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Dual Weighted Graph Convolutional Network for POI Recommendation
Zhi Liu, Deju Zhang, Junhui Deng, Guojiang Shen, Xiangjie Kong*

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

In recent years, with the widespread popularity of location-
based social network platforms, the data generated by users
on social networks has grown exponentially. There has been a
growing focus on the problem of POI (Point-of-Interest) rec-
ommendations. Unlike traditional sequence recommendation
that primarily considers the temporal dimension, POI recom-
mendation needs to account for the influence of geographical
information to a large extent. However, previous works in the
graph construction process often only consider the places users
have visited, neglecting those they haven’t been to. To address
this, we propose a Dual Weighted Graph Convolutional Net-
work for POI recommendation called DualPOI. Specifically,
we first leverage graph neural networks and attention mech-
anisms to capture users’ local trajectory preferences for vis-
ited POIs. A delicately designed spatiotemporal encoder is
conducted to model users’ local spatiotemporal preferences.
Subsequently, using a dual graph convolutional approach, we
transfer the user’s local preference information to a global
scope, thereby modeling novel preferences for unvisited loca-
tions. Extensive experiments on four real-world datasets val-
idate the effectiveness of our proposed method in enhancing
the accuracy of POI recommendations. Comprehensive abla-
tion studies and parameter analysis further confirm the efficacy
of the proposed modules.
Keywords: Social Network; Next POI recommendation;
Graph Neural Network

Introduction
The POI recommendation problem has emerged with the
flourishing development of location-based social network
(LBSN) platforms. Reliable POI recommendations can sig-
nificantly alleviate information overload in social networks
and enhance user experience. The Next POI recommenda-
tion aims to predict a user’s next interest or preference based
on their historical browsing records or interaction sequences,
however, in contrast to e-commerce or short video platforms,
which primarily model users’ personal attribute information
(likes, browsing history, etc.), emphasizing the temporal di-
mension. POI recommendation places greater emphasis on
modeling geographical information and explores how geo-
graphical locations may influence recommendation results
(H. Wang, Shen, Ouyang, & Cheng, 2018).

Considering the simultaneous modeling of the spatiotem-
poral preferences in user mobility trajectories is challeng-
ing. This is because user local movement patterns are not
unidirectional, often involving repeated visits and being sig-
nificantly influenced by both temporal and spatial factors.
Existing works have made significant efforts in modeling
spatiotemporal features. Early research employed collab-
orative filtering techniques to perform matrix factorization
on geographic location information for POI recommendation
(Cheng, Yang, King, & Lyu, 2012). Later, scholars utilized
Recurrent Neural Networks (RNNs) or their variants, such as
LSTM and GRU models (H. Wang, Shen, & Cheng, 2020),

to encode users’ historical visiting sequences. Additionally,
the utilization of learned embeddings to transform a graph
into one or multiple d-dimensional vectors, preserving graph
information, has also been employed (Qian, Liu, Nguyen,
& Yin, 2019). Nevertheless, these methods merely model
the spatial/temporal relationships of POI visit records as a
whole, lacking fine-grained modeling of spatiotemporal re-
lationships and different directions.

With the rapid development of deep learning (Ma & Cheng,
2024), Graph Convolutional Networks (GCNs) have become
one of the most widely used methods in POI recommenda-
tion systems. This is because GCN is particularly well-suited
for capturing spatial features in the given data. However, in
many practical applications, a user’s actual visit history may
not cover all locations. For example, in the real world, users
exhibit diverse behavioral patterns. Some users tend to visit
the same POIs or explore further within familiar regions. On
the other hand, some users have a curiosity-driven behavior,
preferring to explore locations they haven’t visited or seen
before, even across different areas. Consequently, model-
ing geographic preferences becomes challenging as it is hard
to cover all locations in the modeling process. The working
principle of traditional GCN is to aggregate neighborhood in-
formation on the graph, generating similar representations for
nodes with similar characteristics. However, in practical ap-
plications, user information typically consists only of the vis-
ited POI records. The node representations learned by tradi-
tional GCN do not distinguish between visited and unvisited
POIs. Therefore, traditional GCN methods are not effective
for the recommendation task of novel POIs.

To address the aforementioned challenges, this paper pro-
poses a Dual Weighted Graph Convolutional Network for POI
recommendation (DualPOI). Specifically, we first construct
a spatiotemporal interval graph separately in the temporal
and spatial dimensions to model user visit patterns, provid-
ing an initial representation of the spatiotemporal features of
user trajectories. Additionally, we design a spatiotemporal
transition encoder to extract fine-grained bidirectional spa-
tiotemporal weights of user local trajectories. Subsequently,
we employ a Dual Graph Convolutional Network (DGCN)
to capture the user’s novel geographic preferences, enabling
the transfer of local transition information to the global set
of POIs. Finally, the recommendation results are obtained
through joint learning of local transitions and global geo-
graphic preferences. The contributions of this study are sum-
marized as follows:

• We design a tailored spatiotemporal transition encoder,
which not only models user transition preferences from
temporal and spatial perspectives but also explores the di-
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rected weighted problem of visiting POIs at a finer granu-
larity.

• We employ a DGCN to model user geographic preferences,
enabling the extension of the user’s current local spatiotem-
poral preferences to the global scope, thereby achieving
joint learning of seen and unseen information.

• Experimental results on four real datasets validate the ef-
fectiveness of DualPOI, and extensive ablation studies fur-
ther confirmed the efficacy of the proposed components.

Related Work
Next POI Recommendation
Recurrent neural networks (RNNs) and their variants are well
known for their superior sequence-related task-handling ca-
pabilities. RNNs have served as the fundamental architecture
for several prior POI recommendation models, which map
one POI sequence to another (or simply the next POI). ST-
RNN (Q. Liu, Wu, Wang, & Tan, 2016) builds upon the RNN
model and designs a time and distance matrix to capture tem-
poral cyclical effects and geographic influences. FlashBack
(Yang, Fankhauser, Rosso, & Cudre-Mauroux, 2020) lever-
ages RNN with spatiotemporal context and weighted histori-
cal states to enhance the model’s ability to capture spatiotem-
poral effects. TMCA (R. Li, Shen, & Zhu, 2018) employs an
LSTM-based encoder-decoder network with attention mecha-
nisms to select relevant historical and contextual factors, uti-
lizing embedding to merge heterogeneous context informa-
tion. LSPL (Wu, Li, Zhao, & Qian, 2019) adopts two embed-
ding learning modules to capture users’ sequential behaviors
in terms of location and category, and combines them to pre-
dict the next POI. LSTPM (K. Sun et al., 2020) uses all trajec-
tories to capture long-term preferences and the last trajectory
for short-term preferences.

Graph Neural Networks
The development of deep learning has driven numerous ef-
forts to capture spatiotemporal correlations in graph data
(S. Wang, Cao, & Philip, 2020). These methods often em-
ploy graph neural networks to model the spatial dependen-
cies of users. GLSP (J. Liu, Chen, Huang, Li, & Min,
2023) proposed a GNN-based model to transform POIs
into low-dimensional representations, integrating users’ long-
term and short-term preferences to comprehensively repre-
sent dynamic preferences. STA (B. Liu et al., 2017) views
users, POIs, and spatiotemporal pairs as entities and relations
in a knowledge graph, employing knowledge graph embed-
dings to learn users’ spatiotemporal dependency information.
GSTN (Z. Wang, Zhu, Zhang, et al., 2022) utilizes graph em-
beddings to explicitly model complex geographical features
and capture distance-based and transition-based geographical
influences from the designed POI semantic graph. However,
current approaches heavily rely on users’ visit records, over-
looking globally available useful geographical information.
The dependence on GNNs to capture user spatial dependen-
cies still has limitations.

Methodology

In this section, we first define the POI recommendation task.
Then we elucidate the functionality and operation of the pre-
defined spatiotemporal transition graph. A detailed descrip-
tion of each component of our proposed model is presented
subsequently. The overall framework of the model is illus-
trated in Figure 1.

Problem Definition and Preliminary

Sequential POI Recommendation Similar to classical
recommendation problems, given a dataset D = {U,T ,P},
with POI set P = {p1, p2, ..., p|P |} and user set U =
{u1,u2, ...,u|U|}, sequential POI recommendation can be de-
fined as follows: Given a user u and his/her check-in history
sequence S = {(pu

1, t
u
1 ),(pu

2, t
u
2 ), ...,(pu

n, t
u
n )} at corresponding

timestamps, the goal is to recommend the top K POIs most
likely to be visited by the user at the next timestamp.
Spatiotemporal Transition Graph Considering the local
trajectory features of user movements, we need to construct a
trajectory graph to define the local visit patterns of the user’s
historical check-in sequence. Based on a user’s historical tra-
jectory S , we construct a transition graph Gu = {Vu,Eu},
where the vertex set Vu includes all POIs in this trajectory,
and the edge set Eu represents a continuous check-in trajec-
tory from pu

i to pu
i+1. This graph characterizes the user’s local

preferences accordingly. To account for the influence of geo-
graphical factors, we construct a geographic preference graph
Gs = {P ,E ,As}. As(i, j) = d(pi, p j), where d(pi, p j) rep-
resents the geographical distance between any pair of POIs
< pi, p j >, and it is defined as the weight of the edge. As is
an N ×N matrix, where N is the number of POIs.

Personalized Spatiotemporal Transition

An intuitive observation is that users exhibit diverse behav-
ioral attributes, with some frequently visiting and recording
POIs in sequence, while others only occasionally document
their check-in information. Therefore, in modeling tempo-
ral intervals for a user’s trajectory records, we adopt relative
time intervals. Specifically, given a user’s historical visit tra-
jectory S = {(pu

1, t
u
1 ),(pu

2, t
u
2 ), ...,(pu

n, t
u
n )}, the temporal inter-

val between consecutive check-in POIs i and j is denoted as
|tu

i − tu
j |. Suppose the set of all check-in time intervals for

user u is represented as Ru, we define the minimum check-in
time interval for this user as tu

min = min(Ru), and the relative

transition time interval as tu
i j = ⌊ |ti−t j |

tu
min

⌋. Similarly, for spatial
transition intervals, the distance between two check-in POIs
for a user is denoted as d(pi, p j) = As(i, j), where we define
the minimum geographical interval within a user’s trajectory
as du

min and the relative spatial interval as su
i j = ⌊As(i, j)

du
min

⌋. Con-
sequently, we can obtain the user’s spatiotemporal transition
matrices, denoted as Ms,Mt ∈ Rn×n.
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Figure 1: Overview of DualPOI. The DualPOI mainly consists of a spatiotemporal transition encoder and a DGCN for capturing
global geographic information.

Mt =


tu
11 tu

12 . . . tu
1n

tu
21 tu

22 . . . tu
2n

. . . . . . . . . . . .
tu
n1 tu

n2 . . . tu
nn

 ,Ms =


su

11 su
12 . . . su

1n
su

21 su
22 . . . su

2n
. . . . . . . . . . . .
su

n1 su
n2 . . . su

nn


(1)

To enhance the generalization capability of the model, al-
lowing it to discern spatiotemporal intervals not encountered
during training, and simultaneously avoiding sparse relation-
ship encoding (J. Li, Wang, & McAuley, 2020), we employ
a hyperparameter θ for pruning these two matrices. Post the
pruning operation, each matrix element is su

i j = min(su
i j,θ),

tu
i j = min(tu

i j,θ), respectively.
We employ two learnable location embedding matrices,

MP
s ∈ Rn×d and MP

t ∈ Rn×d , to maintain these two interval
matrices. This approach is more suitable for self-attention
mechanisms, eliminating the need for additional linear trans-
formations (Shaw, Uszkoreit, & Vaswani, 2018). Subse-
quently, by tensor concatenation of these two location em-
bedding matrices with Mt and Ms, respectively, we obtain
two trainable embedding matrices, Eu

s ,E
u
t ∈ Rn×n×d . In

these matrices, any position element es,u
i j , et,u

i j represents a d-
dimensional embedding vector, where d is a hyperparameter.

Spatiotemporal Transition Encoder

As illustrated in Figure 1, a user’s check-in sequence for
POIs is not strictly unidirectional. To model these bidirec-
tional spatiotemporal relationships, we design a personal-
ized spatiotemporal edge-weight learner for POI embedding
e and personalized spatiotemporal transitions to learn such
dynamic relationships, which improves the message aggrega-
tion mechanism of GGNN (Ruiz, Gama, & Ribeiro, 2020).
Specifically, the direction and spatiotemporal information of

the user’s trajectory can be defined as follows:

mi = ∑
<i, j>∈E

α
in
i je j + ∑

<i,k>∈E
α

out
ik ek (2)

Iin = β
s
i je

s,u
i j +β

t
i je

t,u
i j (3)

Iout = β
s
ikes,u

ik +β
t
iket,u

ik (4)

α
in
i j = δ(Iin(Win(ei ⊙ e j))) (5)

α
out
ik = δ(Iout(Wout(ei ⊙ ek))) (6)

where Win,Wout ∈ Rd are trainable mapping matrices, αin
i j ,

αout
ik , βs

i j, βt
ik all are trainable parameters, ⊙ indicates the

product operation, δ is the Softmax activation function,
used to map weights to the (0, 1) interval. To effectively
model a user’s historical preferences, we employ a self-
attention mechanism to iteratively update the representation
of neighbor influences between each pair of nodes in the
trajectory S for each user. For each input sequence Eu =
[m1,m2, ...,mn], we aim to obtain a new sequence represen-
tation X = [x1,x2, ...,xn], where xi ∈ Rd . Each xi is obtained
by weighted summation, representing the historical check-in
preferences of user i:

xi =
n

∑
j=1

αi j(WV m j) (7)

αi j =
expei j

∑
n
k=1 expeik

(8)

ei j =
W Qmi(W Km j)

T
√

d
(9)

where W Q,W K ,WV ∈ Rd×d are all trainable mapping matri-
ces. The Spatiotemporal Transition Encoder (STE) is em-
ployed to capture the spatiotemporal features of user trajec-
tory transitions, while the self-attention mechanism is capable
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of modeling the global preferences between long-term visits
by the user.

Novel Geographical Preferences
Inspired by (Yue, Liang, Cui, & Bai, 2022), for the POI rec-
ommendation task, it is crucial to thoroughly consider the re-
lationship between users and geographic information that has
not been visited. Based on this consideration, we propose a
Dual Graph Convolutional Neural Network (DGCN) for POI
recommendation. In the preceding sections, we initially con-
structed the transition features X for users, reflecting the pref-
erences for POIs they have encountered. Additionally, POIs
seen and unseen by the user need to be represented within the
same network. Specifically, we consider a layer of DGCN
to adopt a dual graph aggregation mechanism, resulting in
Vu = [v1,v2, ...,vn], where vi ∈ Rd . The general form can be
expressed as follows:

Vi = So f tmrelu(M̂sXW (1))W (2)Âs) (10)

where M̂s is the normalized spatial interval matrix of user
trajectories, As is the normalized geographic adjacency ma-
trix defined as the geographical distance between POIs. This
can be initially represented as the geographic relationship be-
tween POIs, W (1) ∈ Rd×d ,W (2) ∈ Rd×N are trainable map-
ping matrices. The dimension of Vi is consistent with the
total number of POIs, allowing the adjacency representation
learned through a unified network to not only reflect the user’s
preferences for the visited POIs but also integrate unvisited
POIs. The traditional GCN aggregates and reflects adjacency
information between user trajectories, while DGCN can si-
multaneously aggregate adjacency information for user tra-
jectories and global POIs. Therefore, DGCN is better suited
for recommending the next location a user might visit, even if
they have not visited it before. Finally, we use a multi-layer
perceptron to encode Vi into vi ∈ Rd for the optimization of
the model.

Prediction and Optimization
We previously obtained two corresponding embedding repre-
sentations, xu and vu, representing the user’s local trajectory
preference and global geographical preference, respectively.
Considering the user’s preference for the next visited POI, the
probability of user u visiting POI i can be expressed as:

ŷu
i = So f tmax(αxT

u +(1−α)vT
u ) (11)

where α is a weight coefficient reflecting the importance of
the two similarity terms. By default, we set α to 0.5, indicat-
ing equal importance for both factors. Given the user’s visita-
tion history trajectory S and the corresponding Ground-Truth
target POI yu

i , the model optimizes using a cross-entropy loss
function with regularization L2 loss weighted by a hyper-
parameter. The overall optimization function is expressed as:

L f inal =− 1
|U| ∑

u∈U
yu

i log(ŷu
i )+ γ∥Θ∥2

2 (12)

Table 1: Statistics of Datasets

Dataset #Check-ins #User #POI #Avg. Length #Sparsity
Gowalla 456820 10162 24237 44.95 99.81%
Singapore 194108 2321 5596 83.63 98.51%
NYC 179468 1083 9989 165.71 98.34%
TKY 494807 2293 15177 215.79 98.58%

Experiment
To validate the performance of our proposed DualPOI and
evaluate the efficacy of its components, a series of exper-
iments and parameter analyses are conducted on four real-
world POI datasets.

Datasets and Parameter Setting
We utilize four real-world datasets to validate the effective-
ness of the proposed method, all of which have been widely
applied in POI recommendations.

Gowalla1 is a wildly used benchmark dataset. It comprises
user check-in records from 2009 to 2010, with each entry
containing user ID, location coordinates, and check-in times-
tamp.

Singapore dataset is collected from the large-scale check-in
platforms Foursquare2. The dataset is collected from August
2010 to July 2011.

NYC and Tokyo Check-in Dataset contains check-ins in
NYC and Tokyo collected for about 10 months from 12
April 2012 to 16 February 2013, which is also provided by
Foursquare.

For a fair comparison, all models use the Adam optimizer
to optimize the parameters. The learning rate is set to 0.001
uniformly. For our model, we set the hyperparameters α to
0.5 and γ to 10−3 in the loss function. To the dropout rate,
we fix the value of it to 0.1. For efficiency, we adopt an early
stopping strategy with a patience of 10 during the training
process. We evaluate the model using the best epoch deter-
mined by this strategy.

Baselines and Metrics
• MF (Mnih & Salakhutdinov, 2007) is a classical collabora-

tive filtering method that decomposes user-poi interaction
data to capture patterns to facilitate personalized recom-
mendations.

• BERT4Rec (F. Sun et al., 2019) is a transformer-based
model that utilizes a bidirectional attention mechanism to
achieve end-to-end historical sequence recommendation.

• LightGCN (He et al., 2020) utilizes graph convolutional
neural networks for embedding representations to accom-
plish POI recommendations.

1https://snap.stanford.edu/data/loc-gowalla.html
2https://sites.google.com/site/yangdingqi/home/foursquare-

dataset
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Table 2: Recommendation effectiveness comparisons. Each
row highlights the best-performing method in bold and the
second-best method with an underline.

Dataset Metric MF LightGCN SGRec LSTPM STAN BERT4Rec DRAN DualPOI

Gowalla

Recall@2 0.0414 0.1102 0.1531 0.1904 0.2195 0.1734 0.2133 0.2564
Recall@5 0.0869 0.1348 0.1987 0.2049 0.2364 0.2042 0.2466 0.2981
Recall@10 0.1473 0.1699 0.2384 0.2618 0.2994 0.2235 0.3056 0.3332
NDCG@2 0.0428 0.0914 0.1402 0.1431 0.1917 0.1683 0.2038 0.2451
NDCG@5 0.0810 0.1162 0.1621 0.1588 0.2152 0.1877 0.2168 0.2637
NDCG@10 0.1078 0.1432 0.1751 0.1742 0.2268 0.2033 0.2367 0.2750

Singapore

Recall@2 0.1103 0.1606 0.3058 0.2704 0.2634 0.2566 0.3086 0.3292
Recall@5 0.1766 0.2144 0.3507 0.3253 0.2940 0.2837 0.3554 0.3793
Recall@10 0.2059 0.2419 0.3884 0.3791 0.3280 0.3099 0.3921 0.4214
NDCG@2 0.0744 0.1720 0.2274 0.2610 0.2831 0.2424 0.2972 0.3161
NDCG@5 0.0791 0.1789 0.2697 0.2697 0.2995 0.2584 0.3175 0.3389
NDCG@10 0.0868 0.1892 0.2916 0.2749 0.2892 0.2688 0.3297 0.3524

New York

Recall@2 0.2361 0.3789 0.5734 0.5754 0.6027 0.5629 0.5859 0.6477
Recall@5 0.2792 0.4363 0.6175 0.6020 0.6358 0.6034 0.6253 0.6648
Recall@10 0.3046 0.4519 0.6424 0.6312 0.6533 0.6301 0.6478 0.6776
NDCG@2 0.2002 0.3819 0.5490 0.5524 0.5887 0.5660 0.5702 0.6417
NDCG@5 0.2318 0.3867 0.5559 0.5596 0.6092 0.5730 0.5881 0.6494
NDCG@10 0.2426 0.3903 0.5613 0.5681 0.6124 0.5896 0.5956 0.6535

Tokyo

Recall@2 0.2896 0.3917 0.5091 0.5029 0.5105 0.5059 0.5225 0.5850
Recall@5 0.3141 0.4473 0.5488 0.5513 0.5489 0.5432 0.5570 0.6238
Recall@10 0.3866 0.4936 0.6173 0.5795 0.6167 0.5745 0.6210 0.6537
NDCG@2 0.1984 0.4207 0.4715 0.4724 0.4990 0.4888 0.5089 0.5734
NDCG@5 0.2071 0.4354 0.4905 0.4881 0.5264 0.5051 0.5390 0.5910
NDCG@10 0.2327 0.4403 0.5112 0.4962 0.5554 0.5203 0.5602 0.6007

• LSTPM (K. Sun et al., 2020) is an LSTM-based model
that achieves improved recommendation performance by
modeling both the long-term and short-term preferences of
users.

• SGRec (Y. Li, Chen, Luo, Yin, & Huang, 2021) is a GAT-
based method that enhances the representation of nodes by
aggregating POIs before and after the target POI in differ-
ent orders.

• STAN (Luo, Liu, & Liu, 2021) aggregates temporal and
spatial information through a dual-layer attention mecha-
nism and performs linear interpolation for spatiotemporal
discretization.

• DRAN (Z. Wang, Zhu, Liu, & Wang, 2022) utilizes GCN
for feature extraction after decomposing POI into multiple
dimensions and employs multi-head attention to process
each decomposed dimension.

We employ two evaluation metrics to assess the model,
namely Recall@K and NDCG@K (Normalized Discounted
Cumulative Gain). K means the consideration of the top K
items in a recommendation list, which is a common practice
in POI recommendation.

Overall Comparison
We conduct experiments on four real datasets using the open-
source code from the aforementioned paper and followed
similar procedures as in previous related works. We present
the experimental results alongside the best results from sim-
ilar previous works for comparison (Qin, Wu, Ju, Luo, &
Zhang, 2023). The experimental results are presented in Ta-
ble 2. Here, we can make the following observations.

DualPOI consistently exhibits superior performance across
all six metrics compared to all baselines across four datasets.
In particular, DualPOI achieved performance improvements

Table 3: Results of ablation experiments with different STE
components.

Dataset Ablation Recall@2 Recall@5 Recall@10 NDCG@2 NDCG@5 NDCG@10

Gowalla
w MLP 0.2194 0.2621 0.2983 0.2083 0.2275 0.2392
w GCN 0.2355 0.2775 0.3121 0.2245 0.2433 0.2545
w GAT 0.2433⋆ 0.2852⋆ 0.3224⋆ 0.2323⋆ 0.2511⋆ 0.2631⋆

DualPOI 0.2564 0.2981 0.3332 0.2451 0.2637 0.2750

Singapore
w MLP 0.2746 0.3228 0.3631 0.2621 0.2835 0.2965
w GCN 0.3089 0.3567 0.3991 0.2972 0.3186 0.3323
w GAT 0.3188⋆ 0.3671⋆ 0.4074⋆ 0.3052⋆ 0.3268⋆ 0.3399⋆

DualPOI 0.3292 0.3793 0.4214 0.3161 0.3389 0.3524

New York
w MLP 0.5999 0.6211 0.6366 0.5943 0.6039 0.6090
w GCN 0.6241 0.6424 0.6571 0.6180 0.6262 0.6310
w GAT 0.6316⋆ 0.6491⋆ 0.6623⋆ 0.6262⋆ 0.6341⋆ 0.6384⋆

DualPOI 0.6477 0.6648 0.6776 0.6417 0.6494 0.6535

Tokyo
w MLP 0.5174 0.5607 0.5927 0.5040 0.5235 0.5338
w GCN 0.5544 0.5969 0.6273 0.5414 0.5605 0.5703
w GAT 0.5790⋆ 0.6189⋆ 0.6480⋆ 0.5660⋆ 0.5839⋆ 0.5934⋆

DualPOI 0.5850 0.6238 0.6537 0.5734 0.5910 0.6007

Table 4: Results of ablation experiments using different mod-
ules instead of DGCN.

Dataset Ablation Recall@2 Recall@5 Recall@10 NDCG@2 NDCG@5 NDCG@10

Gowalla
w MLP 0.2269 0.2675 0.3060 0.2159 0.2341 0.2465
w GCN 0.2474⋆ 0.2880⋆ 0.3232⋆ 0.2367⋆ 0.2549⋆ 0.2663⋆

DualPOI 0.2564 0.2981 0.3332 0.2451 0.2637 0.2750

Singapore
w MLP 0.2906 0.3386 0.3789 0.2784 0.2999 0.3129
w GCN 0.3106⋆ 0.3593⋆ 0.3986⋆ 0.2980⋆ 0.3199⋆ 0.3326⋆

DualPOI 0.3292 0.3793 0.4214 0.3161 0.3389 0.3524

New York
w MLP 0.6188 0.6370 0.6520 0.6130 0.6213 0.6261
w GCN 0.6333⋆ 0.6517⋆ 0.6679⋆ 0.6281⋆ 0.6363⋆ 0.6416⋆

DualPOI 0.6477 0.6648 0.6776 0.6417 0.6494 0.6535

Tokyo
w MLP 0.5595 0.6006 0.6320 0.5470 0.5655 0.5757
w GCN 0.5721⋆ 0.6111⋆ 0.6430⋆ 0.5600⋆ 0.5775⋆ 0.5878⋆

DualPOI 0.5850 0.6238 0.6537 0.5734 0.5910 0.6007

of 9%/16%, 7%/7%, 4%/7%, and 5%/7% on the four datasets,
respectively (Recall@10 and NDCG@10) compared to the
best baseline model. The user-specific mobility patterns gen-
erated by the Spatiotemporal Transition Encoder and the joint
modeling by the DGCN reveal special trends in recommend-
ing the next visit to POI.

Traditional methods like MF exhibit lower recommenda-
tion performance due to the absence of geographical infor-
mation modeling. LSTPM, STAN, and DRAN, which also
leverage geographical information like our approach, outper-
form other methods. This underscores the importance of geo-
graphical information in POI recommendation tasks. Benefit-
ing from the excellent capability of graph neural networks in
handling irregular data, graph-based models (LSTPM, STAN,
DRAN) exhibit relatively strong performance, including our
proposed approach.

Ablation Study
Table 3 presents the effects of replacing STE with other com-
mon encoders. We can observe that the performance of the
model will be greatly adversely affected when our designed
module is replaced by other common components. Therefore,
designing a dedicated graph encoder for user trajectory infor-
mation is crucial. Leveraging GCN for aggregating neigh-
boring node information and GAT for adaptive weighting and
global information integration is a best practice for capturing
essential details.
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Figure 2: Effect of Hidden Dimensionality d.

Figure 3: Effect of spatiotemporal interval θ.

Table 4 presents the results after replacing DGCN with dif-
ferent components. We can observe that the model still ex-
hibits excellent performance when using a single layer GCN
instead of DGCN, it loses the ability to capture global POI
geographical information compared to DGCN. This indicates
that even if users have not visited a certain place, our model
is still capable of providing constructive recommendations for
the next POI.

Parameter Analysis
Figure 2 illustrates the Recall for dimensions d ranging from
16 to 256 (doubling increment) while keeping other param-
eters constant. In most cases, a larger value of d leads to
better model performance. In general, the performance of
recommendations tends to improve with the increase in hid-
den dimensions. We can also observe that as the dimensions
increase, the accuracy of recommendations initially increases
significantly, then shows signs of slow growth, and finally
stabilizes relatively around a hidden dimension of 64. The
increase in dimensions implies a larger receptive field for
the model, but it also increases parameters and consumption

of computational resources. Therefore, choosing appropriate
parameters is crucial.

Figure 3 shows the Recall of DualPOI. We choose spatial
and temporal intervals {1, 32, 64, 128, 256, 512} for compar-
ison. We can see that the Recall of the DualPOI is insensitive
to parameter changes across all datasets. It indicates that our
model exhibits good robustness and achieves satisfactory re-
sults across different ranges of temporal and spatial intervals.
Within a limited range, competitive performance can be eas-
ily achieved.

Conclusion
In this paper, we studied how to leverage user historical tra-
jectories and global geographical information for the next
POI recommendation. Two main modules comprise the
model that we proposed. First, we construct a spatiotemporal
transition graph and use a spatiotemporal transition encoder
to extract the user-specific local preferences. Second, to ob-
tain extra insightful data, we utilize dual graph convolution to
transfer information from the user’s historical trajectory pref-
erence to the global POI environment. Subsequently, we con-
duct extensive experiments on four real-world datasets, and
the experimental results demonstrate that our model signifi-
cantly improves recommendation performance. Extensive ab-
lation studies and parameter analysis also validate the effec-
tiveness and robustness of the proposed components. Overall,
our model is of significant importance for enhancing user ex-
perience and reducing issues such as information overload in
social networks.
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