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Abstract 

 

A correspondence between solution-state dynamics of an individual protein and the 

sequence and conformational diversity of its family: Implications for improving 

protein design 

 

 Conformational flexibility is key to the function of many proteins and is thus an 

important focus for effective computational modeling. Sampling side-chain degrees of 

freedom has been an integral part of many successful computational protein design 

methods, and backbone flexibility is increasingly being used in these efforts. The 

predictions of these approaches, however, have not been directly compared to 

experimental measurements of side-chain and backbone solution-state conformational 

variability. Here, we describe methods for validating side-chain and backbone flexibility 

modeling by comparing to two sets of solution state Nuclear Magnetic Resonance 

(NMR) measurements: side chain relaxation order parameters 17 proteins totaling 530 

data points, and backbone amide residual dipolar couplings (RDCs) of ubiquitin in 23 

alignment media. The model for backbone flexibility that we use is the "Backrub" 

method; a Monte Carlo protocol combining rotamer changes with motions inspired by 

alternative conformations observed in sub-Angstrom resolution crystal structures. First, 

for modeling side chain conformational variability, we use a Monte Carlo approach 

comparing sampling of side chains with and without backbone flexibility. Our results 

indicate that the fixed-backbone model performs reasonably well but including 

backbone flexibility leads to significant improvements in modeling side-chain order 
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parameters. Second, we focus on modeling backbone flexibility and we present an 

ensemble of ubiquitin in solution that is created by first sampling conformational space 

without experimental information using “Backrub” motions, and then refining with 

residual dipolar coupling measurements (RDCs) to select the final members of the 

ensemble. We show that the ubiquitin Backrub ensemble is simultaneously consistent 

with conformational dynamics reflected in the RDCs, the conformational variability 

present in ubiquitin complex structures, and characteristics of the conformational and 

sequence diversity of ubiquitin homologs. Our ensemble representation thus supports an 

overall relation between native-state protein dynamics and evolutionarily sampled 

sequence space. The presented insights into flexibility and the methods we have 

developed can be applied to numerous modeling tasks, including improved modeling of 

sequence diversity in protein design simulations, prediction of correlated motions within 

proteins, and design of sequence libraries for experimental selection. 
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Chapter 1: Introduction 
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This document is the culmination of my studies between the dates July 1, 2003 

to December 12, 2008 towards my Ph.D. Since it is probable that only a small group of 

people will read this document, and also likely that the number of readers will decrease 

exponentially at each page, I have decided to organize this manuscript in a corresponding 

manner. First, I will provide a background of molecular biology for the non-scientific and 

non-biologist reader. This will include a broad introduction to the role of proteins in the 

processes of life and a description of protein properties, including the focus of my 

research: protein flexibility. Second, oriented now towards the molecular biologist reader, 

I will provide an introduction to the method and applications of computational protein 

design. This section will include some of the notable successes of design, as well as some 

of the limitations with regards to modeling protein flexibility. Finally, I will describe the 

motivation for the approaches used in the published article presented in chapter 2 and the 

manuscript in preparation presented in chapter 3. 

 

 Background for non-scientists and non-biologists 

 Despite the incredible diversity of life forms on our planet they share some basic 

common structures. One of these structures is the cell, the smallest living entity (with the 

debatable exception of viruses). Given the right nutrients, single-celled organisms (such 

as E. coli) and cells from multi-cellular organisms (such as humans) are capable of living 

on their own and of replicating to form copies of them. Cells vary significantly between 

the different branches of life and their sizes vary as well: ranging from 1 micron for some 

bacteria to 1 millimeter for some eukaryotic cells. 
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 These smallest living entities are made of many different components: organelles 

such as energy producing chlorosomes in some prokaryotes and mitochondria and 

chloroplasts in eukaryotes, the cytoskeleton which provides structure and enables motion 

in some cells, the plasma membrane which keeps the integrity of the contents of the cell 

with respect to the outside environment, and many others too numerous to list here. These 

functional components are made up of even smaller pieces including small organic 

molecules, metal ions, and macromolecules. Of the macromolecules there are three main 

types, and their interactions are concisely summarized with the Central Dogma of 

molecular biology. DNA stores the genetic code with A’s, C’s, G’s and Ts, and is 

transcribed into RNA. RNA can perform functions on its own or serve as a working copy 

of the genetic code for a specific gene and be translated into proteins. Proteins are the end 

product in this simplified description of the flow of information from the genetic code, 

and they are the molecules that perform most of the coordinated, complex behaviors 

occurring within the cell.  

 Proteins can range in size dramatically with masses ranging from thousands of 

Daltons (1 Dalton is approximately the mass of 1 Hydrogen atom) to millions of Daltons. 

They are generally composed of 20 types of amino acids whose identities and order 

comes from the DNA genetic code. For many proteins, the sequence of amino acids 

‘folds’ like magnetic beads on a string in a collapsed three-dimensional shape, a shape 

that varies considerable across the universe of proteins. (Figure 1-1) 
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Figure 1-1. The diversity of protein shape and sizes.  

 Molecular surface representation of an immunoglobulin G (an antibody), hemoglobin, insulin (a 

hormone), adenylate kinase (an enzyme), and glutamine synthetase (an enzyme). (Licensed under Creative 

Commons Attribution ShareAlike 2.0) 

 

 

 These arrangements of atoms enable proteins to coordinate an incredible diversity 

of functions. Some proteins such as kinesin act as miniature motors, converting energy 

from ATP into a walking-like powered directional movement for the transportation of 

cargo. (Figure 1-2) Actin can generate force by forming filaments that either bundle into 

larger filaments or cross-link into a web, both of which can change the surface shape of 

cells, a process important in the pursuit and capture of bacteria by neutrophils. Another 

class of proteins, the ion channel, is embedded in hydrophobic membranes and provides a 

conduit for molecules and atoms between the many of the different compartments of the 

cell and the outside environment. One such ion channel is the voltage-gated potassium 

channel, which selectively allows the passage of potassium ions into or out of the cell 

while restricting the passage of very similar sodium ions. As the voltage changes during 

neuron firing, these channels activate and deactivate in a precise manner to give the 

action potential the proper shape that is needed for normal neurological activity. Another 
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large class of proteins, including GTPases, are involved in signal transduction pathways 

of cells, processing information from external or internal stimuli by interacting with other 

signal transduction proteins and effecting changes in the cell such as the morphological 

changes performed by actin. Enzymes form yet another diverse class of proteins. These 

molecules catalyze chemical reactions, facilitating the chemical conversion of substrate 

molecules to products. Enzymes catalyze an incredible diversity of chemical reactions 

including the break down of carbohydrates in food into simple sugars and the assembly of 

very large polymers of sugar molecules for insertion into the outer cell wall of plants and 

many bacteria. 

 

Introduction to computational protein design and the importance of flexibility 

 As detailed above, proteins are capable of many varied functions ranging from 

catalysis, to relaying information, to maintaining control over ion concentrations, to 

generating force. These processes are made possible because of the diverse three-

dimensional structures of proteins, which are enabled by combining amino acids in 

different linear combinations. These processes are also possible because these three-

dimensional structures are not rigid formations, but flexible entities that change 

conformation in concerted ways, either on their own or as a result of their interaction with 

different effecting forces such as physical interaction with other molecules. 
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Figure 1-2. Structures of proteins with varied functions.  

 (a) The two motor domains of a kinesin molecule attached to its stalk. (b) 12 glutamine synthetase 

molecules come together in the active form of the enzyme. (c) Open and closed conformations of a voltage-

gated bacterial potassium channel. (Images are from the public domain.) 

 

 This wide variety of possible protein functions made accessible by changes in the 

amino acid sequence has been used by evolution to create specific combinations of 

proteins that work together in a specific organism to achieve specific functions. The 

diversity of living organisms and the proteins contained within them are evidence of this 
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idea. There are recent examples as well of this evolution, for example, the acquired 

ability of “superbugs,” such as methicillin-resistant Staphylococcus aureus (MRSA), to 

defend against antibiotic drugs. 

Given that evolution has used this programmable amino acid code to generate a 

diversity of functions that aid in the survival of organisms, it is not surprising that this 

programmability can be applied in a rational way to engineer proteins for other purposes, 

a field known as protein engineering. One example of this is the discovery of a protein 

found in cold-water fish known to disrupt the formation of ice crystals at very low 

temperatures. This protein has been modified and applied in commercial products such as 

‘Double Churn’ ice cream to increase its ‘creaminess’. Numerous other examples of 

protein engineering exist and different methods are used to enable the engineering of new 

functions. 

One important tool for protein engineering is computational protein design, which 

involves using structural modeling to guide in the selection of amino acid sequences that 

have a target structure or function. This is a relatively new field that began perhaps with 

the insight of Ponder and Richards in 1987 
1
 that there are a limited number of side chain 

conformations (‘rotamers’) that could be enumerated. Since then there have been 

numerous successes that highlight the potential of computational protein design. 

Kuhlman et al. used design methods to create a novel protein fold not seen in nature and 

verified with X-ray crystallography that the model of the structure was similar within 

atomic-level accuracy to the experimental structure. 
2
 Many studies have used design to 

increase thermodynamic stability or to engineer binding to small molecules such as the 

nerve agent soman and TNT. 
3; 4

 Though still a very difficult problem, the redesign of 
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protein-protein interaction specificity has implications for rewiring the control of 

cellular processes and over the years this process has had more and more successes. In 

addition, in the past few years there have been several successful designs of catalytic 

activity into non-catalytic proteins, 
5; 6

 broadening the applications of computational 

design into the sphere of engineering of enzymes and biosynthetic pathways. 

These successes point towards a future for computational protein design in the 

engineering of many different biological functions. Using a variety of approaches, 

enzymes have been engineered with enhanced activity, biosynthetic pathways have been 

engineered to produce a low-cost Malarial drug, and several projects are engineering the 

breakdown of cellulosic plant matter to form biofuels. These efforts are not yet guided 

strongly by computational protein design but there are many potential roles for structure-

based “rational” design. 

 

The typical computational design process starts with taking an input structure, 

defining which residues to allow to change sequence and which to allow to relax their 

structure in response. Subsequently an optimization procedure is run which allows 

changes to amino acid sequence and side chain conformations but keeps the peptide 

backbone fixed. This latter assumption is one of convenience; changing the backbone 

results in more differences from the input structure, increasing the potential for errors. 

Optimizing the side chain conformations on a fixed backbone has been shown to be a 

tractable computational problem whereas changing the backbone results in a large 

increase in computational complexity, and the correct strategy to choose for making 

backbone conformational changes is not self-evident. However, ignoring backbone 
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changes misses out on a large component of protein flexibility and an important 

mechanism for proteins to adapt to amino acid mutations.  

Protein flexibility is a key property of proteins that enables many of their diverse 

functions, and has been increasingly addressed in computational protein design method 

development in recent years. The methods used include Molecular Dynamics (MD), 

small dihedral angle changes, normal mode analysis, parameterized structural changes, 

and various methods inspired by conformational changes observed in X-ray crystal 

structures. These approaches, have been applied and evaluated by their ability to generate 

designed proteins with the desired functions; however, they have not been directly 

compared to measurements of protein flexibility in solution, raising the questions of 

which of them is the most appropriate for use in design and whether improvements can 

be gained by modeling protein flexibility as it occurs in solution.  

My approach to these questions has been two-fold: to learn what I can about the 

structural details underpinning the solution-state flexibility of proteins, and to apply this 

knowledge to improve protein design. I have chosen to use as my mechanism of 

backbone motion the Backrub mechanism. Backrub conformational changes were 

frequently observed in ultra-high resolution crystal structures to facilitate correlated 

changes of backbone and side chain conformations. Subsequently, the method was 

generalized to allow changes of internal peptide sequences of arbitrary length and 

incorporated it into a protocol that statistically applied the move across all parts of the 

protein. 
7
 Briefly, the move consists of the selection of a random peptide segment in the 

protein of interest, and a rigid body rotation of atoms in the peptide segment about the 

endpoint C-alpha atoms.  
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This method was of interest for at least two reasons. First, it focused the 

conformational changes to atoms close together in Euclidian space. This is a large 

advantage from a computational point of view because it means each change is quick to 

perform and there are no structural consequences in distant regions. Second, it was shown 

in the original Backrub paper 
8
 that the move facilitated placement of alternative side 

chain positions, a property that could prove advantageous during optimization of different 

amino acids during computational design. 

  

Motivation for the papers in Chapters 2 and 3 

 The question I pursued in my first publication (Chapter 2) is ‘what model of 

flexibility is necessary to best predict the amplitude and diversity of side chain 

flexibility?’  I tested three models: (i) side chain flexibility near the native rotamer (i.e. 

the native side chain conformation) with no backbone flexibility, (ii) side chain flexibility 

in multiple rotamers with no backbone flexibility, and (iii) side chain flexibility in 

multiple rotamers with backbone variation introduced through application of the Backrub 

method. I tested these different models of motion against NMR relaxation methyl side-

chain order parameters, which measure the amplitude and diversity of side chain motions 

on a timescale from picoseconds to nanoseconds. The dataset used was 530 methyl 

groups in 17 proteins, providing a broad description of many different folds of proteins 

and packing environments. 

 In the second manuscript (Chapter 3), I focused on improving modeling of 

backbone conformational variability. Residual dipolar coupling (RDC) experiments have 

recently been applied to proteins and provide a uniquely detailed window into the 
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orientation and motion of peptide planes on a timescale ranging from picoseconds to 

milliseconds. I focused on ubiquitin as a model for study because of the amount of data: 

23 high-quality datasets of RDC measurements.  

This study first proposes and attempts to answer the following hypothesis:  

conformational changes inspired by observations from X-ray structures can sample the 

solution state dynamics of a protein. I test this question in two steps; first by generating 

structures using Backrub conformational sampling and seeing whether ensembles of these 

structures can match the RDCs. Second, by comparing the pattern of conformational 

variability of the Backrub-generated ensembles with the pattern of conformational 

variability of an ensemble of X-ray structures of ubiquitin. 

The study in Chapter 3 also pursues a hypothesis motivated by the success in 

Chapter 2 of using Backrub ensembles to improve modeling of side chain order 

parameters and motivated by the successful use of Backrub sampling to improve 

prediction of mutant side chain conformations. This second hypothesis is whether there 

exists a link between the conformational diversity of the dynamics of a single protein and 

the dynamics of its natural family. I test this in two steps: First, I compare the variability 

in a Backrub ensemble fit to the RDC data (used as a proxy for the dynamics of a single 

sequence) to the conformational diversity of an ensemble of 20 structures from different 

members of the UBQ subfamily. Second, I use the sequences accessible to a structure or 

structural ensemble as a proxy for its conformational properties. I compare the sequences 

compatible with the RDC-fit Backrub ensembles with the sequences in the natural UBQ 

subfamily, looking to see if the Backrub ensembles fit to RDCs are compatible with the 

natural subfamily sequence diversity. 
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 The following chapters detail my work investigating the conformational 

variability of proteins. My aims in these studies were both towards a more complete 

understanding of protein flexibility and its role in protein function, and the application of 

these insights to improve modeling of macromolecules. These aims are intertwined, and I 

urge the reader to keep them in mind. 
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Chapter 2: A simple model of backbone flexibility 

improves modeling of side-chain conformational variability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been previously published. 
9
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ABSTRACT 

 The considerable flexibility of side-chains in folded proteins is important for 

protein stability and function, and may have a role in mediating allosteric interactions. 

While sampling side-chain degrees of freedom has been an integral part of several 

successful computational protein design methods, the predictions of these approaches 

have not been directly compared to experimental measurements of side-chain motional 

amplitudes. In addition, protein design methods frequently keep the backbone fixed, an 

approximation that may substantially limit the ability to accurately model side-chain 

flexibility. Here, we describe a Monte Carlo approach to modeling side chain 

conformational variability and validate our method against a large dataset of methyl 

relaxation order parameters derived from nuclear magnetic resonance (NMR) 

experiments (17 proteins and a total of 530 data points). We also evaluate a model of 

backbone flexibility based on Backrub motions, a type of conformational change 

frequently observed in ultra-high-resolution X-ray structures that accounts for correlated 

side chain backbone movements. The fixed-backbone model performs reasonably well 

with an overall rmsd between computed and predicted side-chain order parameters of 

0.26. Notably, including backbone flexibility leads to significant improvements in 

modeling side-chain order parameters for ten of the 17 proteins in the set. Greater 

accuracy of the flexible backbone model results from both increases and decreases in 

side-chain flexibility relative to the fixed-backbone model. This simple flexible-backbone 

model should be useful for a variety of protein design applications, including improved 

modeling of protein–protein interactions, design of proteins with desired flexibility or 

rigidity, and prediction of correlated motions within proteins. 
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INTRODUCTION 

 As suggested by Frauenfelder many years ago it is becoming increasingly 

recognized that representing the “native” state of a protein using a single conformation, 

while useful for the analysis of many protein properties, is a substantial simplification 
10

. 

A more realistic but also more complex description views proteins as conformational 

ensembles in both the unfolded 
11; 12; 13

 and folded states 
14

. In particular, the ability of 

side-chains to adopt several conformations in non-surface positions in folded proteins has 

received recent attention 
14; 15; 16

 and it has long been known that aromatic residues are 

mobile in protein cores 
17

. As a consequence of the development of new experimental 

techniques to characterize side-chain conformational variability, such as nuclear magnetic 

resonance (NMR) methyl spin relaxation experiments, considerable amounts of data are 

now available for different types of methyl-group containing side-chains 
16

. 

 Interpretation of side-chain methyl relaxation experiments has led to the 

suggestion that changes in side-chain conformational entropy can contribute substantially 

to the free energy of binding 
18; 19

.  More accurate modeling of side-chain conformational 

flexibility may also be important for structure-based drug design, when a target protein 

changes its binding site in response to binding different small molecules 
20

. Work by 

Ranganathan and others 
21; 22; 23; 24; 25; 26; 27

 has provided intriguing evidence for the 

existence of “communication pathways” in proteins to facilitate the transmission of 

signals between allosteric and active sites. NMR experiments on several systems suggest 

that side-chains may play an important role in mediating this conformational coupling 
28

.  

 Given the importance of side-chain conformational variability in binding and 

allostery, modeling this flexibility may lead to considerable improvements in the 
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characterization and design of functional proteins and protein interactions. Several 

representations of side-chain flexibility incorporating multiple higher-energy 

conformations have been used in prediction and design
29; 30; 31; 32

. However, the 

predictions resulting from models commonly used in protein design simulations have not 

been directly compared to experimental data on the amplitude of side-chain motion. 

Moreover, even when side-chain flexibility has been explicitly considered, the protein 

backbone is generally held static in the crystal structure conformation, an approximation 

that likely leads to inaccuracies modeling side-chain conformational freedom.  

 In contrast, molecular dynamics (MD) simulations model backbone 

conformational changes and have been compared to side-chain dynamics data, yielding 

reasonable agreement with measured side-chain order parameters for several proteins 
30; 

33; 34; 35
.  However, it was noted that estimating order parameters from MD trajectories is 

difficult for side-chains that make few rotameric transitions during the simulation, 

although sampling was improved using replica exchange MD 
33

. While these MD-based 

methods achieve considerable accuracy, they are generally computationally prohibitive 

for use during protein design, which seeks to simultaneously search in sequence and 

structure space for low energy amino acid combinations and conformations.  

In this paper, we describe a Monte Carlo-based approach to model side-chain 

conformational variability in protein design simulations and validate our method on a 

dataset of 17 proteins with 530 methyl relaxation order parameters. We find that motions 

within the native rotamer well are not sufficient to explain the range of experimentally 

observed side-chain relaxation order parameters. While a multiple-rotamer Monte Carlo 

model of side-chain conformational variability performs reasonably well for some 
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proteins (with correlation coefficients between calculated and experimental order 

parameters above 0.6 for 8 out of the 17 proteins in the dataset), prediction accuracy is 

limited by the fixed backbone approximation and the use of an implicit solvent model.  

Using the same dataset, we also evaluate a simple representation of backbone flexibility 

that allows correlated backbone and side-chain motions inspired by conformational 

changes observed in ultra-high resolution crystal structures 
8
.  Notably, we find that this 

simple model of correlated backbone-side-chain (“Backrub” 
8
) motions  leads to 

significant overall improvements in modeling side-chain order parameters in our dataset. 

Incorporating backbone flexibility using Backrub simulations lowers the rmsd between 

computed and predicted side-chain order parameters for 10 of the 17 proteins, has no 

significant effect on the rmsd for 5 of the other proteins, and increases the rmsd for 2 

proteins. Our results suggest that this flexible backbone protocol is a useful method to 

sample near-native conformational space. This approach could have substantial impact on 

many applications, including the computational design of proteins with new functions 

requiring flexibility.  

 

 

RESULTS AND DISCUSSION 

Rationale and Computational Strategy 

 We aimed to develop and assess a simple model for fast timescale protein side-

chain flexibility that can be applied efficiently in protein structure prediction and design 

simulations.  The major sources of experimental data for model evaluation were methyl 
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relaxation side-chain order parameters.  These measurements capture the amplitude of 

side-chain motions on the picosecond to nanosecond timescale and range from 0 

(flexible) to 1 (rigid). Our dataset of 17 proteins containing 530 experimentally 

characterized methyl groups is shown in Table 2-1. We tested three different models with 

increasing complexity (Figure 2-1a): (1) The first model evaluates the extent to which 

simulations only allowing side-chain motions within the native rotamer well recapitulate 

experimentally measured side-chain order parameters. (2) The second model allows more 

extensive side-chain flexibility by using Metropolis Monte Carlo simulations to sample 

side-chain conformations from multiple rotameric states. (3) The third model tests the 

effect of including backbone flexibility by calculating side-chain order parameters from 

side-chain Monte Carlo simulations performed over an ensemble of backbone 

conformations. These ensembles were generated using backbone motions inspired by 

conformational variability observed in ultra-high resolution protein structures (Figure 2-

1b and c) 
8
. All 3 models sample side-chains by varying chi dihedral angles while side-

chain bond lengths and bond angles are unchanged (see Methods).  
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Table 2-1. The dataset of proteins modeled in this paper.  

  

# 

methyls PDB Chain Minimized Ligand Class 

a3D a
 15 2A3D _ y n Alpha 

albp
 b
 28 1LIB A n n Beta 

calmodulin 
c
 36 1AHR A n y Alpha 

Cdc42hs 47 1AN0 A n y Alpha/Beta 

cytochrome-c2-holo
 d
 31 1C2R A n y Alpha 

Eglinc 17 1CSE I n n Alpha/Beta 

flavodoxin-holo e
 56 1OBO A n y Alpha/Beta 

FNfn10 f
 35 1FNA _ n n Beta 

fyn-sh3 g
 12 1SHF A n n Beta 

gb1 h
 10 1PGB _ n n Alpha/Beta 

hiv-protease-holo i
 56 1QBS dimer n y Beta 

mfabp j
 42 1HMT _ n n Beta 

NTnC k
 26 1AVS A n n Alpha 

plcc-sh2-free l
 27 2PLD A y n Alpha/Beta 

proteinL m
 20 1HZ6 A n n Alpha/Beta 

TNfn3 n
 40 1TEN A n n Beta 

ubiquitin 32 1UBQ A n n Alpha/Beta 

Totals 530      
a
 a3D: the de novo designed three-helix bundle !3D 

b
 alpb, adipocyte lipid-binding protein 

c
 calmodulin: Ca

2+
-loaded calmodulin

 

d
 cytochrome-c2-holo: cytochrome c2 bound to its heme prosthetic group 

e
 flavodoxin-holo: flavodoxin bound to flavin mononucleotide 

f
 FNfn10: the tenth fibronectin type III domain from human fibronectin

 

g
 fyn-sh3: the SH3 domain in human Fyn 

h
 gb1: the B1 domain from protein G

 

i
 hiv-protease-holo: HIV-1 protease homodimer bound to the inhibitor DMP323 

j 
mfabp: muscle fatty acid-binding protein 

k 
NTnC: the N-terminal domain of chicken skeletal troponin C 

l
 plcc-sh2: an SH2 domain of phospholipase C-gamma1 

m 
proteinL: the B1 domain of protein L

 

n 
TNfn3: the third fibronectin type III domain from human tenascin 
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Figure 2-1. Computational strategy and motional models.  

 (a) Flowchart of the methods used for the 3 models of motion. Schematic of (b) dipeptide and (c) 

tripeptide “Backrub” conformational changes used to model backbone changes in Model 3.  The Backrub 

motion consists of a rigid body rotation of all atoms between two 2 C atoms, about the axis connecting the 

C atoms. This rotation is followed by optimization of bond angles involving the endpoint C atoms (see 

Methods). 
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Side-chain Monte Carlo simulations allowing motions only around the native 

rotamer (Model 1) 

 We first compared experimental (S
2

exp) and computed (S
2

calc) side-chain order 

parameters using the simplest approximation of side-chain conformational variability, 

where motions are only allowed within the rotamer well of the side-chain conformation 

observed in the crystal structure (Model 1, see Figure 2-1a for a schematic and Methods 

for details). Figure 2-2 shows that Model 1 fails to recapitulate the range of order 

parameters observed experimentally. (See Table 2-S1 for statistics on all proteins in the 

data set.)  The methyl groups mostly have high values for S
2

calc, whereas S
2

exp values 

cover a larger range with both high and low values. The finding that native rotamer side-

chain motions do not represent the range of experimentally observed side-chain motions 

also holds when sampling on multiple backbones but still restricting side-chain motions 

to be within one rotameric state (referred to as “Model 1*” in Figure 2-2; white boxes), 

sampling conformers in wider rotamer wells (3 standard deviations around the Dunbrack 

mean chi 1 and 2 angles) or increasing the leniency towards steric clashes by ‘softening’ 

the Lennard-Jones repulsive term in the energy function (see Methods; data not shown). 

This result agrees with previous work calculating side-chain order parameters from MD 

methods 
14; 30; 33

 and from a toy model of side-chain motion 
30

. Thus, rotamer transitions, 

included in Models 2 and 3 below, are necessary to explain measured side-chain order 

parameters, even for many buried residues.  
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Figure 2-2. Side-chain motions within the native rotamer well do not sample the conformational flexibility 

observed in methyl relaxation experiments.  

 Shown are boxplots representing the distributions of order parameters for C and C methyl groups 

from different models and from the experimental measurements. White boxes: native rotamer motions on a 

fixed backbone (Model 1) or on an ensemble of backbones (generated using Backrub Monte Carlo 

simulations that kept the side-chains in their native rotamer well, Model 1*). Grey boxes: results from 

Model 3 simulations, using an ensemble of backbone conformations and allowing multiple rotameric states. 

Black boxes: experimental relaxation measurements. The boxes represent the middle 25-75% of the values; 

the horizontal bar inside the box is the median value; the “whiskers” extending out of the box cover the 

~1.5 times the range of the box (or up to the furthest data point); and dashes outside of the whiskers 

represent outliers. 
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Side-chain Monte Carlo simulations on a fixed-backbone allowing rotamer 

transitions (Model 2) 

 Table 2-2a summarizes the results of side-chain Monte Carlo simulations 

employing Model 2.  As in Model 1, the simulations were carried out on a fixed 

backbone, but side-chains were allowed to change rotameric conformations during the 

simulations. The results for each protein are evaluated by the correlation coefficient (r) 

between experimental (S
2

exp) and calculated (S
2

calc) side-chain order parameters, and the 

root mean squared deviation (rmsd) between them. Additionally, we measured how often 

we correctly model the qualitative rigidity or flexibility of a side-chain dihedral angle. 

The results from Model 1 (Figure 2-2) and the work of others 
14; 30; 33

 provide a useful 

distinction between “rigid” and “flexible” side-chain dihedrals, as they indicate that 

methyl groups with order parameters above 0.7-0.8 are likely to sample a single 

rotameric well, and methyl groups with order parameters below this threshold are likely 

to switch between multiple rotameric states. When sampling within the native rotamer 

well on a fixed backbone, 95% of methyl groups have S
2

calc values above 0.9 and 0.8 for 

chi 1 and chi 2, respectively (Figure 2-2). When using an ensemble with backbone 

variations and no rotamer transitions, the respective S
2

calc values are 0.85 and 0.7 for chi 

1 and chi 2. Thus, for the purposes of this study, we chose a cutoff value of S
2
=0.75 to 

separate “rigid” and “flexible” methyl groups. 

 We evaluated several parameters that determine which “conformers” (defined 

here as side-chain conformational microstates, with rotamers being macrostates 

containing many conformers within a dihedral energy basin, see Methods) are included in 

the side-chain Monte Carlo simulations: the number of base rotamers to use for each 
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residue (the size of the base rotamer library), the largest chi angle distance between a 

conformer and its base rotamer (the rotamer well width), and the chi angle degree 

increment between adjacent conformers (the conformer resolution). The results described 

in Table 2-2a use the “large” base rotamer library, a rotamer well width of 1.5 times the 

standard deviation taken from the Dunbrack rotamer library (see Methods) for that base 

rotamer, and a conformer resolution of 10 degrees for chi 1 and chi 2.   

 A standard test for the accuracy of side-chain sampling is whether a given method 

correctly predicts the side-chain conformations (usually within 40 degrees) observed in 

the crystal structure. To evaluate our conformer library, we used it in repacking 

simulations of all side-chains in a published test set of 65 high-resolution crystal 

structures 
36

 (see Methods for details.) Out of the residues in this set, 87% had correctly 

assigned chi 1 rotamers and 76% had correctly assigned chi 1 and chi 2 rotamers. These 

values are similar to repacking results on the same dataset from several other studies 
37; 38

 

and somewhat lower than a study using a library of nearly 50,000 conformers 
36

. 
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Results of Model 2  

 Introducing rotamer transitions into the simulations results in order parameters 

spanning the range of the experimental values. For all 17 proteins (Table 2-2a), allowing 

rotamer flips substantially improves the correlation coefficient (r) and rmsd between S2
exp 

and S2
calc (compare Table 2-2a and Table 2-S1). (Results for the 439 nonpolar residues, 

excluding threonines, are given in parentheses; reasons for analyzing threonine residues 

separately are discussed below; see Table 2-S2a.) Out of the 17 proteins in the set, 5(6) 

have r >=0.7 and 8(11) have r >=0.6, indicating that Model 2 is a reasonable model of 

fast-timescale side-chain motion in some proteins.  The rmsd over the whole dataset is 

0.26, 69% of the 215 rigid methyl groups were correctly modeled as rigid, and 70% of 

the 315 flexible methyl groups were correctly modeled as flexible. Thus Model 2 had 

similar success modeling rigid and flexible methyl groups.  

Sensitivity analysis 

We next tested how the model performance was affected by changes in the 

strength of the Lennard-Jones repulsive term, the base rotamer library size, the rotamer 

well width, and the conformer resolution (see Methods for details). 

 

Reduced Lennard-Jones repulsive term 

A number of flexible methyl groups were incorrectly modeled as rigid in our 

Model 2 simulations. Since Model 2 does not allow motion along the backbone degrees 

of freedom, we tested whether reducing the Lennard-Jones (LJ) repulsive term would 

help in the cases where a small backbone shift would allow the side-chain to become 
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flexible. We evaluated two different ways of reducing the strength of the LJ repulsive 

term:  in the first we scaled the LJ radii down by 0.95 (the “small radii” LJ repulsive 

term), and in the second we decreased the slope of the LJ repulsive term (the “soft 

repulsive” LJ term; see Methods for details on both). 

 The results in Table 2-3a illustrate that there is a clear tradeoff between correctly 

modeled rigid and correct modeled flexible residues. The original LJ repulsive term gives 

mostly equivalent modeled fractions of rigid and flexible residues. With the “smaller 

radii” and the “soft repulsive” LJ terms, the balance shifts in favor of flexible residues, 

with more methyl groups correctly modeled as flexible and many rigid methyl groups 

incorrectly modeled as flexible. Thus, these changes to the LJ repulsive term seem to 

modulate the flexibility or rigidity across all residues in the set, but do not have the 

environmental specificity needed to increase accuracy. 

 

Base rotamer selection: 

 The size of the base rotamer library determines the number of rotameric states 

accessible to the protein’s side-chains. One strategy is to choose a library size that is 

small and hence allows fast sampling.  This approach is useful especially for applications 

such as ab initio structure prediction where large numbers of conformations are 

generated. Since we are sampling high-energy states rather than trying to find the lowest 

energy conformation, our strategy here was instead to generate a larger rotamer library 

including many rotamers that have low but non-negligible probability. As shown in 

Table 2-3b, using the large rotamer set has no effect on the rmsd over the data set, but 

balances prediction of flexible and rigid methyl groups, whereas the default rotamer set 



 28 

modeled rigid residues better than flexible residues. For the flexible de novo designed 

protein !3D, this improvement in rmsd is substantial (0.35 to 0.22; Table 2-S3), as it is 

for gb1 (0.36 to 0.26).  Therefore, the increase in rotamer library size appears useful for 

modeling some proteins. 

 

Table 2-3. Effect of parameter values of Model 2 on the rmsd and fraction of correctly modeled rigid or 

flexible methyl groups. 

  rmsd 

Fraction 

Correct 

Rigid  

(calc) 

Fraction 

Correct 

Flexible  

(calc) 

Fraction 

Correct  

Total  

(calc) 

hard repulsive a 0.26 0.69 0.70 0.70 

small radii 0.25 0.60 0.80 0.72 

(a) LJ Repulsive 

soft repulsive 0.28 0.36 0.94 0.70 

default 0.26 0.73 0.64 0.68 (b) Base Rotamer Library 

large a 0.26 0.69 0.70 0.70 

0.5 sd b 0.30 0.73 0.58 0.64 

1.0 sd b 0.27 0.73 0.64 0.67 

1.5 sd a c 0.26 0.69 0.70 0.70 

2.0 sd c 0.26 0.69 0.71 0.70 

(c) Rotamer Well Width 

3.0 sd c 0.26 0.69 0.70 0.70 

10 degrees a 0.26 0.69 0.70 0.70 

15 degrees 0.26 0.68 0.71 0.70 

20 degrees 0.27 0.67 0.68 0.67 

25 degrees 0.27 0.69 0.64 0.66 

(d) Conformer Resolution 

1 rotamer 0.33 0.80 0.47 0.60 

See the legend of Table 2-2 for a description of column headers. 
a Indicates parameter values used for the results in Table 2-2 
b Sampled with 5 degree conformer resolution 
c Sampled with 10 degree conformer resolution 

 

 

Width of rotamer wells: 

 Increasing the width of the rotamer wells has a strong effect on the modeling 

accuracy (Table 2-3c).  Sampling in wells with widths of 0.5 or 1.0 standard deviations 
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(sds) around the Dunbrack rotamer chi angles shows improvements in rmsd and 

prediction of rigidity/flexibility. This trend continues, although weaker, up to 1.5 and 2 

sds. There is a very large drop in rmsd for !3D from 1 to 1.5 sds, again highlighting the 

flexibility of this protein (Table 2-S3). 

 

Conformer resolution: 

 There is not much difference in the performance at 10- and 15-degree conformer 

resolutions (Table 2-3d); however, when using the 20- and 25-degrees conformer 

resolutions the rmsd increases and the fraction of correct flexible methyl groups drops. 

As expected, excluding all conformers except for the base rotamers performs poorly 

overall. The single exception is fyn-sh3, which performs well even with no added 

conformers per base rotamer (Table 2-S3).  

 

Examples of good and bad predictions using Model 2 

 Figure 2-3 depicts several examples of Model 2 results. Two of the proteins in 

our dataset, albp and fyn-sh3 (Figure 2-3a and 3b), are modeled very well with r of 0.79 

and 0.89, and rmsds below 0.2 (Table 2-2a). We correctly classify the flexibility/rigidity 

of 10 of the 12 methyl groups in fyn-sh3; of the 28 methyl groups in albp, we correctly 

classify 77% of its rigid and 73% of its flexible residues.  Flavodoxin-holo and ubiquitin 

(Figure 2-3c and 3d) are also modeled well, at least qualitatively: their correlation 

coefficients are lower (0.63 and 0.6), but 83% and 75% of the methyl groups are correctly 

classified as rigid/flexible for flavodoxin-holo and ubiquitin, respectively. 
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Figure 2-3. Side-chain motions allowing rotameric 
transitions on a fixed backbone (Model 2). 
 Plots of S2

calc from Model 2 vs. S2
exp for 

several proteins that were modeled well—(a) albp, 
(b) fyn-sh3, (c) flavodoxin-holo, and (d) ubiquitin—
and for several proteins that were modeled poorly—
(e) cytochrome-c2-holo, and (f) protein-L.  Blue 
circles: nonpolar methyl groups (valine, leucine, 
isoleucine and methionine); Orange circles: 
threonine methyl groups; Open circles: cytochrome-
c2-holo residues pointing towards the heme group 
and within 4.5Å. Dashed lines are drawn at 
S2

calc=0.75 and S2
exp=0.75 to reflect the threshold 

used to classify rigid and flexible side-chain methyl 
groups. 
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For ubiquitin, this leaves 5 nonpolar methyl group outliers: 3 are modeled to be 

too rigid (I61 C!, L50 C!, and V70 C") and 2 are modeled to be too flexible (I3 C! and 

I44 C").  I61 and I50 are both located on the loop between strands #3 and #4, the longest 

loop in the protein (13 residues), and V70 is located near the C-terminus.  The errors 

modeling these residues could be the result of backbone flexibility that is not taken into 

account in Model 2. 

 Examples of proteins that did not perform well with Model 2 are also shown in 

Figure 2-3. For cytochrome c2 (Figure 2-3e), the low fraction of correctly modeled 

flexible and rigid methyl groups (0.67 and 0.5, respectively) may be related to keeping 

the large buried heme prosthetic group rigid during the simulations. For example, V107 

C", I57 C! and L100 C! are all less than 4.5Å away from the heme group (Figure 2-3e) 

and have S2
calc (S2

exp) values of 0.28(0.9), 0.27(0.7), and 0.58(0.83). In addition, V114 

C", V115 C", I27 C! and I20 C" are modeled as too rigid. These residues are located near 

the end of a beta-hairpin or at the C-terminus, which may be flexible in solution, as 

suggested by the comparatively low backbone amide order parameters of these residues 

and their neighbors: 0.75 for E26 (which is the residue in register with I20 on the 

adjacent strand), 0.72 for I27, 0.78 for S113 and 0.81 for V115.  In addition, cytochrome 

c2 has the lowest resolution crystal structure of any protein in the set at 2.5Å.  

 As illustrated in the examples above, inaccuracies are likely due to a number of 

simplifications in our model, including the use of a fixed backbone (as discussed above 

for ubiquitin and cytochrome c) and the approximation of ligand rigidity. Other likely 

sources of error include the lack of timescale information from the Monte Carlo 
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simulations (flexibility in our model may occur on timescales longer than those 

reflected in the experimental measurements) and the use of an implicit solvation model, 

which does not capture effects related to the defined size and properties of water 

molecules. We expected this latter effect to be most dramatic for solvent-exposed 

threonine residues, as discussed below. 

 

Slow transitions / Solvent model inaccuracies 

 Excluding threonines from the correlation and rmsd calculations improved the 

results significantly for two proteins: ubiquitin and protein L. For protein L (Figure 2-

3f), excluding the threonine methyl groups (8 of 20 total data points), increased the 

correlation coefficient from -0.07 to 0.68 and decreased the rmsd from 0.35 to 0.25.  

These large differences are caused by several surface-exposed threonine side-chains (T5, 

T19, T25, T39, and T48), which are modeled as flexible but have high S2
exp values 

(Figure 2-3f). A study by Millet et al 39 observed that T19, T25, T39, and T48 have one 

or two 3J scalar coupling values inconsistent with a singly populated rotamer (3J 

couplings could not be measured for T5 due to signal overlap). Thus, our Monte Carlo 

simulations may in fact correctly capture the flexibility of these threonines on timescales 

longer than the picosecond to nanosecond motions reflected in the relaxation order 

parameters. Millet et al. suggest that these slow rotamer transitions occur because 

particular backbone conformations change the height of the energy barrier between 

rotamers, and that these barriers can be altered by relatively modest backbone 

conformational changes in response to mutation 39. 
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 Alternatively, the slow threonine transitions may be the result of hydrogen 

bonds to water molecules in the first solvation shell. Inspecting the 5 crystal forms of 

protein L reveals many potential hydrogen bonds between the side-chain hydroxyl groups 

of these threonines and nearby water molecules with low temperature factors. As 

mentioned above, the implicit solvent model used in our simulations does not capture 

effects due to specific water-mediated hydrogen bonds.  Water-mediated hydrogen bonds 

could restrict the rate of transition between rotameric states for the 5 above-mentioned 

solvent-exposed threonines in protein L as well as in other proteins, such as ubiquitin 

(Figure 2-3c), which also has several threonine residues near ordered water molecules in 

the X-ray structure. The idea that missed water interactions could be responsible for 

modeling inaccuracies is supported by the facts that: (a) predictions for threonine C" had 

the highest rmsd of any methyl type between S2
exp and S2

calc (0.3), and (b) a lower 

percentage of threonine C" methyl groups were correctly modeled as rigid (58%) than 

either the valine C"s (75%) or the isoleucine C" (91%; data not shown).  If the problem 

modeling threonines is indeed related to the implicit solvent model, it may be ameliorated 

in future studies by using a “solvated rotamer” approach 40. 

   

Side-chain Monte Carlo simulations on backbone ensembles (Model 3) 

We show above that Model 2 is a reasonable approximation capturing the 

flexibility of side-chains with low methyl relaxation order parameters in some proteins.  

However, a substantial simplification in Model 2 not present in MD simulations is that 

the backbone is held fixed. We next asked whether a model of backbone flexibility that is 

simple enough to be computationally feasible in the context of protein design simulations 
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would improve modeling of side-chain flexibility. For each protein in our set, an 

ensemble of ten near-native backbone structures was used to represent small backbone 

variations. The backbones were generated using Backrub Monte Carlo simulations with 

the Rosetta all-atom scoring function (see Figure 2-1 and Methods for details), and the 

resulting structures had Ca rmsds to the crystal structure ranging from 0.01Å to 0.37Å 

(see Table 2-2b for averaged pair-wise Ca rmsds of the ensembles to the crystal 

structure). This protocol was repeated over ten different ensembles for each protein to 

estimate the sensitivity to variation in the composition of the ensembles.  

We first tested whether inclusion of small backbone variability in this way led to 

predictions of side-chain order parameter values that were in the experimentally observed 

range. Figure 2-2 shows that this is the case, but only when rotameric transitions are 

allowed in the simulations (compare Model 1*, white boxes, and Model 3, grey boxes, to 

the experimental data, black boxes). Table 2-2b summarizes the results of Model 3 for all 

methyl groups (results for nonpolar methyl groups only are in parentheses; see Table 2-

S2b). 4(8) out of the 17 proteins have correlation coefficients between S2
exp and S2

calc 

>=0.7, and 11(14) proteins have correlation coefficients >=0.6. Although the ability of 

Model 3 to correctly classify rigid methyl groups is affected (reduced by 7%) by the 

increased conformational degrees of freedom introduced with the backbone perturbations, 

Model 3 shows clear improvements over Model 2 with respect to rmsd values.  

The boxplots in Figure 2-4 illustrate the rmsd values resulting from the different 

backbone ensembles generated for each protein. Including backbone flexibility results in 

noticeable improvement in the order parameter predictions for 10 out of 17 proteins, with 

at least 75% of the rmsd values from Model 3 (purple boxes) below the rmsd value for 
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Model 2 (yellow line).  Of the 7 cases where Model 3 does not improve the rmsd 

relative to Model 2, five proteins have essentially identical results (albp, calmodulin, 

eglin c, flavodoxin-holo, and NTnC). Of the two cases that worsen substantially (hiv-

protease-holo and fyn-sh3), one (fyn-sh3) already performed very well under Model 2, 

with a correlation coefficient of 0.89 and an rmsd of 0.15. 

To assess whether the improvements with Model 3 described above are 

significant, we performed several statistical tests (see Methods). Tests for the 17 

individual proteins confirmed that the results depicted in Figure 2-4 are statistically 

significant for 12 proteins, leading to improved rmsds with Model 3 over Model 2 in 10 

cases (p-values < 0.005 from the Student’s t-test and < 0.01 from the Wilcoxon signed-

rank test; asterisks in Figure 2-4) and a decrease in agreement with experimental data for 

2 proteins (same criteria as above, pound signs in Figure 2-4). We also evaluated 

whether Model 3 errors (defined as the magnitude of the difference between S2
calc and 

S2
exp for each methyl group) were significantly less than the Model 2 errors when 

considering results for all 530 methyl groups together. Using the paired Wilcoxon signed-

rank test and the paired Student’s t-test, we found that the Model 3 errors were indeed 

smaller than the Model 2 errors with p-values of 8*10-6 and 0.003, respectively. Thus, 

the overall improvement of Model 3 over the dataset suggests that the ensembles contain 

relevant conformations that may be populated in the solution experiments at the timescale 

of interest. 
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Figure 2-4. A simple model of backbone conformational variability (Model 3) improves modeling of side-

chain motions.  

 Rmsd between experimental order parameters (S2
exp) and S2

calc from Model 2 (yellow lines) and 

Model 3 (purple boxes). *: the 10 proteins for which the Model 3 ensemble rmsds are significantly lower 

than the Model 2 rmsd (Student’s t-test p-value < 0.005 and Wilcoxon-signed rank test p-value < 0.01). #: 

the 2 proteins for which the Model 2 rmsd is lower than the Model 3 rmsds (by the same measure). See 

Figure 2-2 for an explanation of boxplots. Proteins are depicted in order of increasing rmsd between 

experimental and computed order parameters from Model 2. 
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An interesting property of the experimental order parameter measurements is 

that they suggest the existence of many flexible side-chains in buried positions.  We were 

curious whether our models would be able to capture this core flexibility.  On a fixed 

backbone, buried methyl groups were correctly modeled as flexible in 63% of the cases.  

With a flexible-backbone this value increased slightly to 66%.  

 A specific example of the improvements seen for Model 3 over Model 2 is shown 

in Figure 2-5 for the B1 domain of protein G (gb1). Fixed-backbone simulations (Model 

2) of gb1 yield a correlation coefficient of 0.49 and an rmsd of 0.26. In contrast, 

incorporating backbone flexibility (Model 3) increases the correlation coefficient to 0.68 

and decreases the rmsd (calculated over combined simulations using all 10 ensembles of 

size 10) to 0.22. As illustrated in Figure 2-5, improvements from Model 3 result both 

from methyl groups becoming more flexible when incorporating backbone flexibility (L7 

C! and V21 C" show approximate S2
calc

 decreases of -0.25 and -0.1, respectively) and 

from methyl groups becoming more rigid (residues V29 C" and V54 C" have S2
calc

 

increases of 0.4 and 0.1, respectively). 

 To rationalize the observed changes in side-chain dynamics with Model 3, we 

structurally analyzed the lowest rmsd ensemble (#6 out of 10) of gb1. Intuitively, 

backbone moves are expected to increase the freedom of protein regions to sample 

conformational space and hence lead to lower order parameters.  Examples consistent 

with this behavior are V21 C" and L7 C!. V21 is located in a turn region between a beta 

sheet and an alpha helix. The averaged C$ rmsd in the ensemble (relative to the crystal 

structure 1PGB) at this position is 0.61Å (with a standard deviation of 0.26Å) and the 

largest Ca rmsd to the crystal structure for an individual backbone conformation is 1.23Å. 
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L7 is located on an extended beta strand, and in the ensemble its C$ and C# atoms 

move up to 0.35Å and 0.49Å from their crystal structure positions, respectively.  

However, the slight rotation about the backbone resulting from Backrub moves causes 

larger Cartesian coordinate changes at the C! atoms (Figure 2-6c) and allows L7 to more 

extensively sample the chi 2 dihedral degree of freedom.  As a result, the chi 2=180 

degrees rotamer that was infrequently visited in the fixed-backbone simulations (Figure 

2-6a) has a much higher population in the flexible-backbone simulations (Figure 2-6b), 

resulting in a lower order parameter that is closer to the experimental value (Figure 2-5). 

 

Figure 2-5. Improvement of S2
calc values for Model 3 over Model 2 showing both increased and decreased 

modeled flexibility of residues in the protein gb1.  

 S2
exp vs. S2

calc from Model 2 (yellow) and Model 3 (purple). Error bars for Model 3 are the standard 

deviations of S2
calc over the 10 ensembles. 
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Figure 2-6. Backbone flexibility (Model 3) in gb1 results in the side-chain of L7 becoming more flexible 

and V29 becoming more rigid. 

 Probability distributions of L7 chi 2 from (a) Model 2, and (b) ensemble 6 of Model 3. (c) 

Structures of all conformers for L7 from Model 2 (yellow) and Model 3 (purple). The C-C and C-C bonds 

are drawn with lines while the C1 atoms are drawn as disconnected spheres for clarity. Probability 

distributions of V29 chi 1 from (d) Model 2, and (e) ensemble 6 of Model 3. (f) Structures of all V29 

conformers from Model 2 (yellow) and a selected backbone from ensemble 6 of Model 3 (purple).  This 

backbone is representative of those that keep V29 predominantly in 1 rotamer. 
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 Notably, backbone and side-chain conformations simulated in the gb1 backrub 

ensembles also serve to increase some modeled side-chain order parameters. For 

example, V29 is located in the center of the helix and is facing into solvent with a ~50% 

solvent-accessible surface-area. Its flexible-backbone S2
calc is substantially higher than 

the value from Model 2, and is closer to the experimental value (Figure 2-5).  On the 

fixed backbone, V29 populates all three rotamers (Figure 2-6d) but in the flexible-

backbone ensemble only the chi 1=180 degrees rotamer is significantly populated 

(Figure 2-6e). Figure 2-6f illustrates a possible mechanism for this increase in modeled 

rigidity. We observe a hinge motion at residue V29 in a representative backbone in the 

ensemble, resulting from Backrub rotations that cause a 0.4Å movement of the V29 C$ 

atom away from its position in the X-ray structure and a 0.76Å movement of the C# atom 

(Figure 2-6f). This puts the C" atoms in a different environment where they form closer 

packing interactions with the alpha helix. Thus, small backbone variations may have 

considerable effects on the rotamer populations of surface-exposed residues (and likely 

buried residues as well), highlighting the importance of using a flexible-backbone model 

for prediction and design. 

 Another interesting case is residues 13 and 15 of ubiquitin. These side-chains, 

despite being buried in the protein core, were identified as highly flexible in a key study 

determining ensembles of protein conformations that represent simultaneously the native 

structure and its associated dynamics 14. Our dataset contains measured order parameters 

for the C" and Cd methyl groups of I13 and the Cd methyl groups of L15. In all three 

cases, both Models 2 and 3 predict order parameters below 0.6. Thus, in agreement with 

reference 5, both side-chains are modeled to populate multiple rotameric states.  As 
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described above for V29 in gb1, inclusion of backbone flexibility in ubiquitin increases 

the S2
calc of two of these methyl groups (I13 Cd and L15 Cd). For I13 Cd, S2

calc rises 

substantially from 0.1 (Model 2) to 0.49 (Model 3), which is closer to the S2
exp value of 

0.55.  To rationalize this observation, we analyzed the population distributions of the I13 

chi 1 and chi 2 angles predicted from Models 2 and 3. Supplemental Figure 2-S1a shows 

that I13 chi 2 is relatively unaffected by the inclusion of backbone flexibility; however, 

the chi 1 distribution shifts from one major rotamer with a moderate and a minor rotamer 

(Model 2) to a different major rotamer with two more equally-populated moderate 

rotamers. This change in the population distribution for I13 chi 1 will affect the positions 

of the Cd atoms and is likely responsible for the modeled increase in order parameters for 

the I13 Cd methyl group. These observations indicate that relatively subtle redistributions 

in rotamer populations may have substantial effects propagated through the chi dihedral 

angles to the ends of the side-chain. While this increased order parameter is closer to the 

experimental value, the order parameter of the I13 C" methyl group, which is correctly 

identified as flexible, is under-predicted by both Models 2 and 3 (with an S2
calc of 0.22 

and 0.21, respectively, compared to an S2
exp of 0.6). For L15 Cd, S2

calc changes slightly 

from 0.32 (Model 2) to 0.4 (Model 3), closer to the S2
exp value of 0.6, with relatively 

minimal change in the predicted chi angle population distributions between Models 2 and 

3 (Figure 2-S1d). 

 

Comparison to other methods 

 Side-chain order parameters are generally difficult to predict using simple models 

based only on packing density (which work well for backbone amide order parameters) 41 
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or solvent accessibility 42. A different method 43 reached correlation coefficients 

between modeled and observed order parameters of r>0.6 for 4 out of 7 proteins. This 

model described the number of contacts around each methyl carbon and their distances 

from the backbone with 4 parameters, which were determined by fitting optimal values to 

5 proteins in the dataset 43.  

 Another approach for modeling side-chain order parameters used the structural 

variation present in ensembles of crystal structures of the same protein 44. These 

ensembles with >98% sequence-identity contain small but significant conformational 

differences due to different crystallization conditions or small numbers of mutations. 

From the data available, this method seems to perform similarly to ours in overall 

average correlation coefficient and rmsd (Table 2-4). An advantage of our method is that 

it only requires a single structure of the protein in question. 

 Several other studies performed MD and calculated order parameters from the 

structures in the trajectory. A thorough comparison with MD studies is difficult because 

MD statistics with correlation coefficients and/or rmsds have been published for only a 

few proteins.  In one study, Best et al. performed MD in implicit solvent for 5ns on each 

of 18 proteins and found correlation coefficients between 0.4-0.7; however, the results 

were not reported per protein 34.  Three proteins simulated with explicit solvent MD are 

shown in Table 2-4; of these, eglin c (run for 80ns) and TNfn3 (run for 3ns) agree better 

with experimental data than do our simulations, and FNfn10 (run for 3ns) performs 

similarly 30; 33.  A drawback observed in the MD studies is the difficulty sampling rotamer 

transitions for some residues on the timescale of the simulation, while our models, which 

do not directly consider a timescale, do not have this problem. In fact, this difference may 



 43 

contribute to the improved performance of MD in modeling side-chain motions on the 

relatively short picosecond to nanosecond timescale of the side-chain relaxation 

measurements, while the rotamer transitions modeled by our method may occur on longer 

timescales (e.g. 5 surface-exposed threonines of protein L appear to make slow 

transitions; see above). 

 

Table 2-4. Comparison of the results of Models 2 and 3 to results from other methods as indicated. 

 

Ensembles  
of X-ray  

structures 
a
 

Explicit 
Solvent  
MD b Model 2 Model 3 

 No. of  
structs r rmsd r rmsd r rmsd r c rmsd 

a3D      0.64 0.22 0.74 0.17 

albp 14 0.73 0.19   0.79 0.19 0.76 0.19 

calmodulin 28 0.72 0.20   0.81 0.21 0.78 0.21 

Cdc42hs 13 0.53 0.30   0.31 0.33 0.41 0.31 

cytochrome c2      0.37 0.24 0.52 0.22 

eglin c 10 0.37 0.30 0.84  0.55 0.25 0.59 0.25 

flavodoxin      0.63 0.21 0.62 0.21 

FNfn10    0.51 0.23 0.40 0.29 0.42 0.24 

fyn-sh3 12 0.74 0.21   0.89 0.15 0.62 0.20 

gb1      0.49 0.26 0.68 0.22 

hiv1 protease 330 0.74 0.17   0.73 0.22 0.62 0.23 

mfabp      0.59 0.27 0.60 0.26 

NTnC 13 0.69 0.19   0.77 0.23 0.73 0.22 

plcc sh2      0.57 0.26 0.60 0.24 

protein L      -0.07d 0.35 d -0.06 d 0.33 d 

TNfn3    0.62 0.23 0.34 0.32 0.38 0.31 

ubiquitin 13 0.76 0.18   0.60 d 0.27 d 0.64 d 0.24 d 

Average (Proteins from a)  0.66 0.22   0.68 * 0.23 * 0.65 * 0.23 * 

Average (All proteins)      0.55 * 0.25 * 0.57 * 0.24 * 
a Data from 36 
b Eglin c data from 21; FNfn10 and TNfn3 data from 24 
c Calculated over all S2

calc values for the 10 backbone ensembles  
d These proteins exhibited problems modeling threonines (see Results for details) 
* Sum of the values for each protein divided by the number of proteins (i.e. different that the metric at the 
bottom of Table 2-2); provided for comparison with values from 36 
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 The study by Lindorff-Larsen et al [5] mentioned above provides another 

useful point of comparison. This work derived an ensemble of protein conformations that 

is simultaneously consistent with both experimentally determined order parameters for 

the native state of ubiquitin as well as distance information from nuclear Overhauser 

effect (NOE) data.  By incorporating the experimental data as restraints in molecular 

dynamics simulations, the authors conclude that ubiquitin displays significant 

conformational heterogeneity in solution, with several side chains populating multiple 

rotameric conformations. The chi angle probability distributions from our simulations 

(Figure 2-S2) can be compared with those depicted in Figure 3 of reference [5]. The 

corresponding distributions show substantial agreement, except for the chi 2 angle 

distribution for Leu 67 that we model to be closer to a previously determined NMR 

ensemble 45.  

 Our method has several useful advantages, especially in the absence of extensive 

experimental data on the structure and dynamics of the protein in question.  Our method 

uses a single crystal structure rather than requiring at least ten crystal structures with high 

sequence identity.  It performs similarly to implicit solvent MD, but not as well as 

explicit solvent MD in two of the published cases.  Nevertheless, our methods model 

motions (such as slow rotamer transitions) that are difficult to sample with MD.  It also 

runs quickly, taking about 4 minutes to run the fixed-backbone protocol and about 13 

hours to run the flexible-backbone protocol (numbers are for modeling ubiquitin on a 

single AMD Opteron 240 processor).  (These time lengths are for the protocol used here 

in which computational efficiency was not a consideration; we expect that these methods 

can be sped up significantly.)  This lower computational cost provides a significant 
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advantage over MD in the case of protein design methods where both sequence and 

structure space need to be searched. 

 

 

CONCLUSIONS 

 We have compared 3 different models of side-chain flexibility to experimental 

relaxation side-chain order parameter measurements. While native-rotamer motions 

(Model 1) do not reproduce the range of S2
exp values, consistent with other studies 14; 30; 

33, our fixed-backbone Monte Carlo method to sample rotameric transitions (Model 2) 

gives reasonable agreement between S2
calc and S2

exp values. Importantly, we expand upon 

this Monte Carlo model of side-chain motion by incorporating near-native ensembles of 

backbone structures into our simulations (Model 3).  These backbone motions were 

inspired by Backrub conformational changes observed in ultra-high resolution X-ray 

structures, and allow correlated backbone-side-chain movements. Using this flexible-

backbone model (Model 3), we find statistically significant overall improvements in rmsd 

(over Model 2), which are consistent over the majority of proteins in our dataset.  This 

result demonstrates that Backrub simulations are a useful method for sampling near-

native conformational space.  Both Models 2 and 3 achieve these results despite inherent 

simplifications: (i) ligands are treated as rigid, (ii) the experiments are limited to motions 

on the picosecond-nanosecond timescale while our simulations are timescale-

independent, and (iii) we do not model water molecules explicitly.   

 Conceptually similar to the dipeptide Backrub move in Model 3 is the 1-D 

Gaussian Axial Fluctuation (GAF) model. The similarity is worthy of note because this 
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model was shown to explain motions present in Residual Dipolar Coupling 

experiments, which measure events that can take up to milliseconds to occur 46. Our 

model extends the 1-D GAF model by adding both tripeptide moves and rotamer 

changes, allowing significant anisotropy and structural deviations from the native 

structure. 

The treatment of backbone flexibility here is simple, and leaves room for 

improvement from more sophisticated models.  The dataset used in this study provides a 

useful benchmark to evaluate such models. Notably, the new degrees of freedom 

introduced by backbone motions, while producing the expected increase in flexibility of 

some residues, can also cause increased side-chain rigidity, as was observed in gb1 and 

ubiquitin. 

 The models of side-chain flexibility presented here have many uses in prediction 

or design applications. First, incorporating information about side-chain flexibility 

changes resulting from macromolecular interactions should improve prediction and 

design of binding.  Specifically, having an improved picture of the high-energy states of a 

protein will help in prediction and design of binding by conformational selection. Second, 

we show that modeling backbone flexibility leads to significant differences in sampled 

side-chain conformations, an effect that is likely to increase the diversity of sequences 

sampled during protein design. Sequences sampled during fixed-backbone design are 

strongly biased towards the particular backbone conformation used. Thus, removing the 

restraint of a fixed backbone (even with the small amount of conformational variability 

used here) will allow a greater diversity of amino acids at designed positions and may 

enable the computational design of sequence libraries matched to specific engineering 
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tasks (E. Humphris and T.K., unpublished results). Third, our method can be used to 

design for flexibility or rigidity of a protein. This can be accomplished by adapting the 

flexibility prediction technique described here into either a post-processing filter or a 

score term calculated on the fly during the design protocol. In the latter method, short 

side-chain Monte Carlo simulations could be used to evaluate whether an amino acid 

substitution results in the desired flexibility profile. Considering flexibility explicitly may 

also prove useful in the design of enzymes 47, an idea supported by recent NMR data 

highlighting the importance of conformational dynamics in the rate of catalytic turnover 

48; 49; 50.  Finally, these and similar simulation methods might be useful for investigating 

energetically connected pathways of residues in proteins, which could lead to the design 

of proteins with new modes of allosteric regulation.  

 

 

MATERIALS AND METHODS 

 

Dataset of experimental protein structures and relaxation measurements 

 The proteins used in this study are: ubiquitin (PDB id: 1UBQ) 51, the third 

fibronectin type III domain from human tenascin (TNfn3; PDB id: 1TEN) 52, the tenth 

fibronectin type III domain from human fibronectin (FNfn10; PDB id: 1FNA) 53, the B1 

domain from protein G (gb1; PDB id: 1PGB) 54, the SH3 domain in human Fyn (fyn-sh3; 

PDB id: 1SHF) 42, the de novo designed three-helix bundle $3D (a3D; PDB id: 2A3D) 15, 

eglin c (PDB id: 1CSE) 16; 55, an SH2 domain of phospholipase C-gamma1 (plcc-sh2; 
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PDB id: 2PLD) 16, the B1 domain of protein L (proteinL; PDB id: 1HZ6) 39, HIV-1 

protease homodimer bound to the inhibitor DMP323, (hiv-protease-holo; PDB id: 1QBS), 

flavodoxin bound to flavin mononucleotide (flavodoxin-holo; PDB id: 1OBO) 56, 

cytochrome c2 bound to its heme prosthetic group (cytochrome-c2-holo; PDB id: 1C2R) 

57, the N-terminal domain of chicken skeletal troponin C (NTnC; PDB id: 1AVS) 58, 

Cdc42Hs 59, adipocyte lipid-binding protein (albp; PDB id: 1LIB) 60, muscle fatty acid-

binding protein (mfabp; PDB id: 1HMT) 60, and Ca2+-loaded calmodulin (PDB id: 

1AHR) 61.  

 For NMR structures (i.e. 2PLD and 2A3D), the first submitted conformation was 

used after minimizing all atoms with the Protein Local Optimization Program (which 

uses a variant of the Truncated Newton method with the OPLS force field and 

Generalized Born solvation) 62; 63. The highest resolution structure was used for proteins 

with multiple crystal structures, and the first chain was chosen for structures with 

multiple chains (except for the homodimer HIV protease).  If a protein had relaxation 

measurements in both apo and holo states, we chose to model the apo state; however if no 

apo structures were available, the ligands were removed from the structure. If 

measurements were only available for a ligand-bound protein, we included the ligand 

atoms held fixed at their crystal structure coordinates. 

 There are 9 types of methyl groups with relaxation side-chain order parameter 

(S2) measurements: alanine #, valine "1 & "2, threonine ", isoleucine " & !, leucine !1 & 

!2, and methionine %.  We did not analyze alanine methyl group dynamics as alanine 

side-chains lack non-hydrogen torsional degrees of freedom. Our models are based on 

idealized bond geometry and thus treat the symmetric methyl groups of valine and 
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leucine identically; for these methyl groups we compare the computed S2 to the 

average of the two experimental S2 values (if both were available). If backbone and side 

chain motions are anisotropic, then the two methyl groups of leucine and valine residues 

are not equivalent and will have slightly different order parameters. However, averaging 

the values can be justified as they are quite close, with differences less than 0.1 for 53 out 

of the 60 pairs of Leucine or Valine methyl groups in our dataset and less than 0.05 for 

37 of these methyl group pairs.  

 

Fixed-backbone Monte Carlo side-chain simulations (Models 1 and 2) 

 All simulations use the Rosetta program for protein structure modeling and design 

64. Three different models were used to simulate side-chain flexibility. Models 1 and 2 

(Model 3 is described in a later section) used Monte Carlo simulations consisting of side-

chain conformer changes on a fixed polypeptide backbone evaluated with the Metropolis 

criterion. This method is similar to side-chain repacking in Rosetta, with the difference 

here that the temperature is fixed at kT=1 after the initial annealing procedure (see 

below).  A Monte Carlo move in this simulation consisted of randomly choosing a 

residue in the protein and changing its side-chain conformation to a “conformer” with 

side-chain chi dihedral angles chosen according to PDB statistics (described in the next 

paragraph) using idealized bond geometry. (To avoid confusion we use the term 

“rotamer” to describe the conformational macrostate including all nearby microstates 

within the same dihedral energy basin. The term “base rotamer” is used to describe the 

side-chain conformational microstate at the center of this basin, and the term “conformer” 

is used to describe any side-chain conformational microstate.) An initial simulated 
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annealing procedure was used to equilibrate the protein to the force field; this consisted 

of starting the Monte Carlo simulations at high temperature (kT=100) and exponentially 

decreasing the temperature in stages to kT=1. The number of Monte Carlo moves 

performed in this initial annealing process was 200 times the number of conformers 

included in the conformer library of a protein. The number of moves performed at fixed 

temperature was 800 times the number of conformers. Each such simulation on a given 

protein was performed 10 times (unless otherwise noted) with different seeds for the 

random number generator.  The simulations used the Rosetta all-atom scoring function, 

which is dominated by Lennard-Jones packing interactions, an orientation-dependent 

hydrogen bonding potential 65 and an implicit solvation model 66, as described in detail in 

2. The results were somewhat dependent on the simulation temperature, but kT=1 was 

found optimal overall in the context of the Rosetta all-atom scoring function (data not 

shown). 

 

Side-chain conformer libraries 

The “conformer” library of possible side-chain conformations for a given residue 

was created by first selecting the base rotamers using Dunbrack’s backbone-dependent 

rotamer library 67; 68 and then adding conformers around each base rotamer.  The library 

was defined by several attributes: (a) the number of base rotamers to include, (b) the 

conformer resolution, or chi angle separation between adjacent conformers for chi 1 and 

2; and (c) the rotamer well width, or maximum chi 1 and 2 angle distance of conformers 

from the base rotamer (expressed as the number of standard deviations tabulated in the 

Dunbrack library).  For Model 1, one base rotamer was chosen per residue by finding the 
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base rotamer with the lowest heavy-atom rmsd to the crystal side-chain conformation 

(with conformers added around it as described). For Model 2, the base rotamer library 

was either: (i) the “default” library: consisting of 95% or 98% accumulated probability of 

occurrences in the PDB but restricted to at most 24 or 30 conformers for surface or buried 

base rotamers, respectively, or (ii) the “large” library: consisting of 99% accumulated 

probability with at most 45 conformers for a given surface or buried base rotamer. Only 

the base rotamers were used for chi 3 and 4, without adding neighboring conformers.  

 

Side-chain repacking test 

 To test side-chain repacking accuracy, we used the same dataset of 65 X-ray 

structures described in 36.  For each protein, all residues were repacked simultaneously 

using Rosetta with the large base rotamer library, a rotamer well width of 1.5 times the 

Dunbrack standard deviation for that base rotamer, and a conformer resolution of 10 

degrees.  A repacked residue was classified as having a correctly assigned chi 1 or chi 

1+2 conformation if the modeled chi values deviated by less than 40 degrees from the 

corresponding X-ray structure values.  

 

Modified Lennard-Jones terms 

 Rosetta models the Lennard-Jones (LJ) term using the classical 6-12 potential for 

attractive contributions and some repulsive contributions; however, at inter-atomic 

distances in the repulsive regime less than a “switchover” distance, the repulsive potential 

is modeled as a line with the same slope as the 6-12 potential at this distance 64. The 

default (“hard repulsive”) value of this switchover distance is dij/rij = 0.6, which gives a 
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well depth-independent slope of ~ -9000 (where dij and rij are the inter-atomic distance 

and summed van der Waals radii, respectively, for atoms i and j). The LJ radii are derived 

from fitting atom distances in protein X-ray structures to the 6-12 LJ potential using 

CHARMm well depths 69. Two variants of a “reduced” LJ repulsive term were used. The 

first “small radii” modification used LJ radii values scaled by 0.95 70. The second “soft 

repulsive” modification reduced the linear slope of the LJ repulsive term. The adjusted 

value of the switchover distance for this “soft repulsive” modification is dij/rij = 0.91, 

which gives a well depth-independent slope of ~ -18. 

 

Generation of conformational ensembles using Backrub Monte Carlo simulations 

 To generate protein conformational ensembles with varying backbone 

conformations, we ran Metropolis Monte Carlo simulations using two types of moves 

with equal probability: a) a side-chain conformer change, or b) a backbone and side-chain 

change resulting from a “Backrub” move.  The Backrub move was motivated by a type of 

conformational variability frequently observed in alternate conformations of the same 

chain of ultra-high resolution crystal structures 8.  In our implementation, the Backrub 

move consisted of: (i) choosing a random peptide segment of 2 or 3 successive C$ atoms 

with endpoint residues a and b, (ii) performing a rigid body rotation of main-chain and 

side-chain atoms between C$a and C$b about the axis connecting C$a and C$b, (Figure 

2-1b and c) and (iii) optimizing the bond angles extending from C$a and C$b using the 

CHARMm22 71 bond angle potential. (C.A.S and T.K., unpublished results) This 

Backrub Monte Carlo simulation was run for 10,000 steps at kT=0.6. Side-chain 
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conformers were taken from the Dunbrack library 67 with conformations around each 

base rotamer added for chi 1 and chi 2 as described 72. 

 

Simulations including backbone flexibility (Model 3)  

 Backbone flexibility was included into the side-chain simulations by running 

fixed-backbone Monte Carlo simulations on an ensemble of backbone conformations 

generated using Backrub Monte Carlo simulations. Each backbone was generated by 

selecting the lowest energy structure from a Backrub Monte Carlo simulation (as 

described above). For each protein, ten ensembles were used. For each ensemble, 100 

structures were generated and then pruned down to the ten with the lowest energy.  One 

fixed-backbone side-chain Monte Carlo simulation was then run on each backbone in the 

10-member ensemble. 

  

Calculation of order parameters  

 For each fixed-backbone side-chain Monte Carlo step that a residue was in a 

particular conformer, the count for that conformer was incremented. At the end of a 

simulation on a particular backbone, the population of each conformer was calculated as 

the sum of the conformer counts, divided by the total number of non-annealing steps.  For 

multiple independent simulations (on the same or different backbones) all conformers in 

the simulations were accumulated and their probabilities were renormalized to a sum of 

1. The order parameters were calculated from these conformer populations and the 

coordinates (x, y, z) of the conformer’s relevant methyl carbon (using C"1 for valines and 

C!1 for leucines):  
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Equation 1 55 

 

Analysis of goodness-of-fit 

 The level of agreement between the experimental and simulated order parameters 

was calculated in three ways: (a) the linear correlation coefficient between the two sets of 

order parameters, (b) the root mean squared deviation (rmsd) between these two sets, and 

(c) the percentage of methyl groups that were correctly modeled as “rigid” (defined as S2 

>= 0.75) or “flexible” (defined as S2 < 0.75).   The cutoff value for the order parameters 

of 0.75 is an approximation of the threshold that was observed in multiple studies 30; 34; 67 

(including this one) to distinguish qualitatively between side-chains populating one or 

multiple rotameric states.  

 

Analysis of statistical significance 

For each of the 17 proteins in the dataset, the performance of Models 2 and 3 

were analyzed by applying the Student’s t-test to compare the Model 2 rmsd to the Model 

3 ensemble rmsds. The difference between the rmsds of two models was judged 

significant when the one-tailed p-value was less than 0.005.  The Wilcoxon signed-rank 

test was performed on the same data and judged significant when the p-value was less 

than 0.01. 

The error between the calculated and experimental order parameters for Models 2 

and 3 were also compared across each of the 530 methyl groups in the dataset. The errors 

were calculated as the unsigned distances between S2
calc and S2

exp. (The order parameters 
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for Model 3 were averaged over the 10 ensembles). The difference in the errors 

between Models 2 and 3 were evaluated with the paired Student's t-test and the paired 

Wilcoxon signed-rank test against the null hypothesis that there is no difference in the 

magnitude of the errors).   
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SUPPORTING INFORMATION 

 

Table 2-S1. Model 1 results for all methyl groups in all proteins.  

 
No. 

methyls r slope rmsd 

No. 
Rigid 
(exp) 

No. 
Flexible 

(exp) 

Fraction 
Correct 
Rigid 
(calc) 

Fraction 
Correct 
Flexible 

(calc) 

a3D 15 0.30 0.10 0.52 0 15 N/A 0.00 

albp 28 0.64 0.11 0.39 13 15 1.00 0.00 

calmodulin 36 0.40 0.07 0.51 4 32 1.00 0.00 

cdc42hs 47 0.39 0.08 0.37 23 24 1.00 0.04 
cytochrome-c2-
holo 31 0.21 0.03 0.30 21 10 1.00 0.00 

eglinc 17 0.49 0.15 0.39 6 11 1.00 0.09 

flavodoxin-holo 56 0.34 0.05 0.31 36 20 1.00 0.00 

FNfn10 35 0.43 0.08 0.34 12 23 1.00 0.04 

fyn-sh3 12 -0.02 0.00 0.38 4 8 1.00 0.00 

gb1 10 0.67 0.38 0.52 0 10 N/A 0.10 

hiv-protease-holo 56 0.29 0.07 0.34 36 20 1.00 0.15 

mfabp 42 0.43 0.06 0.41 20 22 1.00 0.00 

NTnC 26 0.51 0.10 0.47 2 24 1.00 0.00 

plcc-sh2-free 27 0.32 0.11 0.48 3 24 0.67 0.04 

protl 20 0.77 0.10 0.30 8 12 1.00 0.00 

TNfn3 40 0.58 0.12 0.41 11 29 1.00 0.03 

ubiquitin 32 0.60 0.23 0.31 16 16 1.00 0.25 

Total 530 . . 0.39 215 315 1.00 0.04 

See caption for Table 2-2 for a description of the column headers. 
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Figure 2-S1. Modeled probability distributions of Isoleucine 13 and Leucine 15 in ubiquitin. 

 (a) I13 chi 1, (b) I13 chi 2, (c) L15 chi 1, and (d) L15 chi 2 dihedral angles from Model 2 (black 

lines) and using the 10 different backbone ensembles from Model 3 (grey lines). The standard deviations in 

calculated order parameters obtained from the different Model 3 ensembles were less than 0.2. 
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Figure 2-S2. Modeled probability distributions of other selected ubiquitin chi angles. 

 I23 chi 1, L43 chi 1, I44 chi 2, L50 chi 1, L61 chi 2, and L67 chi 2 dihedral angles from Model 2 

(black lines) and using the 10 different backbone ensembles from Model 3 (grey lines). These plots provide 

an interesting comparison to the probability distributions of these dihedral angles in Figure 3 of reference 

[5]. 
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Table 2-S2. Results for nonpolar methyl groups only (valine, leucine, isoleucine, and methionine) 

with (a) Model 2  and (b) Model 3. 

  (a) Model 2 (b) Model 3 

 # of methyls r slope rmsd r slope rmsd 

a3D 14 0.65 1.28 0.22 0.74 1.36 0.17 
albp 25 0.85 1.02 0.18 0.80 0.96 0.18 
calmodulin 31 0.86 1.32 0.20 0.86 1.28 0.20 
cdc42hs 39 0.35 0.38 0.34 0.45 0.47 0.30 
cytochrome-c2-holo 23 0.16 0.13 0.27 0.49 0.50 0.24 
eglinc 14 0.56 0.73 0.26 0.61 0.80 0.24 
flavodoxin-holo 47 0.64 0.77 0.21 0.65 0.79 0.21 
FNfn10 25 0.50 0.72 0.27 0.54 0.64 0.23 
fyn-sh3 9 0.94 1.63 0.15 0.77 1.15 0.17 
gb1 8 0.59 0.83 0.26 0.85 1.22 0.20 
hiv-protease-holo 56 0.73 0.86 0.22 0.62 0.68 0.23 
mfabp 34 0.66 0.76 0.25 0.70 0.80 0.24 
NTnC 23 0.75 1.10 0.23 0.71 1.05 0.23 
plcc-sh2-free 25 0.63 0.88 0.26 0.64 0.81 0.23 
protl 12 0.68 0.85 0.25 0.66 0.82 0.23 
TNfn3 28 0.40 0.50 0.33 0.50 0.62 0.30 
ubiquitin 26 0.70 0.93 0.24 0.75 0.92 0.20 

Total 439 . . 0.25   0.23 

See caption for Table 2-2 for a description of the column headers. 

 

 

 

Table 2-S3. Model 2 Parameter sensitivity results for all proteins. 

LJ repulsive term         

hard repulsive         

  
No. 

methyls r slope rmsd 

No. 

Rigid 

(exp) 

No. 

Flexible 

(exp) 

Fraction 

Correct 

Rigid 

(calc) 

Fraction 

Correct 

Flexible 

(calc) 

 a3D 15 0.64 1.24 0.22 0 15 N/A 0.73 

 albp 28 0.79 0.98 0.19 13 15 0.77 0.73 

 calmodulin 36 0.81 1.22 0.21 4 32 0.75 0.69 

 cdc42hs 47 0.31 0.33 0.33 23 24 0.61 0.58 

 cytochrome-c2-holo 31 0.37 0.35 0.24 21 10 0.67 0.50 

 eglinc 17 0.55 0.76 0.25 6 11 0.67 0.82 

 flavodoxin-holo 56 0.63 0.74 0.21 36 20 0.83 0.85 

 FNfn10 35 0.40 0.57 0.29 12 23 0.67 0.65 

 fyn-sh3 12 0.89 1.45 0.15 4 8 0.75 0.88 

 gb1 10 0.49 0.64 0.26 0 10 N/A 0.80 

 hiv-protease-holo 56 0.73 0.86 0.22 36 20 0.69 0.95 

 mfabp 42 0.59 0.69 0.27 20 22 0.55 0.82 

 NTnC 26 0.77 1.13 0.23 2 24 1.00 0.58 
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 plcc-sh2-free 27 0.57 0.78 0.26 3 24 0.33 0.67 

 protl 20 -0.07 -0.10 0.35 8 12 0.62 0.50 

 TNfn3 40 0.34 0.40 0.32 11 29 0.64 0.55 

 ubiquitin 32 0.60 0.82 0.27 16 16 0.75 0.75 

 Total 530 . . 0.26 215 315 0.69 0.70 

small radii         

 a3D 15 0.35 0.54 0.20 0 15 N/A 0.93 

 albp 28 0.79 0.99 0.18 13 15 0.69 0.80 

 calmodulin 36 0.82 1.21 0.19 4 32 0.75 0.78 

 cdc42hs 47 0.34 0.36 0.34 23 24 0.43 0.75 

 cytochrome-c2-holo 31 0.60 0.57 0.20 21 10 0.52 0.90 

 eglinc 17 0.56 0.77 0.25 6 11 0.67 0.73 

 flavodoxin-holo 56 0.64 0.78 0.21 36 20 0.75 0.90 

 FNfn10 35 0.42 0.59 0.29 12 23 0.58 0.74 

 fyn-sh3 12 0.88 1.44 0.17 4 8 0.75 1.00 

 gb1 10 0.61 0.79 0.22 0 10 N/A 0.80 

 hiv-protease-holo 56 0.73 0.85 0.24 36 20 0.53 0.95 

 mfabp 42 0.62 0.71 0.28 20 22 0.50 0.91 

 NTnC 26 0.74 1.10 0.22 2 24 1.00 0.67 

 plcc-sh2-free 27 0.65 0.85 0.23 3 24 0.67 0.79 

 protl 20 -0.02 -0.03 0.34 8 12 0.50 0.50 

 TNfn3 40 0.42 0.48 0.29 11 29 0.64 0.76 

 ubiquitin 32 0.61 0.85 0.28 16 16 0.75 0.75 

 Total 530 . . 0.25 215 315 0.60 0.80 

soft repulsive         

 a3D 15 0.52 0.44 0.21 0 15 N/A 1.00 

 albp 28 0.73 0.77 0.23 13 15 0.38 1.00 

 calmodulin 36 0.74 0.88 0.21 4 32 0.75 0.97 

 cdc42hs 47 0.47 0.42 0.35 23 24 0.17 0.92 

 cytochrome-c2-holo 31 0.45 0.46 0.33 21 10 0.24 1.00 

 eglinc 17 0.59 0.78 0.26 6 11 0.50 0.91 

 flavodoxin-holo 56 0.53 0.62 0.30 36 20 0.44 0.95 

 FNfn10 35 0.47 0.53 0.31 12 23 0.33 0.96 

 fyn-sh3 12 0.85 0.96 0.20 4 8 0.25 1.00 

 gb1 10 0.55 0.64 0.23 0 10 N/A 0.90 

 hiv-protease-holo 56 0.68 0.73 0.31 36 20 0.25 1.00 

 mfabp 42 0.64 0.66 0.31 20 22 0.40 1.00 

 NTnC 26 0.74 0.94 0.19 2 24 1.00 0.83 

 plcc-sh2-free 27 0.59 0.59 0.24 3 24 0.33 0.96 

 protl 20 0.07 0.10 0.34 8 12 0.38 0.83 

 TNfn3 40 0.51 0.50 0.27 11 29 0.18 0.93 

 ubiquitin 32 0.71 0.90 0.26 16 16 0.69 0.81 

 Total 530 . . 0.28 215 315 0.36 0.94 

          

          

Base rotamer library         

default         

 a3D 15 0.33 0.62 0.35 0 15 N/A 0.33 

 albp 28 0.81 1.01 0.19 13 15 0.77 0.73 

 calmodulin 36 0.76 1.10 0.25 4 32 0.75 0.62 

 cdc42hs 47 0.34 0.32 0.31 23 24 0.61 0.54 

 cytochrome-c2-holo 31 0.45 0.41 0.22 21 10 0.71 0.60 

 eglinc 17 0.53 0.70 0.26 6 11 0.83 0.82 
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 flavodoxin-holo 56 0.60 0.68 0.21 36 20 0.86 0.75 

 FNfn10 35 0.42 0.59 0.28 12 23 0.83 0.61 

 fyn-sh3 12 0.86 1.24 0.16 4 8 1.00 0.75 

 gb1 10 0.45 0.70 0.36 0 10 N/A 0.60 

 hiv-protease-holo 56 0.71 0.82 0.21 36 20 0.67 0.90 

 mfabp 42 0.55 0.63 0.27 20 22 0.60 0.77 

 NTnC 26 0.73 1.03 0.25 2 24 1.00 0.58 

 plcc-sh2-free 27 0.51 0.60 0.25 3 24 0.33 0.71 

 protl 20 -0.06 -0.09 0.33 8 12 0.62 0.50 

 TNfn3 40 0.36 0.42 0.32 11 29 0.73 0.52 

 ubiquitin 32 0.58 0.73 0.25 16 16 0.75 0.69 

 Total 530 . . 0.26 215 315 0.73 0.64 

large         

 a3D 15 0.64 1.24 0.22 0 15 N/A 0.73 

 albp 28 0.79 0.98 0.19 13 15 0.77 0.73 

 calmodulin 36 0.81 1.22 0.21 4 32 0.75 0.69 

 cdc42hs 47 0.31 0.33 0.33 23 24 0.61 0.58 

 cytochrome-c2-holo 31 0.37 0.35 0.24 21 10 0.67 0.50 

 eglinc 17 0.55 0.76 0.25 6 11 0.67 0.82 

 flavodoxin-holo 56 0.63 0.74 0.21 36 20 0.83 0.85 

 FNfn10 35 0.40 0.57 0.29 12 23 0.67 0.65 

 fyn-sh3 12 0.89 1.45 0.15 4 8 0.75 0.88 

 gb1 10 0.49 0.64 0.26 0 10 N/A 0.80 

 hiv-protease-holo 56 0.73 0.86 0.22 36 20 0.69 0.95 

 mfabp 42 0.59 0.69 0.27 20 22 0.55 0.82 

 NTnC 26 0.77 1.13 0.23 2 24 1.00 0.58 

 plcc-sh2-free 27 0.57 0.78 0.26 3 24 0.33 0.67 

 protl 20 -0.07 -0.10 0.35 8 12 0.62 0.50 

 TNfn3 40 0.34 0.40 0.32 11 29 0.64 0.55 

 ubiquitin 32 0.60 0.82 0.27 16 16 0.75 0.75 

 Total 530 . . 0.26 215 315 0.69 0.70 

          

 

          

Rotamer Well Width         

sd 0.5 (5 degrees)         

 a3D 15 -0.21 -0.39 0.38 0 15 N/A 0.60 

 albp 28 0.76 0.93 0.22 13 15 0.85 0.67 

 calmodulin 36 0.71 1.05 0.28 4 32 0.75 0.59 

 cdc42hs 47 0.26 0.29 0.36 23 24 0.65 0.38 

 cytochrome-c2-holo 31 0.29 0.32 0.28 21 10 0.67 0.50 

 eglinc 17 0.55 0.75 0.27 6 11 0.83 0.64 

 flavodoxin-holo 56 0.57 0.67 0.24 36 20 0.86 0.65 

 FNfn10 35 0.31 0.45 0.30 12 23 0.67 0.61 

 fyn-sh3 12 0.86 1.70 0.20 4 8 1.00 0.75 

 gb1 10 0.36 0.47 0.30 0 10 N/A 0.80 

 hiv-protease-holo 56 0.56 0.69 0.26 36 20 0.69 0.75 

 mfabp 42 0.47 0.53 0.30 20 22 0.65 0.68 

 NTnC 26 0.77 1.11 0.27 2 24 1.00 0.50 

 plcc-sh2-free 27 0.61 0.87 0.29 3 24 0.67 0.54 

 protl 20 0.00 0.00 0.37 8 12 0.62 0.42 

 TNfn3 40 0.24 0.29 0.36 11 29 0.64 0.45 

 ubiquitin 32 0.54 0.77 0.30 16 16 0.75 0.69 
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 Total 530 . . 0.30 215 315 0.73 0.58 

sd 1 (5 degrees)         

 a3D 15 -0.01 -0.03 0.33 0 15 N/A 0.67 

 albp 28 0.78 0.95 0.20 13 15 0.85 0.67 

 calmodulin 36 0.78 1.15 0.24 4 32 0.75 0.62 

 cdc42hs 47 0.26 0.28 0.35 23 24 0.61 0.50 

 cytochrome-c2-holo 31 0.31 0.32 0.27 21 10 0.67 0.50 

 eglinc 17 0.57 0.78 0.26 6 11 0.83 0.73 

 flavodoxin-holo 56 0.68 0.78 0.21 36 20 0.94 0.65 

 FNfn10 35 0.39 0.56 0.29 12 23 0.67 0.65 

 fyn-sh3 12 0.89 1.60 0.17 4 8 0.75 0.75 

 gb1 10 0.46 0.59 0.27 0 10 N/A 0.80 

 hiv-protease-holo 56 0.69 0.82 0.22 36 20 0.69 0.90 

 mfabp 42 0.55 0.62 0.27 20 22 0.60 0.77 

 NTnC 26 0.79 1.14 0.24 2 24 1.00 0.58 

 plcc-sh2-free 27 0.64 0.88 0.25 3 24 0.67 0.58 

 protl 20 -0.04 -0.07 0.36 8 12 0.62 0.42 

 TNfn3 40 0.30 0.37 0.34 11 29 0.64 0.52 

 ubiquitin 32 0.56 0.76 0.28 16 16 0.75 0.69 

 Total 530 . . 0.27 215 315 0.73 0.64 

sd 1.5 (10 degrees)         

 a3D 15 0.64 1.24 0.22 0 15 N/A 0.73 

 albp 28 0.79 0.98 0.19 13 15 0.77 0.73 

 calmodulin 36 0.81 1.22 0.21 4 32 0.75 0.69 

 cdc42hs 47 0.31 0.33 0.33 23 24 0.61 0.58 

 cytochrome-c2-holo 31 0.37 0.35 0.24 21 10 0.67 0.50 

 eglinc 17 0.55 0.76 0.25 6 11 0.67 0.82 

 flavodoxin-holo 56 0.63 0.74 0.21 36 20 0.83 0.85 

 FNfn10 35 0.40 0.57 0.29 12 23 0.67 0.65 

 fyn-sh3 12 0.89 1.45 0.15 4 8 0.75 0.88 

 gb1 10 0.49 0.64 0.26 0 10 N/A 0.80 

 hiv-protease-holo 56 0.73 0.86 0.22 36 20 0.69 0.95 

 mfabp 42 0.59 0.69 0.27 20 22 0.55 0.82 

 NTnC 26 0.77 1.13 0.23 2 24 1.00 0.58 

 plcc-sh2-free 27 0.57 0.78 0.26 3 24 0.33 0.67 

 protl 20 -0.07 -0.10 0.35 8 12 0.62 0.50 

 TNfn3 40 0.34 0.40 0.32 11 29 0.64 0.55 

 ubiquitin 32 0.60 0.82 0.27 16 16 0.75 0.75 

 Total 530 . . 0.26 215 315 0.69 0.70 

sd 2 (10 degrees)         

 a3D 15 0.63 1.23 0.21 0 15 N/A 0.73 

 albp 28 0.80 0.98 0.18 13 15 0.77 0.73 

 calmodulin 36 0.82 1.22 0.20 4 32 0.75 0.69 

 cdc42hs 47 0.32 0.34 0.33 23 24 0.61 0.62 

 cytochrome-c2-holo 31 0.36 0.35 0.25 21 10 0.67 0.50 

 eglinc 17 0.56 0.76 0.25 6 11 0.67 0.82 

 flavodoxin-holo 56 0.64 0.76 0.21 36 20 0.81 0.85 

 FNfn10 35 0.41 0.58 0.29 12 23 0.67 0.65 

 fyn-sh3 12 0.89 1.45 0.15 4 8 0.75 0.88 

 gb1 10 0.51 0.68 0.26 0 10 N/A 0.80 

 hiv-protease-holo 56 0.74 0.88 0.21 36 20 0.72 0.95 

 mfabp 42 0.59 0.68 0.27 20 22 0.50 0.82 

 NTnC 26 0.77 1.12 0.23 2 24 1.00 0.58 



 63 

 plcc-sh2-free 27 0.64 0.81 0.22 3 24 0.67 0.79 

 protl 20 -0.07 -0.11 0.35 8 12 0.62 0.50 

 TNfn3 40 0.33 0.39 0.32 11 29 0.55 0.55 

 ubiquitin 32 0.60 0.83 0.27 16 16 0.75 0.75 

 Total 530 . . 0.26 215 315 0.69 0.71 

sd 3 (10 degrees)         

 a3D 15 0.70 1.60 0.25 0 15 N/A 0.60 

 albp 28 0.80 0.98 0.18 13 15 0.77 0.73 

 calmodulin 36 0.81 1.22 0.21 4 32 0.75 0.69 

 cdc42hs 47 0.32 0.34 0.33 23 24 0.61 0.58 

 cytochrome-c2-holo 31 0.39 0.37 0.24 21 10 0.67 0.60 

 eglinc 17 0.56 0.77 0.25 6 11 0.83 0.82 

 flavodoxin-holo 56 0.67 0.81 0.20 36 20 0.81 0.80 

 FNfn10 35 0.41 0.58 0.29 12 23 0.67 0.65 

 fyn-sh3 12 0.88 1.44 0.15 4 8 0.75 0.88 

 gb1 10 0.54 0.75 0.26 0 10 N/A 0.80 

 hiv-protease-holo 56 0.74 0.88 0.21 36 20 0.72 0.95 

 mfabp 42 0.58 0.68 0.27 20 22 0.50 0.82 

 NTnC 26 0.78 1.13 0.22 2 24 1.00 0.62 

 plcc-sh2-free 27 0.65 0.82 0.22 3 24 0.67 0.79 

 protl 20 -0.07 -0.11 0.35 8 12 0.62 0.42 

 TNfn3 40 0.33 0.40 0.32 11 29 0.55 0.55 

 ubiquitin 32 0.61 0.82 0.27 16 16 0.75 0.75 

 Total 530 . . 0.26 215 315 0.69 0.70 

          

          

          

Rotamer Resolution         

10 degrees         

 a3D 15 0.70 1.60 0.25 0 15 N/A 0.60 

 albp 28 0.80 0.98 0.18 13 15 0.77 0.73 

 calmodulin 36 0.81 1.22 0.21 4 32 0.75 0.69 

 cdc42hs 47 0.32 0.34 0.33 23 24 0.61 0.58 

 cytochrome-c2-holo 31 0.39 0.37 0.24 21 10 0.67 0.60 

 eglinc 17 0.56 0.77 0.25 6 11 0.83 0.82 

 flavodoxin-holo 56 0.67 0.81 0.20 36 20 0.81 0.80 

 FNfn10 35 0.41 0.58 0.29 12 23 0.67 0.65 

 fyn-sh3 12 0.88 1.44 0.15 4 8 0.75 0.88 

 gb1 10 0.54 0.75 0.26 0 10 N/A 0.80 

 hiv-protease-holo 56 0.74 0.88 0.21 36 20 0.72 0.95 

 mfabp 42 0.58 0.68 0.27 20 22 0.50 0.82 

 NTnC 26 0.78 1.13 0.22 2 24 1.00 0.62 

 plcc-sh2-free 27 0.65 0.82 0.22 3 24 0.67 0.79 

 protl 20 -0.07 -0.11 0.35 8 12 0.62 0.42 

 TNfn3 40 0.33 0.40 0.32 11 29 0.55 0.55 

 ubiquitin 32 0.61 0.82 0.27 16 16 0.75 0.75 

 Total 530 . . 0.26 215 315 0.69 0.70 

15 degrees         

 a3D 15 0.71 1.66 0.25 0 15 N/A 0.73 

 albp 28 0.80 0.98 0.18 13 15 0.85 0.73 

 calmodulin 36 0.82 1.24 0.21 4 32 0.75 0.69 

 cdc42hs 47 0.34 0.37 0.33 23 24 0.65 0.62 

 cytochrome-c2-holo 31 0.36 0.38 0.26 21 10 0.62 0.60 
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 eglinc 17 0.58 0.79 0.25 6 11 0.83 0.82 

 flavodoxin-holo 56 0.67 0.84 0.21 36 20 0.81 0.85 

 FNfn10 35 0.39 0.56 0.29 12 23 0.58 0.65 

 fyn-sh3 12 0.88 1.45 0.16 4 8 0.75 0.88 

 gb1 10 0.55 0.79 0.27 0 10 N/A 0.70 

 hiv-protease-holo 56 0.72 0.88 0.22 36 20 0.67 0.95 

 mfabp 42 0.60 0.69 0.27 20 22 0.50 0.82 

 NTnC 26 0.78 1.13 0.22 2 24 1.00 0.62 

 plcc-sh2-free 27 0.63 0.83 0.24 3 24 0.67 0.67 

 protl 20 -0.05 -0.08 0.35 8 12 0.62 0.50 

 TNfn3 40 0.33 0.37 0.32 11 29 0.55 0.59 

 ubiquitin 32 0.62 0.84 0.27 16 16 0.75 0.75 

 Total 530 . . 0.26 215 315 0.68 0.71 

20 degrees         

 a3D 15 0.79 2.03 0.28 0 15 N/A 0.60 

 albp 28 0.80 0.95 0.19 13 15 0.85 0.73 

 calmodulin 36 0.80 1.20 0.22 4 32 0.75 0.69 

 cdc42hs 47 0.34 0.38 0.34 23 24 0.57 0.67 

 cytochrome-c2-holo 31 0.33 0.32 0.25 21 10 0.71 0.50 

 eglinc 17 0.59 0.81 0.25 6 11 0.83 0.64 

 flavodoxin-holo 56 0.66 0.83 0.21 36 20 0.78 0.85 

 FNfn10 35 0.33 0.47 0.30 12 23 0.58 0.61 

 fyn-sh3 12 0.89 1.52 0.16 4 8 0.75 0.88 

 gb1 10 0.53 0.76 0.28 0 10 N/A 0.70 

 hiv-protease-holo 56 0.69 0.88 0.24 36 20 0.61 0.95 

 mfabp 42 0.59 0.69 0.27 20 22 0.50 0.82 

 NTnC 26 0.78 1.13 0.24 2 24 1.00 0.54 

 plcc-sh2-free 27 0.55 0.75 0.27 3 24 0.33 0.67 

 protl 20 -0.02 -0.03 0.35 8 12 0.62 0.42 

 TNfn3 40 0.30 0.35 0.32 11 29 0.55 0.55 

 ubiquitin 32 0.63 0.87 0.26 16 16 0.75 0.75 

 Total 530 . . 0.27 215 315 0.67 0.68 

25 degrees         

 a3D 15 0.37 0.78 0.28 0 15 N/A 0.73 

 albp 28 0.79 0.91 0.21 13 15 0.85 0.73 

 calmodulin 36 0.78 1.17 0.23 4 32 0.75 0.66 

 cdc42hs 47 0.41 0.45 0.32 23 24 0.61 0.46 

 cytochrome-c2-holo 31 0.28 0.27 0.26 21 10 0.62 0.40 

 eglinc 17 0.61 0.84 0.26 6 11 0.83 0.55 

 flavodoxin-holo 56 0.65 0.77 0.21 36 20 0.83 0.75 

 FNfn10 35 0.20 0.28 0.32 12 23 0.67 0.61 

 fyn-sh3 12 0.92 1.56 0.15 4 8 0.75 0.88 

 gb1 10 0.54 0.80 0.30 0 10 N/A 0.70 

 hiv-protease-holo 56 0.71 0.90 0.24 36 20 0.64 0.95 

 mfabp 42 0.61 0.73 0.26 20 22 0.55 0.77 

 NTnC 26 0.79 1.13 0.25 2 24 1.00 0.54 

 plcc-sh2-free 27 0.70 0.91 0.23 3 24 0.67 0.62 

 protl 20 0.00 0.00 0.36 8 12 0.62 0.42 

 TNfn3 40 0.26 0.30 0.34 11 29 0.55 0.52 

 ubiquitin 32 0.64 0.88 0.25 16 16 0.81 0.75 

 Total 530 . . 0.27 215 315 0.69 0.64 

1 rotamer         

 a3D 15 -0.12 -0.19 0.48 0 15 N/A 0.27 
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 albp 28 0.70 0.80 0.28 13 15 0.92 0.47 

 calmodulin 36 0.58 0.89 0.35 4 32 0.75 0.50 

 cdc42hs 47 0.25 0.26 0.36 23 24 0.74 0.33 

 cytochrome-c2-holo 31 0.40 0.37 0.26 21 10 0.86 0.30 

 eglinc 17 0.38 0.51 0.33 6 11 0.83 0.36 

 flavodoxin-holo 56 0.47 0.55 0.28 36 20 0.92 0.50 

 FNfn10 35 0.22 0.25 0.30 12 23 0.83 0.57 

 fyn-sh3 12 0.88 1.49 0.19 4 8 1.00 0.75 

 gb1 10 0.30 0.41 0.45 0 10 N/A 0.50 

 hiv-protease-holo 56 0.45 0.50 0.29 36 20 0.81 0.55 

 mfabp 42 0.39 0.42 0.32 20 22 0.60 0.55 

 NTnC 26 0.74 1.02 0.32 2 24 1.00 0.46 

 plcc-sh2-free 27 0.56 0.79 0.34 3 24 0.67 0.50 

 protl 20 -0.02 -0.03 0.35 8 12 0.62 0.58 

 TNfn3 40 0.17 0.17 0.39 11 29 0.73 0.28 

 ubiquitin 32 0.49 0.62 0.29 16 16 0.75 0.62 

 Total 530 . . 0.33 215 315 0.80 0.47 
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Chapter 3: A correspondence between solution-state 

dynamics of an individual protein and the sequence and 

conformational diversity of its family 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter was adpated from a manuscript being prepared for submission.
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 ABSTRACT 

Conformational ensembles are increasingly recognized as a useful representation 

to describe fundamental relationships between protein structure, dynamics and function. 

Here we present an ensemble of ubiquitin in solution that is created by sampling 

conformational space without experimental information using “Backrub” motions 

inspired by alternative conformations observed in sub-Angstrom resolution crystal 

structures, and then refined with NMR Residual Dipolar Couplings (RDCs) to select the 

final members of the ensemble. Using this ensemble, we probe two proposed 

relationships between properties of protein ensembles: (i) a link between native-state 

dynamics and the conformational heterogeneity observed in crystal structures, and (ii) a 

relation between dynamics of an individual protein and the conformational variability 

explored by its natural family. We show that the Backrub motional mechanism can 

simultaneously explore protein native state dynamics measured by RDCs, encompass the 

conformational variability present in ubiquitin complex structures and facilitate sampling 

of conformational and sequence variability matching those occurring in the ubiquitin 

protein family. Our results thus support an overall relation between native-state protein 

dynamics and conformational changes enabling sequence changes in evolution. More 

practically, the presented method can be applied to improve protein design predictions by 

accounting for intrinsic native-state dynamics.  
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INTRODUCTION 

It has long been know that protein native states are best represented as ensembles 

of conformations rather than as a single structure. 10 Conformational ensembles provide a 

detailed structural picture of protein dynamics. As motions are crucial for many aspects 

of protein function, such as molecular recognition 61; 73; 74 and catalysis 48; 50; 75; 76; 77; 78, an 

ensemble description of proteins is also useful for improving applications of molecular 

modeling such as protein-small molecule 79 and protein-protein docking methods 80; 81, as 

well as protein design 82; 83; 84; 85; 86. 

Two related concepts characterizing and interpreting properties of protein 

conformational ensembles have been proposed: The first suggests a correspondence 

between the conformational heterogeneity present in crystal structures and the native-

state dynamics of proteins observed in simulations and using nuclear magnetic resonance 

(NMR) measurements. Several studies provide support for this idea. Zoete et al. 

concluded that the conformational changes present in a large number of crystal structures 

of HIV-1 protease reflect the inherent flexibility of the protein. 87 Vendruscolo and 

coworkers showed 44 that side chain relaxation order parameters, reflecting motions on 

the picosecond to nanosecond time scale 88; 89; 90; 91; 92; 93; 94, could be described using 

ensembles of crystal structures of the same protein or proteins with high sequence 

identity. Similarly, modeling “Backrub” motions, a type of conformational change 

inspired by alternate side chain and backbone conformations observed in high-resolution 

crystal structures 8, has led to improvements in modeling NMR side chain relaxation 

order parameters 9 and structural changes upon mutation 7. Lange et al. 74 showed that 

ensembles derived from ensemble-averaged restrained molecular dynamics (MD) 
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simulations of ubiquitin, using Residual Dipolar Coupling (RDC) data describing 

picosecond to millisecond motions 95; 96; 97; 98; 99; 100; 101; 102, encompassed conformations 

similar to those of ubiquitin in different crystal structures alone and in complex with 

different partner proteins. 

The second concept proposes a link between the dynamics of a single protein and 

the conformational variability explored within its family of homologous proteins. This 

link was suggested based on the similar conformational variability observed in an MD 

simulation of myoglobin and in structures of different members of the globin family 103. 

Similarly, Gaussian network models have suggested common dynamical features of 

proteins in the same family. 104; 105 Several studies extended the notion of a relationship 

between the dynamics of a single protein and properties of its homologs to the sequence 

level, showing that modeled sequences consistent with a single protein structure had 

characteristics in common with a multiple sequence alignment of the protein’s natural 

family 106. Further investigating the relation between protein dynamics and family 

sequence variability, other work suggested that sequence diversity and overlap between 

modeled and evolutionarily observed sequences could be increased by incorporating 

conformational flexibility of the protein backbone 82; 83; 84; 107; 108. 

To combine the two concepts outlined above, here we ask whether conformational 

ensembles reflecting variability observed in protein crystal structures of a single sequence 

can be simultaneously related to experimentally determined native-state solution 

dynamics of an individual protein, and to the conformational and sequence variability of 

the protein’s family. To address these questions, we investigate two related hypotheses 

using ubiquitin as a model system: First, we test whether ensembles generated using the 
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Backrub motional mechanism (“Backrub ensembles”), a model inspired by 

heterogeneity observed in experimental protein structures 8, capture properties of 

ubiquitin solution state dynamics derived from amide backbone RDC measurements in 

23 alignment media. 97 Furthermore, we compare the structural variation in modeled 

Backrub ensembles to that seen in a set of 46 crystal structures of ubiquitin 74. Second, 

we test whether the conformational heterogeneity present in Backrub ensembles that are 

consistent with the solution dynamics of an individual ubiquitin sequence resembles the 

structural diversity observed in the UQB subfamily. 109 Furthermore, we predict 

sequences compatible with ubiquitin Backrub ensembles using computational protein 

design as implemented in Rosetta 2 and test whether they are similar to the sequences of 

the UBQ subfamily 109.  

 Supporting our hypotheses, we find Backrub ensembles that are simultaneously 

consistent with native-state dynamics reflected in RDC measurements, the 

conformational variability observed in ubiquitin complex structures, and the 

conformational and sequence diversity of ubiquitin homologs. As an additional validation 

of our approach, we show that Backrub ensembles give similar agreement with the RDC 

data as ensembles generated from RDC-restrained MD simulations 74, and support 

previous observations of ubiquitin core flexibility 44 and binding by conformational 

selection 74. Notably, we discover a common set of Backrub sampling parameters that are 

simultaneously able to best fit the RDC data and allow sampling of sequences most 

similar to those of the ubiquitin family. Our method to model Backrub ensembles and 

sequences consistent with these ensembles may thus be useful for providing insights into 

the relationship between native state dynamics and sequence diversity and for 
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characterizing evolutionary sequence changes. These results also suggest that Backrub 

ensembles will be useful for engineering new protein functions through experimental 

selection from computationally designed libraries 110; 111 that contain sequences 

accommodated by exploiting intrinsic native-state dynamics. 

 

RESULTS 

 

Overall Computational Strategy  

We set out to investigate the hypothesized relations between conformational 

changes reflecting observed heterogeneity in protein crystal structures, native-state 

protein dynamics and evolutionarily sampled conformational and sequence diversity in 

two steps (Figure 3-1). 

First, to test hypothesis 1, we generated ensemble descriptions of ubiquitin 

dynamics using the Rosetta scoring function and several parameterizations of the 

Backrub motional model (described below) without using experimental restraints. 

Subsequently we selected ensembles according to their agreement with Residual Dipolar 

Coupling measurements (Test 1). This approach is significantly different from the 

methods applied earlier to find ensembles compatible with NMR restraints 14; 74; 112, 

which incorporated experimental data directly in the refinement process. Similar to 

previous work, we compare the resulting Backrub-generated conformational ensembles 

with an ensemble of 46 crystal structures of ubiquitin (Test 2).  
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Second, we use the insight gained from the comparison of Backrub ensembles 

with characteristics of solution-state dynamics to evaluate hypothesis 2 (Figure 3-1). We 

investigate whether Backrub ensembles that sample the conformational space available 

on the RDC timescale have similar conformational variability to that explored by 

ubiquitin homologs (Test 3). Moreover, we test whether sequences consistent with 

Backrub ensembles fitting RDC measurements of a single ubiquitin sequence, as 

predicted by computational protein design using Rosetta 2, show overlap with the 

sequences of the natural UQB subfamily 109 (Test 4).  

 

Figure 3-1. Schematic describing the two main hypotheses evaluated in this work and the tests performed.!
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Strategy to test hypothesis 1 

To test hypothesis 1, our approach first uses unrestrained conformational 

sampling with the Backrub motional model to generate a large set of initial 

conformations, starting from the ubiquitin crystal structure (pdb code 1UBQ). We use a 

Monte Carlo protocol consisting of rotamer changes and Backrub moves. Backrub moves 

involve selection of a random peptide segment, followed by a rigid body rotation of all 

atoms in that segment about an axis defined by the endpoint C-alpha atoms 7. The peptide 

segment length is chosen at random to be either 2-3 residues (denoted in the following as 

“maximum segment length of 3”; Figure 3-2a) or between 2-12 residues (“maximum 

segment length of 12”; Figure 3-2b). 10,000 Backrub-Monte-Carlo simulations are run 

to generate 10,000 possible conformations in an initial set (see Methods for details). The 

Backrub motional mechanism thus directly accounts for correlated motions of continuous 

peptide segments of up to length 3 or 12. Applying these moves repeatedly in randomly 

chosen parts of the protein using Monte Carlo sampling allows for correlated motions of 

residues distant in sequence yet close in tertiary structure Correlations between side-chain 

and backbone dynamics have also been observed in numerous NMR studies, such as for 

Ribonuclease H on the relaxation time scale 113; 114 and on the RDC time scale for 

ubiquitin 115 and Protein G 100.  

Subsequently we select from the resulting structures to form ensembles based on 

their agreement to the RDC measurements as measured by the Q-factor (Figure 3-2c), 

defined as:  

  



 74 

 

 

 

Figure 3-2. Description of the Backrub motional mechanism and ensemble selection.  

 Backrub moves for (a) tripeptide segments and (b) segments of arbitrarily length from 2 through 

12 residues. (c) Flowchart of the process used to select ensembles to match the RDC measurements. 

 

 

A similar ensemble selection approach to the one described above has been 

successfully applied to model relaxation order parameters using snapshots from MD 

trajectories. 116 In the following sections, “selected” ensembles are defined as those 

undergoing the Q-factor optimization process described in Figure 3-2c and “non-

selected” ensembles are generated by choosing random ensembles of 50 structures 

(without using the RDC information in selecting the ensemble members). 

 To validate our approach, we compare the Backrub-generated conformational 

ensembles to reference methods such as snapshots from an MD simulation in explicit 
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solvent 117 and a set of representations of the dynamics commonly used to interpret the 

motional information present in RDC measurements. One such representation uses the 

‘model-free’ formalism, which provides five parameters describing the movement of 

each residue. 97; 118; 119; 120  Another approach is ensemble-average-restrained (EAR) 

Molecular Dynamics, in which an ensemble of molecules (the “EROS” ensemble) is 

optimized with respect to a Molecular Mechanics force field potential in combination 

with ensemble-averaged restraints on the NMR measurements, including RDCs. 74 We 

reason that sampling methods that result in low Q-factors more closely approximate the 

conformational space relevant to motions on the RDC timescale than other models that 

describe the experimental data less well.  

 

Correspondence between Backrub conformational ensembles and RDC 

measurements of ubiquitin dynamics (Test 1)  

 We first tested whether Q-factors of Backrub ensembles selected according to the 

strategy described in Figure 3-2c decreased as the ensemble size was increased (2, 3, 5, 

10, 20 and 50 structures per ensemble). This behavior would be expected if our 

description captures dynamical information contained in the measurements. Figure 3-3a 

shows the Q-factors of selected ensembles of varying size generated with a Backrub 

maximum segment length of 12 and a simulation temperature of kT=1.2 (see Methods). 

There is a clear trend that the Q-factors of selected ensembles decrease as the ensemble 

size increases. This trend indicates that adding more structures allows a better 

representation of the RDC measurements and further suggests that these ensembles are 

representative of conformations that are populated on the timescale of the experiments 
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(even though the Monte Carlo simulations are agnostic to timescale). This result is not 

simply explained by inclusion of more degrees of freedom and overfitting, as cross-

validation analysis supports an ensemble size of 10 or larger (Table 3-S2). We use an 

ensemble size of 50 in the experiments below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3. Backrub ensembles selected according to agreement with RDCs. 

 (a) Increasing Backrub ensemble size improves the agreement with the RDCs. Maximum 

segment length of 12 with kT=1.2. (b) Q factors vs. RMSD of the five selected Backrub ensembles with the 

lowest Q factors at each simulation temperature for maximum segment length=12. Error bars: the 

maximum of Qexperimental_uncertainty and Qsampling_uncertainty (see Methods). (c) Q factors of the SCRM model-free 

description, the selected Backrub ensemble, the ubiquitin 46-member X-ray ensemble, 3 sets of NMR 

structures (1G6J, 1UD7, and 1D3Z), 3 Molecular Dynamics simulations with ensemble-averaged NMR 

restraints (1XQQ, 2NR2, and EROS), and a 100-nanosecond MD simulation. 117 For the X-ray structures, 

amide hydrogen atoms were added using the Rosetta molecular modeling program with an NH bond length 

of 1.01 Å. 
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Varying the temperature and the maximum segment length affects the agreement 

of selected Backrub ensembles with RDC measurements 

 The selected Backrub ensemble described above has a Q-factor of 0.086 over 

regions of regular secondary structure (see Methods) and was found by comparing 

motional models using different Backrub sampling parameters.  The first Backrub 

parameter we varied was the maximum segment length (as described above, the longest 

peptide segment rotated about an axis defined by the segment endpoint C-alpha atoms). 

The Backrub conformational change observed in ultra-high resolution X-ray structures 

consisted of concerted 2- and 3-residue Backrub moves 8; thus we first tested a maximum 

segment length of 3.  In a previous study 9 we showed that ensembles of structures 

generated using this maximum segment length improved predictions of side-chain 

relaxation order parameters.  To test the relevance of larger-scale changes, we also tested 

a maximum segment length of 12 (which included moves of all intermediate segment 

lengths from 2-12). To measure the effect of varying the amplitude of motion, we tested a 

range of temperatures for the Metropolis Monte Carlo simulations from kT=0.3 to 4.8. 

Each simulation was run for 10,000 steps. The resulting mean pair-wise RMSDs to the 

ubiquitin X-ray structure of the Backrub ensembles spanned the range of 0.18Å to 0.52Å 

for the maximum segment length of 3 simulations, and spanned the range of 0.3Å to 3.1Å 

for the maximum segment length of 12 simulations (see Methods for details). 

 Figure 3b shows the five selected ensembles with lowest Q-factor of size 50 for 

different initial Backrub starting sets of 10,000 structures with maximum segment length 

of 12 and different simulation temperatures. For the maximum segment length of 3, the 

lowest Q factor is 0.089 at kT=2.4 and for the maximum segment length of 12, the lowest 
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Q factor is 0.086 at kT=1.2. (see Table 3-S1 for results for all parameters) To compare 

these two ensembles, we performed cross-validation with four RDC datasets of N-C’ 

couplings and four datasets of H-C’ couplings (see Methods for details). The resulting 

Rfree values for these ensembles were 21.3% and 18%, respectively. (Table 3-S2) Thus 

the ensemble generated using a maximum segment length of 12 appears to be a better 

representation of the dynamics in the RDC measurements. The optimal mean pair-wise 

RMSD for the ensembles with maximum segment length of 12 seems to be between 0.5Å 

and 1.7Å (Figure 3-3b). 

Figures 4a illustrates the structural diversity of this ensemble. The average NH 

order parameter in ordered secondary structure regions is 0.76. The Soverall scaling factor 

of the order parameters determined from model-free analysis of RDCs is a floating 

parameter that is usually estimated by comparison to relaxation experiments and here we 

use Soverall=0.89. 97; 118; 119. The average NH order parameter in regular secondary 

structure elements is 0.76, the same as that computed for the model free analysis (0.76) 

described in Lakomek et al., but lower than for the EROS ensemble (0.83). 74; 97  
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Figure 3-4. Structural depictions of flexibility in various ubiquitin Backrub ensembles. 

 (a) Structures of the C-alpha backbone traces of a selected 50-member ensemble of maximum 

segment length of 12 with kT=1.2. (b) and (c) Mean C-alpha difference distance values of indicated 

ensembles mapped onto the 1UBQ X-ray structure. Green: 0-25% of the max value; Yellow: 25-50% of the 

max; Orange: 50-75% of the max; Red: 75-100% of the max; Grey: loop regions that were not included in 

the fit to the RDC measurements. 

 

 

Selected Backrub ensembles match RDC measurements comparably to or better 

than other methods 

 Figure 3-3c compares the Q-factors of the selected Backrub ensemble to the Q-

factors from various other ubiquitin ensembles: the Self-Consistent RDC-based Model-

free (SCRM) description (an analytical description of the RDCs with five parameters per 

residue that does not provide an explicit all atom structural representation of the motions 

97, an ensemble of 46 X-ray structures of ubiquitin alone and in different complexes as 

used in 74, three sets of NMR structures (1D3Z, 1UD7, and 1G6J), three Molecular 

Dynamics (MD) Ensemble-Averaged-Restraint (EAR) ensembles (1XQQ, 2NR2, EROS 

PDB code 2K39) 14; 74; 112 and snapshots from a 100-nanosecond MD simulation 117. We 

also examined the root mean squared error in the RDCs as a measure of quality of fit, and 

the results were similar. (Figure 3-S1a) The selected Backrub ensembles have lower Q-

factors than ensembles generated using several other methods, except for the SCRM 

description 97 and the EROS ensemble, both of which were fit with the same dataset of 

RDC measurements as the Backrub ensembles. Not surprisingly, the SCRM Q-factor is 
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the lowest because it is an analytical description fit to the RDCs. The EROS ensemble 

was created with an approach where the RDCs are incorporated into the potential 

function of an ensemble MD simulation and this approach gives very low Q-factors. (See 

Supplemental Text and Figure 3-S2 for an analysis of structural quality measures of 

backrub and other conformational ensembles). The selected Backrub ensembles also have 

similar Rfree values from cross-validation: 18%, 16.1%, 20%, 17.8%, and 23.3%, 

respectively for the selected Backrub ensemble, the EROS ensemble, the 1D3Z 

structures, the ubiquitin X-ray ensemble and the ensemble of MD snapshots. (Table 3-

S2)  

 One important criterion with which the various ensembles of ubiquitin can be 

assessed, as mentioned above, is whether an ensemble matches the RDCs better than any 

single structure within it. If this is the case, dynamical information contained in the 

experimental measurements can be interpreted by analyzing the conformational 

variability in the ensemble. (Figure 3-3c) The selected Backrub ensemble, the MD-EAR 

ensembles (1XQQ, 2NR2 and EROS PDB code: 2K39) and the ubiquitin X-ray ensemble 

have improved Q-factors over the best single structure. Of these, the two MD-EAR 

ensembles that were fit to relaxation NMR measurements (1XQQ and 2NR2) have the 

smallest fractional improvement in Q-factor, suggesting that the dynamic information 

present in the RDCs may be different from the information present on the shorter time 

scale relaxation measurements; this observation is supported by the different pattern of 

order parameters observed between these two classes of measurements. 97 The Backrub 

and the EROS ensembles show the largest fractional Q-factor improvement. Note that 

this does not contradict the fact that Backrub moves were able to improve modeling of 
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faster time-scale picosecond-nanosecond side-chain motions 9; the Backrub ensembles 

used in our previous work were not selected for agreement with the RDCs and the 

simulation temperature used was lower, resulting in smaller motional amplitudes. 

The three sets of NMR structures (1D3Z, 1UD7, and 1G6J) do not show an 

improvement in the Q-factor over the best single structure. For the 1D3Z NMR 

structures, a subset of the RDCs were used in the refinement and, as a result, the Q-factor 

(Q=0.107; calculated over all 23 datasets used in this paper) is lower than for the other 

NMR structures. The Q-factor of the lowest single 1D3Z NMR structure indicates that 

the 1D3Z NMR structure is a good representation of the average structure, but since these 

structures were refined with all the restraints applied to each structure, the set of 1D3Z 

structures do not improve the Q factor. 

 We also used the strategy described in Figure 3-2c to generate selected ensembles 

consisting of structures from the various ensembles compared in Figure 3-3c (see Figure 

3-S1b). The Q-factor decreased most for the ubiquitin X-ray ensemble (34% lower Q-

factor), the MD-EAR ensembles (41%, 49% and 31% decrease in Q-factor for 1XQQ, 

2NR2, and EROS, respectively), and the ensemble of snapshots from the 100-ns MD 

simulation (64% decrease). These results are consistent with the data shown above that 

all ensemble types except the three sets of NMR structures provide insight into the RDC 

dynamics. The Q factors of the selected ensembles of ubiquitin X-ray structures 

(Q=0.0891) and the MD snapshots (Q=0.069) are quite similar to the Q factors of the best 

selected Backrub ensemble. This latter result suggests that relatively long 100ns explicit 

water MD simulations, although short compared to the RDC timescale, may allow some 

parts of ubiquitin to sample conformations in agreement with the RDC measurements 
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even though these different parts do not coincide in the same structures. This idea was 

suggested by Henzer-Wildman et al. 76 to explain the ability of adenylate kinase to 

sample substates in nanoseconds along the open-closed trajectory that exchanged on the 

order of micro- to milliseconds. 

 

Correspondence of conformational variability in Backrub ensembles and structural 

heterogeneity of ubiquitin in multiple crystal structures (Test 2) 

 To characterize the conformational variability of different regions of the protein 

in our ensembles, we calculated C-alpha difference distance matrices (see Methods). 103 

(Figure 3-S3a) These matrices show the motion of each residue in an ensemble with 

respect to all other residues in that ensemble. (Figure 3-S3b) For clarity, we collapse 

these matrices onto a single dimension that represents the average C-alpha difference 

distance relative to other residues in the protein. This metric is sensitive to motions 

relative to those of other residues in the ensemble, as opposed to C-alpha RMSD, which 

is sensitive to changes relative to one conformation in the ensemble.  Figure 3-4b shows 

these C-alpha difference distance values mapped onto the ubiquitin structure and colored 

from green to red depending on the relative amplitude of motion (see Methods).  

Supporting hypothesis 1, the pattern of motion of the ubiquitin X-ray ensemble 

and the selected Backrub ensemble with maximum segment length of 12 with kT=1.2 

show substantial similarities. In both these ensembles the C-terminal end of the helix and 

the N-terminal end of beta strand 2 are the most flexible. These results are consistent with 

the suggestion of Lange et al. 74 that the native state dynamics of ubiquitin encompass the 

conformational flexibility found in crystal structures of ubiquitin bound to different 
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partners, supporting a conformational selection model for binding. Moreover, the 

patterns of motions of the selected Backrub ensemble are similar to the EROS and the 

MD ensembles despite their different amplitudes (see Supplemental text and Figure 3-S4 

for a more detailed comparison of selected and non-selected conformational ensembles) 

In addition, selected and non-selected ensembles are similar to each other, at least with 

respect to the average Ca difference distance matrices shown in Figure 3-4b. 

 

Structural and functional insights from ubiquitin conformational ensembles  

We showed above that our selected Backrub ensemble (i) gives similar Q-factors 

to reference ensembles such as an RDC-restrained MD ensemble (EROS) 74, a ubiquitin 

X-ray ensemble and an ensemble of snapshots from a 100-nanosecond MD trajectory 117 

and (ii) has similar regions of structural variability (Figure 3-4b). As an additional point 

of comparison and validation of our approach, we asked whether the selected Backrub 

ensemble also supports other structural and functional insights derived from previous 

ensemble descriptions of ubiquitin. Lindorff-Larsen et al. 14 as well as Richter et al. 112 

used MD simulations with side chain and backbone relaxation order parameters as 

restraints. These ensembles displayed liquid-like flexibility of side chains buried in the 

protein core. The selected Backrub ensemble also has this property, with buried or near 

buried residues 13, 23, 44, 61, and 67 correctly modeled as flexible with calculated order 

parameters close to their respective values from NMR relaxation experiments. As shown 

in Figure 3-5, Ile 13 chi2, Ile 44 chi2, and Leu 67 chi2 have modeled order parameters 

within 0.04 of the experimental values. Ile 13 chi 1 and Ile 61 chi2 have modeled order 

parameters that are substantially lower than the experimental values but these differences 
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can be due to the short timescale of the relaxation measurements compared to the 

longer timescale of the RDCs fit by the selected Backrub ensemble. (See Figure 3-S5 for 

analysis of all flexible side chains from 14 

 

 

Figure 3-5.  Chi angle distributions of residues in or near the core of ubiquitin.  

For the best selected Backrub ensemble with maximum segment length of 12 and kT=1.2, 

as well as modeled and experimental relaxation order parameters corresponding to these 

chi angles (chi1 and chi2 correspond to the C! and C" methyl groups, respectively). The 

Leucine C" methyl group relaxation order parameters were averaged. 

 

 

Ubiquitin has several hotspots shown to be important in recognition of different 

binding partners: Ile 44, Asp 58, and His 68. These were identified as rigid in the order 
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parameters of the EROS ensemble. 74 Figure 3-S4g and 3b show that these residues 

are also among the most rigid in the Backrub ensemble according to analysis by order 

parameter and C-alpha distance difference value. Likewise the secondary structure 

residues observed to be most flexible by order parameters calculated from the EROS 

ensemble are those in the N-terminal of strand 2 which our analysis also observes to be 

quite flexible. We find flexible regions in the C-terminus of the alpha helix that is 

reflected in the C-alpha distance difference value of the EROS ensemble but not in its 

order parameter.  

 

Strategy to test hypothesis 2 

 Our results above provide support for the hypothesis of a correspondence between 

the properties of Backrub-derived conformational ensembles, solution-state dynamics 

reflected in NMR measurements and a conformational ensemble of 46 experimental 

crystal structures of ubiquitin. To broaden this result and shed light more generally on a 

link between protein dynamics and evolution, we next ask whether there is also a 

correspondence between the dynamics of a single protein sequence and the 

conformational variability explored in a protein family to accommodate sequence 

changes during evolution (hypothesis 2, Figure 3-1). In order to test this hypothesis, we 

first compare the conformational variability present in the selected Backrub ensemble 

with that observed in a structural alignment of 20 members of the UBQ subfamily (Test 

3).  Second, we compare sequences modeled on Backrub ensembles to the sequences of 

the natural UBQ subfamily (Test 4).  

 



 88 

Individual and family conformational variation (Test 3) 

 To test the correspondence of the conformational variability of an individual 

protein and that of its family, we constructed an ensemble from the available structures of 

proteins in the multiple sequence alignment of the UBQ subfamily. (See Methods for 

details) 109 We performed a multiple structure alignment of this 20-member UBQ 

subfamily ensemble using MAMMOTH-mult 121 resulting in 66 positions that aligned in 

all proteins (see Methods) which had at most 85% and an average of 21% pair wise 

sequence identity. We calculated the C-alpha average distance difference matrix for these 

aligned positions and Figure 3-4c shows the average values for each residue in the matrix 

mapped onto the 1UBQ structure, as described for Test 2.  

The resulting UBQ subfamily ensemble shows high variability in the C-terminus 

of the helix and in the N-terminus of beta strand 2, which is strikingly similar to the 

regions of high flexibility in the selected Backrub ensemble. Thus, we find similar 

conformational variability in the structures of the ubiquitin homologs and in an ensemble 

fit to the solution state dynamics of ubiquitin. This correspondence in pattern of 

flexibility holds despite the different motional amplitudes of these ensembles: 1.99Å and 

0.9 Å pair wise RMSD to the 1UBQ X-ray structure, respectively, for the UBQ subfamily 

ensemble and the selected Backrub ensemble.  

 

Modeling of Sequence Space (Test 4) 

We proposed (hypothesis 2) and showed above that there are similarities in the 

conformational variability of a single protein and that of its homologs. Here we extend 

this idea to ask whether the sequences compatible with a structural ensemble describing 
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the dynamics of a single protein are similar to the sequences of the natural family 

members. As we do not model insertions and deletions, we restrict this analysis to 

residues in the protein core that are in well-aligned regions in the UBQ subfamily 109. We 

first tested whether there is a difference between the sequence spaces sampled by the 

selected and non-selected Backrub ensembles. We performed computational protein 

design with Rosetta 2, which used simulated annealing of rotamer conformations and 

amino acid identities on each backbone in an ensemble to determine the low-scoring 

sequences compatible with that ensemble. All positions were allowed to vary to any 

amino acid and 1000 low-energy sequences were generated for each ensemble. In the 

following, we use the term ‘sequence space’ to describe the high-dimensional space of 

possible sequences of a protein. 

To compare the sequence space coverage of the various ensembles, we used the 

BLOSUM62 matrix 122 to calculate the distances between all pairs of sequences 

considering core residues only. This resulted in a distance matrix of size NxN (where N is 

the number of sequences compared) representing a sequence space of dimensionality N. 

To visualize the relative sequence space coverage of different sets of sequences we 

collapsed this sequence space into two dimensions using multidimensional scaling, 

retaining the two dimensions containing the most variation in sequence distances (see 

Methods). 

Figure 3-6a shows that the sequence spaces sampled by the selected and non-

selected Backrub ensembles with optimal Backrub parameters (maximum segment length 

of 12 and kT=1.2) are very similar. This is consistent with the idea that the Backrub 

method captures a significant portion of near-native protein motions, even without 



 90 

directly incorporating the RDC information into the model. In the following, we use 

results for non-selected ensembles; the results are similar for selected ensembles.  

Next we compared the 2-D sequence space of designs on various non-selected 

Backrub ensembles to the sequence space of designs on the ubiquitin X-ray ensemble. 

Figure 3-6b shows that different non-selected Backrub ensembles of maximum segment 

length of 12 with varying amplitude (kT=0.3, 1.2 and 4.8) sample overlapping but 

separate sets of sequences. The lowest amplitude ensemble samples sequences closest to 

the fixed-backbone sequences; sequences move further away with increasing amplitude 

of motion in the ensemble. Notably, the Backrub sampling parameters used to generate 

ensembles which sample sequences most similar to the 46-member ubiquitin X-ray 

ensemble are the same parameters that gave the lowest Q-factor (maximum segment 

length of 12 with kT=1.2), supporting the hypothesis that the Backrub ensembles are 

sampling similar conformational heterogeneity to the ensemble of ubiquitin X-ray 

structures (Test 2). 
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Figure 3-6. Sampling of sequence space by computational design on various backbone models.  

 (a) Designed sequences on non-selected (dark blue), and selected (light blue) Backrub ensembles of 

maximum segment length of 12 with kT=1.2. (b) and (c): Low-scoring designed sequences on the fixed 

backbone of the X-ray structure 1UBQ (orange); on non-selected Backrub ensembles with maximum 

segment length of 12 with kT=0.3 (green), kT=1.2 (blue), and kT=4.8 (cyan); and (b) Low-scoring 

designed sequences on the ubiquitin X-ray ensemble (red), or (c) sequences from the UBQ family (Kiel and 

Serrano 2006) (brown). (Note that the dimensions shown in the plots are selected to maximize the variation 

of the points in each plot and will differ between plots) Sequence logo plots for (d) the UBQ subfamily, 

and low-scoring designed sequences on (e) the 1UBQ fixed backbone, (f) the non-selected ensemble 
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created with maximum segment length of 12 and kT=0.3, and (g) the non-selected and (h) selected 

ensembles with maximum segment length of 12 and kT=1.2.  Designed sequences on (i) non-selected and 

(j) selected ensembles from a Molecular Dynamics trajectory of 100-nanoseconds. (k) Designed sequences 

on the EROS ensemble. 

 

 

Finally, to test whether there exists a link between the conformational 

heterogeneity of solution dynamical ensembles and the sequence space compatible with 

these ensembles (Test 4), we compared the 2-D sequence space of designs on various 

Backrub ensembles to the sequence space of the UBQ subfamily of the ubiquitin ab roll 

subfold. (Figure 3-6c) The subfamily sequences we used came from a high quality 

manually curated alignment of 36 homologues created using 3D structural analysis. 109 

As shown in Figure 3-6c, the sequences of core residues in these naturally occurring 

proteins represent a subset of the core residue sequence space of the non-selected 

Backrub ensemble (maximum segment length of 12 with kT=1.2). In contrast, the UBQ 

subfamily sequences barely overlap with the sequences from the fixed backbone designs 

or the kT=0.3 designs, and do not overlap with the designs using the backrub ensemble 

generated with kT=4.8. 

The sequence logo representations in Figure 3-6d-k support the correspondence 

between the sequence diversity in Backrub ensembles and the natural family. The 

predominant amino acid in the UBQ subfamily is recapitulated in the non-selected 

Backrub ensembles of maximum segment length 12 with kT=0.3 and kT=1.2 (e.g. 

positions 5, 27, 43, 50, 56, 61, and 69). One notable exception is that the designed 

sequences fail to recapitulate the conserved glutamine at position 41. Kiel et al. 109 use 
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this position as the main indicator in categorizing subgroups of subfamily UBQ 

because its presence correlates with the structure of a nearby loop. The side chain amide 

nitrogen atom of Gln 41 forms a buried hydrogen bond with the backbone of residue 36, 

which may be responsible for structural specificity of the loop conformation that we are 

not accounting for in the design simulations. Several positions, such as residues 21, 25, 

45, 55, 61, 65, and 68, have high sequence entropy in the natural family. The Backrub 

ensemble designs recapitulate high sequence entropy for these residues. Especially for 

residues 45, 55, 61, and 65 the high entropy underscores one of the uses of flexible 

backbone design, as with a fixed backbone or low temperature Backrub ensemble only a 

few amino acid types predominate at those positions failing to capture the substantial 

natural sequence plasticity within the family. We also generated designs compatible with 

the non-selected and selected ensembles from the trajectory of the 100-ns MD simulation, 

noting that these sequences showed similar results to the kT=1.2 Backrub ensembles 

overall, but with higher sequence entropy for several positions. 

Taken together, our results thus indicate that the conformational sampling 

methods we use here to match RDC dynamics produce variability similar to the 

conformational heterogeneity of X-ray ensembles (both using different ubiquitin 

structures as well as structures from the UBQ subfamily) and may lead to significant 

overlap between sequences consistent with modeled ensembles and the sequence space 

covered by the natural family. Additionally, it appears from the similarity of sequences 

from selected and non-selected ensembles that the RDCs have led us to determine 

optimal Backrub sampling parameters (Figure 3-3b) that can be used prospectively to 

make modeling predictions.  
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DISCUSSION 

In this work, we describe the application of the Backrub motional model to create 

ensembles of structures consistent with RDC measurements and to sample the 

conformational and sequence space of the UBQ subfamily.  

The main new aspect of our work is that we link the conformational dynamics of 

a single sequence, as reflected by both RDC data and Backrub ensembles, to 

conformational diversity observed in crystal structures of ubiquitin and its family, and to 

evolutionary sampled sequence diversity. We achieve this by applying computational 

protein design to select low-energy sequences consistent with Backrub ensembles. The 

fact that low-Q factor Backrub ensembles sample a similar sequence space to that of the 

ubiquitin X-ray ensemble extends results by other groups demonstrating the 

correspondence of solution-state dynamics and crystallographic heterogeneity. 44; 97 In 

addition, we find that this designed sequence space consistent with optimal Backrub 

ensembles encompasses the sequence space of the UBQ subfamily, providing evidence 

for the idea suggested by Davis et al. 8 that the Backrub motional mechanism may 

facilitate amino acid changes during evolution.  

We find that selected ensembles created with only certain Backrub sampling 

parameters were able to reach the lowest Q-factors, indicating that the conformational 

space sampled by these Backrub parameters is the most similar (compared to other 

parameters) to the conformations giving rise to the RDC measurements. However, while 

we see significant improvements in Q-factors during the selection protocol, we also find 

substantial similarities between selected and non-selected Backrub ensembles, in patterns 

of C-alpha RMSD, order parameters and designed sequence space. This somewhat 
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surprising observation could mean that the selection procedure primarily optimizes for 

subtle differences in NH-vector orientations, while other dynamical features that are 

commonly characterized (such as the anisotropy of motions) are essentially 

indistinguishable between selected and non-selected Backrub ensembles. Analysis by 

cross-validation shows an improvement in Rfree for selected over non-selected ensembles, 

indicating that other aspects of the peptide plane orientation are better represented in the 

selected ensembles.  Notably, there are defined Backrub parameters that simultaneously 

give the best agreement with the RDC data (after selection) and the best sequence space 

overlap with the natural family, irrespective of whether we apply selection or not. This 

could indicate that it is primarily the mechanism and amplitude of motions that is 

important, and that, as long as the amplitude is in the correct range defined by the 

appropriate sampling parameters, the Backrub motional model can sample relevant 

motions without the direct requirement of the RDC data. Hence, the Backrub motional 

model may be useful (i) to predictively sample conformations similar to ensembles of 

bound conformations and (ii) to use with design to sample the sequence space of the 

natural family. Such sampling of sequences likely to be accommodated by a given protein 

fold may help improve engineering of new protein structures, functions and interactions. 

For example, coupling backbone ensemble generation and sequence design may be useful 

to computationally predict sequence libraries enriched in functional members. 111 

There are several potential limitations of the Backrub method, as applied here. As 

we implement Backrub in a Monte Carlo protocol, the timescale of conformational 

transitions is not taken into account. Also, the method used here limits the backbone 

conformational space sampled to those conformations accessible with the Backrub 
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mechanism, a restriction which can be alleviated for example with the addition of 

small phi/psi changes to the method or by using analytical methods for local loop closure 

123, which is a superset of the Backrub move. Nevertheless, Backrub changes have an 

interesting similarity to the 1D-Gaussian Axial Fluctuation (GAF) analytical model, a 

simple motional model that has been used with success to model RDCs 46. A dipeptide 

Backrub move (a tripeptide Backrub move is shown in Figure 3-2a) is essentially the 

same as the 1D-GAF model. Thus the Backrub Monte Carlo protocol, which includes 

moves of longer peptide segments incorporated into a Monte Carlo scheme, can be 

viewed as a generalization of the GAF model.  

As necessitated by the scarcity of proteins with sufficient RDC data, we limit our 

study here to one protein and further work is needed to extend modeling of protein native 

state dynamics and tolerated sequence space to more proteins. However, the usefulness of 

the Backrub mechanism for modeling protein motions is supported by several studies 7; 8; 

9; 124; 125. Our studies on ubiquitin provide an interesting benchmark case for future 

analyses of the correspondence of individual and family variation. 

Analysis of the generated ubiquitin Backrub ensembles allows several 

fundamental insights on the relationship between structure, function, sequence and 

dynamics. The ubiquitin core flexibility and a binding mechanism by conformational 

selection have been pointed out previously. 14; 74 Furthermore, our study allows 

characterization of differences between computationally predicted and evolved protein 

sequences that may lead to testable hypotheses on effects not modeled in the simulations, 

such as evolutionary pressures to conserve functional residues. An example is the 

discrepancy between the predictions and the naturally occurring glutamine residue at 
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position 41 in ubiquitin. A likely explanation why our design simulations fail to predict 

this preference for glutamine is that we are not taking into account avoidance of certain 

non-native conformations due to evolutionary pressure enforcing structural specificity. 

 In conclusion, we have tested a method for sampling conformational diversity 

using Backrub conformational changes and shown that it can generate ensembles 

consistent with millisecond-timescale measurements of protein dynamics. This method is 

computationally more efficient than Molecular Dynamics-based methods, allowing it to 

be applied to a variety of protein modeling tasks such as sequence design. Notably, we 

find that the method recapitulated many of the structural properties of the selected 

Backrub ensembles even when the RDC measurements were not incorporated in the 

sampling procedure. We additionally find that the sequence diversity of non-selected 

Backrub ensembles is similar to that of both the ubiquitin X-ray ensemble and the UBQ 

subfamily X-ray ensemble. This result needs to be tested on more proteins and, if 

validated, should be useful in making prospective predictions to numerous applications, 

such as protein-protein or protein-small-molecule docking, protein interface design, and 

enzyme design. 

 

 

MATERIALS AND METHODS 

 

Residual Dipolar Coupling Measurements 

 The dataset of RDCs we use here consist of measurements in 23 alignment 
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media as described in Lakomek et al. 97. 

 

Structure processing 

 For all X-ray structures, explicit hydrogen atoms were added according to 

standard geometry using Rosetta, and the positions of hydrogens with rotatable bonds 

were optimized. 65 The 46-member ubiquitin X-ray ensemble used was the same as that 

of 74. 

 

Generation of conformational ensembles 

 To generate protein conformational ensembles, we ran “Backrub” Monte 

Carlo simulations, as described in 9 and 7. Briefly, this method randomly makes one of 

three types of moves: (a) a rotamer change (50% of the time)  (b) a local backbone 

conformational changes (Backrub move) consisting of a rigid body rotation of a random 

peptide segment about the axis connecting the endpoint C-alpha atoms (25% of the time), 

or (c) a composite move with a Backrub change and one or two rotamer changes (25% of 

the time). After each move, the positions of the C-beta and H-alpha atoms are modified to 

minimize bond angle strain as described. 7 This results in bond angle changes of the main 

chain atoms of one to four standard deviations. The mean values and standard deviations 

are very similar to those computed in a set of 240 high-resolution crystal structures 

(better than 1.3Å) with less than 25% sequence identity culled from the Dunbrack 

database 126, except for some perturbation to the N-CA-C angle (mean and standard 

deviations are 111.49 and 4.08 in the Backrub ensembles and 110.98 and 2.46 in the 

crystal structure set). See Figure 3-S2 for details on the structural quality analysis for all 



 100 

structures and ensembles used in this study. 

 We ran a Backrub Monte Carlo simulation at kT=0.1 from the starting PDB 

conformation (using 1UBQ, which has the highest resolution (1.8Å) of the unbound 

ubiquitin structures; similar results were obtained for maximum segment length of 3 with 

PDB entries 1UBI and 1CMX and worse Q factors were obtained for PDB entries 1FXT, 

1AAR, 1F9J, and 1TBE) for 10,000 steps with a maximum segment length of 3 or 12, 

matching the segment length used later.  The lowest energy structure from this simulation 

is used as the starting conformation for 10,000 randomly seeded Backrub simulations at 

one of 5 different temperatures (kT=0.3, 0.6, 1.2, 2.4, or 4.8) run for an additional 10,000 

steps. The last structure from each of these simulations is used to form the starting set of 

10,000 structures.   

 From this initial set of 10,000 structures, ensembles are selected to match the 

RDCs by minimizing the Q-factor of the ensemble.  First, structures are randomly chosen 

to create a starting ensemble of a given size (2, 3, 5, 10, 20 or 50 structures), and the Q-

factor of the ensemble is calculated (see below). Next, a random structure in this 

ensemble is chosen and replaced with a randomly chosen structure from the initial 

ensemble of 10,000 structures; then the new Q-factor of the ensemble is calculated. If the 

new Q-factor is lower than before the replacement, the change is kept, otherwise it is 

reverted. These structure replacements are repeated until the Q-factor changes by less 

than 0.001 in 5000 steps. By repeating this method 1000 times, 1000 selected Backrub 

ensembles are created. There are a very large number of possible subsets of a given size. 

For example, there are 4*10^61 different sub-ensembles of size 20 from the initial 

ensemble of size 10,000, too many to be evaluated. The approach described here does not 
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guarantee that the ensemble with the lowest Q-factor will be found, but it starts from 

many random starting points to broadly sample the space of possible sub-ensembles and 

the selection process converges to a low Q-factor solution within 10,000 Backrub-

generated structures for all Backrub Monte Carlo temperatures (except kT=4.8) (Supp 

Figure 3-7) 

 

Calculating RDCs from a structure or structural ensemble 

 RDCs are calculated from a single structure and an ensemble of structures as 

described in 127.  Briefly, we first find the alignment tensor from a structure (or set of 

structures) and the experimental couplings. This is done using the equation T = A-1 Dexp, 

where T is the alignment tensor, A-1 is the Moore-Penrose inverted matrix of projection 

angles for the amide bonds (or averaged projection angles for a set of structures), and 

Dexp is the vector of experimental couplings. The predicted couplings are then calculated 

with the equation Dcalc = AT where A is the same matrix of projection angles from above 

and Dcalc is the vector of calculated couplings.  

 Q-factors were calculated for all RDC measurements with the equation: 

 

 Errors between experimental and predicted RDCs were calculated with:  

 

 Loop residues (i.e. those with DSSP 128 secondary structure type not H, E, G 

or I) are excluded from the analysis in both tensor determination and back-computation 

of RDCs and Q-values.  The non-loop residues used in all analyses in this paper are 
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ubiquitin residues 2-7, 12-16, 23-34, 38-45, 48-49, 57-59, and 66-71. 

 

Sources of error 

 There are several sources of error in our analysis to consider when assessing the 

significance of the results. First, there is error in the RDC measurements due to 

experimental uncertainty. The uncertainty in these values is estimated to be 0.3Hz 97. To 

calculate the resulting uncertainty in the Q-factor, we added Gaussian-distributed noise of 

mean amplitude 0.3Hz to the RDC measurements (see section below) in 1000 Monte 

Carlo trials. This resulted in a value of Qexperimental_error=0.036. 

 A second source of error results from not finding the ensemble with the lowest 

possible Q-factor from a given initial structure set.  We estimated this error by repeating 

the selection procedure many times and evaluating the variance in the resulting Q-factors. 

We take explicit steps to minimize this error by enforcing two convergence criteria on the 

optimization: 1) ensemble selection is not finished until 5000 steps have passed without a 

change in Q of more than 0.001, and 2) enough selected ensembles are generated from 

random starting structures such that the difference in the Q-factors of the best and 10th 

best selected ensemble is not more than 0.005.  Thus, this Qoptimization_error is on the order 

of 0.005. 

 A third important source of error is due to insufficient sampling of conformational 

space with the Backrub Monte Carlo protocol and the 10,000 structures that we use to 

select ensembles from.  We estimated this Qsampling_error by running the structure 

generation protocol at each temperature 10 times, thus creating 10 sets of 10,000 

Backrub-generated structures at each temperature. The standard deviations of the 
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minimum Q-factors over these 10 sets of 10,000 structures are 0.0151, 0.0104, 

0.0025, 0.0039, and 0.0049 for kT=0.3, 0.6, 1.2, 2.4 and 4.8, respectively for a maximum 

segment length of 12. The standard errors of the mean of these values are 0.0048, 0.0033, 

0.0008, 0.0012, and 0.0015, respectively. 

 

Calculation of the experimental uncertainty in the Q-factor (Qexperimental_uncertainty) 

  Gaussian-distributed noise was added to the experimental RDCs with 1000 Monte-

Carlo samples. The RDC uncertainty of each measurement was 0.3Hz, 97 which was used 

as the standard deviation of the Gaussian noise function. The resulting Qexperimental_uncertainty 

is 0.036 with a standard deviation of 0.001018 over the 1000 samples. 

 

Order parameter calculation 

 Order parameters were calculated with the equation  

 

where x, y and z are the coordinates of the normalized unit vectors representing the amide 

bond vector orientations. 55 For the Backrub ensemble, these values were then scaled by 

1/ 1.12 = 0.89 to account for librational effects. 

 

Molecular Dynamics trajectory 

 We used the 100-nanosecond AMBER trajectory of ubiquitin in TIP4Pw/e water 

from Wong and Case 2008. 117 The protein was allowed to equilibrate over the first 4.32 

nanoseconds, and snapshots were taken from the following 100 nanoseconds at 10-

picosecond intervals. This resulted in 10,000 structures, which were used to calculate an 
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overall Q-factor for the trajectory. In addition, we applied the selection scheme in 

Figure 3-2c on these 10,000 snapshot structures to select ensembles with optimized Q-

factors. 

 

Measurement of sequence space sampling 

 To estimate the sequence space represented by different structures and ensembles, 

we used Rosetta computational protein design to generate 1000 low-energy sequences for 

each single structure or 20 sequences per ensemble member for ensembles of size 50. To 

find a low-scoring sequence, each design simulation consists of 20 rounds of Monte 

Carlo simulated annealing with the number of steps in each round equal to the number of 

rotamers created for the simulation. The backbone of each structure or ensemble member 

is kept fixed during the design simulations and all positions were allowed to vary to any 

of the 20 naturally occurring amino acids, adding extra conformers at one standard 

deviation around the mean rotamer for chi 1 and 2 dihedral angles. The scoring function 

used was the Rosetta all-atom scoring function 2, which is dominated by a Lennard-Jones 

potential, an explicit hydrogen-bonding potential 65 and an implicit solvation potential 66.  

 Distances between sequences were calculated as in 107. Briefly, these distances 

were calculated as the sum of the substitution costs (using the BLOSUM62 matrix after 

normalizing it to range from 0 to 1) 122 for the positions that aligned and were in the core 

(defined below). After calculating the distances between all pairs of sequences within 

each ensemble and between pairs of ensembles, we used metric multidimensional scaling 

in R 129  to reduce the dimensionality of the space to the two dimensions spanning the 

most sequence distance. 
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 Core residues were defined by counting the number of neighbor residues with 

C-beta atoms within 10Å of the C-beta atom of the residue of interest (or C-alpha atoms 

for glycine). The cutoff value used (greater than or equal to 18) was chosen so that 

approximately one third of the residues fell into the core category (excluding the flexible 

C-terminus), resulting in 21 buried positions:  residues 3, 5, 17, 21, 23, 25, 26, 27, 30, 41, 

43, 45, 50, 55, 56, 59, 61, 65, 67, 68, and 69. 

 

C-alpha difference distance matrices 

 First, for each structure, we calculated the matrix of distances between all C-alpha 

atoms. Then, for each pair of structures, we calculated the distance difference matrix as 

the absolute value of the difference of the distance matrices of the structures. These 

distance difference matrices were averaged to give the C-alpha difference distance matrix 

of the ensemble. 103 

 

UBQ subfamily structural alignment 

 To create a structural ensemble for the UBQ subfamily we took the highest 

resolution X-ray structure for each protein listed in Table 1 of Kiel et al. 109 (or the first 

structure of an NMR ensemble if no X-ray structure was available). We removed 

structures that had 100% sequence identity to other structures in the ensemble. We 

performed a multiple structural alignment using MAMMOTH-mult 121 and removed PDB 

id 1WIA because it was missing residues that aligned with part of the helix in the native 

ubiquitin sequence; all other structures had residues that aligned with all the residues in 

the secondary structure regions of ubiquitin. The resulting ensemble consisted of 20 
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structures: 1XD3 chain B, 1BT0 chain A, 1EUV chain B, 1IYF, 1J8C, 1LM8 chain B, 

1M94, 1NDD chain A, 1OQY, 1P1A, 1TGZ chain B, 1V5O, 1V5T, 1V86, 1WE6, 

1WE7, 1WGD, 1WGG, 1WH3, and 1WM3 chain A. To create the C-alpha distance 

difference matrix we used the 66 positions that aligned in all 20 structures, which were 

(using 1UBQ numbering): 1-7, 9-16, 18-34, 36-46, 48-55, 57-64, 66-72. 

 

Cross-Validation 

We performed cross-validation by using the alignment tensor calculated from the 

NH RDC datasets to calculate RDCs for four datasets of NC’ RDC couplings and four 

datasets of HC’ couplings. These “free” data were not included in the selection process 

and are reported as Rfree factors, as calculated by Lange et al. 74  

 

for the N different types of experiments with ni measurements each and Q-factor 

Qi. For selected Backrub ensembles, the Rfree values are averaged over the five lowest-Q 

factor ensembles. 
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SUPPORTING INFORMATION 

 

SUPPLEMENTARY RESULTS 

 

Structure quality of Backrub ensembles 

In order to evaluate structural quality parameters of the different conformational 

ensembles, we used MolProbity. 130 The structure quality metrics of the selected Backrub 

ensemble is generally within the range of values of the X-ray and NMR structures and 

other ubiquitin ensembles. (Figure 3-S2) For example, less than 5% of dihedrals are 

outside of the favored Ramachandran region in the Backrub ensembles, compared to 0-

14% for various X-ray structures, 0-8% for NMR structures, 6-8% for the MD ensemble-

averaged-restrained structures, and 4% for the MD structures. Some distortions are 

observed when the Backrub simulation temperature is increased to kT=4.8 for maximum 

segment length of 3 and kT=2.4 for maximum segment length of 12, where the number of 

steric clashes, the occurrence of residues in the non-favored Ramachandran regions and 

the fractional volume increase over the crystal structure have higher values than typical 

for the other ensemble types. Nevertheless, the Backrub ensembles that fit the RDC data 

best (Figure 3-3c in the main manuscript) appear to have reasonable geometries. 

 

 

 

Differences between selected and non-selected Backrub ensembles 
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The Q-factors of selected ensembles are substantially lower than the Q-factors 

of the non-selected ensembles (ranging from Q=0.081 to 0.15 and Q=0.27 to 0.35, 

respectively, for different Backrub ensembles with maximum segment length of 3; and 

from Q=0.086 to 0.15 and Q=0.25 to 0.53, respectively, for maximum segment length of 

12). Thus, we investigated a range of structural and dynamical parameters to characterize 

differences between selected and non-selected ensembles. Supp Figures 4a-f show the 

C-alpha mean pair-wise RMSD of selected and non-selected Backrub ensembles of 

different maximum segment length and amplitude of motion. Interestingly, for the 

Backrub sampling parameters that yield the lowest Q-factors after selection (kT=2.4 with 

maximum segment length of 3 and kT=1.2 with maximum segment length of 12; see 

Figures 3b, 4d and 4g in the main manuscript), the patterns of C-alpha variation of the 

selected and non-selected ensembles are comparable even while the amplitude is 

different. (Supp Figures 4a-f) In addition, the pattern of motion using a C-alpha 

difference distance analysis (see Methods and main manuscript Figure 3-4c) is also 

similar between the selected and the non-selected ensembles. (Figure 3-S3a & b)  

The order parameters between non-selected and selected ensembles are generally 

similar as well (Figure 3-S4g), apart from some smaller differences in the helix for 

maximum segment length of 3 with kT=1.2 and differences in beta strand 4 of ensembles 

from both maximum segment lengths. Nevertheless, the correspondence in C-alpha 

RMSD and overall order parameter patterns between selected and non-selected 

ensembles suggest that more subtle differences – i.e. the character of the motion and not 

its amplitude – account for the significant differences in Q-factors.  
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Thus we looked in detail at the effect of ensemble selection on the properties 

of the amide bond vectors. Supp Figures 6a and 6b show the difference in angle of the 

average amide bond vector orientations of Backrub ensembles relative to the average 

amide bond vector orientations in the 1D3Z ensemble (which was also fit to subset of the 

RDC data). Looking at the change in this angular difference from non-selected to selected 

ensembles (Figure 3-S6c) the orientations change in the selected ensembles and move 

closer to the orientations in the 1D3Z ensemble. These angular differences are also more 

similar between the two selected ensembles with different maximum segment length 

(R2=0.68; Figure 3-S6d) than between the two non-selected ensembles (R2=0.42; Figure 

3-S6e).  

 

 

SUPPLEMENTARY METHODS 

 

Structure quality analysis 

 MolProbity 130 was used for analysis of the following structural quality metrics: 

the number of clashes greater than 0.4Å, orientation of C-beta atoms, rotamer 

conformations with less that 1% frequency of occurrence in the PDB, phi/psi dihedral 

angles in the “core”, “allowed” and “outlier” regions (defined as the top 98% of residues, 

the top 99.5% of residues, and the remaining residues, respectively) 131, and bond lengths 

and angles of heavy main-chain atoms that are more than 4 standard deviations from their 

expected values (Vincent Chen, personal communication). The calc-volume tool 132; 133 
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was used to calculate the packing volume of the various structures. The values shown 

for ensembles are the means over the structures in the ensemble.  

 

Analysis of amide vector orientation 

 To plot the amide vector orientations in the Backrub ensembles, we used the NH 

orientations from the 1D3Z NMR structures as a reference. For each residue we 

calculated the average orientation of the NH vectors in the 1D3Z structures and the 

average orientation of the vectors in the Backrub ensemble. We then calculated the angle 

between these average vectors. 
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SUPPLEMENTARY FIGURES 

 

 

Figure 3-S1. Errors and Q-Factors of various models of ubiquitin flexibility.  

 (a) Error in the calculated RDCs for various ensembles. (b) Backrub ensembles fit the RDCs better 

than most other computational and experimental ensembles. Same data as Figure 3-3c in the main 

manuscript with the addition of the yellow bars: Minimum Q factors of ensembles of size 50 (allowing 

multiple instances of the same structure) selected from structures from the given source using the 

optimization approach in Figure 3-2c in the main manuscript. 
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Figure 3-S2. Stereochemistry of Backrub and other ensembles. 
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 115 

 

Figure 3-S3. C-alpha difference distance matrices.  

 (a) C-alpha difference distance matrices of various ensembles. (b) Mean C-alpha difference distance 

values for various ensembles. Red dashed lines: anchor residues 44, 58 and 68.  
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Figure 3-S4. C-alpha RMSD and NH order parameters over sequence.  

 C-alpha RMSD traces of the best five selected (grey) and one non-selected (black) Backrub 

ensembles for maximum segment length of 3 with (a) kT=0.3, (b) kT=2.4, and (c) kT=4.8 and maximum 

segment length of 12 with (d) kT=0.3, (e) kT=1.2, and (f) kT=4.8. (g) Amide order parameters for the 

selected and non-selected Backrub ensembles, the SCRM description, the relaxation experiments, and the 

EROS ensemble. 
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Figure 3-S5. Chi angle distributions.  

 Chi angle distributions of various residues in the DER ensemble (1XQQ), selected and non-

selected Backrub ensembles with maximum segment length of 12 with kT=1.2, and selected and non-

selected Backrub ensembles with maximum segment length of 3 with kT=2.4. 
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Figure 3-S6. Angle difference between the average amide vector orientation of the 1D3Z NMR 

ensemble and the average amide vector orientations in selected and non-selected Backrub ensembles.  

 (a) Maximum segment length of 12 with kT=1.2 and (b) maximum segment length of 3 with 

kT=2,4. The angle difference of the average amide vector orientation of the 1D3Z ensemble is also 

compared to the orientation of amide vectors in two X-ray structures (with hydrogens added using Rosetta). 

(c) The difference in the angle differences from (a) and (b) for non-selected minus selected ensembles in 

secondary structure regions. (d) Angle differences of the two (f) selected and (f) non-selected Backrub 

ensembles plotted relative to each for residues in secondary structure regions. 

 

 

 

Figure 3-S7. Convergence of Q factors in the optimization protocol.  
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SUPPLEMENTARY TABLES 

 

Table 3-S1. Q-factors of selected ensembles at various simulation temperatures and maximum segment 

lengths. 

kT 0.3 0.6 1.2 2.4 4.8 

Max segment length=3  0.153 0.108 0.093 0.089 0.098 

Max segment length=12 0.160 0.118 0.086 0.112 0.153 

  

Table 3-S2. Cross-validation analysis. 

Ensemble Rfree 

1XQQ 23.1% 

2NR2 19.5% 

2K39 16.1% 

1D3Z 20.0% 

1G6J 38.1% 

1UD7 28.3% 

Ubiquitin X-ray ensemble 17.8% 

Non-selected Backrub; maximum segment length 12 with kT=1.2 20.5% 

Non-selected Backrub; maximum segment length 3 with kT=2.4 26.3% 

MD 100ns 23.3% 

 

Ensemble size 2 3 5 10 20 50 

Max segment length 3 with kT=2.4 23.5% 25.8% 21.8% 21.9% 21.1% 21.3% 

Max segment length 12 with kT=1.2 24.1% 22.0% 20.7% 18.4% 18.6% 18.0% 

 

kT 0.3 0.6 1.2 2.4 4.8 

Max segment length 3 with ensemble size 50 18.8% 18.6% 19.3% 21.3% 24.8% 

Max segment length 12 with ensemble size 50 18.8% 17.8% 18.0% 21.6% 27.5% 
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Chapter 4: Conclusion 
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 The previous chapters describe work I have done with two chief aims in mind: to 

gain insight into the nature of protein dynamics and to improve methodologies for 

computationally sampling protein conformational space closer to the ‘real’ solution-state 

dynamics. 

 I have chosen to focus on one type of backbone conformational change, although 

there are many to choose from. The reasons for choosing the Backrub mechanism are 

numerous. First, it is localized, in that it can be applied to a specified peptide segment 

without affecting the position of atoms outside of this segment. Second, it has been 

observed in X-ray structures to facilitate rotamer changes, relatively dramatic effects 

when you consider that the estimated binding free energy contribution from 1 residue can 

be 4 kcal/mol 134. Third, Backrub moves are conceptually similar to the 1D-GAF models, 

which have been used to explain long timescale protein dynamics 46. Fourth, Backrub 

moves have been used to accommodate amino acid changes, 7 which suggests that the 

mechanism may be used during evolution to adapt to point mutations. 

 The insights about protein dynamics I have learned in the process include aspects of 

both side chain and backbone dynamics. The results in Chapter 2 confirm work by other 

groups underscoring the degree of flexibility of side chains both on the surface and in the 

core of proteins. The model for side chain motion near the native rotamer does not 

contain enough degrees of freedom to match the experimental relaxation measurements. 

Expanding the model to allow sampling in multiple rotamer wells improved the 

agreement with the experimental results significantly, including for core residues. 
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Extending the model further to include small backbone variations improved the 

agreement with the experimental results further still, demonstrating the importance of 

effects on a scale less than 1 Å in correctly modeling the flexibility of side chains. This 

subtlety is emphasized by the fact that allowing backbone flexibility can both increase 

and decrease the flexibility of a side chain.  

 The flexibility of these core residues in proteins presents somewhat of a surprising 

result that has multiple implications. Core flexibility is ‘residual’ entropy left over from 

folding from the extended or molten globule states. It helps to explain the historical 

difficulty of predicting protein interaction affinities and specificities, because quantifying 

the entropy resulting from this flexibility cannot be accomplished with simple models 

based on burial or the number of rotatable bonds. This entropy also helps to explain the 

plasticity of some proteins such as calmodulin for binding a variety of ligands. The free 

energy resulting from the residual entropy of the monomer protein can be ‘borrowed’ or 

‘enhanced’ during a binding reaction to modulate the relative affinity of different binding 

partners as Wand and colleagues have shown. 135 

 In Chapter 3, I applied the Backrub method to model the solution dynamics of 

ubiquitin. The resulting dynamic Backrub ensemble shows similar conformational 

variability as an ensemble of ubiquitin X-ray structures in various bound conformations, 

supporting work by others 74 that ubiquitin binds primarily by a conformational selection 

mechanism. I show further that this dynamic Backrub ensemble shows similar 

conformational variability as the UBQ subfamily X-ray ensemble and it is linked to the 

sequence variability of the UBQ subfamily. 

 Taken together, these two chapters demonstrate that the Backrub mechanism, albeit 
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simple, is a useful method for sampling the dynamics of protein side chains and 

backbones. First, we have developed a method for predicting side chain flexibility of both 

surface and buried positions. Second, we have developed a method for sampling protein 

flexibility on the order of up to micro- or milliseconds that is successful for ubiquitin. 

Third, this latter application has provided a method to sample the conformational space 

similar to the natural family, either to increase the diversity of sequences beyond those 

accessible with a fixed backbone or to span the sequence space accessible to the natural 

family. These latter studies were focused on ubiquitin as it had an extensive dataset of 

RDC measurements and very few other proteins had such extensive datasets. To validate 

the generality of the conclusions described above and the methodology, it will be 

necessary to test the results on a wider set of proteins, focusing on comparing the 

Backrub ensembles to the protein X-ray ensemble, the natural family X-ray ensemble, 

and the natural family sequences. This may be possible because the RDC measurements 

have led us to determine parameters that result in sampling of similar conformational and 

sequence spaces for ubiquitin with and without RDC restraints, and the differences 

between these RDC-restrained and non-restrained ensembles are subtle. 

 The applications of these methods are numerous. First, sampling more diverse 

sequences will be useful in general for protein design because fixed backbone design 

limits the sequence diversity of the results. Second, sampling sequences similar to the 

natural family will be useful for finding new sequence solutions in various design 

problems. In Chapter 3, the Backrub ensembles were shown to give similar results to 

using an ensemble of backbones from an MD simulation; the advantages of Backrub are 

that it is much faster and as a result can likely sample longer timescale conformational 
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changes, although Monte Carlo simulations are independent of timescale. Third, these 

methods can also be applied to allow for flexibility in protein-small molecule and 

protein-protein docking to predict binding when conformational selection is applicable. 

Our work in Chapter 3 and the results of Lange et al. 74 suggest that ubiquitin binds its 

partners predominantly by conformational selection and this finding may be applicable to 

other proteins. Fourth, our methods can be used to design flexibility or rigidity at certain 

sites, which could be used to change the binding specificity. Fifth, the methods may be 

useful for predicting clusters of correlated residues in proteins. Sixth, Backrub ensemble 

can be used to design more ‘rational’ libraries for screening protein functions. 

At some point in the future, computational protein design will likely be a simple 

task, and whole networks or enzymatic pathways will be designed at once. This day may 

not come tomorrow, but given the rate of progress in protein design, it is within the realm 

of possibility. Future methodologies may not use the Backrub mechanism specifically, 

but it is likely that these future methods will sample a conformational space similar to 

that accessible to the protein in solution. This thesis is a step along that path. 
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