Lawrence Berkeley National Laboratory

 Recent WorkTitle
SOLUTION OF THE N/D EQUATIONS IN THE STRIP APPROXIMATION

Permalink

https://escholarship.org/uc/item/9x8800t4
Author
Teplitz, Vigdor L.
Publication Date
1964-07-01

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California
 AEC Contract No. W-7405-eng-48

SOLUTION OF THE N/D EQUATIONS IN THE STRIP APPROXIMATION*
Vigdor L. Teplitz
Lawrence Radiation Laboratory
University of California
Berkeley, California
July 1, 1964

ABSTRACT

The solution to Chew's modified strip-approximation $N / D_{\text {; }}$ equations is discussed. A Wiener-Hopf resolvent kernel appearing in the solution is evaluated explicitly, The solution to the N / D equation is studied as a function of the phase shift at the strip boundary. ${ }^{2}$,

I. INIRODUCTION

Chew and Chew and Jones have recently proposed a new method of solving the pion-pion problem. ${ }^{1,2}$, The method is based on the strip approximation. It differs, however, from the original work of Chew and Frautschi ${ }^{3}$ in considering, as input, double spectral functions convenient for describing the exchange of Regge trajectorles and in applying unitarity through the N / D method rather than the Mandelstam iteration procedure. 4 The equations are able to include, effectively, two contributions in addition to those from particle and resonance exchange: the effects of (a) continuma exchange and (b) inelastic processes in the direct channel at energles higher than the strip width. The incorporation of these effects complicates the partial-wave N / D equations in two ways: (a) the Born term evaluation requires double integrals (Instead of single integrals as in the case of non-zero-width resonance exchange); (b) the integral equation for N Is not Fredholm.

The purpose of this work is to discuss the modified equationt for N and Its solution. In Section II we review Chew's method of solving the modified equation. In Section III we evaluate an integral to find an explicit, and convenient, form for a WienerHopf resolvent kernel. In Section IV we discuss the properties of the kernel and the solution as a function of a parameter important In the scheme, the phase shift at the strip boundary. We show, in particular, that the effective attrattion available from varying fo
II. THE MODIFIED EQUATIONS

We first recall the results of Ref. 2 , The amplitude B (s) gatisfies the diapersion relation

$$
\begin{gather*}
\operatorname{cq}^{2} \tag{1}
\end{gather*}
$$

Where s_{1} is the strip width and, B is the generalized fotential

$$
\begin{equation*}
\operatorname{Im~}_{\mathrm{B}_{\ell}}(\mathrm{s}) \mathrm{A}=\left.\mathrm{B}_{\ell}(\mathrm{s})\right|_{\ell \rho_{l}} ^{2}(\mathrm{~s}) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left.\rho_{\ell}(s) i=\sqrt{(s-4) / 1 s}\left[\left(s^{\prime}-4\right) / / 4\right]^{\ell}\right]^{6} \tag{3}
\end{equation*}
$$

Equations (1) and (2) are equivalent to

$$
\begin{aligned}
& B_{\ell}(s)^{\prime}+N_{b}(s) / D_{\ell}(s)
\end{aligned}
$$

(4)

From Eq. (1) we see that, as $s \rightarrow s_{1}$ we have $h t$

Thence the Integral $\mathrm{Eq} \cdot(5)$ is not Fredholm. F Chew has shown that The solution of Eq. (5) can be written as

$$
\begin{equation*}
\mathrm{N}_{\ell}(\mathrm{s})=\left(0_{b}\left(\mathrm{~s}, \mathrm{~s}^{\prime}\right) \mathrm{N}_{\ell} \mathrm{D}^{\prime} \mathrm{s}^{\prime}\right) \mathrm{ds} \tag{7}
\end{equation*}
$$

Where o of satisfies the Fredholm equation

$$
\mathrm{K}_{\ell}^{\prime}\left(\mathrm{s}, \mathrm{~s}^{\prime}\right)_{\text {dds given by }}
$$

where

$$
\begin{equation*}
\lambda_{\ell}=\rho_{\ell}\left(s_{1}\right) \operatorname{Im} B_{\ell}{ }^{V}\left(s_{1}\right) \text {) } \tag{10}
\end{equation*}
$$

We write $x_{\ell}=\sin ^{2} \pi a_{\ell}$; in the case of elastic unitarity $\pi \mathrm{a}_{\ell}+\delta_{\ell}\left(s_{1}\right)$, where $\delta_{\ell}\left(s_{1}\right)$ is the phase shift at s_{1} The quantity $O_{l}\left(g_{2}, g^{\prime}\right)$ is a wiener-Hopf resolvent, kernel

and is given by

$$
\begin{equation*}
\mathrm{O}_{\mathrm{X}}\left(\mathrm{~s}_{\mathrm{p}} \mathrm{~s}^{\mathrm{j}}\right)^{-}=\theta_{\ell}\left(\mathrm{x}(\mathrm{~s}), \mathrm{x}\left(\mathrm{~s}^{\mathrm{r}}\right)\right) \ell\left(\mathrm{s}_{1}, \mathrm{~s}\right)^{\prime} \tag{ii}
\end{equation*}
$$

and

$$
x(\mathrm{~s}) \quad \log \left[\left(\mathrm{s}_{1}-4\right) /\left(\mathrm{s}_{1}-\mathrm{s}\right)\right]
$$

The contours C and C^{1} are shown in Fig. 1. Finally, the quantities

$$
\begin{aligned}
& \phi_{1} \text { and } \phi_{2} \text { satisfy the relation } \\
& \phi_{2 l}(k) / 1 \phi_{1}(k)+\gamma(k) \mid=1-2, \quad 1 / \sin ^{2} \pi 1 k
\end{aligned}
$$

The poles and zeros of ϕ_{1} and ϕ_{2} are discussed in Ref. 2 and are shown In Fig. 1

Chew's prescription for solving Eq. (5) is then as follows ${ }^{2}$ (d) the transformation (9) is made, (b) the Fredholm equation Is solved, and (C) the transformation (7) is made Greps ${ }^{5}$ has pointed out that from Eq. (8) one can find a slightly different procedure in which: (a) the transformation

Is made, (ab) the transformation

$$
\left.\mathrm{K}_{\ell}^{\prime \prime}\left(\mathrm{s}^{\prime} \mathrm{c}^{\prime}\right)^{\prime}\right)^{-} \int \mathrm{ds}^{\prime \prime} 0_{\ell}\left(\mathrm{s}, \mathrm{~s}^{\prime \prime}\right) \mathrm{K}_{\ell}\left(\mathrm{s}^{\prime \prime}, \mathrm{s}^{\prime}\right)
$$

If made, and (c) the Fredholm equation

$$
\mathrm{N}_{\ell}(\mathrm{s}), \mathrm{B}_{\mathrm{B}} \mathrm{~B} \mathrm{~V}\left(\mathrm{~s}^{\prime}\right)+\int \mathrm{d} \mathrm{~s}^{\prime} \mathrm{K}_{\ell}{ }^{\prime \prime}\left(\mathrm{s}^{\prime}, \mathrm{s}^{\prime}\right) \mathrm{N}_{\ell}\left(\mathrm{s}^{\prime}\right)
$$

11 solved, Neither prescription is superior for numerical solution,

since both Involve the same number of transformations.

We note that inelasticity below s_{1} may easily be Introduced formally into the above treatment. If Eq. (2) 1s replaced by

then Eqs. (4) through (14) are changed only by the replacement of $\rho_{\ell} \mathrm{by}_{\ell} \rho_{\ell}(\mathrm{s})=\rho_{\ell}(\mathrm{s}) \mathrm{R}_{\ell}(\mathrm{s})$, Note that, although the quantity λ_{ℓ}^{\prime} 1s stini given by $\lambda_{\ell}=\sin ^{2} \pi a_{\ell}$ (and 1s real), the 1denti-

III. THE WIENER-HOPF RESOLVENT KERNEL

We now evaluate the double integral of Eq. (12) First We, note that $y(k)$ has zeros at $k=k^{2}$, where

$$
\begin{equation*}
k_{n}{ }^{ \pm}=1(n, t a) \tag{16}
\end{equation*}
$$

Res $1 / \gamma(k) \mid k_{n}^{+}-1+(2 \pi i) \tan \pi a!$

Geminating $\phi_{1 \ell}\left(\mathrm{k}^{\prime}\right)$ from Eq (12) by means of Eq (13) and using Eq. (17) \&ives fort $\theta_{l}(x, x)$, when the K contour is, closed above,
\%ut

$$
\begin{aligned}
& \left./ /\left[\left(k_{n}+L_{2} k\right), \phi_{1}\left(k_{n}^{+}\right)\right]\right] \text {. }
\end{aligned}
$$

The first integral on the right-hand side of Eq. (18) can be evaluated by closing the contour C in the upper half plane for $x,+x$ of in the lower half plane for x, $<, x$ It \quad gives
where

$$
\begin{equation*}
\theta_{A}\left(x, x^{+}\right)=\pi^{\prime-1} \sinh a\left(x^{\prime}-x\right) e^{-\left(x^{\prime}-x\right)} /\left[1-l^{-\left(x^{\prime}-x\right)}\right] \tag{29}
\end{equation*}
$$

The delta-function term arises from the fact that $1 / \gamma \rightarrow 1$ at ∞ so that, for $x \approx x^{\prime}$, the integrand must be written as $1+(1 / r-1)$. where the first term gives the delta-function and the residue theorem can be applied to the second. For the second intBrail we close the contour C in the lower half plane, obtaining

$$
\begin{aligned}
& \text { +1, } \\
& \theta_{3}\left(x, x^{1}\right)^{2}=-1\left(x^{1} / 2 \pi\right)^{2} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \sum_{n}^{\infty}
\end{aligned}
$$

E,
At this point we may note several properties of θ. From Eq (21), we see that as a $a_{l} \rightarrow 0$

$$
\theta_{\ell}\left(x, x^{\prime}\right) \rightarrow \delta\left(x^{\prime}-x\right)
$$

This agrees with the fact that, for $\lambda=0, \mathrm{Eq}((5))$ is Fredholm. From (19) and (20) we see that the quantities θ_{A} and θ_{B} individualiy have the proper asymptotic behavior in x and x^{\prime}. discussed in Ref. $\left[\right.$ ax, $\left.(-1+a) x^{\prime}\right]$ It is also possible to see that θ_{A} is positive and θ_{B} is negative, for positive a less than, $1 / 2$ The above form for θ is readily amenable to digital computer computations and has been used in numerical work to be published separately.

IV. BEHAVIOR IN a_{ℓ}

We begin by noting that (for positive N) the gign of the contribution from the integral term in Eq. (5) is just that of the average value of $d B_{l}{ }^{V}(\mathrm{~s}) /$ as . Assuming, for simplicity, that this term is small, consider the case of a, nears, 0 , Using the Kreps form Eq. (8^{1}), neglecting $\tan ^{2}$, ta θ_{B} compared to tan ra θ_{A}, and dropping the integral term yields

$$
N(s) \cong B_{l}{ }^{V}(s)+\tan \pi a \quad \theta_{A}\left(s^{\prime}, s^{1}\right) B_{\ell}\left(s^{\prime}\right) d s^{\prime}
$$ and a negative phase shift a repusion, to a positive Born term. We expect the phase shift at s_{1} to be positive generaliy, since the boundary condition at :sy matches the low-energy amplitude to the high-energy Regge form in which phase shifts go to zero from positive values. Chew has emphasized the multiplicative nature of the correction arising from the boundary condition at si for a, not too large, N is proportional to its value for zero a a The remarks above obtain also for nonzero a_{b} the Kreps kernel, Eq. $\left(8^{!}\right)$is a result of multiplicative correction of the same nature as that of the inhomogeneous term.

Note that Regge trajectorles are found by solving Eq. (5) for a range of values of entand that, as pointed out In Refol,
the end point of a trajectory occurs at a value of b for which there is a homogeneous solution of Eq (5) The solution of Eq. (5) Will be much more sensitive to changes in a near the end point of a trajectory than far from an eigenvalue of the homogeneous equation. These remarks imply that the effect of increasing a Uniformly is to add a constant to the function $\ell=\alpha(a)$

We next turn to the case of a_{b} approaching $1 / 2$ Re ferring to Eq. (12) and Fig. 1 , we see that, since $\phi_{1 \ell}(k)$ is analytic above $k^{\prime}=$ 1a and $\phi_{2 l}\left(k^{\prime}\right)$ has no zeros below $k=\left(1-a^{\prime}\right)$, the contours C^{*} and C^{\dagger} are not pinched by the coalescing of the poles $k_{n}+$ and k_{n+1} as $a_{b} \rightarrow 1 / 2$ Thus $\theta\left(x, x, a_{\ell}\right)$ is analytid at $a_{\ell}=1 / 2 \quad$ This result may be seen explleitly from the expression for θ_{A} and θ_{B} op Eqs (4) and (5) From Eq. (19) Fe have that; as a $\quad \rightarrow 1 / 2$,

$$
\begin{align*}
& \tan ^{\operatorname{tI}} \theta_{A}\left(x, x^{\prime}\right) \rightarrow\left(2 \pi^{2}\right)^{-1} e-\left(x^{\prime}-x\right) / 2 \\
& X\left[(1 / 2-a)^{-1}-\left(x^{1}-x\right) \operatorname{coth} \frac{x^{1}-x+10}{2}\right] \tag{2}
\end{align*}
$$

The limit for θ_{B} is not quite so simple. As a approaches $1 / 2$ we have $\phi_{2}\left(k_{0}^{+}\right) \rightarrow 0$, and $\phi_{1}\left(k_{1}^{-}\right) \rightarrow 0 .$, The following limits occur In Eq. (20): the (m, n) th term in the fourth serles; the $(m+1, n)$ th term in the third series, the $(m, n+1)$ th term in the second series, and the $(m+1, n+1)$ th terminethe first series all approach the same

These two properties yield the result that the only singularity from $\tan ^{2} \pi$ a θ_{B} arises from the $(m=0, n=1)$ th term of the first series. The contribution from this term Ls

$$
\left.\tan ^{2} \pi \theta_{B}(0,1)(x, x) \rightarrow(2 \pi)^{1}\right)^{-(x, x)}\left[(1 / 2-a)^{-1}+8 \ln \cdot 2+x+x+\ldots .\right.
$$

In finding Eq. (24)we have used the relation

$$
\operatorname{ha}^{\prime}(1) / r(1)-r^{\prime}(\alpha / 2) / r(1 / 2)-2 \ln 2
$$

The other terms in $E q$ (24) also contribute to $\theta\left(x, x, a_{0}=1 / 2\right)$ but are less important in the limits x, x, $\rightarrow \infty$ We thus have

The analyticity of θ at $a=1 / 2$, is a very desirable
property. Although we expect the strip boundary to be large enough so that the phase shift there is below $\pi / 2,6$ the absence of a singularity $\ln _{1} a_{\ell}$ precludes toogreat a sensitivity to the precise value of the

phase shift. Thus a weakly attractive potential cannot be made

 to give a resonance merely by choosing $\delta\left(s_{1}\right)$ near enough to $\pi / 2$In concluaing; we point out a mechanism for the solution's being insensitive to the exact value of the strip boundary If s_{1} is Increased we see from Eq.
(4) that resonance energies
will be lowered.
At larger
s, howevery, $\delta(s)$ is expected to be smaller, decreasing the effective attraction. These two compensating changes will tend to yield a smaller N, a smaller $\mathrm{dD} / \mathrm{ds}$, and

This work was done under the auspices of the U. S. Atomic Energy Commission.
1.s.G. F. Chew, Phys. Rev. 129, 2363 (1963); G. F. Chew and C. E.Jones (Iawrence Radiation Laboratory REport UCRL-10992, Aug - 1963), submitted to Phys. Rev.
2.t. G. F. Chew, Phys. Rev. 130,1264 (1963).
3. K. F. Chew and S. C. Frautschi, Phys. Rev. 124,264 (1961);
S. Mandelstam, Phys. Rev. 112 ; 1344 (1958).
5. Rodney Kreps (Iawrence Radiation Laboratory), private communication.
6. The continuation of Eq . (20) to the region a $\gg 1 / 2$ has, however, been discussed by C. Edward Jones in his thesis, Lawrence Radiation Laboratory Report, UCRL-11125, 0ct. 1963 (unpublished).

Fig. 1
MUB-3562

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

$$
\square
$$

$$
+5 \cdot
$$

