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Abstract

Human microbiome research is an actively developing area of inquiry, with ramifications for our 

lifestyles, our interactions with microbes, and how we treat disease. Advances depend on carefully 

executed, controlled, and reproducible studies. Here, we provide a Primer for researchers from 

diverse disciplines interested in conducting microbiome research. We discuss factors to be 

considered in the design, execution, and data analysis of microbiome studies. These 

recommendations should help researchers to enter and contribute to this rapidly developing field.

Introduction

Many studies have documented differences in the composition of host-associated microbial 

communities between healthy and disease states (Clemente et al., 2012; Karlsson et al., 

2013; Knights et al., 2013). For a growing number of diseases, an altered microbiome is not 

just a marker of disease, but also actively contributes to pathology (Chassaing et al., 2012). 

The best empirical direct evidence that microbiomes can drive disease comes from 

experiments in which the microbiota from diseased donors and controls are “transplanted” 

into healthy germ-free hosts: if recipients of the disease-associated microbiome display the 

disease phenotype, the microbiome is considered causal. This approach, pioneered by 

Jeffrey Gordon and his group (Turnbaugh et al., 2006), has directly demonstrated that the 

composition of gut microbial communities can alter host metabolism (Koren et al., 2012; 
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Vijay-Kumar et al., 2010), transmit colitis (Garrett et al., 2007), and modulate type I diabetes 

(Wen et al., 2008). The range of conditions with a host-microbiome interaction component 

continues to grow and has recently started to include neurological conditions (Collins et al., 

2012). Consequently, researchers from a wide array of disciplines are interested in testing 

whether microbes, and especially gut microbes, are associated with various pathologies, 

whether they actively participate in disease, and ultimately whether they can present novel 

targets for therapies. This Primer is intended for non-experts who are considering their first 

microbiome project and summarizes lessons learned from past successful and unsuccessful 

projects.

Mammalian microbiome research has a long history (Savage, 1977), recently marked by 

dramatic increases in scale and scope due to advances in DNA-sequencing technologies and 

in associated computational methods. Anecdotal descriptions of community composition 

that set the standard in the recent past have given way to study designs that allow for 

repeated measurements, error estimates, correlations of microbiota with covariates, and 

increasingly sophisticated statistical tests (Knight et al., 2012). Today, microbiome data are 

obtained predominantly in three forms: (1) 16S rRNA gene sequence surveys that provide a 

view of microbiome membership, (2) metagenomic data used to portray functional potential, 

and (3) metatranscriptomic data to describe active gene expression. Here, we focus primarily 

on 16S rRNA gene surveys because they are economical and therefore scale to larger 

projects. 16S rRNA gene sequence data provide a relatively unbiased characterization of 

bacterial and archaeal diversity (Box 1 provides a brief overview of methods for 

characterizing the diversity of microbial eukaryotes and viruses). Regardless of the types of 

microorganisms targeted or the methodology used to characterize them, choices made at 

every step, from study design to analysis, can impact results. This Primer highlights 

resources that address specific technical questions and provides general advice stemming 

from our collective experience working in the field. Although we focus mainly on the 

mammalian gut microbiota, many of the same issues apply to microbial communities of 

other habitats. We have structured the Primer to answer questions that are commonly raised 

by researchers entering the field (Figure 1).

Animal Studies

The Maternal Effect

A large fraction of microbiome studies are conducted in animals, particularly rodents, as 

they offer attractive models for human biology and their environmental conditions can be 

tightly controlled. How animals are bred and raised is the most important source of 

confounding factors in microbiome studies conducted in animals. Inoculation of mice at 

birth (the maternal effect) is a major factor shaping the composition of the microbiota and 

leads to a sharing of suites of bacteria between littermates and their mothers that 

differentiates them from members of other families and can persist over several generations 

(Ley et al., 2005). The maternal effect determines the specific suite of microbes available to 

colonize a host. Subsequently, the individual host and host diet shapes the relative 

abundances of these taxa (Ley et al., 2005; Rawls et al., 2006).
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Mitigating the Maternal Effect

The maternal effect is particularly problematic when it confounds the experimental effect 

(see Figure 2 for an example). Because littermates and even co-caged unrelated animals can 

share microbiotas due to coprophagy and other modes of transmission, randomization of 

treatments across litters/cages becomes an important aspect of experimental design. When 

the goal is to compare the effect of different genotypes on the microbiome, the options range 

from the use of germ-free mice gavaged with the same inoculum to the use of mixed-

genotype litters. When these options are not available, alternate approaches include embryo 

transfers so that mixed genotypes are born together, cross-fostering, and cohousing post 

weaning. The last two options may be the least effective, as microbiotas will be at least 

partly assembled. In large studies with multiple litter/cage replicates, the variance in the data 

that is attributable to the maternal effect can be accounted for in statistical models (Benson 

et al., 2010).

Using the Maternal Effect to Maximize a Phenotype

In some cases, animals of different genotypes are maintained separately in order to 

maximize the maternal effect and obtain a strong microbial phenotype (Vaishnava et al., 

2011; Vijay-Kumar et al., 2010). Separately maintained mice can then be cohoused to 

demonstrate the spread of a microbiota between adults (Lawley et al., 2012; Ridaura et al., 

2013). Conversely, mice can be housed individually to minimize cross-contamination and 

maintain individual microbiotas (Ley et al., 2005).

Environment Matters: Microbiotas Vary Greatly among Facilities

Mouse microbiotas can differ significantly between facilities even if they have identical 

genotypes (Friswell et al., 2010). Environmental conditions can differ between facilities—

for instance, the water acidity, food, bedding, and so on can differ. But it appears that 

different colonies harbor their own populations of microbes as well. One striking example of 

this facility effect is that of the segmented filamentous bacteria (SFB), which have been 

reported more common in mice obtained from one common vendor (JAX) than another 

(Taconic) (Ivanov et al., 2009). Because their impact on the murine immune system is 

substantial, their presence or absence may confound experimental treatments, particularly in 

immunological studies. Less is known about the effects of housing regimen (e.g., specific 

pathogen free [SPF] versus conventional corridors—and note that definitions of SPF differ 

between facilities). For instance, the microbiota can differ enough between the SPF and 

conventional areas within facilities to impact the prevalence of certain microbially mediated 

phenotypes, such as type 1 diabetes in NOD mice (Wen et al., 2008).

Human Studies

Commonly Applied Exclusion Criteria

In human studies, antibiotics, diet, body mass index, age, pregnancy, and ethnicity all have 

been reported in the literature to have varying degrees of influence on the microbiota 

composition of the gut and of other body sites (Costello et al., 2012). Some of these factors, 

notably antibiotic use, have effects strong enough that they are often exclusion criteria (Cho 
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et al., 2012; Dethlefsen et al., 2008; Dethlefsen and Relman, 2011; Ubeda et al., 2010). The 

exclusion criteria list from the NIH Human Microbiome Project (HMP, see dbGAP) includes 

use of systemic antibiotics, antifungals, antivirals, or antiparasitics within 6 months of 

sampling. Each antibiotic can affect the microbiome differently, and microbiome responses 

to a single antibiotic can also vary substantially between individuals (Dethlefsen et al., 2008; 

Dethlefsen and Relman, 2011; Maurice et al., 2013). The 6 month window of exclusion is 

somewhat arbitrary, however, and in some cases, a shorter window has been applied based 

on results (Koren et al., 2012).

Controls

As in any well-controlled study, factors impacting the microbiota should be balanced across 

the experimental groups. Selection of subjects can be limited by the demographics of the 

population available for study. Of course, a carefully selected control group, such as case-

matched controls, is preferable to the use of “normal” individuals from another study. In 

time-series studies, individuals can be treated as their own control by collecting baseline 

samples before and during treatment (Dethlefsen et al., 2008; Ley et al., 2006). In studies 

that do not include a time series, the best-matched controls are monozygotic twins, in which 

genotype is constant within twin pairs: for instance, the effect of obesity on the microbiome 

has been studied in monozygotic co-twins discordant for this phenotype (Smith et al., 2013). 

Comparisons between monozygotic and dizygotic twin pairs are used to differentiate 

between environmental and genetic contributions to the microbiome, with the assumption 

that early environmental influences are similar for both twin types.

The Human Microbiome Project (HMP) generated the largest human metagenomic study to 

date (Consortium, 2012a, b), with the aim of providing a healthy reference set to be used for 

comparison in future studies. This reference set, however, introduces questions on how to 

best use the HMP data in new studies. Combining new data sets with the HMP is most 

effective when the protocols are compatible and the effect size (i.e., differences between 

controls and subjects) of the study is large. For example, in the Koren et al. (2012) study, the 

average between-subject microbial diversity was higher in the third trimester of pregnancy 

compared to the first trimester, but from the study’s data alone it was not possible to tell 

which was most similar to a non-pregnant state. Comparison with the HMP data set 

suggested that the first-trimester pattern was typical of a non-pregnant state and that the third 

trimester was aberrant (Koren et al., 2012). Another observation that emerged from this 

comparison was a difference in overall diversity between the American (HMP) and Finnish 

(pregnancy study) samples. Because the data were generated separately, the source of this 

difference could be technical artifacts or something more interesting such as culture, diet, or 

geography. Indeed, for studies with subtle effects on the microbiome such as those 

associated with obesity or colon cancer, technical effects such as PCR primer choice and 

DNA extraction method (see below) can greatly outweigh the biological effects. Therefore, 

most studies will require a carefully matched control group and cannot rely on the HMP data 

set as a “universal” control group, just as epidemiological studies cannot rely on a single 

“universal” reference population.
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Before Sampling: Study Design Elements

Pilot Studies

The number of samples required for a microbiome study depends on the effect size. A tool 

called “Evident” has been developed to aid in estimating the study size required based on the 

anticipated effect size and similar previous studies (https://github.com/biocore/Evident). 

However, because there is no standardized way of reporting effect sizes and similar studies 

may not exist, a pilot study may be necessary to define the effect size.

Document Everything and Be Consistent

Before, during, and after sample collection, all information about the sample and 

experimental procedures should be recorded. This information will constitute the “metadata” 

(covariates) surrounding the sample and will later be used in analyzing the data. 

Furthermore, such analyses will be simplified when procedures are as consistent as possible 

across groups and extraneous variables are minimized.

Repeated Sampling of Individuals

One question that comes up in study design is whether to resample individuals over time or 

whether to use those resources to sample more individuals only once. An argument can be 

made for both approaches depending on the goal of the study. For instance, specific strains 

of gut bacteria have been demonstrated to exist for many years within their hosts (Faith et 

al., 2013). Many studies report that the adult human fecal microbiota are “stable” over time, 

based on measures of within-subject (alpha) versus between-subject (beta) diversity (see 

below for further discussion) (HMPC, 2012a; Costello et al., 2009; Ley et al., 2006; 

Turnbaugh et al., 2009; Wu et al., 2011). Furthermore, overall patterns of diversity across the 

human body have been reproducible at different time points (Consortium, 2012a, b; Costello 

et al., 2009). Thus, the stability of the adult gut microbiome can be used to argue that single 

time points are sufficient to describe an individual’s microbiome. However, within-subject 

diversity in one individual over time can approach the between-subject diversity of many 

individuals at one time (Caporaso et al., 2011b). Therefore, repeated sampling over time will 

provide a more comprehensive view of the diversity.

Besides gaining a more comprehensive view of diversity for an individual, time series have 

added benefits. Aspects of the microbiota that can be examined more effectively with time-

series data include changes in the presence/absence, in the membership in the microbial 

community, and in the relative abundances of microbes. Time-series data can also reveal 

interesting characteristics of the microbiome that are not apparent from single time points, 

such as the volatility of the microbiota (degree of change between time points) and its 

resilience (bounce back after disturbance), both of which may be altered in disease or 

preclinical states (Carvalho et al., 2012; Costello et al., 2012; Dethlefsen et al., 2008; 

Lozupone et al., 2012). Recently developed analytical approaches (discussed below) can test 

whether an early configuration of the microbiota predicts later configurations, including 

predictions of the development of pathological states such as colitis (Carvalho et al., 2012).
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Obtaining and Storing Samples

Storage and transit conditions can be important variables in microbiome study outcomes 

because they impact the DNA yields and qualities. Therefore, whatever the conditions used, 

it is most important to be consistent across samples and to keep conditions constant (e.g., 

avoid inconsistent freeze thaws). The most widely accepted protocols include immediate 

freezing either on dry ice or in liquid nitrogen, followed by storage at −80° C (Consortium, 

2012a). However, this approach is not always practical, particularly for stool samples, which 

may be collected at home and then stored for an indeterminate time in home freezers. 

Whether samples must be immediately frozen (and at what temperature) or whether they can 

withstand a period at room temperature remains controversial. However, several studies have 

assessed the effects of storage conditions on the composition of the microbiota by 16S rRNA 

gene sequencing, and their results can help to guide a storage plan based on which aspects of 

the microbiota are impacted (for instance, for fecal samples see Carroll et al., 2012, Lauber 

et al., 2010, and Wu et al., 2010; for vaginal samples, see Bai et al., 2012). Generally, these 

studies report that the effects of short-term storage conditions on diversity and structure of 

the communities are surprisingly small. Lauber and colleagues recently showed that storage 

for 2 weeks at temperatures ranging from −80° C to 20° C did not significantly affect 

patterns of between-sample diversity or the abundance of major taxa (Lauber et al., 2010). 

Note, however, that the number of freeze-thaw cycles has been reported to have an effect on 

the composition of the microbial community (Sergeant et al., 2012) and should be 

minimized. Studies incorporating metabolomics or metatranscriptomics likely have more 

stringent requirements, and the use of RNA stabilizers is still being evaluated. If samples do 

experience big environmental fluctuations, it is important to record these events so that the 

effect on the data can be assessed using statistical modeling.

Long-term storage at −80° C is currently the norm, but as studies grow in size and number, 

repeated acquisition of ultra-low freezers is becoming a burden. Another long-term storage 

approach involves the lyophilization of samples and storage at room temperature (Koren et 

al., 2012). Again, although storage conditions may not affect the outcome of DNA-based 

studies (16S rRNA PCR amplicon and metagenomic sequencing), RNA-based studies may 

require different handling.

DNA Protocols

DNA Extraction and Amplification

Different DNA extraction protocols can result in different diversity profiles because some 

cell types resist common mechanical or chemical lysis methods (Salonen et al., 2010; Smith 

et al., 2011). However, most studies (for example, the HMP) use widely employed protocols 

and/or commercially available kits specific to the sample type (e.g., blood versus stool). 

Extraction protocols should be employed consistently within a study, and the wide use of 

commercial kits increases the possibility for consistency between independent studies. For 

samples from which very little DNA can be extracted, DNA amplification may be necessary. 

The whole-genome amplification methods MDA (multiple displacement amplification; Dean 

et al., 2002) and MALBAC (multiple annealing and looping-based amplification cycles; 

Zong et al., 2012) are generally preferred, as they are best able to maintain the diversity of 
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DNA molecules present in the original sample. Moreover, both of these methods are suitable 

for amplification from single cells (Lasken, 2007; Zong et al., 2012).

Introduced Contaminants

Contamination issues are particularly important for samples with low microbial DNA 

concentrations. This concern was noted early in microbial ecology studies: extreme 

environments with low biomass were thought to contain similar microbes until the 

realization was made that they were common lab contaminants (Tanner et al., 1998). Testing 

commercial kits for contamination is particularly important for studies using 16S rRNA gene 

amplification, which is highly sensitive to low levels of bacterial DNA contamination. 

Testing involves running a blank extraction control through DNA extraction and PCR prior 

to working with samples. We have found that all commercial reagents, from extraction kits 

to primers and polymerases, may be contaminated with microbial DNA, and levels can differ 

between batches from the same vendor. Within a lab, PCR amplicons can become 

contaminants, and many labs spatially separate pre- and post-PCR steps.

If the negative extraction controls result in PCR products, albeit less product than the 

samples, it may seem tempting to “sequence the negative control” and subtract those 

sequences computationally. This process may seem like the sole recourse if the extraction 

blank yields PCR product and the sample has been used up. We encountered this issue in a 

study of the microbial diversity of atheromas obtained from patients. One surprise was that 

the extraction control replicates had very different diversity profiles (O.K., R.K., and R.E.L., 

unpublished data). Removal of sequences matching those in the negative controls had a 

major impact on the study results and interpretation (O.K., R.K., and R.E.L., unpublished 

data), undermining our confidence in the data. We started the study over completely with 

new clinical samples and clean blanks (Koren et al., 2011).

PCR

Selection of 16S Primers

In studies using 16S rRNA gene sequencing, the choice of primer set depends on a number 

of factors, including compatibility with previous studies and the specificities of the primers. 

For instance, the bacterial 27F/338R primer set is biased against the amplification of 

bifidobacterial 16S rRNA genes; the 515F/806R primer set amplifies sequences from both 

Bacteria and Archaea (Kuczynski et al., 2012). Because the phylogenetic information varies 

along the length of the 16S rRNA gene (i.e., highly conserved areas are the least 

informative), the choice of region is more important than the length of the amplicon (Soergel 

et al., 2012). The Earth Microbiome Project has PCR protocol information for use on 

Illumina instruments and lists barcoded primer sequences (http://

www.earthmicrobiome.org). In some cases, sequence lengths obtained from paired-end 

reads (particularly Illumina MiSeq) may be long enough for overlap and can be joined into a 

single longer sequence (a “contig”). If there is little or no overlap between sequence reads, 

both can be used in the downstream analyses, with at best modest performance 

enhancements over using just one of the two sets (Soergel et al., 2012; Werner et al., 2012b). 

In other words, if 16S rRNA gene diversity data consist of paired-end Illumina data that 

Goodrich et al. Page 7

Cell. Author manuscript; available in PMC 2016 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.earthmicrobiome.org
http://www.earthmicrobiome.org


cannot be joined, for many applications it is acceptable to use one of the reads (often the first 

read is of higher quality than the second).

Vetted Barcoded Primers Sets Are Available

Barcoded primers have been designed and optimized for multiplexing samples on the Roche 

454 (http://www.hmpdacc.org/tools_protocols/tools_protocols.php) and on Illumina 

platforms (http://www.earthmicrobiome.org/emp-standard-protocols/16s/). Error-correcting 

barcodes have the added advantage of reducing the possibility that a sequence will be 

assigned to the wrong sample (Hamady et al., 2008). We have found through repeated use of 

barcode sets that the specific barcode sequence used does not influence amplicon yield or 

diversity.

Effect of PCR Conditions on Results

Low DNA template concentration and high PCR cycle number are known to introduce PCR 

bias. To minimize bias, it is common practice to perform and pool multiple (i.e., triplicate) 

PCRs for each sample, to minimize PCR cycle number, and to use a standard but relatively 

high DNA template concentration across samples (Acinas et al., 2005; Aird et al., 2011; 

Sipos et al., 2007). Use of error-correcting polymerases may reduce PCR error, and longer 

annealing times can also assist in reducing chimera formation (Haas et al., 2011) (see 

below). Use of PCR enhancers such as betaine or BSA can improve yields, and pre-

incubations with RNases can facilitate otherwise difficult reactions. In systems with large 

amounts of host contamination, such as plant endophytic microbiomes, approaches such as 

PCR clamps can help to reduce unwanted plant plastid contamination (Lundberg et al., 

2013). The effects of these protocol variations on the inferred microbial community 

composition have not been systematically evaluated. Best practice is, of course, to choose a 

protocol and apply it consistently across all samples in a study and even between studies to 

facilitate later comparisons.

Software for Detecting Sequence Chimeras

PCR errors are also common and are difficult to detect. Chimeras, which are caused by 

incomplete template extension and give the appearance of recombination among disparate 

sequences (Haas et al., 2011), can cause inflated diversity. There are several software options 

for chimera filtering, including ChimeraSlayer (Haas et al., 2011), UCHIME (Edgar et al., 

2011), DECIPHER (Wright et al., 2012), and Perseus (Quince et al., 2011). These different 

methods often disagree with one another. Noise introduced by PCR and sequencing errors 

has the greatest impact on alpha diversity but generally has very little effect on beta diversity 

(Ley et al., 2008).

16S rRNA Gene Sequence Data Analysis

Bacterial and archaeal 16S rRNA gene sequence data from complex microbial communities 

present bioinformatical, statistical, and computational challenges. Box 2 provides a list of 

software options and computational requirements for 16S rRNA gene-sequencing data. The 

most widely used software packages are QIIME (Caporaso et al., 2010b) (http://

www.qiime.org) and mothur (Schloss et al., 2009) (http://www.mothur.org). Both packages 
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are open source and have online tutorials and forums. We focus our discussion on the 

QIIME package (as several of the authors of this Primer are developers of QIIME), but many 

of the themes discussed here are common to both software packages.

Data Filtering and Normalization

Quality Filtering—Marker gene (i.e., 16S rRNA gene) analysis generally begins with 

demultiplexing of sequence reads, whereby each sequence is assigned to its sample of origin 

based on the barcode. For computational efficiency, quality filtering is also typically applied 

at this stage. Reads not matching any barcode are discarded, as are sequences that fail to 

meet minimum quality thresholds. These quality thresholds are sequencing-platform specific 

and may be based on features, including quality scores provided by the sequencing 

instrument, read length, and the presence of ambiguous base calls. Denoising was developed 

for reducing sequencing errors on the 454 platform and does not apply to Illumina data 

(Reeder and Knight, 2010). We recently investigated Illumina quality-filtering parameters in 

detail, and the recommendations from this study (Bokulich et al., 2013a) have been 

implemented in QIIME. Additional quality filtering can occur downstream in data analysis; 

for instance, sequences observed only one time or only in a single sample may be considered 

artifacts and are often discarded. It is rare, though not impossible, for the same errors to be 

independently generated in different samples (Lahr and Katz, 2009).

Uneven Sequence Counts across Samples—The number of sequences obtained in a 

sequencing run can vary across samples for technical rather than biological reasons, and 

these sequencing depth artifacts can affect diversity estimates. One approach to account for 

variable sequencing depth is to use frequencies of OTUs (operational taxonomic units, 

described below) within samples (i.e., to normalize by total sample sequence count). We 

recommend against this approach, as we have found that it is subject to statistical pitfalls and 

can lead to samples clustering by sequencing depth (Friedman and Alm, 2012; C. Lozupone, 

J.G.C., and R.K., unpublished data). In a second approach termed rarefaction, equal numbers 

of sequences are randomly selected from each sample. The number of sequences drawn is 

usually the sequence count of the sample with the smallest acceptable number of sequences. 

This sequence count number should reflect a balance between retaining as many sequences 

as possible without excluding too many low-sequence samples. A major disadvantage of 

rarefaction is that valuable data from high-sequence count samples are discarded. Thus, 

rarefaction can lead to a more conservative view of the abundances of rarer taxa across 

samples. Additionally, rarefaction has recently been shown to introduce errors in analyses, 

and alternatives to rarefaction have been proposed (McMurdie and Holmes, 2013). 

Rarefaction is not necessary when OTU abundances are modeled as response variables in 

statistical models: total sequence counts can be retained and used as a factor in multivariate 

models (see below).

Identifying the Microbial Groups: OTU Analysis

Approaches to “Picking OTUs.”—After quality filtering, sequences are clustered into 

operational taxonomic units (OTUs; sometimes referred to as phylotypes), which provide a 

working name for groups of related bacteria. OTUs are based on sequence identity (%ID), 

and various thresholds of sequence identity are used to represent different taxonomic levels 
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(e.g., 97% ID for species, 95% for genera). These taxonomic thresholds are known to be 

very rough estimates: the degree of sequence variability depends on the region of the 16S 

rRNA gene sequenced, the length of the amplicon, and the specific taxa in question. A 

sequence identity of 97% is most often used to denote bacterial “species” despite the fact 

that there is no rigorous species concept for bacteria. Nonetheless, these OTU naming 

conventions are useful because they have become the shared vocabulary used to discuss 

sequence-based observations.

Types of OTU-Picking Algorithms—The specific OTU-picking algorithm used can 

have a major impact on downstream findings and interpretations of the data. OTU clustering 

algorithms fall into three categories: de novo, closed reference, and open reference. In de 

novo OTU picking, sequences are clustered into OTUs, without any external reference 

sequences (Schloss and Handelsman, 2005). In contrast, closed-OTU picking uses a 

reference sequence database, and sample sequences that fail to match the reference sequence 

database are discarded. Open-reference OTU picking is a two-step process consisting of first 

closed-reference OTU picking followed by de novo clustering of sequences that fail to match 

to the reference database. The pros and cons of these three methods are detailed here (http://

qiime.org/tutorials/otu_picking.html). We recommend open-reference OTU picking because 

it retains all sequence data, though there are circumstances for which this method is not 

applicable. For example, when combining sequence data from different regions of the 16S 

rRNA gene, a closed-reference OTU-picking approach must be used because sequences 

from different regions of the same 16S rRNA gene would otherwise cluster into different de 

novo OTUs.

In reference-based OTU picking, sequences are clustered against a reference database such 

as Greengenes (McDonald et al., 2012), Ribosomal Database Project (RDP) (Cole et al., 

2009), or SILVA (Quast et al., 2013). Note that these databases are periodically updated, and 

the taxonomic information can change between versions. The human gut microbiota are well 

represented in the databases compared to other sample types. We have found that ~5% of the 

human gut sequences and up to 50% of soil microbial community sequences might be 

discarded in closed-reference OTU picking due to failure to match to a database sequence 

(Werner et al., 2012a). Additionally, the mouse gut microbiota are less well represented in 

databases compared to human gut microbiota. As more sequences are added to the 

databases, matching efficiencies are improving across sample types.

Binning Sequences by Taxonomy versus %ID—OTU-picking algorithms followed 

by taxonomic assignment of representative OTU sequences yield lists of OTUs with 

taxonomic labels. Many OTUs will lack a complete taxonomy label; for example, the 

classification might include a family level categorization but might lack genus or species 

categorization. Incomplete taxonomy can result from either a lack of confidence in where 

the OTU fits in the phylogeny (i.e., several matches are equally likely and there is no 

consensus) or from matching to a branch in the phylogeny that lacks taxonomic information. 

There is a temptation to emphasize results for taxa that have associated genus/species names. 

However, OTUs without genus/species information are frequently both more abundant and 

more representative of total diversity than are OTUs with genus/species names (Werner et 
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al., 2012a). OTUs with genus/species information are more likely to include a reference 

strain that is cultured, and these organisms are not randomly distributed across the 

phylogeny. Some types of Bacteria, such as Proteobacteria, lend themselves willingly to 

culturing, whereas the majority of phyla do not.

There are two approaches to assessing the abundances of higher-level taxonomic groups, 

such as orders or families: summing the sequences for all OTUs belonging to the group of 

interest (collapsing taxonomies) or picking OTUs at a lower %ID. As %ID thresholds do not 

necessarily map onto the taxonomy well, these can, in principle, yield different results. A 

word of caution about the genus level: members of the same bacterial genus are not 

necessarily each other’s closest relatives. For example, the genus Clostridium is found in 

different bacterial families. Thus, summing sequence counts for OTUs assigned to the genus 

“Clostridium” will have the effect of combining sequences for potentially very distantly 

related organisms and will yield a meaningless category. Clostridium species are in the 

process of being reclassified into new genera (e.g., Blautia). However, until the tree is fully 

curated, the phylogenetics of organisms assigned common genus names (another example is 

Eubacterium) should be carefully checked before combining sequence sets. In addition, all 

OTUs that have no genus designation will be collapsed into a “no-name” genus, which could 

be an arbitrary mix of OTUs from across their family. Because of these issues, diversity 

calculations should be performed before collapsing data by taxonomy. We strongly 

recommend against collapsing OTUs at the genus level unless the study addresses specific 

known monophyletic genera, i.e., genera in which all species are each other’s close relatives.

Microbiota Diversity Analysis

Microbiome diversity is typically described in terms of within (i.e., alpha) and between 

samples (i.e., beta) diversities. Methods for analyzing alpha and beta diversity (see Box 3) 

have been discussed at length in various reviews (Kuczynski et al., 2010; Lozupone and 

Knight, 2008). Here, we focus instead on the visualization, clustering, and modeling of the 

diversity in microbiota data.

Data Visualization: Principal Coordinates Analysis

Ordination techniques, such as principal coordinates analysis (PCoA), reduce the 

dimensionality of microbiome data sets so that a summary of the beta diversity relationships 

can be visualized in two- or three-dimensional scatterplots. The principal coordinates (PCs), 

each of which explains a certain fraction of the variability (formally called inertia), observed 

in the data set are plotted to create a visual representation of the microbial community 

compositional differences among samples (Figure 3). Observations based on PCoA plots can 

be substantiated with statistical analyses that assess the clusters (see Figure 3 legend).

PCs Explaining a Low Percentage of Variation Can Yield Biological Insights

When the individual PCs explain small fractions of the total variation, it may nevertheless be 

possible to infer the factors driving the separation of samples along the PC. For example, 

Figure 4 illustrates an example of PC1 relating to the OTU abundances across samples (see 
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Koren et al., 2012 for a real example). In many cases, despite having a low percentage of the 

variance explained, biological patterns are still revealed (Kuczynski et al., 2010).

Classification and Clustering

Classification methods can be supervised or unsupervised depending on whether categorical 

metadata (i.e., discrete sample information like diet, genotype, diseased, etc.) is used. 

Supervised classification methods require knowledge of which samples belong to which 

group, whereas unsupervised methods do not. Both methods are useful, and the choice of 

method depends on the information available about the samples and the question being 

asked.

Supervised classification methods can be used to determine which taxa differ between 

predefined groups of samples (e.g., diseased versus healthy) and to build models that use 

these discriminatory taxa to predict the classification of a new sample. Examples of 

commonly employed supervised classification methods are described in Knights et al. 

(2011).

Unsupervised classification (clustering), on the other hand, does not make use of any prior 

knowledge about the samples. Samples are categorized into clusters based on the 

abundances of specific taxa. A between-sample distance metric, such as UniFrac or Bray-

Curtis, is used to generate these clusters. Clustering approaches can differ based on whether 

the number of clusters is preset or optimized to produce maximally distinct clusters. The 

specific methods used in clustering (both distance metrics and clustering algorithms) can 

affect the outcome and the interpretation of clustering analyses (Koren et al., 2013). For this 

reason, it is important to perform clustering in several different ways to ensure that the 

existence of clusters is not dependent on just one set of parameters.

Koren et al. (2013) explored the sensitivities of some of these methods using data sets from 

the HMP and MetaHIT. As an example, we illustrate in Figure 4 how some of these 

approaches assume that clusters exist even if the structure of the data set is a gradient. These 

approaches will delineate distinct clusters regardless of the fact that none actually exist. We 

have recommended that several approaches to clustering be used in parallel (Koren et al., 

2013). If distinct clusters are identified as robust using several methods, the enrichment of 

predefined sample classes within the clusters can be explored, as well as the biological basis 

of the clustering. If the samples do appear to form distinct clusters, these can then be labeled 

as classes, and one can search for OTUs that discriminate these classes.

Clustering of human gut microbiome samples led to the idea of enterotypes, or distinct 

compositions of the gut microbial communities in different individuals (Arumugam et al., 

2011). As data sets have expanded, these discrete categories have emerged as the extremes 

of continuous gradients, with some configurations being more prevalent than others in 

certain populations (Koren et al., 2013). Within any given study, it may be possible to group 

samples into discrete types based on the community composition, but care should be taken 

to determine whether a discrete clustering pattern is present or whether more data would 

reveal a gradient or other alternative structure in the data.
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Modeling

The data that can be extracted from a microbiome analysis take many forms (e.g., alpha 

diversity measures, PCs of the beta diversity PCoA, and the abundances of OTUs) that can 

be used as response variables in statistical models. Abundances of OTUs, in particular, are 

seldom normally distributed because many samples will have zero counts for rare OTUs. 

Such zero-inflated, sparse data sets trigger the need for either transformations or 

nonparametric statistics. Note that a single transformation approach may not work equally 

well for all OTUs. In addition, care must be taken to avoid multiple comparison issues, as 

there are generally thousands of OTUs being tested for association with a few states (e.g., 

healthy or diseased), so many spurious associations are expected. Consultation with a 

statistician is highly recommended at both the experimental design phase and during the 

analysis phase.

Recent large-scale analyses provide examples of how to apply multivariate statistics to 16S 

rRNA sequence data (Bokulich et al., 2013b; Lundberg et al., 2012; McMurdie and Holmes, 

2013; Peiffer et al., 2013). The study of Benson et al. (2010) provides an example of how 

variation induced by the maternal effect can be controlled for statistically. In human studies, 

covariates such as gender, age, and body mass index can be included in models. Technical 

sources of variation in microbiome data are also very important to control for statistically. 

These include, for example, the specific run of a sequencing instrument in studies that 

include multiple runs. We have found that the Roche 454 instrument in particular can 

introduce variation from run to run, which can be controlled for statistically by including the 

run information for each sample in the models (and by randomizing samples across runs). 

Note that, within the same analysis, we strongly recommend against incorporating data from 

different instruments (e.g., Illumina and 454 platforms). Other sources of variation include 

factors such as the date (or season) at which samples were collected, the time maintained in 

freezers, and the identity of the person handling the samples. When OTU abundances are the 

response variable in the models, sequence count per sample can be included as a covariate. 

This alternative approach to rarefying sequence data increases power by retaining the full 

data set.

Concluding a Study: Standardized Databases

As the microbiome field matures and technology further develops, improvements and 

standardization of microbiome research are expected. Each new microbiome study pushes 

forward the guidelines and requirements to conduct and publish a microbiome study. It is 

therefore imperative that investigators stay abreast of the current practices in the microbiome 

field. For all projects (16S rRNA amplicon, metagenomics, or metatranscriptomics), an 

important step is the submission of both the sequence files and the metadata (covariates) 

associated with each sample to public databases. Several database initiatives exist for this 

purpose, including QIIME, MG-RAST, and NCBI’s and EBI’s respective short-read archives 

(SRA). In general, journals and funding agencies require deposition of data into INSDC (the 

International Nucleotide Sequence Database Collaboration, which encompasses NCBI, EBI 

and DDBJ). Unstructured archival resources such as Dryad allow public hosting of large 

data sets but do not require standardization of format; this makes data deposition easy but 
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data reuse essentially impossible. The QIIME database is not intended as an archival 

repository of data but does provide a number of tools for rapidly comparing data from 

different microbial communities. Given the growing number of independent microbiome 

studies, there is great interest in being able to combine data from multiple studies to increase 

power through meta-analysis (Koren et al., 2013). In addition to standardizing protocols for 

sample processing and sequencing, meta-analysis will only be possible if metadata 

collection and reporting is also standardized. To achieve this goal, the Genomic Standard 

Consortium developed the minimum information about a marker gene sequence 

(MIMARKS) (Yilmaz et al., 2011), part of the MIxS family of standards that allows 

description of a wide range of omics data sets.

Final Remarks

The analysis of microbial community diversity is rapidly becoming a component of a vast 

array of different research programs, ranging from neurobiology to nutrition. We focused 

this Primer on 16S rRNA gene diversity studies because it is an entry point into the field. 

However, increasingly powerful algorithms coupled with more accessible sequencing 

strategies make whole microbial genome reconstructions from metagenomic samples a 

growing reality and hint at the future of research in the field. For example, metagenomic 

analysis was recently used to observe characteristics of temporal succession of the gut 

microbiome in preterm infants and proved capable of identifying relevant strains and 

functions of putative bacterial pathogens (Morowitz et al., 2011). Similarly, applying these 

tools allowed reconstruction of genomes from a new uncultivated phylum, Melainabacteria, 

that is common in the human gut (Di Rienzi et al., 2013).

Regardless of the methodologies employed to study the microbiome, many fundamentals 

remain the same. These recommended practices distill down to the following: (1) carefully 

design the study to reduce confounding factors, (2) apply consistent experimental and 

analytic methods throughout, (3) keep good records so that all possible metadata can be used 

in statistical models, (4) match the software and the statistical toolkits to the data sets 

generated and keep detailed records of the bioinformatics steps of the analysis (including 

versions of software and lists of commands), and (5) deposit all data in public databases 

using standard formats. This last recommendation incorporates each individual researcher 

and study into the larger community and allows a second generation of analyses that mine 

the databases for larger trends.
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Box 1

Archaeal, Viral, and Eukaryotic Diversity

Most studies of the human microbiota describe bacterial diversity, which typically 

dominates the cellular fraction of the microbiota; but other taxa, including Archaea, 

fungi, and other microbial eukaryotes, and viruses can be present.

Archaea

Archaeal diversity can be characterized using the commonly employed 515F/806R 

primer set (and others), and their diversity can be analyzed in the same way as bacterial 

diversity. The 16S rRNA gene is the most widely used marker gene for the Archaea, and 

their diversity is represented in reference data sets commonly used for Bacteria.

Microbial Eukaryotes

Characterization of fungal communities, in particular, is an active research area. In 

principle, the bioinformatics pipeline is the same for eukaryotic marker genes as for 

bacterial marker genes (Iliev et al., 2012). However, the lack of a standard marker gene 

and reference database means that the bioinformatics protocols are not as standardized as 

for 16S rRNA gene analysis. For fungi, although several marker gene options exist, the 

internal transcribed spacer (ITS) region of the 16S rRNA gene is generally preferred for 

obtaining high taxonomic resolution. The UNITE database (Abarenkov et al., 2010) is 

often used for ITS sequence-based analyses of fungal sequences. However, the ITS 

region is not amenable to alignments across distinct fungal taxa, so ITS-based fungal 

community studies frequently do not make use of phylogenetic metrics for alpha- and 

beta-diversity comparisons. One strategy that is being explored is using the 18S rRNA 

gene and ITS in conjunction to define fungal phylogenetic trees. Moreover, the 18S 

rRNA gene can, in principle, be used to analyze eukaryotic communities in the same 

manner that 16S rRNA genes are used. A reference database containing many eukaryotic 

sequences, such as SILVA (Quast et al., 2013), should be used for such analyses. One 

should confirm that the region of the 18S gene amplified discriminates between the taxa 

studied and should be aware that the 18S rRNA gene is not sufficient to characterize the 

eukaryotic phylogeny: trees built from 18S sequence alone will likely be of questionable 

utility.

Viruses

Characterizing the human virome requires a different approach because, unlike for 

cellular life, no gene or genomic region is homologous across all viruses. The current 

approach for studying these communities is to isolate virus-like particles (VLPs) using 

size fractionation and to sequence those using metagenomics (Caporaso et al., 2011a; 

Handley et al., 2012; Hurwitz et al., 2013; Reyes et al., 2010). Alternatively, viruses can 

be characterized using DNA microarrays (Jack et al., 2009; Palacios et al., 2007).
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Box 2

Software for Analysis of 16S rRNA Amplicon Data

Several software packages are available for the analysis of sequenced amplicons. The 

most commonly used are QIIME (Caporaso et al., 2010b), RDP (Cole et al., 2009), 

mothur (Schloss et al., 2009), and VAMPS (http://vamps.mbl.edu/). RDP and VAMPS are 

both web-based tools, whereas QIIME and mothur are primarily accessed through 

command-line interfaces. Galaxy (Blankenberg et al., 2010; Giardine et al., 2005; Goecks 

et al., 2010) and CloVR (Angiuoli et al., 2011) wrappers have been developed to enable 

access to these tools via the web, and QIIME is also web accessible through the IPython 

Notebook (Caporaso et al., 2012). We focus our discussion of computational resources on 

QIIME because several of the authors of this Primer have development and leadership 

roles in the QIIME project. QIIME is implemented as a collection of command-line 

scripts designed to take users from raw sequence data and sample metadata through 

publication-quality graphics and statistics. Some of these scripts are primarily wrappers 

of one or more other software packages, such as uclust (Edgar, 2010), RDP classifier 

(Cole et al., 2009), muscle (Edgar, 2004), and PyNAST (Caporaso et al., 2010a). Other 

QIIME scripts directly implement statistical tests, diversity estimators, and data 

visualization tools. QIIME can be run on systems ranging from personal computers to 

computing clusters and clouds. Native installation is supported on Linux and Mac OS X; 

installation via Oracle Virtual-Box is supported on Linux, Mac OS X, and Windows; and 

installation via MacQIIME is supported on Mac OS X. Additionally, we officially 

support use of QIIME on the commercial Amazon Web Services (AWS) Elastic Compute 

Cloud (EC2) and developers of academic computing clouds including iPlant (Goff et al., 

2011) and Magellan (https://www.nersc.gov/research-and-development/cloud-

computing/). AWS is an excellent resource for users without their own computing 

hardware, and tools like StarCluster (http://star.mit.edu/cluster/) facilitate the usage of 

cluster computing environments in the cloud.
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Box 3

Comparing Species Composition between Samples

Beta diversity metrics provide a measure of the degree to which samples differ from one 

another and can reveal aspects of microbial ecology that are not apparent from looking at 

the composition of individual samples. Generally, beta diversity metrics are remarkably 

robust to issues such as low sequence counts and noise. Beta diversity metrics can be 

grouped in a couple of different ways. First, they can be quantitative (using sequence 

abundance, e.g., Bray-Curtis or weighted UniFrac) or qualitative (considering only 

presence-absence of sequences, e.g., binary Jaccard or unweighted UniFrac). Second, 

they can be phylogeny based (the UniFrac metrics) or not (Bray-Curtis, etc.). The figure 

shows an explanation of why phylogeny-based metrics such as UniFrac can outperform 

other metrics in community comparisons. The top three boxes represent communities, 

each with three taxa, shown as OTUs and as pictures of animals. When the phylogenetic 

relationship of the OTUs is not known (see star phylogeny in lower-left), the three 

communities appear equally unrelated (lower-left PCoA plot). When their pylogeny is 

taken into account (i.e., mammals are more related to each other than birds in the 

phylogeny on the right), then the orange (bird) community is shown to be more distant in 

the in PCoA plot (lower-right).
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Figure 1. Conducting a Microbiome Study
The sequential steps of conducting a microbiome study are diagramed, mirroring the 

sections of this Primer.
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Figure 2. The Maternal Effect Can Confound the Experimental Effect
(A and B) In this mock example, each point represents a gut microbial community as 

characterized by a set of 16S rRNA gene sequences from a single mouse sample. In 

principal coordinates analysis (PCoA), points that are closer together represent microbial 

communities that are more similar in sequence composition. Samples from two different 

mouse genotypes are represented, and the mice are derived from two different dams. In all 

panels, squares indicate wild-type, and circles indicate mutant mouse genotypes. In (A), the 

effect of genotype is confounded by the effect of a shared dam, whereas in (B), the effect of 

dam is randomized across the two genotypes.
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Figure 3. Principal Coordinates Analysis and Classification Methods
(A) Principal coordinates (PCs) from a principal coordinates analysis (PCoA) are plotted 

against each other to summarize the microbial community compositional differences 

between samples. Each point represents a single sample, and the distance between points 

represents how compositionally different the samples are from one another. The points are 

colored by health state, showing a clear difference in the microbial community composition 

between diseased (green) and healthy (purple).

(B) Classification methods can be used to determine which OTUs discriminate between the 

healthy and diseased groups, and a heatmap can be used to visualize over/under 

representation of these OTUs in the groups. In this example, the abundances of the four 

discriminatory OTUs (rows) are colored from low abundance (blue) to high abundance (red) 

in the 47 samples (columns). Both the PCoA plot and the sample dendrogram in the heatmap 

show that the separation between disease and health states is not perfect. There is some 

overlap in the composition of these samples, though the placement of points in the PCoA 

plot is far from random. This observation should be supported with statistical analysis. For 

example, a Monte Carlo two-sample t test, comparing the distribution of within-group 

distances to the distribution of between-group distances applied to these data tells us that this 

clustering pattern is statistically significant.
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Figure 4. Use Caution when Applying Unsupervised Classification to Data Gradients
(A–C) In this simulated microbiome data set, a principal coordinates analysis (PCoA) was 

performed, and the first two principal coordinates, PC1 and PC2, are plotted. The exact same 

set of points is shown in panels (A–E) but is colored differently. In (A), samples are all 

colored black to show that they form gradients along PCs 1 and 2. In (B) and (C), two sets of 

clusters were designated by bisecting the spread of samples. In (B), half of the samples form 

the red cluster, and the second half form the Blue cluster along PC1. In (C), half of the 

samples are in the Green cluster, and the second half form the Yellow cluster along PC2. In 
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(B) and (C), starplots display inferred clusters; this display can give the misleading 

impression of distinct clusters (see A; the data structure consists of gradients, not distinct 

clusters).

(D–G) In (D) and (E), the samples are colored according to the abundances of the taxa that 

drive their separation along PCs 1 and 2. (D) The abundance of sequences belonging to the 

Bacteroidetes phylum drives the spread of samples along PC1; (E) abundances of 

Proteobacteria in the samples drive their spread along PC2. When the relative abundances 

for these phyla in samples are averaged (F and G), it is apparent that the Blue samples, 

which are at the “low end” of the Bacteroidetes gradient, have lower means than the Red 

samples, which are at the high end (F). Similarly, because the Yellow/Green samples are 

spread along PC2 according to their abundance of Proteobacteria, these two groups will also 

exhibit different mean abundances (G). Therefore, plotting mean values of the abundances of 

taxa that drive the gradients in the PCoA plots does not constitute a validation of the PCoA 

patterns.
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