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Integration of large-scale data 
for extraction of integrated 
Arabidopsis root cell-type specific 
models
Michael Scheunemann1,3, Siobhan M. Brady2 & Zoran Nikoloski1,3

Plant organs consist of multiple cell types that do not operate in isolation, but communicate with each 
other to maintain proper functions. Here, we extract models specific to three developmental stages 
of eight root cell types or tissue layers in Arabidopsis thaliana based on a state-of-the-art constraint-
based modeling approach with all publicly available transcriptomics and metabolomics data from 
this system to date. We integrate these models into a multi-cell root model which we investigate 
with respect to network structure, distribution of fluxes, and concordance to transcriptomics and 
proteomics data. From a methodological point, we show that the coupling of tissue-specific models in 
a multi-tissue model yields a higher specificity of the interconnected models with respect to network 
structure and flux distributions. We use the extracted models to predict and investigate the flux of the 
growth hormone indole-3-actetate and its antagonist, trans-Zeatin, through the root. While some 
of predictions are in line with experimental evidence, constraints other than those coming from the 
metabolic level may be necessary to replicate the flow of indole-3-actetate from other simulation 
studies. Therefore, our work provides the means for data-driven multi-tissue metabolic model 
extraction of other Arabidopsis organs in the constraint-based modeling framework.

Plant organs are not homogeneous, but are composed of multiple cell types which are organized in space and time 
to facilitate adequate functions1. For instance, the root of Arabidopsis thaliana is composed of 15 cell types2. The 
cell types across developmental stages also differ with respect to their metabolic and regulatory characteristics, 
and they, too, are organized geometrically with respect to specific radial and axial positions. For instance, different 
developmental zones (e.g., meristematic, elongation and maturation zone) can be separated along the longitu-
dinal axis of the root, with more matured cells in the zone farther away from the tip3. Therefore, there is a need 
for models of connected tissues to investigate metabolism on the level of an organ and entire organism4. Such an 
approach will allow us to probe how root cell types complement and limit each other in fulfilling their respective 
functions, and will provide insights about how the root sustains the functions of the entire plant.

Genome-scale models (GEMs), comprising the entirety of characterized metabolic reactions, together 
with constraint-based modeling methods offer the means to address this question5. The availability of 
GEMs of the well-studied model plants (e.g., for Arabidopsis thaliana6–9) and the public accessibility of 
spatiotemporally-resolved “omics” data (e.g., for Arabidopsis thaliana roots3,10) render it feasible to develop 
tissue-specific models for plant root system. To this end, given a plant GEM, context-specific models can be 
obtained by extracting a subset of reactions relevant for a particular context, i.e., cell type, developmental stage 
or a tissue.

A recent systematic review11 grouped existing context-specific model construction approaches into three cate-
gories, referred to as GIMME-, iMAT- and MBA-like families, which now includes a forth category for the recent 
RegrEx12 method as well as for the approach provided by Lee et al.13 named Lee2012. Representative methods 
from the first three categories have been thoroughly reviewed and their performance with respect to prediction 
of growth and particular fluxes compared ion several data scenarios14. The underlying concept of GIMME-like 
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methods (e.g., GIMME15, GIM3E16) is a two-step procedure: a requiring metabolic functionality (RMF), such 
as growth, is first optimized in a flux balance analysis (FBA) framework17. Subsequently, a penalty function is 
minimized, such that the discrepancy between fluxes and respective transcripts level is small at the optimal bio-
mass (or fraction thereof) detected at step one. The differences between methods in this category stems from the 
formulation of the discrepancy measure. The iMat-like family (e.g., iMAT18, INIT19) is characterized by find-
ing reactions whose states (active/ inactive) correspond to the respective states from the data, i.e. expressed/ 
non-expressed gene(s) encoding enzymes that catalyze the considered reaction. It is mathematically formulated 
as mixed integer linear program (MILP) which aims to find a steady-state flux distribution, while the number 
of reactions whose activity states meet the expression states is maximized. For the third construction strategy 
(e.g., MBA20, mCADRE21), the reactions of generic model are a priori divided into two groups, namely core and 
non-core reactions with respect to existing evidence (i.e., high-throughput data or biochemical knowledge). Next, 
a pruning process takes place in which non-core reactions are removed that are not needed for enabling the core 
reactions to be active (i.e., consistency achieved by gap filling). Based on the associated transcriptomics or pro-
teomics data, the partition of the reactions into groups is usually based on user-chosen thresholds11.

Identifying an appropriate threshold can be difficult in non-model organisms, especially when information 
about context-specific metabolic functions is lacking, since usage of mean or median summary statistics may bias 
the results and may impose challenges in the comparability of contexts. The Regularized Context-specific model 
Extraction method (RegrEx) provides a possibility for fully automated extraction of tissue-specific models by 
finding a compromise between sparsity of flux distributions (i.e., number of active reactions) and flux distribution 
that minimizes the distance to the transcriptomics data12 (see Materials and Methods for details about RegrEx and 
its comparison to other existing approaches for context-specific metabolic modeling). In contrast to the existing 
approaches based on known functions, RegrEx does not optimize any pre-selected biological functionality, which 
may render it suitable for analysis of poorly understood metabolic scenarios. The lack of functional consideration 
may be partly overcome by consideration of qualitative metabolite data (i.e. presence/absence patters) in a cell 
or tissue to further refine tissue-specific models. To this end, one can use approaches such as GIM3E16, whereby 
measured metabolites are incorporated in the model by enforcing a non-zero flux through specially designed sink 
reactions. In addition, one may use minExCard22, which minimizes the number of added exchange reactions that 
renders a feasible steady-state flux around measured metabolites. Here, we expand RegrEx12 to include qualitative 
metabolite data, i.e., present/absent, following the idea of GIM3E16.

To obtain insights in the organization of metabolism at a larger scale, tissue-specific models can be com-
bined in a multi-tissue model. In plant science, there already exist several multi-tissue modeling approaches: De 
Oliveira Dal’Molin et al. provide a framework to build multi-tissue models for an entire plant23. This framework 
relies on additional compartments connecting two adjacent tissues; the compartments comprise common pools 
through which exchanged metabolites must move. Simulation of steady-state fluxes uses the assumption that 
organs do not compete for energy demand which is supposed to be minimized on the level of a whole plant. 
Grafahrend-Belau et al.24 proposed a slightly different strategy: In this approach, the authors focused on mod-
eling the primary metabolism of leaf, stem and seed. These tissue-specific models were then connected by an 
additional compartment, the phloem, which allows communication between tissues without taking into account 
any geometrical cellular organization. The tissue-specific models were created by utilizing genomic, proteomics, 
biochemical, and physiological data from literature and publicly accessible databases, without employing the 
approaches for tissue-specific network construction mentioned above. The approaches followed in both studies 
require prior biological knowledge about the function of individual organs or their underlying principles, which 
are often unknown. In absence of knowledge of optimized metabolic function, approaches based on integrating 
diverse data sets (e.g. transcriptomics, proteomics, and metabolomics) to approximate functional (i.e. flux) states 
may provide a viable alternative.

The aim of this study was to form root models that combine cell type or tissue-specific networks for three sce-
narios corresponding to three experimental set ups: (i) the Birnbaum scenario was based on the data assembled in 
Birnbaum et al.3. which mapped gene expression for 15 different zones of Arabidopsis root, corresponding to the 
stele tissue as well as for endodermis, cortex & epidermis (atrichoblasts) cells at three progressive developmental 
stages (Fig. 1a). (ii) the Li 1 scenario was based on the data from Li et al.25 which provides gene expression for 
(cell type-resolved) xylem, phloem and pericycle cells (Fig. 1b), while (iii) the Li 2 scenario was based on gene 
expression data of Li et al.25 obtained from the mixture of cells in the meristematic, elongation and maturation 
zone of the root (Fig. 1c), allowing us to extract developmental-stage-resolved models. Meristematic, elongation 
and maturation zones are equivalent to developmental stages 1 to 3, respectively. We will abuse the language, 
and will refer to the respective models as tissue-specific models. Our strategy for extracting tissue-specific as 
well as multi-tissue models was based on RegrEx12 (using transcriptomics data) with the addition of considering 
exchange reactions connecting the tissue-specific models. In addition, we extended RegrEx to allow the inte-
gration of qualitative metabolomics data from Moussaieff et al.26 Therefore, the Birnbaum scenario provides the 
biggest cell and development resolution, while the Li 1 and 2 scenarios can be used to verify the robustness of the 
predicted patterns.

The resulting (de)coupled models were compared with each other in terms of their structure as well as the 
biological functionality, particularly the correspondence of the supported flux distributions as well as the proxy 
of turnover for key hormones. Given two model extraction strategies applied to extract a set of models, one will 
be said to extract more specific models if the pairwise difference of the models with respect to different measures 
is larger. As measures for model differences one can use the difference in model structure (i.e., in reactions or 
metabolites) or in model functionality (i.e., in flux distributions). With the data at hand, our results suggested 
that extraction of coupled models resulted in a higher specificity of the extracted tissue-specific models than 
the decoupled models. In addition, we considered qualitative proteomics data from Petricka et al.27 to qualita-
tively verify some of the predictions. Our results also indicated that the presented approach may be suitable to 
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investigate phytohormone distributions such as indole-3-actetate (IAA) and trans-zeatin as antagonist to IAA28 
in the root. Therefore, our modeling strategy could be used to extract networks of tissues with higher specificity 
for other plant organs as more spatiotemporal data become available.

Results and Discussion
The RegrEx12 approach was applied to extract models specific to cell types or tissues depicted in Fig. 1, from 
an initial generic GEM based on transcriptomics and metabolomics data in Arabidopsis root (Fig. 2a). A 
context-specific model extracted only by using transcriptomics data from the respective cell type will be referred 
to as decoupled (Fig. 2b). In contrast, a tissue-specific model extracted by integration of transcriptomics data 
from multiple cell types in a multi-context model will be called coupled (Fig. 2c). To evaluate the performance 
of RegrEx for the two types of extracted context-specific models (i.e., decoupled and coupled) as well as the 
multi-context model, we employed the Pearson correlation coefficients between the data (i.e., gene expression 
and protein abundance) and the flux distributions resulting from RegrEx as well as sampled from the extracted 
models. For fairness of the comparison between the coupled and decoupled tissue-specific models, here, exchange 
reactions (i.e., reactions through which metabolites are transported between two models) were not considered 
since these reactions are, expectedly, over-represented in the coupled tissues.

Properties of decoupled and coupled context-specific models. To obtain insights into the struc-
ture of the resulting decoupled models, we compared the sets of extracted reactions. Each of the decoupled 
context-specific models contained up to 45% (Fig. 3) of the reactions from the initial GEM (with 2,199 reactions). 
The models extracted by both strategies were of comparable compactness, assessed by the number of considered 
reactions (Fig. 3). The largest difference between the number of extracted reactions between the decoupled and 
coupled models in Scenario Birnbaum was for matured epidermis cells, while for Scenarios Li 1 and 2, these 
included the pericycle cells and matured root cells, respectively.

Figure 1. Data scenarios for the model extraction approach. (a) In the Birnbaum scenario, spatio-temporally 
resolved transcriptomics data were used for the RegrEx method to extract (de)coupled tissue-specific models. 
The data sets were obtained from Birnbam et al.3. The considered cell types or tissue included lateral root cap, 
epidermis, cortex & endodermis as well as endodermis cells and cells composing the stele tissue (from outer 
to inner layers) of three developmental stages, i.e. meristematic, elongated and matured cells. The multi-tissue 
model was formed along the longitudinal axis of each cell type/tissue. (b) The Li 1 scenario comprised models 
covering the xylem, phloem and pericycle cells that were forming a stele multi-tissue model. (c) In the Li 2 
scenario, only the developmental stages were considered. The multi-tissue model was simulating the root organ. 
For (b) and (c) transcriptomics data were obtained from Li et al.25.
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Next, we were also interested in how well the predicted fluxes matched the transcriptomics data used for the 
model extraction. To this end, the Pearson correlation between the transcriptomics data and the predicted flux 
distributions were determined. We would like to note that the RegrEx approach minimizes the distance between 
gene expression and flux values which does not correspond to maximizing correlation. It can be observed, in 
Table 1 that the correlation values between fluxes and transcriptomics data were slightly lower for the cou-
pled models compared to the decoupled in the scenarios Li 1 and Li 2, except for the pericycle cell type. In the 
Birnbaum scenario, the Pearson correlation coefficients for the coupled tissue-specific models were at least as 
large as the correlation values for the decoupled models. For instance, the correlation coefficients between fluxes 
and trancriptomics data were equal for (de)coupled models describing cortex & endodermis tissue of the matu-
ration zone (developmental stage 3). For the meristematic zone of the same tissue, the correlation was increased 
by 37% when coupling was considered, from 0.19 to 0.26. In contrast, the model representing endodermis cells 
behaved differently. For the meristematic zone, the Pearson correlation decreased by 21% when coupling was con-
sidered. The Pearson correlation coefficient also decreased for lateral root cap cells of meristematic zone from 0.38 
to 0.37. Except for these three particular cases, the Pearson correlation increased on average by 8% when coupling 
was considered. Altogether, we concluded that the Pearson correlation for the coupled tissue-specific models was 
comparable to the decoupled tissue-specific models on the three analyzed scenarios (Table 1).

Figure 2. Cell-type specific model extraction for Arabidopsis root. (a) Types of tissues (stele) and cell types, 
i.e. epidermis, cortex, endodermis and lateral root cap. (b) For tissue/cell type-specific transcriptomics data, 
decoupled models for every single tissue are extracted from an initial generic model. Vertices represent 
metabolites, lines stand for reactions. Transcriptomics and metabolomics data for the components, i.e., genes 
and metabolites, are used for model extraction. Colored lines correspond to reactions that are extracted 
from the initial model. The colors correspond to the respective tissue. (c) The replicates of the initial model 
are connected to each other via exchange reactions. A multi-tissue model is then extracted based on the 
corresponding transcriptomics data. The purple colored lines show the reactions connecting the multi-
tissue model. The single-tissue specific parts within the multi-tissue model refer the coupled models, and are 
represented in different colors. Note that the decoupled and coupled models may differ.
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Differences in network structure and flux distributions highlight a higher specificity of coupled 
models. First, we inspected the concordance between the developmentally-resolved transcriptomics data. To 
this end, we determined the pairwise Pearson correlation based on the gene expression for each pair of tissues 

Figure 3. Number of extracted reactions. The number of reactions that are extracted from the initial model 
are given for three situations: (a) Transcriptomics data published by Birnbaum et al. are considered. The data is 
spatiotemporal resolved and covers the stele tissue and the cell-types endodermis (endo), cortex & endodermis 
(cortex/endo), epidermis (epi) and lateral root cap (lrc) for three developmental stages 1 (S1), the region 
between the root tip and 0.15 mm upwards (where the full diameter of the primary root is reached, stage 2 (S2), 
where cells originating from the root section between 0.15 mm to 0.30−0.45 mm away from the root tip, and 
stage 3 (S3), that is about 0.45 mm to 2 mm far away from the root tip. (b) Transcriptomics data published by Li 
et al.25 are used spatial (cell-type) and (c) temporal (developmental stage) resolution.

decoupled coupled

elongation zone 0.40 0.34

maturation zone 0.39 0.31

meristematic zone 0.19 0.15

xylem 0.39 0.37

phloem 0.40 0.37

pericycle 0.37 0.38

meristematic zone 0.29 0.30

elongation zone stele 0.37 0.37

maturation zone 0.47 0.49

meristematic zone 0.20 0.20

elongation zone endodermis 0.41 0.42

maturation zone 0.44 0.45

meristematic zone 0.19 0.26

elongation zone cortex & endodermis 0.35 0.36

maturation zone 0.40 0.40

meristematic zone 0.19 0.15

elongation zone epidermis 0.34 0.35

maturation zone 0.40 0.40

meristematic zone 0.38 0.38

elongation zone lat root cap 0.39 0.42

maturation zone 0.50 0.53

Table 1. Concordance of flux distributions and the transcriptomics data. For all three scenario Birnbaum, 
Li 1 and Li 2 the flux distributions are compared with the respective transcriptomics data by determining the 
Pearson correlation coefficient. All presented correlations were significant at level 0.001.
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by considering only the genes included in the initial, generic GEM. From the uppermost triangle-shaped heat 
map of Fig. 4a and c, it was apparent that the transcriptomics data of the more matured tissue (i.e., for scenario 
Birnbaum, developmental stage 3 referred to as DS3, and scenario Li, developmental stage resolved: matured 
denoted by Mat) differed the most from the cells or tissue of the earlier developmental stages. This was in line with 
the biological role of more matured cells/tissues that perform more specific tasks29,30.

Next, we inspected if and to what extent this relationship was mirrored when considering the cohorts of the 
decoupled and of the coupled models, respectively. The structure of the models was compared by employing the 
Jaccard distance. The Jaccard distance ranges between 0 and 1, where 1 indicates that two pairwise compared 
models have no reaction in common. From the heat maps on the left-side of Fig. 4 (blue-scaled), it was noticeable 
that contexts that were more matured showed higher Jaccard distances compared to the less matured contexts for 
the (de)coupled models. More precisely, the pairwise Jaccard distance increased along root development (longi-
tudinal axis). However, the models for the meristematic tissues differed slightly from those of the matured tissue.

Subsequently, we performed a comparison of the models by considering the pairwise Pearson correlation 
between the predicted flux distributions. We will refer to such comparison as functional, as it is based on the 
supported flux distributions. The Pearson correlations obtained values between −1 and 1, where 1 reveals that 
two considered flux distributions fit each other perfectly. From the heat maps on the right side of Fig. 4, when 
considering the decoupled models, we found that all flux distributions were more concordant to each other in the 
Birnbaum and Li 2 scenarios. In contrast, the coupled models exhibited smaller Pearson correlation coefficient. 
For instance, for the decoupled epidermis-specific models the Pearson correlation coefficients were 0.89, 0.83 and 
0.85 for developmental stages 1 and 2, 1 and 3, and 2 and 3, respectively. For the coupled models, the values of the 
Pearson correlation were 0.75, 0.66, and 0.79 for the three comparisons for developmental stages, respectively. 
This pattern was stable across all considered tissues/cell types, indicating that the coupled models are more spe-
cific. In other words, the extracted flux distributions were less concordant across all models, indicating that the 
models were functionally more different than their decoupled counterparts.

We were also interested in investigating how many reactions were shared pairwise and among all extracted 
(de)coupled models per context. As shown in Fig. 5, we found that for the coupled models the number of reac-
tions shared by all contexts decreased in all three scenarios (in Scenario Birnbaum, Li 1 and 2, by 15%, 8%, and 
31%, respectively). In contrast, the number of context-specific reactions increased, except for the phloem cell 
type in scenario Li 1 and for stele cells of developmental stage 1 in the Birnbaum scenario. The same trend was 
observed in scenario Li 2. These findings provided further support for the claim that the coupled context-specific 
models resulted in a higher specificity compared to the decoupled models.

Figure 4. Structural and functional comparison of extracted models. For three scenarios the decoupled models 
were compared with coupled models: (a) scenario Birnbaum (only transcriptomics data from Birnbaum et al. 
are used) (b) scenario Li 1 in which transcriptomics data for different cell types from Li et al. were considered 
and (c) scenario Li 2 in which the gene expression data for three developmental stages were considered. The 
heat maps on the left side correspond to the Jaccard distances, while those on the right side refer to the Pearson 
correlation of the flux distributions.
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Sampling-based comparison of decoupled and coupled tissue-specific models. We also wanted 
to compare the specificity of the models by comparing the randomly sampled flux distributions for decoupled and 
coupled tissue-specific models over the shared reactions. This comparison reflects the functional similarities of 
the models. To this end, flux values were uniformly sampled for the extracted (de-)coupled context-specific mod-
els using the implementation by Schellenberger et al.31 (see Methods). The pairwise Pearson correlation was then 
determined for 2,500 sampled flux distributions from each of the models. The resulting correlation matrices were 
compared with each other by employing the Rv-coefficient32 (Figure S1). Analogous to the Pearson correlation 
coefficient, the Rv-coefficient is a measure of similarity of matrices and takes values between 0 and 1. Tables 2–4 
showed that for the coupled tissue-specific models the Rv-coefficient was considerably smaller compared with the 
decoupled models for all three scenarios (Table 2: Li 1, Table 3: Li 2 and Table 4: Birnbaum). The decreasing sim-
ilarity of pairwise considered correlation matrices demonstrated again that the coupled context-specific models 
were more specific than their decoupled counterparts.

Validation with proteomics data. We also evaluated the resulting tissue-specific models by using data 
from another cellular layer, namely, proteomics data25,27. Firstly, we compared the proteomics data with the tran-
scriptomics data using the Pearson as well as the Spearman correlation coefficients. We also compared the struc-
ture of the models extracted based loci for which both transcriptomics and proteomics data were available. In 
total, proteomics data could be mapped to 48% of the reactions in the initial GEM. We found Pearson correlation 

Figure 5. Context-specific reactions and reactions shared across contexts. Venn diagram of pairwise shared, 
individual reactions and reactions that are shared by all for three scenarios (a) scenario Birnbaum (only 
transcriptomics data from Birnbaum et al. are used) and the stele context only. S1, S2, S3 refer to developmental 
stage 1, 2 and 3, respectively, that is equivalent to meristematic, elongation and maturation zone, (b) scenario 
Li 1 in which transcriptomics data for different cell types from Li et al. were considered and (c) scenario Li 2 in 
which the gene expression data for three developmental stages were considered.

xylem phloem pericycle

xylem 0.84 0.83

phloem 0.48 0.93

pericycle 0.53 0.59

Table 2. Comparison of the predicted and the sampled flux distributions for the Li 1 scenario. For the extracted 
models flux values were randomly sampled for each model. The comparison of the models is conducted only 
based on the reactions shared between the models in each of the groups of coupled and decoupled to facilitate 
unbiased comparison of specificity. The comparison is based on the Rv-coefficient which ranges between 0 and 
1. Similar to the Pearson correlation an Rv-coefficient of 1 means high similarity. Bold font indicates values 
corresponding to the decoupled models, whereas the italic font corresponds to the coupled models.
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coefficients of 0.35, 0.23 and 0.15 for the meristematic, elongation and maturation zone, respectively, while the 
Spearman correlation was 0.63, 0.61, and 0.52, respectively. Therefore, the data indicated that the concordance 
of the transcriptomics with the proteomics data is in line with what has been reported in the literature33,34 and 
highlighted the non-linear relationship between the two (due to the higher values for the Spearman correlation 
coefficient).

Due to the non-linear relationship between transcript and protein levels, we opted to only compare the structure 
of the models resulting from the application of RegrEx with transcriptomics and proteomics data. We found that the 
models for meristematic, elongated, and matured cells from the proteomics data for the scenario Li 1 included 907, 
822, and 730 reactions, respectively, in the decoupled case. For the coupled models, these numbers were 632, 832, 
and 785, respectively. The Jaccard distance to the respective models was the smallest for elongated decoupled models 
(0.38) and the largest for matured decoupled (0.51). In the case of coupled models, the smallest Jaccard distance was 
observed for matured cells (0.42), while the largest was for the comparison of meristematic cells (0.49).

Coupled models facilitated the study of IAA and trans-Zeatin fluxes through the root. In addi-
tion, we were interested to inspect how the IAA and trans-Zeatin fluxes were distributed across the different 
tissues or cell types. Therefore, the multi-tissue models of every tissue or cell type were combined with each other 
by connecting the respective exchange reactions (i.e., import or export).

Mounting evidence pointed that indole-3-actetate (IAA) is transported through the root towards the tip and 
back describing a reverse fountain-like shape1,35,36. In addition demonstrated in in-silico simulations that IAA 
concentration reaches a local peak at ~0.1 mm away from the root tip corresponding to Birnbaum et al.’s defini-
tion of developmental stage 1 (0.15 mm away from the root tip)3,35. Brunoud et al. reported an increase of auxin in 
the beginning of the elongation zone when investigating the auxin signaling sensor DII-Venus37.

Next, we were interested in finding the extent to which the IAA-related observations and simulations could be 
replicated by the multi-tissue root model. To this end, we formulated a combined biomass reactions that includes the 
biomass reactions of all coupled models. In the resulting model, we first asked how different are the optimal biomass 
fluxes (per flux balance analysis) with and without the constraints that the IAA flux is in the reverse fountain-like 

meristematic elongated maturated

meristematic 0.82 0.80

elongated 0.61 0.91  stele

maturated 0.61 0.68

meristematic 0.74 0.71

elongated 0.57 0.75  endodermis

maturated 0.43 0.56

meristematic 0.82 0.73

elongated 0.57 0.75 cortex & endodermis

maturated 0.43 0.56

meristematic 0.71 0.63

elongated 0.26 0.86  epidermis

maturated 0.31 0.58

meristematic 0.74 0.61

elongated 0.29 0.75  lat root cap

maturated 0.11 0.29

Table 4. Comparison of the predicted and the sampled flux distributions for the Birnbaum scenario. For the 
extracted models flux values were randomly sampled for each model. The comparison of the models is conducted 
only based on the reactions shared between the models in each of the groups of coupled and decoupled to facilitate 
unbiased comparison of specificity. The comparison is based on the Rv-coefficient which ranges between 0 and 
1. Similar to the Pearson correlation an Rv-coefficient of 1 means high similarity. Bold font indicates values 
corresponding to the decoupled models, whereas the italic font corresponds to the coupled models.

meristematic elongated maturated

meristematic 0.84 0.79

elongated 0.53 0.79

maturated 0.51 0.79

Table 3. Comparison of the predicted and the sampled flux distributions for the Li 2 scenario. For the extracted 
models flux values were randomly sampled for each model. The comparison of the models is conducted only 
based on the reactions shared between the models in each of the groups of coupled and decoupled to facilitate 
unbiased comparison of specificity. The comparison is based on the Rv-coefficient which ranges between 0 and 
1. Similar to the Pearson correlation an Rv-coefficient of 1 means high similarity. Bold font indicates values 
corresponding to the decoupled models, whereas the italic font corresponds to the coupled models.
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shape. We found that there was no difference between the two optimal values, indicating that the extracted models 
supported the known pattern of IAA movement in a reverse fountain-like shape at optimal growth.

To obtain insights about the IAA’s turnover, which can be directly connected to the pool size, we sampled 
steady-state flux distribution at optimum biomass by using the implementation of Megchelenbrink et al.38. We 
then determined the flux-sum as a proxy of IAA’s turnover in each of the cell types39. Our findings indicated 
an increase in the flux-sum at the beginning of the elongation zone compared with the meristematic zone (see 
Fig. 6a). This corroborated the observations of Brunoud et al. about the increase of the IAA concentration in this 
part of the root37. However, the auxin concentration peak close above the cap was not found in our simulations. 
This could be caused by an averaging effect when considering multiple cell layers at once when modeling devel-
opmental stage (due to small resolution).

From Fig. 6b, the steady-state flux distributions revealed that IAA moved predominantly cyclically from one 
cell type on the periphery to the inner part of the root. For instance, IAA is moving downstream the stele to endo-
dermis cell type of developmental stage 1. It then entered epidermis cells of developmental stage 1, via cortex & 
endodermis and epidermis cells and finally, it moved back to stele cells of developmental stage 3 via endodermis 
cell of developmental stage 2.

Similar to the analysis of auxin flux and turnover, we next inspected trans-Zeatin as a representative of the 
cytokinins (CK). It was detected mainly in the maturated zone of stele, cortex & endodermis, epidermis and 
lateral root cap cells. Trans-Zeatin was also tracked in the meristematic cortex & endodermis as well as lateral 
root cap cells (see Supplementary Figure S2). CKs are acting in an antagonistic fashion to auxin and are involved 
in cell differentiation28,40. We wanted to know if and to what extent this behavior was observable in our simu-
lations. Therefore, we analyzed the turnover for trans-Zeatin. Our simulations showed low CK turnover when 
the turnover of IAA is high: For instance, 0.25 arbitrary unit (a.u.) and 4 a.u. CK’s or IAA’ turnovers in cortex 
& endodermis or lateral root cap cells of developmental stage 3, respectively, compared with 1.5 a.u. and 1 a.u. 
of CK’s and IAA’ turnovers in cortex & endodermis or lateral root cap cells of developmental stage 1, respec-
tively (see Supplementary Figure S2a and Fig. 6a). This indicated the antagonistic behavior of CK to IAA, as 
supported by the negative correlation of −0.3 (p < 0.001) between CK’s and IAA’s turnover from sampled flux 
distribution of lateral root cap cells of developmental stage 1 or of −0.62 (p < 0.001) of developmental stage 1 (see 
Supplementary Table S4).

Figure 6. Indole-3-acetate behavior in the root. Fluxes for the extracted models are sampled uniformly by 
employing the hit-and-run algorithm. (a) The flux-sum of IAA in each of the cell types. (b) Fluxes through IAA 
transport reactions. The distribution of samples fluxes determines the preferred direction of the IAA flow when 
boundaries at optimum steady-state.
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Further experiments are needed to contrast the proposed reverse fountain-like shape of IAA movement in 
comparison to the predictions of cyclic movement at the majority of optimal steady-state flux distributions as 
well as for the interplay between auxin and trans-zeatin. Our findings indicate that other constraints, other than 
optimal growth, are needed to enforce a particular pattern of IAA and CK movement.

Conclusions
By employing RegrEx12 with tissue-specific information given by transcriptomics and metabolomics data, 
tissue-specific models were extracted from an initial GEM. In parallel, replicates of the initial GEM were inter-
linked with each other by exchange reactions. From this, RegrEx extracted a multi-tissue model with tissue or 
cell type specific information provided by the transcriptomics and metabolomics data. This approach took into 
account that adjacent cell types (of several developmental stages) are autonomous subsystems that communicate 
with each other, e.g., via exchange of metabolites and other components (e.g. proteins and transcripts).

A comparison of the coupled models revealed that the predicted flux distributions provided at least as good a 
fit to the transcriptomics data as decoupled tissue-specific models. This was supported by the Pearson as well as 
the Spearman correlation between fluxes and transcriptomics data (see Supplementary Tables S1, S2 and Fig. 4). 
Our analysis demonstrated that consideration of multiple cell types may overcome the issue of model overfitting 
which occurs when single cell types are considered individually. In addition, our modeling strategy resulted in 
higher model specificity, since the extracted network structures and flux distributions they support differ more for 
coupled in comparison to decoupled models. Future studies could focus on comparative analysis of other existing 
approaches for context-specific modeling to consider coupling.

A sampling of flux distributions of the extracted models showed that the imposed coupling leads to a higher 
specificity of each single (coupled) tissue-specific model, quantified functionally, by a larger discordance between 
the predicted flux distributions, and structurally, by a larger number of tissue-specific reactions (see Fig. 4). From 
this fact we concluded that enabling the tissue-specific models to communicate with each other, the resulting 
multi-tissue model was a more realistic scenario and, thus, more suitable for investigating metabolic processes. 
The decoupled models in a stand-alone mode needed to exploit further pathways, e.g., because of energy related 
issues, what was not required any longer when respective metabolic entities were able to be exchanged.

A more application-driven attempt for biological validation was the tracking of IAA and trans-Zeatin (as a rep-
resentative of cytokinins) fluxes through the root. We showed that our approach allowed to simulate the IAA flux 
gradient as described in other published results (see Supplementary Table S3). However, we also concluded that 
other constraints were required to obtain the reverse fountain-like shape for IAA movement, which did not follow 
from the structure of the model nor from the imposing the optimization of growth. In addition, we showed that our 
simulation could replicate the antagonistic relationship between IAA and trans-Zeatin observed in experiments.

Altogether, our study revealed that the provided pipeline represented a suitable means to obtain refined 
tissue-specific models that also consider the proximity of the corresponding tissue without any loss of biological 
reliability and at higher tissue-specificity of the resulting predictions.

Methods
Modeling rationale. Starting from a GEM and a tissue-specific data set, current extraction strategies result 
in stand-alone tissue-specific models which we refer to as decoupled. However, the functionality of tissue-specific 
metabolic networks may be affected by interactions with others in their spatial proximity. This can be due either 
to transfer of small molecules (e.g. metabolites), but also by mobility of transcripts and proteins41. Therefore, our 
motivation was to test if the specificity and function-related predictions of tissue-specific models can be improved 
by extracting interlinked tissue-specific models. Here, we extracted such interlinked tissue-specific models for 
each developmental stage. We refer to these tissue-specific models as coupled, since their extraction considered 
the exchange of biochemical entities (here, metabolites). The multi-tissue model was then formed by the coupled 
tissue-specific models. The specificity was then evaluated by comparing the structure of the decoupled with the 
coupled models, i.e. which reactions were extracted from the initial GEM to form the respective models. Finally, 
our function-related predictions was based on the comparison of the resulting flux distributions as well as the 
particular patterns of hormone distribution in the root.

Genome-scale metabolic model used for tissue-specific model extraction. Here, we used a 
recently assembled evidence-based GEM of Arabidopsis thaliana, called PlantSEED, that covered the entirety 
of documented metabolic reactions for this model plant42. The PlantSEED model included 2841 reactions inter-
converting 2863 metabolites. For 1523 (i.e., 54%) reactions gene-protein-reaction association rules (GPRs) were 
available. Due to this high degree of integrity, the PlantSEED model was well-suited for extracting tissue-specific 
models by incorporating “omics” data sets. Splice variants of genes provided in the model were not considered, 
since the employed publicly available tissue-specific “omics” data sets did not distinguish between them.

To keep the computational cost low, the blocked reactions were removed from the initial model. To this end, blocked 
reactions were identified by employing flux variability analysis (FVA) to the GEM at maximum biomass. A reaction 
that carried a maximum flux smaller than 10−6 was considered to be blocked and removed. This reducing step resulted 
in a model variant with 2199 reactions and 1813 metabolites. The reduced PlantSEED model was then employed to 
extract metabolic networks specific to stele, endodermis, cortex and epidermis (atrichoblasts) cells as well as to the 
three developmental stages. In addition, models were extracted that are specific to xylem, phloem and pericycle cells as 
well as to three developmental stages of the root in its entirety, respectively, without distinguishing between cell types.

Data used for model extraction and validation. The transcriptomics data used for model extrac-
tion were generated with ATH1 GeneChip arrays (Affymetrix, Santa Clara, CA) by Birnbaum et al.3. The gene 
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expression profiles covered over 22,000 genes and one tissue and four cell types (i.e., stele, endodermis, cortex, 
epidermis and lateral root cap) of three developmental stages. Since the developmental stages correlated with 
distance to the tip of the root, Birnbaum et al. defined developmental stage 1 as the region between the root tip 
and 0.15 mm upwards (where the full diameter of the primary root is reached). The developmental stage 2 was 
given by cells originating from the root section between 0.15 mm to 0.30–0.45 mm away from the root tip. Finally, 
the section about 0.45 mm to 2 mm far away from the root tip refered to the developmental stage 3. Next to this, 
more recent transcriptomics data from Li et al. were used to extract further models, which were either spatially 
or temporal resolved25. Beyond being more recent, Li et al. provided data for stele tissue on a cellular scale, i.e., 
xylem, phloem and pericylce cell type. In total, there were three data situations resulting in three scenarios, i.e. (a) 
Birnbaum – spatiotemporal resolved, (b) Li 1 – cell type and (c) Li 2 – developmental stage resolved (see Fig. 1).

In addition, metabolomics data for four metabolites covered by initial model out of 111 annotated metabolites, 
gathered by Moussaiff et al.26 were integrated for tissue-specific model refinement, i.e., to enforce that the metabo-
lite is produced or consumed in a given cell type. The metabolomics data were obtained by high-resolution liquid 
chromatography mass spectroscopy (LC-MS) applied to green fluorescent proteins (GFP) marker lines.

For the biological validation of the resulting tissue-specific models, we employed the proteomics data gathered 
by Li et al. and Petricka et al.10,27. Following cell-type sorting by GFP markers, the proteomics data were gathered 
by quantitative mass. The proteomics data sets were either cell type resolved or temporal resolved along the whole 
root organ. Thus, when validating the extracted models by employing the data sets provided by Li et al.25, both, 
fluxes and transcriptomics data of either different cell type or of developmental stages were compared with the 
corresponding proteomics data sets.

Overview of RegrEx. The RegrEx12 approach was intend to extract context-specific models from a GEM 
solely by utilizing context-specific data and the 1-norm of the flux distribution. RegrEx has been validated with 
different data sets and models, and its performance was extensively compared with state-of-the-art approaches for 
constructing context-specific models12, including representatives from the other groups of approaches for 
context-specific metabolic modeling (e.g. iMAT18, FastCORE43 and an approach following similar strategy as 
RegrEx called Lee201213). The performance of RegrEx was evaluated based on the structure of the extracted mod-
els, i.e. the number of extracted reactions, the set of shared (core) and exclusive reactions as well as the number of 
data-orphan reactions (i.e., number of incorporated reactions with non-associated experimental data). RegrEx 
was also compared to the existing contenders with respect to the similarity to the data used for extracting 
context-specific models. This comprehensive comparative analyses demonstrated that models extracted by 
RegrEx were of smallest compactness (i.e. the number of extracted reactions) compared to the models extracted 
by the other existing approaches. Models extracted by RegrEx also showed the smallest number of core and big-
gest number of exclusive reactions, demonstrating the context-specificity. RegrEx also resulted in the smallest 
number of reactions without experimental evidence, i.e. data-orphan reactions compared to the other approaches. 
In summary, these findings demonstrated that RegrEx is more tissue-specific and of equal or greater compactness 
compared to the considered approaches.

Next, Robaina-Estévez and Nikoloski were asking for the extent of the discrepancies between predicted flux 
distribution and the experimental data. Therefore, they considered the Pearson correlation between flux values 
and the corresponding data for RegrEx as well as for Lee201213 and iMAT18. Models extracted by RegrEx showed 
highest correlation, followed by Lee2012. In a further step, they compared the sets of extracted reactions per 
context by the Jaccard index. This facilitated the comparison to the findings from FastCORE43 on the same data 
sets and models. As a result, RegrEx was able to capture differences between contexts also with a lower number of 
extracted reactions compared to the other extracting methods. Altogether, RegrEx was shown to be comparable 
to “gold-standard” approaches with the benefit that it operated user-independent and in an automated fashion 
(see further details below). Therefore, RegrEx was the method of choice for our approach.

Before incorporating data into the initial GEM, all transcriptomics data sets were normalized by the maxi-
mum value of all considered tissue per gene in accordance to12,
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with i, j denoting genes and contexts, respectively. By doing this, we ensured that RegrEx does not favor any 
reactions with higher associated expression values among tissues. The data was then assigned to each reaction in 
accordance to its corresponding gene-protein-reaction (GPR) association as described in44. In a third step, metab-
olites detected by Moussaiff et al.26 were enforced to be present in the extracted tissue–specific models. Therefore, 
for every detected metabolite a respective turnover metabolite was added to the PlantSEED model in accordance 
with the GIM3E approach16,26. Furthermore, for each turnover metabolite, we introduced a sink reaction enforced 
to carry a small non-zero flux of value 10−07 to ensure that the respective metabolite and reactions in which it is 
involved are also included in the (de)coupled context–specific models. In addition, the fluxes through reactions 
catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) were forced to be zero, since photosyn-
thesis does not take place in the root.

Subsequently, RegrEx12 aimed to find a flux distribution for that the distance to the mapped transcriptomics 
data is minimized following the idea of the Least Absolute Shrinkage and Selection Operator (LASSO)45 approach 
as it sought to identify a sparse flux distribution compatible with the data (see Equation 2). The resulted flux dis-
tribution gave the best concordance to the transcriptomics data. Therefore, reversible reactions were first split into 
two irreversible reactions. A variable selected one of the two directed reactions. Therefore, RegrEx was formulated 
as mixed-integer quadratic program (MIQP) in form of,
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with d v, ,   denoting the transcriptomics data vector (mapped data in accordance to the GPR rules), the flux 
distribution determined by RegrEx and their discrepancy or error ( = −d v ), respectively. vsink gave the sink 
reactions for every inserted turnover metabolite.

The first line of Equation 2 gave the objective function that was minimized. Its first term ( −d v1
2 2

2) corre-
sponded to the Euclidean distance between the transcriptomics data and the predicted flux values. The second 
term (λ||v||1 i.e., 1-norm) enforced the actual selection of tissue-specific reactions. The number of extracted 
reactions can be controlled by the value of the weighting factor λ. Therefore, from a sequence ranging from 0 to 
0.15 with a step size of 0.01, an optimal λ was selected with respect to the Pearson correlation between fluxes and 
the data. The value of λ that corresponded to the highest concordance between fluxes and data was considered to 
be optimal31. Therefore, the selected value of λ may differ across considered tissues (see Table 5). The flux values 
of reactions irrelevant for the tissue-specific models were shrunk to zero if they did not contribute to increasing 
the concordance between transcripts and fitted fluxes. Finally, reactions that carried fluxes of absolute values 
greater than 10−6 are considered to be active and extracted to form the context-specific model. For this reason, the 
selection of reactions was considered independent of the user and no biological a priori knowledge was needed to 
apply the approach since as no threshold is used on the transcriptomics data.

We had used transcriptomics data to approximate flux phenotype due to the larger coverage in comparison to 
proteomics data (e.g., the root transcriptomics data in3,17 covered 90% of the genome of the Arabidopsis thaliana 
each) compared to proteomics data. There were still an on-going debate about the suitability of transcriptomics 
data in metabolic modeling (see, for instance, Gygi et al. and Moxley et al. about the moderate Spearman and 
Pearson correlations between transcriptomics data and fluxes33,46). However, Machado et al. showed that predic-
tions supported by transcriptomics data were as good as those based on proteomics data14. Since, for the time 
being this was the only experimentally accessible approach at reasonable costs (e.g., in comparison to labeling 
experiments and their analysis at genome-scale level), our analysis relied on transcriptomics data.

RegrEx was applied in two subsequent tasks. In a first step, stand-alone decoupled context-specific models 
were extracted from the initial GEM in accordance to the respective data set (see Fig. 2b). Analogous to this, the 
initial GEM was replicated and interlinked by adding exchange reactions (see Fig. 2c). To this end, the stoichio-
metric matrix S (Eq. (3)) was built accordingly:
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The new stoichiometric matrix comprised all stoichiometric matrices of all context-specific models denoted 
by Si with i = 1, 2, …, n (i.e., replicates of the stoichiometric matrix of the initial GEM), as well as the exchange 
reactions denoted by E (see Eq. (4)),
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Exchanged metabolites (denoted by mj
i where i stands for the considered tissue and j for the metabolite to be 

exchanged) were, e.g., water, ammonium, sucrose, cations (i.e., potassium and hydrogen) as well as ions (e.g. chlo-
rid ions)23. The considered exchanged metabolites were translocated in accordance to the geometry of the cellular 
organization. Metabolites only moved from a given context to its adjacent contexts, as sketched in Fig. 2c. From 
these exchange reactions RegrEx extracted those which are needed to optimize the objective function described 
above. A biomass reaction was formulated for each (de)coupled context-specific model, an approach already 
taken in Dal’Molin et al.23 (see Supplementary Table S5). The resulting model was the multi-context model and its 
context-specific parts were referring to be coupled (see Fig. 2c).

Assessing model validity. The model was validated by inspecting the Pearson correlation between the pre-
dicted fluxes and the corresponding transcriptomics data. Since transcript data may not be good proxies for fluxes 
as mentioned above, we employed another strategy for validation; namely, we randomly generate flux distribu-
tions for the extracted tissue-specific models. To this end, the Artificial Centered Hit-and-Run (ACHR) sampling 
method was employed47 with the implementation provided by31 and38. In Figure S1 the validation strategy was 
illustrated: for two tissue-specific models found by RegrEx, named model 1 and 2, 2,500 flux distributions were 
uniformly sampled. Subsequently, the Pearson correlation coefficient was calculated for every pair of reactions 
included in the considered model over the sampled flux distributions. The resulting correlation matrices from the 
two models were, in turn, compared by determining the Rv-coefficient48. The Rv-coefficient took values between 
zero and one; similarly to the Pearson correlation coefficient, a value for the Rv-coefficient that was close to one 
implied a stronger correspondence between the compared correlation matrices or metabolic models. Finally, 
we also provided a correlation-based comparison of the proteomics data to the randomly sampled feasible flux 
distributions. The distributions of flux sum for IAA as well as trans-Zeatin were determined as the sum of fluxes 
multiplied by the respective stoichiometry around a metabolic pool for each of the sampled flux distributions.

All scripts were implemented in MATLAB scripting language (MATLAB Release 2015a, The MathWorks, Inc., 
Natick, Massachusetts, United States49) under usage of the COBRA toolbox 250 and the cplex-solver51 provided by 
the TOMLAB Optimization Environment by Tomlab Optimization52. All implementations used in this study are 
available from the corresponding author upon request.

References
 1. Taiz, L., Zeiger, E., Møller, I. M. & Murphy, A. S. Plant physiology and development Ch. 1, (Sinauer Associates Inc., 2014).
 2. Brady, S. M. et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806, https://

doi.org/10.1126/science.1146265 (2007).
 3. Birnbaum, K. et al. A gene expression map of the Arabidopsis root. Science 302, 1956–1960, https://doi.org/10.1126/science.1090022 

(2003).

decoupled coupled

xylem 0.15

phloem 0.15 0.14

pericycle 0.15

elongation zone 0.12

maturation zone 0.10 0.12

meristematic zone 0.13

meristematic zone 0.13

elongation zone stele 0.15 0.15

maturation zone 0.13

meristematic zone 0.13

elongation zone endodermis 0.14 0.15

maturation zone 0.15

meristematic zone 0.07

elongation zone cortex &endodermis 0.14 0.15

maturation zone 0.15

meristematic zone 0.13

elongation zone epidermis 0.14 0.15

maturation zone 0.15

meristematic zone 0.14

elongation zone lat root cap 0.14 0.15

maturation zone 0.07

Table 5. Optimal regulation coefficient λ. The underlying principle of RegrEx12 is the LASSO approach45, in 
which a regularization term can be controlled by the coefficient λ. In RegrEx, it also controlled the number of 
reactions that were extracted from the initial genome-scale model. From a series of λ ranging between 0 and 
0.15 with a step size of 0.01 an optimal value was given when the Pearson correlation between the predicted flux 
values and the transcriptomics data was maximum. For all three scenarios Li 1, Li 2 and Birnbaum this was 
checked for the (de)coupled models.

http://dx.doi.org/10.1126/science.1146265
http://dx.doi.org/10.1126/science.1146265
http://dx.doi.org/10.1126/science.1090022


www.nature.com/scientificreports/

1 4SCIeNtIfIC REPORtS |  (2018) 8:7919  | DOI:10.1038/s41598-018-26232-8

 4. Joyce, A. R. & Palsson, B. O. The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Bio 7, 198–210, https://
doi.org/10.1038/nrm1857 (2006).

 5. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular functions. 
Nat Rev Genet 15, 107–120, https://doi.org/10.1038/nrg3643 (2014).

 6. Arnold, A. & Nikoloski, Z. Bottom-up Metabolic Reconstruction of Arabidopsis and Its Application to Determining the Metabolic 
Costs of Enzyme Production. Plant physiology 165, 1380–1391, https://doi.org/10.1104/pp.114.235358 (2014).

 7. Dal’Molin, C. G., Quek, L. E., Palfreyman, R. W., Brumbley, S. M. & Nielsen, L. K. C4GEM, a genome-scale metabolic model to study 
C4 plant metabolism. Plant physiology 154, 1871–1885, https://doi.org/10.1104/pp.110.166488 (2010).

 8. Poolman, M. G., Miguet, L., Sweetlove, L. J. & Fell, D. A. A genome-scale metabolic model of Arabidopsis and some of its properties. 
Plant physiology 151, 1570–1581, https://doi.org/10.1104/pp.109.141267 (2009).

 9. Seaver, S. M. et al. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the 
PlantSEED resource. Proc Natl Acad Sci USA 111, 9645–9650, https://doi.org/10.1073/pnas.1401329111 (2014).

 10. Li, L. et al. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development. The Plant cell 29, 207–228, https://doi.
org/10.1105/tpc.16.00768 (2017).

 11. Robaina Estevez, S. & Nikoloski, Z. Generalized framework for context-specific metabolic model extraction methods. Frontiers in 
plant science 5, 491, https://doi.org/10.3389/fpls.2014.00491 (2014).

 12. Robaina Estevez, S. & Nikoloski, Z. Context-Specific Metabolic Model Extraction Based on Regularized Least Squares Optimization. 
PLOS ONE 10, e0131875, https://doi.org/10.1371/journal.pone.0131875 (2015).

 13. Lee, D. et al. Improving metabolic flux predictions using absolute gene expression data. BMC systems biology 6, 73, https://doi.
org/10.1186/1752-0509-6-73 (2012).

 14. Machado, D. & Herrgard, M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models 
of metabolism. PLoS computational biology 10, e1003580, https://doi.org/10.1371/journal.pcbi.1003580 (2014).

 15. Becker, S. A. & Palsson, B. O. Context-specific metabolic networks are consistent with experiments. PLoS computational biology 4, 
e1000082, https://doi.org/10.1371/journal.pcbi.1000082 (2008).

 16. Schmidt, B. J. et al. GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. 
Bioinformatics 29, 2900–2908, https://doi.org/10.1093/bioinformatics/btt493 (2013).

 17. Varma, A. & Palsson, B. O. Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Bio/Technology 12, 994, https://
doi.org/10.1038/nbt1094-994 (1994).

 18. Shlomi, T., Cabili, M. N., Herrgard, M. J., Palsson, B. O. & Ruppin, E. Network-based prediction of human tissue-specific 
metabolism. Nat Biotechnol 26, 1003–1010, https://doi.org/10.1038/nbt.1487 (2008).

 19. Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. 
PLoS computational biology 8, e1002518, https://doi.org/10.1371/journal.pcbi.1002518 (2012).

 20. Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver 
metabolism. Mol Syst Biol 6, 401, https://doi.org/10.1038/msb.2010.56 (2010).

 21. Wang, Y., Eddy, J. A. & Price, N. D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC 
systems biology 6, 153, https://doi.org/10.1186/1752-0509-6-153 (2012).

 22. Aurich, M. K., Fleming, R. M. T. & Thiele, I. A systems approach reveals distinct metabolic strategies among the NCI-60 cancer cell 
lines. PLoS computational biology 13, https://doi.org/10.1371/journal.pcbi.1005698 (2017).

 23. Gomes de Oliveira Dal’Molin, C., Quek, L. E., Saa, P. A. & Nielsen, L. K. A multi-tissue genome-scale metabolic modeling framework 
for the analysis of whole plant systems. Frontiers in plant science 6, 4, https://doi.org/10.3389/fpls.2015.00004 (2015).

 24. Grafahrend-Belau, E. et al. Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale. Plant physiology 
163, 637–647, https://doi.org/10.1104/pp.113.224006 (2013).

 25. Li, S., Yamada, M., Hang, X. W., Ohler, U. & Benfey, P. N. High-Resolution Expression Map of the Arabidopsis Root Reveals 
Alternative Splicing and lincRNA Regulation. Dev Cell 39, 508–522, https://doi.org/10.1016/j.devce1.2016.10.012 (2016).

 26. Moussaieff, A. et al. High-resolution metabolic mapping of cell types in plant roots. Proc Natl Acad Sci USA 110, E1232–1241, 
https://doi.org/10.1073/pnas.1302019110 (2013).

 27. Petricka, J. J. et al. The protein expression landscape of the Arabidopsis root. P Natl Acad Sci USA 109, 6811–6818, https://doi.
org/10.1073/pnas.1202546109 (2012).

 28. Lee, S., Sergeeva, L. I. & Vreugdenhil, D. Natural variation of hormone levels in Arabidopsis roots and correlations with complex 
root architecture. Journal of integrative plant biology, https://doi.org/10.1111/jipb.12617 (2017).

 29. Waisel, Y., Eshel, A. & Kafkafi, U. Plant roots: the hidden half (Marcel Dekker, 2002).
 30. Peterson, C. A. & Enstone, D. E. Functions of passage cells in the endodermis and exodermis of roots. Physiol Plantarum 97, 

592–598, https://doi.org/10.1034/j.1399-3054.1996.970323.x (1996).
 31. Schellenberger, J. & Palsson, B. Ø. Use of Randomized Sampling for Analysis of Metabolic Networks. Journal of Biological Chemistry 

284, 5457–5461 (2009).
 32. Robert, P. & Escoufier, Y. A Unifying Tool for Linear Multivariate Statistical Methods: The RV- Coefficient. Journal of the Royal 

Statistical Society. Series C (Applied Statistics) 25, 257–265, https://doi.org/10.2307/2347233 (1976).
 33. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19, 

1720–1730 (1999).
 34. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934, 

https://doi.org/10.1126/science.292.5518.929 (2001).
 35. Grieneisen, V. A., Xu, J., Maree, A. F., Hogeweg, P. & Scheres, B. Auxin transport is sufficient to generate a maximum and gradient 

guiding root growth. Nature 449, 1008–1013, https://doi.org/10.1038/nature06215 (2007).
 36. Overvoorde, P., Fukaki, H. & Beeckman, T. Auxin control of root development. Cold Spring Harb Perspect Biol 2, a001537, https://

doi.org/10.1101/cshperspect.a001537 (2010).
 37. Brunoud, G. et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482, 103–106, 

https://doi.org/10.1038/nature10791 (2012).
 38. Megchelenbrink, W., Huynen, M. & Marchiori, E. optGpSampler: an improved tool for uniformly sampling the solution-space of 

genome-scale metabolic networks. PLoS One 9, e86587, https://doi.org/10.1371/journal.pone.0086587 (2014).
 39. Chung, B. K. S. & Lee, D. Y. Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC 

systems biology 3, https://doi.org/10.1186/1752-0509-3-117 (2009).
 40. Liu, J., Rowe, J. & Lindsey, K. Hormonal crosstalk for root development: a combined experimental and modeling perspective. 

Frontiers in plant science 5, 116, https://doi.org/10.3389/fpls.2014.00116 (2014).
 41. Yue, K. & Beeckman, T. Cell-to-cell communication during lateral root development. Molecular plant 7, 758–760, https://doi.

org/10.1093/mp/ssu012 (2014).
 42. Seaver, S. M. et al. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Frontiers in 

plant science 6, 142, https://doi.org/10.3389/fpls.2015.00142 (2015).
 43. Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context-specific metabolic network models. PLoS 

computational biology 10, e1003424, https://doi.org/10.1371/journal.pcbi.1003424 (2014).
 44. Jensen, P. A., Lutz, K. A. & Papin, J. A. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and 

transcriptional regulatory networks. BMC systems biology 5, 147, https://doi.org/10.1186/1752-0509-5-147 (2011).

http://dx.doi.org/10.1038/nrm1857
http://dx.doi.org/10.1038/nrm1857
http://dx.doi.org/10.1038/nrg3643
http://dx.doi.org/10.1104/pp.114.235358
http://dx.doi.org/10.1104/pp.110.166488
http://dx.doi.org/10.1104/pp.109.141267
http://dx.doi.org/10.1073/pnas.1401329111
http://dx.doi.org/10.1105/tpc.16.00768
http://dx.doi.org/10.1105/tpc.16.00768
http://dx.doi.org/10.3389/fpls.2014.00491
http://dx.doi.org/10.1371/journal.pone.0131875
http://dx.doi.org/10.1186/1752-0509-6-73
http://dx.doi.org/10.1186/1752-0509-6-73
http://dx.doi.org/10.1371/journal.pcbi.1003580
http://dx.doi.org/10.1371/journal.pcbi.1000082
http://dx.doi.org/10.1093/bioinformatics/btt493
http://dx.doi.org/10.1038/nbt1094-994
http://dx.doi.org/10.1038/nbt1094-994
http://dx.doi.org/10.1038/nbt.1487
http://dx.doi.org/10.1371/journal.pcbi.1002518
http://dx.doi.org/10.1038/msb.2010.56
http://dx.doi.org/10.1186/1752-0509-6-153
http://dx.doi.org/10.1371/journal.pcbi.1005698
http://dx.doi.org/10.3389/fpls.2015.00004
http://dx.doi.org/10.1104/pp.113.224006
http://dx.doi.org/10.1016/j.devce1.2016.10.012
http://dx.doi.org/10.1073/pnas.1302019110
http://dx.doi.org/10.1073/pnas.1202546109
http://dx.doi.org/10.1073/pnas.1202546109
http://dx.doi.org/10.1111/jipb.12617
http://dx.doi.org/10.1034/j.1399-3054.1996.970323.x
http://dx.doi.org/10.2307/2347233
http://dx.doi.org/10.1126/science.292.5518.929
http://dx.doi.org/10.1038/nature06215
http://dx.doi.org/10.1101/cshperspect.a001537
http://dx.doi.org/10.1101/cshperspect.a001537
http://dx.doi.org/10.1038/nature10791
http://dx.doi.org/10.1371/journal.pone.0086587
http://dx.doi.org/10.1186/1752-0509-3-117
http://dx.doi.org/10.3389/fpls.2014.00116
http://dx.doi.org/10.1093/mp/ssu012
http://dx.doi.org/10.1093/mp/ssu012
http://dx.doi.org/10.3389/fpls.2015.00142
http://dx.doi.org/10.1371/journal.pcbi.1003424
http://dx.doi.org/10.1186/1752-0509-5-147


www.nature.com/scientificreports/

1 5SCIeNtIfIC REPORtS |  (2018) 8:7919  | DOI:10.1038/s41598-018-26232-8

 45. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58, 
267–288 (1996).

 46. Moxley, J. F. et al. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global 
regulator Gcn4p. Proc Natl Acad Sci USA 106, 6477–6482, https://doi.org/10.1073/pnas.0811091106 (2009).

 47. Kaufman, D. E. & Smith, R. L. Direction Choice for Accelerated Convergence in Hit-and-Run Sampling. Oper Res 46, 84–95, https://
doi.org/10.1287/opre.46.1.84 (1998).

 48. Robert, P. & Escoufier, Y. Unifying Tool for Linear Multivariate Statistical-Methods - Rv-Coefficient. J Roy Stat Soc C-App 25, 
257–265 (1976).

 49. MATLAB Release 2015a, The MathWorks, Inc., Natick, Massachusetts, United States, https://www.mathworks.com/products/matlab.
html.

 50. Becker, S. A. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nature 
protocols 2, 727–738, https://doi.org/10.1038/nprot.2007.99 (2007).

 51. Holmström, K., Göran, A. O. & Edvall, M. M. User’s guide for TOMLAB/CPLEX v12.1 (Tomlab Optimization Inc., 2009).
 52. TOMLAB Optimization Environment, https://tomopt.com/tomlab/.

Acknowledgements
M.S. was funded by DFG grant to Z.N. (Grant No. NI 1472/4-1 within the DFG Priority Programme 1819).

Author Contributions
Z.N. conceived and designed the study; M.S. implemented the method. All authors discussed and wrote the 
manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-26232-8.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1073/pnas.0811091106
http://dx.doi.org/10.1287/opre.46.1.84
http://dx.doi.org/10.1287/opre.46.1.84
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://dx.doi.org/10.1038/nprot.2007.99
https://tomopt.com/tomlab/
http://dx.doi.org/10.1038/s41598-018-26232-8
http://creativecommons.org/licenses/by/4.0/

	Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models
	Results and Discussion
	Properties of decoupled and coupled context-specific models. 
	Differences in network structure and flux distributions highlight a higher specificity of coupled models. 
	Sampling-based comparison of decoupled and coupled tissue-specific models. 
	Validation with proteomics data. 
	Coupled models facilitated the study of IAA and trans-Zeatin fluxes through the root. 

	Conclusions
	Methods
	Modeling rationale. 
	Genome-scale metabolic model used for tissue-specific model extraction. 
	Data used for model extraction and validation. 
	Overview of RegrEx. 
	Assessing model validity. 

	Acknowledgements
	Figure 1 Data scenarios for the model extraction approach.
	Figure 2 Cell-type specific model extraction for Arabidopsis root.
	Figure 3 Number of extracted reactions.
	Figure 4 Structural and functional comparison of extracted models.
	Figure 5 Context-specific reactions and reactions shared across contexts.
	Figure 6 Indole-3-acetate behavior in the root.
	Table 1 Concordance of flux distributions and the transcriptomics data.
	Table 2 Comparison of the predicted and the sampled flux distributions for the Li 1 scenario.
	Table 3 Comparison of the predicted and the sampled flux distributions for the Li 2 scenario.
	Table 4 Comparison of the predicted and the sampled flux distributions for the Birnbaum scenario.
	Table 5 Optimal regulation coefficient λ.




