
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
The value of phylogenetic information in post-genomic protein structure prediction and 
function discovery

Permalink
https://escholarship.org/uc/item/9x96j1sw

Author
Joachimiak, Marcin Pawel

Publication Date
2002
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9x96j1sw
https://escholarship.org
http://www.cdlib.org/


The Value of Phylogenetic Information in Post-Genomic
Protein Structure Prediction and Function Discovery

by
Marcin Pawel Joachimiak

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Biophysics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Approved:

Committee in Charge

Deposited in the Library, University of California, San Francisco

Date University Librarian



*You can fool some people sometimes,

but you can’t fool all the people all the time.”

Bob Marley

Dedicated to

my Mother Grazyna

and

my Father Andrzej

and Ania, my soul mate in life.



Preface

I came to San Francisco and the University of California

San Francisco in 1996. I had just completed a B.A. in

Mathematics at the University of Chicago. My appetite for

integrating mathematical and biological thinking was well

honed, with initial experiences of these two very different

worlds. While in Chicago, I worked on a recombinant

Triticum aestivum project with Dr. Robert Haselkorn in the

Department of Molecular Genetics and Cell Biology. It was

Dr. Haselkorn who provided the initial impetus for my

interest in a graduate education, suggesting the UCSF

Biophysics program for a young structural biology minded

mathematician. The undergraduate experience led me to

believe that the biological and the mathematical were quite

separate and distant in modern science, with few

exceptions. And yet the intrinsic complexities and volumes

of modern biological data appeared especially suitable for

mathematical analysis, simulation and prediction.

The Biophysics Graduate Program at UCSF was among the

academic exceptions where multiple fields were allowed to

freely intersect with biology. The Program is represented

by excellent faculty and students, all of whom recognized

the importance of discussion and imagination to new
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approaches grounded in numerical analysis, algorithmic

procedures and mathematical constructs. I am greatly

thankful to my research advisor Fred E. Cohen M. D. D. Phil.

for guidance of my evolution at UCSF. The creative spirit

of work and interactions with Fred and his group were

something I will never forget. The members of my

Preliminary Exam Committee, Dr. David Agard, Dr. Tack

Kuntz, Dr. Patsy Babbitt and Henry Bourne M. D., and in

particular the latter two faculty who were part of a my

Thesis Committee, were also essential to my graduate

evolution. It cannot be overstated that these mentors not

only recognized the importance of science itself, but also

valued the often unintuitive aspects of science, such as

communication skills, "big picture’ reasoning, and the

experience of graduate education in general.

My thesis would not have been possible if not for many

people at UCSF and beyond and I cannot possibly thank them

all and enough. A number of former members of the Cohen

group are of special importance. Dietlind Gerloff is

responsible for my ongoing infatuation with biological

evolution and its repercussions for sequence and structure

analysis. It was also Dietlind who fully initiated me into

the field of protein structure prediction and the CASP

contests. Jonathan Blake was my formal introduction to



programming and the JAVA language, skills that are the

basis of results in my dissertation. Dirk Walther, Andrew

Wallace, Elaine Meng, Xiaohui Du, Paul Harrison and Olivier

Lichtarge contributed many crucial suggestions, advice and

discussions. I thank Ginger Valen for the warmth and

atmosphere in the lab. John-Marc Chandonia, my Cohen group

r O Ommate, steered me towards a path of long-term

computational and informatic development. Current Cohen

group members, Florence Horn, Barney May, Chern-Sing Goh

and Anthony Lau, have especially supported me in the final

stages of my dissertation. Of my fellow Biophysics Program

students, Todd Pray, Kinkead Reiling, Sandy Waugh, Manish

Butte, Chuck Sindelar, Andrew Bogan, Peter Chien, Zach

Serber, Dan Stone, Alex Schnoes, have been of special

significance. However, I am indebted to the positive

atmosphere and possibilities offered by the entire UCSF

Biophysics program, and especially to Julie Ransom and

David Agard. I also sincerely thank Darren Machule and Eric

Schnell for changes in scenery. Last but not least there

have been significant non-academic components in the road

to my graduate degree. My wife Ania has braved the life of

a graduate student with in finite patience and

understanding. My parents and brother have always

encouraged, supported and consoled me. All of these people



positively contributed to my quality of life and experience

at UCSF and the city of San Francisco. The people around me

have countered the popular belief that the life of a Ph.D.

student is characterized by isolation and loneliness.

Dr. Fred E. Cohen was the principal investigator in this

work. The data presented in Chapter II has been published

in Molecular Medicine.

Joachimiak M. P., Chang C. , Rosenthal P. J., Cohen F. E.

(2001). The impact of whole genome sequence data on drug

discovery--a malaria case study. Mol Med 7 (10): 698–710.
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Abstract

Structure-based drug design of inhibitors against targets

with characterized function is the basis for pharmaceutical

development worldwide. Meanwhile, genomes of multiple

species are providing vast sequence data that is sparsely

annotated with structural and functional information.

Effective computational methods have become imperative in

biological discovery in the post-genomic sequence era.

Structural information provides specific advantages in

protein system characterizations and drug discovery. I have

developed a method based on primary sequence and

phylogenetic information, to identify evolutionary sequence

correlations of residue proximal in space. Novel

constraints related to conditional probabilities of residue

and secondary element contacts are calculated from

available structures. I describe an ab initio protein

contact map prediction method, which relies on iterative

application of structural constraints to the evolutionary

correlations. The predicted contact maps have features of

protein structures not seen in other prediction methods and

can be used in combination with other methods to generate

protein models.
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The post-genomic era provides opportunities to

reinterpret data in context of complete catalogs of genes.

On the example of a malarial cysteine protease, I have

performed protein family analysis, homology modeling and

computational screening. A number of antimalarial compounds

with low plM activity are identified in cell culture assays.

The compounds were selected for predicted binding in unique

specificity sites of the malarial protease relative to

human protease homologs. Most prescribed antimalarials have

significant side effects and lack of similarity between

known antimalarials and the compounds identified in this

work represents novel routes for antimalarial drug

discovery.

The elucidation of protein function in light of whole

genome data requires effective computational methods. I

have designed and implemented a computer application,

JEvTrace, to manipulate and analyze protein family

sequences, structures and phylogeny. Based on the ideas of

the Evolutionary Trace (Lichtarge, Bourne et al. 1996), a

number of algorithmic variations provide new insights into

protein function in a family context. Differences and

similarities between phylogenetic subclades are analyzed

using the primary sequence, tertiary structure, and

phylogenetic information. Based on examples of protein
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structures with unknown or predicted function, JEvTrace

provides evidence for new functions and specificities.

Ab initio prediction of structure and function using

primary sequence data directly addresses the problems of

the post-genomic sequence era. Biological function and

structure and their evolution are incredibly complex and

not easily amenable to mathematical and computational

representations. Combinations of different methods and data

represent an important strategy to account for biological

variations and irregularities.
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Prologue

There are many instances of what can be regarded as

self-medication in a surprising variety of species (Engel

2002). The specific utilization of plants and minerals by

other organisms, in addition to the natural medicine

history in our own species, emphasizes the inherent

connection between the ability to survive and awareness of

biochemical processes. For example, a fundamental mechanism

is the phenomenon of thirst which at the molecular level

can be regarded as control of osmolarity (Stricker and Sved

2000). With rapidly expanding molecular biology knowledge,

detailed connections between the macro scale of organisms

and the nano molecular scale of biological phenomenon are

increasingly feasible.

A biological revolution occurred in the second half of

the 20° and the beginning of the 21* century. The discovery

of protein structure dates to the determination of the

first protein crystal structure, that of human hemoglobin

(Muirhead et al 1967). This discovery introduced a new

world of macromolecules to biology, chemistry and physics.

The DNA and RNA polyribonucleic acids were macromolecular

structure precursors to proteins in the chronology of



biomolecular structure determination (Watson & Crick 1953).

Although genetics, evolution and significant functional

speciations are understood to occur at the nucleotide level

of life, it is the vast implications of protein structure

and function for health, disease, industry and agriculture

that attracted the most interest. Structural biology has

provided a basis for the molecular paradigm in modern

biology. Structural data on protein function and structure

has led to unraveling of the molecular aspects of human

health and disease. These aspects provide knowledge for

improved health and human capacity as well as direct routes

to drug discovery efforts.

Many natural medicine reme dies are practiced

Worldwide, some with millennial histories of use by human

Cultures (Swerdlow and Johnson 2000). Discoveries made by

our ancestors have been revisited at the molecular level by

modern biomolecular scientists. For example salicylic acid

(meaning "acid from willow tree”), commonly known as

aspirin, may not have been approved for use by current drug

screening standards due to its side effects profile.

Interestingly, the hemorrhagic side effects of salicylic

acid seem to be mitigated by a second ultra low dose of the

Same molecule (Ague jouf, Malfatti et al. 2000). Among the

features of salicylic acid is the covalent nature of the



drug interaction with prostaglandin H2 synthase (Loll,

Picot et al. 1995). Molecular complementarity as first

described by L. Pauling (Pauling 1974), also referred to as

molecular specificity, plays a prominent role in the drug

efficacy landscape. One of the reasons for the problematic

side effect profiles of covalent inhibitors as drugs is

there ability to inhibit homologous proteins. It has been

argued that mixtures of compounds in natural medicines,

representing a nonlinear gain in pharmacological activity,

can diminish the side effects of principle pharmacological

activities (Swerdlow and Johnson 2000).

The complex activity of pharmacological mixtures is

one of the reasons for slow progress in molecular

dissection of natural product activities (Swerdlow and

Johnson 2000). The dried seeds of Coffea arabica, the

leaves of the Thea family and the seeds of the Theobroma

Cacao tree provide prominent examples of molecular

activities stemming from hundreds if not thousands of

compounds. Caffeine is among the few closely studied

molecules from the mixtures present in coffee and tea.

However, caffeine alone does not fully account for the

total activity of the world’s favorite hot drinks. The

active mixture interpretation applies to nearly everything

in our diet. Individual species have distinct metabolic and



small molecule profiles, dependent on genetic and

environmental factors. The activity of small molecule

mixtures against a range of drug targets is a poignant

example of the complexity in the molecular basis of life.

The biological implications of protein structure were

recognized long before the advent of protein structure

determination. In 1941, W. T. Astbury et al described

proteins as “essentially a pattern of charges associated

with a close-packed forest of side chains, the polypeptide

chain being an infinitely variable device for building up

distributions of charges and presenting them to given

chemical environments." (Astbury, S. et al. 1941) . A

structural basis for biological function formed the impetus

for prote in structure model in g and experimental

determination. The beginnings of heuristic approaches to

assigning, modeling and predicting protein structure date

back to the early days of x-ray crystal structure

determination of compounds related to proteins. In early

structural studies, structures of protein related compounds

were coupled with the development of protein structure

heuristics related to molecular constraints of the

polypeptide backbone in light of lattice theory and

diffraction data (Huggins 1943). Regular protein secondary

structures formed by networks of repetitive hydrogen bonds



were postulated in 1951 by Linus Pauling et al (Pauling,

Corey et al. 1951). These structures correspond to the

alpha helix and the parallel and antiparallel beta-pleated

sheets.

The use of protein structure models to test hypothesis

and subsequent development of heuristics is not unrelated

to practices in organic chemistry. Indeed the activity of

building models under abstract constraints can be

recognized as an ancient one. Philosophically, heuristics

in modeling and prediction can often be reduced to the

presence of significant homology of two entities with

respect to a single property, hence suggesting similarity

in other correlated properties.

As of February 5th 2002 there are 17428 publicly

available protein structures in the Protein Data Bank

(Bernstein, Koetzle et al. 1978). Proteins are now known to

harbor specific structural preferences for amino acids in

alpha helices, even with respect to the chain direction

(Blaber, Zhang et al. 1993). Similar data is available for

beta-sheets (Otzen and Fersht 1995). Sequence to structure

correlations in local (Bystroff, Simons et al. 1996;

Bystroff, Thors son et al. 2000) and global protein

structure (Grishin and Phillips 1994; Gromiha and Selvaraj

2001) are providing important information on the sequential



aspects of protein folding and structure. And a large list

of protein structural motifs (Han and Baker 1995; Han and

Baker 1996; Han, Bystroff et al. 1997) has been derived

from biological databases. Sequence to structure

correlations include motifs correlated with specific

functions such as zinc fingers and RNA binding.

In spite of considerable progress, a number of

important computational biology problems remain unsolved.

In fact, a large number are not yet attempted due to

ongoing accumulations of genome-wide data sets. The

implications of knowledge of protein structure and function

are clear. Human health and physical capacity have new

potentials based on our abilities to measure, model and

alter biological function. Industrial and agricultural

applications are just beginning to be explored. It is

exceedingly important to include history in current bodies

of knowledge. The process of evolution of life is one of

the most meaningful and fascinating histories available.

Protein evolution in the form of diversity and

plasticity contains information on the structure and

function of proteins. The following three chapters

demonstrate directed attempts to advance post-genomic

computational biology in the realms of evolutionary

correlations and protein structure protein, drug design in



a protein family context, and computational methods for

protein function discovery based on the ideas of the

Evolutionary Trace (Lichtarge, Bourne et al. 1996).



Chapter I

Protein structure prediction by combining

cooperative sequence evolution at spatially

proximal sites with structural constraints



Introduction

A Structural Introduction to Protein Structure Prediction

The astounding complexities and resulting properties

of protein structure arise from a twenty amino acid

alphabet. Even more intriguing, the amino acid sequence of

a protein contains the necessary information for forming a

folded, functional molecule (Anfinsen, Haber et al. 1961;

Epstain, Goldberger et al. 1963; Anfinsen 1973). This

property of proteins has been termed "Anfinsen’s dogma' .

The associated Levinthal "paradox’ of protein folding

(Zwanzig, Szabo et al. 1992), states that a protein would

require 10" seconds (where N is the length of the protein)

to sample all possible conformations of the polypeptide

chain. This result is based on thermodynamic principles and

the assumption of 10** conformations changes per second

(based on fast spectroscopy measurements). For a 40 residue

protein this would take 10° seconds. This clearly does not

occur in nature. The dogma and the paradox have implied

that there are general rules governing the formation of

protein tertiary structure. Existence of physical rules has



suggested feasibility of algorithmic approaches to

predicting tertiary structure from sequence.

Protein structural requirements of amino acid side

chains include features of amino acid chemistry such as

molecular volume, electro statics, hydrogen bonding

potential and hydrophobicity. Less understood are features

endowed upon amino acids by protein tertiary structure such

as buried surface area, quantity and quality of neighboring

residues, dihedral angle preferences and chirality

constraints. A long recognized entropic constraint on

protein structure has been local backbone information with

specific periodicities corresponding to the alpha helix

(i, i +4) (Pauling and Corey 1951) and beta strands (i, i +2 &

i, i + 6) (Pauling and Corey 1951) . MO re intricate

periodicities in tertiary interactions such as the i-H4+n

periodicity in the packing of adjacent alpha helices

separated by a loop, and i +2+n for adjacent beta strand

packing, have previously been applied to protein tertiary

structure prediction (Cohen, Sternberg et al. 1982).

Recently structure-based heuristics for the more complex

phenomenon of register between secondary elements have been

developed, for example in antiparallel beta sheets

(Hutchinson, Sessions et al. 1998).

:
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Structurally, the amino acids of a polypeptide

backbone partition to the surface, the hydrophobic core,

and a boundary layer partially accessible to solvent, such

as active site clefts (Lichtarge, Bourne et al. 1996).

Conformational states that result in residue solvent

accessibility changes complicate this interpretation.

Nevertheless, the sequence patterns indicative of residue

burial or exposure are among the strongest signals in

multiple sequence data (Benner, Badcoe et al. 1994;

Gerloff, Joachimiak et al. 1998; Gerloff, Cannarozzi et al.

1999).

It has been known for some time that structure is more

conserved than sequence (Chothia and Lesk 1986; Chothia and

Lesk 1987; Flores, Orengo et al. 1993). It follows that in

prote in evolution, preservation of structure takes

precedence over conservation of sequence. Detailed analysis

of structural homolog comparisons has lead to the

conclusion that a relatively small (on the order of 30%)

fraction of residues are required to define a common

hydrophobic core, and hence a common fold (Russell and

Barton 1994). The remaining fraction of residues can adopt

unique conformations, evolving beyond recognition of

Structural similarity – such structural variations can

OCCur even with conservation of function (Russell and

11



Barton 1994). The conservation of structure has important

consequences for prote in structure prediction and

evolution.

It has been demonstrated that similarity measures

based on protein residues interactions cluster the known

protein structures more strongly than sequence comparisons

(Godzik, Skolnick et al. 1993). In addition to the

conservation of structure, it seems that this result has

two underlying reasons. Firstly, there is a bias in

experimental studies based on purification, stability and

crystallization of proteins. This bias is represented in

any structural data set. Secondly, the information content

of pairwise amino acid contacts is less than the

information present in multiple sequence alignment (MSA)

data. Multiple homologous sequences represent an ensemble

of information that is reduced to a unified sequence

representation when embedded in a two dimensional matrix

encoding protein contacts. Such contact maps are to protein

structure as amino acid properties (reduced alphabets) are

to multiple sequence data. It is interesting to speculate

that clustering structures based on chemical properties

such as charge and volume, would lead to a tighter

clustering than that based on the twenty amino acids.
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A feature of protein residue interactions is sequence

separation, defined by the number of residues in sequence

between a pair of residues. Short range interactions are

strongly influenced by regular secondary structure protein

backbone constraints (Pauling and Corey 1951; Pauling,

Corey et al. 1951). Constraints of these local interactions

are also evident in the Ramachandran map of preferred

residue conformations (Edsall, Flory et al. 1966) and in

the occupied conformational space of protein side chains

(Walther and Cohen 1999). Medium range interactions are

characterized by a sequence separation of at least 3.6

residues (the periodicity of the alpha helix) and less than

the length of the shortest secondary element in the

structure. Long range interactions are usually understood

to be residue-residue contacts with a sequence separation

of more than the shortest secondary structure element. Long

range interactions are the multiple interactions that

constitute tertiary protein structure in the form of

contacts between secondary structure elements.

The accumulation of evidence for the evolutionary

significance of residue contacts involved in protein

folding, the folding nucleus and global determinants of

protein stability is steadily increasing (Shakhnovich,

Abkevich et al. 1996; Dosztanyi, Fiser et al. 1997;

13



Michnick and Shakhnovich 1998; Ptitsyn 1998; Ptitsyn and

Ting 1999; Mirny and Shakhnovich 2001). Recently Gromiha &

Selvaraj (Gromiha and Selvaraj 2001) confirmed the

correlation between protein contact order (Plaxco, Simons

et al. 1998), a measure of the sequence separation between

residue contacts in a protein, and the folding rate of two

state proteins. The implication is that the larger the

number of long range interactions in the native state, the

more pronounced the thermodynamic barrier between the

disordered and native states. In the case of beta sheets,

structures with a high contact order, medium and long range

interactions represent the basis of beta sheet formation

(Pauling and Corey 1951).

Protein structure is the ultimate source of data on

residue - residue interactions as well as constraints

determining specific sequence to structure correlations.

The PDB database (Bernstein, Koetzle et al. 1978) of known

protein structures exists in manually curated (SCOP (Lo

Conte, Brenner et al. 2002)) and automatically generated

(CATH (Orengo, Bray et al. 2002)) classifications. These

databases organize protein structures into families, folds

and superfolds based on evolutionary and supra-structural

homology interpretations. The significant volume of

available protein tertiary structure data provides

14



structural knowledge for developing, testing and applying

protein structure prediction methods.

Proteins from an Amino Acid Interaction Perspective

The twenty natural L-amino acids, including the amides

and carbonyls of the protein backbone and the charged N and

C termini, are the chemical units of protein interactions.

These chemical units are associated with alphabets of

interactions, for example pairs of interacting residues.

Considering pairs of residues, there are 190 possible

unique pairwise interactions assuming directionality of the

polypeptide chain. The directionality assumption implies

that the interactions of X with Y and Y with X are not

symmetric. This is in fact the case ( (Sippl 1990) and this

work).

Many protein intra-residue interactions, such as

contacts between secondary structures, involve more than

pairs of residues. A combinatorial explosion in

possibilities accompanies higher orders of residue

interaction: 1140 unique amino acid triplets, 48.45

quadruplets etc. In general, higher order or multi-body

computational problems are confronted with physical and



algorithmic limitations. These problems are called NP

complete or NP-hard, due to their non-polynomial solutions.

Due to these circumstances, pairs of resides have become an

accepted simplification in modeling proteins and their

interactions. Ab initio protein structure prediction can be

viewed as the prediction of residue-residue distance

constraints. Experimental protein structure determination

consists of measuring atomic distances or distance

constraints based on protein crystal x-ray diffraction or

NOE coupling data. High quality NMR structures usually have

on the order of 20 or more constraints per residue

(Holmbeck, Foster et al. 1998; Muskett, Frenkiel et al.

1998; Morshauser, Hu et al. 1999). Low resolution protein

models have been determined based on sparse distance

restraints (Lund, Hansen et al. 1996; Chelvanayagam, Knecht

et al. 1998), down to one or two constraints per residue

(Aszodi, Gradwell et al. 1995). It has also been shown that

protein structure can be determined even with ambiguous

distance restraints (Nilges 1995; Nilges 1997; Nilges,

Macias et al. 1997). From the perspective of the protein

universe, a small number of stringent distance constraints

are the most specific in recognizing specific protein folds

(M. M. Young and I. D. Kuntz, personal communication).

Therefore the reduction of the multi-body space of protein

16



residue interactions to pairs (n = 2) is acceptable,

especially for the purposes of prote in structure

prediction.

There are a number of approaches for defining contacts

between residues in protein monomers. Due to computation

and memory limits, information is sacrificed either in the

ability to sample data or in the resolution of the

computational model. A two dimensional matrix can be used

to represent protein residue-residue interactions. Based on

CO-CO. distance calculations in known protein structures,

and a fixed distance cutoff included in the residue-residue

contact definition, binary contact information is stored in

an n by n matrix (where n is the sequence length). This

method has been extensively developed, with broad

applicability to sequence homology searches, fold

recognition and sequence analysis.

Available protein structures have been used in a

knowledge-based approach to determine pairwise energies of

residue-residue interactions (Crippen and Viswanadhan 1984;

Miyazawa and Jernigan 1985). Attempts to define and search

protein families based on pairwise contact preferences

(Miyazawa and Jernigan 1993; Rodionov and Johnson 1994) led

to the development of methods based on residue-residue

interaction matrices. Miyazawa and Jernigan (Miyazawa and

17



Jernigan 1993) introduced the assumption that large samples

of amino acid substitution data could approximate the

actual interaction energies of residues in prote in

structures. The inverse folding problem (Blundell 1991; Yue

and Dill 1992) culminated with sequence to structure

threading (Bowie, Luthy et al. 1991; Godzik, Kolinski et

al. 1992), a method exploiting dynamic programming to

assess the preference of a sequence for candidate

structures. More complex potentials relying on calculations

of mean force and distance distributions of protein

residue-residue (Sippl 1990; Maiorov and Crippen 1992) are

noted improvements. Another instance of pairwise

interactions is seen in lattice models for protein folding

and thermodynamic calculations (Yue, Fiebig et al. 1995;

Harrison, Chan et al. 1999; Harrison, Chan et al. 2001).

With the assumption of a common structure, sequence

differences represent multiple sequence solutions to

protein folding. M. Sippl has introduced the notion of

structural ensembles within a family of sequences with

common structure (Sippl 1990). This definition allows

interpretation of protein sequence structure and data with

additional parameters. The parameters include asymmetry of

pairwise residue interactions (assuming an N to C terminus

chain direction) and approaches to normalizing pairwise

18



interaction frequencies. The effect is an increase in

information content and more detailed estimates of pairwise

protein residue interaction preferences. A related ensemble

approach has been applied in the prediction of consensus

protein structure from a protein family ensemble (Gobel,

Sander et al. 1994).

Two dimensional protein contact maps represent a

simplification of protein interactions. This reduction

allows additional levels of analysis, such as global

features of protein contacts. Features of protein contact

maps include local secondary structure patterns of alpha

helix and beta-sheet at specific periodicities of it 3.6 and

i + 2. Clusters of contacts with specific orientations

relative to the diagonal of the contact map correspond to

contacts between secondary structures in parallel or anti

parallel orientations (Figure 1) . Non-local contacts

between secondary structures can also exhibit contact

periodicities related to the interacting faces of alpha

helices and beta-sheets (Figure 1). Common irregularities

in protein structure lead to scattered clusters of contacts

with few if any periodic or spatial trends (Figure 1).

Contact maps also capture information on the orientation

and chirality of supra-secondary structure arrangements in

protein tertiary structure.
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Figure 1

An example of patterns in protein residue contacts

represented by a two dimensional residue-residue contact

map. On the left is a structure of the YlzR protein from

Streptococcus pneumonia e (PDB : 1 G2R) . The ribbon

representation was generated with Chimera (Huang 1996). On

the right is a two dimensional matrix of residue-residue

distances. The contact matrix graphic was generated with

WEBMOL (Walther 1997). The correspondence of regular

patterns of secondary structure element interactions to

features in the contact matrix is shown.
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Higher orders of residue interaction are accompanied by a

nonlinear increase in the potential interaction space, with

the number of interactions proportional to n* (where n is

the sequence length, k is the order of interaction).

However, sequence evolution demonstrates that the

conservation of residues within protein families is

sequentially and spatially specific (Garvin and Hardies

1991; Lichtarge, Bourne et al. 1996; Mirny and Shakhnovich

2001). Therefore, interpretations that allow for meaningful

traversal of the interaction space across the possible

orders of interaction are especially desirable.

Evolutionary Residue-Residue Correlations

The theory of neutral drift in protein evolution

encompasses random sequence changes with neutral effects on

protein structure and function (Kimura 1968). These changes

are the hallmarks of conservative amino acid mutations and

protein structural plasticity. In addition to neutral

drift, proteins undergo evolutionary selection for specific

properties. Sequence differences coinciding with protein

family speciation events reflect the underlying structural

and functional requirements of specific in vivo roles.
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Even though it has been shown that there exist

sequence evolution trends in conservation of hydrogen

bonding or volume, these trends are not consistent across

evolutionary time scales and prote in families

(Chelvanayagam, Eggenschwiler et al. 1997). It appears that

the standard parameters are in sufficient to fully

understand conservation patterns in a protein family. Our

limited understanding of protein evolution forms a barrier

to making general connections between sequence, structure

and function. Since sequence data is most prominent in the

literature and databases, followed by function and

Structure, sequence based structure and function

predictions methods are of clear value.

Based on examples of protein function discovery, it

appears that the evolutionary information represented by

the structure of subclades in a phylogeny (Lichtarge,

Bourne et al. 1996; Mirny and Shakhnovich 2001), is a

source of information across different orders of residue

residue interactions. Surface epitopes and partially buried

clefts form the basis of protein function due to their

interactions with solvent. These structural features are

formed by sets of residues restricted in space.

Correlations of sequence to structure have been observed in

compensatory mutations (Poteete, Sun et al. 1991; Baldwin,
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Xu et al. 1996), protein structural plasticity (Baldwin,

Haj is eyedjavadi et al. 1993; Gerstein, Sonnhammer et al.

1994; Vetter, Baase et al. 1996; Atwell, Ultsch et al.

1997; Taverna and Goldstein 2002) and experimental sequence

to structure correlation analysis, such as site-directed

mutagenesis and alanine scanning (Wells 1991).

From an evolutionary perspective, amino acids that are

conserved across species tend to signify functional sites

or structural determinants of protein families. These

functional and structural categories can have considerable

overlap, especially in context of correlated sequence

changes. Protein surface epitopes have defined volumes and

orientations, features determined by neighboring

(potentially non-functional) residues and contributions of

more distal regions in a structure. Therefore, models of

protein structure evolution should not separate structure

from function.

Heuristics based on evolutionary sequence data have

been developed for secondary structure prediction (Rost and

Sander 1994; Thompson and Goldstein 1997) and threading

(Defay and Cohen 1996; Jones, Tress et al. 1999; Panchenko,

Marchler-Bauer et al. 1999). However, current understanding

of protein evolution, chemistry, and dynamics is still

limited. Due to a lack of general principles, there is
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little predictive value for sequences with out

representative structures or no identifiable homologues, as

seen in the pressing problem of genome annotation and

function prediction (Chapter III). A similar limitation

exists in the field of protein structure prediction.

However, due to the complexity of proteins structure,

structure prediction inherently requires more variables,

heuristics, and input data relative to the problem of

elucidating function. The evidence for this is the relative

success of sequence based function prediction relative to

sequence based structure prediction methods.

Determinants of protein sequence evolution are not

without effect on protein structure. In particular,

specific pairs of interactions undergo evolutionary

selection for sequence constraints such as codon bias or

amino acid availability. Nucleotide codon bias has

measurable influence on protein sequence evolution across

single genomes (Singer and Hickey 2000). Amino acids occur

with variable abundance in nature and ecological and

biochemical constraints must contribute to their relative

frequencies in different species. As observed in the

sequence databases, the occurrence of individual amino

acids in proteins is based on complex factors ranging from

influences of the genetic code on amino acid selection, to
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residue interaction preferences and constraints on local

and global protein structure. These factors are difficult

to account for when constructing sequence alignments and

phylogenies, and present a limitation for methods relying

on phylogenetic data. Nevertheless, percent sequence

identity alone approximates the functional speciations

within a protein family to a degree that is useful for

computational biology predictions.

A method has been developed to identify residues

invariant during the evolution of a prote in family

(Lichtarge et al JMB 1996). Clusters of these residues on a

protein surface strongly correlate with functional sites

(Chapter II and Chapter III). It is also known that the

sequence conservation of oligomeric enzyme subunit

interfaces is correlated with overall sequence conservation

(Grishin and Phillips 1994), and that correlated mutations

contain information about protein-protein interactions

(Pazos, Helmer-Citterich et al. 1997). The information

present in the branching pattern of subclades in a

phylogeny has been applied to the prediction of protein

protein binding with some success (Goh, Bogan et al. 2000;

Johnson and Church 2000; Pazos and Valencia 2001) as well

as function discovery from sequence and structure data

(Chapter III).
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Sequence correlations based on either pure MSA data or

phylogenetic information, have been applied to fold

recognition (Olmea, Rost et al. 1999), to the determination

of relationships between structure and sequence patterns

(Selbig and Argos 1998), and to the prediction of residue

contacts based on a neural network (Fariselli and Casadio

1999; Fariselli, Olmea et al. 2001). The latter neural

network method claims the highest accuracy and improvements

over random models, with 25% and 8 fold respectively. On

average the method was only 16% accurate, which was

insufficient to generate useful distance constraints.

Multiple definitions of sequence correlation and

methods identifying these types of sequence changes have

been developed. The implementations range from pattern

based methods to calculated vectors of amino acid

properties (Altschuh, Lesk et al. 1987; Altschuh, Vernet et

al. 1988; Korber, Farber et al. 1993; Gobel, Sander et al.

1994; Neher 1994; Shindyalov, Kolchanov et al. 1994;

Singer, Oliveira et al. 1995; Thomas, Casari et al. 1996;

Chelvanayagam, Eggenschwiler et al. 1997; Pollock and

Taylor 1997; Fariselli and Casadio 1999; Pollock, Taylor et

al. 1999; Fariselli, Olme a et al. 2001). Only a few of

these methods attempt to use phylogeny structure

information explicitly (Shindyalov, Kolchanov et al. 1994;
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Chelvanayagam, Eggenschwiler et al. 1997; Pollock, Taylor

et al. 1999). Overall, the individual performance and

applicability of these methods for practical purposes of

protein structure prediction remain unsatisfactory (Orengo,

Bray et al. 1999), especially considering drug design and

function discovery needs.

Many sequence correlation methods use MSA or

evolutionary data converted into scalar, vector or matrix

representations of properties or correlations of properties

between MSA positions. Patterns of speciation events that

result in distinct phylogenetic subclades are a feature of

protein sequence evolution. These subclades can be

interpreted as an ensemble of related protein sequences and

structures with expected similarity in function and

sequence correlations. Such a model of sequence family

evolution effectively increases the information content per

MSA position relative to numerical constructs used to

analyze MSA data alone.

Residues involved in binding are not the only residues

conserved during evolution. The dynamic aspects of protein

function such as conformational changes (Gerstein, Lesk et

al. 1994) and thermal motions (Hoh 1998) are also

significant evolutionary constraints. It can be expected

that the various constraints on protein sequence, structure
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and function in the context of evolution will also be

determinants of structure and function. In addition to

structural and genetic constraints, functional residues are

constrained by selection for an in vivo role. Protein

function is often characterized by multiple surface and

binding partners (dos Remedios and Thomas 2001; Xiong,

Stehle et al. 2001), and not only in the case of membrane

or structural proteins (Lichtarge, Bourne et al. 1996).

There are less recognized attributes of function, such as

cellular localization, signal and tag sequences, and sites

of post-translational modification, with distinct

evolutionary pressures. For example, protein surfaces have

undergone differential selection dependent on their

subcellular localization (Andrade, O'Donoghue et al. 1998).

However, only with sufficient data is it possible to survey

the effects of a protein feature on protein evolution. In

the case of subcellular localization, useful in predicting

the amino acid composition of protein surfaces, there is

sparse data on the localization of individual sequences.

There are serious difficulties with dissecting true

evolutionary correlations of residues from correlations

a rising in the random background of mutation and

inheritance (Pollock and Taylor 1997). Pollock & Taylor

point out that increasing the number of taxa in the
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phylogeny decreases the random background. For methods

utilizing phylogenetic data this has the statistical effect

of increasing the likelihood of false positive

correlations. The current method redefines subclade

invariant residues, as originally defined in the ET method

(Lichtarge, Bourne et al. 1996), in context of protein

contact map prediction. The survey and test sets for

predicting pairs of amino acid contacts from sequence and

phylogenetic data are combinations of representative

protein structure, MSA and phylogenetic information (see

Chapter III). The method has the potential to include

residue interactions of higher order than the standard

pairs of residues.

An idealized example of evolutionary correlation in a

phylogeny is shown in Figure 2. The phylogeny is divided

into evolutionary timescales, corresponding to eras of

mutational events. The dendo gram of evolutionary

relationships can be interpreted as sets of residues

conserved in specific subclades of the phylogeny. The

subclades of the phylogeny closest to the hypothetical

ancestor represent the positions with the most stringent

constraints during evolutionary selection. Given sufficient

sequence data, the nodes in the phylogeny closest to

individual sequences correspond to mutational events that
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Figure 2

A schematic of evolutionary time scales in a phylogeny and

their coincidence with specific variability patterns in the

multiple sequence data. For each colored time scale, the

invariant positions in the multiple sequence data are shown

in a corresponding color. Two types of amino acid

evolutionary correlation are the conservation of charge and

volume properties. Since most modern sequence events

correspond to neutral drift, while subclades deep in the

phylogeny are difficult to reconstruct for lack of data,

evolutionary correlations are expected to occur in the

middle time scales of reconstructed phylogenies.
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are either random changes in single sequences or unique

determinants of functional properties not found in other

members of the family. The multiple branches of the

phylogeny contained between the early and late regions of

the evolutionary times cales represent sequence selection

events related to a spects of folding, stability and

function. Random drift also contributes to evolutionary

correlations – random mutations that are compensated for by

mutations elsewhere in the protein, will be inherited as a

correlated pattern. Random mutations with a neutral effect

on the protein's fitness are more likely to undergo further

random mutation, and will present different sequence

variability patterns. Zucker kandl and Pauling described

living systems as being “constantly abolished and

simultaneously preserved”, using an analogy from Hegel

(Zuckerkandl and Pauling 1965). It is the middle era of the

evolutionary time scale that represents evolutionary

palimps ests, the writing of new material over older

material, of historical speciation and random drift events.

Modern subclades are accompanied by increasing levels of

neutral drift.

The subclade branching pattern seen in all phylogenies

reflects the biologically universal process of evolutionary

divergence. Adaptation to new requirements and compensation
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for undesirable changes are the dominant forces in

evolution. Undesirable changes are random and requirements

for structure and function are not uniform across species.

These two conditions lead to unique sequence changes in

different members of a phylogeny. Inheritance and

propagation of speciation events results in further

divergence and subsequent appearance of new subclades

within the phylogeny.

Phylogenetic information is orthogonal to primary

sequence and structural in formation, serving as an

additional dimension in which to understand the underlying

correlations. The goals of this evolutionary sequence

correlation approach, aside from an attempt to predict

protein structure, were to understand protein structure in

context of residue-residue contact features, and to merge

the concept of an evolutionary sequence mutation space with

the realm of tertiary protein structure. Insights provided

by analysis of protein evolution in the context of protein

structure add to the growing body of knowledge on the

subtle correlations relating biological sequence, structure

and function.
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Results

Formulation of the pairwise correlation model,

structure prediction heuristics and construction of the

prediction algorithm was preceded by a survey of correlated

amino acid contacts in a set of representative protein

families. The initial definition of residue evolutionary

correlation consisted of an invariant position pair in

partitions of the phylogenetic tree (Lichtarge, Bourne et

al. 1996). The intervals were defined by the sequence

identity of subclades within the partitions and spanned

from the hypothetical ancestor of the phylogeny to the

individual modern sequences. For a definition of residue

contacts see Methods. The serine proteases are chosen as a

representative example, but other surveyed families

included the HIV proteases, creatine kinases, lactalbumins

and lysozymes, amino-aspartyl transferases, and the

barnases. Choice of protein family was limited by sequence

data and evolutionary diversity, as well as high resolution

crystal structures of representative family members.

The serine proteases are a protein family with the

feature of an extended binding site and rigid structural

constraints related to the binding site volume. A number of
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correlated residues were in the vicinity of the conserved

catalytic triad and in distal portion of the binding site

(Figure 3). Detailed phylogenetic analysis indicated that

the nature of the evolutionary correlation was layered,

with certain subclades representing a change at one site,

other subclades at another site, and some at both sites

(Figure 3). Subclades with a "double mutation' relative to

other subclades were bridged by a subclade sharing only a

single change with the "double mutant' (Figure 3) .

Noticeably, a number of seemingly reasonable correlations

were in fact distal in space, representing the false

positive component of the evolutionary correlation data.

The results of the test survey of prote in family

evolutionary correlations confirmed the presence of

pairwise residue contact correlations in a range of protein

families.

False positive contact correlations including the

background noise in protein sequence evolution were first

addressed in the model of evolutionary correlation (Figure

3). The MSA data used to derive the correlations was

successively filtered position by position using criteria

of sequence variability, amino acid entropy (defined as the

number of rotatable bonds per residue), and number of gaps

(see Methods). These measures, aside from permitting
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Figure 3

An example of protein family correlated contact survey

results for a subset of the serine protease family. The

residues conserved in specific subclades are shown on the

phylogeny (left). The corresponding columns from the MSA

highlight the correlated sequence changes. The structure

graphic (right) highlights the proximity of the correlated

positions in space in a crystal structure of the

chymotrypsin member of the family. In this case, the

distance between the CB of serine and Co. of glycine was 6.5

A. The catalytic triad is show in blue.
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avoidance of problematic areas of the protein contact map,

did not significantly improve the measures of success used

to as certa in the contact in formation content in

evolutionary data. Correlations to other parameters

describing the protein family were tested, including the

sequence identity at the hypothetical root of the

phylogeny, the number of sequences in the family, and the

overall percent of invariant positions. However, none of

these feature filters exhibited clear trends applicable to

evolutionary correlation based contact prediction (Figure

4).

Three measures of contact map prediction success were

implemented (see Methods). The Matthews correlation

coefficient (Matthews 1975) is useful when assessing the

accuracy of prediction methods, since it takes into account

both positive and negative, real and predicted information.

The signal to noise ratio is a less sophisticated measure

defined by the ratio of correct predicted contacts to the

total number of predicted contacts. This ratio only

addresses the absolute quality of the predicted contacts.

Finally, the improvement over a random model, in this case

actual protein structures, addresses the signal to noise

problem in context of the contact information signal in

real protein structures.
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Figure 4

Results of tracking algorithm development by correlating

prediction success with protein family features. 10

independent protein families were used for this analysis.

Certain properties are anticorrelated, and this was found

to be related to the in formation content in the

evolutionary data. Specifically, diverse protein families

are more amiable to subtraction of the background false

positive correlation signal. Signal subtraction was

performed with a variety of filters aimed to reduce

uncorrelated positions and noncontacts. A number of these

filters were incorporated into the final method (see

Methods).
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A summary of the numerical results for the early

stages of the prediction algorithm formulation is shown in

Table 1. Seven protein families were surveyed to observe

the relations between sequence length and the number of

actual contacts, with features of the evolutionary sequence

correlations. The initial implementation of contact

prediction mapped all pairwise evolutionary sequence

correlations to a predicted protein contact map (Figure 5).

Predicted contacts were evaluated by comparison to the

actual protein contacts using three independent measures of

success (see Methods). Importantly, in all cases the

majority of real protein contacts were correlated in

evolution (Figure 5). There were no persistent trends

relating the number of actual contacts, with the number of

evolutionary correlations, or the number of evolutionary

residue contact correlations. However, certain protein

families exhibited significant accuracies and improvements,

namely the HIV proteases, the profilins and inos ine

monophosphate dehydrogenases (IMP) (Table 1). An avenue for

improvement was seen in that every family contained more

Correlated residues than expected numbers of contacts in

Protein structures.

The primary problem in contact prediction from

evolutionary correlations was the abundance of correlation
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Table 1

Results of contact prediction from raw evolutionary

correlations. Nine protein family contact predictions were

investigated with measures of accuracy (see Methods). Note

the large number of predicted contacts compared to real

contacts. At this stage of the prediction algorithm smaller

proteins tended to have higher contact prediction

accuracies.
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Figure 5

Contact predictions from raw evolutionary correlations. The

upper diagonal of each contact map represents the real

protein contacts. Correctly predicted contacts are in green

and not predicted contacts are in magenta. The lower

diagonal of the contact map represents the predicted

contacts. The correlations scores are colored coded black

to red, from lowest to highest evolutionary correlation

score respectively. The abundance of evolutionary

correlation data relative to real protein contacts can be

seen. The measures of accuracy indicate that the

predictions are with little correlation to the real

contacts and close to random, and yet most real contacts

are correlated.
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information relative to actual protein contacts. To address

this problem and to increase consistency of prediction

evaluation, the number of predicted contacts was set equal

to the length of the protein sequence. A sorting scheme was

implemented to collect the top correlations (see Methods).

The results are significant in both signal to noise and

improvement over random measurements (Figure 6). However,

virtually all predicted contacts corresponded to local

secondary structure contacts, with very few medium range

interactions. Since the density of protein contact maps is

greatest in the vicinity of the matrix diagonal, the chance

of randomly predicting a correct local contact in this

region is greater than in other areas of the map. This

feature is an artifact of the sorting procedure as well as

false positive correlations in the evolutionary data.

Algorithmic sorting requires the assumption of a starting

point. In order to reproduce natural qualities of contact

maps, namely the decreasing density of contacts at larger

sequence separations, sorting was performed beginning from

the diagonal of the contact matrix, i.e. local contacts.

This procedure biases the results to local and medium range

contacts, which dominate all real contact maps.

TO further address the problem of C Onta Ct

overprediction, a sequence separation based pairwise
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Figure 6

Contact predictions from limited and sorted evolutionary

correlations. The upper diagonal of each contact map

represents the real protein contacts. The lower diagonal of

the contact map represents the predicted contacts. Contact

predictions from evolutionary correlations were limited to

a number of top correlations equal to the length of the

protein. The correlations are sorted starting from the

diagonal of the contact matrix (see Methods). There are

also some improvements over the random model and in the

signal measure.
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potential of mean force (Sippl 1990) was calculated based

On a nonredundant subset of the PDB database (see Methods).

This pairwise interaction potential was applied to the

pairwise evolutionary correlations. With choice of an

optimal minimal contact energy (see Methods), this

procedure resulted in prediction of scattered contacts and

less contact density (Figure 7). The scattering of

predicted contact, especially at larger sequence

separations, was in stark contrast to the multiple clusters

of contacts visible in real contact maps (Figure 1).

In this method, problems in evolutionary data have

direct effects on the nature and quality of protein contact

predictions. Linearity of contacts, corresponding to rows

and columns in the contact map, was the prominent feature

of contact maps predicted from raw or interaction potential

filtered evolutionary correlations. The lactalbumin family

evolutionary correlations filtered with increasingly

stringent minimum contact energy cutoffs illustrate this

point (Figure 7). The evolutionary correlation information

limited to a number of correlations equal to the sequence

length could be reduced to a small set of residues

correlated to many other residues. Many predicted residues

in contact were correlated to indirect contacts potentially
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Figure 7

Illustration of the conflicts in applying a pairwise

interaction potential to contact map prediction. In this

example, the lactalbumin family consensus contact map

prediction was filtered successively with increasing

pairwise interaction stringency. On the right the

prediction approximates the raw evolutionary correlations.

The number of predicted contacts in the middle prediction

approaches the number of contacts in the real contact map,

however no discernable protein contact map features are

observed. The left contact map prediction with few

scattered contacts represents a highly stringent

application of the pairwise potential. In all cases the

dominant prediction of contacts occurs in rows and columns

of the contact map.

-nº-º-º:
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forming networks. Regardless, the majority of predicted

contacts corresponded to false positive correlations.

The averaged results for 26 protein families are shown

in Table 2. This prediction data was based on sorted

evolutionary correlations filtered by the pairwise Sippl

potential (Sippl 1990). An effect of a pairwise contact

energy cutoff can be seen to have positive results on the

correlated contact signal in the data. Invariably the

linear cutoff approach presents the problem of predicting

too few or too many contacts (Figure 7). Alternately, in

the case of nonlinear cutoffs, decision making and

approximations become problematic.

To overcome local contact prediction bias and to direct the

sorting of correlations, occupancy constraints were applied

to the evolutionary correlations filtered with the pairwise

potential (see Methods). The occupancy constraints

consisted of database derived frequencies of contacts in

the local neighborhood of residues, using intervals of

sequence separation as a discriminating parameter (Figure

8) . Conditional occupancy restra in ts, relying on

conditional probabilities of local residue contacts (see

Methods) were generated and applied in a similar way

(Figure 8) . The se distributions We re used t O
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Table 2

Contact prediction results for 26 nonredundant protein

families. A small improvement in the correlation

coefficient is seen when using a more stringent minimal

contact energy cutoff. However, other measures of accuracy

do not reflect this trend.
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Figure 8

Occupancy constraints and prediction of protein contact

maps. In the middle is a schematic of regions of the

contact map corresponding to intervals of sequence

separation. Local contacts were defined by a sequence

separation interval from 4 to the minimum of 1/5" of the

chain length or 25 residues. Nonlocal contacts were defined

by a sequence separation greater than the minimum of 1/5*

of the chain length or 25 residues. Unconditional local

residue contact occupancy frequencies are shown on the

left. Most residues in protein structures make no contacts.

The conditional nonlocal contact occupancies for contact

map prediction are shown the right. This knowledge-based

data was used to conditionally assign nonlocal contacts

from the prior (unconditional) assignment of local contacts

(see Methods). Most residues have no contacts in the local

Sequence separation band. However, residues can participate

in nonlocal contacts without forming local contacts.
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limit the number of contacts predicted per local

neighborhood of a residue and to conditionally enforce the

prediction of clusters of contacts based on prior predicted

contacts. The results can be seen in Figure 9. Predicted

contacts are dispersed throughout the contact map. The

accuracy and signal to noise measure have decreased. Apart

from loss of contact information, the degraded performance

can be partially attributed to the fact that evolutionary

residue contact correlations are not uniformly distributed

across the parameter of sequence separation. In retrospect

it appears necessary to assess the evolutionary signal for

residue contacts in varying bands of sequence separation.

Attempts were made to a priori quantify residue contact

information content in the combination of phylogenetic and

multiple sequence data. Difficulties appeared in forming

Parameters relating the phylogeny structure and sequence

data to contact information across different protein

families.

The final component of the contact prediction

*9°rithm consisted of masking predicted contacts with

P**terns of contacts between secondary elements (see

Methods). A consensus secondary structure for the protein

family was predicted with the method of Chandonia and

Karplus (Chandonia and Karplus 1999) (see Methods). A
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Figure 9

Application of a pairwise interaction potential and contact

occupancy constraints to contact predictions from limited

and sorted evolutionary correlations. The upper diagonal of

each contact map represents the real protein contacts. The

lower diagonal of the contact map represents the predicted

contacts. See Methods for a description of the prediction

procedure. Although the predicted contacts are scattered,

they cover all sequence separations in the contact map. The

measures of prediction success indicate a significant

improvement due to the pairwise potential and contact

occupancy constraints.

59



Lactalbumin(1HML) S/N:9.0% Improvement:
2.6 Profilin(2ACG) S/N:7.5% Improvement:

2.6

NKLysin(1NKL) S/N:8.0% improvement:
3.0 AminoAsparty.Transferase(1ART) S/N:2.5% Improvement:

2.4

HIVprotease(1A94) S/N:12.0% Improvement:
2.7

Polygalacturonase(1BHE) S/N:13.0% Improvement:
5.3

2.



mapping of the secondary structure prediction was used to

identify the potential interaction spaces of secondary

structure elements. Iterative masking of unconditional and

conditional secondary structure interaction probabilities

was driven by data from previous layers of the algorithm

(see Methods). This procedure resulted in predicted contact

maps with features reminiscent of real protein structure

(Figure 10). In particular, clusters of contacting residues

attributable to helix-helix, helix-beta strand, and beta

strand-beta strand interactions were observed. However,

certain families fared worse with this method than with the

combination of the pairwise potential and occupancy

constraints. Further work was needed to complete the

iterative procedures in the algorithm and to cohesively

analyze the performance and limitations on a larger test

set of protein families. In addition, due to a large number

of variable parameters in the method, further optimization

of parameters in light of the measures of contact

prediction success was necessary.

The contact maps predicted by the final algorithm

exhibited features reminiscent of real protein contact

maps. Prediction of such contact map features based on

sequence correlations has not been reported thus far. In

fact, authors of related prediction methods commented on
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Figure 10

Contact prediction with the final algorithm. The procedure

in these predictions included limited and sorted

evolutionary correlations, contact occupancy constraints, a

pairwise interaction potential, predicted secondary

structure and conditional inter-secondary structure

interaction probabilities. A demonstrates the noticeable

improvements achieved with addition of predicted secondary

structure and conditional inter-secondary structure

interaction probabilities to the prediction method. B shows

the best prediction, the consensus contact map of the

profilin family. Although the correlation coefficient was

still relatively small, the signal to noise and improvement

over random models indicate a potentially useful structure

prediction.
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Raw evolutionary correlations Final algorithm result
A HIV protease (1A94) HIV protease (1A94)

S/N: 11.4% —D- SN. 34.4%
Improvement:2.4 Improvement: 7.3
Correlation: 0.05 Correlation: 0.12

Profilin (2ACG)
B S/N: 40%Improvement: 10

Correlation: 0.2
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the scattered character of contact predictions from

evolutionary correlations (Casari, Sander et al. 1995;

Olmea and Valencia 1997; Olmea, Rost et al. 1999). It has

to be noted, that under the constraint of a limited number

of residue – residue contacts, prediction of scattered

contacts results in a higher chance of random correct

prediction. In this light, it is a more significant

a chievement that the present method succeeded in

reconstructing features of protein contact maps from

evolutionary sequence correlations and knowledge based

structural constraints.
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Discussion

The main advantage of phylogenetic information is that

it can represent biologically meaningful sets of residues

correlated between sequences, or groups of sequences. The

precise goal was to use the structure of protein family

phylogeny to identify contacting residues. The underlying

assumption was that the evolutionary processes of selection

and mutation are evident in the patterns of phylogenetic

subclade divergence (Lichtarge, Bourne et al. 1996). Using

an abstract definition of evolutionary time related to

measures of sequence distance (Dayhoff 1972), the

phylogenetic structure presents a historical context for

modern sequences. These concepts introduce a mathematical

correlation based on phylogenetic structure and multiple

sequence data.

Gathering both survey and test input data for the

method was time consuming and nontrivial. The number of

protein structures of sufficient quality and coverage of

the protein sequence was the first limiting step. Abundant

sequence data was the second rate limiting step. For any

prote in family satisfying the minimal in formation

requirements, a correlated contact signal larger than
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randomly expected was usually present. This result was

promising for extracting sequence correlations related to

protein structure, especially in combination with results

supporting the positive effect of increased evolutionary

diversity in a family on the pairwise correlation signal

(Pollock and Taylor 1997; Pollock, Taylor et al. 1999).

The presented method relies on iterative subtraction

and addition of signals coming from evolutionary pressures

on amino acid sequence, residue – residue interactions,

secondary structure, and from tertiary interactions of

secondary structure elements. This data is fundamentally

related to the subclade structure of the phylogeny, since

the initial prediction of contacts relies on a concept of

evolutionary correlation. The knowledge-based potential of

Sippl (Sippl 1990) in a somewhat modified version (see

Methods), was applied prior to each step of the iterative

procedure to ensure that only favorable interactions were

considered for each iteration.

Of all components of the algorithm, the introduction

Of conditional secondary St r u C tu re interaction

probabilities provided the single largest increase in

prediction success. Secondary structure can be predicted

with high degrees of accuracy from multiple sequence data

(86 %, (Chandonia and Karplus 1999) ) and a portion of the
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contact prediction improvement resulted from biasing

contact prediction with predicted secondary structure.

However, in cases of “nearly” perfect prediction by current

standards (Figure 10B), the improvement came from correctly

assigning a cluster of contacting residues by the

conditional secondary structure contact procedure. The

Bayesian statistics used to iteratively assign secondary

structure contacts contributed significantly to the overall

contact prediction procedure. The use of secondary

structure masks magnified the residue contact signal in the

evolutionary correlations, achieving higher levels of

prediction accuracy than evolutionary data alone or in

combination with a variety of filters. Additionally,

secondary structure probabilities resulted in the tolerance

of contact prediction to shifts in register, twists of

secondary structures and small irregularities such as kinks

in beta sheets and helices within a protein family. Many

such protein structure irregularities lead to problems in

sequence alignment and hence loss of evolutionary

information. It appears that using secondary structure

contact probabilities to as sign contacts based on

evolutionary data input, allows regaining some of the lost

in formation due t O alignment and phylogenetic

re construction errors and structural divergence.
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Independently, masking contact maps using predicted

secondary structure provided a useful analysis of the

nature and contributions of local and non-local secondary

structure contact correlations.

Correlations derived from evolutionary sequence data

contain significant background noise. Sequence changes that

appear correlated but are distant in the protein structure,

can occur in a variety of situations. These include random

amino acid mutations that cannot be distinguished from

compensatory mutations of residues proximal in space. Such

random changes have none or little selective consequence,

and yet they are inherited in similar patterns as

correlated contacts. Irrespective of the random background

in evolution, there are specific patterns of sequence

variation indicative of evolutionary selection.

A number of correlations can be biologically

meaningful, even if the involved residues are distant in

space. Members of a protein family that have multiple

functional sites fall into this category. Pollock et al

1999 have suggested that a component of the "random'

background is related to maintenance of protein surface

chemical properties, ultimately related to phenomenon such

a S compatibility Of secondary Stru C tu re S and

oligomerization avoidance. It seems that such positions
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should be distinguished by recognizable patterns in protein

families, relative to random drift. Many limits in

interpretation of the evolutionary nature of sequence

changes can be traced to evolutionary events poorly modeled

with accepted phylogenetic methods. Rapid speciation,

variable rates of substitution, variable amino acid

preferences, and possible functional and structural

consequences of different amino acids in different species

and environments, all present problems for reconstructing

accurate phylogenies. In particular, nucleotide and amino

acid bias contribute recognized errors to phylogenetic

reconstruction. Especially significant is the AT/GC bias at

the nucleotide level (Foster and Hickey 1999). The case of

unique homologs to different regions of a sequence presents

an especially difficult case for current methods.

Unfortunately, alternative interpretations of sequence

evolution are not easily amenable to algorithmic

incorporation. Computational challenges are present both in

numerical interpretations such as singular value

decomposition, which is difficult to relate to biological

context, and more biological-like models whose complexity

introduces implementation and performance issues

(Devauchelle, Grossmann et al. 2001; Kitazoe, Kurihara et

al. 2001). Nevertheless, there are some interesting methods
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to assess phylogenetic content of multiple sequence data

(Wagele and Rodding 1998; Strimmer and Moulton 2000).

Incorporation of these techniques would enable more precise

dissection of evolutionary correlations.

Positions that are conserved in a protein family have

a zero information content with respect to pairwise

evolutionary correlations. Yet it is a given that positions

invariant in the hypothetical ancestor can be mutated

without effects on structure and function. In the case of

known protein structures, it is routine to assign contexts

to absolutely conserved positions through protein family

sequence conservation patterns. Knowledge of the

determinants of a protein’s function can be an asset in

interpreting correlations. Biasing contact predictions by

the presence of conserved residues within a short sequence

separation would be expected to increase structure

prediction accuracy measures. In corporation of the

significance of conserved residues into a contact map

prediction method could be also achieved by using available

functional information to assign chiralities or even

approximate orientations for C on served residues.

Preliminary attempts to incorporate functional information

have aided ab initio structure prediction (Benner, Gerloff
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et al. 1995; Gerloff, Joachimiak et al. 1998; Gerloff,

Cannarozzi et al. 1999).

To find correlated positions, the residue changes that

induce residue changes due to evolutionary selection

criteria, it is possible to use data other than amino acid

sequence. The use of a ratio of synonymous to nonsynonymous

gene substitutions, as derived from the codon translation

table, provides another layer of evolutionary data for

protein sequence and structure analysis (Liberles,

Schreiber et al. 2001). The ratio of synonymous to

nonsynonymous mutations has been applied to identify

potential cases of functional change (Li, Wu et al. 1985;

Messier and Stewart 1997; Yang, Nielsen et al. 2000).

However, it appears that a Hidden Markov Model for variable

substitution rates in subclades of a phylogeny (Gu 1999; Gu

2001; Gu 2001), more accurately describes the sequence

variability indicative of evolutionary selection for

function (Gaucher, Miyamoto et al. 2001). It remains

unclear which method is most suitable for specific gene

families (Gu 1999). Introduction of nucleotide sequence

input data for contact prediction, introduces a new set of

evolutionary pressures potentially unrelated to protein

sequence, structure and function. Thermophilic requirements

for DNA stability which result in a guanine and cytosine
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nucleotide bias, and the unknown reasons for adenine and

thymine nucleotide richness of the malaria genome (Weber

1987) also effect protein sequence evolution. More

difficulties reside in the nonuniversality of the genetic

code and codon frequencies, which influence amino acid

composition (Foster and Hickey 1999). However, the

synonymous to nonsynonymous substitution ratio is an

interesting measure, since over a family of protein

sequences, the biases of the genetic code succumb to the

statistics of large numbers.

A function extracting information from the connected

layers of information present in DNA and protein sequence

data could provide information about random drift

positions. One approach is to take the sum of the number of

unique codons for every amino acid at an alignment

position, and to divide it by the number of invariant

subclades at that position. This measure can be applied at

different evolutionary distances within the phylogeny,

based on partitions of the subclades (see Chapter III).

Further development was necessary to fully integrate

nucleotide related segments of the prediction algorithm.

A number of additional modifications to the final

algorithm are possible and potentially useful. Contact

types should be discriminated at the atomic level and more
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closely related to the chemistry of protein structure and

function. The amino acids arranged in a similarity tree

(Smith and Smith 1992), are enticing for constructing

reduced alphabets and interpret in g evolutionary

correlations through a physical-chemical perspective.

Another idea is to overlay phylogenetic trees representing

different properties: a variety of substitution matrices,

reduced amino acid alphabets, predicted secondary

structure, ratio of synonymous to nonsynonymous nucleotide

substitutions. These approaches could in crease the

information content of pairwise evolutionary correlations.

In general, combinations of orthogonal data lead to

multiplication of associated errors, compared to the

addition of errors when combining dependent information. In

this case algebra minimizes the effects of errors, and

theoretically high reliability can be achieve from data

with weak signals.

In a novel survey of sequence to residue contact

correlations, Selbig and Argos argue that introduction of

explicit noncontact information could improve the accuracy

of contact prediction (Selbig and Argos 1998). The authors

Constructed a model of correlations using a number of

Contact environments. Based on pairs of sequence triplets

they showed efficient discrimination of contacts and
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noncontacts. However, the authors concede that the decision

tree approach to clustering contact types was method and

family dependent. Although evolutionary correlations

contain a false positive signal, the data contains

significant residue contact information. Combinations of

this data with a pairwise potential, a strong discriminator

of contacts and noncontacts, and especially conditional

limitations on the number and density of contacts, results

in a reasonable incorporation of noncontact information

into this contact prediction method.

A significant number of accurate predictions were made

based on the raw evolutionary correlations and were

improved with a number of procedures, namely applying

criteria of interaction energy and predicting supra

secondary structure interactions. This suggests adequate

detail in the residue-residue contact model in this method.

Using distances between CO. atoms of the protein backbone

introduces the problem of localizing the interaction in

space. In this regard, the C5 atom distances or even better

cent roids of side chains represent a more detailed

interpretation of protein sidechain-side chain interactions.

However, the contact model should also include the chemical

interaction units of the protein termini and the protein

backbone. These changes to the contact model can be
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profound for the calculation of the amino acid pair

potential.

The pairwise interaction potential could also be

improved. The definition of contacts has a large influence

on the calculated energies of residue contacts. However, a

number of additional conditions could be differentiated in

the potential calculation. The occupancy of the residues in

the interaction pair would encode the packing and potential
contact network information. The chain orientation of the

interaction pair could also represent important differences

in pair interaction frequencies, related to chirality and

global architecture. Finally, the chirality of the backbone

may play an important role in defining optimal contact

types. Protein structure chirality can be independently

defined by calculating the per residue chirality relative

to the most N terminal residue. Statistical potentials have

been criticized (Thomas and Dill 1996) as to their

information content, and because they do not explicitly

include the multiple dependencies characteristic of protein

Stru C tu re. In spite of these drawbacks, pairwise

statistical potentials are popular entrees in the cookbook

of computation biology procedures. The proposed changes to

the calculation of the potential mean force (as first

proposed by M. Sippl), address issues of information

75



content and suggest incorporation of parameters describing

the coordination and multiple contact dependency of

residues in protein structures.

Among input data requirements of the prediction method

are sequence alignments maximizing global and local

sequence homology. This maximization relies on the

meaningful placement of insertions and deletions in

sequence alignments. In survey experiments or algorithm

development, the ideal sequence data corresponds to

structural alignments. Unfortunately at the time of this

work there were few protein families diversely represented

by structural data. Since the resulting correlation data is

related to the number of sequences in a nonlinear fashion,

large protein families are preferable. This is to assure

that the phylogenetic dendogram representing the given

protein family corresponds to a minimal evolutionary

diversity, usually a span of 30% in sequence identity (e. g.

70% identical residues in the hypothetical ancestor to 100%

in individual sequences). A combined measure of structure

mutability and sequence diversity is the frequency of

conserved residues (or conserved contacts). Such measures

would help characterize differences among protein families

and the resulting correspondence of prediction heuristics.

To ensure consistency between the phylogeny and multiple
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sequence data, families of sequences with homology to

multiple closest homologs in different regions of the

sequence had to be excluded from the analysis.

Unfortunately, the standard phylogenetic methods cannot

represent such relationships meaningfully for structure

prediction. In the test case of a known structure the

contacts for a given residue were mapped to the MSA data to

assess and analyze the prediction (see Methods). Future

implementations were to iteratively apply structural data

to improve the identification of correlated positions.

The number of contacts in a protein increases linearly

with the sequence length, but the number of noncontacts

in creases as the square of the sequence length

(Vendrus colo, Kussell et al. 1997). This result was

independent Of the residue C Onta Ct definition.

Statistically this implies that contact prediction will be

increasingly difficult for larger proteins since the random

chance of predicting a noncontact increases faster than the

random chance of predicting a contact. In addition,

Fariselli et al (Fariselli, Olmea et al. 2001) report that

81% of contacts occur in the sequence separation interval

of 7 to 100 residues, and at larger sequence separations

the contacts became more scattered and less clustered.

These recently discovered protein contact heuristics
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provide crucial information for structure prediction

methods. Novel protein structure heuristics are required to

ascertain the minimum and maximum expected number of inter

secondary structure contacts.

The number of parameters necessary to describe amino

acids and their interactions in proteins is quite large. A

common approach is the parametrization of CO. distances with

a six term functions (Reese, Lund et al. 1996). Complex

parameterizations, including neural networks, appear as a

fundamental problem in protein structure prediction. The

task of extracting heuristics for prediction improvement is

further complicated by limited experimental data on the

nuances of sequence to structure relationships.

Protein structure prediction based on sequence data is

highly sensitive to errors and ambiguities in alignments.

Sequence databases contain multiple types of errors and

anomalies, and this is especially true of the sequence

termini (Lamperti, Kittelberger et al. 1992). Prediction of

residue-residue contacts in the N and C-termini of the

protein are therefore especially unreliable. This effect

has serious implications for short sequences and proteins

with prominent secondary structure in the terminal regions.

The plasticity of protein structure has been

documented in a number of settings. Notably, a shift in
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residue register either within a secondary structure

element or the register of interaction between secondary

structures (Vetter, Baase et al. 1996), represents a

significant mode of structural plasticity. It has to be

recognized, that shifts in register often correspond to

sequence insertion and deletion events. Such events are

common within a protein family, especially in loops and

regions not directly constrained by functional or

structural requirements (Chapter II). Shift of register

directly contributes to errors in contact prediction, since

even a correct sequence alignment corresponds to an error

in register. A related phenomenon is that gapped alignments

can result in the scattering of predicted contacts in areas

of an expected contact cluster. This problem is often

related to difficulties in constructing a correct sequence

alignment. A useful measure to assess the long range

predicted contact information relies on contact specificity

– a ratio of predicted or implied contacts relative to the

actual protein structure (Marchler-Bauer and Bryant 1997).

Such measures could enable scrutiny of errors in predicted

contacts resulting from sequence alignment and structural

irregularities.

An error function for protein structure prediction is

an intensely complex matter. In fact, this problem is one
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of the major reasons why four years later there are still

no major advances in the protein structure prediction

field, aside from combinatorial knowledge-based methods

(Simons, Kooperberg et al. 1997). Ultimately an error

function for structure prediction based on evolutionary

correlations would include the probability of alignment

errors (structural nonequivalence of positions), errors in

the phylogeny from variable sequence substitution rates,

and the associated errors for each additional technique

used as a prediction layer or filter. Gaucher et al

reported use of variable substitution rate methodologies to

analyze structure and function in an example protein family

(Gaucher, Miyamoto et al. 2001). One solution to the

problem of assessing sequence uniqueness and variability

distribution a cross the phylogeny is to define a

phylogenetic information entropy. Such a function would

encode distances between nodes in the tree, both in the

distance from a hypothetical ancestor and the number of

sequences in between a pair of sequences, as well as a

ratio of the number of sequences to the number of branch

points in the phylogeny. This description of the

phylogenetic information content can be related to percent

sequence identity or other sequence distance measures.
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Identification of correlated residues provided

combinatorial sets of possible contacts. Specific predicted

interactions could be verified by threading, thus making

use of independent prediction methods. Experimental

verification in the form of site directed mutagenesis is

another route to independently confirm predicted

interactions or structures. An experimentally determined

atomic structure is the best standard for assessing protein

structure prediction, for example using a self-threading

test (Orengo, Bray et al. 1999). A number of structure

prediction methods attempt solutions to specific instances

of protein structure or sequence to structure correlations.

The prediction of disulfide bond connectivity (Fariselli

and Casadio 2001) and prediction of residue coordination

number (Fariselli and Casadio 2000; Fariselli and Casadio

2001) are examples of methods suitable for integration with

this structure prediction method. New approaches to low

resolution structure determination provide orthogonal

distance constraint information. Young et al (Young, Tang

et al. 2000) report efficient fold identification utilizing

in tramolecular cross linking and mass spectrometry.

Combination of distance constraints from independent

approaches could enhance the specificity and resolution of

predicted structures.
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Automated verification of the approach could consist

of solving structures based on predicted distance

constraints using distance geometry. The DGEOM software

(Blaney, Crippen et al. 1984–1994) is a standard tool in

NMR structure determination (Liu, Zhao et al. 1992). The

existence of such methods ensures that with the required

number of distance constraints, the true structure can be

determined. Ensembles of structures produced by DGEOM can

be analyzed to elucidate over and determined regions,

adding to the iterative process.

The persistent problem in computational protein

structure prediction is the inability to assess quality of

ab initio predictions in absence of experimentally

determined structures. Moreover, any computational efforts

in this a C e a a re dotted with assumptions and

approximations. Gobel et al (Gobel, Sander et al. 1994)

as sess prediction accuracy by randomizing prote in

sequences, and hence their contact maps. By randomizing the

distinct features of protein contact maps attributable to

secondary structure elements and their interactions,

literal randomization produces contacts that are not

indicative of realistic protein tertiary structure (Figure

11). Thomas et al. (Thomas, Casari et al. 1996) use weights

based on the structure being predicted as well as various
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“estimates of unconditional probabilities” to normalize the

predicted contact data. Selbig and Argos (Selbig and Argos

1998) analyzed sequence to structure correlations using

definitions of types of contact environments and a three

residue window, applying these results to contact

prediction. The variation of models and methods

implementing sequence to structure correlations for contact

prediction, and the complexities of structure prediction

and sequence and phylogenetic data analysis, make

comparison of predictions and methods a daunting task. A

corollary of the variation in data representation and

prediction algorithms is that it is nontrivial to translate

any result in g he uristics t O other models and

implementations.

In addition to numerical evaluation of prediction

contacts, a visual measure based on the graphics of the

Venn diagram (John Venn, British logician, 1834-1923) would

be helpful. The overlaps between different sets of residues

represent the common set of residues, aiding in

discrimination of methods or parameters that lead to

Orthogonal predictive information (Figure 12).
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Figure 11

Example of sequence randomization used in some contact

prediction methods. The upper diagonal corresponds to the

real contact map of profilin, while the lower diagonal

represents the randomized contacts. The sequence of the

reference protein structure, profilin (PDB code: 2ACG) was

randomized using a random number generator for 1000

iterations. Unfortunately, the numerical solution to

graphically represent overlaps of multiple geometrical

objects is nontrivial and was not automated.
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Figure 12

Example of a Venn diagram interpretation of contact

prediction results. Colored circles correspond to different

components of the prediction method. The shaded areas

correspond to intersections of contacts predicted with

these components. This representation is helpful in

assessing the orthogonal contributions of data and methods

to structure prediction.
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The phylogenetic contact prediction approach

represents a biologically meaningful normalization of the

sequence correlation data, using the structure of subclades

instead of numerical procedures. A number of methods resort

to known distributions of contacts and noncontacts (Olmea

and Valencia 1997; Pollock and Taylor 1997; Pollock, Taylor

et al. 1999), however in this case strong limitations

derived from the contact and correlation models as well as

sufficient sampling of the known distributions, present

problems for statistical discrimination in contact

prediction. Neural networks method reported by Fariselli et

al (Fariselli, Olmea et al. 2001), in addition to the

compounded issue of parametrization, do not provide

transparency for iterative analysis of the input data and

results. Iterative improvement appears crucial in

developing and tuning complex algorithmic procedures.

Iteration proves to be more than a heuristic and parameter

‘debugging' utility. Analysis of structure predictions in

light of real protein structures enlightens the underlying

patterns in sequence to structure correlations and allows

formulation of novel structure prediction heuristics.
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Conclusions

Biological mutability is fundamentally related to the

evolution of structure and function. The genetic code and

cellular mechanisms of replication, transcription and

translation are optimized under evolutionary constraints to

ensure stability of function, and hence structure. These

constraints limit divergence within a phylogeny, while

effects of the biological optimization are evident in the

patterns of sequence changes within a family. The initial

surveys in this work demonstrated that evolutionary

correlations contain a significant signal relating to

residue-residue contact information. Inseparable from this

correlated contact signal was a false-positive background

of complex evolutionary events, including neutral sequence

drift. Protein contact prediction attempts the balance of

realistic protein structure, which is intrinsically

complex, with equally complex input data that benefits from

large numbers of parameters and sample sizes due to

background noise. One of the most serious difficulties in

these prediction attempts are limitations on assessing the

prediction a C C u ra C y, especially in absence Of

experimentally determined protein structure.
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Complexity of alignments and significant variability

between families with respect to phylogenetic structures

were considerable limitations in surveying protein families

for correlated contacts. These limitations reappeared in

the structure prediction algorithm and prediction

improvements approaches. Just four years later, the amount

of sequence, function and structure data has increased

dramatically. In addition, there have been significant

improvements in bioinformatics methods, notably database

sequence searches, fold recognition and structure

comparisons. Arguably even greater improvements have

occurred in the realms of protein characterization and

structure determination. Importantly, many of these

advances are being coupled to the post-genomic environment

in modern biology. Currently all sequences with structure

homologs have been modeled and annotated (Pieper, Eswar et

al. 2002), a detailed database of protein and gene

evolutionary families has been developed (Liberles,

Schreiber et al. 2001) and the first threading of an entire

genome is reported (JMC unpublished - Dros op hil a

melanogaster). Last but not least, structural genomics

initiatives based on novel fold approaches are increasing

the pace of structure deposition (Stevens, Yokoyama et al.

2001). Although the protein folding protein remains
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unsolved and protein structure prediction unsatisfactory, a

number of different avenues are leading to protein

structure or structure-related information.

Sequence to structure relationships are still tedious

to dissect, involving directed sequence evolution

(Raillard, Krebber et al. 2001; Sieber, Martinez et al.

2001), phage display techniques (Lowman, Bass et al. 1991)

or site directed mutagenesis. Understanding of sequence to

structure correlations and their implications for protein

function transcends specific protein structures and

functions. The significance of quality experimental data

for computational efforts in developing protein structure

heuristics from sequence to structure correlations cannot

be overstated. The evolutionary correlation based contact

prediction method achieves on average comparable accuracy

to related methods and novel features in predicted protein

contact maps. The input data preparation and prediction

algorithm development and improvement represent a novel

approach in the area of protein structure prediction. The

resulting computational application should shed light on

protein structure prediction and evolutionary correlation

“a
...t. -->

…” " * -
-

... ** - e."

heuristics.

---
--

-
º *-*.

4: … -** ***.
* is re---
r!" ****
** ****
*** ****

*ist nº"

º
****
* __
*
***
*** it assº
sistise tº "

arts tº

91



Methods

MSA, Phylogenetic and Structural Data

For survey and test cases of contact prediction,

sequences of known protein structure were used as queries

for the PSIBLAST algorithm (Altschul, Madden et al. 1997)

against the Gen Pept database from the National Center for

Biotechnology Information. A minimum of sequence

in formation relating to evolutionary diversity was

required, and families with less than 15 sequences were

rejected. Sequences were aligned and phylogenetic trees

created with CLUSTALW (Thompson, Higgins et al. 1994)

and/or combinations of software from the GCG package

(Devereux, Haeberli et al. 1984) including PILEUP and

PAUPSEARCH (Rogers and Swofford 1999).

Definition of Protein Amino Acid Contacts

Based on known protein crystal structures, distances

between the CÉ atoms of amino acid side chains, or the Co.

atom of glycine, were used to compute inter-residue

distances. Residue contacts were determined by a fixed 8 A
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distance cutoff, with the additional criteria of no other

atoms in between the two contacting residues. An additional

criterion of no atoms in between the contacting residue

pair improves the accuracy of the residue-residue contact

model (W. R. Taylor, personal communication). The resulting

binary contact information was encoded in an n by n matrix,

n being the sequence length of the protein structure or

MSA.

Definition of Evolutionary Correlation

Based on the ideas of the ET method (Lichtarge, Bourne

et al. 1996), we used a definition of sequence invariance

within subclades of a phylogeny (Figure 2 and 3) .

Evolutionary correlations were calculated directly from the

phylogenetic and multiple sequence data. The evolutionary

correlation score was represented by the sum of invariance

differences (see Figure 3 and Chapter III), incremented for

every case of pairwise subclade invariance of pairs of

positions.
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Calculation of Evolutionary Sequence Correlations

The initial data for prediction of protein contact

maps was generated based on the underlying sequence

alignment of sequences in the evolutionary family.

Conserved positions and positions with greater than 30 %

gaps within the family, were excluded in the final

algorithm. The concept of evolutionary correlation was

defined as the invariance of pairs of positions in

different subclades, and of different amino acids. See

Chapter III for a detailed discussion of subclade

invariance in phylogenetic data. This pairwise correlation

definition was applied to the MSA data across all possible

pairwise combinations of subclades in the phylogeny. The

overall evolutionary correlation score for a pair of

positions x and y ECS (x, y) was calculated as the following

SUl■ tl .
-

ECS (x,y) = 2 A43

where Aij = 1 if positions x and y

are invariant in subclades i,j

and

Aij = 0 if positions x and y

are not invariant in subclades i,j
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where i and j are subclades of the phylogeny. The sum was

taken over all the subclade pairs within the protein

family, limited and normalized using intervals of sequence

distances. This procedure resulted in evolutionary scores

for pairs of positions in the multiple alignment (Figure

3). Subsequently, additional parameters were incorporated

into the evolutionary correlation scoring function, notably

the difference of the percent sequence identities of the

pair of subclades. This modification was used to favor

divergent correlations (see Figure 2). Correlations derived

from divergent subclades contained fewer false positive

Contact correlations, improving the signal to noise ratio.

Positions identified with invariance comparisons were then

used as input for contact map prediction.

Sorting Correlations

In order to more closely reflect the nature of protein

structure and protein contact maps, contact predictions

were limited to a specific number of top correlations. The

number used in the final algorithm was equal to the

sequence length of the protein in question. A number of

other limits for the number of predicted contacts were

tested, however no useful trends were identified aside from
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the observation that overall predicting fewer contacts

resulted in greater information content improvements. A

similar sorting procedure was reported by Olmea & Valencia

1997 (Olmea and Valencia 1997).

Measurement of Absolute and Conditional Amino Acid Contact

Frequencies

The contact map was divided into two bands parallel to

the diagonal of the contact matrix. The bands correspond to

intervals of sequence separation: from 4 to the minimum of

25 or 1/5* the length of the protein for local contacts,

and from the minimum of 25 or 1/5** the length of the

protein on for non-local contacts (see Figure 8).

A nonredundant subset of the PDB (Harrison 1996),

consisting of 431 structures, was used to derive local per

residue contact frequencies in protein structures. The

unconditional local and prior non-local contact occupancies

were also calculated using the nonredundant data set. The

conditional non-local contact probability was calculated by

using the formula of Bayes theorem for the probability of

P (Ai |B) :
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P (B | Ai) • P (Ai)

X P (B | Ai) : P (Aa)

Where P (Ai |B) is the probability of event Ai given event B.

The local contact occupancy was as signed as the

unconditional distribution P(Ai). The prior distribution

P (B | Ai) was approximated by contact distribution end

effects, considering conditional probabilities of contact

for iºn given unconditional contacts and noncontacts of i.

The known structures were analyzed for specific instances

of residues with x local contacts and y non-local contacts.

This data was recorded in a 15 by 15 matrix and normalized

across all measurements (see Figure 8).

Derivation of a Pairwise, Sequence Separation Based Amino

Acid Interaction Potential

A pairwise amino acid interaction potential was

derived from a nonredundant set of 431 structures (Harrison

1996). The potential calculation was as described

previously (Sippl 1990). The following modifications were

implemented: the considered interval of sequence separation

was 4 to 42 residues, with the last interval encoding all
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contacts with a sequence separation greater than 41.

Residue-residue distances were distinguished from 2 A to 9

A in 1 A intervals, and the definition of protein residue

contacts used was as above. Importantly, the protein

structure data set used was considerably larger than that

of Sippl (Sippl 1990). The statistical mechanical equation

for free energy was used to convert frequencies of pair

residue and contact occurrences at specific sequence

separations s was the following:

Gs = kT ln ( fes / fa )

Where fe corresponds to the occurrence frequency and fee to

the contact frequency of an amino acid pair respectively.

A figure of the frequency of contacts across the

analyzed interval of sequence separation is shown (Figure

13). An example of the 20 by 20 interaction potential

matrix for sequence separation of 20 is also shown (Figure

14).
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Figure 13

Results for sequence separation calculations for all

contacts found in a nonredundant subset of the PDB. Pairs

of residue-residue contacts with sequence separation of 4

to 40 were considered.
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Figure 14

Example of an amino acid pair substitution matrix in a

sequence separation interval and the approximation of

potential energy of amino acid interactions. Frequencies of

amino acid pairs were calculated for intervals of residue

residue distances and converted to potential energy (see

Methods). The matrix corresponds to a pairwise interaction

potential, calculated by normalizing the number of amino

acid contacts of a given type, and by the sequence

occurrence of the pair at a sequence separation (see

Methods). The potential is colored using a blue to red to

white color scale, where blue represents favorable and

white unfavorable interactions. Example of symmetries and

asymmetries in the interaction energies are shown. The

potential was calculated by assuming a direction of the

chain, hence the upper and lower diagonals of the matrix

are not symmetric.
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Prediction of Protein Secondary Structure

Secondary structure was predicted using the multiple

sequence data used for contact prediction with the method

of Chandonia & Karplus 1999 (Chandonia and Karplus 1999),

using default parameters.

Measurement of Protein Secondary Element Interaction

Frequencies

To obtain information on the patterns of tertiary

contacts between secondary structure elements, Bayesian

statistics were used to calculate conditional contact

probabilities for residues in secondary structure elements.

Alpha helix-alpha helix, alpha helix-beta strand and beta

strand-beta strand secondary structure interactions were

distinguished. A survey of the occurrence of each secondary

structure interaction type is given in Figure 15. The

survey was based on a nonredundant subset of the PDB with

431 structures (Harrison 1996). Additional parameters were

the number of secondary structure elements between the two

elements (ranging from 1 to 14), and the orientation of the

element interaction (classified a S parallel O r

antiparallel). The orientation of the interaction was
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Figure 15

A survey of secondary structure element interaction types

in protein structures. A nonredundant subset of the PDB

database was used to calculate frequencies of specific

interactions (see Methods). Antiparallel beta-sheets are

the most abundant, while parallel beta-sheet interactions

are second in occurrence. Most inter-secondary structure

element contacts occur between elements separated by one to

four secondary structures.
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determined by calculating the dot product of the two

vectors defined by the C5 (Co. if glycine) atoms of the first

and last residues of the each secondary structure element.

A product of greater than zero corresponded to a parallel

orientation, and a product of less than zero corresponded

to an antiparallel orientation.

Only secondary elements in contact, i. e. with at least

one pair of residues satisfying the residue-residue contact

definition, were used in the derivation (Figure 15).

Contact probabilities were encoded in 21 by 21 matrices,

were the center of the matrix (10, 10), corresponded to the

center of interaction of the two secondary structure

elements. This matrix was used as a representation of the

contact occupancy space for a pair of secondary structure

elements (Figure 16). The element pair center was

identified by considering the middle residue of each

element and assigning the middle residues to the center of

the contact probability matrix. All contacts between the

two elements were then recorded in the matrix using the

element pair center as a reference to align the contact

spaces of the two secondary structures (Figure 16). An

example of the resulting secondary structure contact

probability matrix for alpha-alpha, beta-beta and alpha

beta is shown (Figure 17).
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Figure 16

Diagram of the procedure used to calculate and apply

secondary structure interaction probabilities. Predicted or

actual protein secondary structure was used to assign an

interaction space between two elements (see Methods). The

space is represented as a square matrix. The center of the

matrix (red square) corresponds to the pair of middle

residues of the two elements (see Methods). This center was

used as a reference point to evaluate or predict residue

contacts between the two elements.
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Figure 17

Examples of matrices representing the calculated

unconditional secondary structure contact probabilities

(see Methods). The label for each matrix describes the

contact types distinguished in the calculation. These are

the number of secondary structure elements between the two

elements in consideration, the relative orientation of the

interaction and the types of secondary structures involved.

For example, the label “1 : parallel alpha-alpha”

corresponds to a parallels interactions between a pair of

alpha helices separated by one other secondary structure
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Bayesian Statistics of Protein Secondary Element

Interaction Frequencies

The element pair center contact frequencies described

above, were used as the unconditional distribution, P (Ai),

for calculation of Bayesian statistics of the secondary

structure interactions. To approximate the prior

distribution P (B | Ai), end effects in distributions of

contacts between secondary structure were calculated by

considering the i8n and j <n contacts for both i, j contacts

and noncontacts. The calculation was based on a

non redundant subset of the PDB with 431 structures

(Harrison 1996). Conditional probabilities were calculated

based on specific conditions of secondary interactions,

e.g. given an antiparallel interaction between an alpha

helix and a beta strand separated by 4 other secondary

structures (Figure 18).

The Bayes theorem formula was used to calculate the

conditional probability. The conditional probability of

event Ai given event B, P (Ai | B), is given by:

P (B | Ai) • P (Ai)
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Figure 18

Examples of matrices represent in g the calculated

conditional secondary structure interaction probabilities

(see Methods). The designation for each matrix describes

the contact types distinguished in the calculation. These

are the number of secondary structure elements between the

pair of elements under consideration, the relative

orientation of the interaction and the types of secondary

structures involved. The first line of the designation

describes the condition of the interaction, while the

second the conditional interaction. For example, the

designation:

1 : parallel : alpha-alpha

5: antiparallel: alpha-beta

corresponds to an interaction condition of a parallel

interaction between a pair of helices separated by one

other secondary structure element, for the conditional

antiparallel interaction of an alpha helix with a beta

strand separated by 5 other secondary structure elements.
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Ai represents a specific secondary structure interaction

condition, and B represents the probability of a secondary

structure interaction conditional on Ai.

Iterative Algorithm for Contact Map Prediction

Figure 19 depicts the flow diagram of the iterative

algorithm used to predict protein tertiary structure amino

acid contacts.

The discrete steps and multiple iterations of the

algorithm were programmed in JAVA. The resulting

application included methods used to process and manipulate

the input data, relying on many of the same objects and

methods as the algorithm itself. To drive the iterations, a

number of structural conditions were analyzed at each step

of the contact map prediction. These measures included,

contact coordination, neighborhood contact occupancy, the

predicted number of contacts in intervals of sequence

separation and conditional measures of local, non-local and

inter-secondary element contacts. The average of the

absolute difference between the database derived local

contact frequencies and the predicted local contact

frequencies was used to determine the local density of

predicted contacts.
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Figure 19

A flow diagram of the prediction procedure implemented in

the algorithm. After initial data collection and

manipulation, the evolutionary correlations were calculated

from the input data. A number of filters were applied to

the raw evolutionary correlations. Contact prediction

proceeded iteratively by application of secondary structure

interaction probabilities and acceptance or rejection of a

contact prediction based on contact occupancy constraints

and conditional probabilities.
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Seed protein structure selection

|
Protein and nucleotide sequence collection

|
Multiple sequence alignments, phylogeny reconstruction

and secondary structure prediction

|
Calculation of evolutionary correlations

|
Filters: gaps, sequence variability and entropy, nonsynonymous codon changes

Top X Correlations
Pairwise Interaction

Potential

Occupancy and Contact
Density Constraints

Cycles of Iteration
Inter-Secondary Structure Contacts
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no Convergence
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Outcomes of these analyses were used to formulate rules for

accepting or rejecting predicted interactions or to

finalize the contact map prediction. The method was fully

automated, and the final predictions encompassed 26 protein

families with representative crystal structures.

Contact Prediction Assessment

Three measures of prediction success were used to

assess the contact predictions. All measures required

presence of a known crystal structure.

A simple signal to noise measure was implemented to

as say the information content per protein structure

prediction. This measure corresponded to the ratio of

correct predicted contacts to all predicted contacts, a

more standard concepts of prediction accuracy.

The Matthews correlation coefficient (Matthews 1975),

defined by:

C1*C2 +C3*C4

( (C2 + C3) * ( C2 + CA) ( CI+ C3) ( CI+ C4)) *

Where C1 are correct predicted contacts, C2 are correct

predicted noncontacts, C3 are underpredicted true contacts,
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C 4 are overpredicted true noncontacts. C3 and C4 are

especially useful since they capture both underpredicted as

well as overpredicted information.

The final measure of prediction accuracy used was the

improvement over a random prediction, defined by:

Predicted correct contacts

Total predicted contacts

Real contacts

All Possible contacts

The numerator of this measure corresponds to the simple

signal to noise measure. The original use of an actual

structure in predicted contact normalization was reported

by Thomas et al 1996 (Thomas, Casari et al. 1996), who

applied the denominator to normalize all contacts and

noncontacts for length dependent contact map density. This

signal to noise measure, where the real protein structure

is chosen as a random model, allows the comparison of the

signal to noise ratios in the predicted and actual contact

data. A similar procedure was later adopted by Fariselli et

*-i- --

al (Fariselli, Olmea et al. 2001).
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JAVA application

A JAVA algorithm for input data manipulation and

contact prediction accompanied by a graphical interface was

constructed. WTREETO takes as input a protein phylogeny,

MSA and protein structural data. Among its functions are

searching for invariant positions and methods for analyzing

phylogenetic correlations. WTREETO implements the methods

described in the above Methods sections, including the

iterative procedure of protein contact map prediction.

WTREETO derives properties of phylogenies in relation

to the sequence and structure of family members. Moreover

it allows translation of results among these three

biological dimensions. Alignment errors, often made clear

when analyzing sequence and structure, can be immediately

remedied by alignment editing features.
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Chapter II

The impact of whole genome sequence data on drug

discovery - a malaria case study.
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Abstract

Background

Identification and validation of a drug discovery

target is a prominent step in drug development. In the

post-genomic era it is possible to reevaluate the

association of a gene with a specific biological function

to see if a homologous gene can subsume this role. This

concept has special relevance to drug discovery in human

infectious diseases, like malaria. A trophozoite cysteine

protease (falcipain-1) from the papain family, thought to

be responsible for the degradation of erythrocyte

hemoglobin, has been considered a promising target for drug

discovery efforts owing to the antimalarial activity of

peptide based covalent cysteine protease inhibitors. This

led to the development of non-peptidic non-covalent

inhibitors of falcipain-1 and their characterization as

antimalarials. It is now clear from sequencing efforts that

the malaria genome contains more than one cysteine protease

and that falcipain-1 is not the most important contributor

to hemoglobin de gradation. Rather, falcipalin-2 and
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falcipain-3 appear to account for the majority of cysteine

hemoglobinase activity in the plasmodium trophozoite.

Materials and Methods

We have modeled the falcipain-2 cysteine protease from

one of the major human malaria species, Pl a sm o di um

falciparum and compared it to our original work on

falcipain-1. As with falcipain-1, computational screening

of the falcipain-2 active site was conducted using DOCK.

Using structural superpositions within the protease family

and evolutionary analysis of substrate specificity sites,

we focused on the commonalities and the protein specific

features to direct our drug discovery effort.

Results

Since 1993, the size of the Available Chemicals

Directory had increased from 55.313 to 1954 19 unique

chemical structures. For falcipain-2, eight inhibitors were

identified with IC50’s against the enzyme between 1 and 7

|IM. Application of three of these inhibitors to infected
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erythrocytes cured malaria in culture, but parasite death

did not correlate with food vacuole abnormalities

associated with the activity of mechanistic inhibitors of

cysteine proteases like the epoxide E64.

Conclusions

Using plasmodial falcipain proteases, we show how a

protein family perspective can influence target discovery

and inhibitor design. We suspect that parallel drug

discovery programs where a family of targets is considered,

rather than serial programs built on a single therapeutic

focus, will become the dominant industrial paradigm.

Economies of scale in assay development and in compound

Synthesis are expected owing to the functional and

Structural features of individual family members. One of

the remaining challenges in post-genomic drug discovery is

that inhibitors of one target are likely to show some

activity against other family members. This lack of

Specificity may lead to difficulties in functional

assignments and target validation as well as a complex side

effect profile.

124



N.

**



Introduction

Cysteine proteases play a number of degradative and

regulatory roles in a wide range of organisms. One measure

of the success of this enzymatic motif is the degree of

cysteine protease speciation. For example, the malaria

genome is predicted to contain at least 5 cysteine

proteases. This protein family is defined by a unique fold,

which has speciated functionally many times producing

subfamilies with unique substrate specificities. This

proliferation of proteases creates the likelihood that more

than one enzyme could subsume the same function in vivo and

complicates the task of identifying the best targets for

drug discovery. In the pre-genomic era, drug discovery

targets were identified via a reductionist approach where

genes were sought that carried out a physiological role.

Further proof of principle was obtained using chemical

inhibitors of the gene products. If the chemical inhibitor

used had a broad specificity, the conclusions reached could

be subject to question. In the post-genomic era, the

genetic “deck of cards” is known and process of elimination

logic can play a more prominent role in the identification

of targets.
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Given the success of angiotensin-converting enzyme

(ACE) inhibitors in the treatment of hypertension (Mark and

Davis 2000) and HIV protease inhibitors in AIDS (Tebas and

Powderly 2000), proteases have become popular drug

discovery targets. However, several protease targets, such

as the renin as partyl protease for hypertension and matrix

metalloproteases for cancer and arthritis, have not led to

marketable products. These difficulties originated not from

problems in the sequencing, cloning or annotation efforts

but rather because of the redundant and homeostatic nature

of biological systems, including the presence of genes

performing back-up functions. The proteolytic cascade of

the Renin Angiotensin Aldosterone (RAA) system mediates

cleavage of angiotensinogen to angiotensin I by the

as partyl protease renin and subsequent cleavage of

angiotensin I to the effector peptide angiotensin II by

ACE. By the mid 1990’s renin inhibitors were widely known

to have negligible effects on hypertension (Fisher and

Hollenberg 2001), while to date dozens of ACE inhibitors

have been proven to be effective human therapeutics for

hypertension in spite of their side effects profile. Renin,

the upstream enzyme in this pathway has a single unique

substrate. While this molecular specificity would be

expected to yield a better target for drug discovery

sº **
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efforts, compensatory homeostatic mechanisms undermine this

thesis.

Like renin in humans, the plasmodial cysteine

proteases that degrade hemoglobin exist as a family of

homologs in the P. falciparum genome. As hemoglobin is the

major nutritional source for the parasite in the

erythrocytic stage, and proteases have been the target of

successful drug discovery efforts, inhibitors of hemoglobin

degradation have been sought as a new class of

antimalarials. In 1987, Rosenthal et al. identified three

P. falciparum proteases by gel electrophoresis. Two of

these had an active site cysteine (Rosenthal, Kim et al.

1987; Rosenthal and Nelson 1992). A papain-like cysteine

protease thought to be necessary for hemoglobin degradation

in the trophozoite stage of the malaria human life cycle,

and now known as falcipain-1, was cloned and sequenced

(Rosenthal and Nelson 1992). In 1993, a model of falcipain

1 based on its sequence homology to papain and actinidin

was used in a structure-based drug discovery effort to

identify a symmetric acyl-hydrazide inhibitor with

antimalarial properties at a 6 plM concentration (Ring, Sun

et al. 1993). However, optimization of the lead compound

was complicated by difficulties in reconciling the activity

of the lead analogs with the model protease structure. In
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the past year, P. falciparum genomic sequencing efforts led

to the identification of a number of homologs of falcipain

1 and it now seems likely that the falcipalin-2 and

falcipain-3 gene products are the major plasmodial cysteine

hemoglobinases (Shenai, Sijwali et al. 2000).

During the erythrocytic phase of the life cycle,

malaria parasites rely on hemoglobin degradation as the

predominant source of amino acids. Interruption of

hemoglobin degradation with mechanistic inhibitors of

cysteine protease leads to accumulation of undigested

hemoglobin, swelling of the food vacuole and parasite death

(Rosenthal, McKerrow et al. 1988). The precise order of

events in the hemoglobin degradation pathway still remains

to be clarified. In 1994, two as partyl proteases,

plasmepsins I (Francis, Gluzman et al. 1996) and II (Hill,

Tyas et al. 1994), were isolated from the P. falciparum

food vacuole and shown to perform the first cleavage of

hemoglobin. Recently plasmepsin II has been shown to cleave

other erythrocyte proteins (Le Bonniec, Deregnaucourt et

al. 1999). Falcilysin, a plasmodial metallopeptidase, was

reported to act against partially degraded hemoglobin

fragments (Eggles on, Duffin et al. 1999). However, our

understanding of the pathway of hemoglobin hydrolysis

remains limited, as falcipalin-2 and falcipalin-3 also
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readily hydrolyze native hemoglobin, while multiple

plasmodial aspartic protease genes are predicted from the

genome.

The antimalarial properties of peptide fluoromethyl

ketones and vinyl-sulphones as cysteine protease inhibitors

(Rosenthal, Wollish et al. 1991; Rosenthal, Olson et al.

1996) have encouraged their evaluation in animal models of

infection. Unfortunately, activity against murine malaria

required high doses and the toxicity of peptide

fluoromethyl-ketones in experimental animals has stalled

their development (Rosenthal, Olson et al. 1996). These

results amplify our need to understand which proteases are

most essential to hemoglobin degradation. Using modeling,

drug design and inhibitor studies for the falcipain

hemoglobinases, we illustrate how a gene family approach to

drug targets can enhance the understanding of biological

phenotype and its inhibition, and hence expedite the drug

development process.
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RESULTS

Comparative analysis of the falcipain-2 and falcipain-1

model structures

The original drug discovery effort directed at

falcipain-1 led to structure-activity relationships that

could not be reconciled with the protease model structure

(Li, Chen et al. 1994; Li, Chen et al. 1996). Analogs of

the acyl-hydrazide lead compound designed to take advantage

of specific interactions in the protein’s binding sites

were synthesized. Unfortunately, these customized analogs

did not lead to improvements in inhibitor affinity (Li,

Chen et al. 1994; Li, Chen et al. 1996). In retrospect, we

attribute this to the fact that the falcipain used in these

assays was purified from parasite extract that is now known

to be predominantly falcipain-2. Thus, the design was

directed against falcipain-1 but the compounds were tested

against predominantly falcipain-2. Inhibition studies are

now conducted with recombinant falcipain–2.

Falcipain-2 and falcipalin-1 share 37 % sequence

identity in the mature protease domain. The original model

of falcipain-1 was based on papain and actinidin crystal

gº as
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structures (Ring, Sun et al. 1993), and both of the

templates were 33% identical to falcipain-1 in sequence.

The current model of falcipain-2 is based on a crystal

structure of human cathepsin K, which is 35 % identical to

fali pain-2 in sequence over the mature protease domain.

Using standard homology modeling procedures, we constructed

a model of the active form of the falcipain-2 hemoglobinase

(see Methods).

A comparison of the falcipain-1 and falcipain-2 models

was carried out to determine features that could explain

functional differences of these proteases and to direct our

drug design efforts. The majority of the sequence changes,

and all of the three insertion-deletion events, are on the

face of the protein opposite the active site (see Figure

20). Nevertheless, there are a number of changes that

significantly alter the features of the specificity sites,

predominantly on the non-prime side of the peptide binding

cleft that recognizes the side-chains on residues N

terminal to the cleavage site.

Protease specificity is frequently studied in the

context of subsites that flank the catalytic residues and

provide the enzyme with specific preferences for peptide or

protein substrates. Following the nomenclature of Berger

and Schechter (Berger and Schechter 1970), these sites are
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Figure 20

Superposition of falcipalin-1 and falcipalin-2 model

structures. A structural alignment of the falcipain-2 (red)

and falcipain-1 (blue) model structures was performed with

MINAREA (Falicov and Cohen 1996). Structural positions

present in falcipain-2 and absent in falcipain-1 are

colored green. The catalytic dyad is shown in yellow for

reference. The figure was generated with CHIMERA (Huang,

Couch et al. 1996).
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referred to as S4, S3, S2, S1, S1’, S2', S3' (see Figure 21),

and they correspond to substrates with the sequence P4, P3,

P2, P1, P1’, P2', P3', where the P1-P1’ peptide bond is

cleaved. The papain cysteine protease family has well

defined sites from S3 to S1’, with some individual proteases

having more extended specificity. The S2 and S1 sites

contribute the strongest preference to substrate binding in

the case of falcipain-2 (Shenai, Sijwali et al. 2000) and

many other papain family proteases (McGrath 1999).

In all, there are 11 amino acid differences in the S2,

S3 and S4 sites of falcipain-2 relative to falcipain-1 (see

Figure 22). The most variable S2 site has a total of six

differences ranging from conservative to functionally

significant ones (see Figure 22). The combination of

conservative changes retains the overall hydrophobic

character of this site; however, there is a net gain of two

non-hydrogen atoms in side-chains on the part of falcipain

1, decreasing the free volume available for binding in this

site. Two pairs of these sequence differences appear to be

compensating substitutions: S46A and A175S conserve the

serine, while N86F and S149N conserve the asparagine (see

Figure 22). At the other end of the spectrum, the sequence

difference I85P is predicted to have a pronounced effect on

the local backbone geometry. This is evident from a
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Figure 21

The falcipain-2 model specificity sites. The residues that

line the substrate specificity sites are displayed on the

falcipalin-2 model. The natural peptide substrate

orientation prefers the non-prime side for the N-terminus,

and the prime side for the C-terminus. Residues at the

boundaries of a site may contribute to neighboring sites.

The figure was generated with WEBMOL (Walther 1997) and a

sequence to structure alignment and family analysis JAVA"

package (Chapter III).
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Figure 22

Falcipain-1 versus falcipain-2 S2, S3 and S4 specificity

site analysis. To highlight differences that affect the S2,

S3 and S4 specificity sites, the sites were analyzed with

respect to sequence differences between the two plasmodial

proteases (see Methods). Residues that gained hydrogen

bonding functionality relative to the other sequence are

marked with blue dashes, residues that gained charge

functionality are marked by a red ball within a blue ball.

The table of residue changes highlights the sequence that

gained functionality with a boldfaced font. The figure was

generated with WEBMOL (Walther 1997) and a sequence to

structure alignment and family analysis JAVA" package

(Chapter III).
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superposition of the two models. Together, these sequence

differences in the S2 site are predicted to have significant

impact on the binding and kinetics of the substrate

protease interaction.

The S3 site in these proteases is composed of less than

half as many residues as the S2 pocket (four versus nine).

In this context, the three sequence differences in S3 site

change an even greater percentage of the binding site's

surface. It should be noted that in the current specificity

site designation, the S3 and S4 sites share one residue that

differs between falcipain-2 and falcipain-1 (N86F) (see

Figure 22). Overall there is less hydrophilic functionality

lining the site in falcipain-2 (Y78 F and N86F), though

falcipain-1 has an additional basic functionality (L84H)

(see Figure 22). These S3 site sequence differences are

predicted to shrink the substrate binding volume and give

rise to a preference for hydrophobic residues for

falcipain-1. Falcipain-2 is predicted to have an additional

strand at the edge of the beta sheet structure forming part

of the S.4 binding site (see Figure 20). Although this region

is more likely to play a part in extended specificity, it

appears to be the largest global structural difference

between falcipalin-2 and falcipalin-1. This has direct

implications for substrate binding. Four out of six
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residues in the S4 site differ between falcipain-2 and

falcipain-1. Three of these changes result in gain of

hydrophobic functionality in the falcipain-1 S4 site (see

Figure 22). Interestingly, in spite of the sequence

differences in the S4 site, the molecular dimensions of the

S4 pocket differ only by one non-hydrogen atom. It appears

that these two proteases do not share substrate specificity

at the P4 position, although amino acids with similar

volumes may be preferred.

Genome and protein family based drug discovery: falcipain-2

and human homologs in the papain superfamily

A reality of the post-genomic era is access to a

seemingly endless array of genome sequences. It is now

possible to annotate proteins and analyze the homologies

and variations between the pathogen proteins and the human

homologs. For oncologic disease, the pathogenic protein (s)

may be mutated, up regulated or in the case of tumor

supressors, down regulated. While it is possible to imagine

small molecule inhibitors of mutated or up regulated

proteins (e. g. Gleevec for BCR-ABL (Druker, Talpaz et al.

2001)), down regulated systems are less likely to be

amenable to small molecule approaches. In all of these
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cases, the impact of a small molecule inhibitor on the

related protein targets must be considered. In the case of

Gleevec, c-kit and gastrointestinal stromal tumors, an

unexpected benefit is found (Strickland, Letson et al.

2001; Tuve son, Willis et al. 2001). However, it is more

likely that untoward side effects will result. As is common

in the case of infectious disease drug targets, drug

resistance of oncoprotein targets can occur by amino acid

substitution of residues involved in the drug interaction

(Gorre, Mohammed et al. 2001).

Subsite specificity analysis of the falcipain-2 model

suggested a number of favorable features for drug design.

The dominant feature of the falcipain-2 S2 site is a deep

hydrophobic binding pocket. As judged by peptide substrate

binding data, falcipain-2 (Shenai, Sijwali et al. 2000) and

the modeling template cathepsin K (Bossard, Tomaszek et al.

1996) share a marked preference P2 for leucine. The S3 site

is quite small and largely solvent accessible, in keeping

with the trend of the papain superfamily. Even the extended

specificity S4 site of falcipain-2 has a potential binding

pocket. However, the extended non-prime specificity sites

are problematic for drug design because they appear poorly

defined structurally and substrate analog binding data

shows no preferences in this region (Turk, Guncar et al.
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1998). To direct computational small molecule selection

calculations and to further understand structure

specificity relationships, we proceeded to analyze the

commonalities and distinctions between falcipain-2 and the

other plasmodial and human papain-like cysteine proteases.

A multiple sequence alignment based on the available

sequences and structures of human cysteine proteases was

created and used to assign falcipalin-2 residues to

substrate specificity sites (see Methods). More than half

of the residues on the prime side of the specificity sites

are conserved. The few differences have little impact upon

site volume, hydrogen bonding or charge. The S1/S1’

catalytic site including the catalytic dyad, a glycine

residue and a number of backbone atoms, is absolutely

conserved within this family. This leaves fewer than half

of the specificity sites as possible unique structural

sites for differential drug design.

Excluding glycines and main chain atoms, the S2, S3 and

S4 sites are variable across the papain cysteine protease

family. These sites have diverged during evolution to

optimize different functional substrate specificities.

Certain sequences exhibit compensating changes, but for

nearly all the specificity site sequence positions there

exist variations in volume, hydrogen bonding potential and
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even charge. Due to the contribution of these specificity

sites to substrate binding, such patterns of sequence

variation represent the unique functional signature of the

papa in family. Within the functional variations of a

protein family resides an important aspect of protease

differential specificity – how changes in sequence affect

the binding site volume. If we assume that the backbone

positions remain relatively fixed, then mutations to a

smaller residue will result in a larger available volume

for binding and vice versa. Such unique differences can be

exploited with distinct substituents attached to a common

small molecule scaffold. In contrast, conserved signatures

like the S1/S1’ catalytic site are problematic for targeted

drug design because of their ubiquitous presence within the

protein family.

Using the available sequence data we performed a

variation of the Evolutionary Trace method (Lichtarge,

Bourne et al. 1996), with a JAVA* implementation of the ET

analysis (see Chapter III) (see Methods). Combined with a

specificity site annotation by analogy to characterized

homologs, the analysis identified amino acids that were

unique in falcipain-2 relative to the known human homologs

(see Figure 23). A surface-exposed cluster of residues was

identified at the boundaries of the S2, S3 and S4 specificity
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Figure 23

Unique site analysis of falcipain-2 in context of human

homologs. Cathepsins B, C, H, K, L, L2, O, S, Z and stefin

B were the human homologs used in this evolutionary

analysis. In green are residues unique in falcipain-2

relative to the human sequences. Other colors correspond to

the defined specificity sites as represented in Figure 21.

See Methods for definition of the specificity sites and the

unique site analysis. This figure was generated with a

sequence to structure alignment JAVA* application (Chapter

III), CHIMERA (Huang, Couch et al. 1996) and MSMS (Sanner,

Olson et al. 1995).
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sites. The S2 site, the main determinant of substrate

binding, contained the majority of these unique site

positions (three out of six).

The unique site identified in the falcipalin-2

specificity sites is solvent accessible, spans two well

defined binding pockets and exhibits marked sequence

differences relative to human papa in family protease

homologs. Together this evidence suggested that the

identified cluster of residues was a promising candidate

drug target site for an antimalarial with minimized

specificity towards human homologs of the target. The

results of this analysis were directly applied to both the

in silico and visual screening steps (see Methods).

Drug discovery results against falcipain-2 compared to

falcipain-1.

The original falcipain modeling and drug design effort

(Ring, Sun et al. 1993) led to three inhibitors with an IC50

less than 100 pum. The best compound was a naphthyl

hydrazide, which inhibited the plasmodial protease extract

with an IC50 of 6 pum in an in vitro enzyme assay, and had

activity against the parasite in culture at a similar

concentration as judged by inhibition of hypoxanthine
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uptake. Overall 31 compounds were tested in the original

DOCK screen (Ring, Sun et al. 1993), resulting in a 3% hit

rate at the « 10 puM cutoff.

The current modeling and drug design effort has had a

considerably higher hit rate in terms of active compounds

found with the aid of a computational screen. Of the 44

compounds tested, eight had an IC50 below 10 puM in an in

vitro enzyme assay with values ranging from 1 to 7 p.m. (see

Table 3) . Three of the eight best compounds against

falcipain-2 (2, 4 and 7), were also effective in killing

parasites with an IC50 of about 20 puM (see Table 3). For

these compounds there was complete inhibition of parasite

multiplication at 50 puM.

* *

**
*** *

teas

--

***

**
**
**

: -

: :
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Table 3

Inhibition of falcipain-2 and cultured malaria parasites by

compounds identified with a computational screen.

: ?
:

º
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Enzyme IC50 * ** (uN) |Col. Culture IC50 * (uN)
1. (8-chloro-4H -1,5-dithia-cyclopenta■ ajnapthalen-2-yl)-carbamic acid phenyl ester

Cl 1.1 +/- 0.5 94

º
R.

2. 4,5,6,7-tetrafluoro-2-(3-trifluoromethyl-phenylsulfanylmethyl)-benzofuran

º
F. 1.4 +/- 0.6 20

3. 7-(4-bromobenzyloxy)-2,2,5-trimethyl-2H -chromene

2.5 +/- 1.3 no inhibition

4. 1-(5-chloro-2,4-dimethoxyphenyliminomethyl)-2-naphthol

- 3.5 +/- 0.6 25*2 -o
5. 4-(6-oxo-4-propyl-1,6-dihydroprymidin-2-ylsulfanylmethyl)-benzoic acid 2,4-difluoro-phenyl ester

y
4.1 +/- 1.3 ND

6. Napthalen-1-yl-carbamic acid 2-carbamoyl-phenyl ester

•– 4.7 +/- 2.8 103

7. 3,5-dinitro-benzoic acid 3-(3,4,5-trimethoxy-phenyl)-prop-2-ynyl-ester

! 6.4 +/- 1.1 21

■ N.

|8. 4-[3-(2-methoxy-5-phenylcarbamoyl-phenyl)-ureido]-benzoic acid ethyl ester
o,”

6.9 +/- 2.6 ND*g
* Leupeptin, the enzyme assay positive control, had an IC50 of 50 nM.
** See Methods for details.
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Discussion

There are several advantages to pursuing a family of

proteins as drug discovery targets, including: 1) compounds

related to inhibitors of one family member are likely to be

active against other members; 2) the structure of one

member provides substantial insights into the structure and

function of other members; 3) assay development can proceed

in parallel; and 4) experience developed for one target is

frequently relevant to the homologous targets. Confounding

these advantages, inhibit or specificity can be a

significant challenge and the relatedness of the targets

means that the inhibitors, especially those that are

mechanistic in nature, are likely to have several distinct

activities.

In the case of cysteine proteases, not only are there

thousands of cysteine protease sequences in the sequence

databases, but this ubiquitous sequence family also has

tens of well-determined crystal structures complexed with

inhibitors. This is a favorable situation for modeling,

predicting substrate specificity and forming inhibitor

structure-activity relationships.

º

.
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Based on our evolutionary analysis, the S2, S3 and S4

specificity sites of falcipain-2 exhibit unique functional

differences that can be targeted with drug design. In

contrast, conserved signatures traditionally targeted with

mechanistic inhibitors, like the S1/S1’ catalytic site,

logically lead to the selection of compounds with

specificity towards human homologs of the drug target. In

addition, the non-prime sites encompassing the unique

falcipain-2 site should lead to decreased drug side

effects. We predict however, that for instances involving a

target whose interactions are strictly selected for and

where the binding partners (small or macromolecules) also

exhibit chemical conservation, the present analysis will

not guarantee a unique cluster of residues. Nevertheless,

for many protein families, functional speciation can be

observed in the coevolution of binding interfaces and how

side-chain variation at the interfaces occurs in a

correlated manner (Goh, Bogan et al. 2000). All instances

of speciation of function result in differences that can be

exploited to direct drug design efforts.

Comparison of the structural sites targeted with

Computational screening shows important differences between

falcipain-1 and falcipain-2. For falcipain-1 the most

active compound was predicted to bind to the S2/S1/S1’ sites

.
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(see Figure 24). Given that S1 and S1’ are the conserved

signature of the papain family, this inhibitor has the

potential to cross-react with human cysteine proteases. The

set of inhibitors generated by virtually screening the

falcipain-2 model produced eight diverse compounds, all

selected to bind the unique functional signature of the S2

and extended non-prime sites. The common feature of many of

these compounds, including the falcipain-1 inhibitor, is a

pseudo-peptide backbone of length 2-4 atoms adopting a

planar conformation owing to the double bonds and the two

flanking functionalized ring systems. We continue to

believe that the length of the linker and chemical

substituents on the functional groups are what determine

the specificity and uniqueness of the target-inhibitor

interaction (Li, Chen et al. 1994; Li, Chen et al. 1996).

It is difficult to extrapolate the present cell

culture results to the antimalarial action of other known

falcipain inhibitors because earlier cellular assays varied

in method. In addition, the actual concentration of

compound reaching the parasite food vacuole in the cell

culture experiments is likely to be affected by

permeability through the multiple cell membranes involved.

All of the compounds tested in this study had molecular

weights less than 350 Da, and all were soluble in water at

!■

.
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Figure 24

Inhibitor binding modes of falcipalin-1 compared to

falcipain-2. Models show the predicted binding modes of the

best inhibitors for falcipain-1 (orange, left) and

falcipain-2 (blue, right). The falcipain-1 model structure

is shown with the predicted binding mode of its best

symmetric acyl-hydrazide inhibitor from the work of Ring et

al (Ring, Sun et al. 1993). The falcipain-2 model is shown

with the predicted binding modes for the top eight active

compounds. The figure was generated with MSMS (Sanner,

Olson et al. 1995; Sanner, Olson et al. 1996) and the MSV

software (Sanner, Olson et al. 1996).

i.
?
.
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appreciable concentrations. Nevertheless, it cannot be

ruled out that the cell culture IC50 measurements in our

experiments do not reflect the effective concentration of

compound at the target site, presumably the parasite food

vacuole.

There are some factors convoluting the results of both

the in vitro enzyme and the in vivo culture inhibition

as says. An important difference in the drug discovery

effort against falcipain-1 compared to falcipain-2 is the

size of the chemical database used in the computational

screen. The Fine Chemicals Directory used in 1993 contained

55,313 compounds, whereas the version of the Available

Chemical Directory used in the current drug discovery

effort consisted of 1954 19 commercially available

compounds. This 4-fold increase in database size results in

significantly greater chemical diversity available for

computational screening and drug discovery. The percentage

sequence identity to the modeling target, a standard

measure of model accuracy, is predicted to have had a

negligible effect in this case. The percentage sequence

identity between falcipain-1 and papain and actinidin was

33 %, while that of falcipain-2 to cathepsin K was 35 %

(see Methods). Substantially more sequence similarity was

.
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observed in the region around the active site that should

be most important to drug design efforts.

The most powerful convolution in the falcipain-1 drug

discovery effort was the assay of enzyme inhibition

performed using a parasite extract now known to be

primarily composed of falcipain-2. Knowledge about the

expected and associated phenotypes has considerably

increased in the past few years – assessing the in vivo

inhibition phenotype began with a general metabolism assay,

continued with food vacuole swelling as exhibited by broad

spectrum inhibitors, and now with multiple homologous

targets has returned to more general assays of parasite

health and development. Significantly, technological

improvements in modeling, structure analysis and docking,

have become combined with the accumulation of sequences,

crystal structures, and available small molecules. An

important remaining rate limiting step in post-genomic drug

discovery is knowledge about the target. Such knowledge

includes the cellular and disease contexts, other gene

products modulating the targets’ function, as well as the

functional family it belongs to within a specific genome

and beyond.

Presently the function of falcipain-1 remains unknown

and the current analysis may serve as a lead in the search
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for its endogenous targets. The sites responsible for

substrate specificity in falcipain-1 and falcipain-2 are

notably different given the high degree of sequence

similarity. It is postulated that these two cysteine

proteases have different endogenous target sequences and

therefore different in vivo functions.

Our drug discovery effort against falcipain-2 has

resulted in eight compounds with activities < 7 p.m., three of

which kill parasites in a cell culture assay. Presumably,

their potency can be increased through a combined medicinal

and computational chemistry effort directed at the unique

Site of falcipan-2. Most importantly, nearly all

antima larials in current use have pronounced side effects

and/or have encountered plasmodial drug resistance. The

molecules identified in the falcipain-2 drug discovery

effort represent diverse chemical scaffolds and

functionalities relative to the known antimalarial drugs

(see Table 4). It follows, that the structures we have

identified as falcipain-2 inhibitors provide new avenues

for antimalarial drug development with potential for

Illnimized toxicity and drug resistance.
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Table 4

Chemical structures and properties of prescribed

antimalarial drugs.
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Name Resistance [32] [Toxicity [32] Compound

quinine Yes delayed 'glaucoma' :
chloroquine Yes heart

liver º, or
hydroxychloroquine Yes retina `y onmacula
primaquine Yes anemia *~-Q)
amodiaquine like chloroquine Tagranulocytosis

with long term
treatment

mefloquine Yes cardiotoxicitiy
-

vivid dreams
psychosis

-

proguanil Yes ulcers, alopecia O X
DHFR

-

y—X-
atovaquone Yes minor
(with proguanil)

Selective
cytochrome b

pyrimethamine Yes Severe skin disease -

(with sulfadoxine -o-o-or sulfonylbisbenzenamine) DHFR
sulfadoxine Yes Severe Skin disease
(with ~( }+5
pyrimethamine) /

sulfonylbisbenzenamine anemia, allergy, fever C |(with pyrimethamine) O
w

doxycycline sun sensitivity

(with quinine)
&/-

Artemisinin CNS toxicity

halofantrine cardiotoxicitiy
r

:
Tyronardine teratogen ºo
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Conclusions

Based on modeling and drug design we have explored the

effects of the association between a gene product and its

phenotype in the context of a gene family. Discovery of the

new sequences and their experimental confirmation as

targets immediately led to new models of a new target.

Higher expectations for success were set for drug design

efforts, specifically structure-activity correlations and

improved specificity for the parasite enzyme, both in

culture and in animal tests. Based on the current drug

design effort and other examples of protease inhibition, a

primary cause of side effects is accumulation of

undesirable substrates. In molecular terms such side

effects are a signal for the presence of genes potentially

unrelated to the target phenotype (e. g. ACE inhibition

leads to accumulation of bradykinin and substance P

(Emanueli, Grady et al. 1998)). In the case of malaria

infection in humans, the side effects of broad papain

family inhibitors would most likely mean accumulation of

many substrates, the majority of which are host proteins.

Biological phenotypes are fundamentally complex due to

the presence of back-up functionalities, possibly
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distributed across cell types, tissues and time, as well as

clearance and other protective mechanisms. These pitfalls

of drug development illustrate the detailed knowledge

required for pursuing targets even with established

phenotypes. A gene family perspective can lead to unique

structural sites relative to the ‘host’ or "pathogen'

families. Knowledge of gene families can aid in the

identification of the inhibitory spectrum of a molecule and

provide the insight and unanticipated auxiliary functions

of the original target or back-up functions subsumed by

family members.

|
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Materials and Methods

Homology methods and structural modeling

A structural model of falcipain-2 was constructed by

homology to other members of the papain cysteine protease

subfamily. In order to identify a structural template, the

protein structure database (PDB) was searched for

falcipalin-2 homologs using the PS I BLAST algorithm

(Altschul, Madden et al. 1997). The closest homologs were

the catheps in K zymogen (e-value of 3E-43 over 321

residues), the catheps in L zymogen (2 E-41 over 326

residues), the caricain zymogen (4E-41 over 343 residues),

and the ginger rhizome cysteine protease (1E-38 over 220

residues). Typically, the best template for modeling

corresponds to the sequence with the longest significant

alignment and the highest score in the mature protease

region. At a per-residue level, human cathepsin K was found

to be 39 % identical in the mature region of the protease

(35 % identity over all aligned residues).

A model of falcipalin-2 based on the catheps in K

zymogen structure (PDB code: 1BY8, resolution 2.6 Å) was

built using MODELLER (Sanchez and Sali 1997). This software
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derives distance and angle constraints based on conserved

sequence features in the alignment and structural features

of the template. Given a correct alignment, sequences that

share 40 % identity are expected to align within 1 A RMS

over 90 % of their residues, approximately the accuracy

expected in the present model. Falcipalin-2 has an

additional predicted disulfide bond relative to cathepsin

K, and this disulfide bridge was added with the modeling

software SY BYL (TRIPOS corp.). The model structure was

refined at the side-chain level using the backbone

dependent side-chain rotamer library algorithm SCWRL

(Bower, Cohen et al. 1997). For pairs of sequences with

gaps inserted to yield an alignment with identical residues

in 30-40% of the positions and using a template structure

determined using 2 Å resolution x-ray data, SCWRL predicts

the X1 side-chain angles with an accuracy of 65%. All

identical aligned residues were fixed in their template

conformation. Of the eight residues with unlikely

conformations identified by SCWRL, all were distant from

the active site and occurred in regions of insertions

relative to the structural template.
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Annotation of Specificity Subsites and Unique Site Analysis

The substrate specificity sites in the falcipain-2

model structure were identified by analogy to the extensive

family of papain-like cysteine proteases. Following the

nomenclature of Berger and Schechter (Berger and Schechter

1970) and sequence alignments to known papa in family

crystal structures, the falcipain-2 S4 to S2’ substrate

side-chain binding sites on either side of the scissile

amide bond were identified. A more extensive multiple

sequence alignment was built using CLUSTALW (Thompson,

Higgins et al. 1994) and edited to include the alignments

derived by structure alone.

As we seek inhibitors that are unlikely to be active

against human proteases from the papa in family, we

performed a variation of the Evolutionary Trace method

(Lichtarge, Bourne et al. 1996) on falcipain-2 and its

human homologs. The variation consists of restricting the

sequence data to a subset of the full sequences,

corresponding to the aligned specificity sites. The

definition of residue conservation and subfamily comparison

was modified, by considering only amino acids that were

unique in human sequences relative to the falcipain-2
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target. Finally, residue similarity filters (BLOSUM62

(Henikoff and Henikoff 1993)) and coloring by groups were

applied, to analyze the unique positions in terms of

volume, hydrogen bonding and charge properties. All of the

above functions and the resulting mapping of phylogenetic

and sequence data onto the falcipain-2 model structure

(Figure 23) were performed with a JAVA* application

(Chapter III).

Docking

DOCK 4.0 (Ewing, Makino et al. 2001) was used to

screen the falcipalin-2 sites against the Available

Chemicals Directory release 97.2 containing 1954 19 unique

compounds (MDL Inc.). The screening procedure took about six

weeks of CPU time on a 4 processor MIPS R12000 SGI server.

5000 compounds were saved from the energy-scoring scheme,

and 5000 from the shape-scoring scheme. Visual selection of

these hits was performed in duplicate, to arrive at a set

of 160 compounds in an unbiased fashion. This selection

step relied on knowledge of the specificity sites unique in

falcipain-2 relative to known human sequences, as well as

standard drug-like properties of small molecules including:

hydrophobicity, molecular weight, and absence of chemical
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functionalities with tendencies to form covalent adducts

with amino acid side-chains.

Falcipain-2 enzyme assays

A set of 44 compounds manually selected from the DOCK

computational screen of the falcipain-2 active site was

tested in a fluorescence-based assay against recombinant

falcipain-2. Recombinant falcipain-2 was prepared (Shenai,

Sijwali et al. 2000) and the falcipain-2 fluorescence-based

assay performed as previously described (Rosenthal, Wollish

et al. 1991). All compounds were dissolved in DMSO to make

a 10 mM stock solution. Each compound was incubated with

the enzyme in 0.1 M sodium acetate (pH 5.5) and 10 mM

dithiothreitol (DTT) for 30 minutes at room temperature

before addition of the substrate benzyloxycarbonyl-Phe-Arg

7-amino-4-methyl-coumarin (Z-Phe-Arg-AMC). The fluorescence

caused by the cleavage of the substrate was monitored

continuously over 30 minutes with a Fluoros kan II

spectrofluorometer (Labsystems). The rate of hydrolysis of

Z-Phe-Arg-AMC in the presence of the compounds was compared

with the rates of hydrolysis in the negative (equivalent

volume of dimethyl sulfoxide (DMSO) ) and positive (100 puM

leupeptin) controls. Using the PRISM 3.0 software (Graphpad
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Software Inc.), the 50% inhibitory concentration of each

compound (IC50) was determined from plots of falcipain-2

activity inhibition over a series Of compound

concentrations. Initial fluorescent as say screens were

carried out for 4.4 DOCK compounds and those with IC50’s

below 10 piM were selected for further testing.

Cell Culture Assays

The six best compounds, 1–4, 6 and 7 (see Table 3)

were selected for characterization in a cell-based assay.

Final concentrations of compounds in the parasite cultures

were 100 piM, 50 pi M, 2.5 puM and 10 p. M and the final

concentration of the DMSO control was 1% . W2 strain P.

falciparum parasites were cultured with human erythrocytes

at 2% hematocrit in RPMI-1640 medium supplemented with 10%

heat inactivated human serum (Rosenthal, Wollish et al.

1991). Parasite synchrony was maintained by serial

treatments with 5% sorbitol (Lambros and Vanderberg 1979).

In order to assess the effects of inhibitors on parasite

development, P. falciparum parasites were incubated for 48

hours with different concentrations of compound added from

100X stocks in DMSO (Rosenthal, Wollish et al. 1991). The

experiment was started at the synchronized young ring stage
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and continued until the control cultures contained nearly

all new ring stage parasites (48 hours). Giemsa-stained

smears were made at 24 and 48 hours. At 24 hours parasite

morphology was evaluated and at 48 hours the number of new

ring forms per 1000 erythrocytes were counted and compared

to control cultures incubated with DMSO. IC50’s for

compounds 1–4, 6 and 7 were calculated using the PRISM 3.0

software.
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Chapter III

JEvTrace: refinement and variations of the

Evolutionary Trace
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Abstract

Motivation

From an analysis of gene families within and across

genomes, it is clear that speciation is a useful concept

for understanding structural and functional variation at

the molecular and organismal level. However, some of the

functional speciation within these gene families is lost

when comparisons are limited to standard multiple sequence

alignments.

The Evolutionary Trace (ET) (Lichtarge, Bourne et al.

1996) was developed to combine multiple sequence,

phylogenetic and structural data to identify functional

sites in proteins and to extract detailed insights into the

evolution of functional surfaces of macromolecules. The ET

method has been successfully applied in a number of

biological systems including signaling proteins and

receptors (Lichtarge, Bourne et al. 1996; Lichtarge,

Yamamoto et al. 1997; Landgraf, Fischer et al. 1999;

Pritchard and Dufton 1999; Gouldson, Higgs et al. 2000;

Innis, Shi et al. 2000; Sowa, He et al. 2000; Aloy, Querol

et al. 2001; Joachimiak, Chang et al. 2001; Sowa, He et al.
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2001; Lichtarge, Sowa et al. 2002). However, no public and

user friendly implementation of this method has been

available thus far. Due to the complexity of the input data

and the informatics problems of function and specificity

discovery, there exist useful variations of the ET method.

In addition, the complexity of the output of ET data and

the desire to couple interpretation of different data types

heightens the need for a flexible and graphical user

interface. We have addressed this problem by developing

data structures that represent graphical results of

multiple sequence alignment analyses with a phylogenetic

and structural perspective.

Results

We have implemented the ET in a JAVA* application,

JEvTrace. The implementation allows users to access the

underlying data and results of ET analysis. A number of

variations of the ET can be performed on any combinations

of nodes of the phylogenetic tree. Since protein families

and phylogeny represent complex data with statistical

outliers and special cases, this flexible approach to the

ET allows more extensive and detailed mining of

evolutionary sequence relationships, and remedies
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limitations present in the original implementation.

Function discovery with JEvTrace is demonstrated on the

example of two proteins with recently determined crystal

structures: the protein YlzR from Streptococcus pneumoniae

with a predicted RNA-binding function (Osipiuk, Gornicki et

al. 2001), and a Haeomophilus influenza e protein with

unknown function, Ybak (Zhang, Huang et al. 2000).

To facilitate analysis and storage of results we

propose a multiple sequence alignment (MSA) coloring format

that relies on the inherent structure of MSA's, including

the evolutionary features of protein sequence families. The

Sequence Coloring Format (SCF version 1.0) is optimized for

storage and accessibility criteria, and enables flat file

storage of any and all possible colored selections of a

MSA.
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Introduction

Whole genome analyses have enabled the study of gene

families within and between species. From computational and

experimental studies of these genomes and gene families,

new perspectives are emerging on evolution of specificity

and cellular metabolic organization. However, these efforts

remain limited by our ability to accurately annotate gene

function. In yeast, the number of ORFs with assigned

functions by sequence similarity based methods was 43%

(Mewes, Albermann et al. 1997). With the inclusion of

extensive experimental data this value is approaching 70%

(Mewes, Frishman et al. 2002). Meanwhile, a search of the

PDB for the keyword "unknown function’ retrieved 31 protein

structures. Many of these structures are the results of

structural genomics initiatives. As this number is likely

to grow, it has become more important to develop

computational tools to intuit function from analysis of

sequence information in the context of structure.

Assigning function by sequence homology alone presents

a number of caveats, including the occurrence of

structurally homologous enzymes catalyzing different

reactions (Gerlt and Babbitt 2000) and the propagation of
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error through successive rounds of sequence annotation

(Brenner 1999). Conversely, assigning function by structure

alone can also be daunting, even if one ignores the

implicit selection bias in structure databases relative to

sequence databases. Analysis of the CATH database revealed

that while function was conserved in nearly 51% of enzyme

families, function had diverged considerably in highly

populated families (Pearl, Todd et al. 2000). This

consequence has direct implications for structure based

function predictions using threading algorithms (Jones,

Tress et al. 1999; Panchenko, Marchler-Bauer et al. 1999).

Another serious complication in the structure based

function discovery problem is the intrinsic limit on our

ability to compare distantly related sequences and to

recognize the role of specific residue subsets in

poly functional proteins. It can be difficult to recognize

if a distantly related homolog belongs to a superfamily

with a functional supersite (Russell, Sasieni et al. 1998)

or whether that particular structural scaffold accommodates

multiple functional sites, as with the G-proteins

(Lichtarge, Bourne et al. 1996).

It follows that similarity free function prediction methods

are especially desirable. Marcotte et al employed

correlated evolution, correlated mRNA profiles and patterns
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of domain fusion for genome-wide function prediction

(Marcotte, Pellegrini et al. 1999). A method based on local

gene order of orthologous genes has been proposed (Kolesov,

Mewes et al. 2001). Protein–protein interactions have been

used to assign function with surprising success (Hishigaki,

Nakai et al. 2001) and functional descriptors have been

used to search structure space (Di Gennaro, Siew et al.

2001). However, the predictive capabilities of these

methods when used individually remain unsatisfactory.

ET presumes that the branchpoints separating subclades

of a phylogenetic tree can specify molecular speciation

events, and hence evolutionary selection of amino acids.

Thus, nodes can mark points in evolution where a protein

gains, modifies or loses a binding or catalytic function

(Lichtarge, Bourne et al. 1996). The original ET method

relies on a partitioning of the phylogeny. This procedure

results in sets of nodes at different levels of Percent

(sequence) Identity Cutoffs (PIC) (Du and Alkorta 1994).

However, since phylogenies often contain extreme branches

due to distant homologs or rapid speciation, pairs of

protein family members are not represented uniformly across

the sequence identity range. This is reflected in a skewed

topology of the phylogeny, e.g. the P. aeruginosa and S.

pyogenes hypothetical proteins at the bottom of Figure 25.
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Figure 25

A phylogenetic tree of the frataxin family (Cho, Lee et al.

2000) detailing the presence of distant sequence homologs

within a phylogeny. The MSA and dendogram of the family

were constructed as described in Methods. Partitions of the

phylogeny are shown as colored vertical bars. Each

partition of the phylogeny corresponds to an interval of

percent sequence identity. The percent sequence identity

for the selected subclades is shown on the phylogeny.
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Hence, the PIC cutoffs correspond to intervals of percent

sequence identity, and the greater the number and/or

magnitude of outliers in the family, the larger the percent

identity interval (see Figure 25). Presence of these

outliers effects multiple alignment and phylogenetic

models, and in ET analysis can misrepresent the functional

variability at the presumed PIC level. This issue has been

addressed by normalizing the score in the ET method with

sequence variability and sequence uniqueness measures

(Landgraf, Fischer et al. 1999). However, numerical

normalization reduces the problem to one of sequence

analysis, in effect disregarding evolutionary aspects. In

the case of distant subclades, ET analysis of appropriately

chosen subclades of the phylogeny will have the desired

normalization effect. This approach can be used to correct

for positional variability, sequence representation bias

and non-uniform phylogenetic topologies.

Another limitation of the original ET method was the

definition of invariant and neutral position types.

Lichtarge et al (Lichtarge, Bourne et al. 1996) recognized

that with growing sequence databases, the strict

definitions of invariance as a total lack of invariance,

and neutrality as invariance discrepancy in even one

family, were destined to evolve. Inherently, the functional
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resolution in the ET method relies on an optimization based

on ET results from multiple partitions, each corresponding

to unique definitions of subclade invariance. This

optimization has so far evaded automation, with users

having to resort to manipulation of the underlying data and

Cycles of ET analysis and visual inspection of the results

mapped to protein structures.

Aside from manually filtering and pruning the data,

there has been no simple way of controlling which subclades

of the protein family are used in the analysis. An elegant

solution to this problem is to allow the user to access all

possible subclades represented by the phylogenetic tree. In

this way a number of ET variations can be performed,

extending the analysis to multiple views of protein family

evolutionary data.

JEvTrace is one possible implementation of protein

family analysis. Such analyses, which include experimental

techniques such as alanine scanning (Wells 1991) and

computational techniques such as MSA coloring schemes

(Taylor 1997), attempt to organize the massive amounts of

sequence and structure data. The results introduce the

problem of choice of strategies to identify biologically

meaningful patterns. In general, sequence and structure

alignments are frequently used to sort features of gene
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family data. Analysis of alignments provides coherence to

the understanding of biological data, especially from the

perspective of distinct features that may explain the

unique functional attributes of an individual entry. As is

common in ET analysis, these features may extend over

sequentially or spatially clustered sets of nucleotides or

amino acids and patterns are frequently difficult to

identify without a form of color coding. Obviously, color

coding exploits our cognitive pattern recognition skills –

skills that have been d if f i cult t O replicate

algorithmically.
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Results

An example of a protein with unknown function is 1G2R,

representing the YlxR gene from Streptococcus pneumoniae

(Osipiuk et al 2001). Yl X R belongs to the putative

nus A/infB operon in S. pneumoniae. The operon contains

seven genes, three of which are conserved in other

bacteria: Rbf A, nus A (with its well characterized gene

product IF2 (Grill, Moll et al. 2001)), and infB. All three

of these proteins are involved in translation and ribosomal

function during cold shock response (Bae, Xia et al. 2000).

YlxR has been assigned to COG 2740 (Tatusov, Natale et al.

2001), which contains the conserved amino acid motif

GRGA (Y/W) . The proteins of COG 27.40 are predicted to be

nucleotide-binding proteins implicated in transcription

termination. Several features of the structure, including

the conserved and appropriately spaced arginines that could

form a characteristic positively charged surface patch

(Figure 26 B, C), and a large bent groove reminiscent of

other RNA-binding structures, supported the argument that

YlxR is a RNA-binding protein.

Structures of proteins in complexes with small

molecules have led to and confirmed predictions of protein
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Figure 26

JEvTrace analysis of the YlzR protein family. Absolutely

conserved positions are colored red. The two major

subclades are labeled S1 and S2 and the location of the S.

pneumonia e YlzR (PDB : 132R) in the phylogeny is shown. B

shows the results of subclade trace analysis of the five

minor subclades, highlighted with black squares on the

phylogeny in A. In B the per-residue score corresponds to

the color coding as in Figure 27. C highlights the subclade

sequence conservation comparison between the two major

subclades, which are highlighted with large blue and orange

circles on the phylogeny in A. In C, the residue coloring

corresponds to the blue and orange designation of the

subclades. Graphics of the molecular surfaces were created

with Chimera (Huang 1996) and MSMS (Sanner, Olson et al.

1996) using the SCF format to import JEvTrace results.

Graphics of the phylogeny were created with JEvTrace.
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YixR S. pneumoniae

A] F-TE

53%

S1
38%

9% :
S2

R25

R45
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Figure 27

A description of the scoring scheme and coloring scale used

in JEvTrace. The score for a given position is calculated

as the pairwise sum of subclade invariance within a given

partition or set of nodes. In the event of numerous

invariant subclade pairs, the score is normalized to an

integer interval corresponding to colors in the color

scale.
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function. The structure of Ylx R is complexed with three

sulfate ions, two of which are bound to R25 and R45, and

the third to a lysine pair K62 and K63. It has been

observed that the distances between the sulfate ions

correspond to distances between phosphate groups in a RNA

duplex (Osipiuk, Gornicki et al. 2001). The predicted

binding site also fully encompasses two out of three of the

sulfate ions and borders the third.

The protein family retrieved by PSIBLAST (Altschul,

Madden et al. 1997) consists of 20 unique sequences. The

hypothetical ance stor sequence has three conserved

arginines. Although this is a relatively small family for

ET analysis, a simple multiple sequence alignment suggests

that only the arginine of the conserved GRGA (Y/W) motif is

absolutely conserved. However, since the key arginines

associated with the predicted function are absolutely

conserved, this implies that the predicted RNA-binding

function is conserved across this family.

JEvTrace subclade trace analysis was performed on all

of the subclades of this family, ranging from 28 to 53 %

sequence identity (Figure 26). After filtering out residues

buried from solvent, the following residues were identified

in the vicinity of the conserved arginines (square brackets

indicate the conserved arginine): K10, V12, V13, S14, K20
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[R9] , G40 [R25], G46 [R25], 48 Y [R25, R45 ), and K30 and E31

[R45] . At least eight residues form a spatial cluster in

the vicinity of the conserved arginines. The residues K10,

the backbone of S11, V12, V12, S14, V17, G40, E55, K63, and

64V, from the kinked C-terminal helix, a beta-turn, and

parts of the beta-sheet, potentially define a binding

epitope (Figure 26B). The epitope includes a collection of

hydrophobic interactions that have been correlated with the

evolution of residues forming a surface epitope in the

vicinity of R9 (Figure 26B).

There appear to be two distinct subclades within the

YlxR sequence family, both consisting of proteins with

unknown or uncertain function (S1 and S2, Figure 26). A

subclade comparison was performed to analyze the conserved

residues of these two subclades. Such a comparison is

useful when a protein family has few representatives or

limited evolutionary diversity i. e. few subclades. It

appears that independent sets of residues are conserved.

All of these residues are in the vicinity of one or more of

the conserved arginines, and define a slightly larger and

differently oriented surface epitope (Figure 26C) than in

the JEvTrace subclade trace analysis (Figure 26B). We

propose that the conserved residues modulate the

specificity of the predicted RNA interaction, and that the

188



two subclades correspond to specificity subtypes within the

larger family, possibly with unique functional features.

The residues not identified by subclade trace analysis but

appearing in the subclade comparison, are responsible for a

finer level of molecular specificity. In this case of a

predicted protein function, JEvTrace analysis presented

direct evidence for additional binding functions and

highlighted the presence of potential subtypes in the RNA

binding specificity.

Another interesting family of unknown function is the

bacterial Yba K proteins. A structure of the homolog from

Haemophilus influenzae has been solved (Zhang, Huang et al.

2000). This gene product has been proposed to serve as a

regulatory protein (Burns and Beacham 1986; Bensing and

Dunny 1993). Analysis of the sequence family in the context

of the structure revealed one conserved residue K4 6 in a

small putative binding site (Zhang, Huang et al. 2000).

The Yba K fold is related to a circular permutation and

truncation of the C-lectin fold. However, a saccharide

binding function for Yba K is unlikely due to a small

putative binding site and lack of saccharide binding

residues (Zhang, Huang et al. 2000). Zhang et al discussed

the possibility of an oxyanion hole formed by backbone

nitrogens of the two residues following conserved G101 (with
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the exception of an arginine in an unknown protein from

Mycobacterium smegmatis (AAD4 1809)).

The Ybak family is composed of three large subclades,

related by an absolutely conserved lysine, K4 6. The three

subclades are Ybak (S2 in Figure 28A), an insertion domain

in the acceptor stem of prokaryotic prolyl-tRNA synthetases

(S1 in Figure 28A) and a prokaryotic family of hypothetical

proteins (S3 in Figure 28A). Seventy one sequences were used

in the JEvTrace analysis. Of these, twenty three formed a

distinct subclade containing the H. influenza e Yba K

sequence.

JEvTrace parent trace analysis, which relies on

tracing the conservation of the progenitor sequences of a

single selected node (Figure 28A), identified a number of

neutral polar and hydrophobic amino acids conserved in the

Ybak subclade on the conserved lysine face of Ybak (Figure

28A TOP). This was consistent with the analysis of Zhang et

al. Among these conserved positions, JEvTrace identified a

cluster of solvent accessible residues above and beyond the

proposed oxyanion hole, including Y20, H22, D23, E32 and

R132. Together, these residues form a polar surface patch

and the wall of the putative binding site. D23 and E32

contribute to the negative face identified by Zhang et al.
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Figure 28

JEvTrace analysis of the Yba K protein family. Absolutely

conserved positions are colored red. The three major

subclades are labeled S1, S2 and S3, and the location of the

H. influenzae Ybak (PDB : 1 DBX) in the phylogeny is shown. A

represents the results of parent tracing through seven

consecutive parent subclades. Color coding corresponds to

the colors of the subclades in the phylogeny (A). B

represents the partition trace results for 6 partitions of

the phylogeny, ranging from 7% to 50% percent average

sequence identity. The per residue score in the partition

trace (B) corresponds to the color coding as in Figure 27.

Black circles in the TOP views of A and B represent the

approximate location of the putative binding site. Graphics

Of the molecular surfaces were created with Chimera (Huang

1996) (Huang et al) and MSMS (Sanner, Olson et al. 1996)

using the SCF format to import JEvTrace results. Graphics

of the phylogeny were created with JEvTrace.
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The phylogenetic partition JEvTrace algorithm was

performed using 6 partitions from the 7 to 50 average

percent sequence identity (Figure 28 B). Based on the

partition trace algorithm the highest scoring position is

S104 (magenta), and then T47, T96, Y98, G102, I 103, S129

(orange). Most of these positions are partially shielded

from solvent and/or contribute main chain hydrogen bonding

interactions. Eliminating solvent accessible residues left

S129, a position which belongs to the neutral polar patch

of the putative binding site. Considering residues with

less prominent scores (gray, blue, cyan, yellow), the size

of the epitope identified by JEvT race increases

considerably and encompasses nearly half of the K4 6 face

(Figure 28B TOP). Together these positions form a partially

buried cluster that defines the bottom and walls of the

putative ligand binding site spanning across the K4 6 face.

From the fifth level on (Figure 27) all identified

positions are on the conserved lysine face of Yba K.

Significantly, the loop immediately above the oxyanion hole

is disorded in the 1DBX structure. This loop formed by

residues 26-30 is not conserved nor does it conserve

chemical properties across the phylogeny. However, a number

of subclades express invariance at these positions. Due to

its proximity to the conserved G101 and one branch of the
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J-shaped putative binding site, this disordered region is

predicted to contribute to the functional interaction and

specificity of Ybak. A number of structural studies by NMR

have demonstrated that RNA binding proteins are flexible

and undergo conformational changes upon binding (Markus,

Hinck et al. 1997; Feng, Tejero et al. 1998; Varani,

Gunderson et al. 2000).

Using GRASP (Nicholls 1992) Zhang et al predicted a

positively charged patch on the face of the protein

opposite K4 6, and a negatively charged patch on a face

adjacent to K46. However, the Yba K structure has the

interesting feature of a single conserved lysine separated

by a ring of hydrophobic or neutral residues from a

circular arrangement of mixed charged residues (Asp, Arg,

Glu, Lys). These residues line the perimeter of the K4 6

face. This is reminiscent of numerous examples of protein

protein interaction, where hydrophobic “rings” of residues

are observed to surround polar and charged residues, with

the proposed purpose of screening ionic interactions from

solvent (Bogan and Thorn 1998; Thorn and Bogan 2001). This

potential protein–protein interaction feature of Yba K is

additionally supported by evidence that the prolyl-tRNA

synthetases (S1 in Figure 28A) interact with other proteins

involved in protein synthesis. There may be additional
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surface patches of mixed positively and negatively charged

residues in Ybak. However, the positively charged surface

identified by Zhang et al. contains the highest number of

high scoring positions in the JEvTrace analysis of multiple

phylogenetic partitions (Figure 28B). The lysine perimeter

patch (Figure 28A, 28B TOP) and other potential patches are

not conserved nor are they identified completely by the

partition algorithm (Figure 28A, 28B SIDE), and thus are not

expected to be a predominant functional feature of the Ybak

family.

JEvTrace analysis suggests that Ybak is involved in a

protein-protein interaction requiring a binding site with

hydrophobic and polar patches, and an oxyanion hole

opposite a conserved lysine. Pursuing the protein-protein

interaction hypothesis, it appears that a protruding J

shaped polypeptide volume involving an aspartic or glutamic

acid, or a negatively charged cofactor, is a likely ligand

for the Ybak binding site. The face opposite this binding

site presents a patch of positively charged residues,

supporting the hypothesis of a nucleotide binding function

for at least some subclades of the Yba K family. Thus

although, the Ybak family subtypes only share one conserved

amino acid across species, the patterns of subclade

sequence conservation suggest a main binding function,
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characterized by unique specificity within multiple clades

that is spatially centered around the conserved lysine,

K4 6.
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Discussion

JEv'Trace

The ET method has been a successful tool for analyzing

prote in functional surfaces using the additional

information present in protein phylogenetic trees. However,

this approach has been limited by difficulty in producing a

dynamic graphical user interface to analyze the data. The

optimization involved in producing ET results has

previously relied on manually manipulating the underlying

data, while certain paths of analysis were inherently

inaccessible. Thus, identification of the dominant spatial

cluster of invariant residues has been unwieldy. To improve

this operational challenge we have constructed JEvTrace, a

JAVA suite of algorithms and objects together with a

graphical user interface. The algorithms allow the user to

identify evolutionary relevant positions based on user

selections of subclades (Figure 26A, 26B) or partitions of

the phylogeny (Figure 28 B). This approach introduces new

features and parameters in ET analysis. Additional

algorithms for tracing subclade conservation through

parents or children of a specific subclade (Figure 28A) and

subclade conservation comparisons (Figure 26A, 26C) are
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available in JEvT race. The user interface produces

interactive graphical results, and access to the underlying

sequence, phylogenetic and protein structure data. To

perform mapping of ET results and alignment selections to

the structural dimension, JEvTrace is dynamically linked to

a 3D-structure viewer, Webmol (Walther 1997).

These algorithms (see Methods) allow comparisons of

features within a phylogeny in ways that are not directly

limited by the topology of the phylogeny, sequence

representation bias, or sequence distance and amino acid

similarity. The implementation allows an analysis of any

possible combinations of subclades within the protein

phylogeny. The resulting decompositions of evolutionary

sequence data allow multiple definitions of sequence,

structure and function homology within a protein family,

and hence grant new perspectives to family sequence

analysis.

By not considering solvent inaccessible residues, the

original ET method relies on protein structures to filter

phylogenetic results in order to identify the predicted

functional sites. A recognized limitation of the original

method was filtering out buried polar side chains within

structural clefts (Lichtarge, Bourne et al. 1996). JEvTrace

gives access to the entire set of results prior to residue
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solvent accessibility filtering. Extensive structural

filtering, not limited to solvent accessibility, can be

performed in the JAVA structure viewer WebMol (Walther

1997).

JEvTrace facilitates the analysis of other features of

protein families. Conserved positions can be found for any

subclade in the phylogeny, and the conservation and

variability between any set of subclades can be analyzed

(subclade comparison Figure 26B, 26C). This functionality

can be used to distinguish homologous proteins with

different functions, as first suggested by Aloy et al. For

a particular subclade, JEvTrace can perform a parent or

child trace, identifying the subclade specific conservation

within a chain of parent or child subclades of a node

(Figure 28A). This method can be used as an ET surrogate if

there is lack of significant homology between subclades of

a protein family. This was helpful in the analysis of Ybak.

JEvTrace can identify the unique residues in a single

sequence relative to the considered sequence data. This was

useful for our drug design efforts on a malarial cysteine

protease (Joachimiak, Chang et al. 2001). JEvTrace also

serves as a sequence and structure viewer. Any JEvTrace

analysis of the MSA or phylogenetic data can be visualized

on available protein structures. This can be useful in the
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modeling of protein structure by homology by highlighting

the evolutionary contexts for structural analysis within a

protein family (Joachimiak, Chang et al. 2001). All of

these informatics features address sequence determinants of

specificity and similarity using distinct biological data.

In general, the ET approach is more difficult to apply

at lower percent sequence identity, owing to problems with

building an accurate sequence alignment, especially in

the absence of structural information (Devos and Valencia

2000; Wilson, Krey chman et al. 2000). For example,

annotations based on low percent sequence identity pairwise

comparisons were a significant source of errors in the

initial yeast genome annotation (Mewes, Albermann et al.

1997). Similar alignment problems can occur at the N and C

termini of a protein, and even more commonly in loop

regions. In addition to requirements of alignment accuracy,

ET also has requirements for the minimal amount of sequence

information and the related parameter of evolutionary

diversity within the protein family. Of the algorithms

provided in JEvTrace the parent/child trace and subclade

comparisons can be applied with as few as two sequences.

The partition trace and subclade trace require more than a

pair of subclades, and benefit non-linearly from larger

amounts of data. Overall, the two largest effects of
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limited sequence data are the signal to noise ratio for the

correlation of invariant sites to functional residues and

the ability to identify functional specificity and specific

functions. As a corollary, until sequence space of a

protein family has been sampled sufficiently, insight into

the full functions and specificities within a phylogeny

remain limited.

MSA Sequence Coloring Format: SCF

With an ever-increasing set of biological data

sources, there is a clear need for sensible standards. We

propose SCF : a file format that will encode any user

defined coloring scheme for prote in and nucleotide

sequences as well as their secondary and tertiary

structures, based on the inherent structure of multiple

sequence alignments. The format is simple, easy to verify

manually, and potentially readable by any alignment or

structure viewer.

An example protein alignment with a selection of

residues including absolutely conserved positions, as well

as positions forming two structural epitopes in one of the

known protein structures, is shown in Figure 29. It is
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Figure 29

An example of the SCF coloring format. A represents colored

MSA selections. B shows the selections mapped to a

representative protein structure. C is the text encoding of

the MSA selections in A according to the SCF format

specification. The MSA graphics were created with JEvTrace

and the structure graphics with WebMol (Walther 1997).
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important to note that only selected positions are encoded,

a performance and storage asset. Our implementation of an

alignment viewer allows transparent interaction with

tertiary structures, using the JAVA* applet WebMol (Walther

1997). In this setting, the color format serves to annotate

protein structures with multiple sequence information, and

allows comparisons a cross multiple sequences and

structures. This coloring format should aid in the display

of results of experiments pertaining to biological

sequences and structures. Moreover, it will allow

integration of visualized sequence alignment results under

a single representation scheme.
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Conclusions

We have designed a JAVA'" application, JEvTrace,

implementing the Evolutionary Trace method (Lichtarge,

Bourne et al. 1996) and its variations. These methods have

in common the analysis of protein families through multiple

sequence alignments, phylogenetic trees and protein

structures. The ET method has proven to be a useful tool

for understanding the sequential and structural aspects of

protein function, including the analysis of variations

relevant to molecular specificity. From an evolutionary

perspective, the function of proteins within a protein

family encompasses both variation e. g. substrate

specificity reflected in amino acids lining substrate

binding pockets, and conservation e. g. regions responsible

for general enzymatic activity or binding of a common

molecular scaffold. While it is trivial to identify

absolutely conserved residues, function discovery often

requires a context for the predicted or unknown function

associated with the absolute conservation pattern.

For the purpose of validating a functional prediction,

as in the case of YlxR and Yba K, JEvTrace identified

residues clustering around the putative conserved
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functional residue (s). These findings supported an RNA

binding prediction for Ylx R and most likely a protein

protein interaction interface for Yba K. For functional

discovery, as in the case of a new binding epitope in YlxR

or the extensive putative binding site and positively

charged epitope in Yba K, JEvTrace provided phylogenetic

evidence of clusters of residues on the protein surface.

It is hoped that the JEvTrace implementation will lead

to analysis of protein families at varying levels of

detail, leading to useful decompositions of the data. One

of these decompositions comes from the evidence in the

evolutionary record of protein sequences. As documented by

the biological applications of the ET method, evolutionary

data presents evidence allowing the distinction of

conserved spatial arrangements of residues versus

evolutionary sequence changes with negligible or no effect

on function. In unison with experimental data, the

decompositions of evolutionary data provided by JEvTrace

may enable additional distinctions in the molecular

specificity, kinetic and dynamic properties of protein

function.
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System and Methods

Sequence Family Retrieval and Analysis

We chose two protein structures of unknown function,

and retrieved their protein families from the sequence

database. The sequence of the structure was used as a query

for PSIBLAST (Altschul, Madden et al. 1997) against the

Gen Pept database from NCBI. The sequences were then aligned

and phylogenetic trees created with CLUSTALW (Thompson,

Higgins et al. 1994) and/or combinations of software from

the GCG package (Devereux, Haeberli et al. 1984) including

PILEUP (Feng and Doolittle 1987; Higgins and Sharp 1989;

Feng and Doolittle 1996) and PAUPSEARCH (Rogers and

Swofford 1999).

Algorithm

The binary phylogenetic tree and MSA data are

implemented as JAVA* objects. The phylogenetic tree,

assumed to be binary, is modeled as branches and nodes

along with an ordering such that each branch shares a node

with a parent branch and from zero to two child branches.
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Each node in the phylogeny corresponds to a subset of

sequences in the MSA. Every phylogenetic branch is

represented with an abstract consensus sequence, used to

model the corresponding subclade sequence conservation. The

implemented algorithm derives a consensus sequence for

every subclade of sequences represented in the phylogenetic

tree. This information is used to dynamically generate the

results based on any user defined subclades or partitions

of subclades, by algorithms comparing the appropriate

subsets of consensus sequences.

The partition trace variation of the ET method assigns

nodes from the tree to a defined partition of the

phylogeny. The partition is vertical, meaning perpendicular

to the direction of branches in the tree (Figure 25).

Sequence conservation in each subclade is compared pairwise

to conservation in all other subclades within a given

partition. Alternatively, in the subclade trace algorithm,

requiring user specification of a set of nodes, the defined

nodes are algorithmically treated as a single partition.

The subclade trace does not require partitions, and is

therefore independent of the topology of the phylogeny. In

both algorithms, each position of the MSA is scored by the

frequency of conservation of different amino acids in pairs

of subclades at that MSA position. In the partition trace,

208



the score is cumulative across partitions. All scores are

normalized if there are more than 7 pairs of invariant

subclades at any alignment position. The numerical scores

are mapped to a seven color scale (Figure 27), limited by

graphical interaction with the structure. Scores can

include normalization by the sequence variability of the

identified invariant subclades.

JEvTrace also provides the ability to perform a single

subclade trace. The user defined subclade is assigned as a

parent or child node, and the subclade specific sequence

conservation below or above that node is identified.

Subclade specific conservation is defined by the set of

residues that are conserved in a subclade but not in its

parent. The results are a chain of related subclades of the

phylogeny, with color coded subclade sequence selections on

the MSA and structure. We call this variation of the ET

method a parent (or child) trace, and it is especially

useful for families with few subclades and cases of highly

speciated specificity.

JEvTrace generates results dynamically, displays them

on the MSA and enables saving in standard graphics formats

or the SCF format. As in the original ET method, absolutely

conserved positions are inherently excluded from the

analysis. Structural filtering is designated to the WebMol
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JAVA" program, packaged with JEvTrace. Concurrently with

WebMol., JEvTrace reads PDB data and aligns the sequence of

the structure with a selected sequence in the MSA. This

alignment enables JEvTrace to map results and selections

from the MSA to the structural dimension. JEvTrace also

presents the option of using the Access program (S.

Presnell) results to filter the results of the analysis by

three states of amino acid solvent accessibility (Defay and

Cohen 1996) .
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Implementation

JEvTrace

The program takes as input an MSA, or an MSA with a

corresponding phylogenetic tree. The PILEUP (GCG), CLUSTALW

(Thompson, Higgins et al. 1994) and New Hampshire formats

(Felsenstein 1989) are recognized. Phylogeny is interpreted

as a binary tree with a hypothetical root. Protein

structure viewing is designated to the JAVA" structure

viewer WebMol (Walther 1997). Alignment selections in

JEvTrace can be mapped to the Chimera structure viewer

(Huang 1996) using an earlier version of the SCF format

available in JEvT race. Since many proteins lack

representative crystal structures, use of structures in

JEvTrace analysis is optional. Currently JEvTrace supports

one active WebMol window per session.

Users can select up to seven partitions of the

phylogenetic tree, or choose any set of nodes. A number of

operations including the ET method can be performed on the

selected parts of the phylogeny. The resulting data is

independent of structural information and can be viewed and

manipulated directly on the MSA of the protein family. To
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aid interpretation of the phylogenetic data, the tree can

be annotated with the percent sequence identity of all the

subclades. The identified positions are visualized on the

MSA as well as any available structures (Figure 26, 28).

Among the many sequence-structure features of JEvTrace

is the ability to highlight the residues in contact with a

selected position, based on a residue-residue distance

calculation and a distance cutoff. A number of sequence

based features are also available including calculation of

alignment position statistics for a variety of physical

chemical properties: molecular volume (Creighton 1992),

average pKa (Creighton 1992), hydrogen bonding potential,

number of rotatable bonds, hydrophobicity (Karplus 1997).

JEvT race consists of three graphical canvases: a

binary phylogenetic tree, a list of sequence identifiers

(e. g. accession codes) and a MSA. The three canvases are

aligned by row, such that the terminal nodes (representing

individual sequences) of the phylogenetic tree align with

their names and amino acid sequences. The tree and

alignment canvases are scrollable in two dimensions, and

have a practical capacity of more than 150 sequences of

less 400 amino acids, on a Pentium workstation with 256M of

RAM. All JEvTrace functions are organized into menus and

buttons, allowing extensive user interaction with the data.
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Any results that are represented graphically in JEvTrace or

WebMol can be printed or saved.

Sequence Coloring Format (SCF)

The MSA coloring format exists as a text file with the

file extension '. SC F '. It is accurate with respect to the

underlying sequence data, given that the sequence (s)

remains unchanged in length and order. As a safeguard for

the underlying sequence data consistency, the SCF object

calculates a MSA checksum variable (see SCF website

details). Relational databases and software environments,

such as JEvTrace, represent dynamic extensions of the

format. The coloring data can exist as an individual file,

or can be appended to the actual data file: Multiple

Sequence Format (MSF) (GCG) or CLUSTALW (Thompson, Higgins

et al. 1994) files in the case of multiple sequence

alignment, and a Protein Data Bank (PDB) (Bernstein et al.,

1997) file for structural data. Appending the coloring to

the underlying data, can allow the transparent annotation

by color.

The residue positions of sequences in an alignment are

uniquely indexed from top to bottom, using sequence numbers

starting at one as rows, and left to right, using alignment
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positions starting at zero as columns. The actual file

format consists of 6 columns: sequence number, residue

number, three columns for the primary color space (Red

Green Blue, RGB) designation of the color, and an optional

comment/property column (Figure 29C). The last column can

accommodate accepted coloring schemes, or can be used to

define properties for colors and/or the underlying data.

This format accommodates any 24-bit digital color, and

allows highlighting of any subset of residues in any subset

of sequences of the MSA. The selections are encoded in a

hierarchical sorted manner, i.e. smallest to largest

sequence position, and within this group smallest to

largest sequence, and within those groups, smallest to

largest color values.

Our JEvTrace implementation of the SCF format in

JAVA", allows reading MSF, CLUSTALW and PDB data files, and

interpretation of the SCF coloring data in each of these

contexts. In addition, the underlying sequence data is

modeled as JAVA" objects, whose properties are dynamically

updated. In this implementation, it is possible to

translate selections between different MSAs sharing at

least one sequence. Using a single sequence as a

“translator”, any selections can be “translated” from one

alignment to another, given that both alignments contain
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the “translator” sequence. This feature is useful in

bridging analysis of families containing distant homologs,

performing independent analysis of multiple subclades of a

protein family, or updating multiple sequence alignment

data.

The JEvTrace and SCF JAVA* packages have been tested

on SGI* MIPS, Pentium.” Pro (Windows” and Linux) and

Macintosh systems. Both JAVA* packages are compatible with

1.2 and higher versions of JAVA*.
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Epilogue

Of special importance in this work has been the

overarching theme that effective understanding of protein

structure and function in the post-genomic sequence era is

related to a subtle interplay between experimental

measurements and computational models, analyses and

representations. Gene sequences are representations of the

complex structure of DNA arranged into genomes. Protein

sequences represent a translation of the gene sequence.

However, considering primary sequence to tertiary structure

correlations or homology to a known structure, the amino

acid sequence represents the structure itself. Phylogenies

of sequences represent the collection of differences and

similarities characteristic of biological evolution. Such

representations of complex biological entities and

processes facilitate novel computational interpretations of

biological data. The combination of biological data and

computational methods represents a significant nonadditive

advantage in biological analysis and discovery.

Substrate specificity can be changed with even a

single residue – however, encoding of a new function or
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interaction involves protein surface remodeling and occurs

with evolutionary selection of multiple residues. On the

organismal level, punctual and gradual aspects of

biological evolution can be illustrated with the founder

effect. The punctual aspect is represented by the

appearance of a new species, the founder. Gradual mutation

and selection differentiates the original species into

multiple sub species characterized by unique,

distinguishable traits. This phenomenon is an analogy for

gene evolution, where genetics and selection lead to

multiple homologous genes both within and across genomes.

As has been true in general of knowledge accumulation,

increases in the surface area of a field of study are

usually unevenly correlated with increases in the depth of

the volume knowledge. This phenomenon compounds with the

fact that biological systems and their components are as

complex as any entities studied by science too date. There

is much work remaining before phenotypes can be linked to

the molecular biology triad of sequence, structure and

function. Computational methods based on models directly

relating to experimental data can provide useful insights

even in the presence of weak signals within the

intrinsically noisy biological information.
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