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Temporal clustering of Kawasaki 
disease cases around the world
Jennifer A. Burney1, Laurel L. DeHaan2, Chisato Shimizu3, Emelia V. Bainto3, 
Jane W. Newburger4,5, Roberta L. DeBiasi6,7, Samuel R. Dominguez8, Michael A. Portman9, 
Marian Melish10, Andras Bratincsak10, Marianna Fabi11, Elena Corinaldesi12, Jeong Jin Yu13, 
Paul Gee14, Naomi Kitano15, Adriana H. Tremoulet3, Daniel R. Cayan2, Jane C. Burns3* & the 
Kawasaki Disease Climate Study Group*

In a single-site study (San Diego, CA, USA), we previously showed that Kawasaki Disease (KD) cases 
cluster temporally in bursts of approximately 7 days. These clusters occurred more often than would 
be expected at random even after accounting for long-term trends and seasonality. This finding raised 
the question of whether other locations around the world experience similar temporal clusters of KD 
that might offer clues to disease etiology. Here we combine data from San Diego and nine additional 
sites around the world with hospitals that care for large numbers of KD patients, as well as two multi-
hospital catchment regions. We found that across these sites, KD cases clustered at short time scales 
and there were anomalously long quiet periods with no cases. Both of these phenomena occurred 
more often than would be expected given local trends and seasonality. Additionally, we found 
unusually frequent temporal overlaps of KD clusters and quiet periods between pairs of sites. These 
findings suggest that regional and planetary range environmental influences create periods of higher 
or lower exposure to KD triggers that may offer clues to the etiology of KD.

Kawasaki disease (KD) is the most common cause of acquired heart disease in children in the developed world, 
yet its etiologies remain obscure after almost half a century of research. The distribution of cases throughout 
the year has a distinct seasonal pattern in the northern hemisphere with a peak in case numbers in the winter/
spring months and a second, lesser peak in mid-summer1,2. Additionally, we recently demonstrated clustering 
of cases that occurred at higher temporal frequency. This clustering deviated from a random Monte Carlo dis-
tribution, potentially representing an increase in the exposure to KD triggers3. These clusters were associated 
with anomalous features in temperature and atmospheric pressure that suggested an environmental influence 
on the distribution of cases. In the present study, we evaluated whether similar temporal clustering of cases was 
occurring across a range of both northern and southern hemisphere locations. We also analyzed KD cases across 
sites to look for similarities and differences in the timing of clusters and of quiet periods with no KD cases. We 
reasoned that if large scale environmental factors were involved in the transport of potential KD triggers, we 
might see strong temporal correlations in KD clusters or quiet periods.
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Results
Our analysis focused on time series records of KD onsets both within and across collaborating sites around the 
world (see “Methods” section, Fig. 1 for summary). The KD sites in the United States included those with 35 
to 100 KD patients each year and ranged from Honolulu to Boston. International sites included Japan, South 
Korea, Italy, and New Zealand (Table 1, Fig. 2A) Seasonality was assessed and showed a winter peak for most sites 
(New Zealand in austral winter, the northern hemisphere sites in boreal winter) with the exception of Hawaii 
(Fig. 2B). In each site, we calculated local cluster and quiet period definitions (“Methods” section, Fig. 1, Fig. 3A). 
Although the total numbers of clusters varied slightly depending on the choice of percentile for the definition, 
our chosen definitions revealed that 12–28% of KD patients occurred in these high-density clusters (Table 1). 
While longer-term trends and seasonal variation contributed to increased likelihood of a high-density cluster 
occurring, these two factors did not fully explain the time series structure. Interestingly, the trends varied across 
sites: in six of the locations, KD incidence has risen in recent years (Fig. 3B), while three of the sites showed flat 
or slightly declining levels, most notably Hawaii.

We compared the observed data in each location to 100 synthetic comparison time series created by randomly 
reshuffling onset dates while respecting local time trends and seasonality of KD incidence. For the observed data 
and each of these synthetic time series, we counted both KD clusters and quiet periods based on the thresholds 
determined in the observed data. We found that the distributions of cases and quiet periods differed between 
the observed KD data and the synthetic (i.e., simulated; see “Methods” section) time series at most sites (Fig. 4, 
Supplemental Fig. S2 for clusters, Fig. 5 for quiet periods). The divergences of observed data from compari-
son distributions was largest and most clear for locations with higher KD incidence—the Seoul area in Korea, 

Figure 1.   Schematic of methods used in the overlap analyses (shown here for clusters). (A) Clusters (periods of 
locally-defined high KD incidence) were defined and denoted for each site’s time series of KD onsets. Overlaps 
were defined between sites as contemporaneous existence of clusters in two sites, plus or minus 6 days. (B) We 
defined the matrix of pair-wise cluster overlaps, for all site-pairs. (C) We created 500 synthetic comparison time 
series for each site (shuffling cluster dates), and assessed mean and variance of cluster overlaps within pairs of 
sites. (D) We then determined statistical significance of observed site pair cluster overlaps by comparing the 
observed record to the mean and variance of the synthetic time series overlaps. Overlaps occurring more than 2 
standard deviations from the mean of the synthetic series were considered statistically significant. We repeated 
(C+D) 500 times, and then assessed the total fraction (Sij) of times within these simulations that a site-pairs 
observed overlaps were deemed statistically significant. (E) We then tallied the total number of statistically-
significant site-pairs within each simulation to assess the ensemble of overlaps. We compared this distribution 
to a synthetic comparison distribution in which members of our synthetic time series were compared with each 
other. (i.e. for step (D), comparing overlaps within the synthetic time series to the mean and standard deviation, 
as opposed to comparing the observed record). We conducted a similar process for quiet period overlaps, except 
that we counted the fraction of overlapping days in each quiet period. Figure 6A,B show the matrices Oij in text 
and Sij in color, and Fig. 6C,D show Tn.
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Wakayama prefecture in Japan, San Diego, and New Zealand—but existed for most sites. In general, across sites, 
more clusters occurred in the observed data than in the synthetic time series. There were some differences across 
sites in how the observed cases diverged from the synthetic comparison time series: for example, in San Diego, 
there were more clusters of six or seven patients than would be expected at random, but in Wakayama (Japan), 
that divergence happened further out in the tail of the distribution (clusters of 13 or more cases).

We found similar patterns when examining quiet periods (Fig. 5). The distribution of observed quiet periods 
in most of the sites diverged from the distribution of quiet periods in the synthetic comparison time series. In 
all cases but one, the observed data had more days in longer no-KD periods than the comparison series. The 
exception, Washington DC, may be due to the relatively short duration of the time series, which is a less reliable 
sample and makes the generation of comparison series less stable. The other two sites that showed less divergence 
were the Los Angeles/Orange County basin, and the San Francisco Bay Area. For both of these, data were drawn 
from the Pediatric Health Information System (PHIS) Database, and date of onset was estimated by subtracting 
five days from the date of hospitalization. This may have introduced uncertainty in the quiet period definition 
for these locations.

We calculated temporal overlaps between clusters (numbers in cells in Fig. 6A) and quiet periods (numbers 
in cells in Fig. 6B) at different sites. Overlaps were calculated for all pairs in reference to each site. For example, 
36% of San Diego clusters overlapped with clusters in Denver but 50% of Denver clusters overlapped with San 
Diego clusters. Because the length of record and number of clusters differed across sites, the fraction required for 
a significant overlap varied from as little as 0.1 to over 0.9. The fraction of times a pair had a significant overlap is 
shown by the cell color in Fig. 6A,B and the distribution of the number of significant overlaps from each Monte 
Carlo exercise is shown in Fig. 6C,D.

Overlaps in individual pairs of sites and the total ensemble of sites in some cases suggested regional-scale 
coordination. (Fig. 6A). For example, San Diego and Los Angeles shared many cluster periods as did the San 
Francisco Bay Area and Seattle. However, other cases pointed to longer-distance connections—Hawaii and New 
Zealand shared significant overlap, as did the Bay Area and Boston. Interestingly, clustering at Emilia-Romagna 
and Wakayama Prefecture, Japan, did not exhibit significant overlaps with any of the other sites. Several of the 
pairs of sites had one-way overlaps (that is, the relationship was only statistically significant when referenced to 
one of the two sites): Hawaii-Bay Area and Seoul South Korea—Los Angeles.

The quiet periods exhibited a distinctly different set of pair-wise overlaps (Fig. 5B). San Diego exhibited quiet 
period overlaps with both Emilia-Romagna and the San Francisco Bay Area. Los Angeles and Hawaii had sig-
nificant quiet period overlaps, as did Seattle and Wakayama Prefecture, Japan. Quiet periods in Boston, Denver, 
and New Zealand did not overlap significantly with any of the other sites.

For the ensemble of site pairs, we found that the total number of pair-wise significant overlaps for both 
clusters and quiet periods were much greater than would be expected at random (Fig. 6C,D). From the Monte 
Carlo tests, 14 to 17 of the pairs of observed records exhibited statistically significant number of cluster overlaps 
compared to approximately 2 to 6 pairs of the synthetic records (Fig. 6C), and 15 to 17 of the pairs of observed 
records exhibited statistically significant number of quiet period overlaps compared to approximately zero to 
seven pairs of the synthetic records (Fig. 6D).

Table 1.   Summary of sites included in the study, number of patients, and local cluster and quiet period 
definitions. Bold indicates use of the 99.5th percentile as a definition for either cluster or quiet period; black 
indicates use of 97.5th percentile. We used the more conservative cluster definition in lower incidence areas 
because an integer value (e.g., 2 cases in 7 days) might span a large percentile range of the distribution of 
densities in a low-incidence area. We used the higher threshold to define quiet periods in higher incidence 
regions by a similar logic, to ensure we had used tail values when constrained to use integer values (*The full 
record from Boston included 1596 patients over 35 years, with 293 patients in 58 clusters, or 18%, and 213 
quiet periods. For the analysis here we restricted analysis to after 2000).

Location Patients Years

Local cluster 
definition (# of KD 
cases in 7 days) Number of clusters

# of patients in 
clusters

Fraction of patients 
in clusters

Local quiet period 
definition (# days 
with no KD cases)

Number of quiet 
periods

Bay Area, CA USA 822 16 4 33 180 0.21 9 146

Boston, MA USA* 1017 18 4 43 223 0.22 15 96

DC, USA 193 5 4 8 44 0.23 9 41

Denver CO, USA 629 13 4 30 179 0.28 11 99

Emilia-Romagna, IT 502 18 3 36 139 0.28 16 121

Hawaii, USA 403 11 4 10 48 0.12 14 72

Los Angeles, CA 
USA 1603 16 6 53 458 0.29 5 229

New Zealand 1008 19 4 54 274 0.27 14 110

Seoul, Korea 1205 13 6 31 257 0.21 7 123

San Diego, CA USA 1332 18 5 47 315 0.24 8 177

Seattle, WA USA 646 17 4 22 112 0.17 18 80

Wakayama Prefec-
ture, Japan 2255 20 6 76 619 0.27 6 209
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Discussion
The analysis of data from worldwide locations demonstrates that clustering of KD cases and quiet periods with no 
KD cases are generalized phenomena occurring in both the northern and southern hemispheres. These periods 
of high and low KD density occurred more than would be expected from trends in KD incidence and seasonal 
fluctuations alone. Furthermore, clusters and quiet periods occurred synchronously between regional and more 
distant locations more often than expected by chance. We view cluster and quiet periods within single sites, and 
overlaps between sites, as important because they suggest the presence or absence of the KD agent or agents. 
However, the observation that the pairings of cluster and quiet period overlaps differed across sites suggests that 
a combination of processes drive exposure to the agent(s) that trigger KD. These observations should be used 
to focus research on the potential exposures that are triggering these clusters in genetically susceptible children.

To create this novel dataset, over a decade of patient records from an international array of hospital units 
were reviewed to capture dates of fever onset, as opposed to date of hospitalization or date of diagnosis. With 
these data we created a unique cluster and quiet period definition for each site. This permitted a large-scale com-
parison of KD onsets that uncovered coherent patterns of clusters and quiet periods across sites. This is a novel 
example of people-as-sensors for environmentally-associated phenomena that act as KD triggers. Additionally, 

Figure 2.   Study site locations and seasonality. (A) Location of 12 sites around the world. (B) KD incidence in 
each of the 12 locations displayed a distinct seasonality. Mean values ± 1 standard error are shown. Correlations 
of seasonal incidence across sites (i.e., the information shown in (B)) are shown in Supplemental Fig. S1.
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Figure 3.   Temporal structure of clusters, quiet periods, and trends. (A) Shorter time periods of higher KD 
incidence (clusters in color) and periods of quiet (no KD onsets, grey) that occurred in patterns that differ from 
what would be expected by chance, accounting for seasonality (Fig. 2B) and any long-term linear trends. (B) A 
5-year moving average shows that sites also experienced different dynamics over time with the incidence rising 
in most locations, except for Hawaii, Washington DC, and Boston. Correlations of rolling trends across sites 
(i.e., the information shown in (B)) are shown in Supplemental Fig. S1.

Figure 4.   Distributions of clusters in observed KD time series (black dots) and 100 Monte Carlo time series 
(blue squares) with local trends and seasonality. For reshuffled time series, mean and ± 2 standard error are 
shown. Locations in red used the 99.5th percentile of maximum case density as the initial cluster definition; 
locations in black used the 97.5th percentile (Non-logarithmic version shown in Supplemental Fig. S2).
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these findings indicate that collecting and analyzing data on a global scale are vital to develop a framework for 
understanding KD etiology.

This work builds on previous studies by other investigators. Temporal and spatial clustering of KD cases 
was first described by Nakamura and colleagues using the nationwide surveys that are conducted every 2 years 
in Japan4. They reported that spatial clustering occurred in both epidemic and non-epidemic years and was 
more pronounced in urban areas. A more detailed study using the Kulldorff spatial scan statistic identified 
high incidence years in Tokyo and Kumamoto regions of Japan based on 73,758 KD patients5. The first Western 
report of temporospatial clustering described spatial clustering of KD cases at distances of 3 km and time scales 
of 3–5 days in San Diego County6. More detailed analysis of this same region linked KD clusters to large-scale 
climatic conditions3. Spatiotemporal clustering of KD cases has been reported by other groups using different 
time scales and data from administrative databases for KD hospitalizations7. Temporal KD clusters were identi-
fied across Canada at time scales spanning several months. In a further analysis by this same group, bursts of 
KD activity were reported in discrete locations across Canada8. A single center study of 263 KD patients from 
upstate New York used the same Kulldorff spatial scan statistic and found no significant clustering9. Burns et al. 
previously demonstrated that clinical sub-phenotypes of KD also clustered temporally. Collection of detailed 
clinical and laboratory data could make the analysis of clusters even more informative.

A strength of the current study was the use of actual dates of fever onset to detect temporal clusters on a 
weekly time scale for most sites. This can facilitate comparison of KD clusters to environmental and climatic fea-
tures to probe the etiologic triggers of KD. In this analysis, we used a 6-day window to evaluate the co-occurrence 
of clusters across sites, which was designed to allow for possible long-range atmospheric transport of a KD agent. 
The brief occurrence of clusters with a time scale that is typically ten days or less seems more consistent with an 
airborne agent that is driven by fluctuating atmospheric circulation patterns than a transmissible agent. The exist-
ence of few day to seasonal anomalous, hemispheric-scale atmospheric circulation patterns provides a possible 
transport mechanism for potential KD agents. Coordination of clusters across smaller spatial scales (e.g., San 
Diego-Los Angeles-Denver or Bay Area-Seattle) may point to regional environmental drivers, whereas coordina-
tion at longer distances (e.g., Hawaii-New Zealand) may point to planetary scale teleconnections or long-range 
transport-driven exposures. Work by Rodo and colleagues revealed an atmospheric circulation bridge across 
the mid-latitude Pacific Ocean that provided a potential mechanism for both the major epidemics in Japan and 
linked interannual fluctuations in KD cases in Japan and San Diego10,11. Thus, long-range transport of particles 
that act as KD triggers may explain the clusters and quiet periods described in this study.

Figure 5.   Distributions of quiet periods in observed KD time series (black dots) and 100 Monte Carlo time 
series (blue squares) with local trends and seasonality. For reshuffled time series, mean and ± 2 standard error 
are shown. Locations in red used the 99.5th percentile of maximum case density as the initial cluster definition; 
locations in black used the 97.5th percentile.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22584  | https://doi.org/10.1038/s41598-021-01961-5

www.nature.com/scientificreports/

Limitations to the current study include the short duration of time series from some sites, small numbers 
of cases, and a sparse set of global records. In the absence of a gold standard diagnostic test for KD, we cannot 
exclude that some patients with other diagnoses were included in our time series. This is a regrettable challenge 
for all research on KD. To minimize this possibility, data for this study was provided by health care profession-
als who are experienced and skilled in the diagnosis of KD. Use of the PHIS data for two of the regions has all 
the limitations associated with use of an administrative database including coding errors and missed cases. Our 
analysis also focused on unusually high levels of KD (clusters), or unusually long absences of KD (quiet periods), 
and did not address less concentrated KD occurrences, which are in fact the majority of cases in every site. As 
such, it may be interesting in the future to analyze the “intermediate” state between cluster and quiet, and its 
associations and coincidences across time and space. This type of study would best be conducted with higher 
density of sites coordinating their data collection and reporting. Increased surveillance including observations 
of various clinical measures would also enable a more in-depth probing of spatial scales for KD cluster and quiet 
period coincidence including KD sub-type occurrence.

In conclusion, the widespread occurrence of temporal clustering and quiet periods of KD and its unusual 
degree of synchrony across regions exhibited in this international dataset goes beyond the well-established 
seasonality of the disease. This suggests large scale environmental features are associated with exposure to the 
triggers for KD.

Methods
Subjects.  The date of onset of fever for each case was collected from existing databases of prospectively col-
lected data (US sites: San Diego, Boston, Seattle; International site: Wakayama Prefecture, Japan), from retrospec-
tive medical record review (US sites: Denver, Washington, DC, Hawaii; International sites: Seoul, South Korea, 

Figure 6.   Statistics of cluster and quiet period overlaps across pairs of sites. (A,B) Number in each cell is the 
observed overlap (Oij) between KD clusters (A) and quiet periods (B) across all pairs of sites. Cell color shows 
the fraction of times (over 500 simulations) that a pair of sites had observed overlaps that were statistically 
different (> 2SD) from the simulated time series overlaps (Sij). (C,D) Blue distribution shows the total number 
of pairs of sites with statistically significant overlaps when each member of the synthetic time series is compared 
to the other 499; red distribution shows the total number of statistically significant site pairs when the observed 
record was compared to the 500 synthetic time series (i.e., the number of pairs of sites with overlaps > 2 standard 
deviations above the comparison, or Tn).
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Emilia-Romagna, Italy), or from national government health record databases (New Zealand). All patients met 
the American Heart Association (AHA) 2017 case definition for either complete or incomplete KD12. The study 
was reviewed and approved by the Institutional Review Board of the University of California San Diego (UCSD 
# 170045) who provided a waiver of consent as no protected health information was collected or disclosed for 
the performance of this study. All methods were carried out in accordance with relevant guidelines and regula-
tions. In addition, we included cases in the Pediatric Health Information System (PHIS) database for hospitals 
in the Los Angeles Basin (Los Angeles, Orange County, Long Beach) and in the San Francisco Bay Area (Palo 
Alto, Oakland). For the Los Angeles Basin and San Francisco Bay cases, we did not have date of onset, but 
instead estimated a date of onset by subtracting 5 days from date of diagnosis. These sites were included to test 
for potential temporal coordination between geographically proximate sites with large numbers of KD patients 
on the West Coast, with the understanding that results should be interpreted with awareness that the date of 
onset was estimated.

Cluster and quiet period definitions.  We applied the clustering methodology as previously published 
to the data from participating sites13. Briefly, we defined the first day of fever as the onset of the illness. We then 
took the entire time series of KD onsets for each individual site, and for each date in the time series, counted the 
maximum number of cases over all 7-day windows containing that date. We selected the 97.5th or the 99.5th per-
centile value (the lower threshold for higher-density KD sites, and the higher threshold for lower-density sites) as 
the starting definition for a temporal cluster at that location. We then grouped all consecutive days that met the 
threshold condition (e.g., for the San Diego record, 5 KD patients with symptom onset in 7 days) as an individual 
cluster. Although the clusters that we defined started from a seed definition based on the total distribution of 
cases in the time series, they could extend to any number of days. That is, although the starting definition of a 
cluster might be 5 or more KD patients with onsets in a 7-day window, the final cluster contained the full window 
of consecutive days that met that threshold density (e.g., 11 cases distributed over a period of 15 days).

To test whether observed clustering differed from what would be expected based on longer-run time trends 
in incidence and well-established seasonality, we generated 100 synthetic control time series of equal-N onset 
dates (Monte-Carlo simulation) that adhered to the local seasonality and long-term trends. Specifically, for each 
site, we generated a set of probability weights for the date range of the observed data that were comprised of any 
observed trend and the average monthly pattern of KD occurrence (seasonality) in that location. We then selected 
N dates (with replacement) from the date range, using those weights, to generate a comparison time series with 
the same number of cases as in the observed data. We repeated this 100 times and tallied the clusters in these 
synthetic records using the same method as in the observed KD time series. We then calculated distributions of 
clusters in these control time series and compared them to the observed data.

We additionally defined quiet periods based on the local case density distributions. For all days in each time 
series that had no KD onsets, we calculated the maximum time window with no cases containing that day. We 
took the distribution of the length of these “quiet windows” and selected the 97.5th or the 99.5th percentile value 
as our threshold, and then denoted all consecutive no-KD days in windows at or above this threshold as quiet 
periods. To test whether these occurred in manner different than would be expected at random, we used the 
same synthetic control time series described above and tallied the distributions of quiet periods in each. We then 
compared the quiet period distributions of these control time series to the observed data.

Overlap statistics.  We calculated overlaps in cluster and quiet periods across sites by both raw numbers 
and percentages. To account for improved awareness and diagnosis of KD over time, we restricted our study 
across sites to post-2000, when increased incidence of KD in these sites was less likely due to improving clinician 
diagnostic skill.

Figure 1 schematically illustrates our methods for assessing overlaps. For each pair of sites, the cluster overlap 
was defined as the fraction of the number of clusters at one site that occurred within ± 6 days of a cluster at the 
other site. Under this definition, the total number of overlaps obtained from any two sites depended on which 
site was the reference (see Fig. 1 for methods and Fig. 5 for specific pairs; for example, a larger fraction of Boston 
clusters (BOS) overlapped with Bay Area clusters (BAY) than the reciprocal comparison). Quiet period overlaps 
were defined slightly differently: an overlap of at least 1 day between sites was required, and the overlap was 
weighted by the total length of the temporal overlap. The 6-day window for cluster overlap was included for the 
following reasons: (a) to account for the uncertainty in onset date from two of the sites, (b) to account for the 
variability in the individual site definition of a cluster, and (c) to allow for the time delay in exposure that might 
occur under long-range atomospheric transport of a KD agent between sites. Such a window was not included for 
quiet period overlaps because their endpoints were more clearly defined by the occurrence of any KD case. To test 
if these overlaps were different than what would be expected by chance we compared the observed coincidence of 
clusters and quiet periods across sites to overlaps from a set of 500 synthetic control time series that respected the 
seasonality for each site. We defined pairs of sites with statistically significant overlaps as those with an observed 
fraction of overlaps > 2 standard deviations above the fraction of overlaps in the synthetic control time series.

To then assess the statistical significance of the ensemble of observed overlaps (i.e., to test whether the number 
of pairs of sites with a significant overlap was significantly different than what would be expected at random), we 
performed a Monte Carlo exercise, repeating the calculation of significant overlapping pairs 500 times. While the 
actual fraction of overlap remained the same, the mean and standard deviation from the synthetic time series 
varied with each Monte Carlo. We compared the total number of significant site pairs in the observed record 
compared to the synthetic comparison time series, and then also compared overlaps in the synthetic compari-
son time series to each other (as a metric of how many spurious overlapping pairs might occur at random). We 
omitted Washington, DC, from this analysis because of its substantially shorter time series.
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