaid is the cumulative
area of a precipitation event, lasting from from UTC 2022-05-30 15:30:00 to UTC 2022-06-08
18:30:00. The red shaded covers are individual timesteps of the precipitation event.

3.5.3 Improving fractional snow cover estimates through increased spatial

fidelity.

Chapter 4 (Griessbaum, 2022) demonstrates how STARE’s ability to process remote sensing

data at the sensor’s resolution allows for increasing the accuracy of fractional snow cover area

estimates from surface reflectance data of moderate resolution imaging spectrometers.
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3.6 Outlook

3.6.1 STARECache

Calculating STARE representations for complex geographic regions remains computationally

intense. We envisage a database with an extensive collection of STARE encoded geographic

boundaries called STARECache. The geographic boundaries might include political boundaries,

1◦, 0.5◦, and 0.25◦ global grid cells, a Digital Elevation Model (DEM), roads, and a gazetteer.

Ideally, this database would be openly accessible for download and exposed through a web API.

We expect such a database to drop the usage barrier for STARE, help users understand STARE

better, and provide more extensive exposure to STARE technology.

We additionally envisage a STARECache for the grids of MODIS tiles grids and the tiles

themselves. Those caches may contain the x/y cell index, the ISIN (Yang and R.E. Wolfe, 2001)

grid cell location, the latitudes, and longitudes of the centroids of the cells, a representative

SID at an appropriate level for each cell (e.g., level 14/15 for 500 m resolution), a set of SIDs

representing the cell cover at various levels (anywhere from the representative resolution up to

the products geolocation precision (e.g., 50 m for MODIS: level 17/18))

Finally, we intend to expose a cache for all SIDs up to a certain level containing:

• The SID in integer and hex notation

• The area of each trixel in steradians and m2

• The location of each trixel center in WKB (Ryden and Specification, 2005) notation, as

latitude and longitude and as ECEF vector.

• The trixel in WKB notation, as well as the locations of each trixel corner as latitudes and

longitudes and as ECEF vectors

• The edges of each trixel as norm vectors of their great circles.

To a certain level, such a cache could be shipped with STARE, but we would also want to

expose it in a web service allowing users to do lookups. e.g.
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/api.stare.world/getCover?name={name}&level={level}

/api.stare.world/getCellCover?name={name}&x={x}&y={y}&level={level}

/api.stare.world/getTrixel?sid={sid}

/api.stare.world/getArea?sid={sid}

/api.stare.world/getNodes?sid={sid}

/api.stare.world/getEdges?sid={sid}

3.6.2 STARESearch

The Level-1 and Atmosphere Archive & Distribution System (LAADS) DAAC’s search and

distribution platform ladsweb71 allows users to search for data by time and location. However,

it limits users to specify locations as either a latitude-longitude point, a rectangular bounding

box, predefined validation sites, ISIN tiles, or countries. However, often a user will be interested

in data that intersect other arbitrary shapes (a watershed, a county, a plot of land). Currently,

a user’s only choice is to approximate these arbitrary shapes with a rectangular bounding box

(the resolution is limited to 0.1 degrees, and it is not evident if the edges are treated as great

circles or as rhumb lines). This leads to more data being extracted than needed and, thus, an

overhead data transfer. We envisage STARESearch, an alternative to ladsweb, which allows

users to search granules for arbitrarily shaped locations. Rather than specifying a location

as a bounding box, a user will specify the location as STARE cover (or as Well-known text

(WKT)72 (Ryden and Specification, 2005), which STARESearch will internally convert to the

STARE cover, e.g., using STARECache). Internally, STARESearch will use a catalog that holds

all granule footprints in STARE representation to find the granules that intersect the specified

STARE cover.

This approach may be pushed one step further: The OPeNDAP server hyrax was “STARE-

71https://ladsweb.modaps.eosdis.nasa.gov/
72https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
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Figure 3.33: The ladsweb search interface allows users to search by locations specified either as
a latitude-longitude point, a rectangular bounding box, predefined validation sites, the ISIN
tiles, or countries.
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enabled” during NASA’s Advancing Collaborative Connections for Earth System Science (AC-

CESS) 2017 project “STARE: SpatioTemporal Adaptive-Resolution Encoding to Unify Diverse

Earth Science Data for Integrative Analysis.”73 A hyrax server now accepts STARE covers

in the constrain expressions, allowing users to subset, e.g., NetCDF or HDF files, not only

by specifying array index slices but also by specifying a STARE cover. Since most publicly

available LAADS DAAC product collections are available via OPeNDAP74, a system in which

a user does not merely search for granules intersecting a specified region but remotely subsets

the data to the specified region could be conceived.

We could imagine a workflow as follows:

• User has an ROI that they need data for

• User looks up SID representation of the ROI (e.g., from the STARECache service or

through STAREPandas)

• User sends a query to STARESearch to find all granules that intersect the ROI (specified

as a collection of SIDs). STARESearch sends back all the granule file paths that intersect

the ROI.

• Since a STARE enabled hyrax serves the granules, the user can request hyrax to subset

each granule to the ROI (again, specified as a collection of SIDs).

As a result, we would have a system that ensures that no data transfer overhead appears.

73https://www.earthdata.nasa.gov/esds/competitive-programs/access/stare
74https://ladsweb.modaps.eosdis.nasa.gov/learn/using-laads-apis/
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3.7 Seminal work

3.7.1 Google Earth Engine

At its core, Earth Engine is a tile database built on infrastructures such as Google Bigtable

(Chang et al., 2008), Google Spanner (Corbett et al., 2012), and Google Borg (Verma et al.,

2015) and a virtually unlimited amount of storage and compute nodes. Earth Engine does

not re-grid during data import as a data cube would. Instead, it preserves the resolution and

reference system of individual granules and breaks the original granules into tiles, which by

default span 256x256 pixels. This package size is a tradeoff between reducing the number of

individual tile lookups/scans/reads versus reducing the transfer of unneeded pixels. Individual

tiles then are presumably inserted as rows into a Spanner Database with an appropriate index

of these tiles75. Appropriate spatial indexes are presumably used to shard the datasets across

spanservers, which in turn likely shuffle data around for load balancing. Earth Engine creates

a cache of exponential lower-resolution images (pyramids) to decrease latency and reduce com-

puting cycles. On top of this Spanner database, Earth Engine implements server-side functions

that allow for per-pixel arithmetic and map and reduce operators. Keeping in mind that no

re-gridding but rather tiling appears within Earth Engine, it begs the question of how swath

data and data variety are handled. The simple answer is, respectively, not at all and arguably

not gracefully.

Without re-griding or the ability to express the size of each pixel, Earth Engine has no way of

representing and thus visualizing and operating on wide swath data for which pixel sizes vary

in respect to the position along scan lines. The fact that Earth Engine advertises itself as no

re-gridding, therefore, is only part of the truth: While it is true that it does not do re-gridding

itself, it handles exclusively data that already is gridded by the provider (e.g., Land Processes

Distributed Active Archive Center (LPDAAC), United States Geological Survey (USGS)).

75For all we know, this index might be a bbox btree. Free and Open Source Software (FOSS) implementations
of a tile database, including their index, can be found in QuadTiles (https://wiki.openstreetmap.org/wiki/
QuadTiles and mapnik.)
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The sheer availability of computing power combined with the high performance of the underlying

stack and the lazy evaluation paradigm employed by Earth Engine makes it feasible to combine

data of different reference systems and resolutions ad-hoc. Notably, the range of resolutions

of datasets in the Earth Engine data library is within a few orders of magnitude. It appears

that this is achieved through re-gridding, contradicting earth engine’s claim not to require

regridding.

Due to the employment of lazy computing, the re-gridding is sufficiently performant and mainly

opaque to the user while browsing through the combined dataset. Lazy computing means that

if a user wants to evaluate, e.g., the difference of NDVI calculated from MODIS and NDVI

calculated from Landsat 8, the actual difference values are always evaluated under the constraint

of an extent and a resolution. The extent is either implicitly provided through the extent, and

zoom level of the user interface or, more explicitly, during data export (users implicitly define

new grids to export combined data by specifying the export projection and resolution). The

cost for the re-gridding, however, materializes during exports, where lazy computing is not

an option. High latencies are observable, and a high spatial limitation is in place: The API

will block requests stretching over areas in the order of 10 km2 to 100 km2. It remains up

for speculation what techniques and indexes Earth Engine employ to tune the co-registration

performance.

Earth Engine opens up the ability to work on remote sensing for a broad set of users. Consid-

ering the virtually infinite horizontal scalability and the sophisticated stack it is built on, it is

most likely an ideal tool for processing (or at least pre-processing) single-sensor analysis. How-

ever, users are limited to gridded (L2B and L3) products. The underlying implicit re-gridding

processes required to handle data variety are not necessarily evident to the user and likely will

not gracefully handle the combination of extensive datasets at high spatial resolution.
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3.7.2 S2geometry / Hilbert curves

Like STARE, S2geometry76 is a project attempting to increase the harmony of geospatial

data. S2geometry provides spatial data types represented as ECEF vectors. Like STARE,

s2geometry promises efficient evaluation of spatial predicates, allowing spatial association of di-

verse data. Contrary to STARE (which uses an HTM), S2geometry uses Hilbert Space-Filling

curves (Lawder and P. J. H. King, 2001) as a spatial index. The S2geometrie’s developer guide

notes that conversions between points and s2cells are orders of magnitude faster than conver-

sions between HTM nodes and points77. We did not verify this claim, nor do we consider this

as a relevant drawback of STARE. In the remote sensing applications, we intend STARE to be

used for, conversions between conventionally specified locations (e.g., as lat/lon) will be carried

out only once (currently at the beginning of an analysis by the users; in the future, centrally

by the repository), amortizing the increased lookup costs. The critical question for the applica-

tion in remote sensing data analysis is how efficient spatial coincidence of data with intra- and

inter-variable resolution can be evaluated and how the index can be used for data placement in

shared-nothing infrastructures.

Like STARE, S2geometry provides python bindings to the API. However, a significant boiler-

plate has to be created to perform geospatial analysis using those bindings. On the contrary, in

our development of the STARE software stack, we focused on minimizing the effort to perform

remote sensing data analysis by adding support to ingest legacy data and mimicking well-known

APIs.

76https://s2geometry.io/
77https://s2geometry.io/devguide/s2cell_hierarchy
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3.8 Discussion and Conclusion

We identified that the inability of conventional methods to performantly evaluate geospatial

coincidence between large collections of irregularly spaced geographic objects forces scientists

to analyze spatially discretized and sampled remote sensing data rather than sensor data di-

rectly. We demonstrated how the STARE software collection empowers users to circumvent

this roadblock and enables them to work directly with (calibrated) sensor data. Bringing the

scientists closer to the actual observations allows for geospatial analysis with higher spatiotem-

poral fidelity, leading to insights that would otherwise have required high cost and effort in ETL

pipeline development. In our use, the STARE software collection allowed us to utilize the full

spatiotemporal resolution of irregularly spaced observations from MODIS and VIIRS, helping

us to derive results that would have been inaccessible using spatiotemporally discretized data.

With the development focus on low entry hurdles and support of legacy data, we hope that

the STARE software collection will experience growth in its user group. The development of

the STARE software collection stands only at its beginning. Significant efforts had to be put

into enabling the conversion of conventional spatial representations and container (file) formats

into STARE representations. In a future with a higher proliferation of STARE, we hope that

observation and model data will be distributed alongside STARE representations of the ge-

olocation. The main focus on the future development of the STARE software collection will

lay on performance improvements and the integration of further STARE-based geoprocessing

methods.
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Abstract

Gridding of remote sensing products discretizes space and thus makes the evaluation of geospa-

tial coincidence trivial. This dramatically simplifies the development of algorithms that require

multiple observations of a single location as their input and further allows for easy algorithm

accuracy evaluation against ground truth data. However, the loss in location precision can lead

to unnecessary noise in algorithm outputs. The Snow Property Inversion from Remote Sensing

(SPIReS) algorithm estimates fractional snow-covered area (fSCA) from surface reflectance ob-

servations using a snow-free observation of the same location as a reference. We demonstrate

how the discretization of Moderate Resolution Imaging Spectroradiometer (MODIS) surface

reflectance data in gridded products leads to spatial mismatching that propagates errors into

the estimation of fSCA. We employ an approach forgoing gridded products and instead use the

full spatial accuracy of MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS). Our

approach uses a Hierarchical Triangular Mesh (HTM) to represent the locations of individual

ungridded observations, allowing us to spatially match fractionally snow-covered observations

accurately with snow-free reference observations. This reduces the mean absolute error (MAE)

of fSCA estimates from 0.064 to 0.037.
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4.1 Introduction

Due to its high reflectance and spatial extent, snow is an important factor in Earth’s radiation

balance and hence the climate (Durand et al., 2017; Hansen and Nazarenko, 2004). Further,

significant portions of Earth’s population rely on water originating from snowmelt (Barnett,

Adam, and Lettenmaier, 2005; Durand et al., 2017).

It is, therefore, crucial to understand, estimate, and predict the spatial distribution and prop-

erties of snow, requiring spatially resolved measurements of the snowpack in terms of extent

(cover), depth, density, water content (summarizable in the Snow Water Equivalent (SWE)),

temperature profile, and albedo (Dozier and Painter, 2004).

Traditional ways of measuring the snowpack are snow pillows, snow courses, and metrological

surveys. While these measurements allow for detailed insights into the snowpack’s properties,

they are sparse, infrequent, and not necessarily representative in inhomogeneous terrain.

Conversely, remote sensing can provide spatiotemporally continuous data on the global extent

of snow (Dozier and Painter, 2004; Nolin, 2010): Snow extent can e.g. be retrieved from mul-

tispectral surface reflectance data. (Lettenmaier et al., 2015) suggests spatial resolutions of

snow extent not coarser than ≈ 100 m and temporal resolution of not more than one week. The

required spatiotemporal resolution exceeds the spatiotemporal resolution of individual multi-

spectral surface reflectance data of spaceborne remote sensing instruments. Since the launch

of Landsat 9 in 2021, the combination of Landsat 8/9 and Sentinel-2A/B provides 20 m to

30 m resolution imagery at 3-day average intervals (Each Landsat has a repeat interval of 16

days and each Sentinel repeats at 20-day intervals). However, to this date, the time ranges

of those datasets are relatively short. The moderate resolution sensors Moderate Resolution

Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS)

on the other hand have been operational for multiple years (in the case of MODIS, decades).

Their repeat interval is about one day each. However, they lack spatial resolution. Since their

pixels (aka Instantaneous Field of Views (IFOVs)) are too large to observe pure constituents,
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it, therefore, is necessary to map snow cover at sub-pixel accuracy (Dozier and Painter, 2004).

Several algorithms to classify pixels into ‘snow’ or ‘non-snow’ (i.e., binary snowmaps) as well as

algorithms to estimate fractional snow-covered area (fSCA) (i.e., sub-pixel) from multispectral

surface reflectance data exist (Nolin, 2010). Both snow and clouds are highly reflective in the

visible part of the spectrum. However, contrary to clouds, snow is highly absorptive in the

Short Wave infrared (SWIR) part of the spectrum, allowing us to distinguish snow from clouds

by using the ratio of visible and SWIR (Crane and Anderson, 1984) surface reflectances. With

the launch of Landsat 4 Thematic Mapper (TM), which included sensors for SWIR, it became

possible to discriminate snow from clouds on a global scale for the first time. In this context,

(Dozier, 1989) introduced the normalized differences of a visible band and a SWIR band (later

termed Normalized Difference Snow Index (NDSI) by (Hall, Riggs, and Salomonson, 1995)) to

identify snow. The appeal of NDSI lies in its simplicity: An observation/pixel is identified as

snow if its NDSI exceeds a threshold, typically 0.4 (Dozier, 1989; Hall, Riggs, and Salomonson,

1995).

NDSI = Rλ(V IS) − Rλ(SWIR)
Rλ(V IS) + Rλ(SWIR)

A challenge in snow-cover mapping is trees obscuring the snow beneath the canopy. (Klein, Hall,

and Riggs, 1998) introduced a combination of Normalized Difference Vegetation Index (NDVI)

and NDSI to reduce the error of snow cover detection in dense vegetation. The approach

was adapted by (Hall, Riggs, Salomonson, et al., 2002; Hall, Riggs, and Salomonson, 2001)

to introduce the operational global level-3 snow mapping products for MODIS and VIIRS

(MOD10A11/VNP10A12). The approach also includes thermal masks to identify “spurious

snow”: A pixel is determined not to be snow if its temperature is greater than 277 K.

While the NDSI itself should not be interpreted as fSCA (Stillinger, Rittger, et al., 2022),

1(Hall and Riggs, 2016). DOI: 10.5067/MODIS/MOD10A1.006
2(Riggs et al., 2019). DOI: 10.5067/VIIRS/VNP10A1.001
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(Salomonson and Appel, 2004; Salomonson and Appel, 2006) developed a regression-based

approach to infer fSCA from NDSI: The model is fitted with binary snowmap data from Landsat

Enhanced Thematic Mapper (ETM) and results in the following relationships for MODIS/Terra:

fSCA = −0.01 + (1.45 ∗ NDSI)

This regression approach fails in the transitional periods during accumulation and melt, over-

estimates fSCA in some areas of the world while underestimating it in others, and has a high

median error (Rittger, Painter, and Dozier, 2013).

Higher accuracy of fSCA estimations can be achieved through mixture analysis of multispectral

measurements (Stillinger, Rittger, et al., 2022). Spectral mixing assumes that a measured

spectrum is a combination of multiple constituent (“endmember”) spectra. The measured

spectrum is decomposed into the spectra of the constituents, allowing the determination of the

proportionate contributions of each constituent to the mixed spectrum (Dozier, 1981; Dozier

and Painter, 2004). Hence, spectral unmixing provides a method to retrieve sub-pixel detail

(Keshava, 2003).

Specifically, we may assume that the reflectance spectrum R that a sensor observes is a linear

spectral mixture of the reflectance spectra Rk of the constituent endmembers k within a pixel.

Rλ = ϵλ +
N∑

k=1
fk ∗ Rλ,k

Rλ is the observed reflectance at wavelength λ that is modeled as the weighted sum of the

constrained weights/fractions fk of the endmember k with a reflectance of Rλ,k and the residual

error ϵλ. Using a library of endmember reflectance spectra, we then may find the endmember

fractional combination (i.e., all fk) that minimizes the square error of the linear combination.
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minimize

√√√√ n∑
kλ=0

ϵ2
λ

(Painter, Dozier, et al., 2003) describe Multiple Endmember Snow-Covered Area and Grain

Size (MEMSCAG), a method derived from Multiple Endmember Spectral Mixture Models

(MESMA) (Roberts et al., 1998), to obtain subpixel snow cover, grain size, and albedo for

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) pixels using spectral unmixing.

(Painter, Rittger, et al., 2009) describes MODIS Snow-Covered Area and Grain size (MOD-

SCAG), an progression of MEMSCAG to work on multispectral MODIS pixels rather than

hyperspectral AVIRIS pixels. MEMSCAG and MODSCAG use endmembers libraries of snow,

different rock and soil types, vegetation, and shade. The reflectances Rλ,k of the rock/soil veg-

etation endmembers are measured in the field and the laboratory, while the snow endmembers

are modeled for varying grain sizes and solar zenith angles.

The Snow Property Inversion from Remote Sensing (SPIReS) algorithm follows a similar ap-

proach. However, rather than solving for the non-snow endmembers, SPIReS exploits the fact

that for any given location (in the following referred to as a grid cell), the (mixed) non-snow

endmember spectrum R0 can be measured during the summer3. SPIReS uses a snow-free end-

member reflectance library containing a single snow-free spectrum for each grid cell. This single

snow-free reflectance spectrum is selected from all measured spectra for a given grid cell subject

to a set of criteria: The snow-free spectrum must not be quality flagged, be cloud and cloud

shadow-free, and have an NDSI of less than zero. From the spectra that pass those criteria, the

spectrum with the highest NDVI is selected as the snow-free reference spectrum4. Additional

advancements of SPIReS include a correction for canopy cover, persistence filters to eliminate

false-positive caused by cloud presence, temporal smoothing, and cell clustering in which similar

cells are grouped prior to computing to improve performance.

3This, of course, excludes regions of permanent snow cover, such as the arctic regions or glaciers
4If no spectrum with an NDSI of less than zero exists for a given cell, the spectrum with the lowest band-3

reflectance is selected.
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Figure 4.1: The measured spectrum R which was observed under fractionally snow-covered
conditions. The snow-free reference spectrum R0 was observed under snow-free conditions.
SPIReS solved for the solution and thereby was able to estimate the fSCA, the fractional
shade, the snow grain size and the Light absorbing particle (LAP) concentration. Figure 2
from (E. H. Bair, Stillinger, and Dozier, 2021), which was licensed under Creative Commons
Attribution 4.0 License.
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4.2 SPIReS uncertainty and possible causes

“location, location, location.”

Lord Harold Samuel

Both MODSCAG and SPIReS use gridded (i.e., level 3) surface reflectance products as their

inputs (e.g., MOD09GA5). Gridded products bin irregularly spaced observations into a dis-

cretized space. Using gridded products greatly simplifies verification efforts in which snow

cover estimates derived from other instruments (e.g., high-resolution binary snowmaps) have

to be spatially associated with the snow cover estimates from SPIReS. In the case of SPIReS,

the (fractionally) snow-covered observations also have to be spatially associated with snow-free

observations of the same location, which is trivial using a gridded product and challenging for

an ungridded product.

While the gridded products bring the above-stated simplifications, they also introduce a source

of uncertainty. The “level 3” MODIS MOD09GA granules are produced by gridding and com-

posing the irregularly spaced “level 2” MOD096 observations. The methodology first bins each

MOD09 observation into a grid cell and then selects one of those binned observations as the

best (subject to clouds, viewing geometry, and others)7 (R.E. Wolfe, Roy, and E. Vermote,

1998; Yang and R.E. Wolfe, 2001).

The spatial binning of MOD09GA reduces the spatial resolution by one order of magnitude:

While the geolocations of individual IFOVs are precise to approximately 50 m (R. E. Wolfe

et al., 2002), they get binned into grid cells of approximately 500 m. Figure 4.2 shows the wide

spread of MODIS IFOVs center locations associated with a single cell.

5(Eric Vermote and Robert Wolfe, 2021). DOI: 10.5067/MODIS/MOD09GA.006
6(M. L. S. Team, 2017). DOI: 10.5067/MODIS/MOD09.006
7MOD09GA actually is an “Gridded Level-2 (L2G)” product, a hybrid between level 2 and level 3. In addition

to the level 3 data, L2G products contain “additional observations” for each cell. Those additional observations
are values binned to a cell but not selected as the best observation in the composition step.
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Figure 4.2: Geolocation of MOD09 observations at 500 m resolution associated with a single
MODIS grid cell in the Region of Mammoth Lakes, California for January 2021.

Figure 4.3: Schematic visualization of MODIS' viewing geometry and the effects of the wide
scan angle on the size and shape of (ˆIFOVs).
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Figure 4.4: Center locations (colored dots) and estimated footprints (colored polygons) of 4
IFOVs in January 2021 associated with the same MODIS cell (black outline).

However, it is not only the center locations that differ for each IFOV. MODIS is a passive

imaging spectroradiometer using a continuously rotating double-sided scan mirror. The mirror’s

rotation axis is in the same plane as the spacecraft’s ground track. At a spacecraft altitude of

705 km, the Earth is in sight for about 110◦ of the mirror’s rotation/scan (Barbieri et al., 1997).

Consequently, observations are retrieved under viewing/sensor nadir angles ranging from −55◦

to 55◦8 (c.f. figure 4.3). When the sensor is at a viewing angle of ±55◦ (at the beginning/end of

a scan), the observed footprint is actually about 10× larger via a combination of the telescopic

effect in both along- and cross-track directions and an additional cross-track increment (Dozier,

Painter, et al., 2008) than when the sensor is pointing straight down at nadir/0◦.

The actual extent/footprint of each IFOV thus varies significantly in size and location, which

means that two IFOVs binned into the same grid cell may have been for two very different

areas. Figure 4.4 shows approximations of the extent of four IFOVs associated with the same

cell. It visualizes the significant differences in the approximated extents/footprints that the

IFOVs cover depending on the sensor’s viewing angle.

Specifically, in the mountains, characterized by high topographic variability, the irregularity of

8 This refers to the nadir viewing angle at the satellite. The sensor viewing angle (sensor zenith), from Earth
surface, is about 65◦ at the edge of the scan. For a plane-parallel geometry, sensor zenith and nadir would be
the same, but not for a sphere or an ellipsoid.
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the actual IFOV footprints leads to significant noise in derived estimates. Figure 4.5 displays the

time series of NDSI, NDVI, and fSCA estimates from SPIReS9 for a seemingly fixed location:

a MODIS grid cell at Reds Lake in Mammoth. We observe strong NDVI, NDSI, and fSCA

fluctuations. We also note that the estimated fSCA stays well above 0 during the late summer

months, for which we know the area was snow-free. Uncertainties in the atmospheric corrections,

cloud cover and shadow, smoke presence, and variations in the solar and sensor zenith may

explain some of the noise. In the following, we will demonstrate that the gridding introduces a

large portion of the noise: The estimands in figure 4.5 are only seemingly for a fixed location. In

reality, the underlying observations’ footprints dramatically vary in size and center location. It

is thus not that the fSCA estimates from SPIReS necessarily are inherently noisy; the estimates

simply were made for varying footprints, some of which having larger fSCA than others.

The question consequently arises of how the accuracy of any derived product, in general, and

the fSCA estimations, in particular, should be evaluated. Gridded products may tempt the

assumption that each fSCA estimate is for the footprint of a grid cell. Under this assumption,

we may find observations of a (higher resolution binary) ground-truth dataset intersecting

the grid cell and compare the fSCA estimation with the ground-truth data. The assumption,

however, is false and causes the accuracy of the fSCA estimates to appear much worse than they

are. Instead, the actual footprint of each observation has to be considered, and the ground truth

observations covering this footprint have to be found for the evaluation. Figure 4.6 visualizes

the issue: While the fSCA is computed for the actual IFOVfootprint (red), it will be evaluated

against data covering the cell if we naively use gridded data.

The location uncertainty introduces an additional issue specifically for SPIReS: SPIReS does

not solve for the snow-free endmembers of a fractionally snow-covered observation but instead

uses a snow-free observation of the same location as the snow-free endmember. If gridded prod-

ucts are used, the snow-free observations for the “same” location is a (snow-free) observation

associated with the same grid cell. Since the gridding blurred the location of the footprints of

9The fractional snow cover estimates are for visible snow only.
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Figure 4.5: NDVI, NDSI, and (visible) fSCA estimate from SPIReS over a ‘fixed’ location
in Mammoth lakes at Reds Lake (tile H08V05, cell x=1373; y=566) over the snow season
2021/2022. Note the strong fluctuations of all measures and a fSCA > 0 even during the late
summer months. None of the high-frequency fluctuations of any of the measures are plausible.
Note: The displayed fSCA are uncorrected visible fSCA estimates.
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Figure 4.6: A cell (blue) and the estimated footprint of an IFOV(red) overlayed over a binary
snowmap (white) derived from Worldview legion data at 0.5 m resolution (Stillinger and N.
Bair, 2020). Note how significantly more than half of the cell is snow-covered while the IFOV’s
footprint is less than half snow-covered. Also note that the cell appears to be about 1/3 forest
covered, while the IFOV’s footprint appears to be more than half forest.

115



Improving fractional snow-coverd area estimations through increased spatial fidelity Chapter 4
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Legend

Figure 4.7: Center location of observations used for figure 4.8. All observations are within 50 m.

the observations, this snow-free observation may be for a different area than the fractionally

snow-covered observation (even though they have been binned to the same grid cell). It is, e.g.,

conceivable that a fractionally snow-covered observation covers a region consisting of snow and

forest while the associated snow-free observation covers a region consisting of soil and rock.

Finally, a concern is that MOD09GA contains merely the sensors’ zenith angles but no trivially

accessible information about the actual viewing geometry of the observations10. The sensor

zenith angle alone does not provide information about whether an observation was acquired

while the sensor was pointed left or right. However, knowing the actual viewing geometry may

be crucial in mountainous terrain where opposing faces of the same mountain may significantly

vary regarding the composition of rocks/soil and vegetation.

Figure 4.8 shows NDVI values for observations at a fixed location at Reds Lake in Mammoth

10Theoretically, the pointer files could be backtracked to identify the viewing geometry of each MOD09GA
value. However, these pointer files are not archived and would have to be regenerated.
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Figure 4.8: NDVI for a fixed location at Reds lake in Mammoth (to the precision of 50 m)
for varying along-scan positions. Note that the off-nadir observations have higher NDVI for
observations in which the sensor looks east onto the location.
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(within a radius of 50 m) (C.f. figure 4.7) under varying viewing geometries (here represented as

the along-scan position). The asymmetry demonstrates the influence of the viewing geometry

on the reflectance spectrum: When the sensor passes east of the observed location and thus is

looking west (i.e., low along-scan position)11, it observes the eastern face of Top of Chair 14

(Chair 23 Area), which is mainly exposed rock (c.f. figure top 4.9). However, when the sensor

passes west of the observed location and thus is looking east (i.e., high along-scan position), it

observes the western face below the Chair 14 lift line, which is covered with sparse trees (c.f.

figure bottom 4.9).

Part of the asymmetry in figure 4.8 may be explained by the forward scattering behavior of

vegetation (the Terra overpass at our Region of Interest (ROI) is before noon). However, we

observe similar asymmetric behavior for locations where the eastern face of a ridge has more

vegetation than the western face. We display the NDVI over the along-scan position for four

additional exemplary locations in figure 4.10. An apparent asymmetry is observable for all

locations, which cannot be explained by the forward scattering alone.

Therefore, any fractionally snow-covered observation should be associated with a snow-free

observation that both is spatially as close as possible, and has a similar viewing geometry.

11terrapath
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Figure 4.9: View onto the same location at Reds Lake from the east (top) and the west
(bottom). Note that looking west, a face with little vegetation will be co-registered while
looking east, a face with sparse trees will be co-registered.
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Figure 4.10: NDVI over along-scan position for four additional exemplary locations.
Top left: A location at Reds creek (37.62600691422575, -119.03900649128829).
Top right: A location at dragon’s back (37.623934838741974, -119.02511013281583).
Bottom left: A location at Mammoth Rock (37.612298635885914, -118.99655376170831).
Bottom right: A location at twin lake (37.62255106589664, -119.00785780041357).
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4.3 STARE Approach

In order to circumvent the introduction of uncertainties by gridding, we need to forego gridded

data and work with ungridded level 2 data (i.e., MOD09/VNP09MOD). Working with ungrid-

ded data is cumbersome with conventional technologies. We, therefore, use the alternative

geolocation representation Spatio-Temporal Adaptive-Resolution Encoding (STARE). STARE

firstly enables us to associate each observation with a snow-free observation at approximately

the same location and recorded under similar viewing geometries. Secondly, STARE allows us

to evaluate the accuracy of the fSCA estimates by comparing them to “ground-truth” data for

the approximate footprints of each IFOV.

The remainder of the chapter is structured as follows: We first give a quick overview of STARE.

We then describe the data preparation and the creation of our snow-free reflectance library.

Finally, we describe our evaluation methods and display metrics on the accuracy improvements

achieved.

4.3.1 STARE primer

STARE, described in chapter 2 and in (Michael L. Rilee et al., 2021; Michael L Rilee, K.-S.

Kuo, J. Frew, et al., 2020; M. Rilee, K.-S. Kuo, Gallagher, et al., 2019; Michael Lee Rilee, K.-S.

Kuo, et al., 2016; K.-S. Kuo and Michael Lee Rilee, 2017), is an alternative spatial geolocation

representation based on a Hierarchical Triangular Mesh (HTM). Rather than expressing points

as, e.g., latitudes and longitudes, STARE express locations/points as nodes (aka trixels) in the

HTM, and arbitrarily shaped regions (polygons) as sets of trixels (c.f. figure. 4.11).

STARE might appear to be yet another gridding approach, using triangular instead of rectan-

gular cells. However, contrary to conventional gridding, the grid resolution (the size of the bins

into which individual observations are binned) is not fixed but adaptive. This is achieved by

using trixels at varying “quadfurcation” levels in the HTM tree. The adaptive resolution brings

immense advantages when working with variable data resolutions, both between datasets, and

121



Improving fractional snow-coverd area estimations through increased spatial fidelity Chapter 4

Figure 4.11: A polygon (blue) and its representation as a set of trixels that cover it (yellow).
A point (red star) is represented by a single trixel (red triangle) at a chosen STARE level.

within the same datasets. With STARE, identifying the intersection of irregularly shaped and

spaced data at varying resolutions is trivial. We thus do not have to decide apriori on a grid

resolution into which we have to bin data; instead, we can preserve the original resolution of

the data.

The STARE concept is implemented in a collection of software, described in chapter 2. The

collection contains software to convert conventional location representations into STARE rep-

resentations, various storage backends, and the ability to perform STARE-based geoprocessing

(such as unions, intersections, and dissolves) and geospatial analysis.

4.3.2 Data Preparation

Our study area ROI is around Mammoth Lakes in the eastern Sierra Nevada, spanning from

just north of Lake Thomas Edison to June Lake (c.f. figure. 4.12).

We acquired all Level 2 MODIS/Terra atmospherically corrected surface reflectance granules
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ROI

Legend

Figure 4.12: Region of interest of our study area (red) in the region of Mammoth lakes spanning
from just north of Lake Thomas Edison to June Lake. (BBOX: -119.14, 37.4: -118.96, 37.8).

(MOD0912) and their corresponding geolocation companion granules (MOD0313) for the entire

sensor lifetime from 2000-02-24 until 2022-09-15 (a total of 26 466 granules, containing a total of

145×109 IFOVs, 243×106 of which intersecting our ROI). We additionally acquired moderate-

resolution VIIRS/Suomi surface reflectance granules (VNP0914) and their corresponding geolo-

cation companion granules (VNP03MOD15) for the entire sensor lifetime from 2012-01-19 to

2022-09-15. We also acquired all gridded MOD09GA16 granules for tile H08V0517 for verifica-

tion purposes.

We then created STARE sidecar companion files for each granule. STARE sidecar companion

files contain the geolocation for each IFOV in STARE representation. They are thus analogous

to the MOD03/VNP03* companion files, which contain the geolocation of each IFOV in WGS84

12(M. L. S. Team, 2017). DOI: 10.5067/MODIS/MOD09.006
13(M. S. D. S. Team, 2017). DOI: 10.5067/MODIS/MOD03.061
14(N. V. L. S. Team, 2020). DOI: 10.5067/VIIRS/VNP09.001
15((VCST), 2021b). DOI: 10.5067/VIIRS/VNP03MOD.002
16(Eric Vermote and Robert Wolfe, 2021). DOI: 10.5067/MODIS/MOD09GA.006
17we used the ladsweb downloader to download all granules. Ladsweb downloader is available at https:

//github.com/NiklasPhabian/ladsweb_downloader.
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coordinates. The MOD09 granules contain surface reflectances at 1000 m, 500 m, and 250 m

resolution. However, MODIS geolocations are only distributed at 1000 m resolution. Since

we intend to use the 500 m surface reflectances, we implemented a geolocation interpolation

algorithm, described in section 4.3.3.

Finally, we created estimates for each IFOV footprint subject to the viewing geometry. Those

footprint approximations are used to evaluate the fSCA estimates against higher-resolution

binary snowmaps. The creation of the footprint estimates is described in section 4.3.4.

4.3.3 Resolution interpolation

MODIS collects data at nominal resolutions of 1000 m, 500 m, and 250 m. The calibrated surface

reflectance product MOD09 contains reflectance spectra for all three resolutions, but only the

geolocation of the 1 km resolution is distributed. In order to use the 500 m resolution data, we

therefore need to interpolate the 500 m resolution geolocations. The MODIS Level 1A Earth

Location Algorithm Theoretical Basis Document (ATBD) (Nishihama et al., 1997) and the

MODIS Level 1B user manual (Toller et al., 2009) give us hints for how to do this:

The MODIS Level 1A Earth Location ATBD (Nishihama et al., 1997) states18:

“MODIS is built so that the start of the weighting function for the 500 m pixel is

the same as the start of the weighting function for the 1 km pixel. This means that

four 500 m pixels are not contained within a 1 km pixel.”

This is visible in figure 4.13. (R. E. Wolfe et al., 2002) further explains:

“To the first order, the MODIS point-spread function is triangular in the scan

direction. The centers of the integration areas of the first observation in each scan

18A private communication with the MODIS support team contradicts this statement and suggests the following
(from github) “Since the MODIS geolocation is estimated at 1km only, [..] it is provided for 1km datasets
only. The best way to use the 1m geolocation will be to co-locate each 500m/250m observations within the
corresponding 1km pixel and then use the corresponding 1km geolocation.”
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overlaying a
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(solid square)

Actual region sensed
(dashed rectangle)

Figure 4.13: Pixel nesting of the 1 km, 500 m, and 250 meter resolutions of MODIS. Source:
Figure 2-8 of MODIS Level 1A Earth Location (Nishihama et al., 1997).

are aligned, in a ‘peak-to-peak’ alignment.”. And: “In the track direction, the point-

spread function is rectangular and the observations at the different resolutions are

nested, allowing four rows of 250 m observations and two rows of 500 m observations

to cover the same area as one row of 1 km observations.”

This is visualized in figure 4.14. The MODIS Level 1B User Guide (Toller et al., 2009) further

suggests:

“Interpolation may be used to recover latitude and longitude of all pixels [..]. Note

that, due to the overlap between consecutive scans, interpolation across scan bound-

aries, such as is done by these HDF-EOS swath functions, can produce inaccurate

results. Near scan boundaries, it is better to extrapolate from within the same scan,

than to interpolate with values from the adjacent scan.”

Finally, (Nishihama et al., 1997) states that:
125



Improving fractional snow-coverd area estimations through increased spatial fidelity Chapter 4
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Figure 4.14: MODIS triangular point-spread function for all resolutions. Figure 3-13 of the
MODIS Level 1A Earth Location: (Nishihama et al., 1997).

“The samples for each band are delayed by an appropriate amount so that all samples

in a frame of data start at the same point on the ground.”

We combined these pieces of information in our geolocation interpolation algorithm19: We

process one scan group at a time. For the 1 km resolution, a scan group contains 10 IFOVs

along-track and 1354 IFOVs along-scan. The first observations of all resolutions are aligned in

scan direction. The first 500 m resolution geolocations in scan direction, therefore, sit between

the 1000 m resolution in track direction offset by 1/4 of the distance to the following observation

in track direction. The same is true for all other odd-numbered observations in scan direction.

The even-numbered observations in scan direction sit halfway between the odd-numbered ob-

servations. The last observation in scan direction has to be extrapolated.

Figures 4.15, 4.16, and 4.17 display the original 1000 m resolution geolocations (red) and the

interpolated 500 m geolocations (blue) for one and a half 1000 m scan groups at the beginning

19STAREMaster’s 500 m interpolation function on GitHub
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Figure 4.15: MODIS Geolocations of the 1 km resolution (red) and their 500 m interpolations
(blue) for the first 1.5 scan groups and the first ten observations in scan direction at the
beginning of a scan.

(4.15), the center (4.16), and the end (4.17) of a scan. The geolocations are for MODIS Terra

for daytime observations. The beginning of a scan is therefore in the north-west, while the end

of a scan is in the south-east. Note how six 500 m resolution observations nest into one 1000 m

resolution observation.

4.3.4 IFOV approximation

In order to evaluate the accuracy of a sub-pixel estimands in general and the fSCA from SPIReS

in particular, we compare the estimated values against ground truth data. In practice, the

ground truth data will often be binary data derived from sensors with higher spatial resolutions.
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Figure 4.16: MODIS Geolocations of the 1 km resolution (red) and their 500 m interpolations
(blue) for 1.5 scan groups at the center of a scan (at nadir).

Figure 4.17: MODIS Geolocations of the 1 km resolution (red) and their 500 m interpolations
(blue) for the first 1.5 scan groups and the last ten observations in scan direction at the end
of a scan.
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Figure 4.18: Growth of IFOV along-track and along-scan as a function of the nadir scan angle.

E.g., a MODIS IFOV at nadir may have an approximate footprint of 500 m x 500 m20, covering

about 250 Landsat pixels.

Comparing subpixel estimands of an IFOV against verification data requires us to evaluate

spatial coincidence between the IFOV footprints and the verification data. We thus need

an approximate spatial representation for the IFOV footprints to achieve this. As previously

discussed, we consider a grid cell at a constant resolution of 500 m x 500 m as an inapt footprint

approximation. We instead created two alternative approximations:

The first approximation assumes that the IFOV’s footprint is a circle around the geolocation

with a constant diameter equaling the nominal resolution, i.e., 500 m for MODIS and 750 m for

VIIRS.

The second approximation assumes that the IFOV’s footprint has the shape of an ellipse. We

20The actual cell size is w ∗ w. With w = T/n = 463.312 716 53 m. T = 1 111 950 m is the height and width of
each MODIS tile in the projection plane, and n = 2400 the number of cells in a MODIS tile in width and height
direction (Meister, Zong, and McClain, 2008).
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use the fact that we have some idea of the distortion introduced by the sensor’s nadir scan angle.

From the MODIS Level 1A Earth Location ATBD (Nishihama et al., 1997), we know that the

resolution of a 1 km spatial element at a 55◦ scan angle has ground dimensions of approximately

4800 m along-scan and 2000 m along-track. (Dozier, Painter, et al., 2008) provides an analytic

approach for the relation between sensor zenith and along-scan and along-track IFOV pixel

expansions. For simplicity of our purposes, we instead fit an exponential function to data

provide by (Nishihama et al., 1997) to establish a relation between nadir scan angle and along-

scan and along-track IFOV length (c.f. figure 4.18.).

length = ea∗x

b
+ c

With:

a b c

along-scan 0.09 40.9 km−1 1.00 km

along-track 0.07 35.2 km−1 0.98 km

Using the derived along-track and the along-scan lengths, we create ellipses around each IFOV

geolocation, using the along-track length as the length of the semi-minor axis and the along-scan

length as the length semi-major axis. We finally orient each ellipse according to the sensor’s

instantaneous azimuth angle. A set of resulting ellipse footprint approximations are visualized

in figure 4.4. Figure 4.19 displays IFOVs approximated as circles with constant diameter and

as ellipses with semi-minor and semi-major axes lengths adjusted to the sensor nadir scan angle

and orientation adjusted to the sensor azimuth angle.

4.3.5 Viewing geometry discretization

Our thesis is that we can improve the accuracy of SPIReS' fSCA estimates by using snow-free

reference reflectances R0 that have been observed under a similar viewing geometry as the
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Figure 4.19: IFOVs with their geolocation points (red), approximated as circles with a constant
diameter (green) and as ellipses (blue) at the beginning of a scan (top) and the center of a
scan (bottom).

reflectances R of the observation for which the fSCA is to be estimated.

MODIS has an orbital repeat cycle of 16 days (M. D. King et al., 2003; R. E. Wolfe et al., 2002).

This means that every 16 days, the ground track repeats. Consequently, there are 16 distinct

viewing geometries under which MODIS observations are made for any given location outside of

latitudes of approximately ±30◦. Due to orbital dynamics and orbit drift, the overpasses in each

orbital track vary slightly. Figure 4.20 displays along-scan positions under which MODIS/Terra

observations were taken for a fixed location over time. The 16 ground track groups of MODIS‘s

16-day orbital repeat cycle are visible. It is noteworthy to draw attention to the ’bumps,’

presumably caused by orbital anomalies and consequent corrective satellite maneuvers. Towards

the end of the time series, the uncorrected orbital drift21 is observable. MODIS is drifting

towards earlier equator crossing times (conceptually: drifting westwards), causing observations

for a fixed location to be made increasingly earlier in the day and thus at lower along scan

positions22. If MODIS were to remain in this drifting orbit long enough, the gaps between the

orbit track groups would eventually fill.

The along-scan position is a proxy for the viewing geometry. It gives us information about

the sensor zenith (and thus the extent of the IFOV) and whether the sensor looked left, right,

21https://terra.nasa.gov/about/terra-orbital-drift-information
22Terra flies south and MODIS scans west to east for daytime observations.
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Figure 4.20: Along-scan position vs. time of MODIS observations of a fixed location. The 16
distinct groups’ orbital tracks are visible. Also note the bumps in, e.g., 2004, 2018, and 2020
presumably caused by orbital anomalies and consequent corrective satellite maneuvers.
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or (approximately) straight down. Since we want to find a R0 for every R observed under a

similar viewing geometry, we discretize the along-scan position at different resolutions. At a

discretization of 1, we do not distinguish between different viewing geometries. At a discretiza-

tion of 2, we only distinguish whether the sensor looked left or right. At a discretization of

3, we distinguish between the sensor looking left, right, or approximately straight down. At

higher discretizations, we add further fidelity to the viewing geometry.

4.3.6 Snow-Free Reflectance (R0) Library

To compute the fSCA for a reflectance spectrum R observed for a given location, SPIReS

requires a snow-free reflectance spectrum R0 for the same location. The question of what

“same location” means immediately arises, considering that each observation has a unique

geolocation and footprint[ˆunique footprint]. One could find the spatially closest observation

by evaluating geodesic distances. However, evaluating possibly trillions of distances ad-hoc is

computationally infeasible. The correct answer is that some degree of location discretization is

required.

[ˆunique footprint]: [+MODIS] has a repeat cycle of 16 days. Therefore, every 16 days obser-

vations under similar viewing conditions are taken. However, subject to the nonlinearity in

the dynamics of the spacecraft trajectory, the optical properties of the atmosphere, and the

topography of the Earth’s surface, the viewing conditions do not exactly repeat. Thus every

single observation has to be considered to have a unique geolocation and footprint.

Discretization enables us to bin observations sufficiently close to each other and consider them

spatially coincidental. When using the standard gridded surface reflectance products, we assume

every observation binned to the same grid cell is spatially coincident. As previously stated, our

thesis is that this is a too strong a coarsening specifically since the geolocation is known to have

at least an order of magnitude higher precision. We thus create a R0 library at a higher spatial

resolution.
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The algorithm for finding a R0 for each grid cell works as follows23:

For each cell:

1. Consider all observed spectra for the cell

2. Discard observations with a SensorZenith > 30 degree

3. Find the observation with the lowest NDSI

4. If the lowest NDSI < 0:

1. Discard observations that

1. Have internal cloud mask set, or

2. Have internal snow mask set, or

3. Have MOD35 cloudmask set, but not saltpan

2. The observation with maximum NDVI is R0

5. Else: (e.g., permanent snow)

1. Discard observations with Band 3 < 0.1

2. The observation with the lowest Band 3 value is R0

Note that the cutoff at 30◦ sensor zenith angle eliminates approximately 65 % of all observations.

We adapt this algorithm to create R0 for STARE trixels rather than for grid cells and create R0

libraries at different STARE “quadfurcation” levels. We additionally take the viewing geometry,

represented by the along-scan position, into account. The choices of the quadfurcation level

and the along-scan position discretization are a tradeoff. While conceptually, we want a high

resolution in geolocation and viewing geometry, we decrease the number of candidate snow-free

reflectances per bin with increasing resolution. If the count of the number of candidates per bin

is too low, we may not find good (i.e., cloud-free, snow-free, and not quality-flagged) snow-free

spectra.

23createR0.m on github
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Approaching an appropriate discretization level: At the latitude of our ROI, a 500 m x

500 m cell is roughly observed once per day (i.e., the revisit period is one day). A data duration

of 8239 days (from 2000-02-24 to 2022-09-15) thus gives us 8239 candidate spectra to choose

from when discretizing to the MODIS grid cells. A STARE trixel at quadfurcation level 14 has

roughly the same area as a MODIS grid cell. We thus expect roughly one observation per day

falling into a level 14 trixel. At level 15, we expect the revisit period to be 1/4 of that since a

level 15 trixel is four times smaller than a level 14 trixel.

Table 4.2: Approximate trixel areas, edge lengths, and

MODIS revisit periods and total visits for the data duration

of 8239 days

Level Area (Atrixel) Edge (ltrixel) Revisit Period n Visits

12 5.11 × 106 m2 3.20 × 103 m 0.05 days 167 544.0

13 1.28 × 106 m2 1.60 × 103 m 0.20 days 41 885.9

14 3.19 × 105 m2 7.99 × 102 m 0.78 days 10 471.5

15 7.99 × 104 m2 4.00 × 102 m 3.13 days 2 617.9

16 2.00 × 104 m2 2.00 × 102 m 12.52 days 654.5

17 4.99 × 103 m2 9.99 × 101 m 50.08 days 163.6

18 1.25 × 103 m2 5.00 × 101 m 200.32 days 40.9

Table 4.2 displays the areas and edge lengths of trixels at varying quadfurcation levels. It also

contains the estimated revisit periods which is the nominal resolution divided by the area of the

trixels, assuming one overpass per day. It is to be understood as the maximum revisit period.

Revisit periods of less than 1 indicate that multiple observations per day fall into the trixel.

The column n Visits is the revisit period multiplied by the data duration (8239 days). It gives

us a rough approximation of how many candidate spectra we will have per spatial bin.

Note that the average trixel area Atrixel and edge length ltrixel may be naively computed as
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indicated below. However, depending on the position of the trixels in the initial solid’s faces,

the trixel areas vary across the globe. Table 4.2 shows the actual areas and lengths computed

for trixels in our ROI.

rearth = 6 371 007 m

Aearth = 4 ∗ π ∗ r2
earth

Atrixel = Aearth/8/(4level)

ltrixel = (Atrixel ∗ 2)0.5

The MODIS geolocation precision is approximately 50 m (R. E. Wolfe et al., 2002) (2.5×103 m2),

matching trixel areas at quadfurcation level between 16 and 17. This gives us the upper bound

for the quadfurcation level. A cell with an edge length of 463.3 m has an area of 2.14 × 105 m2,

matching quadfurcation level between 14 and 15, giving us the lower bound for the quadfurcation

level.

We created R0 libraries for quadfurcation levels 14 to 17 using the same logic as stated above.

We then further binned the observations for each trixel by their viewing geometry, discretized

in 1 to 7 groups. This would lead to a total of 28 R0 libraries. We recognize we have too

few candidate spectra at high spatial resolution and viewing geometry discretization. We,

therefore, discarded the R0 libraries with quadfurcation levels above 16 and24 viewing geometry

discretizations above 4. This leaves us with a total of 22 R0 libraries.

Table 4.3 gives the actual average number of observations falling into trixels at different quad-

furcation levels, approximately matching our theoretically expected number of revisits in table

4.2. Figure 4.21 visualizes the number of observations that fell into each trixel of a level 15

STARE grid in our ROI.

24logical and
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Table 4.3: Number of observations that fell into trixels at

varying quadfurcation levels

Level n Visits (mean)

14 6 696

15 1 767

16 486

17 145

18 49

4.3.7 Computation of fSCA

To compute the fSCA in our STARE approach for set of reflectance observations O, we proceed

as follows: First, we choose the discretization level of our R0 library. This means we a) select a

spatial resolution (STARE quadfurcation level) at which we evaluate spatial coincidence, and

b) select a viewing geometry discretization.

Secondly, we iterate over each observation O for which we want to calculate the fSCA. Using

STARE, we find all snow-free observations O0 that spatially coincide with each O. From those,

we find the observation with the most similar along-scan position to O. We then feed the

reflectance spectra of O and O0 (R and R0, respectively) to SpiPy25, which returns the fSCA,

the fractional shade cover (fShade), the snow’s grain size, and LAP concentration for O.

25https://github.com/edwardbair/SpiPy
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Figure 4.21: Number of observations that fell into each trixel of a level 15 STARE grid over
our ROI. Each cell had more than 1400 observations.
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4.4 Evaluation and Results

We carry out two evaluation efforts. First, we evaluate the accuracy of fSCA retrievals for

a short period over a large ROI. We here evaluate the influence of the spatial resolution and

viewing angle discretization of the R0 library. We evaluate the accuracy by comparing the fSCA

values to high-resolution binary snowmaps of the approximate IFOV footprints. In the second

effort, we evaluate the plausibility of seasonal fSCA time series over small selected locations.

We further attempt to join fSCA retrievals from MODIS/Terra and VIIRS/Suomi.

The efforts differ from conventional SPIReS processing and validation as follows:

• We ensure that each fractionally snow-covered observation is associated with a snow-free

observation that is as close as possible regarding location and viewing geometry.

• We use the approximate footprint of each IFOV to allow a more accurate comparison to

ground-truth data to better evaluate the fSCA accuracy.

4.4.1 fSCA accuracy

To evaluate the fSCA accuracy, we use a Binary Viewable Snow Covered Area Validation Mask

(Stillinger and N. Bair, 2020) derived from cloud-free WorldView-2/3 data for 2017-12-11 over

our ROI.

In figure 4.22, we display snow depth measured at the Cold Regions Research and Engineer-

ing Laboratory (CRREL)) and University of California, Santa Barbara (UCSB) Energy Site

(CUES) (Colee, 2016) in the vicinity of McCoy Station in Mammoth, for the days before and

after 2017-12-1126. Since we observe only a slight variation in snow depth during this period, we

conclude that neither significant melting nor a snow accumulation event occurred. We conse-

quently assume the Binary Snow Covered Area Mask to be representative of the period between

2017-12-07 and 2017-12-13.

26Data retrieved from https://snow.ucsb.edu/
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Figure 4.22: Average daily snow depth as measured at CUES between 2017-12-05 and
2017-12-19. Data retrieved from snow.ucsb.edu. No significant snowmelt nor snow precip-
itation event appeared in the period.

We compute the fSCA for each MODIS and VIIRS IFOV falling into our ROI using snow-

free endmembers for all of our R0 libraries for six days between 2017-12-07 and 2017-12-13,

skipping 2017-12-09 since it had a far-off nadir viewing angle for MODIS/Terra over our ROI.

A total of 13 709 MODIS and 8912 VIIRS IFOVs fell into our spatiotemporal bounding box.

We additionally compute the fSCA using a standard MODIS-grid R0 library as a reference.

MODIS

The six days contained six distinctly different MODIS overpasses, as displayed in figure 4.23:

Two overpasses appeared close to the nadir, two overpasses far off-nadir, and two overpasses

at an intermediate distance, one each with MODIS passing east and west of our ROI. We can

notice a slight influence of smoke from the Thomas Fire in Santa Barbara and Ventura county

(c.f. figure 4.24) over our ROI.

We then use our IFOV footprint approximations to retrieve the pixels of the high-resolution

Binary Viewable Snow Covered Area Validation Mask that intersect each footprint. For each

140



Improving fractional snow-coverd area estimations through increased spatial fidelity Chapter 4

Figure 4.23: MODIS overpasses (magenta) over our ROI (green) for our temporal extent be-
tween 2017-12-07 and 2017-12-13. Two overpasses appeared close to the nadir, two overpasses
far-off nadir, and two overpasses at an intermediate distance. Basemap: NASA GIBBS

Figure 4.24: Smoke over Santa Barbara county from the Thomas fire. Source: NASA worldview.
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footprint, we compute the “ground truth” fractional snow cover fSCAgt as the ratio of pixels

marked as snow-covered to the total number of pixels intersecting the footprint. We then declare

the difference between the fSCA retrieved for the footprint from SPIReS fSCAspires and the

fSCAgt as the estimation error and calculate the mean absolute error (MAE), root-mean-square

error (RMSE), and the variance over all IFOVs.

fSCAgt = nsnow

ntotal

MAE =
n∑

i=0

|fSCAspires − fSCAgt|
n

RMSE =

√√√√ n∑
i=0

(fSCAspires − fSCAgt)2

n

The fSCA errors are displayed in figure 4.25. The three leftmost boxes-and-whiskers are the

errors of fSCA computed using MODIS-grid R0 library values. In the leftmost box-and-whisker,

we assumed the IFOV footprints to be the MODIS grid cells. This scenario is thus equivalent

to the conventional SPIReS approach. In the second box-and-whisker, we assume the IFOV

footprints to be circles with a constant radius. In the third box-and-whisker, we assumed the

IFOV footprints to be ellipses. The following boxes-and-whiskers represent the errors of the

fSCA computed using STARE-based R0 values at increasing spatial resolution and viewing

angle discretization. We can immediately observe the following results:

1) The fSCA estimates accuracy improves when assuming a circular IFOV footprint centered

over the IFOV’s geolocation and improves marginally further when assuming an ellipse

as the IFOV footprint

2) The fSCA estimate accuracy is better for the STARE R0 libraries than for the MODIS

grid R0 libraries. This is also true for quadfurcation level 14, which has a similar spatial

resolution as the MODIS grid.
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Figure 4.25: Results of the fSCA errors. The three leftmost columns are fSCA computed using
the grided R0 library.

3) The fSCA estimates accuracy improves with higher quadfurcation levels and viewing

geometry discretization.

4) The best fSCA estimates are for high spatial resolution (quadfurcation levels 16 and 17)

and a medium number of viewing geometry bins (4). The highest accuracy was achieved

for STARE quadfurcation levels 16 and 17 and 4 viewing geometry bins.

Table 4.4.1 shows the mean absolute error MAE, the RMSE, and the variance of the fSCA esti-

mates for the scenarios named above. (E. H. Bair, Stillinger, and Dozier, 2021) and (Stillinger,

Rittger, et al., 2022) state the RMSE for SPIReS with 0.12 and 0.1, respectively. Those values

approximately match the RMSE of our conventional scenario (0.0915). In terms of MAE, the

best STARE-based accuracy is achieved at a spatial resolution of 16/17 and 4 viewing geometry

discretizations. The MAE is almost halved compared to the conventional grid-based approach.

Table: Mean absolute error, root mean square error, and variance of the fSCA estimates for
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different R0 scenarios. **** | R0 res |R0 view bins | IFOV extent | MAE | RMSE | Variance

| |:————– |———-: |:———– |——-:|——-:|———–:| | grid | 1 | cell | 0.0644 | 0.0915 |

0.0081 | | grid | 1 | circle | 0.0534 | 0.0736 | 0.0051 | | grid | 1 | ellipse | 0.0520 | 0.0718 | 0.0049

| | level 14 | 1 | ellipse | 0.0432 | 0.0632 | 0.0039 | | level 14 | 2 | ellipse | 0.0421 | 0.0621 | 0.0038

| | level 14 | 3 | ellipse | 0.0410 | 0.0620 | 0.0038 | | level 14 | 4 | ellipse | 0.0400 | 0.0611 | 0.0037

| | level 14 | 5 | ellipse | 0.0401 | 0.0616 | 0.0038 | | level 14 | 6 | ellipse | 0.0392 | 0.0609 | 0.0037

| | level 14 | 7 | ellipse | 0.0387 | 0.0606 | 0.0037 | | level 15 | 1 | ellipse | 0.0404 | 0.0616 | 0.0038

| | level 15 | 2 | ellipse | 0.0394 | 0.0608 | 0.0037 | | level 15 | 3 | ellipse | 0.0384 | 0.0608 | 0.0037

| | level 15 | 4 | ellipse | 0.0374 | 0.0600 | 0.0036 | | level 15 | 5 | ellipse | 0.0377 | 0.0605 | 0.0037

| | level 15 | 6 | ellipse | 0.0372 | 0.0600 | 0.0036 | | level 15 | 7 | ellipse | 0.0370 | 0.0602 | 0.0036

| | level 16 | 1 | ellipse | 0.0387 | 0.0607 | 0.0037 | | level 16 | 2 | ellipse | 0.0375 | 0.0598 | 0.0036

| | level 16 | 3 | ellipse | 0.0368 | 0.0597 | 0.0035 | | level 16 | 4 | ellipse | 0.0365 | 0.0596 |

0.0035 | | level 17 | 1 | ellipse | 0.0371 | 0.0591 | 0.0035 | | level 17 | 2 | ellipse | 0.0374 | 0.0603 |

0.0036 | | level 17 | 3 | ellipse | 0.0367 | 0.0603 | 0.0036 | | level 17 | 4 | ellipse | 0.0366 | 0.0602

| 0.0036 |

We interpret the 4 previous findings as follows:

1. Using an IFOV footprint approximation centered around the geolocation is relevant. The

circles and ellipses around the relatively precise geolocation are a better approximation of

the IFOV than cells of a fixed grid. The triangular point-spread function likely causes the

merely marginal improvement of ellipse vs. circle: Most of the information that a sensor

collects comes from the area immediately around the center. Therefore, respecting the

center location is mainly relevant, while the exact shape of the IFOV approximation may

not play a significant role.

2. The MODIS gridding algorithm ‘forces’ there to be one observation per grid cell per day.

On days with far-off nadir overpasses, this leads to oversampling, meaning that a single

observation is associated with multiple grid cells (c.f. figure 4.26). Since each grid cell has
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its own R0, each one of those grid cells will have a different fSCA estimate, but not for

the right reason. If we compute fSCA for IFOVs rather than for grid cells, we circumvent

this error, explaining the immediate accuracy improvement even at STARE quadfurcation

level 14.

3. The R0 library quadfurcation level dictates how closely O and O0 center locations are

matched, while the viewing geometry discretization dictates how closely the footprint

shape of the IFOVs of O and O0 are matched. The closer the footprints match (in terms

of location and shape), the less noise from co-registration appears. Higher quadfurcation,

therefore, result in higher accuracy. We would not expect further gains at quadfurcation

levels higher than the geolocation accuracy.

4. The number of candidates for an ideal snow-free observation during the creation of the

R0 library decreases with increasing resolutions (both in terms of quadfurcation level and

viewing geometry discretization). At too-high resolutions, some bins will end up with

suboptimal R0 spectra (e.g., cloud or smoke contamination), driving down the overall

accuracy.

VIIRS

We conducted the same analysis for the VIIRS surface reflectance data as we did for the MODIS

surface reflectance data. Considering the similar band-passes of MODIS and VIIRS, we also

evaluated the accuracy of fSCA estimates when using VIIRS spectra for R and MODIS R0

spectra. This is interesting as creating an R0 library at high resolutions requires a long data

range, which is not available for new sensors. Thus, the ability to use R0 from a different

sensor than R allows calculating fSCA estimates with SPIReS as soon as a new sensor becomes

available.

Table 4.4 summarizes the accuracy metrics of fSCA estimates from VIIRS observations. The

overall fSCA accuracy is lower for the VIIRS surface reflectance data than for the MODIS
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Figure 4.26: Visualization of oversampling for a far off-nadir overpass. Red stars: geolocations
of IFOV. Red boxes: MODIS grid cells. There are notably far fewer IFOVsthan grid cells.

surface reflectance data. VIIRS' lower spatial resolution may partially explain this. The viewing

geometry discretization does not improve the fSCA accuracy for VIIRS data. This makes sense

considering the quasi-constant spatial resolution of VIIRS IFOVs. For VIIRS, the highest

accuracy is achieved for lower quadfurcation levels than for the MODIS data. Again, this may

be explained by the lower spatial resolution of VIIRS.

Table 4.4: Mean absolute error, root mean square error, and

variance of the fSCA estimates for different R0 scenarios

R0 res R0 view bins MAE RMSE Variance

level 14 1 0.0763 0.1048 0.0107

level 14 2 0.0834 0.1102 0.0116

level 14 3 0.0795 0.1071 0.0111

level 14 4 0.0775 0.1059 0.011
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R0 res R0 view bins MAE RMSE Variance

level 14 5 0.0764 0.1048 0.0107

level 14 6 0.074 0.1028 0.0104

level 14 7 0.0742 0.1037 0.0106

level 15 1 0.0742 0.1048 0.0108

level 15 2 0.0798 0.1072 0.0112

level 15 3 0.0765 0.1051 0.0109

level 15 4 0.0745 0.1044 0.0108

level 15 5 0.0738 0.1038 0.0107

level 15 6 0.0721 0.1043 0.0108

level 15 7 0.0721 0.1052 0.011

level 16 1 0.0743 0.1107 0.0122

level 16 2 0.0779 0.1072 0.0113

level 16 3 0.0757 0.1089 0.0118

level 16 4 0.0742 0.1095 0.012

level 17 1 0.076 0.118 0.0139

level 17 2 0.0775 0.1147 0.0131

level 17 3 0.0801 0.1248 0.0156

level 17 4 0.0812 0.1298 0.0168

We found similar accuracies when calculating fSCA from VIIRS observations using R0 libraries

from MODIS observations. The MAEs range from 0.072 to 0.081.

R0 res R0 view bins AME RMSE Variance

level 14 1 0.0796 0.1064 0.0108

level 14 2 0.0827 0.1090 0.0113

level 14 3 0.0798 0.1063 0.0108
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R0 res R0 view bins AME RMSE Variance

level 14 4 0.0780 0.1048 0.0106

level 14 5 0.0768 0.1039 0.0105

level 14 6 0.0763 0.1035 0.0104

level 14 7 0.0754 0.1028 0.0103

level 15 1 0.0771 0.1048 0.0106

level 15 2 0.0808 0.1078 0.0112

level 15 3 0.0774 0.1047 0.0107

level 15 4 0.076 0.1038 0.0105

level 15 5 0.0747 0.1025 0.0103

level 15 6 0.074 0.1021 0.0103

level 15 7 0.073 0.1014 0.0102

level 16 1 0.0746 0.1029 0.0104

level 16 2 0.079 0.1065 0.011

level 16 3 0.0755 0.1032 0.0105

level 16 4 0.0745 0.1027 0.0104

level 17 1 0.072 0.1005 0.0099

level 17 2 0.0771 0.1049 0.0108

level 17 3 0.0738 0.1022 0.0103

level 17 4 0.0731 0.1019 0.0103

4.4.2 Time series Plausibility

Figure 4.27 shows a time series of fSCA computed for a grid cell at Reds Lake and CUES using

a MODIS-grid R0 library. Two things are immediately observable:

1) There are substantial fluctuations in the fSCA. These fluctuations are not plausible and

148



Improving fractional snow-coverd area estimations through increased spatial fidelity Chapter 4

thus are to be interpreted as noise27.

2) The fSCA values were notably larger than zero for the summer months. However, there

was no snow at the two locations for the late summer months - neither in late 2021 nor

2022.

While part of the noise certainly is caused by uncertainties in the atmospheric corrections, cloud

cover and shadow, or smoke presence, a significant part of the noise in the time series is induced

by the IFOV footprint variations, the spatial mismatching of R and R0, and oversampling.

In figure 4.28, we display the fSCA computed for a level 15 trixel at Reds Lake, and in figure

4.29 for a level 15 trixel at CUES for MODIS and VIIRS. We computed the fSCA in figure 4.28

and 4.29 with the STARE R0 library at level 17 and 3 viewing geometry bins. For comparison,

we added the snow depth measured at CUES to identify snow precipitation events. Note that

we do not expect the snow depth to be proportional to the fSCA at Reds Lake or CUES.

However, they are correlated. The timing of the snow accumulation events closely matches the

increases in fSCA. We also note that the fSCA during the summer months is closer to zero than

for the gridded data in figure 4.27. This is likely caused by a better spatial match of R and R0.

The remaining noise in the summer months may partially be caused by wildfire smoke. The

difference between the MODIS fSCA and the VIIRS fSCA can be explained by their differing

spatial resolution of 500 m vs. 750 m. Overall, compared to figure 4.27, we traded off temporal

resolution for location accuracy, leading to a significantly less noisy signal.

The time series in figure 4.28 and 4.29 include all IFOVs whose geolocation fell into the respective

trixels. The blue dots in figure 4.30 are the geolocations of the IFOVs associated with the grid

cell around Reds Lake used for figure 4.27. The red and green dots are the geolocations of the

MODIS and VIIRS IFOVs that fell into the level 15 trixel used for figure 4.28.

We did not filter out any observations subject to their sensor zenith angle. Figure 4.28 and 4.28

27Whether to consider the fluctuations noise or errors depends on the point of view. If we assume that the
location precision is irreversibly lost due to gridding, we may call the fluctuations noise. If we on the other side
assume that gridding unnecessarily coarsened the resolution, we would conclude the fluctuations to be errors.
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Figure 4.27: SPIReS fSCA for a single grid cell at Reds lake (top) and CUES (bottom). Reds
Lake: x = 1373; y = 566. CUES x = 1379; y = 565 of tile H08V05
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Figure 4.28: SPIReS fSCA for a level 15 trixel at Reds lake.

Figure 4.29: SPIReS fSCA for a level 15 trixel at CUES.
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Figure 4.30: A grid cell (blue parallelogram) and all IFOVgeolocations associated with it for
the snow season 2021-2022 (blue dots) around Reds lake. The red triangle is a level 15 trixel.
The red dots are the MODIS IFOVsthat fell into this trixel, and the green dots are the VIIRS
IFOVsthat fell into it for the 2021/2022 snow season.

thus contain IFOVs with significantly larger footprints than others. However, the IFOV centers

were all at approximately the same location. Since MODIS and VIIRS have a triangular sensor

response function, it may be assumed that the majority of the information of any given pixel

does come from the area close to the center location, explaining the smoothness of the curves

despite possibly significant differences in the IFOV footprint sizes.

We generated the previous smooth fSCA time series by pegging the location to a sufficiently

small extent. However, more often than not, we are interested in the fSCA of an arbitrarily

shaped region, such as a control site, a meadow, or a lake. Using STARE, we may define such

regions as a set of trixels. STARE makes it easily possible to find all observations that intersect

this region, regardless of at what resolution the observations were made.

Figure 4.31 again displays the MODIS cell around Reds lake. Additionally, we added the ap-

proximate extent of the meadow around the lake and all MODIS and VIIRS IFOV geolocations

intersecting this meadow. We then calculated the fSCA for all those observations and resampled

them to weekly values. The resulting signal is displayed in 4.32. For comparison, we also plot-

ted the fSCA of the grid cell resampled to weekly values. The signal for the combined MODIS
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Figure 4.31: Meadow around Reds Lake represented by trixel cover (red triangles). All MODIS
and VIIRS observations geolocations that fell into this Region are marked as magenta and
yellow dots.

- VIIRS observations is smoother and generally follows the timing of the snowing events. Also,

note that the fSCA estimates drop closer to 0 than they do for the gridded fSCA estimates.
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Figure 4.32: fSCA timeline for a complex region for combined MODIS and VIIRS observation
(red) and an adjacent grid cell (blue). Both curves have been resampled to 7 days. Note that
the fSCA estimates stay well above 0.1 in the summer months for the cell estimates.

154



Improving fractional snow-coverd area estimations through increased spatial fidelity Chapter 4

4.5 Conclusions and outlook

Since SPIReS requires finding a spatially coinciding snow-free reference spectrum to estimate

the fSCA of an observation, it is sensitive to the accuracy of spatial matching of observations.

However, the spatial discretization of gridded data disallows for accurate spatial matching.

Further, gridded data disallows for a precise evaluation of the estimation accuracy. Gridded

data simply does not allow us to determine for what exact area an fSCA estimation was done.

Therefore, finding the ground truth data that precisely intersects an observation is impossible.

Using STARE, we were able to work directly with ungridded swath data. By forgoing gridded

data and working directly with ungridded swath data, we were able to exploit the full spatial

fidelity of MODIS surface reflectance data. This allowed us to find snow-free observations that

more closely match the area and viewing geometry of observations for which the fSCA are

to be estimated. Further, we defined approximate footprints of IFOVs, which enabled us to

find the ground truth data that actually intersect the footprints, allowing us to improve the

accuracy evaluation. The improvements almost halve the mean absolute error in the fSCA

estimations. We further demonstrate that noise in fSCA timeseries can be reduced by pinning

down the spatial location and thus trading spatial resolution for temporal resolution. This may

be considered a more physic-based smoothing than post-hoc artificial temporal smoothing.

Further efforts will focus on implementing STARE’s temporal functionality in the base library

and exposing it to pystare, STAREMaster py, and STAREPandas. Currently, only simple func-

tions to convert between Julian dates and STARE temporal representation (which is based on

a hierarchical calendrical partitioning (K.-s. Kuo et al., 2021)) are implemented. Functionality

to convert between other temporal representations and methods to perform temporal coincide

evaluations need to be implemented to harmonize spatiotemporal data in both spatial and

temporal dimensions. Further, efforts have to be devoted to integrating other datasets, such as

surface reflectance data from NOAA20 VIIRS, Landsat, MODIS aqua, and GOES. Larger ROIs

with different topography should be processed to evaluate the influence of the topography on
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the results. Finally, more research needs to be carried out to understand the relation between

fSCA estimate accuracy and spatial matching of R0, viewing geometries, oversampling, and

specular effects.
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Conclusions

File-centric data analysis is a paradigm in which files are the smallest unit of data. While

file-centricity simplifies the task of archiving and distributing data, it pushes the burden of

extracting, transforming, and loading (ETL) data before performing any data analysis to the

data users. Data-centric data analysis, on the other hand, is a paradigm in which the smallest

unit of data are individual observations (e.g., instances/objects in some form of a schema), and

data thus are stored in some form of a database and accessed by some form of query.

I addressed two questions that need to be solved to allow data repositories and data users to

move toward data-centricity:

In chapter 2, I described Open-source Project for a Network Data Access Protocol (OPeNDAP)

Citation Creator (OCCUR); a system providing identity and citations to data in a data-centric

world. Identifying data in a data-centric world is different from identifying data in a file-centric

world: In a file-centric world, data is accessed through, e.g., file paths or Uniform Resource

Locators (URLs), and files themselves can be understood as the identities of the data they

contain. In a data-centric world, the notion of files does not exist. Data is instead accessed

through queries; therefore, we must be able to identify the result sets of queries. OCCUR allows

us to identify data that is queried through OPeNDAP. However, it is intended to be a reference
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implementation that can be adapted to any other data distribution system in a data-centric

world. That is, any data accessed through some form of a query can be identified by a system

similar to OCCUR.

In chapter 3, I provide a solution to harmonize spatial data. Harmonizing data means ensuring

that things that are the same are referred to as the same. Only if data is harmonized can

we associate data from different datasets and perform data analysis across multiple datasets.

Harmonizing data, therefore, is a requirement to void the necessity of ETL and fully lever-

age the benefits of data-centricity. In the context of spatial data, harmonization means that

there needs to be one unified method to express location. The concept of Spatio-Temporal

Adaptive-Resolution Encoding (STARE) provides such a unified method, and the STARE soft-

ware collection implements the STARE concept. Any spatial object can be represented within

STARE. Further, evaluating spatial relations between spatial objects represented in STARE

representation is cheap, allowing one to associate different datasets by their location. While

the world may remain in a transitional phase between file-centricity and data-centricity for

some time, the STARE software collection provides a bride toward data-centric spatial data

analysis. With its rich capabilities to load and convert conventional spatial representation for-

mats, the STARE software collection provides a method to harmonize any spatial data, e.g., at

the beginning of a data processing pipeline, and thus allow for a data-centric workflow.

In chapter 4, I provide an example of how scientific data analysis of remotely sensed data can be

performed in a data-centric world and highlight the benefits of performing spatial data analysis

on spatially harmonized data with the STARE software collection. Previous methods to har-

monize spatial data have been based on location discretization and data sampling using regular

grids. Those methods fail us when working with data collected at varying spatial resolutions

since they require us to re-grid and re-sample data, both of which likely entail suboptimal com-

promises. Further, the location discretization reduces data’s spatial fidelity, resulting in noise

in derived products. By working with data that has been harmonized through STARE instead,

I avoided both of these problems. By avoiding spatial discretization, I increased the accuracy
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of an algorithm for fractional snow cover estimations and reduced the noise in the time series of

those fractional snow cover estimations. By having all input data harmonized through STARE,

I could effortlessly spatially associate grid cells, regions of interest, and individual observations

from WorldView Legion, Moderate Resolution Imaging Spectroradiometer (MODIS), and Vis-

ible Infrared Imaging Radiometer Suite (VIIRS). Other algorithms and data analysis efforts

likely will benefit from working with data that has been spatially aligned through STARE,

both in terms of simplifying the ETL process and in terms of using the full spatial fidelity of

observations.
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